Writer, Jeffrey H.; Murphy, Sheila F.
2012-01-01
Forested watersheds provide high-quality source water for many communities in the western United States. These watersheds are vulnerable to wildfires, and wildfire size, fire severity, and length of fire season have increased since the middle 1980s (Westerling and others, 2006). Burned watersheds are prone to increased flooding and erosion, which can impair water-supply reservoirs, water quality, and drinking-water treatment processes. Limited information exists on the degree, timing, and duration of the effects of wildfire on water quality, making it difficult for drinking-water providers to evaluate the risk and develop management options. In order to evaluate the effects of wildfire on water quality and downstream ecosystems in the Colorado Front Range, the U.S. Geological Survey initiated a study after the 2010 Fourmile Canyon fire near Boulder, Colorado. Hydrologists frequently sampled Fourmile Creek at monitoring sites upstream and downstream of the burned area to study water-quality changes during hydrologic conditions such as base flow, spring snowmelt, and summer thunderstorms. This fact sheet summarizes principal findings from the first year of research. Stream discharge and nitrate concentrations increased downstream of the burned area during snowmelt runoff, but increases were probably within the treatment capacity of most drinking-water plants, and limited changes were observed in downstream ecosystems. During and after high-intensity thunderstorms, however, turbidity, dissolved organic carbon, nitrate, and some metals increased by 1 to 4 orders of magnitude within and downstream of the burned area. Increases of such magnitude can pose problems for water-supply reservoirs, drinking-water treatment plants, and downstream aquatic ecosystems.
Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.
Good, Kelly D; VanBriesen, Jeanne M
2017-10-17
Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.
Gebbink, Wouter A; van Asseldonk, Laura; van Leeuwen, Stefan P J
2017-10-03
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C 2n H 2n F 2n O 2 , C 2n H 2n+2 F 2n SO 4 or C 2n+1 H 2n F 2n+4 SO 4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C 2n H 2 F 4n SO 3 ) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C 2n H 2n F 2n O 2 homologues.
2017-01-01
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C2nH2nF2nO2, C2nH2n+2F2nSO4 or C2n+1H2nF2n+4SO4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C2nH2F4nSO3) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C2nH2nF2nO2 homologues. PMID:28853567
Source water protection is a component of the 1996 Amendments to the Safe Drinking Water Act. Drinking water utilities have adopted widely different philosophies for source water protection. the City of New York, with large upland water reservoirs, is investing millions of doll...
Emelko, Monica B; Silins, Uldis; Bladon, Kevin D; Stone, Micheal
2011-01-01
Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance. Copyright © 2010 Elsevier Ltd. All rights reserved.
Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...
Weber, M; Rinke, K; Hipsey, M R; Boehrer, B
2017-07-15
Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.
This project focuses on the efficacy of treatment processes at POTWs and CWTs, since discharge of treated wastewater to surface waters provides an opportunity for chemicals found in the effluent to be transported to downstream drinking water intakes.
NASA Astrophysics Data System (ADS)
Emelko, M.; Silins, U.; Stone, M.
2016-12-01
Wildfire remains the most catastrophic agent of landscape disturbance in many forested source water regions. Notably, while wildfire impacts on water have been well studied, little if any of that work has specifically focused on drinking water treatability impacts, which will have both significant regional differences and similarities. Wildfire effects on water quality, particularly nutrient concentrations and character/forms, can be significant. The longevity and downstream propagation of these effects, as well as the geochemical mechanisms regulating them have been largely undocumented at larger river basin scales. This work demonstrates that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability in some ecoregions. The short- and mid-term impacts include increases in primary productivity and dissolved organic carbon, associated changes in carbon character, and increased potential for the formation of disinfection byproducts during drinking water treatment. The longer term impacts also may include increases in potentially toxic algal blooms and the production of taste and odor compounds. These documented impacts, as well as strategies for assessing the risk of wildfire-associated water service disruptions and infrastructure and land management-associated opportunities for adaptation to and mitigation of wildfire risk to drinking water supply will be discussed.
Wildfire and the future of water supply.
Bladon, Kevin D; Emelko, Monica B; Silins, Uldis; Stone, Micheal
2014-08-19
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.
Wu, Jie; Ye, Jian; Peng, Huanlong; Wu, Meirou; Shi, Weiwei; Liang, Yongmei; Liu, Wei
2018-06-01
In the Pearl River Delta area, the upstream municipal wastewater is commonly discharged into rivers which are a pivotal source of downstream drinking water. Solar irradiation transforms some of the dissolved organic matter discharged from the wastewater, also affecting the formation of disinfection by-products in subsequent drinking water treatment plants. The effect of simulated solar radiation on soluble microbial products extracted from activated sludge was documented in laboratory experiments. Irradiation was found to degrade macromolecules in the effluent, yielding smaller, more reactive intermediate species which reacted with chlorine or chloramine to form higher levels of noxious disinfection by-products. The soluble microbial products were found to be more active in formation of disinfection by-products regard than naturally-occurring organic matter. The results show that solar irradiation induced the formation of more trihalomethane (THMs), chloral hydrate (CH) and trichloronitromethane (TCNM), causing greater health risks for downstream drinking water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Linking drugs of abuse in wastewater to contamination of surface and drinking water.
Rodayan, Angela; Afana, Shadi; Segura, Pedro A; Sultana, Tamanna; Metcalfe, Chris D; Yargeau, Viviane
2016-04-01
The concentrations of 17 drugs of abuse, including cocaine, several amphetamines, opioid drugs, and 2 metabolites--benzoylecgonine, a metabolite of cocaine, and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrolidine, a metabolite of methadone--were investigated in an urban watershed that is heavily impacted by discharges of municipal wastewater. The artificial sweetener sucralose was also monitored as a persistent tracer of contamination from municipal wastewater. Monitoring was conducted in a municipal wastewater treatment plant (WWTP) and at sites upstream and downstream of the WWTP discharge, as well as in a drinking water treatment plant (DWTP) located 19 km downstream of the WWTP discharge that withdraws raw water from the river. Drug concentrations were monitored with polar organic chemical integrative samplers deployed for 2 wk in the river and in the WWTP and DWTP. Several of the investigated compounds exhibited a decrease in concentration with distance downstream from the wastewater discharge into the river, but there was little attenuation of sucralose, cocaine, benzoylecgonine, morphine, acetylmorphine, acetylcodeine, and oxycodone. Heroin and methadone were not detected at any sample locations. Amphetamine, methamphetamine, 3,4-methylenedioxy-methamphetamine, and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrolidine were not detected in the samples collected at the drinking water intake. Many of the drugs of abuse were not removed effectively in the DWTP, including cocaine, benzoylecgonine, methylenedioxyamphetamine, ephedrine, and several prescription opioids, most probably because the DWTP was operating at or above its rated treatment capacity. These data indicate that there can be transport of drugs of abuse from wastewater sources into drinking water in urban watersheds. © 2015 SETAC.
ReachScan - an Exposure Assessment Model
ReachScan estimates surface water concentrations downstream from industrial sites to assess impacts on the aquatic environment and potential dose rates for humans exposed via ingestion of drinking water and fish.
Toxicological relevance of emerging contaminants for drinking water quality.
Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P
2010-01-01
The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health. (c) 2009 Elsevier Ltd. All rights reserved.
Drinking water sources are increasingly impacted by upstream anthropogenic activities, including wastewater discharge, concentrated animal feeding operations (CAFOs) and landfill leachate. Androgenic and estrogenic activities have been detected in surface waters downstream from ...
NASA Astrophysics Data System (ADS)
Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.
2018-04-01
Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.
1988 Hanford riverbank springs characterization report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirkes, R.L.
1990-12-01
This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similarmore » to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception {sup 90}Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs.« less
Zhou, Yongqiang; Zhang, Yunlin; Jeppesen, Erik; Murphy, Kathleen R; Shi, Kun; Liu, Mingliang; Liu, Xiaohan; Zhu, Guangwei
2016-09-01
Drinking water lakes are threatened globally and therefore in need of protection. To date, few studies have been carried out to investigate how the composition and dynamics of chromophoric dissolved organic matter (CDOM) in drinking water lakes are influenced by inflow rate. Such CDOM can lead to unpleasant taste and odor of the water and produce undesirable disinfection byproducts during drinking water treatment. We studied the drinking water Lake Qiandao, China, and found that the concentrations of suspended particulate matter (SPM) in the lake increased significantly with inflow rate (p < 0.001). Similarly, close relationships between inflow rate and the CDOM absorption coefficient at 350 nm a(350) and with terrestrial humic-like fluorescence C3 and a negative relationship between inflow rate and the first principal component (PC1) scores, which, in turn, were negatively related to the concentrations and relative molecular size of CDOM (p < 0.001), i.e. the concentration and molecular size of CDOM entering the lake increased proportionately with inflow rate. Furthermore, stable isotopes (δD and δ(18)O) were depleted in the upstream river mouth relative to downstream remaining lake regions, substantiating that riverine CDOM entering the lake was probably driven by inflow rate. This was further underpinned by remarkably higher mean chlorophyll-a and in situ measured terrestrial CDOM fluorescence (365/480 nm) and apparent oxygen utilization (AOU), and notably lower mean PC1 and CDOM spectral slope (S275-295) recorded in the upstream river mouth than in the downstream main lake area. Strong negative correlations between inflow rate and a(250):a(365), S275-295, and the spectral slope ratio (SR) implied that CDOM input to the lake in rainy period was dominated by larger organic molecules with a more humic-like character. Rainy period, especially rainstorm events, therefore poses a risk to drinking water safety and requires higher removal efficiency of CDOM during drinking water treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Perceived agricultural runoff impact on drinking water.
Crampton, Andrea; Ragusa, Angela T
2014-09-01
Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.
NASA Astrophysics Data System (ADS)
Smull, E. M.; Gooseff, M. N.; Singha, K.
2014-12-01
Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.
A spatial evaluation of global wildfire-water risks to human and natural systems
Francois-Nicolas Robinne; Kevin D. Bladon; Carol Miller; Marc-Andre Parisien; Jerome Mathieu; Mike D. Flannigan
2017-01-01
The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for...
Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel
2015-09-23
The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.
Tracking persistent pharmaceutical residues from municipal sewage to drinking water
NASA Astrophysics Data System (ADS)
Heberer, Thomas
2002-09-01
In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.
Halogens in oil and gas production-associated wastewater.
NASA Astrophysics Data System (ADS)
Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.
2014-12-01
Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream surface water quality and drinking water utilities given the potential of formation of iodate-DBPs in drinking water. Olmstead, S.M. et al. (2013). Shale gas development impacts on surface water quality in Pennsylvania, PNAS, 110, 4962-4967.
Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D
2016-03-01
Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability. © 2015 John Wiley & Sons Ltd.
In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species were observed in finished water at several Western Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in br...
Desmet, N; Touchant, K; Seuntjens, P; Tang, T; Bronders, J
2016-12-15
Large river catchments with mixed land use capture pesticides from many sources, and degradable pesticides are converted during downstream transport. Unravelling the contribution of pesticide source and the effect of degradation processes is a challenge in such areas. However, insight and understanding of the sources is important for targeted management, especially when water is abstracted from the river for drinking water production. The river Meuse is such a case. A long-term monitoring data set was applied in a modelling approach for assessing the contribution of waste water treatment plants (WWTPs) and tributaries (sub-basins) to surface water contamination, and to evaluate the effect of decay on the downstream concentrations of glyphosate and AMPA at the point of drinking water abstraction. The results show that WWTPs are important contributors for glyphosate and AMPA in large river catchments with mixed land uses. In the studied area, the river Meuse in the Netherlands, the relative contribution of WWTP effluents is above 29% for glyphosate and around 12% for AMPA. Local industries are found to be potentially big contributors of AMPA. Glyphosate entering the river system is gradually converted to AMPA and other degradation productions, which results in downstream loads that are considerably lower than the sum of all influxes. In summer when the travel time is longer due to lower discharge, the first order decay of glyphosate in the river Meuse is estimated to result in about 50% reduction of the downstream glyphosate concentrations over a river stretch of 250km. The contribution of glyphosate decay to the observed AMPA concentrations ranges between 2% and 10%. Contributions are sensitive to seasonal variations in discharge that influence the concentrations through dilution and degradation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moellenkamp, S.
2007-06-01
The upstream-downstream relationship in international river basins is a traditional challenge in water management. Water use in upstream countries often has a negative impact on water use in downstream countries. This is most evident in the classical example of industrial pollution in upstream countries hindering drinking water production downstream. The European Water Framework Directive (WFD) gives new impetus to the river basin approach and to international co-operation in European catchments. It aims at transforming a mainly water quality oriented management into a more integrated approach of ecosystem management. After discussing the traditional upstream-downstream relationship, this article shows that the WFD has a balancing effect on upstream-downstream problems and that it enhances river basin solidarity in international basins. While it lifts the downstream countries to the same level as the upstream countries, it also leads to new duties for the downstream states. Following the ecosystem approach, measures taken by downstream countries become increasingly more important. For example, downstream countries need to take measures to allow for migrating fish species to reach upstream stretches of river systems. With the WFD, fish populations receive increased attention, as they are an important indicator for the ecological status. The European Commission acquires a new role of inspection and control in river basin management, which finally also leads to enhanced cooperation and solidarity among the states in a basin. In order to achieve better water quality and to mitigate upstream-downstream problems, also economic instruments can be applied and the WFD does not exclude the possibility of making use of financial compensations, if at the same time the polluter pays principle is taken into account. The results presented in this article originate from a broader study on integrated water resources management conducted at Bonn University and refer to the Rhine and Elbe basins (Moellenkamp, 2006).
Sando, Steven K.; Furlong, Edward T.; Gray, James L.; Meyer, Michael T.
2006-01-01
The U.S. Geological Survey (USGS) in cooperation with the city of Sioux Falls conducted several rounds of sampling to determine the occurrence of organic wastewater compounds (OWCs) in the city of Sioux Falls drinking water and waste-water effluent, and the Big Sioux River in or near Sioux Falls during August 2001 through May 2004. Water samples were collected during both base-flow and storm-runoff conditions. Water samples were collected at 8 sites, which included 4 sites upstream from the wastewater treatment plant (WWTP) discharge, 2 sites downstream from the WWTP discharge, 1 finished drinking-water site, and 1 WWTP effluent (WWE) site. A total of 125 different OWCs were analyzed for in this study using five different analytical methods. Analyses for OWCs were performed at USGS laboratories that are developing and/or refining small-concentration (less than 1 microgram per liter (ug/L)) analytical methods. The OWCs were classified into six compound classes: human pharmaceutical compounds (HPCs); human and veterinary antibiotic compounds (HVACs); major agricultural herbicides (MAHs); household, industrial,and minor agricultural compounds (HIACs); polyaromatic hydrocarbons (PAHs); and sterol compounds (SCs). Some of the compounds in the HPC, MAH, HIAC, and PAH classes are suspected of being endocrine-disrupting compounds (EDCs). Of the 125 different OWCs analyzed for in this study, 81 OWCs had one or more detections in environmental samples reported by the laboratories, and of those 81 OWCs, 63 had acceptable analytical method performance, were detected at concentrations greater than the study reporting levels, and were included in analyses and discussion related to occurrence of OWCs in drinking water, wastewater effluent, and the Big Sioux River. OWCs in all compound classes were detected in water samples from sampling sites in the Sioux Falls area. For the five sampling periods when samples were collected from the Sioux Falls finished drinking water, only one OWC was detected at a concentration greater than the study reporting level (metolachlor; 0.0040 ug/L). During base-flow conditions, Big Sioux River sites upstream from the WWTP discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for upstream sites than downstream sites during both base-flow and runoff conditions.discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for
Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P
2018-06-13
Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for Cramer class I substances and 4 μg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.
Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel
2015-01-01
Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies. PMID:26404350
Hua, Wen Yi; Bennett, Erin R; Maio, Xui-Sheng; Metcalfe, Chris D; Letcher, Robert J
2006-09-01
The influence of seasonal changes in water conditions and parameters on several major pharmacologically active compounds (PhACs) and s-triazine herbicides was assessed in the wastewater and sewage treatment plant (WSTP) effluent as well as the downstream surface water from sites on the Canadian side of the upper Detroit River, between the Little River WSTP and near the water intake of a major drinking water treatment facility for the City of Windsor (ON, Canada). The assessed PhACs were of neutral (carbamazepine, cotinine, caffeine, cyclophosphamide, fluoxetine, norfluoxetine, pentoxifylline, and trimethoprim) and acidic (ibuprofen, bezafibrate, clofibric acid, diclofenac, fenoprofen, gemfibrozil, indomethacin, naproxen, and ketoprofen) varieties. The major assessed s-triazine herbicides were atrazine, simazine, propazine, prometon, ametryn, prometryn, and terbutryn. At sampling times from September 2002 to June 2003, 15 PhACs were detected in the WSTP effluent at concentrations ranging from 1.7 to 1244 ng/L. The PhAC concentrations decreased by as much 92 to 100% at the Little River/Detroit River confluence because of the river dilution effect, with further continual decreases at sites downstream from the WSTP. The only quantifiable s-triazine in WSTP effluent, atrazine, ranged from 6.7 to 200 ng/L and was higher in Detroit River surface waters than in WSTP effluent. Only carbamazepine, cotinine, and atrazine were detectable at the low-nanogram and subnanogram levels in surface waters near a drinking water intake site. Unlike the PhACs, atrazine in the Detroit River is not attributable to point sources, and it is heavily influenced by seasonal agricultural usage and runoff. Detroit River surface water concentrations of carbamazepine, cotinine, and atrazine may present a health concern to aquatic wildlife and to humans via the consumption of drinking water.
Boiteux, Virginie; Dauchy, Xavier; Bach, Cristina; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François
2017-04-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota and humans. Drinking water is a route of exposure for populations using water contaminated by PFAS discharges. This research entailed measuring concentrations, mass flows and investigating the fate of dozens PFASs in a river receiving effluents from a fluorochemical manufacturing facility. To measure the total concentration of perfluoroalkyl carboxylic acid (PFCA) precursors, an oxidative conversion method was used. Several dozen samples were collected in the river (water and sediment), in drinking water resources and at different treatment steps on four sampling dates. One PFCA and three fluorotelomers (FTs) were detected up to 62km downstream from the manufacturing facility. 6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) was the predominant PFAS with a mass flow of 3830g/day 5.2km downstream from the facility. At all sampling points, PFAS concentrations in sediment were quite low (<6ng/g dw). Five of the 11 investigated wells showed detectable concentrations of PFASs. Interestingly, their profile patterns were different from those observed in the river, suggesting a transformation of PFCA precursors in the sediments of alluvial groundwater. Conventional drinking water treatments (aeration, sand or granular activated carbon filtration, ozonation or chlorination) did not efficiently remove PFASs. Furthermore, an increase in concentration of certain PFASs was observed after ozonation, suggesting that some FTs such as 6:2 FTAB can break down. Only nanofiltration was able to remove all the analyzed PFASs. In the treated water, total PFAS concentrations never exceeded 60ng/L. The oxidative conversion method revealed the presence of unidentified PFCA precursors in the river. Therefore, 18 to 77% of the total PFCA content after oxidation consisted of unidentified chemical species. In the treated water, these percentages ranged from 0 to 29%, relatively and reassuringly low values. Copyright © 2017 Elsevier B.V. All rights reserved.
Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy
2016-01-15
In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters limited the interpretation of historical trends. Published by Elsevier B.V.
Augustsson, A; Uddh Söderberg, T; Jarsjö, J; Åström, M; Olofsson, B; Balfors, B; Destouni, G
2016-10-01
This study investigates metal contamination patterns and exposure to Sb, As, Ba, Cd and Pb via intake of drinking water in a region in southeastern Sweden where the production of artistic glass has resulted in a large number of contaminated sites. Despite high total concentrations of metals in soil and groundwater at the glassworks sites properties, all drinking water samples from households with private wells, located at a 30-640m distance from a glassworks site, were below drinking water criteria from the WHO for Sb, As, Ba and Cd. A few drinking water samples showed concentrations of Pb above the WHO guideline, but As was the only element found in concentrations that could result in human exposure near toxicological reference values. An efficient retention of metals in the natural soil close to the source areas, which results in a moderate impact on local drinking water, is implied. Firstly, by the lack of significant difference in metal concentrations when comparing households located upstream and downstream of the main waste deposits, and secondly, by the lack of correlation between the metal concentration in drinking water and distance to the nearest glassworks site. However, elevated Pb and Cd concentrations in drinking water around glassworks sites when compared to regional groundwater indicate that diffuse contamination of the soils found outside the glassworks properties, and not only the glass waste landfills, may have a significant impact on groundwater quality. We further demonstrate that different mobilization patterns apply to different metals. Regarding the need to use reliable data to assess drinking water contamination and human exposure, we finally show that the conservative modelling approaches that are frequently used in routine risk assessments may result in exposure estimates many times higher than those based on measured concentrations in the drinking water that is actually being used for consumption. Copyright © 2016 Elsevier B.V. All rights reserved.
Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas
2013-10-01
The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from <0.30 to 3.30 μg/L, with a mean concentration of 1.11 ± 0.60 μg/L. Dilution of upstream inputs of effluent were estimated for US drinking water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use. © 2013 SETAC.
Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G
2017-03-01
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.
Impact of climate change on persistent turbidity in the water supply system of a Metropolitan Area
NASA Astrophysics Data System (ADS)
Chung, S. W.; Park, H. S.; Lim, K. J.; Kang, B.
2016-12-01
Persistent turbidity, a long-term resuspension of fine particles in aquatic system, is one of the major water quality concerns for the sustainable management of water supply systems in metropolitan areas. Turbid water has undesirable aesthetic and recreational appeal and may have harmful effect on ecosystem health, in addition to increasing water treatment costs in drinking water supply systems. These concerns have been more intensified as the strength and frequency of rainfall events increase by climate change in the Asian monsoon climate region, including Korea. The aim of this study was to assess the impact of potential climate change on the persistent turbidity of the Han River systems that supplies drinking water to approximately 25 million consumers dwelling in the Seoul Metropolitan areas. A comprehensive numerical and statistical modeling suit has been developed and applied to the systems for the projection of future climate, responding hydrological and soil erosion processes in the watershed, and sediment transport processes in the rivers and reservoirs systems. The down-scaled 100 years of climatic data from General Circulation Model (HadGEM2-AO) based on the IPCC's greenhouse-gas emissions scenario RCP4.5 were used for the forcing data of the watershed and river-reservoir models. As the results, an extreme flood event that may incur significant persistent turbidity was projected to be occurred five times in the future. The threshold of a flood event that is classified as an extreme event was based on the historical flood event that occurred on July of 2006 when turbid water had persisted within the Soyang Reservoir and discharged to the downstream of the Han River systems over the year until May of the following year. A two-dimensional river and reservoir model simulated the transport and dynamics of suspended sediments in Soyang Reservoir, and routed the discharged turbid water to the downstream of Paldang Reservoir, in which most of the drinking water offtake facilities are located. The statistical features of the extreme flood events, their impact on the persistent turbidity on the downstream rivers and reservoirs, and consequently on the water supply system of the Seoul Metropolitan areas will be presented in the special session.
Behaviour and biodegradation of sulfonamides (p-TSA, o-TSA, BSA) during drinking water treatment.
Richter, Doreen; Massmann, Gudrun; Dünnbier, Uwe
2008-04-01
Three sulfonamides -para-toluenesulfonamide (p-TSA), ortho-toluenesulfonamide (o-TSA) and benzenesulfonamide (BSA) - have recently been detected in groundwater within a catchment area of one drinking water treatment plant (DWTP), which is located downstream of a former sewage farm. The degradation pathways of p-TSA, o-TSA and BSA were investigated during drinking water treatment with incubation experiments and an experimental filter. Incubation experiments showed that p-TSA is removed during the treatment by microbiological processes. Removal of p-TSA is performed by adapted microorganisms only present in polluted groundwater. The elimination in an experimental filter of 1.6m length applying filtration velocities from 2 to 6 m h(-1) was approximately 93% of p-TSA. The microbial degradation rates in the incubation experiment were approximately 0.029 microg l(-1) h(-1) (zero order reaction). In the experimental filter, the reaction rate constants were around 0.0063 s(-1) for all filtration velocities (1st order reaction). Drinking water treatment does not reduce the concentration of o-TSA and BSA under conditions encountered in Berlin. p-TSA, o-TSA and BSA were only measured in the low microg l(-1) concentrations range in the purified water.
Exploring the under-investigated “microbial dark matter” of drinking water treatment plants
Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio
2017-01-01
Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term “microbial dark matter” was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water. PMID:28290543
Exploring the under-investigated "microbial dark matter" of drinking water treatment plants.
Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio
2017-03-14
Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term "microbial dark matter" was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water.
Modelling the impacts of global change on concentrations of Escherichia coli in an urban river
NASA Astrophysics Data System (ADS)
Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Autixier, Laurène; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah
2017-10-01
Discharges of combined sewer system overflows (CSOs) affect water quality in drinking water sources despite increasing regulation and discharge restrictions. A hydrodynamic model was applied to simulate the transport and dispersion of fecal contaminants from CSO discharges and to quantify the impacts of climate and population changes on the water quality of the river used as a drinking water source in Québec, Canada. The dispersion model was used to quantify Escherichia coli (E. coli) concentrations at drinking water intakes. Extreme flows during high and low water events were based on a frequency analysis in current and future climate scenarios. The increase of the number of discharges was quantified in current and future climate scenarios with regards to the frequency of overflows observed between 2009 and 2012. For future climate scenarios, effects of an increase of population were estimated according to current population growth statistics, independently of local changes in precipitation that are more difficult to predict than changes to regional scale hydrology. Under ;business-as-usual; scenarios restricting increases in CSO discharge frequency, mean E. coli concentrations at downstream drinking water intakes are expected to increase by up to 87% depending on the future climate scenario and could lead to changes in drinking water treatment requirements for the worst case scenarios. The greatest uncertainties are related to future local discharge loads. Climate change adaptation with regards to drinking water quality must focus on characterizing the impacts of global change at a local scale. Source water protection planning must consider the impacts of climate and population change to avoid further degradation of water quality.
Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?
Falconer, Ian R.
2006-01-01
There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water. In some places at which heavy anthropogenic contamination of drinking water sources occurs, advanced drinking water treatment is increasingly being implemented. This treatment employs particle removal, ozone oxidation of organic material and activated charcoal adsorption of the oxidation products. Such processes will remove industrial organic chemicals, pesticides, detergents, pharmaceutical products and hormones. Populations for which only basic wastewater and drinking water treatment are available remain vulnerable. PMID:16823090
Modelling fate and transport of pesticides in river catchments with drinking water abstractions
NASA Astrophysics Data System (ADS)
Desmet, Nele; Seuntjens, Piet; Touchant, Kaatje
2010-05-01
When drinking water is abstracted from surface water, the presence of pesticides may have a large impact on the purification costs. In order to respect imposed thresholds at points of drinking water abstraction in a river catchment, sustainable pesticide management strategies might be required in certain areas. To improve management strategies, a sound understanding of the emission routes, the transport, the environmental fate and the sources of pesticides is needed. However, pesticide monitoring data on which measures are founded, are generally scarce. Data scarcity hampers the interpretation and the decision making. In such a case, a modelling approach can be very useful as a tool to obtain complementary information. Modelling allows to take into account temporal and spatial variability in both discharges and concentrations. In the Netherlands, the Meuse river is used for drinking water abstraction and the government imposes the European drinking water standard for individual pesticides (0.1 ?g.L-1) for surface waters at points of drinking water abstraction. The reported glyphosate concentrations in the Meuse river frequently exceed the standard and this enhances the request for targeted measures. In this study, a model for the Meuse river was developed to estimate the contribution of influxes at the Dutch-Belgian border on the concentration levels detected at the drinking water intake 250 km downstream and to assess the contribution of the tributaries to the glyphosate loads. The effects of glyphosate decay on environmental fate were considered as well. Our results show that the application of a river model allows to asses fate and transport of pesticides in a catchment in spite of monitoring data scarcity. Furthermore, the model provides insight in the contribution of different sub basins to the pollution level. The modelling results indicate that the effect of local measures to reduce pesticides concentrations in the river at points of drinking water abstraction, might be limited due to dominant transboundary loads. This emphasizes the need for transboundary management strategies on a river catchment scale.
Dauchy, Xavier; Boiteux, Virginie; Rosin, Christophe; Munoz, Jean-François
2012-09-01
In this study, the concentrations of 10 perfluorinated compounds (PFCs) were measured in effluents of a fluorotelomer polymer manufacturing plant and its wastewater treatment plant. A 50-fold increase between the two effluents mass flows was observed. The water quality of two drinking water treatment plants located downstream at 15 and 25 km from the manufacturing plant was examined. An increase of the sum of PFCs was observed between the river (30 ng/L) and an alluvial well (70 ng/L), and between the raw water (9 ng/L) and the outlet of a biological treatment (97 ng/L). These results indicate a possible degradation of fluorotelomers, occurring during wastewater treatment, sediment infiltration in the alluvial aquifer, and drinking water treatment.
Andrews, William J.; Masoner, Jason R.; Rendon, Samuel H.; Smith, Kevin A.; Greer, James R.; Chatterton, Logan A.
2013-01-01
The City of Norman, Oklahoma, wanted to augment its water supplies to meet the needs of an increasing population. Among the city’s potential water sources are city wells that produce water that exceeds the 10 micrograms per liter primary drinking-water standard for arsenic. The City of Norman was interested in investigating low-cost means of using natural attenuation to remove arsenic from well water and augment the water supply of Lake Thunderbird, the primary water source for the city. The U.S. Geological Survey, in cooperation with the City of Norman, conducted a preliminary investigation (pilot study) to determine if discharge of water from those wells into the Little River over a 12-day period would reduce arsenic concentrations through natural-attenuation processes. Water in the Little River flows into Lake Thunderbird, the principal water source for the city, so the discharged well water would improve the water balance of that reservoir. During this pilot study, 150–250 gallons per minute from each of six city wells were discharged to the Little River over a 12-day period. Water-quality samples were collected from the wells during discharge and from the river before, during, and after well discharges. Streambed-sediment samples were collected at nine sites in the river before and after the well-discharge period. Water discharge from the six wells added 0.3 kilogram per day of arsenic to the river at the nearest downstream streamflow-gaging station. Dissolved arsenic concentration in the Little River at the closest downstream sampling site from the wells increased from about 4 micrograms per liter to as much as 24 micrograms per liter. Base flow in the river increased by about 1.7 cubic feet per second at the nearest downstream streamflow-gaging station. Streamflow in the river was two-thirds of that expected from the amount of water discharged from the wells because of seepage to soils and evapotranspiration of well water along drainage ways to the river. Arsenic concentrations at the nearest downstream streamflow-gaging station were less than arsenic concentrations measured in many of the well-water samples during the well-pumping period. Arsenic concentrations, loads, and yields in the Little River generally decreased downstream from the closest streamflow-gaging station to the wells by 50 percent or more, indicating removal of about 0.25 kilogram or 0.53 pound per day of arsenic during base-flow conditions. Measured river-water arsenic concentrations near the confluence of the Little River with Lake Thunderbird were in compliance with the primary drinking-water standard. Arsenic concentrations measured at four downstream stations in the Little River also were less than established criteria set for protection of aquatic biota. After well discharges to the Little River were stopped, arsenic concentrations, loads, and yields in the river gradually decreased over 14 days to concentrations measured prior to the well-water discharges. Cumulative loads of arsenic discharged at the wells and the closest and farthest downstream streamflow-gaging stations indicated removal of about 2.5 kilograms of arsenic as well-water flowed to and down the river. Arsenic concentrations in streambed-sediment samples collected before and after the well-water discharges were not significantly different. Results of this pilot study indicate that using natural-attenuation processes to remove arsenic from water and supplement city water supplies may be a viable, relatively low-cost method for attenuating arsenic in well water and for augmenting the water supply of Lake Thunderbird.
Tidal Influence on Water Quality of Kapuas Kecil River Downstream
NASA Astrophysics Data System (ADS)
Purnaini, Rizki; Sudarmadji; Purwono, Suryo
2018-02-01
The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.
Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina
2017-12-01
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
Gumbo, B
2000-01-01
The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.
Chen, Wei-Hsiang; Wang, Chung-Ya; Huang, Tsung-Hsien
2016-10-01
Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas. In the DWTPs, nitrosamines were formed and NDMA was the main species. While high organic carbon concentrations indicated elevated nitrosamine-FPs in the source water, NDMA formation in the DWTPs was more positively associated with reductions of water parameters that quantify organic matters with double bonded ring structures. Although precursor removal via pre-oxidation is a viable approach to limit nitrosamine formation during post-disinfection, this study clearly indicates that a great portion of NDMA in treated water has been formed in the 1st oxidation step of drinking water treatment. The pre-oxidation simulations in the lab demonstrated the impact of pre-chlorination on nitrosamine formation. Given the limited removal in conventional treatment processes, avoiding nitrosamine-FPs in sources and/or nitrosamine formation during pre-oxidation become important issues to control the threats of nitrosamines in drinking water. Under current circumstance in which pre-oxidation is widely used to optimize the treatment effectiveness in many DWTPs, its adverse effect by forming nitrosamines needs to be carefully minimized and using technologies other than pre-chlorination (e.g., pre-ozonation) may be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Akçaalan, Reyhan; Albay, Meric; Koker, Latife; Baudart, Julia; Guillebault, Delphine; Fischer, Sabine; Weigel, Wilfried; Medlin, Linda K
2017-12-22
Monitoring drinking water quality is an important public health issue. Two objectives from the 4 years, six nations, EU Project μAqua were to develop hierarchically specific probes to detect and quantify pathogens in drinking water using a PCR-free microarray platform and to design a standardised water sampling program from different sources in Europe to obtain sufficient material for downstream analysis. Our phylochip contains barcodes (probes) that specifically identify freshwater pathogens that are human health risks in a taxonomic hierarchical fashion such that if species is present, the entire taxonomic hierarchy (genus, family, order, phylum, kingdom) leading to it must also be present, which avoids false positives. Molecular tools are more rapid, accurate and reliable than traditional methods, which means faster mitigation strategies with less harm to humans and the community. We present microarray results for the presence of freshwater pathogens from a Turkish lake used drinking water and inferred cyanobacterial cell equivalents from samples concentrated from 40 into 1 L in 45 min using hollow fibre filters. In two companion studies from the same samples, cyanobacterial toxins were analysed using chemical methods and those dates with highest toxin values also had highest cell equivalents as inferred from this microarray study.
Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City
Chen, Zhaojun; Yu, Daojun; He, Songzhe; Ye, Hui; Zhang, Lei; Wen, Yanping; Zhang, Wenhui; Shu, Liping; Chen, Shuchang
2017-01-01
This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli) and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream) in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE), followed by ampicillin (AM), piperacillin (PIP), trimethoprim/sulfamethoxazole (SXT), and chloramphenicol (C). The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP), as well as quinolones (ciprofloxacin and levofloxacin) and cephalosporins or gentamicin (GM). Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87%) contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk. PMID:28670309
Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City.
Chen, Zhaojun; Yu, Daojun; He, Songzhe; Ye, Hui; Zhang, Lei; Wen, Yanping; Zhang, Wenhui; Shu, Liping; Chen, Shuchang
2017-01-01
This study investigated the distribution of antibiotic resistant Escherichia coli ( E. coli ) and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream) in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE), followed by ampicillin (AM), piperacillin (PIP), trimethoprim/sulfamethoxazole (SXT), and chloramphenicol (C). The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP), as well as quinolones (ciprofloxacin and levofloxacin) and cephalosporins or gentamicin (GM). Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87%) contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.
Lambertini, Elisabetta; Borchardt, Mark A; Kieke, Burney A; Spencer, Susan K; Loge, Frank J
2012-09-04
Acute gastrointestinal illness (AGI) resulting from pathogens directly entering the piping of drinking water distribution systems is insufficiently understood. Here, we estimate AGI incidence from virus intrusions into the distribution systems of 14 nondisinfecting, groundwater-source, community water systems. Water samples for virus quantification were collected monthly at wells and households during four 12-week periods in 2006-2007. Ultraviolet (UV) disinfection was installed on the communities' wellheads during one study year; UV was absent the other year. UV was intended to eliminate virus contributions from the wells and without residual disinfectant present in these systems, any increase in virus concentration downstream at household taps represented virus contributions from the distribution system (Approach 1). During no-UV periods, distribution system viruses were estimated by the difference between well water and household tap virus concentrations (Approach 2). For both approaches, a Monte Carlo risk assessment framework was used to estimate AGI risk from distribution systems using study-specific exposure-response relationships. Depending on the exposure-response relationship selected, AGI risk from the distribution systems was 0.0180-0.0661 and 0.001-0.1047 episodes/person-year estimated by Approaches 1 and 2, respectively. These values represented 0.1-4.9% of AGI risk from all exposure routes, and 1.6-67.8% of risk related to drinking water exposure. Virus intrusions into nondisinfected drinking water distribution systems can contribute to sporadic AGI.
Nitrates in drinking water: relation with intensive livestock production.
Giammarino, M; Quatto, P
2015-01-01
An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater.
Toor, Ramn; Mohseni, Madjid
2007-02-01
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0-3500 mJ cm(-2)) and hydrogen peroxide concentration (0-23 mg l(-1)) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm(-2) and initial H2O2 concentrations of about or greater than 23 mg l(-1). However, the combined AOP-BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.
Welch, A.H.; Plume, R.W.; Frick, E.A.; Hughes, J.L.
1989-01-01
Data on groundwater quality, hydrogeology, and land and water use for the Carson River basin, Nevada and California were analyzed as part of the U. S. Geological Survey National Water-Quality Assessment program. The basin consists of six hydrographic areas--a mountainous headwaters area and five downstream areas interconnected by the Carson River. Each valley contains one or more basin-fill aquifers. The data on groundwater quality came from several agencies and were screened to verify site location and to avoid analyses of treated water. The screened data are stored in the U. S. Geological Survey National Water Information System data base. Differences in sample-collection and preservation procedures among some of the data-collection agencies restrict use of the data to a descriptive analysis. Drinking water standards were employed as the basis for evaluating reported concentrations. Frequencies with which primary or secondary standards are exceeded increase from upstream parts of the basin to downstream parts. Primary standards commonly exceeded are fluoride in upstream areas and arsenic and fluoride in downstream areas. Secondary standards commonly exceeded are iron and manganese in upstream areas and chloride, dissolved solids, iron, manganese, and sulfate in downstream areas. The poorer-quality groundwater generally is a result of natural geochemical reactions, rather than the introduction of chemicals by man. Limited data indicate, however , that manmade organic compounds are present, mostly at or near urban land. (USGS)
NASA Astrophysics Data System (ADS)
Hudson-Edwards, K. A.; Miller, J. R.; Presto, D.; Lechler, P. J.; Macklin, M. G.; Miners, J. S.; Turner, J. N.
2003-05-01
The Pilcomayo river in Bolivia drains the Potosi mining district and flows downstream, exposing indigenous populations, who rely on the river for drinking water, irrigation and fish, to elevated levels of toxic metals. A preliminary analysis of agricultural soil and crops from four riverside Pilcomayo communities has shown that many agricultural fields are contaminated with heavy metals (Ag, Cd, Cu, Pb, Sb, Zn) and arsenic(As) However, concentrations of these elements in most crops are within guideline values. Concentrations of metals and As in samples of drinking water are, for the most part, lower than concentrations in Pilcomayo river water taken at the respective communities, and the drinking water concentrations are within guideline values. Exceptions are Sb and As concentrations in two of the communities. In irrigation waters, Zn and Pb exceed recommended guideline values in two of the communities, and may lead to highZn and Pb values in some crops and soils. The work carried out to date suggests that the strategies used by these communities appear to considerably reduce their risks to exposure. Work is ongoing to develop more complex and effective strategies based on further geochemical analyses and social science surveys.
NASA Astrophysics Data System (ADS)
Mahmood, A.; Hossain, F.
2016-12-01
Low-lying deltas of Asian region are usually densely populated and located in developing countries situated at the downstream end of major rivers. Extensive dam construction by the upstream countries has now caused water scarcity in large portions of low-lying deltas. Most inhabitants depend on shallow tube well for safe drinking water that tend to suffer from water quality issues (e.g. Arsenic contamination). In addition, people also get infected from water borne diseases like Cholera and Typhoid due to lack of safe drinking water. Developing a centralized piped network based water supply system is often not a feasible option in rural regions. Due to social acceptability, environment friendliness, lower capital and maintenance cost, rainwater harvesting can be the most sustainable option to supply safe drinking water in rural areas. In this study, first we estimate the monthly rainfall variability using long precipitation climatology from satellite precipitation data. The upper and lower bounds of monthly harvestable rainwater were estimated for each satellite precipitation grid. Taking this lower bound of monthly harvestable rainwater as input, we use quantitative water management concept to determine the percent of the time of the year potable water demand can be fulfilled. Analysis indicates that a 6 m³ reservoir tank can fulfill the potable water demand of a 6 person family throughout a year in almost all parts of this region.
Do cytostatic drugs reach drinking water? The case of mycophenolic acid.
Franquet-Griell, Helena; Ventura, Francesc; Boleda, M Rosa; Lacorte, Silvia
2016-01-01
Mycophenolic acid (MPA) has been identified as a new river contaminant according to its wide use and high predicted concentration. The aim of this study was to monitor the impact of MPA in a drinking water treatment plant (DWTP) that collects water downstream Llobregat River (NE Spain) in a highly densified urban area. During a one week survey MPA was recurrently detected in the DWTP intake (17-56.2 ng L(-1)). The presence of this compound in river water was associated to its widespread consumption (>2 tons in 2012 in Catalonia), high excretion rates and low degradability. The fate of MPA in waters at each treatment step of the DWTP was analyzed and complete removal was observed after pretreatment with chlorine dioxide. So far, MPA has not been described as water contaminant and its presence associated with its consumption in anticancer treatments is of relevance to highlight the importance of monitoring this compound. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wen, Zhi-Hao; Chen, Ling; Meng, Xiang-Zhou; Duan, Yan-Ping; Zhang, Zeng-Sheng; Zeng, Eddy Y
2014-08-15
Pharmaceuticals are heavily used to improve human and animal health, resulting in the frequent contamination of aquatic environments with pharmaceutical residues, which has raised considerable concern in recent years. When inadequately removed from drinking water in water treatment plants, pharmaceuticals can have potential toxic effects on human health. This study investigated the spatial distributions and seasonal variations of five pharmaceuticals, including ibuprofen (IBP), ketoprofen (KEP), naproxen (NPX), diclofenac (DFC), and clofibric acid (CA), in the Huangpu River system (a drinking water source for Shanghai) over a period of almost two years as well as the associated risk to human health for different age groups. All of the targets were ubiquitous in the river water, with levels decreasing in the following order: KEP (mean: 28.6 ng/L)≈IBP (23.3 ng/L)>DFC (13.6 ng/L)≈NPX (12.3 ng/L)>CA (1.6ng/L). The concentrations of all of the investigated compounds were at the low or medium end of the global range. The upstream tributaries contained lower IBP but higher NPX than did the mainstream and downstream tributaries. However, no significant variations were found in the levels of KEP, DFC, or CA at the different sampling sites. Except for CA in the mainstream, significantly higher pharmaceutical levels were observed in the dry season than in the wet season. Overall, a very low risk of the selected pharmaceuticals for human health via drinking water was observed, but future studies are needed to examine the fate and chronic effects of all pharmaceuticals in aquatic environments. To our knowledge, this is the first report to investigate the human health risk of pharmaceuticals in raw drinking water in China. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng
2014-08-01
The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.
Rubiano, María-Eugenia; Agulló-Barceló, Míriam; Casas-Mangas, Raquel; Jofre, Juan; Lucena, Francisco
2012-05-01
Need, coupled with advances in water treatment technology, is motivating a growing interest in augmenting drinking water supplies with reclaimed water. Using reclaimed water to increase the flow of the Llobregat River upstream the water catchment site of the complex multi-step drinking water treatment plant of Sant Joan Despí has been considered. The impact of reclaimed water discharges on the load of E. coli, spores of sulphite-reducing clostridia, somatic coliphages, cytopathogenic enteroviruses, and total and infectious Cryptosporidium oocysts in the Llobregat River water was assessed to gain information for funded decisions in potential future emergencies. Enterovirus and Cryptosporidium oocysts were concentrated from great water volumes prior to enumeration, whereas indicators were enumerated directly from the samples. Both indicators and pathogens were enumerated by cultural techniques that determine infectious microbes. Densities of both indicators and pathogens in reclaimed water, despite that it was disinfected by UV irradiation alone or by UV irradiation plus chlorination, were significantly lower than their densities in the river water, both upstream and downstream the reclaimed water release site in the river. Results gathered indicate that discharging reclaimed water into the river does not increment the load of indicators and pathogens of the river water. Then, in emergency situations due to severe water shortages after prolonged droughts, at least from the infectious diseases point of view, the risks of augmenting drinking water supplies with reclaimed water can be satisfactorily and safely managed.
Storck, D.A.; Lacombe, Pierre
1996-01-01
This report presents the results of a study designed to determine whether Green Pond Brook and its tributaries contain contaminated streambed sediments and to characterize the quaity of water in the brook. Results of previous investigations at Picatinny Arsenal, Morris County, New Jersey, indicate that significant contamination of ground water, surface water, and soil is present at the arsenal. Forty-five streambed-material samples were collected for analysis to determine whether contaminants have migrated to the brook from the surrounding area. Samples were analyzed for trace elements, base/neutral- and acid-etractable compounds, insecticides, and other constituents. Results of an electromagnetic-conductivity and natural-gamma-ray survey were used to describe the distribution of particle sizes in streambed and substreambed sediments. Historical results of analyses of streambed-material and surface-water samples also are presented. Samples of streambed material from three areas in Green Pond Brook and its tributaries contained organic and (or) inorganic constituents in concentrations greater than those typically found at the arsenal. These areas are Green Pond Brook, from the area near the outflow of Picatinny Lake downstream to Farley Avenue; Bear Swamp Brook, from the area near building 241 downstream to the confluence with Green Pond Brook; and Green Pond Brook, from the open burning area downstream to the dam near building 1178. Contaminants identified include trace elements, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine insecticides. Surface water in Green Pond Brook contained several volatile organic compounds, including trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, at maximum concen- trations of 3.8, 4.6, and 11 micrograms per liter, respectively. Volatilization is expected to remove volatile organic compounds in the steep, fast- flowing reaches of the brook. No organic or inorganic constituents were detected in surface- water samples in concentrations greater than the U.S. Environmental Protection Agency primary drinking-water regulations. Only two constituents, iron and manganese, were detected in concen- trations greater than the U.S. Environmental Protection Agency secondary drinking-water regulations.
NASA Astrophysics Data System (ADS)
Castro-Bolinaga, C. F.; Zavaleta, E. R.; Diplas, P.
2015-03-01
This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.
Problems of drinking water treatment along Ismailia Canal Province, Egypt.
Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E
2008-03-01
The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.
Problems of drinking water treatment along Ismailia Canal Province, Egypt*
Geriesh, Mohamed H.; Balke, Klaus-Dieter; El-Rayes, Ahmed E.
2008-01-01
The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6×106 m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626
Taučer-Kapteijn, Maja; Hoogenboezem, Wim; Heiliegers, Laura; de Bolster, Danny; Medema, Gertjan
2016-07-01
The emergence of clinical enterococcal isolates that are resistant to both ampicillin and vancomycin is a cause of great concern, as therapeutic alternatives for the treatment of infections caused by such organisms are becoming limited. Aquatic environments could play a role in the dissemination of antibiotic resistant enterococci. This study investigated the presence of ampicillin and vancomycin resistant enterococci in the treated effluent of six wastewater treatment plants (WWTPs) and in surface water used as a source for drinking water production in the Netherlands. Membrane filtration in combination with selective media with ampicillin or vancomycin was applied to determine the presence of ampicillin resistant Enterococcus (ARE) and vancomycin resistant Enterococcus (VRE) species. Ampicillin resistant Enterococcus faecium (minimal inhibitory concentration (MIC) >16μg/mL; n=1033) was observed in all studied WWTP effluents. In surface water used for drinking water production (intake locations), no ARE or VRE were observed. At both types of location, intrinsic vancomycin resistant Pediococcus spp., Leuconostoc spp. and Lactobacillus spp. were isolated with the vancomycin medium. The ampicillin resistant E. faecium (AREfm) isolates (n=113) did not contain the vanA or vanB gene, but MIC testing for vancomycin showed intermediate vancomycin resistance (2-8μgmL(-1)) to occur in these AREfm strains. This study documents the discharge of ampicillin resistant E. faecium strains with intermediate vancomycin resistance by the WWTPs into the surface water, but no presence of these strains downstream at intake locations for drinking water production. Copyright © 2016 Elsevier GmbH. All rights reserved.
Risk assessment for drugs of abuse in the Dutch watercycle.
van der Aa, Monique; Bijlsma, Lubertus; Emke, Erik; Dijkman, Ellen; van Nuijs, Alexander L N; van de Ven, Bianca; Hernández, Felix; Versteegh, Ans; de Voogt, Pim
2013-04-01
A screening campaign of drugs of abuse (DOA) and their relevant metabolites in the aqueous environment was performed in the Netherlands. The presence of DOA, together with the potential risks for the environment and the possible human exposure to these compounds through consumption of drinking water was investigated. Sewage water (influent and effluent), surface water of the rivers Rhine and Meuse, and drinking water (raw and finished) were analysed by four different laboratories using fully in-house validated methods for a total number of 34 DOA and metabolites. In this way, data reported for several compounds could also be confirmed by other laboratories, giving extra confidence to the results obtained in this study. In total 17 and 22 DOA were detected and quantified in influent and effluent sewage samples, respectively. The tranquilizers oxazepam and temazepam, and cocaine and its metabolite benzoylecgonine were found in high concentrations in sewage water. Nine compounds were possibly not efficiently removed during treatment and were detected in surface waters. The results indicated that substantial fractions of the total load of DOA and metabolites in the rivers Rhine and Meuse enter the Netherlands from abroad. For some compounds, loads appear to increase going downstream, which is caused by a contribution from Dutch sewage water effluents. As far as data are available, no environmental effects are expected of the measured DOA in surface waters. In raw water, three DOA were detected, whereas in only one finished drinking water out of the 17 tested, benzoylecgonine was identified, albeit at a concentration below the limit of quantification (<1 ng/L). Concentrations were well below the general signal value of 1 μg/L, which is specified for organic compounds of anthropogenic origin in the Dutch Drinking Water Act. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah
2013-02-01
The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.
Raeke, Julia; Lechtenfeld, Oliver J; Tittel, Jörg; Oosterwoud, Marieke R; Bornmann, Katrin; Reemtsma, Thorsten
2017-04-15
Drinking water reservoirs in the Northern Hemisphere are largely affected by the decadal-long increase in riverine dissolved organic carbon (DOC) concentrations. The removal of DOC in drinking water treatment is costly and predictions are needed to link DOC removal efficiency to its mobilization in catchments, both of which are determined by the molecular composition. To study the effect of hydrological events and land use on the molecular characteristics of dissolved organic matter (DOM), 36 samples from three different catchment areas in the German low mountain ranges, with DOC concentrations ranging from 3 to 32 mg L -1 , were examined. Additionally, nine pairs of samples from downstream drinking water reservoirs were analyzed before and after flocculation. The molecular composition and the age of DOM were analyzed using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and radiocarbon ( 14 C) analysis. At elevated discharge in a forested catchment comparatively younger, more oxygenated and unsaturated molecules of higher molecular weight were preferentially mobilized, likely linked to the reductive mobilization of iron. DOM with highly similar molecular characteristics (O/C ratio > 0.5, m/z > 500) could also be efficiently removed through flocculation in drinking water treatment. The proportion of DOM removed through flocculation ranged between 43% and 73% of DOC and was highest at elevated discharge. In catchment areas with a higher percentage of grassland and agriculture a higher proportion of DOM molecules containing sulfur and nitrogen was detected, which in turn could be less efficiently flocculated. Altogether, it was shown that DOM that is released during large hydrological events can be efficiently flocculated again, suggesting a reversal of similar chemical mechanisms in both processes. Since the occurrence of heavy rainfall events is predicted to increase in the future, event-driven mobilization of DOC may continue to challenge drinking water production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leiknes, T; Lazarova, M; Odegaard, H
2005-01-01
Drinking water sources in Norway are characterized by high concentrations of natural organic matter (NOM), low alkalinity and low turbidity. The removal of NOM is therefore a general requirement in producing potable water. Drinking water treatment plants are commonly designed with coagulation direct filtration or NF spiral wound membrane processes. This study has investigated the feasibility and potential of a hybrid process combining ozonation and biofiltration with a rotating disk membrane for treating drinking water with high NOM concentrations. Ozonation will oxidize the NOM content removing colour and form biodegradable organic compounds, which can be removed in biological filters. A constructed water was used in this study which is representative of ozonated NOM-containing water. A rotating membrane disk bioreactor downstream the ozonation process was used to carry out both the biodegradation as well as biomass separation in the same reactor. Maintenance of biodegradation of the organic matter while controlling biofouling of the membrane and acceptable water production rates was the focus in the study. Three operating modes were investigated. Removal of the biodegradable organics was consistent throughout the study indicating that sufficient biomass was maintained in the reactor for all operating conditions tested. Biofouling control was not achieved through shear-induced cleaning by periodically rotating the membrane disks at high speed. By adding a small amount of sponges in the membrane chamber the biofouling could be controlled by mechanical cleaning of the membrane surface during disk rotation. The overall results indicate that the system can favorably be used in an ozonation/biofiltration process by carrying out both biodegradation as well as biomass separation in the same reactor.
Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey.
Ruhl, Laura; Vengosh, Avner; Dwyer, Gary S; Hsu-Kim, Heileen; Deonarine, Amrika
2010-12-15
An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.
Identification and management of microbial contaminations in a surface drinking water source.
Aström, J; Pettersson, T J R; Stenström, T A
2007-01-01
Microbial contamination of surface waters constitutes a health risk for drinking water consumers which may be lowered by closing the raw water intake. We have evaluated microbial discharge events reported in the river Göta älv, which is used for raw water supply to the city of Göteborg. Elevated levels of faecal indicator bacteria were observed during periods of closed raw water intake. High bacteria levels were, however, also occasionally detected during periods of open intake, probably as a result of microbial discharge far upstream in the river which may be difficult to predict and manage by closing the intake. Accumulated upstream precipitations, resulting in surface runoff and wastewater contaminations in the catchment, correlated positively with the levels of total coliforms, E. coli, intestinal enterococci and sulfite-reducing clostridia. Levels of faecal indicator organisms were negatively correlated to the water temperature due to enhanced survival at lower temperatures. Wastewater discharges from a municipality located just upstream of the water intake resulted in elevated E. coli concentrations downstream at the raw water intake for Göteborg. To improve the prediction of microbial contaminations within the river Göta älv, monitoring data on turbidity and upstream precipitation are of particular importance.
The distribution of antibiotics in water of a river basin in South China
NASA Astrophysics Data System (ADS)
Meng, T.; Cheng, W.; Wang, M.; Wan, T.; Cheng, M.; Zhang, C. C.; Jia, Z. Y.
2017-08-01
In water environment field, one of the most attractive research topics is the determination of contamination characteristics of antibiotics in water. In order to investigate the distribution of antibiotics in surface water and drinking water of a certain river basin in southern China, we determined the types and concentrations of antibiotics that contaminated the river by performing HPLC-ESI-MS/MS method. Thus, we detected 17 antibiotics in four surface water samples (B1, B2, B3, and B4). In sampling points B3 and B4, we detected 16 antibiotics separately. The detection rates of norfloxacin, ofloxacin, and erythromycin-H2O were 100%, and the antibiotic erythromycin-H2O had the maximum concentration. In six drinking water samples (A1, A2, A3, A4, A5, and A6), we detected 13 antibiotics. In A5 water samples, we detected all the 13 antibiotics. The detection rate of ofloxacin and erythromycin-H2O was 100%, and erythromycin-H2O was the antibiotic with the highest concentration. We also found that from the upstream to the downstream of the river basin, the types of antibiotics in river increased gradually. In the upstream water samples (B1), we detected three antibiotics. Erythromycin-H2O was the antibiotic with the highest concentration of 6.61 ng/L, and sulfapyridine had the lowest concentration of 2.82 ng/L. In the downstream water samples (B4), we detected 16 antibiotics. Erythromycin-H2O was the antibiotic with the highest concentration of 277.58 ng/L, and the Sulfamonomethoxine was the antibiotic with the second-highest concentration of 242.1 ng/L. In addition, different membrane treatment processes could remove different amounts of antibiotics from the water samples. The study is an important reference for providing environmental protection to river water basin.
Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam
2017-01-01
The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.
QUATTO, P.
2015-01-01
Summary Introduction. An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. Methods. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. Results and discussion. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater. PMID:26900335
NASA Astrophysics Data System (ADS)
Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.
2014-12-01
Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
Health risks from large-scale water pollution: trends in Central Asia.
Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor
2011-02-01
Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Smolders, Andrew; Rolls, Robert J; Ryder, Darren; Watkinson, Andrew; Mackenzie, Mark
2015-06-01
The provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids. Significant longitudinal increases in pollutant concentrations were detected between upstream and downstream reaches of the control crossing, whereas such increases were not detected at the treatment crossing. Therefore, while the crossing upgrade was effective in preventing cattle-derived point source pollution by between 112 and 158%, diffuse source pollution to water supplies from livestock is not ameliorated by this intervention alone. Our findings indicate that stream crossings that prevent direct contact between livestock and waterways provide a simple method for reducing pollutant loads in source water catchments, which ultimately minimises the likelihood of pathogenic microorganisms passing through source water catchments and the drinking water supply system. The efficacy of the catchment as a primary barrier to pathogenic risks to drinking water supplies would be improved with the integration of management interventions that minimise direct contact between livestock and waterways, combined with the mitigation of diffuse sources of livestock-derived faecal matter from farmland runoff to the aquatic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liang, Yan; Fung, Pui Ka; Tse, Man Fung; Hong, Hua Chang; Wong, Ming Hung
2008-11-01
The main objective of this study was to investigate occurrence of polycyclic aromatic hydrocarbons (PAHs) in the sources of the drinking water supply of Hong Kong. The main emphasis was on the Dongjiang River in mainland China which is the major source, supplying 80% of the total consumption in Hong Kong (the remaining 20% is obtained from rain water). Sediments were collected from four sites along the Dongjiang River and four reservoirs in Hong Kong during both the dry and wet weather seasons. The concentrations of total PAHs in the sediments ranged between 36 and 539 microg/kg dry wt. The lower levels were detected at the upstream site on the Dongjiang River and at the reservoirs in Hong Kong (44-85 microg/kg dry wt), while the mid- and downstream sites on the Dongjiang River were more polluted (588-658 microg/kg dry wt). Examination of the PAH profiles revealed that the mid- and downstream sections of the Dongjiang River contained high percentages of 4,5,6-ring PAHs, similar to the amounts of atmospheric particulate matter and road dust collected during the dry weather season from the Pearl River Delta region as reported in the literature. Seasonal changes were revealed in the reservoirs of Hong Kong, with higher PAH levels in the wet weather season than in the dry weather season. For those reservoirs in Hong Kong that store water from the Dongjiang River, a distinct seasonal pattern was also observed, namely, that under dry weather season conditions the PAHs found in the sediments were primarily from petrogenic source, while under wet weather season conditions they were from pyrolytic sources. No such pattern was detected in the reservoirs which stored only rain water.
Nutrients in ground water and surface water of the United States; an analysis of data through 1992
Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.
1995-01-01
Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc
Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah
2015-03-01
This study presents an analysis of climate change impacts on a large river located in Québec (Canada) used as a drinking water source. Combined sewer overflow (CSO) effluents are the primary source of fecal contamination of the river. An analysis of river flowrates was conducted using historical data and predicted flows from a future climate scenario. A spatio-temporal analysis of water quality trends with regard to fecal contamination was performed and the effects of changing flowrates on the dilution of fecal contaminants were analyzed. Along the river, there was a significant spatial trend for increasing fecal pollution downstream of CSO outfalls. Escherichia coli concentrations (upper 95th percentile) increased linearly from 2002 to 2012 at one drinking water treatment plant intake. Two critical periods in the current climate were identified for the drinking water intakes considering both potential contaminant loads and flowrates: local spring snowmelt that precedes river peak flow and extra-tropical storm events that occur during low flows. Regionally, climate change is expected to increase the intensity of the impacts of hydrological conditions on water quality in the studied basin. Based on climate projections, it is expected that spring snowmelt will occur earlier and extreme spring flowrates will increase and low flows will generally decrease. High and low flows are major factors related to the potential degradation of water quality of the river. However, the observed degradation of water quality over the past 10 years suggests that urban development and population growth may have played a greater role than climate. However, climate change impacts will likely be observed over a longer period. Source water protection plans should consider climate change impacts on the dilution of contaminants in addition to local land uses changes in order to maintain or improve water quality. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Törnqvist, Rebecka; Jarsjö, Jerker
2010-05-01
Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in the reservoir water for the first time in a decade. However, a relatively pronounced temporal variability in concentrations was observed for many of the substances, implying that the reservoir could contain low-risk waters temporarily. Health risk factors related to lead and chromium concentrations in groundwater were up to 200 times higher than for river water. The identified major divergence in health risk between groundwater and surface water illuminates the risk of using groundwater for drinking water supply during recurrent surface water deficits in the study area. However, the severe water scarcity and lack of financial resources in the region makes the choices of alternative water supply sources limited. Due to the presence of multiple contaminants, it appears reasonable that the aggregated toxicity of contaminant mixtures should be in focus in surface and groundwater water monitoring and management in the region. Key words: Aral Sea, Drinking water, Groundwater, Health Risk, Surface Water
Water quality of the Delaware and Raritan Canal, New Jersey, 1998-99
Gibs, Jacob; Gray, Bonnie; Rice, Donald E.; Tessler, Steven; Barringer, Thomas H.
2001-01-01
The mean and median of continuously monitored turbidity varied along the length of the canal. In the reach between Raven Rock and Lower Ferry Road, the mean and median for continuously monitored turbidity during the study period increased by 7.2 and 6.2 NTU (nephelometric turbidity units), respectively. The mean of continuously monitored turbidity decreased downstream from Lower Ferry Road to Ten Mile Lock. Turbidity could increase locally downstream from influent streams or outfalls, but because the average velocity of water in the canal is low, particles that cause turbidity are not transported appreciable distances. In the reach between Ten Mile Lock and the Route 18 Spillway, the mean and median of the continuously monitored turbidity changed less than 0.5 NTU during the period of record. The small change in turbidity in this reach is not consistent with an average velocity for the reach; the average velocity in this reach was the lowest in all of the reaches studied. The expected decrease in turbidity due to settling of suspended solids is likely offset by turbid water entering the canal from influent streams or discharges from storm drains. Field observation of a sand bar immediately downstream from the confluence of Als Brook and the canal confirmed that the Als Brook drainage basin has contributed stormwatergenerated sediment to the canal that could reach the monitor located at the Route 18 Spillway and the raw water intakes for two drinking-water treatment plants.
Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert
2013-01-01
An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature.
Langman, Jeff B.; Nolan, Emma O.
2005-01-01
The City of Albuquerque plans to divert San Juan-Chama Project water from the Rio Grande for potable water use. This report examines streamflow and water-quality trends in the Rio Chama and the Rio Grande for water years 1985 to 2002 following the implementation of reservoir storage agreements in northern and central New Mexico. Streamflow/water-quality stations used for this study include the Rio Grande stations of Taos, Otowi, San Felipe, and Albuquerque and the Rio Chama station of Chamita. Water years 1985 to 2002 were a period of larger than average precipitation and streamflow compared to the stations. historical averages. Annual precipitation and streamflow trended downward during the study period because of a drought during 1999 to 2002. Streamflow in the Rio Chama and Rio Grande was divided into three distinct seasonal periods that corresponded to natural and anthropogenic influences: fall/winter baseflow (November through February), snowmelt runoff (March through June), and the irrigation/monsoon (July through October) seasons. A calcium bicarbonate water type was evident at all study area stations on the Rio Chama and Rio Grande. Specific conductance increased downstream, but alkalinity and pH did not substantially change in the downstream direction. Nearly all nitrogen and phosphorous concentrations were less than 1 milligram per liter for all stations. Median trace-element concentrations and maximum radionuclide concentrations did not exceed drinking-water standards. Anthropogenic compounds were infrequently detected in the Rio Chama and Rio Grande, and concentrations did not exceed drinking-water standards. Water quality in the Rio Chama and Rio Grande varied spatially and temporally during water years 1985 to 2002. Specific conductance increased downstream in the Rio Grande during the fall/winter baseflow and snowmelt runoff seasons but was similar at the Taos, Otowi, and San Felipe stations during the irrigation/monsoon season. This similarity was a result of the release of stored water from Abiquiu Reservoir and Cochiti Lake, which masked the natural influences that increased specific conductance in the downstream direction during the other seasons. During all seasons, pH decreased and major ion concentrations remained stable at the Albuquerque station compared with the San Felipe station, but no single influence could be identified that caused these conditions. Manganese and uranium concentrations at the Otowi and San Felipe stations were largest during the fall/winter baseflow and smallest during the snowmelt runoff, indicating that ground-water inflows likely influenced these concentrations. Water-quality temporal trends were evaluated for selected constituents during the study period and during the individual seasons. Downward trends in major ion concentrations were similar in magnitude at the Taos and Otowi stations, indicating that an upstream influence and (or) the downward trend in annual precipitation was the main reason(s) for these trends. The stations most affected by reservoirs, Chamita and San Felipe, were the only stations at which downward trends in major ions were apparent for flow-adjusted concentrations but not for seasonally correlated low-adjusted concentrations, which indicates fewer seasonal differences at these stations due to reservoir operations.
Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming
2008-09-01
Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.
Overview of the Texas Source Water Assessment Project
Ulery, Randy L.
2000-01-01
The 1996 Amendments to the Safe Drinking Water Act require, for the first time, that each state prepare a source water assessment for all PWS. Previously, Federal regulations focused on sampling and enforcement with emphasis on the quality of delivered water. These Amendments emphasize the importance of protecting the source water. States are required to determine the drinking-water source, the origin of contaminants monitored or the potential contaminants to be monitored, and the intrinsic susceptibility of the source water. Under the amendments to the Act, States must create SWAP Programs. The programs must include an individual source water assessment for each public water system regulated by the State. These assessments will determine whether an individual drinking water source is susceptible to contamination. During 1997?99, TNRCC and USGS staff met as subject-matter working groups to develop an approach to conducting Source Water Susceptibility Assessments (SWSA) and a draft workplan. The draft workplan was then presented to and reviewed by various stakeholder and technical advisory groups. Comments and suggestions from these groups were considered, and a final workplan was produced and presented to the EPA. After EPA approval, work formally began on the Texas SWAP Project. The project has an expected completion date of September 2002. At that time, initial SWSA of all Texas public water supplies should be complete. Ground-water supplies can be considered susceptible if a possible source of contamination (PSOC) exists in the contributing area for the public-supply well field or spring, the contaminant travel time to the well field or spring is short, and the soil zone, vadose zone, and aquifer-matrix materials are unlikely to adequately attenuate the contaminants associated with the PSOC. In addition, particular types of land use/cover within the contributing area may cause the supply to be deemed more susceptible to contamination. Finally, detection of various classes of constituents in water from wells in the vicinity of a public supply well may indicate susceptibility of the public-supply well even though there may be no identifiable PSOC or land use activity. Surface-water supplies are by nature susceptible to contamination from both point and non-point sources. The degree of susceptibility of a PWS to contamination can vary and is a function of the environmental setting, water and wastewater management practices, and land use/cover within a water supply's contributing watershed area. For example, a PWS intake downstream from extensive urban development may be more susceptible to non-point source contamination than a PWS intake downstream from a forested, relatively undeveloped watershed. Surface-water supplies are also susceptible to contamination from point sources, which may include permitted discharges, as well as accidental spills or other introduction of contaminants.
A Ten-year Survey of Giardia Cysts in Drinking Water Supplies of Seoul, the Republic of Korea
Cho, Eun-Joo; Lee, Jin-Hyo; Han, Sun-Hee; Park, Yong-Sang
2011-01-01
To understand the distribution of Giardia cysts in drinking water supplies in Seoul, Korea, we collected water samples quarterly at 6 intakes in the Han River, its largest stream and 6 conventional water treatment plants (WTPs) serving drinking water, from 2000 to 2009. Giardia cysts in each of 10 L water were confirmed in 35.0% of intake water samples and the arithmetic mean was 1.65 cysts/10 L (range 0-35 cysts/10 L). The lowest cyst density was observed at Paldang and Kangbuk intakes, and the pollution level was higher at 4 intakes downstream. It seemed that these 4 intakes were under influence of Wangsuk stream at the end of which cysts were found in all samples with the mean of 140 cysts/10 L. The annual mean number of cysts was 0.21-4.21 cysts/10 L, and the cyst level at the second half of the 10 years was about 1/5 of that at first half on average. The cysts were more frequently found in winter, and their mean density was 3.74 cysts/10 L in winter and 0.80-1.08 cysts/10 L in other seasons. All finished water samples collected at 6 WTPs were negative for Giardia in each of 100 L sample for 10 years and cyst removal by physical process was average 2.9-log. It was concluded that conventional water treatment at 6 WTPs of Seoul appears to remove the cysts effectively under the present level of their source water. Domestic wastewater from the urban region could be an important source of Giardia pollution in the river. PMID:21461263
Water quality evaluation of Al-Gharraf river by two water quality indices
NASA Astrophysics Data System (ADS)
Ewaid, Salam Hussein
2017-11-01
Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.
Fulazzaky, Mohamad Ali
2010-09-01
Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.
Graf, Julia B.; Wirt, Laurie; Swanson, E.K.; Fisk, G.G.; Gray, J.R.
1996-01-01
Samples collected at streamflow-gaging stations in the Puerco and Little Colorado rivers show that radioactivity of suspended sediment at gaging stations downstream from inactive uranium mines was not significantly higher than at gaging stations where no mining has occurred upstream. Drinking-water standards for many constituents, however, commonly are exceeded during runoff because concentration of these constituents on sediment from natural processes is high and suspended-sediment loads are high during runoff.
Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L
2013-08-01
An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Cowley, K.; Fryirs, K.; Chisari, R.; Hose, G. C.
2016-12-01
Temperate upland swamps in Eastern Australia are endangered ecological communities under State and National legislation. They occur in headwaters of low order streams on low relief plateaus, providing base flow to streams that contribute to Sydney's major drinking water supplies that support some 4.5 million people. The swamps are also subject to aquifer interference activities from long wall mining and groundwater extraction, and are threatened by a changing climate. It is therefore critical that we understand their water source, storage capacity and residence times. We collected seasonal water samples from perched swamp aquifers in two highland regions of Eastern Australia for analysis of hydrogen and oxygen isotopes and compared them with rainwater, surface water and deeper groundwater to determine whether the swamps were primarily rainwater or groundwater fed. 222Rn was used as an environmental tracer to calculate residence times and relative groundwater/surface water ratios. We found over 60% of the swamps were sensitive to evaporation which has implications for swamp health in a warmer climate. Over a third of water from the perched swamp aquifer is derived from deeper sandstone aquifers with residence times of between 1.2 and 15 days. This swamp-groundwater connectivity means that mining activities or large-scale groundwater extraction could interfere with a significant component of the swamps' water source, its water storage capacity and downstream contributions to Sydney's drinking water supplies.
Regional medicine use in the Rhine basin and its implication on water quality
NASA Astrophysics Data System (ADS)
Hut, R.; Van De Giesen, N.; de Jong, S.
2011-12-01
Do Germans use more painkillers than the French? An analysis is presented relating medicine residue in the river Rhine to the amount of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population is analyzed. Results show regional differences in drug use as well as implications for (downstream) use of river water for drinking purposes.
Rice, Jacelyn; Westerhoff, Paul
2015-01-20
De facto potable reuse occurs when treated wastewater is discharged into surface waters upstream of potable drinking water treatment plant (DWTP) intakes. Wastewater treatment plant (WWTP) discharges may pose water quality risks at the downstream DWTP, but additional flow aids in providing a reliable water supply source. In this work de facto reuse is analyzed for 2056 surface water intakes serving 1210 DWTPs across the U.S.A. that serve greater than 10,000 people, covering approximately 82% of the nation’s population. An ArcGIS model is developed to assess spatial relationships between DWTPs and WWTPs, with a python script designed to perform a network analysis by hydrologic region. A high frequency of de facto reuse occurrence was observed; 50% of the DWTP intakes are potentially impacted by upstream WWTP discharges. However, the magnitude of de facto reuse was seen to be relatively low, where 50% of the impacted intakes contained less than 1% treated municipal wastewater under average streamflow conditions. De facto reuse increased greatly under low streamflow conditions (modeled by Q95), with 32 of the 80 sites yielding at least 50% treated wastewater, this portion of the analysis is limited to sites where stream gauge data was readily available.
Hemachandra, Chamini K; Pathiratne, Asoka
2017-01-01
Biological effect directed in vivo tests with model organisms are useful in assessing potential health risks associated with chemical contaminations in surface waters. This study examined the applicability of two in vivo test systems viz. plant, Allium cepa root based tests and fish, Oreochromis niloticus erythrocyte based tests for screening cytogenotoxic potential of raw source water, water treatment waste (effluents) and treated water of drinking water treatment plants (DWTPs) using two DWTPs associated with a major river in Sri Lanka. Measured physico-chemical parameters of the raw water, effluents and treated water samples complied with the respective Sri Lankan standards. In the in vivo tests, raw water induced statistically significant root growth retardation, mitodepression and chromosomal abnormalities in the root meristem of the plant and micronuclei/nuclear buds evolution and genetic damage (as reflected by comet scores) in the erythrocytes of the fish compared to the aged tap water controls signifying greater genotoxicity of the source water especially in the dry period. The effluents provoked relatively high cytogenotoxic effects on both test systems but the toxicity in most cases was considerably reduced to the raw water level with the effluent dilution (1:8). In vivo tests indicated reduction of cytogenotoxic potential in the tested drinking water samples. The results support the potential applications of practically feasible in vivo biological test systems such as A. cepa root based tests and the fish erythrocyte based tests as complementary tools for screening cytogenotoxicity potential of the source water and water treatment waste reaching downstream of aquatic ecosystems and for evaluating cytogenotoxicity eliminating efficacy of the DWTPs in different seasons in view of human and ecological safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ahmed, A M; Sulaiman, W N
2001-11-01
Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.
Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde
2010-01-01
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors. PMID:20889793
Water-Quality Conditions of Chester Creek, Anchorage, Alaska, 1998-2001
Glass, Roy L.; Ourso, Robert T.
2006-01-01
Between October 1998 and September 2001, the U.S. Geological Survey's National Water-Quality Assessment Program evaluated the water-quality conditions of Chester Creek, a stream draining forest and urban settings in Anchorage, Alaska. Data collection included water, streambed sediments, lakebed sediments, and aquatic organisms samples from urban sites along the stream. Urban land use ranged from less than 1 percent of the basin above the furthest upstream site to 46 percent above the most downstream site. Findings suggest that water quality of Chester Creek declines in the downstream direction and as urbanization in the watershed increases. Water samples were collected monthly and during storms at a site near the stream's mouth (Chester Creek at Arctic Boulevard) and analyzed for major ions and nutrients. Water samples collected during water year 1999 were analyzed for selected pesticides and volatile organic compounds. Concentrations of fecal-indicator bacteria were determined monthly during calendar year 2000. During winter, spring, and summer, four water samples were collected at a site upstream of urban development (South Branch of South Fork Chester Creek at Tank Trail) and five from an intermediate site (South Branch of South Fork Chester Creek at Boniface Parkway). Concentrations of calcium, magnesium, sodium, chloride, and sulfate in water increased in the downstream direction. Nitrate concentrations were similar at the three sites and all were less than the drinking-water standard. About one-quarter of the samples from the Arctic Boulevard site had concentrations of phosphorus that exceeded the U.S. Environmental Protection Agency (USEPA) guideline for preventing nuisance plant growth. Water samples collected at the Arctic Boulevard site contained concentrations of the insecticide carbaryl that exceeded the guideline for protecting aquatic life. Every water sample revealed a low concentration of volatile organic compounds, including benzene, toluene, tetrachloroethylene, methyl tert-butyl ether, and chloroform. No water samples contained volatile organic compounds concentrations that exceeded any USEPA drinking-water standard or guideline. Fecal-indicator bacteria concentrations in water from the Arctic Boulevard site commonly exceeded Federal and State guidelines for water-contact recreation. Concentrations of cadmium, copper, lead, and zinc in streambed sediments increased in the downstream direction. Some concentrations of arsenic, chromium, lead, and zinc in sediments were at levels that can adversely affect aquatic organisms. Analysis of sediment chemistry in successive lakebed-sediment layers from Westchester Lagoon near the stream's mouth provided a record of water-quality trends since about 1970. Concentrations of lead have decreased from peak levels in the mid-1970s, most likely because of removing lead from gasoline and lower lead content in other products. However, concen-trations in recently-deposited lakebed sediments are still about 10 times greater than measured in streambed sediments at the upstream Tank Trail site. Zinc concentrations in lakebed sediments also increased in the early 1970s to levels that exceeded guidelines to protect aquatic life and have remained at elevated but variable levels. Pyrene, benz[a]anthracene, and phenanthrene in lakebed sediments also have varied in concentrations and have exceeded protection guidelines for aquatic life since the 1970s. Concentrations of dichloro-diphenyl-trichloroethane, polychlorinated biphenyls (PCBs), or their by-products generally were highest in lakebed sediments deposited in the 1970s. More recent sediments have concentrations that vary widely and do not show distinct temporal trends. Tissue samples of whole slimy sculpin (Cottus cognatus), a non-migratory species of fish, showed con-centrations of trace elements and organic contaminants. Of the constituents analyzed, only selenium concentra-tions showed levels of potential concern for
Evaluations of the Synergy of the Water-Energy-Food Nexus
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2017-12-01
Analyses of the synergy and tradeoff of the water-energy-food nexus are keys to a sustainable society under the increasing demand for resources. Analyses of the water-energy-food nexus in Kumamoto, Japan showed that the paddy field for rice production, upstream of the basin with irrigated water from the river, had recharged the groundwater which is used as drinking water downstream in Kumamoto city without energy consumption for the transport of groundwater. National government regulations of "fallow rice fields" and urbanization after the 1970s caused the decrease in the groundwater recharge rate upstream in the paddy field area. This also lead to the decrease in water resources of groundwater downstream in Kumamoto city, which then required additional energy for water pumping. Therefore, the synergy of water-energy-food was lost after government regulations of rice production and urbanization which caused an impermeable layer for groundwater recharge. The nexus model has been established to analyze the synergy of water-energy-food, including cost-benefit analyses, food trade including rice with different scenarios of food self-sufficiency rates, water and energy consumption for food, and others. A decrease in rice consumption and production with the same self-sufficiency rate caused a decrease in water and energy consumption for rice production, and a decrease in carbon emissions. However, the cost of synergy loss in the water-energy-food nexus in Kumamoto did not outweigh the benefit of reductions in water and energy consumption for rice production.
NASA Astrophysics Data System (ADS)
Olsthoorn, T.
2010-12-01
Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more widespread phenomena using field data collected over time and verification by the numerical model. With substantial lateral flow salt water may well enter wells above the bottom of the screen.
El-Mesallamy, Hala; Salman, Tarek M; Ashmawey, Abeer M; Osama, Nada
2012-01-01
Throughout human history, plant products have been used for many purposes including as medicines. Herbal products and spices can be used as preventive agents against cancer due to their antimicrobial, antioxidant and antitumorigenic properties. This study was designed to evaluate the potential protective effect of curcum in rats administered nitrosamine precursors; dibutylamine (DBA) and sodium nitrate (NaNO3); and infected with Escherichia coli (E. coli) and also to monitor changes in nuclear factor the Kappa B p65 (NF-κB p56) pathway and its downstream products, Bcl-2 and interleukin-6 (IL-6), in parallel with nitrosamine precursors, E. coli and curcum treatment. Rats were divided into three groups (n=25 each; except of control group, n+20). Group I a normal control group, group II administered DBA/NaNO3 in drinking water and infected with E. coli and group III was administered DBA/NaNO3 in drinking water, infected with E. coli and receiving standard diet containing 1% curcum powder. Histopathological examination reflected that the curcum treated group featured a lower incidence of urinary bladder lesions,and lower levels of NF-κB, Bcl-2 and IL-6, than the group receiving nitrosamine precursor and infected with E. coli. These findings suggested that curcum may have a protective role during the process of bladder carcinogenesis by inhibiting the NF-κB pathway and its downstream products.
Zeng, Qingfei; Jeppesen, Erik; Gu, Xiaohong; Mao, Zhigang; Chen, Huihui
2018-06-01
The spatial-temporal distribution of polycyclic aromatic hydrocarbons (PAHs), their source, and potential health risks were determined in overlying water and surface sediments from Chinese Lake Guchenghu, adjacent commercial mitten crab ponds and the connected Wushen Canal to assess the contamination profile of the area. The total PAHs concentrations in sediment and water were 86.7-1790 ng g -1 dry weight (dw) and 184-365 ng L -1 in summer and 184-3140 ng g -1 dw and 410-1160 ng L -1 in winter. Two- and 3-ring PAHs were the predominant compounds in water, while PAHs with 4-6 rings dominated in the sediment at both upstream and downstream sites. PAHs concentrations in water and sediment correlated significantly. Diagnostic ratios and positive matrix factorization (PMF) analyses indicated a strong influence of pyrogenic sources, principally biomass combustion and vehicle emission, on the concentrations of PAHs. The distribution, source identification, and mean effects range median quotients (mERMQ) analyses suggested that the most contaminated area was located downstream and upstream of the Wushen Canal, followed by Lake Guchenghu and a commercial crab pond area. From an ecological point of view, PAHs posed a potential risk to drinking water sources as the concentrations exceeded the guideline value of 0.05 μg L -1 . The risk posed by sediment PAHs appeared to be low except for the downstream sites, which showed a low to medium ecotoxicological risk. The total incremental lifetime cancer risks ranged between 10 -7 and 10 -5 , indicating a potential health risk for the local population when exposed to sediment from the area. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Firoz, A. B. M.; Nauditt, Alexandra; Fink, Manfred; Ribbe, Lars
2018-01-01
Hydrological droughts are one of the most damaging disasters in terms of economic loss in central Vietnam and other regions of South-east Asia, severely affecting agricultural production and drinking water supply. Their increasing frequency and severity can be attributed to extended dry spells and increasing water abstractions for e.g. irrigation and hydropower development to meet the demand of dynamic socioeconomic development. Based on hydro-climatic data for the period from 1980 to 2013 and reservoir operation data, the impacts of recent hydropower development and other alterations of the hydrological network on downstream streamflow and drought risk were assessed for a mesoscale basin of steep topography in central Vietnam, the Vu Gia Thu Bon (VGTB) River basin. The Just Another Modelling System (JAMS)/J2000 was calibrated for the VGTB River basin to simulate reservoir inflow and the naturalized discharge time series for the downstream gauging stations. The HEC-ResSim reservoir operation model simulated reservoir outflow from eight major hydropower stations as well as the reconstructed streamflow for the main river branches Vu Gia and Thu Bon. Drought duration, severity, and frequency were analysed for different timescales for the naturalized and reconstructed streamflow by applying the daily varying threshold method. Efficiency statistics for both models show good results. A strong impact of reservoir operation on downstream discharge at the daily, monthly, seasonal, and annual scales was detected for four discharge stations relevant for downstream water allocation. We found a stronger hydrological drought risk for the Vu Gia river supplying water to the city of Da Nang and large irrigation systems especially in the dry season. We conclude that the calibrated model set-up provides a valuable tool to quantify the different origins of drought to support cross-sectorial water management and planning in a suitable way to be transferred to similar river basins.
Managing peatland vegetation for drinking water treatment.
Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M
2016-11-18
Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.
Managing peatland vegetation for drinking water treatment
Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.
2016-01-01
Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision. PMID:27857210
Polonium-210 levels in different environmental samples.
Fonollosa, E; Peñalver, A; Aguilar, C; Borrull, F
2015-12-01
Polonium-210 is analysed in different samples which can be affected by the presence of a dicalcium phosphate plant (DCP). Particularly, it was determined in sludge samples from a drinking water treatment plant located downstream of the phosphate plant. From the obtained results, it was not possible to establish a correlation with the industrial activities carried out in the DCP plant since the measured activities were comparable to the reported in the literature for normal soils. This isotope was also monitored in different biota species (as mussels) taken also downstream of the DCP, and the potential risk of their ingestion by calculating the total effective doses was evaluated. As a result, it is important to highlight that the ingestion of these mussels does not constitute a risk for the population since the found doses were lower than the values published by UNSCEAR.
NASA Astrophysics Data System (ADS)
Murphy, Sheila F.; Writer, Jeffrey H.; Blaine McCleskey, R.; Martin, Deborah A.
2015-08-01
Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h-1. These storms, which typically occur several times each year in July-September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10-156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.
Murphy, Sheila F.; Writer, Jeffrey H.; McCleskey, R. Blaine; Martin, Deborah A.
2015-01-01
Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h−1. These storms, which typically occur several times each year in July–September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10–156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.
Hydrology of an abandoned coal-mining area near McCurtain, Haskell County, Oklahoma
Slack, L.J.
1983-01-01
Water quality was investigated from October 1980 to May 1983 in an area of abandoned coal mines in Haskell county, Oklahoma. Bedrock in the area is shale, siltstone, sandstone, and the McAlester (Stigler) and Hartshorne coals of the McAlester Formation and Hartshorne Sandstone of Pennsylvanian age. The two coal beds, upper and lower Hartshorne, associated with the Hartshorne Sandstone converge or are separated by a few feet or less of bony coal or shale in the McCurtain area. Many small faults cut the Hartshorne coal in all the McCurtain-area mines. The main avenues of water entry to and movement through the bedrock are the exposed bedding-plane openings between layers of sandstone, partings between laminae of shale, fractures and joints developed during folding and faulting laminae of shale, fractures and joints developed during folding and faulting of the brittle rocks, and openings caused by surface mining--the overburden being shattered and broken to form spoil. Water-table conditions exist in bedrock and spoil in the area. Mine pond water is in direct hydraulic connections with water in the spoil piles and the underlying Hartshorne Sandstone. Sulfate is the best indicator of the presence of coal-mine drainage in both surface and ground water in the Oklahoma coal field. Median sulfate concentrations for four sites on Mule Creek ranged from 26 to 260 milligrams per liter. Median sulfate concentrations increased with increased drainage from unreclaimed mined areas. The median sulfate concentration in Mule Creek where it drains the reclaimed area is less than one-third of that at the next site downstream where the stream begins to drain abandoned (unreclaimed) mine lands. Water from Mule Creek predominantly is a sodium sulfate type. Maximum and median values for specific conductance and concentrations of calcium, magnesium, sodium, sulfate, chloride, dissolved solids, and alkalinity increase as Mule Creek flows downstream and drains increasing areas of abandoned (unreclaimed) mining lands. Constituent concentrations in Mule Creek, except those for dissolved solids, iron, manganese, and sulfate, generally do not exceed drinking-water limits. Reclamation likely would result in decreased concentrations of dissolved solids, calcium, magnesium, sodium, sulfate, and alkalinity in Mule Creek in the vicinity of the reclaimed area. Ground water in the area is moderately hard to very hard alkaline water with a median pH of 7.2 to 7.6. It predominately is a sodium sulfate type and, except for dissolved solids, iron manganese, and sulfate, constituent concentrations generally do not exceed drinking-water limits. Ground-water quality would likely be unchanged by reclamation. The quality of water in the two mine ponds is quite similar to that of the shallow ground water in the area. Constituents in water from both ponds generally do not exceed drinking-water limits and the water quality is unlikely to be changed by reclamation in the area.
Seasonal water chemistry variability in the Pangani River basin, Tanzania.
Selemani, Juma R; Zhang, Jing; Muzuka, Alfred N N; Njau, Karoli N; Zhang, Guosen; Maggid, Arafa; Mzuza, Maureen K; Jin, Jie; Pradhan, Sonali
2017-11-01
The stable isotopes of δ 18 O, δ 2 H, and 87 Sr/ 86 Sr and dissolved major ions were used to assess spatial and seasonal water chemistry variability, chemical weathering, and hydrological cycle in the Pangani River Basin (PRB), Tanzania. Water in PRB was NaHCO 3 type dominated by carbonate weathering with moderate total dissolved solids. Major ions varied greatly, increasing from upstream to downstream. In some stations, content of fluoride and sodium was higher than the recommended drinking water standards. Natural and anthropogenic factors contributed to the lowering rate of chemical weathering; the rate was lower than most of tropical rivers. The rate of weathering was higher in Precambrian than volcanic rocks. 87 Sr/ 86 Sr was lower than global average whereas concentration of strontium was higher than global average with mean annual flux of 0.13 × 10 6 mol year -1 . Evaporation and altitude effects have caused enrichment of δ 18 O and δ 2 H in dry season and downstream of the river. Higher d-excess value than global average suggests that most of the stations were supplied by recycled moisture. Rainfall and groundwater were the major sources of surface flowing water in PRB; nevertheless, glacier from Mt. Kilimanjaro has insignificant contribution to the surface water. We recommend measures to be taken to reduce the level of fluoride and sodium before domestic use.
Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.
Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao
2017-08-01
This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2 = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Jia; Qi, Shihua; Yao, Jun; Yang, Dan; Xing, Xinli; Liu, Hongxia; Qu, Chengkai
2016-11-01
Hanjiang River, the second largest river in Guangdong Province, Southern China, is the primary source of drinking water for the cities of Chaozhou and Shantou. Our previous studies indicated that soils from an upstream catchment area of the Hanjiang River are moderately contaminated with organochlorine pesticides (OCPs), which can easily enter the river system via soil runoff. Therefore, OCPs, especially downstream drinking water sources, may pose harmful health and environmental risks. On the basis of this hypothesis, we measured the OCP concentrations in dissolved phase (DP), suspended particle matter (SPM), and surface sediment (SS) samples collected along the Hanjiang River Basin in Fujian and Guangdong provinces. OCP residue levels were quantified through electron capture detector gas chromatography to identify the OCP sources and deposits. The concentration ranges of OCPs in DP, SPM, and SS, respectively, were 2.11-12.04 (ng/L), 6.60-64.77 (ng/g), and 0.60-4.71 (ng/g) for hexachlorocyclohexanes (HCHs), and 2.49-4.77 (ng/L), 6.75-80.19 (ng/g), and 0.89-252.27 (ng/g) for dichloro-diphenyl-trichloroethanes (DDTs). Results revealed that DDTs represent an ecotoxicological risk to the Hanjiang River Basin, as indicated by international sediment guidelines. This study serves as a basis for the future management of OCP concentrations in the Hanjiang River Basin, and exemplifies a pattern of OCP movement (like OCP partition among multimedia) from upstream to downstream. This pattern may be observed in similar rivers in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Murphy, H M; Payne, S J; Gagnon, G A
2008-04-01
This study was designed to examine the potential downstream benefits of sequential disinfection to control the persistence of Escherichia coli under conditions relevant to drinking water distribution systems. Eight annular reactors (four polycarbonate and four cast iron) were setup in parallel to address various factors that could influence biofilm growth in distribution systems. Eight reactors were treated with chlorine, chlorine dioxide and monochloramine alone or in combination with UV to examine the effects on Escherichia coli growth and persistence in both the effluent and biofilm. In general, UV-treated systems in combination with chlorine or chlorine dioxide and monochloramine achieved greater log reductions in both effluent and biofilm than systems treated with chlorine-based disinfectants alone. However, during UV-low chlorine disinfection, E. coli was found to persist at low levels, suggesting that the UV treatment had instigated an adaptive mutation. During UV-chlorine-dioxide treatment, the E. coli that was initially below the detection limit reappeared during a low level of disinfection (0.2 mg/L) in the cast iron systems. Chloramine was shown to be effective in disinfecting suspended E. coli in the effluent but was unable to reduce biofilm counts to below the detection limit. Issues such as repair mechanism of E. coli and nitrification could help explain some of these aberrations. Improved understanding of the ability of chlorine-based disinfectant in combination with UV to provide sufficient disinfection will ultimately effect in improved management and safety of drinking water.
Geochemical and Hydrologic Controls of Copper-Rich Surface Waters in the Yerba Loca-Mapocho System
NASA Astrophysics Data System (ADS)
Pasten, P.; Montecinos, M.; Coquery, M.; Pizarro, G. E.; Abarca, M. I.; Arce, G. J.
2015-12-01
Andean watersheds in Northern and Central Chile are naturally enriched with metals, many of them associated to sulfide mineralizations related to copper mining districts. The natural and anthropogenic influx of toxic metals into drinking water sources pose a sustainability challenge for cities that need to provide safe water with the smallest footprint. This work presents our study of the transformations of copper in the Yerba Loca-Mapocho system. Our sampling campaign started from the headwaters at La Paloma Glacier and continues to the inlet of the San Enrique drinking water treatment plant, a system feeding municipalities in the Eastern area of Santiago, Chile. Depending on the season, total copper concentrations go as high as 22 mg/L for the upper sections, which become diluted to <5 mg/L downstream. pH ranged from 3 to 5.6 while suspended solids ranged from <10 to 100 mg/L. We used Geochemist Workbench to assess copper speciation and to evaluate the thermodynamic controls for the formation and dissolution of solid phases. A sediment trap was used to concentrate suspended particulate matter, which was analyzed with ICP-MS, TXRF (total reflection X ray fluorescence) and XRD (X-ray diffraction). Major elements detected in the precipitates were Al (200 g/kg), S (60 g/kg), and Cu (6 g/kg). Likely solid phases include hydrous amorphous phases of aluminum hydroxides and sulfates, and copper hydroxides/carbonates. Efforts are undergoing to find the optimal mixing ratios between the acidic stream and more alkaline streams to maximize attenuation of dissolved copper. The results of this research could be used for enhancing in-stream natural attenuation of copper and reducing treatment needs at the drinking water facility. Acknowledgements to Fondecyt 1130936 and Conicyt Fondap 15110020
Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012.
Herrick, Robert L; Buckholz, Jeanette; Biro, Frank M; Calafat, Antonia M; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M
2017-09-01
Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40-60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000-2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209-666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of brain somatostatin receptor 2 in the regulation of feeding and drinking behavior.
Stengel, Andreas; Karasawa, Hiroshi; Taché, Yvette
2015-07-01
Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to exert pleiotropic actions via interaction with five somatostatin receptors (sst1-5) that are also widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular injection of stable somatostatin agonists potently stimulates food intake and independently, drinking behavior in rodents. The orexigenic response involves downstream orexin-1, neuropeptide Y1 and μ receptor signaling while the dipsogenic effect is mediated through the activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms underlying the stimulation of feeding and more prominently water intake in the dark phase and is able to counteract the anorexic response to visceral stressors. Published by Elsevier Inc.
Study of climate change impact in Himalayan Water Resource: a case study of Nepal
NASA Astrophysics Data System (ADS)
Joshi, H. P.
2015-12-01
Himalayan region are regarded as water tower of Asia and has also covered high attention due to climate change owing to its glaciers melting. Water from those glaciers-fed basins are mostly utilized for hydropower, irrigation and drinking water supply to around 1.4 billion population downstream. The basin system, particularly in Nepal, is divided into three categories: (i) snow and glaciers fed: Koshi, Gandaki, Karnali and Mahakali basins (ii) from Mahabharat range: Babai, West Rapti, Bagmati, Kamala, Karnali, Mechi and (iii) Streams and rivulets from Chure hills: Surahinala, Badganga, Mohana etc. This study shows majority of flow (~78% of average flow) is from first category, 9% from second and 13% from third category. In the recent decades, especially during the dry season, rivers from third category have low runoff (or even zero)which leads to lack of water for irrigation and drinking water supply by lowering its water table.Interestingly, during monsoon season the whole region is facing high risks of flash floods and landslides due to unpredictable rainfall pattern. Increasing temperature trend (0.08˚Ca-1) and weakening precipitation rate (7.9±1.2 mm a-1) for last four decades shows indirect sign of climate change, though long time series in-situ observations are largely lacking in Nepal Himalaya. Our study supports high impact of climate change on potential generation of hydropower in Nepal which are more pronounced in coming decades.
Graham, Jennifer L.; Ziegler, Andrew C.; Loving, Brian L.; Loftin, Keith A.
2012-01-01
Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce toxins and taste-and-odor compounds. Toxins and taste-and-odor compounds may cause substantial economic and public health concerns and are of particular interest in lakes, reservoirs, and rivers that are used for drinking-water supply, recreation, or aquaculture. The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Water released from Milford Lake to the Kansas River during a toxic cyanobacterial bloom in late August 2011 prompted concerns about cyanobacteria and associated toxins and taste-and-odor compounds in downstream drinking-water supplies. During September and October 2011 water-quality samples were collected to characterize the transport of cyanobacteria and associated compounds from upstream reservoirs to the Kansas River. This study is one of the first to quantitatively document the transport of cyanobacteria and associated compounds during reservoir releases and improves understanding of the fate and transport of cyanotoxins and taste-and-odor compounds downstream from reservoirs. Milford Lake was the only reservoir in the study area with an ongoing cyanobacterial bloom during reservoir releases. Concentrations of cyanobacteria and associated toxins and taste-and-odor compounds in Milford Lake (upstream from the dam) were not necessarily indicative of outflow conditions (below the dam). Total microcystin concentrations, one of the most commonly occurring cyanobacterial toxins, in Milford Lake were 650 to 7,500 times higher than the Kansas Department of Health and Environment guidance level for a public health warning (20 micrograms per liter) for most of September 2011. By comparison, total microcystin concentrations in the Milford Lake outflow generally were less than 10 percent of the concentrations in surface accumulations, and never exceeded 20 micrograms per liter. The Republican River, downstream from Milford Lake, was the only Kansas River tributary with detectable microcystin concentrations throughout the study period, and concentrations exceeded 1 microgram per liter for most of September 2011. Microcystin was detected periodically in other tributaries, but concentrations were low (less than 0.3 micrograms per liter). In contrast, the taste-and-odor compounds geosmin and 2-methylisoborneol (MIB) were detected in all tributaries located immediately downstream from reservoirs and total concentrations generally exceeded the human detection threshold (5 to 10 nanograms per liter) from September through mid-October. Microcystin, geosmin, and MIB were not detected in the Smoky Hill River upstream from the confluence with the Republican River that forms the Kansas River. Within a week after initial reservoir releases, microcystin, geosmin, and MIB were detected throughout a 173-mile reach of the Kansas River; these compounds remained detectable throughout the reach until mid-October. Losses to groundwater when streamflows in the Kansas River were increasing indicate the potential for reservoir releases to affect groundwater quality as well as surface-water quality. Total microcystin concentrations in the Kansas River generally were highest within about 24 miles of the confluence of the Smoky Hill and Republican Rivers, and decreased downstream; concentrations exceeded 1 microgram per liter in the Kansas River upstream from Topeka during the first 2 weeks of September. Patterns in microcystin occurrence and concentration at Kansas River tributary and main-stem sites indicate that Milford Lake was the source of microcystin in the Kansas River; however, the source of taste-and-odor compounds was not as evident, possibly because multiple tributaries contributed taste-and-odor compounds to the Kansas River. Microcystin and taste-and-odor compounds co-occurred in 56 percent of samples collected, indicating co-occurrence was common. Despite frequent co-occurrence, the spatial and temporal patterns in microcystin, geosmin, and MIB were unique and did not necessarily match patterns in cyanobacterial abundance. Use of a single compound or cyanobacterial abundance alone cannot necessarily be used as an indicator of the presence or concentration of these compounds. Measured concentrations of cyanobacteria and associated compounds were substantially higher than expected concentrations based on simple dilution models at some sites and substantially lower at others, though spatial and temporal patterns were unique for individual compounds. Data were not collected in such a way to determine whether differences between measured and expected concentrations were statistically significant. Results, however, indicate that simple dilution models were not sufficient to describe the downstream transport of cyanobacteria and associated compounds in the Kansas River.
NASA Astrophysics Data System (ADS)
Silins, U.; Emelko, M.; Cooke, C. A.; Charrois, J. W. A.; Stone, M.
2016-12-01
A growing number of large severe wildfires have impacted drinking water supplies of both small and larger municipalities in western North America over the past 20 years. While some of these fires include components of wildland-urban interface fire impacts to water or water treatment infrastructure, the vast majority have been wildland fires in critical source water supply regions serving these municipalities. A large body of research has provided key insights on magnitude, variability, and longevity of post-wildfire impacts on erosion, sediment production, and water quality, however assessing the impact of wildfires on water supplies often requires measuring or predicting the downstream propagation of upstream wildfire impacts to water supplies and this remains a comparatively less well explored area of wildfire-water research. The 2016 Horse River wildfire during May-June burned 590,000 ha. forcing the evacuation of the entire City of McMurray ( 90,000 residents) and represents the most expensive natural disaster in Canadian history ($3.6 billion in insurable losses alone). While the wildfire impacted extensive source water supply regions in the area surrounding Ft. McMurray, this fire serves to illustrate a broader range of challenging wildfire-water science and engineering research issues that are needed to assess the impacts of this and potentially other large wildfires on water supplies. Unlike wildfires in headwaters regions, these include unique challenges in assessing impacts of burned tributaries adjacent sources from a large wildfire situated immediately surrounding a very large river system (Athabasca River), post-fire contaminant dilution, mixing, and transport, and contaminant runoff from severely burned residential and commercial/industrial regions of the city on downstream water supplies among others.
Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A
2014-10-07
The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering disinfection strategies. The potential formation of multiple DBPs in drinking water utilities in areas of shale gas development requires comprehensive monitoring plans beyond the common regulated DBPs.
Hoefel, Daniel; Monis, Paul T.; Grooby, Warwick L.; Andrews, Stuart; Saint, Christopher P.
2005-01-01
Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 × 105 bacteria ml−1. The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 × 103 active AOB ml−1 were detected in the membrane-intact fraction, and 1.40 × 104 active AOB ml−1 were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml−1 detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an instability event. PMID:16269672
Bach, Cristina; Dauchy, Xavier; Boiteux, Virginie; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François
2017-02-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, S.
1981-05-01
Ten years after its completion, the controversial Aswan High Dam's hydrologic and human consequences are clearer because of a joint US-Egyptian interdisciplinary study. Water supply and distribution is emerging as a major world resource problem with the recognition that unsafe drinking water and inadequate sanitation contribute to health problems. Dams provide water supplies, but they also create conditions favorable to the spread of water-borne diseases. The Aswan Dam solved problems of flooding and drought by opening 2.5 million acres to year-round irrigation, although some of the reclaimed land has been lost to urban expansion and shoreline erosion, and provides hydroelectricmore » power. The negative effects include increasing soil salinity, changes in the water table, excessive downstream water plant growth, and diseases such as schistosomiasis and other intestinal parasites, and the social impact on the Nubians, whose homeland was flooded. Planners must use the information gathered in this study to see that the benefits outweigh the human costs. 22 references, 7 figures.« less
Harkness, Jennifer S; Dwyer, Gary S; Warner, Nathaniel R; Parker, Kimberly M; Mitch, William A; Vengosh, Avner
2015-02-03
The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH4/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment.
Design of a water quality monitoring network for the Limpopo River Basin in Mozambique
NASA Astrophysics Data System (ADS)
Chilundo, M.; Kelderman, P.; O´keeffe, J. H.
The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating possible need for monthly monitoring of WQ. From this study it was concluded that a systematic WQ monitoring network composed of 16 stations would fit the conditions of the LRB. Ambient, earl warning, operational and effluents are the main monitoring types recommended. Additional research at a Basin scale was also recommended to identify the major sources of pollution, their transport and impacts to the downstream ecosystem.
Shobana, Navaneethabalakrishnan; Aruldhas, Mariajoseph Michael; Tochhawng, Lalmuankimi; Loganathan, Ayyalu; Balaji, Sadhasivam; Kumar, Mani Kathiresh; Banu, Liaquat Alikhan Sheerin; Navin, Ajit Kumar; Mayilvanan, Chinnaiyan; Ilangovan, Ramachandran; Balasubramanian, Karundevi
2017-11-01
Chromium (Cr), an essential micronutrient potentiates insulin action, whereas excess hexavalent Cr (CrVI) acts as an endocrine disruptor. Pregnant mothers living in areas abutting industries using the metal and chromite ore dumps are exposed to ground water contaminated with Cr. Nevertheless, the impact of prenatal exposure to excess CrVI on insulin signaling in the progeny remains obscure. We tested the hypothesis "transient gestational exposure to drinking water containing excess CrVI may modify insulin signaling during postnatal life". Pregnant Wistar rats were given drinking water containing 50, 100 and 200 ppm CrVI (K 2 Cr 2 O 7 ) from gestational day 9-14 encompassing the period of organogenesis; the male progenies were tested at postnatal day 60. Neither fasting blood glucose nor oral glucose tolerance was altered in CrVI treated progeny. Nevertheless, western blot detection pointed out attenuated expression level of insulin receptor (IR), its downstream signaling molecules (IRS-1, pIRS-1 Tyr632 , Akt and pAkt Ser473 ) and organ specific glucose transporters (GLUT2 in liver and GLUT4 in gastrocnemius muscle), along with a significant increase in serum insulin level in male progenies exposed to CrVI. While 14 C-2-deoxy glucose uptake increased in the liver, the same decreased in the skeletal muscle whereas, 14 C-glucose oxidation recorded a consistent decrease in both tissues of CrVI exposed rats. These findings support our hypothesis and suggest that transient gestational exposure to excess CrVI may affect insulin signaling and glucose oxidation in the progeny, predictably rendering them vulnerable to insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.
Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg
2016-04-01
Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.
Flint Water Crisis Caused By Interrupted Corrosion Control: Investigating "Ground Zero" Home.
Pieper, Kelsey J; Tang, Min; Edwards, Marc A
2017-02-21
Flint, Michigan switched to the Flint River as a temporary drinking water source without implementing corrosion control in April 2014. Ten months later, water samples collected from a Flint residence revealed progressively rising water lead levels (104, 397, and 707 μg/L) coinciding with increasing water discoloration. An intensive follow-up monitoring event at this home investigated patterns of lead release by flow rate-all water samples contained lead above 15 μg/L and several exceeded hazardous waste levels (>5000 μg/L). Forensic evaluation of exhumed service line pipes compared to water contamination "fingerprint" analysis of trace elements, revealed that the immediate cause of the high water lead levels was the destabilization of lead-bearing corrosion rust layers that accumulated over decades on a galvanized iron pipe downstream of a lead pipe. After analysis of blood lead data revealed spiking lead in blood of Flint children in September 2015, a state of emergency was declared and public health interventions (distribution of filters and bottled water) likely averted an even worse exposure event due to rising water lead levels.
Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.
2005-01-01
Drainage from abandoned and inactive mines and from naturally mineralized areas in the San Juan Mountains of southern Colorado contributes metals to the upper Animas River near Silverton, Colorado. Tracer-injection studies and associated synoptic sampling were performed along two reaches of the upper Animas River to develop detailed profiles of stream discharge and to locate and quantify sources of metal loading. One tracer-injection study was performed in September 1997 on the Animas River reach from Howardsville to Silverton, and a second study was performed in August 1998 on the stream reach from Eureka to Howardsville. Drainage in the upper Animas River study reaches contributed aluminum, calcium, copper, iron, magnesium, manganese, sulfate, and zinc to the surface-water system in 1997 and 1998. Colloidal aluminum, dissolved copper, and dissolved zinc were attenuated through a braided stream reach downstream from Eureka. Instream dissolved copper concentrations were lower than the State of Colorado acute and chronic toxicity standards downstream from the braided reach to Silverton. Dissolved iron load and concentrations increased downstream from Howardsville and Arrastra Gulch, and colloidal iron remained constant at low concentrations downstream from Howardsville. Instream sulfate concentrations were lower than the U.S. Environmental Protection Agency's secondary drinking-water standard of 250 milligrams per liter throughout the two study reaches. Elevated zinc concentrations are the primary concern for aquatic life in the upper Animas River. In the 1998 Eureka to Howardsville study, instream dissolved zinc load increased downstream from the Forest Queen mine, the Kittimack tailings, and Howardsville. In the 1997 Howardsville to Silverton study, there were four primary areas where zinc load increased. First, was the increase downstream from Howardsville and abandoned mining sites downstream from the Cunningham Gulch confluence, which also was measured during the 1998 study. The second affected reach was downstream from Arrastra Gulch, where the increase in zinc load seems related to a series of right-bank inflows with low pH Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998By Suzanne S. Paschke, Briant A. Kimball, and Robert L. Runkeland elevated dissolved zinc concentrations. A third increase in zinc load occurred 6,100 meters downstream from the 1997 injection site and may have been from ground-water discharge with elevated zinc concentrations based on mass-loading graphs and the lack of visible inflow in the reach. A fourth but lesser dissolved zinc load increase occurred downstream from tailings near the Lackawanna Mill. Results of the tracer-injection studies and the effects of potential remediation were analyzed using the one- dimensional stream-transport computer code OTIS. Based on simulation results, instream zinc concentrations downstream from the Kittimack tailings to upstream from Arrastra Gulch would approach 0.16 milligram per liter (the upper limit of acute toxicity for some sensitive aquatic species) if zinc inflow concentrations were reduced by 75 percent in the stream reaches receiving inflow from the Forest Queen mine, the Kittimack tailings, and downstream from Howardsville. However, simulated zinc concentrations downstream from Arrastra Gulch were higher than approximately 0.30 milligram per liter due to numerous visible inflows and assumed ground-water discharge with elevated zinc concentrations in the lower part of the study reach. Remediation of discrete visible inflows seems a viable approach to reducing zinc inflow loads to the upper Animas River. Remediation downstream from Arrastra Gulch is more complicated because ground-water discharge with elevated zinc concentrations seems to contribute to the instream zinc load.
Effects of abandoned arsenic mine on water resources pollution in north west of iran.
Hajalilou, Behzad; Mosaferi, Mohammad; Khaleghi, Fazel; Jadidi, Sakineh; Vosugh, Bahram; Fatehifar, Esmail
2011-01-01
Pollution due to mining activities could have an important role in health and welfare of people who are living in mining area. When mining operation finishes, environ-ment of mining area can be influenced by related pollution e.g. heavy metals emission to wa-ter resources. The present study was aimed to evaluate Valiloo abandoned arsenic mine ef-fects on drinking water resources quality and possible health effects on the residents of min-ing area in the North West of Iran. Water samples and some limited composite wheat samples in downstream of min-ing area were collected. Water samples were analyzed for chemical parameters according to standard methods. For determination of arsenic in water samples, Graphite Furnace Atomic Absorption Spectrometric Method (GFAAS) and for wheat samples X - Ray Fluorescence (XRF) and Inductively Coupled Plasma Method (ICP) were used. Information about possible health effects due to exposure to arsenic was collected through interviews in studied villages and health center of Herris City. The highest concentrations of arsenic were measured near the mine (as high as 2000 µg/L in Valiloo mine opening water). With increasing distance from the mine, concentration was decreased. Arsenic was not detectable in any of wheat samples. Fortunately, no health effects had been reported between residents of studied area due to exposure to arsenic. Valiloo abandoned arsenic mine has caused release of arsenic to the around en-vironment of the mine, so arsenic concentration has been increased in the groundwater and also downstream river that requires proper measures to mitigate spread of arsenic.
Occurrence and distribution of selected metals in streams near Huntsville, Alabama
German, E.R.; Knight, Alfred L.
1973-01-01
Arsenic, cadmium, chromium, cobalt, lead, mercury, and zinc are widely distributed around Huntsville, Ala. However, concentrations of these metals in streamflow in the vicinity of the Huntsville municipal water intake during June, August, and September 1971 did not exceed the limits recommended for a public drinking water supply. The occurrence of these metals in general is related to man's activities. Information gained during this study suggests that cadmium and the other metals are associated with and transported with suspended sediment, bed material, and airborne dust particles. Lead and zinc were the most abundant of the selected metals in streamflow, bed material, and rainwater samples. The highest concentration of cadmium was detected downstream from an industrial park in the Flint River basin; rainwater samples also contained a relatively high level of cadmium.
NASA Astrophysics Data System (ADS)
Desmet, Nele; Seuntjens, Piet
2013-04-01
Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.
McMinn, William R; Yang, Qinli; Scholz, Miklas
2010-09-01
Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders. 2010 Elsevier Ltd. All rights reserved.
Regional medicine use in the Rhine basin and its implication on water quality
NASA Astrophysics Data System (ADS)
Hut, R. W.; Houtman, C. J.; van de Giesen, N. C.; de Jong, S. A. P.
2012-04-01
Do Germans use more painkillers than the French? Pharmaceuticals used in our Western society form an important group of contaminants found in the river Rhine. As this river is the drinking water source for millions of Europeans, methods to investigate relations between drug use and their penetration in the watercycle are of great importance. An analysis is presented relating medicine residue in the river Rhine to the number of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population was analyzed. Results show regional differences in drug use as well as implications for (down)stream water quality concerning contamination with pharmaceuticals.
Water-resources appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado
Crouch, T.M.; Cain, Doug; Abbott, P.O.; Penley, R.D.; Hurr, R.T.
1984-01-01
Water used for agriculture and stock and municipal supplies in the upper Arkansas River basin is derived mostly from the Arkansas River and its tributaries. The flow regime of the river has been altered by increased reservoir capacities and importation of 69,200 acre-feet per year from the Colorado River drainage through transmountain diversions. An estimated 10.2 million acre-feet of hydrologically recoverable water is present in the first 200 feet of basin-fill alluvium. Well yields of 300 gallons per minute have been reported for the Dakota-Purgatoire aquifer aquifer located east of Canon City. Water quality of ground- and surface-water resources are generally acceptable for agriculture and stock watering, but concentrations of iron, manganese, sulfate, pH, and hardness may exceed recommended drinking-water criteria during periods of river low flow. Concentrations of mercury, selenium, and select radiochemical constituents also were high in the Dakota-Purgatoire aquifer. Dissolved solids increased downstream and in local areas as a result of water use and in the Leadville area because of mine drainage. (USGS)
Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.K.; Wang, M.H.S.
1988-04-10
The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guidemore » to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.« less
Stone, Mandy L.; Garrett, Jessica D.; Poulton, Barry C.; Ziegler, Andrew C.
2016-07-18
The Equus Beds aquifer in south-central Kansas is aprimary water source for the city of Wichita. The Equus Beds aquifer storage and recovery (ASR) project was developed to help the city of Wichita meet increasing current (2016) and future water demands. The Equus Beds ASR project pumps water out of the Little Arkansas River during above-base flow conditions, treats it using drinking-water quality standards as a guideline, and recharges it into the Equus Beds aquifer for later use. Phase II of the Equus Beds ASR project currently (2016) includes a river intake facility and a surface-water treatment facility with a 30 million gallon per day capacity. Water diverted from the Little Arkansas River is delivered to an adjacent presedimentation basin for solids removal. Subsequently, waste from the surface-water treatment facility and the presedimentation basin is returned to the Little Arkansas River through a residuals return line. The U.S. Geological Survey, in cooperation with the city of Wichita, developed and implemented a hydrobiological monitoring program as part of the ASR project to characterize and quantify the effects of aquifer storage and recovery activities on the Little Arkansas River and Equus Beds aquifer water quality.Data were collected from 2 surface-water sites (one upstream and one downstream from the residuals return line), 1 residuals return line site, and 2 groundwater well sites (each having a shallow and deep part): the Little Arkansas River upstream from the ASR facility near Sedgwick, Kansas (upstream surface-water site 375350097262800), about 0.03 mile (mi) upstream from the residuals return line site; the Little Arkansas River near Sedgwick, Kans. (downstream surface-water site 07144100), about 1.68 mi downstream from the residuals return line site; discharge from the Little Arkansas River ASR facility near Sedgwick, Kansas (residuals return line site 375348097262800); 25S 01 W 07BCCC01 SMW–S11 near CW36 (MW–7 shallow groundwater well site 375327097285401); 25S01 W 07BCCC02 DMW–S10 near CW36 (MW–7 deep groundwater well site 375327097285402); 25S 01W 07BCCA01 SMW–S13 near CW36 (MW–8 shallow groundwater well site 375332097284801); and 25S 01W 07BCCA02 DMW–S14 near CW36 (MW–8 deep groundwater well site 375332097284802). The U.S. Geological Survey, in cooperation with the city of Wichita, assessed the effects of the ASR Phase II facility residuals return line discharges on stream quality of the Little Arkansas River by measuring continuous physicochemical properties and collecting discrete water-quality and sediment samples for about 2 years pre- (January 2011 through April 2013) and post-ASR (May 2013 through December 2014) Phase II facility operation upstream and downstream from the ASR Phase II facility. Additionally, habitat variables were quantified and macroinvertebrate and fish communities were sampled upstream and downstream from the ASR Phase II facility during the study period. To assess the effects of aquifer recharge on Equus Beds groundwater quality, continuous physicochemical properties were measured and discrete water-quality samples were collected before and during the onset of Phase II aquifer recharge in two (shallow and deep) groundwater wells.Little Arkansas River streamflow was about 10 times larger after the facility began operating because of greater rainfall. Residuals return line release volumes were a very minimal proportion (0.06 percent) of downstream streamflow volume during the months the ASR facility was operating. Upstream and downstream continuously measured water temperature and dissolved oxygen median differences were smaller post-ASR than pre-ASR. Turbidity generally was smaller at the downstream site throughout the study period and decreased at both sites after the ASR Phase II facility began discharging despite a median residuals return line turbidity that was about an order of magnitude larger than the median turbidity at the downstream site. Upstream and downstream continuously measured turbidity median differences were larger post-ASR than pre-ASR. Median post-ASR continuously measured nitrite plus nitrate and continuously computed total suspended solids and suspended-sediment concentrations were smaller than pre-ASR likely because of higher streamflows and dilution; whereas, median continuously computed dissolved and total organic carbon concentrations were larger likely because of higher streamflows and runoff conditions.None of the discretely measured water-quality constituents (dissolved and suspended solids, primary ions, suspended sediment, nutrients, carbon, trace elements, viral and bacterial indicators, and pesticides) in surface water were significantly different between the upstream and downstream sites after the ASR Phase II facility began discharging; however, pre-ASR calcium, sodium, hardness, manganese, and arsenate concentrations were significantly larger at the upstream site, which indicates that some water-quality conditions at the upstream and downstream sites were more similar post-ASR. Most of the primary constituents that make up dissolved solids decreased at both sites after the ASR Phase II facility began operation. Discretely collected total suspended solids concentrations were similar between the upstream and downstream sites before the facility began operating but were about 27 percent smaller at the downstream site after the facility began operating, despite the total suspended solids concentrations in the residuals return line being 15 times larger than the downstream site.Overall habitat scores were indicative of suboptimal conditions upstream and downstream from the ASR Phase II facility throughout the study period. Substrate fouling and sediment deposition mean scores indicated marginal conditions at the upstream and downstream sites during the study period, demonstrating that sediment deposition was evident pre- and post-ASR and no substantial changes in these habitat characteristics were noted after the ASR Phase II facility began discharging. Macroinvertebrate community composition (evaluated using functional feeding, behavioral, and tolerance metrics) generally was similar between sites during the study period. Fewer macroinvertebrate metrics were significant between the upstream and downstream sites post-ASR (6) than pre-ASR (14), which suggests that macroinvertebate communities were more similar after the ASR facility began discharging. Upstream-downstream comparisons in macroinvertebrate aquatic-life-support metrics had no significant differences for the post-ASR time period and neither site was fully supporting for any of the Kansas Department of Health and Environment aquatic-life-support metrics (Macroinvertebrate Biotic Index; Kansas Biotic Index with tolerances for nutrients and oxygen-demanding substances; Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness; and percentage of EPT species). Overall, using macroinvertebrate aquatic life-support criteria from the Kansas Department of Health and Environment, upstream and downstream sites were classified as partially supporting before and after the onset of ASR facility operations. Fish community trophic status and tolerance groups generally were similar among sites during the study period. Fish community Little Arkansas River Basin Index of Biotic Integrity scores at the upstream and downstream sites were indicative of fair-to-good conditions before the facility began operating and decreased to fair conditions after the facility began operating.Groundwater physicochemical changes concurrent with the beginning of recharge operations at the Sedgwick basin were more pronounced in shallow groundwater. No constituent concentrations in the pre-recharge period in comparison to the post-recharge period increased to concentrations exceeding drinking water regulations; however, nitrate decreased significantly from a pre-recharge exceedance of the U.S. Environmental Protection Agency maximum contaminant level to a post recharge nonexceedance. Shallow groundwater chemical concentrations or rates of detection increased after artificial recharge began for the ions potassium, chloride, and fluoride; phosphorus and organic carbon species; trace elements barium, manganese, nickel, arsenate, arsenic, and boron; agricultural pesticides atrazine, metolachlor, metribuzin, and simazine; organic disinfection byproducts bromodichloromethane and trichloromethane; and gross beta levels. Additionally, water temperature, and pH were larger after recharge began; and total solids and slime-forming bacteria concentrations and densities were smaller. Total solids, nitrate, and selenium significantly decreased; and potassium, chloride, nickel, arsenic, fluoride, phosphorus and carbon species, and gross beta levels significantly increased in shallow groundwater after artificial recharge. Results of biological activity reaction tests indicated that water quality microbiology was different before and after artificial recharge began; at times, these differences may lead to changes in dominant bacterial populations that, in turn, may lead to formation and expansion in populations that may cause bioplugging and other unwanted effects. Calcite, iron (II) hydroxide, hydroxyapatite, and similar minerals, had shifts in saturation indices that generally were from undersaturation toward equilibrium and, in some cases, toward oversaturation. These shifts toward neutral saturation indices might suggest reduced weathering of the minerals present in the Equus Beds aquifer. Chemical weathering in the shallow parts of the aquifer may be accelerated because of the increased water temperatures and the system is more vulnerable to clogged pores and mineral dissolution as the equilibrium state is affected by recharge and withdrawal. When oversaturation is indicated for iron minerals, plugging of aquifer materials may happen.
König, Maria; Escher, Beate I; Neale, Peta A; Krauss, Martin; Hilscherová, Klára; Novák, Jiří; Teodorović, Ivana; Schulze, Tobias; Seidensticker, Sven; Kamal Hashmi, Muhammad Arslan; Ahlheim, Jörg; Brack, Werner
2017-01-01
Complex mixtures of micropollutants, including pesticides, pharmaceuticals and industrial chemicals emitted by wastewater effluents to European rivers may compromise the quality of these water resources and may pose a risk to ecosystem health and abstraction of drinking water. In the present study, an integrated analytical and bioanalytical approach was applied to investigate the impact of untreated wastewater effluents from the city of Novi Sad, Serbia, into the River Danube. The study was based on three on-site large volume solid phase extracted water samples collected upstream and downstream of the untreated wastewater discharge. Chemical screening with liquid chromatography high resolution mass spectrometry (LC-HRMS) was applied together with a battery of in vitro cell-based bioassays covering important steps of the cellular toxicity pathway to evaluate effects on the activation of metabolism (arylhydrocarbon receptor AhR, peroxisome proliferator activated receptor gamma PPARγ), specific modes of action (estrogen receptor ERα, androgen receptor AR) and adaptive stress responses (oxidative stress, inflammation). Increased effects, significantly changed contamination patterns and higher chemical concentrations were observed downstream of the wastewater discharge. A mass balance approach showed that enhanced endocrine disruption was in good agreement with concentrations of detected hormones, while only a smaller fraction of the effects on xenobiotic metabolism (<1%) and adaptive stress responses (0-12%) could be explained by the detected chemicals. The chemical and effects patterns observed upstream of the discharge point were fairly re-established at about 7 km downstream, demonstrating the enormous dilution capacity of this large river. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA
Barringer, J.L.; Riskin, M.L.; Szabo, Z.; Reilly, P.A.; Rosman, R.; Bonin, J.L.; Fischer, J.M.; Heckathorn, H.A.
2010-01-01
The upper Great Egg Harbor River watershed in New Jersey's Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006-2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river's flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils. ?? 2010 US Government.
New England's Drinking Water | Drinking Water in New ...
2017-07-06
Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.
Sharma, Brij Mohan; Bharat, Girija K; Tayal, Shresth; Larssen, Thorjørn; Bečanová, Jitka; Karásková, Pavlína; Whitehead, Paul G; Futter, Martyn N; Butterfield, Dan; Nizzetto, Luca
2016-01-01
Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4-4.7 ng L(-1)) and PFBS (
Njuguna, Samwel Maina; Yan, Xue; Gituru, Robert Wahiti; Wang, Qingfeng; Wang, Jun
2017-08-16
Nairobi River tributaries are the main source of the Athi River. The Athi River basin is the fourth largest and important drainage system in Kenya covering 650 km and with a drainage area of 70,000 km 2 . Its water is used downstream by about four million people not only for irrigation but also for domestic purposes. However, its industrial, raw sewer, and agricultural pollution is alarming. In order to understand distribution and concentration of heavy metals and nutrients in the water of Nairobi River, 28 water samples were collected in the rainy season (October) of 2015 and dry season (June) of 2016. Cd, Cu, Cr, Zn, As, Pb, Fe, Ni, Mn, NO 3 - , and TP were analyzed. Only Cr, Pb, Fe, and Mn had concentrations exceeding the WHO permissible limit for drinking water. Out of the 28 sites examined in the study, one site had Pb exceeding the WHO recommended level. Similarly, three sites exceeded the same level for Cr. Only three sites were within the WHO permissible limits for drinking water for Mn while just four sites were within USEPA limit for Fe. Industrial effluent, domestic sewerage, agricultural activities, and solid waste were the main sources of pollution. Significant spatial variation of both heavy metals and nutrients concentration was observed and emanated from point source pollution. Eleven out of 31 macrophytes species that were identified along the river and its tributaries are effective heavy metal and nutrient bioaccumulators and may be used in phytoremediation.
Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert
2012-01-01
Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compounds detected and detected at the highest concentrations measured in the reconnaissance sampling. Nineteen contaminants of emerging concern were detected in streamwater samples collected quarterly from 2007 through 2009 at 27 stream sites within 5 miles of a drinking-water intake. The number of contaminants and the concentrations detected at the stream sites within 5 miles of drinking-water intakes were generally very low (concentrations less than 50 ng/L), much lower than those at sites downstream from a wastewater-effluent discharge. The most commonly detected compounds and maximum concentrations were caffeine, 517 ng/L; carbamazepine, 95 ng/L; sulfamethoxazole, 146 ng/L; and estrone, 3.15 ng/L. The concentrations and frequencies of detection of some of the contaminants of emerging concern appear to vary by season, which could be explained by compound use, flow regime, or differences in degradation rates. Concentrations of some contaminants were associated with lower flows as a result of decreased in-stream dilution of wastewater effluents or other contamination sources. Twenty-two contaminants of emerging concern were detected once each in streamwater samples collected in 2007 and 2008 from 16 fish-health stream sites located statewide. The highest concentrations were for the OWCs, including flame retardants tri(2-butoxyethyl)phosphate (604 ng/L) and tri(2-chloroethyl)phosphate (272 ng/L) and the fragrance isoquinoline (330 ng/L). Far fewer numbers of contaminants of emerging concern were detected at the fish-health sites than at the wastewater-effluent-discharge sites. Most of the fish-health sites were not located directly downstream from a wastewater-effluent discharge, but there were multiple wastewater-effluent discharges in the drainage basins upstream from the sampling sites. No distinct pattern of contaminant occurrence could be discerned for the fish-health stream sites
Ahmad, Kabir; Azizullah, Azizullah; Shama, Shama; Khattak, Muhammad Nasir Khan
2014-11-01
The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn > Cu ≈ Pb > Ni ≈ Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu > Zn > Ni > Pb > Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04-1.19, 0.03-0.12, and 0.01-0.09 μg/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future.
Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark
2014-01-01
Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water.
Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark
2014-01-01
Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water. PMID:24218411
The Use of Permeable Barriers to Inhibit Virus Migration in the Subsurface
NASA Astrophysics Data System (ADS)
Schulze-Makuch, D.; Guan, H.; Totten, J.; Couroux, E.; Endley, S.; Hielscher, F.; Emmert, S.; Pillai, S. D.
2001-12-01
Ground water is susceptible to fecal contamination due to leaking sewer lines, faulty septic tanks and careless disposal of septic wastes; a problem especially common in low-income areas with no public sewage system. Under these conditions, viral and bacterial infection rates have been shown to increase. However, potential for viral infections can be reduced if the viruses are prevented from reaching the drinking water wells. Laboratory and field studies were conducted to determine whether iron-coated sand (ICS), pure zeolite (PZ) and surfactant modified zeolites (SMZ) could be used to retard virus migration in soils. In the laboratory, using a model aquifer and MS2 bacteriophage (as an enteric virus indicator) we showed that ICS and especially SMZ was able to remove more than 90 % of the injected viruses under various conditions. The removal efficiency of viruses was also tested under field conditions using septic effluent and a constructed submerged wetland. The performance of the wetland was greatly enhanced when using SMZ as filter pack for a pumping well that withdrew water at a downstream location from the wetland. Our results suggest that submerged wetlands, particularly if combined with a pumping well that has a filter pack consisting of surfactant modified zeolite (rather than the usual sand and gravel pack), are efficient in removing viruses from septic effluent. The permeable barrier materials tested here are economical and could significantly reduce the potential for viral contamination of drinking water wells. >http://www.geo.utep.edu/pub/dirksm/geobiowater/geobiowater.htm a>
30 CFR 71.603 - Drinking water; dispensing requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...
30 CFR 71.603 - Drinking water; dispensing requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...
76 FR 38158 - Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... water supplies. The Council will also receive updates about several on-going drinking water program... ENVIRONMENTAL PROTECTION AGENCY [FRL-9425-8] Meeting of the National Drinking Water Advisory... meeting of the National Drinking Water Advisory Council (NDWAC), established under the Safe Drinking Water...
30 CFR 71.603 - Drinking water; dispensing requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...
30 CFR 71.603 - Drinking water; dispensing requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...
30 CFR 71.603 - Drinking water; dispensing requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...
Lead and Drinking Water from Private Wells
... Drinking Water Policy & Recommendations History of Drinking Water Treatment Drinking Water FAQ Fast Facts Healthy Water Sites Healthy Water ... if needed. You may also wish to consider water treatment methods such as reverse osmosis, distillation, and carbon ...
Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-01-01
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781
Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-07-13
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.
Smith, Kirk P.
2017-09-12
The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154.5, and 2.8 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Reservoir Basin (22.2, 128, 4.3, 77.1, and 2.5, respectively). Differences between tributary samples for concentrations of Cl and Na were related to the percentage of developed land and constructed impervious area in the drinking-water source area. Median concentrations of SO4 in samples collected from the tributaries in the Cambridge Reservoir Basin (10.7 mg/L) were lower than those for the Stony Brook Reservoir Basin (18.0 mg/L).Concentrations of dissolved Cl and Na in samples and those concentrations estimated from continuous records of specific conductance (particularly during base flow) often were greater than the U.S. Environmental Protection Agency (EPA) secondary drinking-water standard for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Massachusetts Department of Environmental Protection drinking-water guideline for Na (20 mg/L). Concentrations of TP (range from 0.008 to 0.69 mg/L in all subbasins) in tributary samples did not differ substantially between the Cambridge Reservoir and Stony Brook Reservoir Basins. About one-half of the concentrations of TP in samples collected during water years 2013–15 exceeded the EPA proposed reference concentration of 0.024 mg/L.For most tributaries, about 70 percent of the annual loads of Ca, Cl, Mg, Na, and SO4 were associated with base flow. Concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflow and tend to increase during the summer when streamflow is low. In contrast, between 57 and 92 percent of the annual load for TP was transported during stormflows.Mean annual yields of Ca, Cl, Mg, Na, and SO4 in the drinking-water source area were 13, 75, 2.6, 40, and 6.9 metric tons per square kilometer, respectively, for water years 2009–15. The mean annual yield of TP in the drinking-water source area for water years 2013–15 was 0.012 metric tons per square kilometer. Yields for major ions and TP were highest in tributary subbasins adjacent to Interstate 95.Temporal trends in mean annual concentrations for Cl and Na were not significant for water years 1998‒2015 (period of record by the USGS) for the outlet of the Cambridge Reservoir and for the main stem of Stony Brook downstream from the reservoir. Median values of base-flow concentrations of TP at three stations were higher for samples collected during base-flow conditions during water years 2005–7 than for samples collected during water years 2013–15. However, the results were not significant for statistical tests between concentrations in samples collected during storms for the same periods, indicating that the quality of stormwater remains similar.
Drinking Water Quality Status and Contamination in Pakistan
Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz
2017-01-01
Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130
Drinking Water Quality Status and Contamination in Pakistan.
Daud, M K; Nafees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz; Zhu, Shui Jin
2017-01-01
Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.
Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea.
Lee, Byung-Tae; Ranville, James F; Wildeman, Thomas R; Jang, Min; Shim, Yon Sik; Ji, Won Hyun; Park, Hyun Sung; Lee, Hyun Ju
2012-01-01
An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.
PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA).
Oliaei, Fardin; Kriens, Don; Weber, Roland; Watson, Alan
2013-04-01
Perfluorooctane sulfonate (PFOS) and PFOS-related substances have been listed as persistent organic pollutants in the Stockholm Convention. From August 2012, Parties to the Convention needed to address the use, storage, and disposal of PFOS-including production sites and sites where PFOS wastes have been deposited-in their national implementation plans. The paper describes the pollution in Minnesota (USA) caused by the 3M Company at one of the largest per/polyfluorinated chemical (PFC) production facilities. From early 1950s until the end of 2002, when 3M terminated PFOS and perfluorooctanoic acid (PFOA) production, PFOS, PFOA, and other PFC production wastes were disposed around the plant and in local disposal sites. Discharges from the site and releases from deposits caused widespread contamination of ground and surface waters including local drinking water wells. Fish in the river downstream were contaminated with PFOS to levels that led to fish consumption advisories. Human exposures resulted from ingesting contaminated drinking water, requiring installation of water treatment facilities and alternate water supplies. The critical evaluation of the assessments done revealed a range of gaps in particular of human exposure where relevant exposure pathways including the entire exposure via food have not been taken into consideration. Currently, the exposure assessment of vulnerable groups such as children or Hmong minorities is inadequate and needs to be improved/validated by epidemiological studies. The assessment methodology described for this site may serve-with highlighted improvements-as a model for assessment of other PFOS/PFC production sites in the Stockholm Convention implementation.
Handbook for the Institutional and Financial Implementation of Water Utilities.
1984-05-01
water . From a public health standpoint, water is necessary for drinking and sanitation. While public drinking water use aver- ages approximately 5 pints a... water . Domestic water includes that water furnished to homes, hotels, apartments, etc., for sanitary, drinking , washing, and other purposes. This use...with establishing Primary Drinking Water Standards under the Safe Drinking Water Act of 1974 (Public Law 93-523) for all public
Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise
2014-01-01
Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (P<0.001). Among participants with drinking water arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, P<0.0001). Given similar levels of arsenic exposure from drinking water, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.
Zhang, L; Chen, C
1997-09-01
According to the data obtained from the "National Survey on Drinking Water Quality and Waterborne Diseases", the geographic distribution and exposure population of high arsenic drinking water were reported. From the data of more than 28,800 water samples, we found 9.02 million people drinking the water with As concentration of 0.030-0.049 mg/L, 3.34 million people having their water of 0.050-0.099 mg/L and 2.29 million people having water of > 0.1 mg/L. A total of 14.6 million people, about 1.5% of the surveyed population was exposed to As (> 0.030 mg/L) from drinking water. 80% of high-As-drinking water was groundwater. The situation of As in drinking water in provinces, autonomous regions and municipalities were listed. The locations of sampling site where water As exceeded the national standard for drinking water were illustrated.
Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar
2016-02-09
Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.
Ammonia pollution characteristics of centralized drinking water sources in China.
Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming
2012-01-01
The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.
NASA Astrophysics Data System (ADS)
Toth, Elena
2013-04-01
The Ridracoli reservoir is the main drinking water supply reservoir serving the whole Romagna region, in Northern Italy. Such water supply system has a crucial role in an area where the different characteristics of the communities to be served, their size, the mass tourism and the presence of food industries highlight strong differences in drinking water needs. Its operation allows high quality drinking water supply to a million resident customers, plus a few millions of tourists during the summer of people and it reduces the need for water pumping from underground sources, and this is particularly important since the coastal area is subject also to subsidence and saline ingression into aquifers. The system experienced water shortage conditions thrice in the last decade, in 2002, in 2007 and in autumn-winter 2011-2012, when the reservoir water storage fell below the attention and the pre-emergency thresholds, thus prompting the implementation of a set of mitigation measures, including limitations to the population's water consumption. The reservoir receives water not only from the headwater catchment, closed at the dam, but also from four diversion watersheds, linked to the reservoir through an underground water channel. Such withdrawals are currently undersized, abstracting only a part of the streamflow exceeding the established minimum flows, due to the design of the water intake structures; it is therefore crucial understanding how the reservoir water availability might be increased through a fuller exploitation of the existing diversion catchment area. Since one of the four diversion catchment is currently ungauged (at least at the fine temporal scale needed for keeping into account the minimum flow requirements downstream of the intakes), the study first presents the set up and parameterisation of a continuous rainfall-runoff model at hourly time-step for the three gauged diversion watersheds and for the headwater catchment: a regional parameterisation approach is then applied for modelling the streamflow originated in the fourth, ungauged, diversion watershed. Finally, the potential reservoir water availability is estimated, hypothesising to take from the diversion catchments all the streamflow exceeding the minimum flow requirements. The results indicate that modifying the water intake structures might allow a consistent increase in the storage volumes in the reservoir during the water scarcity periods: the water available to the reservoir would in fact - on average - increase of around the 13% of the abstracted annual volume.
Small Drinking Water System Initiative | Drinking Water in New ...
2017-07-06
Reliable, safe, high quality drinking water is essential to sustaining our communities. Approximately 90% of New England's drinking water systems - about 10,000 systems - are small and most use ground water sources.
Basic Information about Lead in Drinking Water
... Water and Drinking Water Contact Us Share Basic Information about Lead in Drinking Water Have a question ... Related Information from Other Federal Government Agencies General Information about Lead in Drinking Water How Lead Gets ...
Secondary Drinking Water Standards: Guidance for Nuisance Chemicals
Learn about Secondary Drinking Water Regulations for nuisance chemicals contained in some drinking water. They are established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations.
White Sands Missile Range 2011 Drinking Water Quality Report
2012-01-01
This Annual Drinking Water Quality Report, or the Consumer Confi dence Report, is required by the Safe Drinking Water Act (SDWA). The SDWA ensures...public drinking water systems meet national standards for the protection of your health. This report provides details about where your water comes...NMED). WSMR tap water meets all EPA and NMED drinking water standards. What is This Water Quality Report? Este informe contiene informacion importante
New England Drinking Water Program | US EPA
2017-07-06
Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.
NASA Astrophysics Data System (ADS)
Wahid, Nabsiah Abdul; Cheng, Patrick Tan Foon; Abustan, Ismail; Nee, Goh Yen
2017-10-01
Tap water is one of the many sources of water that the public as consumers can choose for drinking. This study hypothesized that perceived quality, convenience, price and environmental attitude would determine consumers's choice of drinking water following the Attribution Theory as the underlying model. A survey was carried out on Malaysia's public at large. From 301 usable data, the PLS analysis revealed that only perceived quality, convenience and price attributed towards the public's choice of drinking water while attitude was not significant. The findings are beneficial for the water sector industry, particularly for drinking water operators, state governments, and alternative drinking water manufacturers like bottled water companies. The ability to identify factors for why consumers in the marketplace choose the source of their drinking water would enable the operators to plan and strategize tactics that can disseminate accurate knowledge about the product that can motivate marketability of drinking water in Malaysia.
REGULATED CONTAMINANTS IN DRINKING WATER
Safe drinking water is critical to protecting human health. More than 260 million Americans rely on the safety of tap water provided by water systems that comply with national drinking water standards. EPA's strategy for ensuring safe drinking water includes four key elements, ...
Baum, Rachel; Amjad, Urooj; Luh, Jeanne; Bartram, Jamie
2015-11-01
National and sub-national governments develop and enforce regulations to ensure the delivery of safe drinking water in the United States (US) and countries worldwide. However, periodic contamination events, waterborne endemic illness and outbreaks of waterborne disease still occur, illustrating that delivery of safe drinking water is not guaranteed. In this study, we examined the potential added value of a preventive risk management approach, specifically, water safety plans (WSPs), in the US in order to improve drinking water quality. We undertook a comparative analysis between US drinking water regulations and WSP steps to analyze the similarities and differences between them, and identify how WSPs might complement drinking water regulations in the US. Findings show that US drinking water regulations and WSP steps were aligned in the areas of describing the water supply system and defining monitoring and controls. However, gaps exist between US drinking water regulations and WSPs in the areas of team procedures and training, internal risk assessment and prioritization, and management procedures and plans. The study contributes to understanding both required and voluntary drinking water management practices in the US and how implementing water safety plans could benefit water systems to improve drinking water quality and human health. Copyright © 2015 Elsevier GmbH. All rights reserved.
World Health Organization discontinues its drinking-water guideline for manganese.
Frisbie, Seth H; Mitchell, Erika J; Dustin, Hannah; Maynard, Donald M; Sarkar, Bibudhendra
2012-06-01
The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because "this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value." In this commentary, we review the WHO guideline for Mn in drinking water--from its introduction in 1958 through its discontinuation in 2011. For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.
2012-01-01
Background In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. Methods This repeated cross-sectional study draws on General Household Surveys from 2002–2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002–2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. Results The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000–02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. Conclusion This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period. PMID:22834485
Wright, Jim A; Yang, Hong; Rivett, Ulrike; Gundry, Stephen W
2012-07-27
In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. This repeated cross-sectional study draws on General Household Surveys from 2002-2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002-2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000-02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period.
NASA Astrophysics Data System (ADS)
Lu, J.; Yuan, F.
2017-08-01
Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.
Hot Topics/New Initiatives | Drinking Water in New England ...
2017-07-06
Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.
How important are peatlands globally in providing drinking water resources?
NASA Astrophysics Data System (ADS)
Xu, Jiren; Morris, Paul; Holden, Joseph
2017-04-01
The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource provision in hotspot PPI and PRI regions.
Drinking water quality management: a holistic approach.
Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P
2003-01-01
A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.
Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.
Wang, L; Wang, B
2000-01-01
The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.
NASA Astrophysics Data System (ADS)
Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe
2010-05-01
In terms of the European Water Framework Directive (WFD), post mining lakes are artificial water bodies (AWB). The sustainable integration of post mining lakes in the groundwater and surface water landscape and their consideration in river basin management plans have to be linked with various (geo)hydrological, hydro(geo)chemical, technological and socioeconomic issues. The Lower Lusatian lignite mining district in eastern Germany is part of the major river basins of river Elbe and river Oder. Regionally, the mining area is situated in the sub-basins of river Spree and Schwarze Elster. After the cessation of mining activities and thereby of the artificially created groundwater drawdown in numerous mining pits, a large number of post mining lakes are evolving as consequence of natural groundwater table recovery. The lakes' designated uses vary from water reservoirs to landscape, recreation or fish farming lakes. Groundwater raise is not only substantial for the lake filling, but also for the area rehabilitation and a largely self regulated water balance in post mining landscapes. Since the groundwater flow through soil and dump sites being affected by the former mining activities, groundwater experiences various changes in its hydrochemical properties as e.g. mineralization and acidification. Consequently, downstream located groundwater fed running and standing water bodies will be affected too. Respective the European Water Framework Directive, artificial post mining lakes are not allowed to cause significant adverse impacts on the good ecological status/potential of downstream groundwater and surface water bodies. The high sulphate concentrations of groundwater fed mining lakes which reach partly more than 1,000 mg/l are e.g. damaging concrete constructures in downstream water bodies thereby representing threats for hydraulic facilities and drinking water supply. Due to small amounts of nutrients, the lakes are characterised by oligo¬trophic to slightly mesotrophic conditions. The aquatic flora and fauna are limited to a few well adapted species. Therefore, the issue of hydrochemical constitution of the lakes' waters becomes more and more relevant. The prediction of water quality development in post mining lakes is a key requirement to regulate and manage the later hydrochemical conditions. Initially, this prediction was made by individual case studies for single lakes. By means of an iterative research process during the last years, hydrochemical lake models were developed as prediction tools, which allow a complex processing of interconnected post mining lakes and their integration in natural hydrography with respect to quantitative and qualitative evaluation. To counteract the poor water quality of mining lakes, flooding by surface water from neighbouring river basins, e.g. the river Neisse, shall support a quicker and thereby hydrochemically less damaging lake filling. However, this external flooding is only feasible under conditions of high runoff and therefore only as intermitted practice applicable. Additionally, technological measures of water treatment have to be applied to achieve the required effluent quality and to ensure the designated use. Regrettably, these technologies aren't commercially standard up to now and are not sustainable, while flooding or provides a huge amount itself of positive potential for hydrochemical stabilization. The river basin management of the rivers Spree and Schwarze Elster is attended by a common working group of the Federal States of Brandenburg and Berlin as well as the Free State of Saxony. The quantitative distribution of the regionally available water considers the potential use for drinking water supply, process water, …, and the flooding of open-pits. However, due to the formulated rank order, the flooding of the numerous mining open pits in Lusatia is on the last position. To guarantee a reliable flooding and a continuous water supply of the post mining lakes, additional water resources have to exploited. Additionally, the prospected climate induced changes in water supply have to be taken into account for a sustainable integrated water resources management in the Lusatian post-mining district.
Your Drinking Water Source | Drinking Water in New England ...
2017-07-06
Local communities are responsible for protecting their community's drinking water, and as a citizen, you can directly affect the success or failure of your community's drinking water protection efforts.
Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.
Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie
2015-04-01
To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan
2017-08-01
Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.
Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan
2017-08-01
Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.
Hybrid process of BAC and sMBR for treating polluted raw water.
Tian, Jia-yu; Chen, Zhong-lin; Yang, Yan-ling; Liang, Heng; Nan, Jun; Wang, Zhao-zhi; Li, Gui-bai
2009-12-01
The hybrid process of biological activated carbon (BAC) and submerged membrane bioreactor (sMBR) was evaluated for the drinking water treatment from polluted raw water, with the respective hydraulic retention time of 0.5 h. The results confirmed the synergetic effects between the BAC and the subsequent sMBR. A moderate amount of ammonium (54.5%) was decreased in the BAC; while the total removal efficiency was increased to 89.8% after the further treatment by the sMBR. In the hybrid process, adsorption of granular activated carbon (in BAC), two stages of biodegradation (in BAC and sMBR), and separation by the membrane (in sMBR) jointly contributed to the removal of organic matter. As a result, the hybrid process managed to eliminate influent DOC, UV(254), COD(Mn), TOC, BDOC and AOC by 26.3%, 29.9%, 22.8%, 27.8%, 57.2% and 49.3%, respectively. Due to the pre-treatment effect of BAC, the membrane fouling in the downstream sMBR was substantially mitigated.
Protecting health from metal exposures in drinking water.
Armour, Margaret-Ann
2016-03-01
Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.
Source Water Protection Basics
Defines drinking water sources (source water), identifies drinking water sources, and describes source water assessments and protection, roles of government and organizations in drinking water source protection
NASA Astrophysics Data System (ADS)
Xanke, Julian; Liesch, Tanja; Goeppert, Nadine; Klinger, Jochen; Gassen, Niklas; Goldscheider, Nico
2017-09-01
Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.
Tribal Set-Aside Program of the Drinking Water Infrastructure Grant
The Safe Drinking Water Act (SWDA), as amended in 1996, established the Drinking Water State Revolving Fund (DWSRF) to make funds available to drinking water systems to finance infrastructure improvements.
Ye, Bixiong; E, Xueli; Zhang, Lan
2015-01-01
To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.
George E. Dissmeyer
1999-01-01
The Importance of Safe Public Drinking Water The United States Congress justified passing the Safe Drinking Water Amendments (SDWA) of 1996 (P. L. 104-182) by stating "safe drinking water is essential to the protection of public health".For 50 years the basic axiom for public health protection has been safe drinking water...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.602 - Drinking water; distribution.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...
30 CFR 71.602 - Drinking water; distribution.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.602 - Drinking water; distribution.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...
30 CFR 71.602 - Drinking water; distribution.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...
30 CFR 71.602 - Drinking water; distribution.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
75 FR 48329 - Tribal Drinking Water Operator Certification Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9186-8] Tribal Drinking Water Operator Certification Program... details of EPA's voluntary Tribal Drinking Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be...
Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.
2012-01-01
The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.
Vulnerability of drinking water supplies to engineered nanoparticles.
Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo
2016-06-01
The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP contamination. In karstic aquifers, however, there is an increased probability that if any ENPs enter the groundwater system they will reach the extraction point of a drinking water treatment plant (DWTP). The ability to remove ENPs during water treatment depends on the specific design of the treatment process. In conventional DWTPs with no flocculation step a proportion of ENPs, if present in the raw water, may reach the final drinking water. The use of ultrafiltration techniques improves drinking water safety with respect to ENP contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Human Health Benchmarks for Pesticides
Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source water for drinking water do not necessarily indicate a health risk. The EPA has developed human health benchmarks for 363 pesticides to enable our partners to better determine whether the detection of a pesticide in drinking water or source waters for drinking water may indicate a potential health risk and to help them prioritize monitoring efforts.The table below includes benchmarks for acute (one-day) and chronic (lifetime) exposures for the most sensitive populations from exposure to pesticides that may be found in surface or ground water sources of drinking water. The table also includes benchmarks for 40 pesticides in drinking water that have the potential for cancer risk. The HHBP table includes pesticide active ingredients for which Health Advisories or enforceable National Primary Drinking Water Regulations (e.g., maximum contaminant levels) have not been developed.
World Health Organization Discontinues Its Drinking-Water Guideline for Manganese
Frisbie, Seth H.; Mitchell, Erika J.; Dustin, Hannah; Maynard, Donald M.
2012-01-01
Background: The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because “this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value.” Objective: In this commentary, we review the WHO guideline for Mn in drinking water—from its introduction in 1958 through its discontinuation in 2011. Methods: For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Discussion: Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. Conclusions: The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn. PMID:22334150
[Knowledge, attitude and practice on drinking water of primary and secondary students in Shenzhen].
Liu, Jiaxin; Hu, Xiaoqi; Zhang, Qian; Du, Songming; Pan, Hui; Dai, Xingbi; Ma, Guansheng
2014-05-01
To investigate the status on drinking water related knowledge, attitude and practice of primary and secondary students in Shenzhen. All 832 primary and secondary students from three schools in Shenzhen were selected by using multi-stage random sampling method. The information of drinking water related knowledge, time of drinking water and the type of drink chose in different situations were collected by questionnaires. 87.3% of students considered plain water being the healthiest drink in daily life, and the percent in girls (90.6%) was significantly higher than that in boys (84.4% ) (chi2 = 7.13, P = 0.0089). The awareness percent of the harm of dehydration was 84.5%. The percent in high school students (96.4%) was significantly higher than that in primary (73.9%) and middle school students (94.2%) (chi2 = 73.77, P < 0.0001). 63.7% of students considered that the healthiest time of drinking water was in the morning with an empty stomach, and 46.3% chose when they felt thirsty. However, 63.7% drank water when they felt thirsty, and 50.6% drank water in the morning with an empty stomach. The percent of drinking plain water at school was the highest (83.4%), followed by at home (64.1%) and in public (26.2%). There were 45.2% and 53.3% of students, respectively, choosing sugary drinks as their favorite drink and most frequently drinking in public places. Primary and secondary students in Shenzhen have a good awareness of drinking water, which is inconsistent with their practice. Meanwhile, a considerable proportion of students towards choosing drinks have many misconceptions. The education of healthy drinking water should be strengthened.
[Analysis on current status of drinking water quality in rural areas of China].
Zhang, L; Chen, Y; Chen, C; Wang, H; Yan, H Z; Zhao, Y C
1997-01-01
An investigation on drinking water quality in rural areas of 180 counties in 26 provinces, municipalities and autonomous regions of China was carried out. The population surveyed was 89.39 million. 69.6% of which was supplied with ground water. Central water supply systems served 47.1% of population. Quality of drinking water was graded according to the "Guidelines for Implementation of the 'Sanitary Standard for Drinking Water' in Rural Areas". The rate of population supplied with unqualified drinking water was 42.7%. The bacteriological indices of drinking water exceeded the standard seriously. Organic pollution occurred extensively. Some regions supplied with water of high concentration of fluoride.
Water drinking as a treatment for orthostatic syndromes
NASA Technical Reports Server (NTRS)
Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens
2002-01-01
PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.
Gao, Junhong; Wan, Hong; Kong, Wei; Yue, Hong
2012-01-01
To provide a suitable vehicle-mounted installation to solve the problem of drinking water in the wild. The vehicle-mounted drinking water installation, made up of pre-treatment unit, purification unit, box and VECU, was used to storage, transport and purify water in the wild. The effect of purification was detected by assembling the installation in the wild and observing the change of water turbidity, TDS, the number of total bacteria and coliform bacteria before and after the treatment of water sources. The wild water sources, such as river water, rainwater, well water and spring water could be purified, and the quality of the treated water could meet the requirement of Drinking Water Quality Standard of CJ94-2005. The vehicle-mounted drinking water installation is suitable for purifying water sources in the wild for drinking use.
Fluoride and bacterial content of bottled drinking water versus municipal tap water.
Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V
2010-01-01
Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.
THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER
A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...
Barrett, Nicole; Colón-Ramos, Uriyoán; Elkins, Allison; Rivera, Ivonne; Evans, W Douglas; Edberg, Mark
2017-06-01
Latinos consume more sugary drinks and less water than other demographic groups. Our objective was to understand beverage choice motivations and test promotional concepts that can encourage Central American Latino urban youth to drink more water. Two rounds of focus group discussions were conducted (n = 10 focus groups, 61 participants, 6-18 years old). Data were transcribed verbatim and analyzed using inductive and deductive coding approaches. Youth motivations for drinking water were shaped by level of thirst, weather, energy, and perceptions of health benefits. Youth were discouraged from drinking water due to its taste and perceptions of the safety and cleanliness of tap water. Youth beverage preference depended on what their friends were drinking. Availability of water versus other beverages at home and other settings influenced their choice. Promotional materials that included mixed language, informative messages about the benefits of drinking water, and celebrities or athletes who were active, energized, and drinking water were preferred. A promotional campaign to increase water consumption among these Latino youth should include bicultural messages to underscore the power of water to quench true thirst, highlight the health benefits of drinking water, and address the safety of tap water.
Brown, Clive M; Dulloo, Abdul G; Montani, Jean-Pierre
2006-09-01
A recent study reported that drinking 500 ml of water causes a 30% increase in metabolic rate. If verified, this previously unrecognized thermogenic property of water would have important implications for weight-loss programs. However, the concept of a thermogenic effect of water is controversial because other studies have found that water drinking does not increase energy expenditure. The objective of the study was to test whether water drinking has a thermogenic effect in humans and, furthermore, determine whether the response is influenced by osmolality or by water temperature. This was a randomized, crossover design. The study was conducted at a university physiology laboratory. Participants included healthy young volunteer subjects. Intervention included drinking 7.5 ml/kg body weight (approximately 518 ml) of distilled water or 0.9% saline or 7% sucrose solution (positive control) on different days. In a subgroup of subjects, responses to cold water (3 C) were tested. Resting energy expenditure, assessed by indirect calorimetry for 30 min before and 90 min after the drinks, was measured. Energy expenditure did not increase after drinking either distilled water (P = 0.34) or 0.9% saline (P = 0.33). Drinking the 7% sucrose solution significantly increased energy expenditure (P < 0.0001). Drinking water that had been cooled to 3 C caused a small increase in energy expenditure of 4.5% over 60 min (P < 0.01). Drinking distilled water at room temperature did not increase energy expenditure. Cooling the water before drinking only stimulated a small thermogenic response, well below the theoretical energy cost of warming the water to body temperature. These results cast doubt on water as a thermogenic agent for the management of obesity.
Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen
2014-11-01
Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Qiufang; Yang, Pingheng; Yuan, Wenhao; Jiang, Yongjun; Pu, Junbin; Yuan, Daoxian; Kuang, Yinglun
2010-08-01
The Qingmuguan subterranean river system is located in the suburb of Chongqing, China, and it is the drinking water source that local people downstream rely on. The study aims to provide a scientific basis for groundwater protection in that area, using a hydrogeological framework, tracer tests, hydrological online monitoring, and hydrochemical and microbiological investigation, including heterotrophic plate count (HPC) and the analysis of denitrifying bacteria (DNB) and nitrobacteria (NB). The tracer tests proved simple and direct connections between two important sinkholes and the main springs, and also proved that the underground flows here are fast and turbulent. DNB and NB analyses revealed that the main recharge to the underground river in the dry season is the soil-leached water passing through the fissures of the epikarst, while in the rainy season, it is the surface water flow through sinkholes. The hydrochemical and microbiological data confirmed the notable impact of agriculture and sewage on the spring water quality. In the future, groundwater protection here should focus on targeted vulnerability mapping that yields different protection strategies for different seasons.
Molecular assessment of bacterial pathogens - a contribution to drinking water safety.
Brettar, Ingrid; Höfle, Manfred G
2008-06-01
Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.
76 FR 72703 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-25
... small water systems and efforts underway to address nutrient pollution of drinking water supplies. The... ENVIRONMENTAL PROTECTION AGENCY [FRL-9496-4] Meeting of the National Drinking Water Advisory... meeting. SUMMARY: Notice is hereby given of a meeting of the National Drinking Water Advisory Council...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... Primacy Application for National Primary Drinking Water Regulations for the State of Missouri AGENCY... Department of Natural Resources, Public Drinking Water Branch, 1101 Riverside Drive, Jefferson City, MO 65101. (2) Environmental Protection Agency-Region 7, Water Wetlands and Pesticides Division, Drinking Water...
Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.
2007-01-01
Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.
Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee
2007-02-01
Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.
Drinking water and health research: a look to the future in the United States and globally.
Sobsey, Mark D
2006-01-01
Drinking water supplies continue to be a major source of human disease and death globally because many of them remain unsafe and vulnerable. Greater efforts are needed to address the key issues and questions which influence the provision of safe drinking water. Efforts are needed to re-evaluate and set new and better priorities for drinking water research and practice. More stakeholders need to be included in the processes of identifying key issues and setting priorities for safe drinking water. The overall approach to drinking water research and the provision of safe drinking water needs to become more rational and scientific, and become more visionary and anticipatory of the ever-present and emerging risks to drinking water safety. Collectively, we need to do a better job of making safe water available, accessible and affordable for all. One such approach to safe water for all is household water treatment and safe storage, which is being promoted globally by the World Health Organization and many other stakeholders and partners to reduce the global burden of waterborne disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vartiainen, T.; Lampelo, S.
The mutagenicity of chlorinated drinking waters processed from humus-rich surface waters has been shown to be very high. The effect of placental S9 on the mutagenicity of drinking waters has not been studied previously. The purpose of this study was to compare the effects of human placental and rat liver microsomal fractions on the mutagenicity of drinking waters processed from humus-rich surface waters. The samples of 34 drinking and two raw waters from 26 localities in Finland were tested for mutagenicity in Ames Salmonella typhimurium tester strain TA100 with and without metabolic activations. Between the drinking water samples, clear differencesmore » were recorded in the presence of placental and rat liver S9, suggesting different mutagens in the drinking waters. Rat liver S9 decreased the mutagenicities of drinking water concentrates, but placental S9 increased, decreased, or had no effect. It is not known if placental mutagenicity enhancing system might cause any health hazard to a developing fetus.« less
THE DRINKING WATER TREATABILITY DATABASE (Slides)
The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...
Middle School Student Attitudes about School Drinking Fountains and Water Intake
Patel, Anisha I.; Bogart, Laura M.; Klein, David J.; Cowgill, Burt; Uyeda, Kimberly E.; Hawes-Dawson, Jennifer; Schuster, Mark A.
2014-01-01
Objective Describe middle school student attitudes about school drinking fountains, investigate whether such attitudes are associated with intentions to drink water at school, and determine how intentions relate to overall water intake. Methods Students (n=3,211) in 9 California middle schools completed surveys between 2009–2011. We used multivariate linear regression, adjusting for school sociodemographic characteristics, to examine how attitudes about fountains (5-point scale; higher scores indicating more positive attitudes) were associated with intentions to drink water at school and how intentions to drink water at school were related to overall water intake. Results Mean age of students was 12.3 (SD=0.7) years; 75% were Latino, 89% low-income, and 39% foreign-born. Fifty-two percent reported lower than recommended overall water intake (<3 glasses/day), and 30% reported that they were unlikely or extremely unlikely to drink water at school. Fifty-nine percent reported that school fountains were unclean, 48% that fountain water does not taste good, 33% that fountains could make them sick, 31% that it was not okay to drink from fountains, and 24% that fountain water is contaminated. In adjusted analyses, attitudes about school drinking fountains were related to intentions to drink water at school (B=0.41; p-value <0.001); intentions to drink water at school were also associated with overall water intake (B=0.20; p-value <0.001). Conclusions and Relevance Students have negative attitudes about school fountains. To increase overall water intake, it may be important to promote and improve drinking water sources not only at school, but also at home and in other community environments. What’s New Although most schools provide water via fountains, little is known about student attitudes about fountains. In this study, middle school students had negative attitudes about fountains; such attitudes were associated with lower intentions to drink water at school. PMID:25169158
From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water
NASA Technical Reports Server (NTRS)
Ghosh, Amlan; Seidel, Chad; Adam, Niklas; Pickering, Karen; White, Dawn
2014-01-01
Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight mission. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wellsthat have hydrogen sulfide odor, color, total organic carbon, bromide, iron and manganese in addition to ammonia. A treatment evaluation, conducted in 2011, recommended the testing of biological oxidation filtration for the removal of ammonia and production of biologically stable water. A 8-month pilot testing program was conducted to develop and optimize key design and operational variables. Steadystate operational data was collected to demonstrate long-term performance and inform California Department of Public Health permitting of the full-scale process. As ammonia continues to present challenges to water and wastewater systems, innovative strategies such as biological treatment can be applied to successfully manage it. This presentation will discuss application of cutting-age research being conducted by NASA that will bridge existing information gaps, and benefit municipal utilities.
From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water
NASA Technical Reports Server (NTRS)
Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad
2014-01-01
Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor, color, total organic carbon, bromide, iron and manganese in addition to ammonia. A treatment evaluation, conducted in 2011, recommended the testing of biological oxidation filtration for the removal of ammonia and production of biologically stable water. An 8-month pilot testing program was conducted to develop and optimize key design and operational variables. Steadystate operational data was collected to demonstrate long-term performance and inform California Department of Public Health permitting of the full-scale process. As ammonia continues to present challenges to water and wastewater systems, innovative strategies such as biological treatment can be applied to successfully manage it. This presentation will discuss application of cutting-age research being conducted by NASA that will bridge existing information gaps, and benefit municipal utilities.
West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan
2015-06-01
Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.
Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan
2015-11-12
This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... Management Division, Office of Ground Water and Drinking Water (MC 4607M), Environmental Protection Agency... drinking water. The 1996 Amendments to the Safe Drinking Water Act (SDWA) require EPA to review its existing drinking water regulations every six years. SDWA specifies that any revision to a national primary...
Heijnen, Leo; van der Kooij, Dick
2013-01-01
Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance. PMID:23913420
van der Wielen, Paul W J J; Heijnen, Leo; van der Kooij, Dick
2013-10-01
Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance.
Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T.
2002-01-01
To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment.
NASA Astrophysics Data System (ADS)
Brima, Eid I.
2017-03-01
Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.
Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z
2016-02-01
Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Rusakovica, Julija; Kremer, Valentin D; Plötz, Thomas; Rohlf, Paige; Kyriazakis, Ilias
2017-09-29
There is increasing interest in the definition, measurement and use of traits associated with water use and drinking behaviour, mainly because water is a finite resource and its intake is an important part of animal health and well-being. Analysis of such traits has received little attention, due in part to the lack of appropriate technology to measure drinking behaviour. We exploited novel equipment to collect water intake data in two lines of turkey (A: 27,415 and B: 12,956 birds). The equipment allowed continuous recording of individual visits to the water station in a group environment. Our aim was to identify drinking behaviour traits of biological relevance, to estimate their genetic parameters and their genetic relationships with performance traits, and to identify drinking behaviour strategies among individuals. Visits to the drinkers were clustered into bouts, i.e. time intervals spent in drinking-related activity. Based on this, biologically relevant traits were defined: (1) number of visits per bout, (2) water intake per bout, (3) drinking time per bout, (4) drinking rate, (5) daily bout frequency, (6) daily bout duration, (7) daily drinking time and (8) daily water intake. Heritability estimates for most drinking behaviour traits were moderate to high and the most highly heritable traits were drinking rate (0.49 and 0.50) and daily drinking time (0.35 and 0.46 in lines A and B, respectively). Genetic correlations between drinking behaviour and performance traits were low except for moderate correlations between daily water intake and weight gain (0.46 and 0.47 in lines A and B, respectively). High estimates of breeding values for weight gain were found across the whole range of estimated breeding values for daily water intake, daily drinking time and water intake per bout. We show for the first time that drinking behaviour traits are moderately to highly heritable. Low genetic and phenotypic correlations with performance traits suggest that current breeding goals have not and will not affect normal water drinking behaviour. Birds express a wide range of different drinking behaviour strategies, which can be suitable to a wide range of environments and production systems.
THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)
The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...
40 CFR 141.201 - General public notification requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking... violations of national primary drinking water regulations (NPDWR) and for other situations, as listed in... required by the drinking water regulations. (iv) Failure to comply with testing procedures as prescribed by...
BOOK REVIEW OF "DRINKING WATER REGULATION AND HEALTH"
Since the enactment of the Safe Drinking Water Act (SDWA) in 1974, several amendments and other new regulations have been developed for drinking water. The book, "Drinking Water Regulation and Health", explains these regulations and provides background on why they were developed ...
Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda
2006-09-01
The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.
Ging, Patricia B.
2002-01-01
Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.
Valcárcel, Y; Alonso, S González; Rodríguez-Gil, J L; Maroto, R Romo; Gil, A; Catalá, M
2011-02-01
Interest in the presence of pharmaceuticals in wastewater, in the water of our rivers and, to a lesser extent, in our drinking water, has been growing in recent decades. Many of these substances, currently classified as "emerging pollutants", are biologically active compounds and continuously released in effluents. As sewage treatment plants (STPs) are not adequately equipped to eliminate all of these substances completely, some are discharged directly into rivers. In Spain, as in most of its neighbouring countries, there is an elevated use of pharmaceuticals for the treatment of cardiovascular diseases (which are extremely prevalent among the older adult population) and anti-inflammatory medications, which are obtainable over the counter without a medical prescription. This study therefore sought to determine to what degree pharmaceuticals with the highest regional prescription and/or use rates, such as cardiovascular and analgesic/anti-inflammatory/antipyretic medications, were present in the principal rivers (Jarama, Manzanares, Guadarrama, Henares and Tagus) and tap-water samples of the Madrid Region (MR). Samples were taken downstream the discharge of 10 of the most important region's STPs and the most frequently used drugs in the region were analysed for. Of the 24 drugs analysed, 21 were detected at concentrations ranging from 2 ng L⁻¹ to 18 μg L⁻¹. The highest drug concentrations corresponded to ibuprofen, diclofenac, naproxen, atenolol, frusemide (furosemide), gemfibrozil and hydrochlorthiazide, and in most cases exceeded the amounts reported in the scientific literature. No traces of these groups of pharmaceuticals were detected in the drinking water analysed. On the basis of the high concentrations detected, we believe that an environmental surveillance system should be implemented to assess the continuous discharge of these pharmaceuticals and their possible ecotoxicological effects. At the same time, efforts to raise the awareness of the public about responsible use and the proper disposal of such substances at purpose-designated collection points should be increased. Furthermore sewage treatment processes should be suitably adapted to increase the rates of removal of these drugs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo
2012-03-01
It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.
Whelan, Jessica J; Willis, Karen
2007-01-01
Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.
Safety of packaged water distribution limited by household recontamination in rural Cambodia.
Holman, Emily J; Brown, Joe
2014-06-01
Packaged water treatment schemes represent a growing model for providing safer water in low-income settings, yet post-distribution recontamination of treated water may limit this approach. This study evaluates drinking water quality and household water handling practices in a floating village in Tonlé Sap Lake, Cambodia, through a pilot cross-sectional study of 108 households, approximately half of which used packaged water as the main household drinking water source. We hypothesized that households purchasing drinking water from local packaged water treatment plants would have microbiologically improved drinking water at the point of consumption. We found no meaningful difference in microbiological drinking water quality between households using packaged, treated water and those collecting water from other sources, including untreated surface water, however. Households' water storage and handling practices and home hygiene may have contributed to recontamination of drinking water. Further measures to protect water quality at the point-of-use may be required even if water is treated and packaged in narrow-mouthed containers.
[Total drinking water intake and sources of children and adolescent in one district of Shenzhen].
Du, Songming; Hu, Xiaoqi; Zhang, Qian; Wang, Xiaojun; Liu, Ailing; Pan, Hui; He, Shuang; Ma, Guansheng
2013-05-01
To describe total drinking water intake among primary and middle school students in one district of Shenzhen and to provide scientific evidence for adequate intakes of drinking water for different people in China. A total of 816 students from three primary and middle schools of Shenzhen was selected using three-stage random sampling method. The information on amounts and types of daily drinking water was recorded by subjects for seven consecutive days using a 24 hours measurement. The amounts and types of daily drinking water among different ages and between boys and girls were analyzed. The average total drinking water of subjects was (1225+/-557) ml/d, and the consumption of total drinking water in boys ((1303+/-639) ml/d) was significantly higher than that in girls ((1134+/-478) ml/d, P<0.01). The consumption of total drinking water of secondary school students ((1389+/-541) ml/d) and high school student ((1318+/-641) ml/d) was no statistically difference, but was higher than primary school students ((1097+/-525) ml/d, P<0.01). The average plain water and beverages of the subjects was (818+/-541) ml/d and (407+/-294) ml/d respectively. Major of fluid intake comes from drinking water in children and adolescenct of Shenzhen. The knowledge of drinking water of primary school students is need to comprehensive enough.
Small Drinking Water Systems Communication and Outreach ...
As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop
Metabolic profiles in serum of mouse after chronic exposure to drinking water.
Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei
2011-08-01
The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.
Fecal contamination of drinking water within peri-urban households, Lima, Peru.
Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H
2007-10-01
We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.
Increasing the availability and consumption of drinking water in middle schools: a pilot study.
Patel, Anisha I; Bogart, Laura M; Elliott, Marc N; Lamb, Sheila; Uyeda, Kimberly E; Hawes-Dawson, Jennifer; Klein, David J; Schuster, Mark A
2011-05-01
Although several studies suggest that drinking water may help prevent obesity, no US studies have examined the effect of school drinking water provision and promotion on student beverage intake. We assessed the acceptability, feasibility, and outcomes of a school-based intervention to improve drinking water consumption among adolescents. The 5-week program, conducted in a Los Angeles middle school in 2008, consisted of providing cold, filtered drinking water in cafeterias; distributing reusable water bottles to students and staff; conducting school promotional activities; and providing education. Self-reported consumption of water, nondiet soda, sports drinks, and 100% fruit juice was assessed by conducting surveys among students (n = 876), preintervention and at 1 week and 2 months postintervention, from the intervention school and the comparison school. Daily water (in gallons) distributed in the cafeteria during the intervention was recorded. After adjusting for sociodemographic characteristics and baseline intake of water at school, the odds of drinking water at school were higher for students at the intervention school than students at the comparison school. Students from the intervention school had higher adjusted odds of drinking water from fountains and from reusable water bottles at school than students from the comparison school. Intervention effects for other beverages were not significant. Provision of filtered, chilled drinking water in school cafeterias coupled with promotion and education is associated with increased consumption of drinking water at school. A randomized controlled trial is necessary to assess the intervention's influence on students' consumption of water and sugar-sweetened beverages, as well as obesity-related outcomes.
Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia
Jereb, Gregor; Poljšak, Borut; Eržen, Ivan
2017-01-01
The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption. PMID:28984825
Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.
Jereb, Gregor; Poljšak, Borut; Eržen, Ivan
2017-10-06
The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.
NASA Astrophysics Data System (ADS)
Erman, Don C.; Ligon, Franklin K.
1988-01-01
A small, coastal stream in the San Francisco Bay area of California, USA, received the discharges from a drinking-water filtration plant. Two types of discharges were present. Discharges from filter backwashing were 3 4 times base stream flow, occurred 10 60 times per day, contained fine sediments, and each lasted about 10 min. The other discharge was a large, steady flow of relatively sediment-free water from occasional overflow of the delivery aqueduct which generally lasted several hours a day. Samples of invertebrates from natural substrates had significantly fewer taxa and lower density at the two stations below the backwash than at the two above. However, when stable artificial substrates were used, there were no significant differences among all four stations. The aqueduct apparently had no effect because the. invertebrate community at the station upstream of the backwash but downstream of the aqueduct was statistically similar to the station above the aqueduct. To test for acute toxicity, we exposed additional artificial substrates to short-term simulated backwash conditions. These exposures had no effect on invertebrate density or drift. Three-spine stickleback ( Gasterosteus aculeatus) populations were also significantly reduced at the two downstream stations and were made up mostly of larger, adult fish. Prickly sculpins ( Cottus asper), restricted to the most downstream station, were emaciated and had poor growth, probably as a result of scarce benthic food organisms. Artificial redds with eggs of rainbow trout ( Salmo gairdneri) had significantly lower survival at two stations below the plant backwash (30.7% and 41.8%) than at the one above it (61.4%). Hatchery rainbow trout held in cages below the treatment plant from 7 to 37 days survived and continued to feed. Thus, the major effect of the water treatment plant on fish and invertebrates probably was not from acute toxicity in the discharges or the occasionally large discharge of clean water from the aqueduct, but was from the fluctuating backwash flows containing fine sediment that displaced small fish downstream and created unstable benthic substrates for invertebrates. The filter plant that we studied is a direct-feed type (that is, no sedimentation before filtration). These generally require greater frequencies of backwashing than do conventional plants and may therefore have greater biological impacts. Direct-feed plants are becoming increasingly popular throughout the world, for the most part because they are cheaper to build and operate. But if the associated biological problems are mitigated, then the cost savings of direct-feed compared to conventional plants may be lost.
Goodman, Alyson B; Blanck, Heidi M; Sherry, Bettylou; Park, Sohyun; Nebeling, Linda; Yaroch, Amy L
2013-04-11
Water is vital for life, and plain water is a calorie-free option for hydration. Increasing consumption of drinking water is a strategy to reduce energy intake and lose or maintain weight; however, information on the characteristics of consumers who drink water is limited. Our objective was to describe the characteristics of people who have a low intake of drinking water and to determine associations between their behaviors and attitudes and their intake of water. We analyzed data from a nationally representative sample of 3,397 US adults who participated in the National Cancer Institute's 2007 Food Attitudes and Behaviors Survey. Multivariable logistic regression was used to identify sociodemographic characteristics and health-related behaviors and attitudes associated with self-reported drinking water intake of less than 4 cups per day. Overall, 7% of adults reported no daily consumption of drinking water, 36% reported drinking 1 to 3 cups, 35% reported drinking 4 to 7 cups, and 22% reported drinking 8 cups or more. The likelihood of drinking less than 4 cups of water daily was significantly higher among participants aged 55 years or older than among those aged 18 to 34 (adjusted odds ratio [AOR], 1.3), among residents of the Northeast than among residents of the South (AOR, 1.4), among participants who consumed 1 cup or less of fruits or vegetables per day than among those who consumed 4.5 cups or more (AOR, 3.0), among participants who did not exercise than among those who exercised 150 minutes or more per week (AOR, 1.7), and among participants who were neither trying to gain nor lose weight than among those trying to lose weight (AOR, 1.3). Low drinking water intake was associated with age, region of residence, and several unhealthful behaviors and attitudes. Understanding characteristics associated with low drinking water intake may help to identify populations that could benefit from interventions to help adults drink more water.
Drinking induced by angiotensin II in fishes.
Kobayashi, H; Uemura, H; Takei, Y; Itatsu, N; Ozawa, M; Ichinohe, K
1983-02-01
Among 20 species of freshwater fishes examined, Pseudorasbora parva, Rhodeus ocellatus, Cobitis anguillicaudatus, Carassius auratus, Oryzias latipes, Gambusia affinis, and Gyrinocheilus anymonieri were found to drink water like seawater fishes, while 13 remaining species did not drink. For fish species found exclusively in fresh water, angiotensin II (AII) treatment did not induce drinking. In contrast, those freshwater fishes which survive in estuarine brackish water (Leuciscus hakonensis, C. carassius, Parasilurus asotus, G. affinis, Chaenogobius annularis, Tridentiger obscurus, and G. anymonieri responded to AII by drinking. Furthermore, some freshwater fishes which survive either in hypertonic water (C. auratus) or in sea water (Anguilla japonica and O. latipes) also responded to AII by drinking. Of 17 seawater fishes examined, Eptatretus burgeri, Triakis scyllia, and Heterodontus japonicus failed to drink water, and for Trachurus japonicus, Platichthys bicoloratus, and Glossogobius giuris fasciatopunctatus, water intake was minor (similar to freshwater fishes). The 11 remaining seawater fishes drank water. AII did not induce drinking in fishes living exclusively in sea water. However, seawater fishes which survive either in tide pools (Chasmichthys dolichognathus gulosus) or in brackish water (Sillago japonica, Mugil cephalus, G. giuris fasciatopunctatus) responded to AII by drinking. P. bicoloratus, Acanthopagrus schlegeli, and Fugu niphobles were exceptional, in that they survive in brackish water, but did not respond to AII. Although some exceptions exist, it is generally concluded that a drinking response to AII is characteristic of fishes which encounter water more hypertonic than that in which they typically reside. Accordingly, a drinking mechanism induced by AII may be a compensatory emergency reaction to dehydration stress.
78 FR 48158 - Meeting of the National Drinking Water Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-07
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9843-4] Meeting of the National Drinking Water Advisory....S. Environmental Protection Agency is announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). This meeting is scheduled for...
EPA’s Drinking Water Treatability Database: A Tool for All Drinking Water Professionals
The Drinking Water Treatability Database (TDB) is being developed by the USEPA Office of Research and Development to allow drinking water professionals and others to access referenced information gathered from thousands of literature sources and assembled on one site. Currently, ...
The passage of the U.S. Safe Drinking Water Act (SDWA) in 1974 has had a major impact on the way water is treated and delivered in the U.S. The Act established national drinking water regulations for more than 170,000 public drinking water systems serving over 250 million people ...
Hanf, R William; Kelly, Lynn M
2005-03-01
Drinking water is supplied to most U.S. Department of Energy (DOE) facilities on the Hanford Site by DOE-owned, contractor-operated pumping and distribution systems. Water is primarily obtained from the Columbia River, but some facilities use water from on-site groundwater wells. Because of the large amount of radioactive and chemical waste produced, stored, and disposed of at Hanford, some people are concerned that waste materials are contaminating on-site drinking-water supplies. This paper describes the drinking-water facilities and treatment requirements on the Hanford Site and summarizes radiological and non-radiological water quality data obtained from water samples collected from each drinking-water system in use during 2001 and 2002. Monitoring data show that Hanford-produced radionuclides are measurable in some drinking-water samples. The only non-radiological contaminants detected either were by-products of the chlorination process or came from off-site agricultural activities. Contaminant level values were, in all cases, below state and federal drinking-water limits. This information will provide assurance to current employees and future site developers that drinking water on the Hanford Site is safe for public consumption.
Massoud, May A; Al-Abady, Abdolmonim; Jurdi, Mey; Nuwayhid, Iman
2010-06-01
Adequate and safe water is important for human health and well-being, economic production, and sustainable development. Failure to ensure the safety of drinking water may expose the community to the risk of outbreaks of waterborne and infectious diseases. Although drinking water is a basic human right, many people do not have access to safe and adequate drinking water or proper sanitation facilities. The authors conducted a study to assess the quantity, cost, continuity, coverage, and quality of drinking water in the village of Zawtar El-Charkieh, Lebanon. Their aim was to identify the challenges of sustainable access to safe drinking water in order to determine the short-term management actions and long-term strategies to improve water quality. Results revealed that contamination of the source, absence of any disinfection method or insufficient dose, poor maintenance operations, and aging of the networks are significant factors contributing to water contamination during the storage and distribution process. Establishing a comprehensive drinking water system that integrates water supply, quality, and management as well as associated educational programs in order to ensure the safety and sustainability of drinking water supplies is essential.
The South Australian Safe Drinking Water Act: summary of the first year of operation.
Froscio, Suzanne M; Bolton, Natalie; Cooke, Renay; Wittholz, Michelle; Cunliffe, David
2016-06-01
The Safe Drinking Water Act 2011 was introduced in South Australia to provide clear direction to drinking water providers on how to achieve water safety. The Act requires drinking water providers to register with SA Health and develop a risk management plan (RMP) for their water supply that includes operational and verification monitoring plans and an incident notification and communication protocol. During the first year of operation, 212 drinking water providers registered under the Act, including one major water utility and a range of small to medium sized providers in regional and remote areas of the State. Information was captured on water source(s) used and water treatment. Rainwater was the most frequently reported drinking water source (66%), followed by bore water (13%), on-supply or carting of mains water (13%), mixed source (rainwater with bore water backup) (6%) and surface water (3%). The majority of providers (91%) treated the water supply, 87% used disinfection. During the first year of operation, 16 water quality incidents were formally reported to SA Health. These included both microbial and chemical incidents. Case studies presented highlight how the RMPs are assisting drinking water providers to identify incidents of potential health concern and implement corrective actions.
Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state
NASA Astrophysics Data System (ADS)
Udmale, Parmeshwar; Ichikawa, Yutaka; Nakamura, Takashi; Shaowei, Ning; Ishidaira, Hiroshi; Kazama, Futaba
2016-07-01
Obtaining sufficient drinking water with acceptable quality under circumstances of lack, such as droughts, is a challenge in drought-prone areas of India. This study examined rural drinking water availability issues during a recent drought (2012) through 22 focus group discussions (FGDs) in a drought-prone catchment of India. Also, a small chemical water quality study was undertaken to evaluate the suitability of water for drinking purpose based on Bureau of Indian Standards (BIS). The drought that began in 2011 and further deteriorated water supplies in 2012 caused a rapid decline in reservoir storages and groundwater levels that led, in turn, to the failure of the public water supply systems in the Upper Bhima Catchment. Dried up and low-yield dug wells and borewells, tanker water deliveries from remote sources, untimely water deliveries, and degraded water quality were the major problems identified in the FGDs. In addition to severe drinking water scarcity during drought, the quality of the drinking water was found to be a major problem, and it apparently was neglected by local governments and users. Severe contamination of the drinking water with nitrate-nitrogen, ammonium-nitrogen, and chlorides was found in the analyzed drinking water samples. Hence, in addition to the water scarcity, the results of this study point to an immediate need to investigate the problem of contaminated drinking water sources while designing relief measures for drought-prone areas of India.
Contamination levels of human pharmaceutical compounds in French surface and drinking water.
Mompelat, S; Thomas, O; Le Bot, B
2011-10-01
The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.
Management of source and drinking-water quality in Pakistan.
Aziz, J A
2005-01-01
Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.
Effect of disopyramide on bacterial diversity in drinking water
NASA Astrophysics Data System (ADS)
Wu, Qing; Zhao, Xiaofei; Tian, Qi; Wang, Lei; Zhao, Xinhua
2018-02-01
Disopyramide was detected in drinking water by LC-MS/MS and the microbial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water changed a lot when added different concentrations of disopyramide. The results of Shannon index showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of disopyramide. However, the number and abundance of community structure did not change with the concentration of disopyramide. Disopyramide inhibits the activity of bacterial community in drinking water and also can reduce the bacterial community diversity in drinking water.
Water hyacinth removes arsenic from arsenic-contaminated drinking water.
Misbahuddin, Mir; Fariduddin, Atm
2002-01-01
Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.
78 FR 65981 - Meeting of the National Drinking Water Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9902-32-OW] Meeting of the National Drinking Water Advisory....S. Environmental Protection Agency (EPA) is announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). The meeting is scheduled...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...
Code of Federal Regulations, 2011 CFR
2011-07-01
... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...
Water Treatment: Can You Purify Water for Drinking?
ERIC Educational Resources Information Center
Harris, Mary E.
1996-01-01
Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)
Sachet drinking water in Ghana’s Accra-Tema metropolitan area: past, present, and future
Weeks, John R.; Fink, Günther
2013-01-01
Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana’s Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision. PMID:24294481
Sachet drinking water in Ghana's Accra-Tema metropolitan area: past, present, and future.
Stoler, Justin; Weeks, John R; Fink, Günther
2012-01-01
Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana's Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision.
Abi Haidar, Gina; Lahham Salameh, Nina; Afifi, Rema A
2011-01-01
The Global School-based Student Health Survey (2005) indicated that in Lebanon, 33% of students in grades 7-9 drink carbonated soft drinks two or more times per day. Observational evidence suggests that students do not drink enough water. A pilot project called Jarrib Baleha ['try without it'] was implemented with 110 students in grades 3 and 4 in two schools in Lebanon to promote drinking water instead of soft drinks. Specific objectives included increasing knowledge about the benefits of water and the harms of soft drinks, increasing confidence in choosing water over soft drinks, and increasing actual water drinking behavior while decreasing soft drink consumption. Four 50-minute theory-informed, interactive and participatory sessions were implemented --by a graduate student in partial fulfillment of requirements for a MPH degree--over a period of two weeks. The intervention sessions--based on the Health Belief Model--took place during a class period. Process evaluation measured satisfaction of the students with the sessions. Impact evaluation measured changes in knowledge, attitudes including self-efficacy, and behavior, using a self-administered questionnaire completed prior to and after the intervention. Bivariate analysis using crosstabs was carried out to compare pretest and posttest scores on knowledge, attitudes, and behavior. Comparison of the knowledge index between pretest and posttest indicated that, overall, knowledge increased from 6.0769 to 9.1500 (p = 0.000). Compared to pretest, students at posttest also felt more confident to drink less soft drinks and more water (p < 0.05), to drink water when thirsty (p < 0.05), and to choose water over soft drinks when going to a restaurant (p < 0.05). The percentage of students drinking 6 or more cups of water increased from 27.7% to 59.1% (p = 0.000); and those drinking less than one can of soft drink/day increased from 25.5% to 57.6% (p = 0.000). These results are encouraging and suggest the Jarrib Baleha intervention could be implemented on a wider scale with students from both public and private schools. A more robust evaluation design is recommended. A comprehensive approach to school-based nutrition is also suggested.
MEETING THE REQUIREMENTS OF THE U.S. SAFE DRINKING WATER ACT: THE ROLE OF TECHNOLOGY
The passage of the U.S. Safe Drinking Water Act (SDWA) in 1974 has had a major impact on the way water is treated and delivered in the United States. The Act established national drinking water regulations for more than 170,000 public drinking water systems serving over 250 mill...
The Drinking Water Academy provides online training and information to ensure that water professionals, public officials, and involved citizens have the knowledge and skills necessary to protect our drinking water supply.
Utilisation of drinking water treatment sludge for the manufacturing of ceramic products
NASA Astrophysics Data System (ADS)
Kizinievič, O.; Kizinievič, V.
2017-10-01
The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.
What's Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University
NASA Astrophysics Data System (ADS)
Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon
2011-09-01
The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates ( n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors—especially whether individuals trust tap water to be clean—but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.
Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon
2011-09-01
The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates (n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors-especially whether individuals trust tap water to be clean-but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.
Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng
2011-07-01
Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 μg/l in drinking-water, and in 246 towns, the iodine level was >300 μg/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 μg/l and 11.0 % in the areas with drinking-water iodine >300 μg/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 μg/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 μg/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China.
Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt
NASA Astrophysics Data System (ADS)
Mandour, R. A.
2012-09-01
This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.
Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study.
Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene; Pedersen, Carsten B; Sigsgaard, Torben
2018-07-01
Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person-years at risk. We used Cox proportional hazards models to estimate hazard ratios (HRs) of nitrate exposure on the risk of CRC, colon and rectal cancer. Persons exposed to the highest level of drinking water nitrate had an HR of 1.16 (95% CI: 1.08-1.25) for CRC compared with persons exposed to the lowest level. We found statistically significant increased risks at drinking water levels above 3.87 mg/L, well below the current drinking water standard of 50 mg/L. Our results add to the existing evidence suggesting increased CRC risk at drinking water nitrate concentrations below the current drinking water standard. A discussion on the adequacy of the drinking water standard in regards to chronic effects is warranted. © 2018 UICC.
NASA Astrophysics Data System (ADS)
Diiwu, J.; Silins, U.; Kevin, B.; Anderson, A.
2008-12-01
Like many areas of the Rocky Mountains, Alberta's forests on the eastern slopes of the Rockies have been shaped by decades of successful fire suppression. These forests are at high risk to fire and large scale insect infestation, and climate change will continue to increase these risks. These headwaters forests provide the vast majority of usable surface water supplies to large region of the province, and large scale natural disasters can have dramatic effects on water quality and water availability. The population in the region has steadily increased and now this area is the main source water for many Alberta municipalities, including the City of Calgary, which has a population of over one million. In 2003 a fire burned 21,000 ha in the southern foothills area. The government land managers were concerned about the downstream implications of the fire and salvage operations, however there was very limited scientific information to guide the decision making. This led to establishment of the Southern Rockies Watershed Project, which is a partnership between Alberta Sustainable Resource Development, the provincial government department responsible for land management and the University of Alberta. After five years of data collection, the project has produced quantitative information that was not previously available about the effects of fire and management interventions such as salvage logging on headwaters and regional water quality. This information can be used to make decisions on forest operations, fire suppression, and post-fire salvage operations. In the past few years this project has captured the interest of large municipalities and water treatment researchers who are keen to investigate the potential implications of large natural disturbances to large and small drinking water treatment facilities. Examples from this project will be used to highlight the challenges and successes encountered while bridging the gap between science and land management policy.
Post, Gloria B; Cohn, Perry D; Cooper, Keith R
2012-07-01
Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Detection of enteroviruses in untreated and treated drinking water supplies in South Africa.
Ehlers, M M; Grabow, W O K; Pavlov, D N
2005-06-01
Enteric viruses have been detected in many drinking water supplies all over the world. A meaningful number of these supplies were treated and disinfected according to internationally acceptable methods. In addition, counts of bacterial indicators (coliform bacteria and heterotrophic plate count organisms) in these water supplies were within limits generally recommended for treated drinking water and these findings have been supported by epidemiological data on infections associated with drinking water. The shortcomings of conventional treatment methods and indicator organisms to confirm the absence of enteric viruses from drinking water, was generally ascribed to the exceptional resistance of these viruses. In this study, the prevalence of enteroviruses detected from July 2000 to June 2002 in sewage, river-, borehole-, spring- and dam water as well as drinking water supplies treated and disinfected according to international specifications for the production of safe drinking water was analysed. A glass wool adsorption-elution technique was used to recover viruses from 10--20 l of sewage as well as environmental water samples, in the case of drinking water from more than 100 l. Recovered enteroviruses were inoculated onto two cell culture types (BGM and PLC/PRF/5 cells) for amplification of viral RNA with nested-PCR being used to detect the amplified viral RNA. Results from the study demonstrated the presence of enteroviruses in 42.5% of sewage and in 18.7% of treated drinking water samples. Furthermore, enteroviruses were detected in 28.5% of river water, in 26.7% of dam/spring water and in 25.3% of borehole water samples. The high prevalence of coxsackie B viruses found in this study suggested, that a potential health risk and a burden of disease constituted by these viruses might be meaningful. These findings indicated that strategies, other than end-point analysis of treated and disinfected drinking water supplies, may be required to ensure the production of drinking water that does not exceed acceptable health risks. More reliable approaches to ensure acceptable safety of drinking water supplies may be based on control by multiple-barrier principles from catchment to tap using hazard assessment and critical control point (HACCP) principles.
Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh
2010-01-01
The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was <0.38 ppm, the adjusted odds ratio (OR) (95% CI) for rectal cancer occurrence was 1.15 (1.01-1.32) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting threshold standards.
Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh
2010-01-01
The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for rectal cancer occurrence was 1.04 (0.88-1.22) for individuals who resided in municipalities served by drinking water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
MODELING CHLORINE DECAY AND THE FORMATION OF DISINFECTION BY-PRODUCTS (DBPS) IN DRINKING WATER
A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. In the US, chlorine is most often...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water.
Stoler, Justin
2012-12-01
The advent and rapid spread of sachet drinking water in West Africa presents a new challenge for providing sustainable access to global safe water. Sachet water has expanded drinking water access and is often of sufficient quality to serve as an improved water source for Millennium Development Goals (MDG) monitoring purposes, yet sachets are an unsustainable water delivery vehicle due to their overwhelming plastic waste burden. Monitoring of primary drinking water sources in West Africa generally ignores sachet water, despite its growing ubiquity. Sub-Saharan Africa as a region is unlikely to meet the MDG Target for drinking water provision, and post-2015 monitoring activities may depend upon rapid adaptability to local drinking water trends. © 2012 Blackwell Publishing Ltd.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh
2011-09-01
The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.
Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra
2017-02-08
Water sources classified as "improved" may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9-84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4-94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. © The American Society of Tropical Medicine and Hygiene.
Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra
2017-01-01
Water sources classified as “improved” may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9–84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4–94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. PMID:27821687
Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan
2015-01-01
This study aimed to describe the households’ choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10−9~3.62 × 10−5. The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water’s highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals. PMID:26569281
Mi, Jing; Peng, Wenjia; Jia, Xianjie; Wei, Binggan; Yang, Linsheng; Hu, Liming; Lu, Rong'an
2015-01-01
To explore the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer's death in Dayao County. A 1:2 matched case-control study involving 54 death cases of gastrointestinal cancer from a population-based cohort of twenty-seven years and 108 controls matched by age, gender, death time, etc was conducted to analyze the effect of local water condition on the risk of gastrointestinal cancer in Dayao County. Results from logistic regression analysis suggested the longer of asbestos furnace use over time, the higher the mortality risk of gastrointestinal cancer (6 - 10 years: OR = 2.920, 95% CI 1.501 - 5.604. 11 - 15 years: OR = 3.966, 95% CI 2.156 -7.950. Over 15 years: OR = 4.122, 95% CI 1.211 - 7. 584). Drinking unboiled water leaded to an increased risk of gastrointestinal cancer (OR = 1.43, 95% CI 1.07 - 1.88). Type of drinking water was associated with gastrointestinal cancer. When compared with drinking tap water, OR for drinking well water was 1.770 (95% CI 1.001 - 2.444), 2.442 for drinking river water (95% CI 0.956 - 3.950), 2.554 for drinking house and field ditch water (95% CI 1.961 - 6.584), and 3.121 for drinking pond water (95% CI 1.872 - 6.566). Related factors of drinking water in crocidolite-contaminated area in Dayao County were significantly associated with the mortality of gastrointestinal cancer.
Forrester, Harrison; Clow, David W.; Roche, James W.; Heyvaert, Alan C.; Battaglin, William A.
2017-01-01
We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012–2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL−1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL−1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL−1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.
NASA Astrophysics Data System (ADS)
Forrester, Harrison; Clow, David; Roche, James; Heyvaert, Alan; Battaglin, William
2017-09-01
We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012-2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL-1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL-1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL-1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.
Safe and Affordable Drinking Water for Developing Countries
NASA Astrophysics Data System (ADS)
Gadgil, Ashok
2008-09-01
Safe drinking water remains inaccessible for about 1.2 billion people in the world, and the hourly toll from biological contamination of drinking water is 200 deaths mostly among children under five years of age. This chapter summarizes the need for safe drinking water, the scale of the global problem, and various methods tried to address it. Then it gives the history and current status of an innovation ("UV Waterworks™") developed to address this major public health challenge. It reviews water disinfection technologies applicable to achieve the desired quality of drinking water in developing countries, and specifically, the limitations overcome by one particular invention: UV Waterworks. It then briefly describes the business model and financing option than is accelerating its implementation for affordable access to safe drinking water to the unserved populations in these countries. Thus this chapter describes not only the innovation in design of a UV water disinfection system, but also innovation in the delivery model for safe drinking water, with potential for long term growth and sustainability.
[Bacteriological quality of drinking water in the City of Merida, Mexico].
Flores-Abuxapqui, J J; Suárez-Hoil, G J; Puc-Franco, M A; Heredia-Navarrete, M R; Vivas-Rosel, M D; Franco-Monsreal, J
1995-01-01
With the aim of knowing the microbiological quality of drinking water in Merida, Yucatan, 383 paired samples of drinking water (two per house) were studied. Three hundred sixty four (95%) city water system samples and 283 (73.89%) tap water samples met the microbiological standards for drinking water. It was concluded that microbiological quality of drinking water from the city water system is satisfactory, except for the water system district Merida III, which has a significant aerobic plate count contamination level (21.7% of the samples). Domestic storage systems preserve water quality, with the exception of district Merida I, which has the highest level of contamination (4.8% of the samples) possibly from sewage water and fecal sources.
An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water
Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.
2010-01-01
Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073
Safe Drinking Water for Alaska: Curriculum for Grades 1-6.
ERIC Educational Resources Information Center
South East Regional Resource Center, Juneau, AK.
Presented is a set of 10 lessons on safe drinking water in Alaska for use by elementary school teachers. The aim is to provide students with an understanding of the sources of the water they drink, how drinking water can be made safe, and the health threat that unsafe water represents. Although this curriculum relates primarily to science, health,…
Drinking water microbial myths.
Allen, Martin J; Edberg, Stephen C; Clancy, Jennifer L; Hrudey, Steve E
2015-01-01
Accounts of drinking water-borne disease outbreaks have always captured the interest of the public, elected and health officials, and the media. During the twentieth century, the drinking water community and public health organizations have endeavored to craft regulations and guidelines on treatment and management practices that reduce risks from drinking water, specifically human pathogens. During this period there also evolved misunderstandings as to potential health risk associated with microorganisms that may be present in drinking waters. These misunderstanding or "myths" have led to confusion among the many stakeholders. The purpose of this article is to provide a scientific- and clinically-based discussion of these "myths" and recommendations for better ensuring the microbial safety of drinking water and valid public health decisions.
Risk Assessment and effect of Penicillin-G on bacterial diversity in drinking water
NASA Astrophysics Data System (ADS)
Wu, Qing; Zhao, Xiaofei; Peng, Sen; Wang, Lei; Zhao, Xinhua
2018-02-01
Penicillin-G was detected in drinking water by LC-MS/MS and the bacterial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water has undergone major changes when added different concentrations of penicillin-G. The diversity index of each sample was calculated. The results showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of penicillin-G. However, the number and abundance of community structure did not change with the concentration. Penicillin-G inhibits the activity of bacterial community in drinking water and can reduce the bacterial diversity in drinking water.
Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan
2016-02-01
One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Standardised survey method for identifying catchment risks to water quality.
Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A
2016-06-01
This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking.
Perceptions about availability and adequacy of drinking water in a large California school district.
Patel, Anisha I; Bogart, Laura M; Uyeda, Kimberly E; Rabin, Alexa; Schuster, Mark A
2010-03-01
Concerns about the influence of sugar-sweetened beverage consumption on obesity have led experts to recommend that water be freely available in schools. We explored perceptions about the adequacy of drinking water provision in a large California school district to develop policies and programs to encourage student water consumption. From March to September 2007, we used semistructured interviews to ask 26 California key stakeholders - including school administrators and staff, health and nutrition agency representatives, and families - about school drinking water accessibility; attitudes about, facilitators of, and barriers to drinking water provision; and ideas for increasing water consumption. Interviews were analyzed to determine common themes. Although stakeholders said that water was available from school drinking fountains, they expressed concerns about the appeal, taste, appearance, and safety of fountain water and worried about the affordability and environmental effect of bottled water sold in schools. Stakeholders supported efforts to improve free drinking water availability in schools, but perceived barriers (eg, cost) and mistaken beliefs that regulations and beverage contracts prohibit serving free water may prevent schools from doing so. Some schools provide water through cold-filtered water dispensers and self-serve water coolers. This is the first study to explore stakeholder perceptions about the adequacy of drinking water in US schools. Although limited in scope, our study suggests that water available in at least some schools may be inadequate. Collaborative efforts among schools, communities, and policy makers are needed to improve school drinking water provision.
The role of headwater streams in downstream water quality
Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.
76 FR 67187 - National Drinking Water Advisory Council; Notice of a Public Teleconference Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... requirements of the National Drinking Water Regulations for Lead and Copper. DATES: The public teleconference... and Copper: EPA is developing proposed revisions to the Lead and Copper Rule (LCR), which is the National Primary Drinking Water Regulation for controlling lead and copper in drinking water supplied by...
Gregory, M. Brian; Frick, Elizabeth A.
2000-01-01
Introduction: The Metropolitan Atlanta area has been undergoing a period of rapid growth and development. The population in the 10-county metropolitan area almost doubled from about 1.5 million people in 1970 to 2.9 million people in 1995 (Atlanta Regional Commission, written commun., 2000). Residential, commercial, and other urban land uses more than tripled during the same period (Frick and others, 1998). The Chattahoochee River is the most utilized water resource in Georgia. The rapid growth of Metropolitan Atlanta and its location downstream of the headwaters of the drainage basin make the Chattahoochee River a vital resource for drinking-water supplies, recreational opportunities, and wastewater assimilation. In 1978, the U.S. Congress declared the natural, scenic, recreation, and other values of 48 miles of the Chattahoochee River from Buford Dam to Peachtree Creek to be of special national significance. To preserve this reach of the Chattahoochee River, the U.S. Congress created the Chattahoochee River National Recreational Area (CRNRA), which includes the Chattahoochee River downstream from Buford Dam to the mouth of Peachtree Creek and a series of park areas adjacent to the river in northern Metropolitan Atlanta Even with this protection, waters of the Chattahoochee River and many of its tributaries in Metropolitan Atlanta did not meet water-quality standards set for designated uses during 1994 and 1995 (fig. 1 and table 1). Much of the degradation of water quality has been associated with areas undergoing rapid urban growth and sprawling suburban development. The resulting conversion of mostly forested land to urban land has multiple adverse effects on water quality. Degradation of water quality may be caused by a number of factors including an increase in nutrient concentrations, sediment and sedimentbound contaminant concentrations (e.g., metals and pesticides) (Frick and others, 1998), and fecal-coliform bacteria concentrations (Center for Watershed Protection, 1999). The presence of fecal-coliform bacteria in streams and rivers indicates that contamination by fecal material from human or animal sources has occurred and contact with these waters can result in exposure to pathogenic bacteria often associated with fecal contamination. During 1994 and 1995, elevated concentrations of fecal-coliform bacteria were the most common reason that the Chattahoochee River and tributaries did not meet their designated uses of drinking-water supply, recreation, and fishing. According to the Georgia Department of Natural Resources (1997), during 1994 and 1995, 67 of 77 stream reaches assessed in Metropolitan Atlanta did not meet or only partially met water-quality requirements for designated uses. Excessive concentrations of fecal-coliform bacteria were a contributing factor in 63 of the 67 streams that did not meet or only partially met designated uses. High concentrations of fecal-coliform bacteria have the potential to reduce the recreational value of the river and pose a continued threat, with unknown health risks, to humans that come in contact with the water while fishing, boating, rafting, wading, and swimming.
Kraus, Tamara E.C.; Anderson, Chauncey W.; Morgenstern, Karl; Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.
2010-01-01
This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.
NASA Astrophysics Data System (ADS)
Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.
2014-10-01
Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited no significant difference, but the water use and consumption of Populus euphratica in the downstream of the Tarim River in the day was significantly higher than that in the downstream of the Heihe River, and the essential reason for this is the groundwater depth. The ecology in the downstream of the Heihe River has been in balance in the maintenance and development stage, while desert riparian forest plants in the downstream of the Tarim River are still in severe arid stress.
Galway, Lindsay P.
2016-01-01
Access to safe and reliable drinking water is commonplace for most Canadians. However, the right to safe and reliable drinking water is denied to many First Nations peoples across the country, highlighting a priority public health and environmental justice issue in Canada. This paper describes trends and characteristics of drinking water advisories, used as a proxy for reliable access to safe drinking water, among First Nations communities in the province of Ontario. Visual and statistical tools were used to summarize the advisory data in general, temporal trends, and characteristics of the drinking water systems in which advisories were issued. Overall, 402 advisories were issued during the study period. The number of advisories increased from 25 in 2004 to 75 in 2013. The average advisory duration was 294 days. Most advisories were reported in summer months and equipment malfunction was the most commonly reported reason for issuing an advisory. Nearly half of all advisories occurred in drinking water systems where additional operator training was needed. These findings underscore that the prevalence of drinking water advisories in First Nations communities is a problem that must be addressed. Concerted and multi-faceted efforts are called for to improve the provision of safe and reliable drinking water First Nations communities. PMID:27196919
Galway, Lindsay P
2016-05-17
Access to safe and reliable drinking water is commonplace for most Canadians. However, the right to safe and reliable drinking water is denied to many First Nations peoples across the country, highlighting a priority public health and environmental justice issue in Canada. This paper describes trends and characteristics of drinking water advisories, used as a proxy for reliable access to safe drinking water, among First Nations communities in the province of Ontario. Visual and statistical tools were used to summarize the advisory data in general, temporal trends, and characteristics of the drinking water systems in which advisories were issued. Overall, 402 advisories were issued during the study period. The number of advisories increased from 25 in 2004 to 75 in 2013. The average advisory duration was 294 days. Most advisories were reported in summer months and equipment malfunction was the most commonly reported reason for issuing an advisory. Nearly half of all advisories occurred in drinking water systems where additional operator training was needed. These findings underscore that the prevalence of drinking water advisories in First Nations communities is a problem that must be addressed. Concerted and multi-faceted efforts are called for to improve the provision of safe and reliable drinking water First Nations communities.
2013-12-01
Safe Drinking Water Act28 and the Clean Water Act.29 • Potable water : According to Waterworks officials, Guam’s potable water system currently is in...noncompliance with the Safe Drinking Water Act. The unreliable drinking water distribution system has historically resulted in bacterial...Protection Consolidated Grants program, provided Guam with almost $6.8 million in fiscal year 2012 to fund drinking water and wastewater system
Dieter, Hermann H
2010-03-01
"Non-relevant metabolites" are those degradation products of plant protection products (PPPs), which are devoid of the targeted toxicities of the PPP and devoid of genotoxicity. Most often, "non-relevant metabolites" have a high affinity to the aquatic environment, are very mobile within this environment, and, usually, are also persistent. Therefore, from the point of drinking water hygiene, they must be characterized as "relevant for drinking water" like many other hydrophilic/polar environmental contaminants of different origins. "Non-relevant metabolites" may therefore penetrate to water sources used for abstraction of drinking water and may thus ultimately be present in drinking water. The presence of "non-relevant metabolites" and similar trace compounds in the water cycle may endanger drinking water quality on a long-term scale. During oxidative drinking water treatment, "non-relevant metabolites" may also serve as the starting material for toxicologically relevant transformation products similar to processes observed by drinking water disinfection with chlorine. This hypothesis was recently confirmed by the detection of the formation of N-nitroso-dimethylamine from ozone and dimethylsulfamide, a "non-relevant metabolite" of the fungicide tolylfluanide. In order to keep drinking water preferably free of "non-relevant metabolites", the German drinking water advisory board of the Federal Ministry of Health supports limiting their penetration into raw and drinking water to the functionally (agriculturally) unavoidable extent. On this background, the German Federal Environment Agency (UBA) recently has recommended two health related indication values (HRIV) to assess "non-relevant metabolites" from the view of drinking water hygiene. Considering the sometimes incomplete toxicological data base for some "non-relevant metabolites", HRIV also have the role of health related precautionary values. Depending on the completeness and quality of the toxicological evaluation of a "non-relevant metabolite", its HRIV is either set as 1.0 microg/l (HRIV(a)) or as 3.0 microg/l (HRIV(b)) for lifelong exposure. In case a HRIV would be exceeded, UBA recommends to keep on a precautionary action value (PAV) of 10 microg/l for each "non-relevant metabolite". The HRIV(b) is similar to the maximal value derived by application of the TTC-concept for Cramer Class III (4.5 microg/l). The HRIV(a) and the PAV are similar to values in the EU-guidance document for assessing "non-relevant metabolites" in ground water, with the important difference that the drinking water PAV is not intended to be tolerated for permanent exposure. Drinking water containing "non-relevant metabolites" below the respective HRIVs can also be considered as being sufficiently protective against toxicologically relevant oxidative transformation products which may be formed from "non-relevant metabolites" during drinking water treatment with ozone. However, even drinking water where one or several "non-relevant metabolites" are detected above substance-specific HRIVs is suited for human consumption without health risks. Only in special cases (relatively high "non-relevant metabolite" - concentrations), it could be indicated to examine the finished water for transformation products after treatment with ozone if there are no further treatment steps to eliminate or degrade polar compounds. UBA's "non-relevant metabolite-Recommendation" from April 2008 was positively picked up in 2009 by four important stakeholders in the domain of drinking water management as part of a voluntary cooperation agreement. The aim of such cooperation is to limit the transport of "non-relevant metabolites" into the drinking water to the functionally (and agriculturally) unavoidable extent and insofar to meet special precautionary demands. (c) 2009 Elsevier Inc. All rights reserved.
Drinking Water Maximum Contaminant Levels (MCLs)
National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.
The Role of Headwater Streams in Downstream Water Quality1
Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565
Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water.
Mompelat, S; Le Bot, B; Thomas, O
2009-07-01
Among all emerging substances in water, pharmaceutical products (PPs) and residues are a lot of concern. These last two years, the number of studies has increased drastically, however much less for water resources and drinking water than for wastewater. This literature review based on recent works, deals with water resources (surface or groundwater), focusing on characteristics, occurrence and fate of numerous PPs studied, and drinking water including water quality. Through this review, it appears that the pharmaceutical risk must be considered even in drinking water where concentrations are very low. Moreover, there is a lack of research for by-products (metabolites and transformation products) characterization, occurrence and fate in all water types and especially in drinking water.
Bacterial community structure in the drinking water microbiome is governed by filtration processes.
Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde
2012-08-21
The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.
Schrøder, Stine; Homøe, Preben; Wagner, Niels; Vataire, Anne-Lise; Lundager Madsen, Hans Erik; Bardow, Allan
2015-01-01
Objectives Sialolithiasis, or salivary stones, is not a rare disease of the major salivary glands. However, the aetiology and incidence remain largely unknown. Since sialoliths are comprised mainly of calcium phosphate salts, we hypothesise that drinking water calcium levels and other elements in drinking water could play a role in sialolithiasis. Owing to substantial intermunicipality differences in drinking water composition, Denmark constitutes a unique environment for testing such relations. Design An epidemiological study based on patient data extracted from the National Patient Registry and drinking water data from the Geological Survey of Denmark and Greenland retrieved as weighted data on all major drinking water constituents for each of the 3364 waterworks in Denmark. All patient cases with International Statistical Classification of Diseases 10th Revision (ICD-10) codes for sialolithiasis registered between the years 2000 and 2010 were included in the study (n=3014) and related to the drinking water composition on a municipality level (n=98). Primary and secondary outcome measures Multiple regression analysis using iterative search and testing among all demographic and drinking water variables with sialolithiasis incidence as the outcome in search of possible relations among the variables tested. Results The nationwide incidence of hospital-admitted sialolithiasis was 5.5 cases per 100 000 citizens per year in Denmark. Strong relations were found between the incidence of sialolithiasis and the drinking water concentration of calcium, magnesium and hydrogen carbonate, however, in separate models (p<0.001). Analyses also confirmed correlations between drinking water calcium and magnesium and their concentration in saliva whereas this was not the case for hydrogen carbonate. Conclusions Differences in drinking water calcium and magnesium may play a role in the incidence of sialolithiasis. These findings are of interest because many countries have started large-scale desalination programmes of drinking water. PMID:25941183
Blanck, Heidi M.; Sherry, Bettylou; Park, Sohyun; Nebeling, Linda; Yaroch, Amy L.
2013-01-01
Introduction Water is vital for life, and plain water is a calorie-free option for hydration. Increasing consumption of drinking water is a strategy to reduce energy intake and lose or maintain weight; however, information on the characteristics of consumers who drink water is limited. Our objective was to describe the characteristics of people who have a low intake of drinking water and to determine associations between their behaviors and attitudes and their intake of water. Methods We analyzed data from a nationally representative sample of 3,397 US adults who participated in the National Cancer Institute’s 2007 Food Attitudes and Behaviors Survey. Multivariable logistic regression was used to identify sociodemographic characteristics and health-related behaviors and attitudes associated with self-reported drinking water intake of less than 4 cups per day. Results Overall, 7% of adults reported no daily consumption of drinking water, 36% reported drinking 1 to 3 cups, 35% reported drinking 4 to 7 cups, and 22% reported drinking 8 cups or more. The likelihood of drinking less than 4 cups of water daily was significantly higher among participants aged 55 years or older than among those aged 18 to 34 (adjusted odds ratio [AOR], 1.3), among residents of the Northeast than among residents of the South (AOR, 1.4), among participants who consumed 1 cup or less of fruits or vegetables per day than among those who consumed 4.5 cups or more (AOR, 3.0), among participants who did not exercise than among those who exercised 150 minutes or more per week (AOR, 1.7), and among participants who were neither trying to gain nor lose weight than among those trying to lose weight (AOR, 1.3). Conclusion Low drinking water intake was associated with age, region of residence, and several unhealthful behaviors and attitudes. Understanding characteristics associated with low drinking water intake may help to identify populations that could benefit from interventions to help adults drink more water. PMID:23578399
Drinking Water State Revolving Fund (DWSRF)
This website provides information on financial assistance to water systems needing capitalization grants and/or technical assistance to improve the quality of drinking water and for the delivery of safe drinking water to consumers.
Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.
[The occurrence of aeromonads in a drinking water supply system].
Stelzer, W; Jacob, J; Feuerpfeil, I; Schulze, E
1992-01-01
This study concerns with the occurrence of aeromonads, coliforms and colony counts in a drinking water supply. Aeromonas contents were detected in the range of 15.0 to greater than 2,400/100 ml in the raw water samples of the man made lake. After the drinking water treatment process including fast sand filtration and chlorination aeromonads indicated in comparison to total coliforms and colony counts early and significant an after-growth of maximal 240 aeromonads/100 ml in the peripheric drinking water supply. Drinking water samples characterized by a higher water temperature resulted in the highest contents of aeromonads. The Aeromonas-Species Aeromonas sobria and Aeromonas hydrophila were isolated most frequently with 56.9 and 37.4 percent, respectively. The role of aeromonads as an indicator of after-growth in drinking water supplies is discussed.
How important is drinking water exposure for the risks of engineered nanoparticles to consumers?
Tiede, Karen; Hanssen, Steffen Foss; Westerhoff, Paul; Fern, Gordon J; Hankin, Steven M; Aitken, Robert J; Chaudhry, Qasim; Boxall, Alistair B A
2016-01-01
This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different product types on the UK market as well as release scenarios, their possible fate and behaviour in raw water and during drinking water treatment was performed. Based on the available data, all the ENPs which are likely to reach water sources were identified and categorized. Worst case concentrations of ENPs in raw water and treated drinking water, using a simple exposure model, were estimated and then qualitatively compared to available estimates for human exposure through other routes. A range of metal, metal oxide and organic-based ENPs were identified that have the potential to contaminate drinking waters. Worst case predicted concentrations in drinking waters were in the low- to sub-µg/l range and more realistic estimates were tens of ng/l or less. For the majority of product types, human exposure via drinking water was predicted to be less important than exposure via other routes. The exceptions were some clothing materials, paints and coatings and cleaning products containing Ag, Al, TiO2, Fe2O3 ENPs and carbon-based materials.
Impact of Hydraulic Well Restoration on Native Bacterial Communities in Drinking Water Wells
Karwautz, Clemens; Lueders, Tillmann
2014-01-01
The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems. PMID:25273229
Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada.
Sultana, Tamanna; Murray, Craig; Kleywegt, Sonya; Metcalfe, Chris D
2018-07-01
Because of the persistence and solubility of neonicotinoid insecticides (NNIs), there is concern that these compounds may contaminate sources of drinking water. The objective of this project was to evaluate the distribution of NNIs in raw and treated drinking water from selected municipalities that draw their water from the lower Great Lakes in areas of southern Ontario, Canada where there is high intensity agriculture. Sites were monitored using Polar Organic Chemical Integrative Samplers (POCIS) and by collecting grab samples at six drinking water treatment plants. Thiamethoxam, clothianidin and imidacloprid were detected in both POCIS and grab samples of raw water. The frequency of detection of NNIs was much lower in treated drinking water, but some compounds were still detected at estimated concentrations in the low ng L -1 range. Thiamethoxam was detected in one grab sample of raw drinking water at a mean concentration of 0.28 μg L -1 , which is above the guidelines for drinking water recommended in some jurisdictions, including the European Union directive on pesticide levels <0.1 μg L -1 in water intended for human consumption. Further work is required to determine whether contamination of sources of drinking water with this class of insecticides is a global problem in agricultural regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impact of hydraulic well restoration on native bacterial communities in drinking water wells.
Karwautz, Clemens; Lueders, Tillmann
2014-01-01
The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems.
Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie
2013-05-01
Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.
van de Ven, Bianca M.; de Jongh, Cindy M.
2013-01-01
Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894
Quality of drinking water from ponds in villages of Kolleru Lake region.
Rao, A S; Rao, P R; Rao, N S
2001-01-01
Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.
Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun
2007-01-01
Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.
Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.
Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E
2015-04-01
Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.
Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi
Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.
2015-01-01
Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068
Fluoride concentration in community water and bottled drinking water: a dilemma today.
Dhingra, S; Marya, C M; Jnaneswar, A; Kumar, H
2013-01-01
Because of the potential for contamination of municipal water supplies, people appear to be turning to alternative sources for their pure drinking water. The present study analyzed the fluoride concentration in community water and bottled drinking water sold in Faridabad city. A comparative evaluation of fluoride content in community water supply and bottled drinking water was done using ion-selective electrode method. The community water samples were collected from six different areas (i.e. north zone, south zone, east zone, west zone and central zone) in the city from public health water supply taps while bottled drinking water samples were randomly picked from grocery shops or supermarkets. The fluoride concentration in the community water supply in this study ranges from 0.11 to 0.26 mg/L with mean fluoride concentration of 0.17 mg/L. The mean concentration of fluoride in bottled drinking water was 0.06 mg/L. The differences observed between mean of two water samples was statistically significant. The results obtained from the present study clearly state that the fluoride concentration was insufficient in community water supply from all the areas and also was deficient in bottled drinking water sold in Faridabad city. So, Alternative sources of fluorides should be supplemented for optimal dental benefits from the use of fluoride.
Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.
Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir
2016-11-01
Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Colon cancer and content of nitrates and magnesium in drinking water.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh
2010-06-01
The objective of this study was to explore whether magnesium levels (Mg) in drinking water modify the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year-of-birth, and year-of-death. Information on the levels of nitrate-nitrogen (NO3-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO3-N and Mg exposure via drinking water. The results of our study show that there is a significant trend towards an elevated risk of death from colon cancer with increasing nitrate levels in drinking water. Furthermore, we observed evidence of an interaction between drinking water NO3-N and Mg intake via drinking water. This is the first study to report effect modification by Mg intake from drinking water on the association between NO3-N exposure and colon cancer risk.
MINI PILOT PLANT FOR DRINKING WATER RESEARCH
The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...
Machibya, Magayane; Mwanuzi, Fredrick
2006-06-01
A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase.
Cronin, Aidan A; Odagiri, Mitsunori; Arsyad, Bheta; Nuryetty, Mariet Tetty; Amannullah, Gantjang; Santoso, Hari; Darundiyah, Kristin; Nasution, Nur 'Aisyah
2017-10-01
There remains a pressing need for systematic water quality monitoring strategies to assess drinking water safety and to track progress towards the Sustainable Development Goals (SDG). This study incorporated water quality testing into an existing national socioeconomic survey in Yogyakarta province, Indonesia; the first such study in Indonesia in terms of SDG tracking. Multivariate regression analysis assessed the association between faecal and nitrate contamination and drinking water sources household drinking water adjusted for wealth, education level, type of water sources and type of sanitation facilities. The survey observed widespread faecal contamination in both sources for drinking water (89.2%, 95%CI: 86.9-91.5%; n=720) and household drinking water (67.1%, 95%CI: 64.1-70.1%; n=917) as measured by Escherichia coli. This was despite widespread improved drinking water source coverage (85.3%) and commonly self-reported boiling practices (82.2%). E.coli concentration levels in household drinking water were associated with wealth, education levels of a household head, and type of water source (i.e. vender water or local sources). Following the proposed SDG definition for Target 6.1 (water) and 6.2 (sanitation), the estimated proportion of households with access to safely managed drinking water and sanitation was 8.5% and 45.5%, respectively in the study areas, indicating substantial difference from improved drinking water (82.2%) and improved sanitation coverage (70.9%) as per the MDGs targets. The greatest contamination and risk factors were found in the poorest households indicating the urgent need for targeted and effective interventions here. There is suggested evidence that sub-surface leaching from on-site sanitation adversely impacts on drinking water sources, which underscores the need for further technical assistance in promoting latrine construction. Urgent action is still needed to strengthen systematic monitoring efforts towards tracking SDG Goal 6. Copyright © 2017 Elsevier GmbH. All rights reserved.
Chloramination of Concentrated Drinking Water for ...
Abstract for presentation on chloraminated drinking water concentrates to create whole DBP mixtures Abstract for presentation on chloraminating drinking water concentrates to create whole DBP mixtures
21 CFR 520.2325a - Sulfaquinoxaline drinking water.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...
21 CFR 520.2325a - Sulfaquinoxaline drinking water.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...
77 FR 14425 - Notice of Lodging of Consent Decree Under the Safe Drinking Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Safe Drinking Water Act Notice... penalties under the Safe Drinking Water Act (``SDWA''), 42 U.S.C. 300f-300j-26, resulting from violations of the National Primary Drinking Water Regulations (``NPDWRs'') at two trailer courts that Stricklin owns...
77 FR 40382 - Notice of Lodging of Consent Decree Under the Safe Drinking Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Safe Drinking Water Act Notice... civil penalties for alleged violations of the Safe Drinking Water Act (``SDWA''), 42 U.S.C. 300f through 300j-26, including violations of the National Primary Drinking Water Regulations (``NPDWRs''), at...
Lead in Drinking Water in Schools and Non-Residential Buildings.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This manual demonstrates how drinking water in schools and non-residential buildings can be tested for lead and how contamination problems can be corrected when found. The manual also provides background information concerning the sources and health effects of lead, how lead gets into drinking water, how lead in drinking water is regulated, and…
Patel, Anisha I; Hampton, Karla E
2011-08-01
Children and adolescents are not consuming enough water, instead opting for sugar-sweetened beverages (sodas, sports and energy drinks, milks, coffees, and fruit-flavored drinks with added sugars), 100% fruit juice, and other beverages. Drinking sufficient amounts of water can lead to improved weight status, reduced dental caries, and improved cognition among children and adolescents. Because children spend most of their day at school and in child care, ensuring that safe, potable drinking water is available in these settings is a fundamental public health measure. We sought to identify challenges that limit access to drinking water; opportunities, including promising practices, to increase drinking water availability and consumption; and future research, policy efforts, and funding needed in this area.
Assessment of Nitrification in Distribution Systems of Waters with Elevated Ammonia Levels
The objective of this work is to monitor ammonia, nitrite, and nitrate in drinking water from the distribution systems of four drinking water utilities in Illinois. A monthly drinking water distribution system water quality monitoring protocol for each water utility in Illinois h...
The release of iron from drinking water distribution systems is a common source of drinking water distribution system consumer complaints. Suspended iron particles result in colored (red) water and metallic tasting water. Iron release results from both physical and chemical mec...
Wright, Carlee
2017-01-01
Canadian Inuit have often reported concerns about the quality of their municipal drinking water; research has also shown that some Inuit communities experience some of the highest incidence rates of self-reported acute gastrointestinal illness (AGI) in Canada and globally. The goal of this thesis research was to investigate drinking water perceptions and consumption patterns, as well as water contamination and potential associations with AGI in the Inuit community of Rigolet, Canada. Three census cross-sectional surveys captured data on AGI, drinking water, and water storage (2012-2014); additionally, bacterial contamination of household drinking water was assessed alongside the 2014 survey. Concerns regarding the taste, smell, and colour of tap water were associated with lower odds of consuming tap water. The use of transfer devices (i.e. small bowls or measuring cups) was associated with household water contamination; while no water-related risk factors for AGI were identified, incidence of AGI was high compared with southern Canada. This thesis research provides a valuable contribution to the limited literature assessing drinking water and health in the Arctic. Ultimately, this work is intended to inform safe water management practices, as well as contextually appropriate drinking water interventions, risk assessments, and public health messaging in the Canadian Arctic.
Presence of enteric viruses in source waters for drinking water production in The Netherlands.
Lodder, W J; van den Berg, H H J L; Rutjes, S A; de Roda Husman, A M
2010-09-01
The quality of drinking water in The Netherlands has to comply with the Dutch Drinking Water Directive: less than one infection in 10,000 persons per year may occur due to consumption of unboiled drinking water. Since virus concentrations in drinking waters may be below the detection limit but entail a public health risk, the infection risk from drinking water consumption requires the assessment of the virus concentrations in source waters and of the removal efficiency of treatment processes. In this study, samples of source waters were taken during 4 years of regular sampling (1999 to 2002), and enteroviruses, reoviruses, somatic phages, and F-specific phages were detected in 75% (range, 0.0033 to 5.2 PFU/liter), 83% (0.0030 to 5.9 PFU/liter), 100% (1.1 to 114,156 PFU/liter), and 97% (0.12 to 14,403 PFU/liter), respectively, of 75 tested source water samples originating from 10 locations for drinking water production. By endpoint dilution reverse transcription-PCR (RT-PCR), 45% of the tested source water samples were positive for norovirus RNA (0.22 to 177 PCR-detectable units [PDU]/liter), and 48% were positive for rotavirus RNA (0.65 to 2,249 PDU/liter). Multiple viruses were regularly detected in the source water samples. A significant correlation between the concentrations of the two phages and those of the enteroviruses could be demonstrated. The virus concentrations varied greatly between 10 tested locations, and a seasonal effect was observed. Peak concentrations of pathogenic viruses occur in source waters used for drinking water production. If seasonal and short-term fluctuations coincide with less efficient or failing treatment, an unacceptable public health risk from exposure to this drinking water may occur.
Basic Information about Your Drinking Water
The United States enjoys one of the world's most reliable and safest supplies of drinking water. Congress passed the Safe Drinking Water Act (SDWA) in 1974 to protect public health, including by regulating public water systems.
40 CFR 141.808 - Audits and inspections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.808 Audits and..., disinfection and flushing, and general maintenance and self-inspections of aircraft water system. (b) Air... delivery of safe drinking water. ...
Ferdous, Jannatul; Sultana, Rebeca; Rashid, Ridwan B; Tasnimuzzaman, Md; Nordland, Andreas; Begum, Anowara; Jensen, Peter K M
2018-01-01
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae ( V. cholerae ) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from "point-of-drinking" and "source" in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds ( P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14-42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds ( p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85-29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19-18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera.
Onyango-Ouma, W; Gerba, Charles P
2011-12-01
A cross-sectional descriptive study was conducted to examine away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya. The study involved adults and schoolchildren. Data were collected using focus group discussions, questionnaire survey, observations, diaries and interviews. The findings suggest that away-from-home drinking water consumption is a common practice in the study area; however, the microbiological quality of the water consumed is poor. While some respondents perceive the water to be safe for drinking mainly because of the clear colour of the water, others are forced by circumstances to drink the water as it is owing to a lack of alternative safe sources. It is concluded that there is a need for new innovative approaches to address away-from-home drinking water consumption in resource-poor settings in order to complement and maximize the benefits of point-of-use water treatment at the household level.
Bain, Rob E S; Gundry, Stephen W; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K
2012-03-01
To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh
2010-07-01
The objective of this study was to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of pancreatic cancer and to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop pancreatic cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to pancreatic cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All pancreatic cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level < 4.9ppb, the adjusted OR (95% CI) for pancreatic cancer was 1.01 (0.85-1.21) for individuals who resided in municipalities served by drinking water with a TTHM exposure > 4.9ppb. There was no evidence of an interaction of drinking water TTHM levels with low Ca intake via drinking water. However, we observed evidence of an interaction between drinking water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of pancreatic cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing pancreatic cancer risk will aid in public policy making and standard setting. 2010 Elsevier Inc. All rights reserved.
Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh
2013-01-01
The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level <4.9 ppb, the adjusted odds ratio (OR) with 95% confidence interval (CI) for esophageal cancer was 1.02 (0.84-1.23) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking water.
Physical, chemical and microbial analysis of bottled drinking water.
Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V
2012-09-01
People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.
Caban, Magda; Lis, Ewa; Kumirska, Jolanta; Stepnowski, Piotr
2015-12-15
The presence of pharmaceuticals in drinking water, even at very low concentrations, has raised concerns among stakeholders such as drinking-water regulators, governments, water suppliers and the public, with regard to the potential risks to humans. Despite this, the occurrence and the fate of pharmaceuticals in drinking waters of many countries (e.g. in Poland) remains unknown. There is a lack of sufficiently sensitive and reliable analytical methods for such analyses and a need for more in-depth hydrogeological analysis of the possible sources of drug residues in drinking water. In this paper, a multi-residual method for the simultaneous determination of seventeen human pharmaceuticals in drinking waters has been developed. Large-volume extractions using Speedisk extraction disks, and derivatization prior to GC-MS-SIM analysis using a new silylating agent DIMETRIS were applied. The method detection limits (MDLs) ranged from 0.9 to 5.7ng/L and the absolute recoveries of the target compounds were above 80% for most analytes. The developed method was successfully applied in the analysis of the target compounds in drinking water collected in Gdansk (Poland), and of the 17 pharmaceuticals, 6 compounds were detected at least once. During the investigation, the geomorphology of the site region was taken into account, possible sources of pharmaceuticals in the analysed drinking water samples were investigated, and the presence of the drugs in ground and surface waters, raw and treated drinking waters was determined. Concentrations were also compared with those observed in other countries. As a result, this study has not only developed a new analytical method for determining pharmaceuticals in drinking waters as well as rendering missing information for Poland (a country with one of the highest consumptions of pharmaceuticals in Europe), but it also presents a modelled in-depth hydrogeological analysis of the real sources of drugs in drinking waters. Copyright © 2015 Elsevier B.V. All rights reserved.
Drinking Water and Wastewater Laboratory Networks
This website provides the drinking water sector with an integrated nationwide network of laboratories with the analytical capability to respond to intentional and unintentional drinking water incidents.
Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...
Sullivan, Daniel J.; Stinson, Troy W.; Crawford, J. Kent; Schmidt, Arthur R.; Colman, John A.
1998-01-01
The distribution of pesticides and other synthetic organic compounds in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin was examined from 1987 through 1990 as part of the pilot National Water-Quality Assesssment Program conducted by the U.S. Geological Survey. Historical data for water and sediment collected from 1975 through 1986 were similar to data collected from 1987 through 1990. Some compounds were detected in concentrations that exceed U.S. Environmental Protection Agency water-quality criteria. Results from pesticide sampling at four stations in 1988 and 1989 identified several agricultural pesticides that were detected more frequently and at higher concentrations in urban areas than in agricultural areas. Results from herbicide sampling at 17 stations in the Kankakee and Iroquois River Basins in 1990 indicated that atrazine concentrations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water during runoff periods. Results from sampling for volatile and semivolatile organic compounds in water indicate that, with one exception, all stations at which more than one compound was detected were within 2 miles downstream from the nearest point source. Detections at two stations in the Chicago urban area accounted for 37 percent of the total number of detections. Concentrations of tetrachloroethylene, trichloroethylene, and 1,2-dichlorethane from stations in the Des Plaines River Basin exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water in one and two samples from the two stations in the Chicago area. Phenols and pentachlorophenols were detected most frequently in the Des Plaines River Basin where point-source discharges were common. Phenol concentrations were significantly different among the Des Plaines, Kankakee, and Fox River Basins. Phenols and pentachlorophenols never exceeded the general use and secondary contact standards. Results from a 1989 synoptic survey of semivolatile organic compounds in sediment indicate that these compounds were detected most frequently at sites in the Chicago urban area. Of the 17 stations at which 10 or more compounds were detected, 14 were located in the Des Plaines River subbasin, and 1 was on the Illinois River mainstem. As was the case with organic compounds in water, each of these sites was located within 2 miles downstream from point sources. Biota samples were collected and analyzed for organochlorines and polynuclear aromatic hydrocarbons in 1989 and 1990. The most commonly detected compound in both years was p,p'-DDE. National Academy of Science recommendations for chlordane and dieldrin for protection of predators were exceeded in 19 and 10 samples, respectively, when the 1989 and 1990 data were combined. In the nine fish-fillet samples collected in 1989, concentrations exceeded U.S. Environmental Protection Agency fish-tissue criteria in nine fillets for p,p'-DDE and five fillets for dieldrin.
Varol, Simge; Davraz, Aysen
2016-06-01
Isparta city center is selected as a work area in this study because the public believes that the tap water is dirty and harmful. In this study, the city's drinking water in the distribution system and other spring waters which are used as drinking water in this region were investigated from the point of water quality and health risk assessment. Water samples were collected from major drinking water springs, tap waters, treatment plants and dam pond in the Isparta province center. Ca-Mg-HCO3, Mg-Ca-HCO3, Ca-Na-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Ca-Mg-HCO3-SO4 are dominant water types. When compared to drinking water guidelines established by World Health Organization and Turkey, much greater attention should be paid to As, Br, Fe, F, NH4, PO4 through varied chemicals above the critical values. The increases of As, Fe, F, NH4 and PO4 are related to water-rock interaction. In tap waters, the increases of As and Fe are due to corrosion of pipes in drinking water distribution systems. The major toxic and carcinogenic chemicals within drinking water are As and Br for both tap water and spring water. Also, F is the non-carcinogenic chemical for only spring waters in the study area.
Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David
2015-11-15
Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fishel, D.K.
1988-01-01
The hydrology and water quality of Swatara Creek were studied by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources, Bureau of State Parks, from July 1981 through September 1984. The purpose of the study was to determine the effects of anthracite-coal mining and other point and nonpoint sources on the water quality of a planned 10,500 acre-foot reservoir. The Swatara State Park Reservoir is planned to be used for recreation and drinking-water supply for the city of Lebanon and surrounding communities. Annual precipitation during 1982, 1983, and 1984 was about 8 percent below, near normal, and 29 percent above the long-term average, respectively. The average annual precipitation during a year with near-normal precipitation, the 1983 water year, was 47 inches at Pine Grove. Mean streamflows during 1982, 1983, and 1984 were about 15 percent below, 4 percent above, and 50 percent above the long-term average, respectively. The average streamflow to the planned reservoir area during the 1983 water year was about 220 cubic feet per second. Inflows to, and downstream discharge from, the planned reservoir wer poorly buffered. Median alkalinity ranged from 4 to 7 mg/L (milligrams per liter) and median acidity ranged from 2 to 5 mg/L at the three sampling locations. Maximum total-recoverable iron, aluminum, and manganese concentrations were 100,000, 66,000, and 2,300 micrograms per liter, respectively. During 1983 the annual discharges of total-recoverable iron, aluminum, and manganese to the planned reservoir area were estimated to be 692, 300, and 95 tons, respectively. About 87 percent of the total-recoverable iron and 91 percent of total-recoverable sluminum measured was in the suspended phase. The data indicated that mine drainage affects the quality of Swatara Creek and will affect the quality of the planned reservoir. In addition to mine drainage, point-source nutrient and metal discharges will probably affect the planned reservoir. For example, in September 1983, Swatara Creek was sampled downstream from a point source. A dissolved- phosphorus concentration of 14 mg/L and total ammonia plus organic nitrogen concentration of 8.2 mg/L were measured. At the same location, concentrations of total-recoverable aluminum, chromium, copper, iron, and lead were 35, 300, 110, 1,300, and 32 micrograms per liter, respectively. Inflows to the planned Swatara State Park Reservoir are estimated to be acidic and rich in nutrients and select metals. Unless an effort is made to improve the quality of water from point and nonpoint sources, these conditions may impair the planned uses for the reservoir. Conservation releases from the reservoir need to be carefully controlled or these conditions also may degrade the water quality downstream.
Basic Information about Chloramines and Drinking Water Disinfection
Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.
Stookey, Jodi J. D.
2016-01-01
Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management. PMID:26729162
Stookey, Jodi J D
2016-01-02
Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management.
Wilhelm, Michael; Bergmann, Sabine; Dieter, Hermann H
2010-06-01
After detection of perfluorooctanoate (PFOA) in drinking water at concentrations up to 0.64 microg/l in Arnsberg, Sauerland, Germany, the German Drinking Water Commission (TWK) assessed perfluorinated compounds (PFCs) in drinking water and set for the first time worldwide in June 2006 a health-based guide value for safe lifelong exposure at 0.3 microg/l (sum of PFOA and perfluorooctanesulfonate, PFOS). PFOA and PFOS can be effectively removed from drinking water by percolation over granular activated carbon. Additionally, recent EU-regulations require phasing out use of PFOS and ask to voluntarily reduce the one of PFOA. New and shorter-chained PFCs (C4-C7) and their mixtures are being introduced as replacements. We assume that some of these "new" compounds could be main contributors to total PFC levels in drinking water in future, especially since short-chained PFCs are difficult to remove from drinking water by common treatment techniques and also by filtration over activated carbon. The aims of the study were to summarize the data from the regularly measured PFC levels in drinking water and in the drinking water resources in North Rhine-Westphalia (NRW) for the sampling period 2008-2009, to give an overview on the general approach to assess PFC mixtures and to assess short-chained PFCs by using toxicokinetic instead of (sub)chronic data. No general increase of substitutes for PFOS and PFOA in wastewater and surface water was detected. Present findings of short-chained PFC in drinking waters in NRW were due to extended analysis and caused by other impacts. Additionally, several PFC contamination incidents in drinking water resources (groundwater and rivers) have been reported in NRW. The new approach to assess short-chained PFCs is based on a ranking of their estimated half-lives for elimination from the human body. Accordingly, we consider the following provisional health-related indication values (HRIV) as safe in drinking water for lifelong exposure: perfluorobutanoate (PFBA) 7 microg/l, perfluoropentanoate (PFPA) 3 microg/l, perfluorohexanoate (PFHxA) 1 microg/l, perfluoroheptanoate (PFHpA) 0.3 microg/l, perfluorobutanesulfonate (PFBS) 3 microg/l, perfluoropentanesulfonate (PFPS) 1 microg/l, perfluorohexanesulfonate (PFHxS) 0.3 microg/l and perfluoroheptanesulfonate (PFHpS) 0.3 microg/l. For all PFCs the long-term lowest maximal quality goal (general precautionary value, PVg) in drinking water is set to -0.1 microg/l.
DOWNSTREAM-WATER-LEVEL CONTROL TEST RESULTS ON THE WM LATERAL CANAL
USDA-ARS?s Scientific Manuscript database
On steep canals, distant downstream water-level control can be challenging. SacMan (Software for Automated Canal Management) was developed, in part, to test various distant downstream water level controllers. It was implemented on the WM canal of the Maricopa Stanfield Irrigation and Drainage Distri...
van Heerden, J; Ehlers, M M; Heim, A; Grabow, W O K
2005-01-01
Human adenoviruses (HAds), of which there are 51 serotypes, are associated with gastrointestinal, respiratory, urinary tract and eye infections. The importance of water in the transmission of HAds and the potential health risks constituted by HAds in these environments are widely recognized. Adenoviruses have not previously been quantified in river and treated drinking water samples. In this study, HAds in river water and treated drinking water sources in South Africa were detected, quantified and typed. Adenoviruses were recovered from the water samples using a glass wool adsorption-elution method followed by polyethylene glycol/NaCl precipitation for secondary concentration. The sensitivity and specificity of two nested PCR methods were compared for detection of HAds in the water samples. Over a 1-year period (June 2002 to July 2003), HAds were detected in 5.32% (10/188) of the treated drinking water and 22.22% (10/45) of river water samples using the conventional nested PCR method. The HAds detected in the water samples were quantified using a real-time PCR method. The original treated drinking water and river water samples had an estimate of less than one copy per litre of HAd DNA present. The hexon-PCR products used for typing HAds were directly sequenced or cloned into plasmids before sequencing. In treated drinking water samples, species D HAds predominated. In addition, adenovirus serotypes 2, 40 and 41 were each detected in three different treated drinking water samples. Most (70%) of the HAds detected in river water samples analysed were enteric HAds (serotypes 40 and 41). One HAd serotype 2 and two species D HAds were detected in the river water. Adenoviruses detected in river and treated drinking water samples were successfully quantified and typed. The detection of HAds in drinking water supplies treated and disinfected by internationally recommended methods, and which conform to quality limits for indicator bacteria, warrants an investigation of the risk of infection constituted by these viruses. The risk of infection may have implications for the management of drinking water quality. This study is unique as it is the first report on the quantification and typing of HAds in treated drinking water and river water. This baseline data is necessary for the meaningful assessment of the potential risk of infection constituted by these viruses.
Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo
2012-12-01
It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.
Arsenic in Illinois ground water : community and private supplies
Warner, Kelly L.; Martin, Angel; Arnold, Terri L.
2003-01-01
Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.
Methyl tert-butyl ether (MTBE) in finished drinking water in Germany.
Kolb, Axel; Püttmann, Wilhelm
2006-03-01
In the present study 83 finished drinking water samples from 50 cities in Germany were analyzed for methyl tert-butyl ether (MTBE) content with a detection limit of 10 ng/L. The detection frequency was 46% and the concentrations ranged between 17 and 712 ng/L. Highest concentrations were found in the community water systems (CWSs) of Leuna and Spergau in Saxony-Anhalt. These CWSs are supplied with water possibly affected by MTBE contaminated groundwater. MTBE was detected at concentrations lower than 100 ng/L in drinking water supplied by CWSs using bank filtered water from Rhine and Main Rivers. The results from Leuna and Spergau show that large groundwater contaminations in the vicinity of CWSs pose the highest risk for MTBE contamination in drinking water. CWSs using bank filtered water from Rhine and Main Rivers are susceptible to low MTBE contaminations in finished drinking water. All measured MTBE concentrations were below proposed limit values for drinking water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... information obtained under the Safe Drinking Water Act. 2.304 Section 2.304 Protection of Environment... Special rules governing certain information obtained under the Safe Drinking Water Act. (a) Definitions. For the purposes of this section: (1) Act means the Safe Drinking Water Act, 42 U.S.C. 300f et seq. (2...
Code of Federal Regulations, 2011 CFR
2011-07-01
... information obtained under the Safe Drinking Water Act. 2.304 Section 2.304 Protection of Environment... Special rules governing certain information obtained under the Safe Drinking Water Act. (a) Definitions. For the purposes of this section: (1) Act means the Safe Drinking Water Act, 42 U.S.C. 300f et seq. (2...
Correlation between lead levels in drinking water and mothers' breast milk: Dakahlia, Egypt.
Mandour, Raafat A; Ghanem, Abdel-Aziz; El-Azab, Somaia M
2013-04-01
This study was performed on fifty-two drinking tap water samples (surface and groundwater) collected from different districts of Dakahlia Governorate and fifty-two breast milk samples from lactating mothers hosted in Dakahlia Governorate hospitals. All these samples were subjected to lead analysis. Lead level in drinking groundwater showed higher levels than in drinking surface water. Also, an elevation of lead levels in breast milk of mothers drinking groundwater was noticed when compared with that of mothers drinking surface water. The comparison between mean lead levels in drinking water and mothers' breast milk samples showed positive relationship. Lead concentrations in breast milk of the studied samples were elevated by exposure to smoking. We conclude that prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood. Also, we recommend that chemical analyses must be carried out periodically for the surface and groundwater to ensure the water suitability for drinking purposes. Passive exposure to smoking during lactation should be avoided. Capsule: Prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood.
Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters.
Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen
2011-08-01
Cardiovascular protection of deep-seawater (DSW) drinking water was assessed using high-fat/cholesterol-fed hamsters in this study. All hamsters were fed a high-fat/cholesterol diet (12% fat/0.2% cholesterol), and drinking solutions were normal distiled water (NDW, hardness: 2.48ppm), DSW300 (hardness: 324.5ppm), DSW900 (hardness: 858.5ppm), and DSW1500 (hardness: 1569.0ppm), respectively. After a 6-week feeding period, body weight, heart rates, and blood pressures of hamsters were not influenced by DSW drinking waters. Serum total cholesterol (TC), triacylglycerol (TAG), atherogenic index, and malondialdehyde (MDA) levels were decreased (p<0.05) in the DSW-drinking-water groups, as compared to those in the NDW group. Additionally, increased (p<0.05) serum Trolox equivalent antioxidant capacity (TEAC), and faecal TC, TAG, and bile acid outputs were measured in the DSW-drinking-water groups. Hepatic low-density-lipoprotein receptor (LDL receptor) and cholesterol-7α-hydroxylase (CYP7A1) gene expressions were upregulated (p<0.05) by DSW drinking waters. These results demonstrate that DSW drinking water benefits the attenuation of high-fat/cholesterol-diet-induced cardiovascular disorders in hamsters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sun, F; Chen, J; Tong, Q; Zeng, S
2007-01-01
Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.
Drinking water system treatment and contamination in Shatila Refugee Camp in Beirut, Lebanon.
Khoury, S; Graczyk, T; Burnham, G; Jurdi, M; Goldman, L
2016-11-02
Drinking water at Shatila Palestinian Refugee Camp in Beirut, Lebanon is of poor quality and unpredictably intermittent quantity. We aimed to characterize drinking water sources and contamination at Shatila and determine how drinking water can be managed to reduce community health burdens. We interviewed the Popular Committee, well owners, water vendors, water shopkeepers and preschool administrators about drinking water sources, treatment methods and the population served. Water samples from the sources and intermediaries were analysed for thermotolerant faecal coliforms (FCs), Giardia lamblia, Cryptosporidium parvum and microsporidia, using immunofluorescent antibody detection for G. lamblia and C. parvum, and chromotrope-2 stain for microsporidia. All drinking water sources were contaminated with FCs and parasites. FC counts (cfu/mL) were as follows: wells (35-300), water vendors (2-178), shops (30-300) and preschools (230-300). Responsible factors identified included: unskilled operators; improper maintenance of wells and equipment; lack of proper water storage and handling; and misperception of water quality. These factors must be addressed to improve water quality at Shatila and other refugee camps.
Semba, Richard D; de Pee, Saskia; Kraemer, Klaus; Sun, Kai; Thorne-Lyman, Andrew; Moench-Pfanner, Regina; Sari, Mayang; Akhter, Nasima; Bloem, Martin W
2009-07-01
In developing countries, poor families in urban slums often do not receive municipal services including water. The objectives of our study were to characterize families who purchased drinking water and to examine the relation between purchasing drinking water and child morbidity and mortality in urban slums of Indonesia, using data collected between 1999 and 2003. Of 143,126 families, 46.8% purchased inexpensive drinking water from street vendors, 47.4% did not purchase water, i.e., had running or spring/well water within household, and 5.8% purchased more expensive water in the previous 7 days. Families that purchased inexpensive drinking water had less educated parents, a more crowded household, a father who smoked, and lower socioeconomic level compared with the other families. Among children of families that purchased inexpensive drinking water, did not purchase drinking water, or purchased more expensive water, the prevalence was, respectively, for diarrhea in last 7 days (11.2%, 8.1%, 7.7%), underweight (28.9%, 24.1%, 24.1%), stunting (35.6%, 30.5%, 30.5%), wasting (12.0%, 10.5%, 10.9%), family history of infant mortality (8.0%, 5.6%, 5.1%), and of under-five child mortality (10.4%, 7.1%, 6.4%) (all P<0.0001). Use of inexpensive drinking water was associated with under-five child mortality (Odds Ratio [O.R.] 1.32, 95% Confidence Interval [C.I.] 1.20-1.45, P<0.0001) and diarrhea (O.R. 1.43, 95% C.I. 1.29-1.60, P<0.0001) in multivariate logistic regression models, adjusting for potential confounders. Purchase of inexpensive drinking water was common and associated with greater child malnutrition, diarrhea, and infant and under-five child mortality in the family. Greater efforts must be made to ensure access to safe drinking water, a basic human right and target of the Millennium Development Goals, in urban slums.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul
2017-10-01
This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (I geo ) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, I geo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.
[Pay attention to the human health risk of drinking low mineral water].
Shu, Weiqun
2015-10-01
The consumption of low mineral drinking water has been increasing around the world with the shortage of water resources and the development of advanced water treatment technologies. Evidences from systematic document reviews, ecological epidemiological observations, and experimental drinking water intervention studies indicate that lack of minerals in drinking water may cause direct or indirect harm to human health, among which, the associations of magnesium in water with cardiovascular disease, as well as calcium in water with osteoporosis, are well proved by sufficient evidence. This article points out that it is urgent to pay more attention to the issues about establishment of health risk evaluation system on susceptible consuming population, establishment of lab evaluation system on water quality and health effect for non-traditional drinking water, and program of safety mineralization for demineralized or desalinated water and so on.
Safe drinking water in regional NSW, Australia.
Byleveld, Paul M; Leask, Sandy D; Jarvis, Leslie A; Wall, Katrina J; Henderson, Wendy N; Tickell, Joshua E
2016-04-15
The New South Wales (NSW) Public Health Act 2010 requires water suppliers to implement a drinking water quality assurance program that addresses the 'Framework for management of drinking water quality' in the Australian drinking water guidelines. NSW Health has recognised the importance of a staged implementation of this requirement and the need to support regional water utilities. To date, NSW Health has assisted 74 regional utilities to develop and implement their management systems. The Public Health Act 2010 has increased awareness of drinking water risk management, and offers a systematic process to identify and control risks. This has benefited large utilities, smaller suppliers, and remote and Aboriginal communities. Work is continuing to ensure implementation of the process by private suppliers and water carters.
Toxicity of ferric chloride sludge to aquatic organisms.
Sotero-Santos, Rosana B; Rocha, Odete; Povinelli, Jurandyr
2007-06-01
Iron-rich sludge from a drinking water treatment plant (DWTP) was investigated regarding its toxicity to aquatic organisms and physical and chemical composition. In addition, the water quality of the receiving stream near the DWTP was evaluated. Experiments were carried out in August 1998, February 1999 and May 1999. Acute toxicity tests were carried out on a cladoceran (Daphnia similis), a midge (Chironomus xanthus) and a fish (Hyphessobrycon eques). Chronic tests were conducted only on D. similis. Acute sludge toxicity was not detected using any of the aquatic organisms, but chronic effects were observed upon the fecundity of D. similis. Although there were relatively few sample dates, the results suggested that the DWTP sludge had a negative effect on the receiving body as here was increased suspended matter, turbidity, conductivity, chemical oxygen demand (COD) and hardness in the water downstream of the DWTP effluent discharge. The ferric chloride sludge also exhibited high heavy metal concentrations revealing a further potential for pollution and harmful chronic effects on the aquatic biota when the sludge is disposed of without previous treatment.
Health Effects and Environmental Justice Concerns of Exposure to Uranium in Drinking Water.
Corlin, Laura; Rock, Tommy; Cordova, Jamie; Woodin, Mark; Durant, John L; Gute, David M; Ingram, Jani; Brugge, Doug
2016-12-01
We discuss the recent epidemiologic literature regarding health effects of uranium exposure in drinking water focusing on the chemical characteristics of uranium. While there is strong toxicologic evidence for renal and reproductive effects as well as DNA damage, the epidemiologic evidence for these effects in people exposed to uranium in drinking water is limited. Further, epidemiologic evidence is lacking for cardiovascular and oncogenic effects. One challenge in characterizing health effects of uranium in drinking water is the paucity of long-term cohort studies with individual level exposure assessment. Nevertheless, there are environmental justice concerns due to the substantial exposures for certain populations. For example, we present original data suggesting that individuals living in the Navajo Nation are exposed to high levels of uranium in unregulated well water used for drinking. In 10 out of 185 samples (5.4 %), concentrations of uranium exceeded standards under the Safe Drinking Water Act. Therefore, efforts to mitigate exposure to toxic elements in drinking water are warranted and should be prioritized.
[Microorganisms surviving in drinking water systems and related problems].
Aulicino, F A; Pastoni, F
2004-01-01
Drinking water in distribution systems may show abnormal values of some parameters, such as turbidity, and may support particular phenomena, such as bacterial regrowth or presence of Viable Not Culturable (VNC) bacteria. Turbidity can provide shelter for opportunistic microorganisms and pathogens. The Milwaukee outbreak (400,000 people) is one example of waterborne disease caused by the presence of pathogens (Cryptosporidium) in drinking water characterized by high and intermittent levels of turbidity. Bacterial regrowth in drinking water distribution systems may cause high increments of microorganisms such as heterotrophic bacteria, coliforms and pathogens. Microorganisms isolated from biofilm including Pseudomonas, Aeromonas, Legionella may have a significant health hazard especially in hospital areas. The presence of VNC bacteria in drinking water may represent a problem for their discussed role in infectious diseases, but also for the possibility of a considerable underestimation of true microbial concentrations in drinking waters. To study this kind of problems is necessary to apply suitable methods for drinking water analyses.
Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China.
Ding, Jinjian; Shen, Xiaoli; Liu, Weiping; Covaci, Adrian; Yang, Fangxing
2015-12-15
Organophosphate esters (OPEs) are ubiquitous in the environment and may pose potential health risks to humans. Drinking water is suspected as one possible exposure pathway of OPEs to humans. In this study, we investigated the residues of 9 OPEs in five types of drinking water in Eastern China. The median concentrations of Σ9OPEs were determined to be 3.99, 4.50, 27.6, 59.2 and 192ng/L in the bottled, well, barreled, direct drinking and tap waters, respectively. Triethyl phosphate (TEP) was the most abundant OPE in the tap water and filtered drinking water with median concentrations of 50.2 and 30.2ng/L, respectively. The mixture of tri(chloropropyl) phosphate (TCPP) and tri(chloroisopropyl) phosphate (TCIPP), named here as TCPP, dominated in the barreled and well water with median concentrations of 8.04 and 2.49ng/L, respectively. The calculated average daily doses of OPEs ranged from 0.14 to 7.07ng/kgbw/day for people consuming the five different types of drinking water. Among the drinking water, the tap water exhibited the highest exposure doses of OPEs. The calculated non-cancer hazard quotients (10(-4)-10(-7)) from OPEs were much lower than the theoretical threshold of risk. The carcinogenic risks posed by TCEP were very low (<10(-7)) for all types of drinking water. The results revealed that there was currently low risk to human health from exposure to OPEs through drinking water in Eastern China. Copyright © 2015 Elsevier B.V. All rights reserved.
Manassaram, Deana M.; Backer, Lorraine C.; Moll, Deborah M.
2006-01-01
In this review we present an update on maternal exposure to nitrates in drinking water in relation to possible adverse reproductive and developmental effects, and also discuss nitrates in drinking water in the United States. The current standard for nitrates in drinking water is based on retrospective studies and approximates a level that protects infants from methemoglobinemia, but no safety factor is built into the standard. The current standard applies only to public water systems. Drinking water source was related to nitrate exposure (i.e., private systems water was more likely than community system water to have nitrate levels above the maximum contaminant limit). Animal studies have found adverse reproductive effects resulting from higher doses of nitrate or nitrite. The epidemiologic evidence of a direct exposure–response relationship between drinking water nitrate level and adverse reproductive effect is still not clear. However, some reports have suggested an association between exposure to nitrates in drinking water and spontaneous abortions, intrauterine growth restriction, and various birth defects. Uncertainties in epidemiologic studies include the lack of individual exposure assessment that would rule out confounding of the exposure with some other cause. Nitrates may be just one of the contaminants in drinking water contributing to adverse outcomes. We conclude that the current literature does not provide sufficient evidence of a causal relationship between exposure to nitrates in drinking water and adverse reproductive effects. Future studies incorporating individual exposure assessment about users of private wells—the population most at risk—should be considered. PMID:16507452
Zobrist, Jürg; Sima, Mihaela; Dogaru, Diana; Senila, Marin; Yang, Hong; Popescu, Claudia; Roman, Cecilia; Bela, Abraham; Frei, Linda; Dold, Bernhard; Balteanu, Dan
2009-08-01
In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues. The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km(2). About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite. The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis. The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L(-1), Fe 100 mg L(-1), Cu 2.9 mg L(-1), Cd 1.4 mg L(-1) as well as those of SO(4) up to 2.2 g L(-1). In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity. Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater. Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid-base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future. The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples' opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations. Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results. The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.
Benner, Jessica; Helbling, Damian E; Kohler, Hans-Peter E; Wittebol, Janneke; Kaiser, Elena; Prasse, Carsten; Ternes, Thomas A; Albers, Christian N; Aamand, Jens; Horemans, Benjamin; Springael, Dirk; Walravens, Eddy; Boon, Nico
2013-10-15
In western societies, clean and safe drinking water is often taken for granted, but there are threats to drinking water resources that should not be underestimated. Contamination of drinking water sources by anthropogenic chemicals is one threat that is particularly widespread in industrialized nations. Recently, a significant amount of attention has been given to the occurrence of micropollutants in the urban water cycle. Micropollutants are bioactive and/or persistent chemicals originating from diverse sources that are frequently detected in water resources in the pg/L to μg/L range. The aim of this review is to critically evaluate the viability of biological treatment processes as a means to remove micropollutants from drinking water resources. We first place the micropollutant problem in context by providing a comprehensive summary of the reported occurrence of micropollutants in raw water used directly for drinking water production and in finished drinking water. We then present a critical discussion on conventional and advanced drinking water treatment processes and their contribution to micropollutant removal. Finally, we propose biological treatment and bioaugmentation as a potential targeted, cost-effective, and sustainable alternative to existing processes while critically examining the technical limitations and scientific challenges that need to be addressed prior to implementation. This review will serve as a valuable source of data and literature for water utilities, water researchers, policy makers, and environmental consultants. Meanwhile this review will open the door to meaningful discussion on the feasibility and application of biological treatment and bioaugmentation in drinking water treatment processes to protect the public from exposure to micropollutants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical Contamination of California Drinking Water
Russell, Hanafi H.; Jackson, Richard J.; Spath, David P.; Book, Steven A.
1987-01-01
Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled and vended water and mineral water are regulated, and California is also taking measures to prevent water pollution by chemicals through various new laws and programs. PMID:3321714
Chemical contamination of California drinking water.
Russell, H H; Jackson, R J; Spath, D P; Book, S A
1987-11-01
Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled and vended water and mineral water are regulated, and California is also taking measures to prevent water pollution by chemicals through various new laws and programs.
Hydrogeological properties of bank storage area in Changwon city, Korea
NASA Astrophysics Data System (ADS)
Hamm, S.-Y.; Kim, H.-S.; Cheong, J.-Y.; Ryu, S. M.; Kim, M. J.
2003-04-01
Bank filtrated water has been used in developed countries such as United States, France, Germany, Austria, Nederland and so on. In Korea, most of the drinking water is provided from the surface water. However, drinking water acquisition is becoming difficult due to the degradation of surface water quality. In special, the quality of drinking water source is much lower in downstream area than in upstream area. Thus, the use of bank filtrated water is getting attracted by central and local governments in Korea. The bank filtrated water was surveyed in the areas of Yeongsan river, Nakdong river, Geum river and Han river. Up to present, however, the downstream areas of Nakdong river are most suitable places to apply the bank filtration system. This study investigates hydrogeological characteristics of bank-storage area located in Daesan- Myeon, Changwon city, adjacent the downstream of Nakdong river. Changwon city is the capital city of Gyeongsangnam-Do province. Changwon city uses water derived from Nakdong river as municipal water. However, the quantity and quality of the river water are gradually decreased. Thus, Changwon city developed two sites of bank filtration system in Daesan-myeon and Buk-myeon. Pumping rate is 2,000m3/day at present and will be increased to 60,000m3/day in Daesan-myeon site at the end of the first stage of the project. For the study, we conducted pumping tests four times on seven pumping wells (PW1, PW2, PW3, PW4, PW5, PW6, and PW7) and twelve drill holes (BH-2, OW2-OW12) in the area of 370 m x 100 m. Pumping wells PW1 and PW2 were drilled in 1999 by Samjung Engineering Co. and pumping wells PW3, PW4, PW5, PW6 and PW7 were drilled in 2000 by Donga Construction Co. and Daeduk Gongyeong Co. The pumping wells are located at 45-110 meters from Nakdong riverside. The geology of the study area is composed of volcanic rocks (Palryeongsan tuff and Jusasan andesitic rock) and alluvium. Palryeongsan tuff consists of mostly green tuff with partly tuffaceous sandstone, shale, mudstone and sandstone. Thick alluvium is overlain on Palryeongsan tuff (Samjung Engineering Co., 1999; Donga Construction Co. and Daeduk Gongyeong Co., 2000; Kim and Lee, 1964). The alluvium is composed of sand, sandy gravel and weathered zone from the surface (Table 1, Fig. 3). The aquifer is sandy gravel layer (Samjung Engineering Co., 1999). The gravel layer is thicker near the wells of PW1, PW2, PW3, and PW4 (13.5-17.5m), whereas is thinner near the wells of PW5, PW6, and PW7 (6.3-10.5m). The pumping data obtained were analyzed to determine hydraulic parameters (transmissivity and storativity) using various models of pumping test analysis. The appropriate models for the study area were found from several models. The selected model for observation well is Theis model using corrected drawdown and the selected model for pumped well is Papadopulos-Cooper model using corrected drawdown. As a result, alluvial aquifer in the study area behaviors as confined aquifer rather than phreatic aquifer. Thus, infiltration amount from the river to the aquifer in the study area is lower than that from river to phreatic aquifer for the same water level change. And also storativity of the aquifer is represented by elastic storativity rather than specific yield. Transmissivity obtained by the models ranges from 4.54x10-4 to 1.79x10-1 m2/s with arithmetic mean 2.92x10-2 m2/s. Storativity ranges from 2.59x10-4-5.54x10-1 with arithmetic mean 6.36x10-2. Frequency distribution of hydraulic parameters was determined from statistical analyses. The distribution of transmissivity values does not follow normal distribution showing skewness 2.36 and kurtosis 5.085. Aquifer heterogeneity was found by hydraulic parameters and subsurface geology data in the study area. Furthermore, hydraulic parameters obtained at a well that serves as both pumping well and observation well were compared, and the correlation equation was determined to evaluate hydraulic parameters considering aquifer loss. Transmissivity values obtained by the two cases do not show distinct correlation. However, storativity values obtained by the two cases show distinct negative correlation. ACKNOWLEDGEMENT The authors wish to acknowledge the financial support of the Sustainable Water Resources Research Center under the program of the 21st Century Frontier R&D Program by the Korean government (project no: 3-4-1).
2012-01-01
Background Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents’ drinking water choices. Methods We conducted a cross-sectional survey to investigate residents’ water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. Results The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one’s health belief and drinking water choices (P < 0.001). Age, personal income, education, housing condition, risk perception also played important roles (P < 0.05) in the models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Conclusions Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai. PMID:22708830
Chen, Hanyi; Zhang, Yaying; Ma, Linlin; Liu, Fangmin; Zheng, Weiwei; Shen, Qinfeng; Zhang, Hongmei; Wei, Xiao; Tian, Dajun; He, Gengsheng; Qu, Weidong
2012-06-18
Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents' drinking water choices. We conducted a cross-sectional survey to investigate residents' water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one's health belief and drinking water choices (P < 0.001). Age, personal income, education, housing condition, risk perception also played important roles (P < 0.05) in the models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai.
Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.; Briggs, Paul H.; Meier, Allen L.; Muzik, Timothy L.
2003-01-01
Remediation of the Elizabeth mine Superfund site in the Vermont copper belt poses challenges for balancing environmental restoration goals with issues of historic preservation while adopting cost-effective strategies for site cleanup and long-term maintenance. The waste-rock pile known as TP3, at the headwaters of Copperas Brook, is especially noteworthy in this regard because it is the worst source of surface- and ground-water contamination identified to date, while also being the area of greatest historical significance. The U.S. Geological Survey (USGS) conducted a study of the historic mine-waste piles known as TP3 at the Elizabeth mine Superfund site near South Strafford, Orange County, VT. TP3 is a 12.3-acre (49,780 m2) subarea of the Elizabeth mine site. It is a focus area for historic preservation because it encompasses an early 19th century copperas works as well as waste from late 19th- and 20th century copper mining (Kierstead, 2001). Surface runoff and seeps from TP3 form the headwaters of Copperas Brook. The stream flows down a valley onto flotation tailings from 20th century copper mining operations and enters the West Branch of the Ompompanoosuc River approximately 1 kilometer downstream from the mine site. Shallow drinking water wells down gradient from TP3 exceed drinking water standards for copper and cadmium (Hathaway and others, 2001). The Elizabeth mine was listed as a Superfund site in 2001, mainly because of impacts of acid-mine drainage on the Ompompanoosuc River.
Groundwater Molybdenum from Emerging Industries in Taiwan.
Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long
2016-01-01
This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p < 0.05) than those from non-potentially contaminated areas (0.0022 mg/L). The highest Mo wastewater concentrations in the effluent from the optoelectronics industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.
Drinking Water Contaminants -- Standards and Regulations
... Labs and Research Centers Contact Us Share Drinking Water Contaminants – Standards and Regulations EPA identifies contaminants to regulate in drinking water to protect public health. The Agency sets regulatory ...
Regulation Development for Drinking Water Contaminants
To explain what process and information underlies regulations including how the Safe Drinking Water Act applies to regulation development i.e. how does the drinking water law translate into regulations.
Hampton, Karla E.
2011-01-01
Children and adolescents are not consuming enough water, instead opting for sugar-sweetened beverages (sodas, sports and energy drinks, milks, coffees, and fruit-flavored drinks with added sugars), 100% fruit juice, and other beverages. Drinking sufficient amounts of water can lead to improved weight status, reduced dental caries, and improved cognition among children and adolescents. Because children spend most of their day at school and in child care, ensuring that safe, potable drinking water is available in these settings is a fundamental public health measure. We sought to identify challenges that limit access to drinking water; opportunities, including promising practices, to increase drinking water availability and consumption; and future research, policy efforts, and funding needed in this area. PMID:21680941
Al-Khatib, Issam A; Orabi, Moammar
2004-05-01
We studied the biological characteristics of drinking-water in three villages in Ramallah and al-Bireh district, by testing the total coliforms. Water samples were collected from rain-fed cisterns between October and November 2001. The results show that 87% of tested samples of drinking-water were highly contaminated and in need of coagulation, filtration and disinfection based on the World Health Organization guidelines for drinking-water, and 10.5% had low contamination and were in need of treatment by disinfection only. Only 2.5% of the tested samples were not contaminated and were suitable for drinking without treatment. The main cause of drinking-water con tamination was the presence of cesspits, wastewater and solid waste dumping sites near the cisterns.
Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence
Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...
40 CFR 141.205 - Content of the public notice.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 141.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations... violations of National Primary Drinking Water Regulations (NPDWR) or other situations requiring a public...
40 CFR 141.205 - Content of the public notice.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 141.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations... violations of National Primary Drinking Water Regulations (NPDWR) or other situations requiring a public...
40 CFR 141.205 - Content of the public notice.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 141.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations... violations of National Primary Drinking Water Regulations (NPDWR) or other situations requiring a public...
Zhang, Xiao-Ping; He, Yan-Yan; Zhu, Qian; Ma, Xiao-Jiang; Cai, Li
2010-12-30
To understand the contamination status of Cryptosporidium sp. and Giardia lamblia in drinking water, source water and environmental water in Shanghai. All water samples collected from drinking water, source water and environmental water were detected by a procedure of micromembrane filtration, immune magnetic separation (IMS), and immunofluorescent assay (IFA). Cryptosporidium oocysts and Giardia cysts were not found in 156 samples of the drinking water including finished water, tap water, or pipe water for directly drinking in communities. Among 70 samples either source water of water plants (15 samples), environmental water from Huangpu River(25), canal water around animal sheds(15), exit water from waste-water treatment plants(9), or waste water due to daily life(6), Cryptosporidium oocysts were detected in 1(6.7%), 2(8.0%), 7(46.7%), 1(11.1%), and 1(16.7%) samples, respectively; and Giardia cysts were detected in 1(6.7%), 3(12.0%), 6 (40.0%), 2(22.2%), and 2(33.3%), respectively. The positive rate of Cryptosporidium oocysts and Giardia cysts was 17.1% (12/70) and 20.0% (14/70), respectively. No Cryptosporidium oocysts and Giardia cysts have been detected in drinking water, but found in source water and environmental water samples in Shanghai.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... Inform Hydraulic Fracturing Research Related to Drinking Water Resources AGENCY: Environmental Protection... specific to inform EPA's research study on the potential impacts of hydraulic fracturing on drinking water... scientific literature to inform EPA's research on the potential impacts of hydraulic fracturing on drinking...
Occurrence and Control of Genotoxins in Drinking Water: A Monitoring Proposal
Ceretti, Elisabetta; Moretti, Massimo; Zerbini, Ilaria; Villarini, Milena; Zani, Claudia; Monarca, Silvano; Feretti, Donatella
2016-01-01
Many studies have shown the presence of numerous organic genotoxins and carcinogens in drinking water. These toxic substances derive not only from pollution, but also from the disinfection treatments, particularly when water is obtained from surface sources and then chlorinated. Most of the chlorinated compounds in drinking water are nonvolatile and are difficult to characterize. Thus, it has been proposed to study such complex mixtures using short-term genotoxicity tests predictive of carcinogenic activity. Mutagenicity of water before and after disinfection has mainly been studied by the Salmonella/microsome (Ames test); in vitro genotoxicity tests have also been performed in yeasts and mammalian cells; in situ monitoring of genotoxins has also been performed using complete organisms such as aquatic animals or plants (in vivo). The combination of bioassay data together with results of chemical analyses would give us a more firm basis for the assessment of human health risks related to the consumption of drinking water. Tests with different genetic end-points complement each other with regard to sensitivity toward environmental genotoxins and are useful in detecting low genotoxicity levels which are expected in drinking water samples. Significance for public health The provision of a safe drinking water is an important public health problem. Many studies have shown the presence of numerous genotoxins and carcinogens in drinking water. These toxic substances derive not only from pollution, but also from the disinfection treatments, particularly when water is obtained from surface sources and then chlorinated. The potential health risks of disinfection by-products (DBPs) from drinking water include cancer and adverse reproductive outcomes. People are exposed to disinfected drinking/shower/bathing water as a mixture of at least 600 identified DBPs and other toxic compounds via dermal, inhalation, and ingestion routes. Many of these substances are present in trace concentration, hardly detectable by chemical standard analysis. The monitoring of environmental genotoxins by short-term bioassays could allow a better evaluation of the global human exposure to water genotoxins and could help health officers and drinking water managers to reduce genotoxic hazards and distribute high quality drinking water. PMID:28083525
Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota
Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influenc...
ATRAZOME CHLORINATION TRANSFORMATION PRODUCTS UNDER DRINKING WATER DISTRIBUTION SYSTEM CONDITIONS
Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water, along with dissolved organic and inorganic chemicals, will rea...
Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)
Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...
Bylund, John; Toljander, Jonas; Lysén, Maria; Rasti, Niloofar; Engqvist, Jannes; Simonsson, Magnus
2017-06-01
There is an increasing awareness that drinking water contributes to sporadic gastrointestinal illness (GI) in high income countries of the northern hemisphere. A literature search was conducted in order to review: (1) methods used for investigating the effects of public drinking water on GI; (2) evidence of possible dose-response relationship between sporadic GI and drinking water consumption; and (3) association between sporadic GI and factors affecting drinking water quality. Seventy-four articles were selected, key findings and information gaps were identified. In-home intervention studies have only been conducted in areas using surface water sources and intervention studies in communities supplied by ground water are therefore needed. Community-wide intervention studies may constitute a cost-effective alternative to in-home intervention studies. Proxy data that correlate with GI in the community can be used for detecting changes in the incidence of GI. Proxy data can, however, not be used for measuring the prevalence of illness. Local conditions affecting water safety may vary greatly, making direct comparisons between studies difficult unless sufficient knowledge about these conditions is acquired. Drinking water in high-income countries contributes to endemic levels of GI and there are public health benefits for further improvements of drinking water safety.
Mel'tser, A V; Erastova, N V; Kiselev, A V
2013-01-01
Providing population with quality drinking water--one of the priority tasks of the state policy aimed at maintaining the health of citizens. Hygienic rating of the drinking water quality envisages requirements to assurance its safety in the epidemiological and radiation relations, harmlessness of chemical composition and good organoleptic properties. There are numerous data proving the relationship between the chemical composition of drinking water and human health, and therefore the issue of taking a hygienically sound measures to improve the efficiency of water treatment has more and more priority. High water quality--the result of complex solution of tasks, including an integral approach to assessment of the quality of drinking water the use of hygienically sound decisions in the modernization of water treatment systems. The results of the integral assessment of drinking water on the properties of harmlessness have shown its actuality in the development and implementation of management decisions. The use of the spatial characteristics of integrated indices permits to visualize changes in the quality of drinking water in all stages of production and transportation from the position of health risks, evaluate the effectiveness of technological solutions and set priorities for investing.
The following provides a checklist that will help you take advantage of Drinking Water State Revolving Funds. For more detailed information on Drinking Water SRF, see DWSRF in Fed FUNDS. For more information on Clean Water SRF, see CWSRF in Fed FUNDS.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... revising its approved Public Water System Supervision Program to adopt EPA's National Primary Drinking..., 24th Floor Drinking Water Ground Water Protection Section, 290 Broadway, New York, New York 10007-1866. FOR FURTHER INFORMATION CONTACT: Michael J. Lowy, Drinking Water Ground Water Protection Section, U.S...
Oh, Jin-Aa; Shin, Ho-Sang
2015-05-22
An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to determine the level of hydrazine in drinking water. The method is based on the derivatization of hydrazine with naphthalene-2,3-dicarboxaldehyde (NDA) in water. The optimum conditions for UPLC-MS/MS detection were determined as follows: derivatization reagent dosage, 50mg/L of NDA; pH 2; and reaction time, 1min; room temperature. The formed derivative was injected into an LC system without extraction or purification procedures. Under the established conditions, the method was used to detect hydrazine in raw drinking water and chlorinated drinking water. The limits of detection and quantification for hydrazine in drinking water were 0.003μg/L and 0.01μg/L, respectively. The accuracy was in the range of 97-104%, and precision, expressed as relative standard deviation, was less than 9% in drinking water. Hydrazine was detected at a concentration of 0.13μg/L in one sample among 24 raw drinking water samples and in a range of 0.04-0.45μg/L in three samples among 24 chlorinated drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Hang, Xiao-Shuai; Wang, Huo-Yan; Zhou, Jian-Min
2008-10-01
Surface water and shallow groundwater within the flow of an electroplating factory was analyzed in order to study the resulting impact. The analysis method of ICP-AES was used to analyze content of zinc, manganese, chromium, copper and nickel in surface water and groundwater samples. The results indicate acidic pollutants of zinc, manganese, chromium, copper and nickel were discharged from the factory with concentrations of 1.34, 3.77, 28.1, 6.40 and 9.37 mg x L(-1), respectively; and pH was 2.32. They all exceeded permissible levels according to Integrated Wastewater Discharge Standard except zinc. Factory discharge is responsible for the longitudinal distribution characteristics of heavy metals in the stream water downstream from the factory. Heavy metals variations in the well water do not suggest they were affected by heavy metals in the stream, indicating that the migration rates of heavy metals in soils were relatively low. Risk assessment shows surface water quality significantly deteriorated. Nickel and manganese in the stream water exceeded the standard levels seriously, and chromium and copper in some samples were also above Grade III standard levels according to Environmental Quality Standard for Surface Water. Moreover, all studied heavy metals in 14 groundwater samples measured within drinking water standard, except manganese in 4 groundwater samples, which were Grade IV according to Quality Standard for Ground water.
A spatial evaluation of global wildfire-water risks to human and natural systems.
Robinne, François-Nicolas; Bladon, Kevin D; Miller, Carol; Parisien, Marc-André; Mathieu, Jérôme; Flannigan, Mike D
2018-01-01
The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for human activities and ecosystems is required for sustainable development; however, no global assessment of wildfire impacts on water supply is currently available. Here, we provide the first global evaluation of wildfire risks to water security, in the form of a spatially explicit index. We adapted the Driving forces-Pressure-State-Impact-Response risk analysis framework to select a comprehensive set of indicators of fire activity and water availability, which we then aggregated to a single index of wildfire-water risk using a simple additive weighted model. Our results show that water security in many regions of the world is potentially vulnerable, regardless of socio-economic status. However, in developing countries, a critical component of the risk is the lack of socio-economic capability to respond to disasters. Our work highlights the importance of addressing wildfire-induced risks in the development of water security policies; the geographic differences in the components of the overall risk could help adapting those policies to different regional contexts. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Lithium in drinking water and suicide mortality: interplay with lithium prescriptions
Helbich, Marco; Leitner, Michael; Kapusta, Nestor D.
2015-01-01
Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking water, prescribed lithium-based pharmaceuticals and suicide in Austria. Method Spatial Bayesian regressions for males, females and pooled suicide mortality rates were estimated. Results Although the expected inverse association between lithium levels in drinking water and suicide mortality was confirmed for males and for total suicide rates, the relationship for females was not significant. The models do not indicate that lithium from prescriptions, assumed to accumulate in drinking water, is related to suicide risk patterns either as an individual effect or as a moderator of lithium levels in drinking water. Gender-specific differences in risk factors and local risk hot spots are confirmed. Conclusions The findings do not support the hypotheses that lithium prescriptions have measureable protective effects on suicide or that they interact with lithium in drinking water. PMID:25953888
Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion
Fewtrell, Lorna
2004-01-01
On behalf of the World Health Organization (WHO), I have undertaken a series of literature-based investigations examining the global burden of disease related to a number of environmental risk factors associated with drinking water. In this article I outline the investigation of drinking-water nitrate concentration and methemoglobinemia. The exposure assessment was based on levels of nitrate in drinking water greater than the WHO guideline value of 50 mg/L. No exposure–response relationship, however, could be identified that related drinking-water nitrate level to methemoglobinemia. Indeed, although it has previously been accepted that consumption of drinking water high in nitrates causes methemoglobinemia in infants, it appears now that nitrate may be one of a number of co-factors that play a sometimes complex role in causing the disease. I conclude that, given the apparently low incidence of possible water-related methemoglobinemia, the complex nature of the role of nitrates, and that of individual behavior, it is currently inappropriate to attempt to link illness rates with drinking-water nitrate levels. PMID:15471727
Lithium in drinking water and suicide mortality: interplay with lithium prescriptions.
Helbich, Marco; Leitner, Michael; Kapusta, Nestor D
2015-07-01
Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. To examine the interplay between natural lithium in drinking water, prescribed lithium-based pharmaceuticals and suicide in Austria. Spatial Bayesian regressions for males, females and pooled suicide mortality rates were estimated. Although the expected inverse association between lithium levels in drinking water and suicide mortality was confirmed for males and for total suicide rates, the relationship for females was not significant. The models do not indicate that lithium from prescriptions, assumed to accumulate in drinking water, is related to suicide risk patterns either as an individual effect or as a moderator of lithium levels in drinking water. Gender-specific differences in risk factors and local risk hot spots are confirmed. The findings do not support the hypotheses that lithium prescriptions have measureable protective effects on suicide or that they interact with lithium in drinking water. © The Royal College of Psychiatrists 2015.
Rufener, Simonne; Mäusezahl, Daniel; Mosler, Hans-Joachim; Weingartner, Rolf
2010-02-01
In-house contamination of drinking-water is a persistent problem in developing countries. This study aimed at identifying critical points of contamination and determining the extent of recontamination after water treatment. In total, 81 households were visited, and 347 water samples from their current sources of water, transport vessels, treated water, and drinking vessels were analyzed. The quality of water was assessed using Escherichia coli as an indicator for faecal contamination. The concentration of E. coli increased significantly from the water source [median=0 colony-forming unit (CFU)/100 mL, interquartile range (IQR: 0-13)] to the drinking cup (median=8 CFU/100 mL; IQR: 0-550; n=81, z=-3.7, p<0.001). About two-thirds (34/52) of drinking vessels were contaminated with E. coli. Although boiling and solar disinfection of water (SODIS) improved the quality of drinking-water (median=0 CFU/100 mL; IQR: 0-0.05), recontamination at the point-of-consumption significantly reduced the quality of water in the cups (median=8, IQR: 0-500; n=45, z=-2.4, p=0.015). Home-based interventions in disinfection of water may not guarantee health benefits without complementary hygiene education due to the risk of posttreatment contamination.
Bain, Rob ES; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K
2012-01-01
Abstract Objective To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Methods Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Findings Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. Conclusion The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement. PMID:22461718
Report: EPA Lacks Internal Controls to Prevent Misuse of Emergency Drinking Water Facilities
Report #11-P-0001, October 12, 2010. EPA cannot accurately assess the risk of public water systems delivering contaminated drinking water from emergency facilities because of limitations in Safe Drinking Water Information System (SDWIS) data management.
40 CFR 141.130 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Disinfectant Residuals, Disinfection Byproducts, and... constitute national primary drinking water regulations. (1) The regulations in this subpart establish...) which add a chemical disinfectant to the water in any part of the drinking water treatment process must...
Nichols, R. A. B.; Connelly, L.; Sullivan, C. B.; Smith, H. V.
2010-01-01
We analyzed 1,042 Cryptosporidium oocyst-positive slides (456 from raw waters and 586 from drinking waters) of which 55.7% contained 1 or 2 oocysts, to determine species/genotypes present in Scottish waters. Two nested PCR-restriction fragment length polymorphism (RFLP) assays targeting different loci (1 and 2) of the hypervariable region of the 18S rRNA gene were used for species identification, and 62.4% of samples were amplified with at least one of the PCR assays. More samples (577 slides; 48.7% from raw water and 51.3% from drinking water) were amplified at locus 1 than at locus 2 (419 slides; 50.1% from raw water and 49.9% from drinking water). PCR at loci 1 and 2 amplified 45.4% and 31.7% of samples containing 1 or 2 oocysts, respectively. We detected both human-infectious and non-human-infectious species/genotype oocysts in Scottish raw and drinking waters. Cryptosporidium andersoni, Cryptosporidium parvum, and the Cryptosporidium cervine genotype (now Cryptosporidium ubiquitum) were most commonly detected in both raw and drinking waters, with C. ubiquitum being most common in drinking waters (12.5%) followed by C. parvum (4.2%) and C. andersoni (4.0%). Numerous samples (16.6% total; 18.9% from drinking water) contained mixtures of two or more species/genotypes, and we describe strategies for unraveling their identity. Repetitive analysis for discriminating mixtures proved useful, but both template concentration and PCR assay influenced outcomes. Five novel Cryptosporidium spp. (SW1 to SW5) were identified by RFLP/sequencing, and Cryptosporidium sp. SW1 was the fourth most common contaminant of Scottish drinking water (3%). PMID:20639357
Flores Ribeiro, Angela; Bodilis, Josselin; Alonso, Lise; Buquet, Sylvaine; Feuilloley, Marc; Dupont, Jean-Paul; Pawlak, Barbara
2014-08-15
Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods. Copyright © 2014 Elsevier B.V. All rights reserved.
Water temperature, voluntary drinking and fluid balance in dehydrated taekwondo athletes.
Khamnei, Saeed; Hosseinlou, Abdollah; Zamanlu, Masumeh
2011-01-01
Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C) for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C) does not improve voluntary drinking and hydration status. Key pointsFor athletes dehydrated in hot environments, maximum voluntary drinking and best hydration state occurs with 16°C water.Provision of fluid needs and thermal needs could be balanced using 16°C water.Drinking 16°C water (nearly the temperature of cool tap water) could be recommended for exercise in the heat.
Hong, Ye; Chunhong, Zhou; Xiaoxiong, Zeng
2009-11-01
Concentration and composition of polychlorinated biphenyls (PCBs) in the typical drinking water sources in Jiangsu Province were studied by scene investigation and physical and chemical analyses as well. Total amount of PCBs in some surface water and surface microlayers exceeded the standard (20 ng/l) in the "Environmental Quality Standard of Surface Water". There were less PCBs in suspended substances and bottom mud. It reflected that there was less PCB pollution in drinking water sources in Jiangsu Province for quite a long period. The main kind of PCBs in the typical drinking water sources was dichlorobiphenyl. Monochlorobiphenyl and trichlorobiphenyl ranked next to dichlorobiphenyl. In the study of PCB distribution in drinking water sources, it was found that the concentration of PCBs in surface microlayer was higher than that in deep water. The concentration of PCBs along the Yangtze River bank was more than that in the middle of Yangtze River. PCBs in the typical drinking water sources mostly came from by-products in industrial production.
TREATABILITY DATABASE DESCRIPTION
The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities, first responders to spills or emergencies, treatment process designers, research organizations, academics, regulato...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cleaned and maintained in good order. (b) Drinking water. (1) Potable drinking water shall be accessible... water and ice, and shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited...
Code of Federal Regulations, 2010 CFR
2010-07-01
... cleaned and maintained in good order. (b) Drinking water. (1) Potable drinking water shall be accessible... water and ice, and shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited...
Grigorev, Yu I; Lyapina, N V
2014-01-01
The hygienic analysis of centralized drinking water supply in Tula region was performed. Priority contaminants of drinking water were established. On the base of the application of risk assessment methodology there was calculated carcinogenic risk for children's health. A direct relationship between certain classes of diseases and pollution of drinking water with chemical contaminants has been determined.
Limited school drinking water access for youth
Kenney, Erica L.; Gortmaker, Steven L.; Cohen, Juliana F.W.; Rimm, Eric B.; Cradock, Angie L.
2016-01-01
PURPOSE Providing children and youth with safe, adequate drinking water access during school is essential for health. This study utilized objectively measured data to investigate the extent to which schools provide drinking water access that meets state and federal policies. METHODS We visited 59 middle and high schools in Massachusetts during spring 2012. Trained research assistants documented the type, location, and working condition of all water access points throughout each school building using a standard protocol. School food service directors (FSDs) completed surveys reporting water access in cafeterias. We evaluated school compliance with state plumbing codes and federal regulations and compared FSD self-reports of water access with direct observation; data were analyzed in 2014. RESULTS On average, each school had 1.5 (SD: 0.6) water sources per 75 students; 82% (SD: 20) were functioning, and fewer (70%) were both clean and functioning. Less than half of the schools met the federal Healthy Hunger Free Kids Act requirement for free water access during lunch; 18 schools (31%) provided bottled water for purchase but no free water. Slightly over half (59%) met the Massachusetts state plumbing code. FSDs overestimated free drinking water access compared to direct observation (96% FSD-reported versus 48% observed, kappa=0.07, p=0.17). CONCLUSIONS School drinking water access may be limited. In this study, many schools did not meet state or federal policies for minimum student drinking water access. School administrative staff may not accurately report water access. Public health action is needed to increase school drinking water access. IMPLICATIONS AND CONTRIBUTIONS Adolescents’ water consumption is lower than recommended. In a sample of Massachusetts middle and high schools, about half did not meet federal and state minimum drinking water access policies. Direct observation may improve assessments of drinking water access and could be integrated into routine school food service monitoring protocols. PMID:27235376
Climate change and drinking water production in The Netherlands: a flexible approach.
Ramaker, T A B; Meuleman, A F M; Bernhardi, L; Cirkel, G
2005-01-01
Climate change increases water system dynamics through temperature changes, changes in precipitation patterns, evaporation, water quality and water storage in ice packs. Water system dependent economical stakeholders, such as drinking water companies in The Netherlands, have to cope with consequences of climate change, e.g. floods and water shortages in river systems, upconing brackish ground water, salt water intrusion, increasing peak demands and microbiological activity. In the past decades, however, both water systems and drinking water production have become more and more inflexible; water systems have been heavily regulated and the drinking water supply has grown into an inflexible, but cheap and reliable, system. Flexibility and adaptivity are solutions to overcome climate change related consequences. Flexible adaptive strategies for drinking water production comprise new sources for drinking water production, application of storage concepts in the short term, and a redesign of large centralised systems, including flexible treatment plants, in the long term. Transition to flexible concepts will take decades because investment depreciation periods of assets are long. This implies that long-term strategies within an indicated time path have to be developed. These strategies must be based on thorough knowledge of current assets to seize opportunities for change.
Ferdous, Jannatul; Sultana, Rebeca; Rashid, Ridwan B.; Tasnimuzzaman, Md.; Nordland, Andreas; Begum, Anowara; Jensen, Peter K. M.
2018-01-01
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae (V. cholerae) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from “point-of-drinking” and “source” in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds (P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14–42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds (p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85–29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19–18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera. PMID:29616005
Time to revisit arsenic regulations: comparing drinking water and rice.
Sauvé, Sébastien
2014-05-17
Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l(-1) was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l(-1). Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.
Thippeswamy, H M; Kumar, Nanditha; Anand, S R; Prashant, G M; Chandu, G N
2010-01-01
The regular ingestion of fluoride lowers the prevalence of dental caries. The total daily intake of fluoride for optimal dental health should be 0.05-0.07 mg fluoride/kg body weight and to avoid the risk of dental fluorosis, the daily intake should not exceed a daily level of 0.10 mg fluoride/kg body weight. The main source of fluoride is from drinking water and other beverages. As in other countries, consumption of bottled water, juices and carbonated beverages has increased in our country. To analyze the fluoride content in bottled water, juices and carbonated soft drinks that were commonly available in Davangere city. Three samples of 10 commercially available brands of bottled drinking water, 12 fruit juices and 12 carbonated soft drinks were purchased. Bottled water and carbonated soft drinks were stored at a cold place until fluoride analysis was performed and a clear juice was prepared using different fruits without the addition of water. Then, the fluoride analysis was performed. The mean and standard deviation of fluoride content of bottled water, fruit juices and carbonated soft drinks were measured, which were found to be 0.20 mg (±0.19) F/L, 0.29 mg (±0.06) F/L and 0.22 mg (±0.05) F/L, respectively. In viewing the results of the present study, it can be concluded that regulation of the optimal range of fluoride in bottled drinking water, carbonated soft drinks and fruit juices should be drawn for the Indian scenario.
Performance of Traditional and Molecular Methods for Detecting Biological Agents in Drinking Water
USGS Report - To reduce the impact from a possible bioterrorist attack on drinking-water supplies, analytical methods are needed to rapidly detect the presence of biological agents in water. To this end, 13 drinking-water samples were collected at 9 water-treatment plants in Ohio...
Microbial pathogens in source and treated waters from drinking water treatment plants in the US
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...
IN-FIELD PRESERVATION OF ARSENIC SPECIES IN DRINKING WATER USING EDTA
The two predominant inorganic arsenic species found in drinking waters are As(III) and As(V). As(III) is commonly associated with ground waters while As(V) is associated with surface waters. The efficiency of arsenic removal from a drinking water supply is dependent on the oxid...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
Report #17-P-0326, July 18, 2017. The EPA is taking action to improve oversight tools used to determine whether public water systems are monitoring and reporting drinking water quality in accordance with the Safe Drinking Water Act.
7TH JAPAN - U.S. CONFERENCE ON DRINKING WATER QUALITY MANAGEMENT AND WASTEWATER CONTROL
Update on U.S. Drinking Water and Water Quality Research
The U.S. Environmental Protection Agency's (U.S. EPA) Office of Research and development continues to conduct drinking water and water quality related research to address high priority environmental problems. Curr...
33 CFR 214.10 - Types of assistance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEFENSE EMERGENCY SUPPLIES OF DRINKING WATER § 214.10 Types of assistance. The temporary emergency supplies of clean drinking water may be provided through such actions as: (a) The use of water tank trucks to haul clean drinking water from a nearby known safe source to water points established for local...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
....'' This includes exposure through drinking water and in residential settings, but does not include..., EPA examines exposure to the pesticide through food, drinking water, and through other exposures that... other non-occupational exposures, including drinking water from ground water or surface water and...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
33 CFR 214.10 - Types of assistance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEFENSE EMERGENCY SUPPLIES OF DRINKING WATER § 214.10 Types of assistance. The temporary emergency supplies of clean drinking water may be provided through such actions as: (a) The use of water tank trucks to haul clean drinking water from a nearby known safe source to water points established for local...
Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...
The Safe Drinking Water Act's 1996 Amendments broadened the definition of public water systems (PWS) to include systems which serve drinking water to as few as 25 individuals. Implementation of the proposed Ground Water Rule for Pathogens will place an increased burden on utiliti...
Jianjun, Jin; Wenyu, Wang; Ying, Fan; Xiaomin, Wang
2016-06-01
The aim of this study is to elicit local residents' willingness to pay (WTP), by applying the contingent valuation method as a surcharge on their water bill, for a given improvement in the drinking water quality and the supply reliability. The mean WTP for the drinking water quality improvement program was estimated to be 16.71 yuan (0.3% of total household income). The results note that more educated respondents and households with higher income and with fewer household members are, on average, willing to pay more. This study also demonstrates that respondents' concerns regarding drinking water quality and perceptions of the health risk of drinking water quality can have significant positive impacts on people's WTP. The research results can help decision-makers understand the local population's demand for improved drinking water quality and undertake an environmental cost-benefit analysis.
Toenails as a biomarker of inorganic arsenic intake from drinking water and foods.
Slotnick, Melissa J; Meliker, Jaymie R; AvRuskin, Gillian A; Ghosh, Debashis; Nriagu, Jerome O
2007-01-15
Toenails were used recently in epidemiological and environmental health studies as a means of assessing exposure to arsenic from drinking water. While positive correlations between toenail and drinking-water arsenic concentrations were reported in the literature, a significant percentage of the variation in toenail arsenic concentration remains unexplained by drinking-water concentration alone. Here, the influence of water consumption at home and work, food intake, and drinking-water concentration on toenail arsenic concentration was investigated using data from a case-control study being conducted in 11 counties of Michigan. The results from 440 controls are presented. Log-transformed drinking-water arsenic concentration at home was a significant predictor (p < .05) of toenail arsenic concentration (R2 = .32). When arsenic intake from consumption of tap water and beverages made from tap water (microg/L arsenic x L/d = microg/d) was used as a predictor variable, the correlation was markedly increased for individuals with >1 microg/L arsenic (R2 = .48). Increased intake of seafood and intake of arsenic from water at work were independently and significantly associated with increased toenail arsenic concentration. However, when added to intake at home, work drinking-water exposure and food intake had little influence on the overall correlation. These results suggest that arsenic exposure from drinking-water consumption is an important determinant of toenail arsenic concentration, and therefore should be considered when validating and applying toenails as a biomarker of arsenic exposure.
Norovirus contamination of a drinking water supply at a hotel resort.
Jack, Susan; Bell, Derek; Hewitt, Joanne
2013-12-13
To investigate a waterborne gastroenteritis outbreak and consider wider environmental contamination concerns. An acute gastroenteritis outbreak was investigated through interviews, analysis of faecal samples, drinking water and environmental water samples. A total of 53 cases reported an illness of acute gastroenteritis following stays and/or dining at a hotel or neighbouring resort in southern New Zealand over a 1-month period in early spring 2012. The consumption of table or tap water was strongly associated with the illness. Faecal samples were positive for norovirus (NoV) genogroup I and II (GI and GII). Drinking tap water samples were positive for NoV GI and GII but negative for Escherichia coli (E. coli). Wider environmental water testing at local drinking water sources, around the sewage disposal field and at the nearby river showed the presence of NoV GI and GII. Voluntary boil water notices were issued and implemented with no further cases following this action. Additional treatment of drinking water supplies has been implemented and sewerage disposal concerns referred to local government. Investigation of this gastroenteritis outbreak revealed contamination of both drinking water and the wider environment with NoV. Bacterial indicators do not adequately cover contamination by viruses but due to costs, frequent virus monitoring programmes are currently impractical. A strategy to decrease environmental contamination of drinking water supplies in this busy tourist location through improved management of sewage disposal and drinking water is urgently required.
EPA's Drinking Water Action Plan serves as a national call to action, urging all levels of government, utilities, community organizations, and other stakeholders to work together to increase the safety and reliability of drinking water.
Esralew, Rachel A.; Tortorelli, Robert L.
2010-01-01
The city of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw Basin in northwestern Arkansas and northeastern Oklahoma for public water supply. The city has spent millions of dollars over the last decade to eliminate taste and odor problems in the drinking water from the Eucha-Spavinaw system, which may be attributable to blue-green algae. Increases in the algal biomass in the lakes may be attributable to increases in nutrient concentrations in the lakes and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized total nitrogen and total phosphorus concentrations in water samples and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations during base flow and runoff for two streams discharging to Lake Eucha for the period January 2002 through December 2009. This report updates a previous report that used data from water-quality samples collected from January 2002 through December 2006. Based on the results from the Mann-Whitney statistical test, unfiltered total nitrogen concentrations were significantly greater in runoff water samples than in base-flow water samples collected from Spavinaw Creek near Maysville and near Cherokee City, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Nitrogen concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Nitrogen concentrations in base-flow and runoff water samples collected in Spavinaw Creek significantly increased from the station furthest upstream (near Maysville) to the Sycamore station and then significantly decreased from the Sycamore station to the station furthest downstream (near Colcord). Nitrogen concentrations in base-flow and runoff water samples collected from Beaty Creek were significantly less than base-flow and runoff water samples collected from Spavinaw Creek. Based on the results from the Mann-Whitney statistical test, unfiltered total phosphorus concentrations were significantly greater in runoff water samples than in base-flow water samples for the entire period for most stations, except in water samples collected from Spavinaw Creek near Cherokee City, in which no significant difference was detected for the entire period nor for any season. Phosphorus concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Based on results from a multi-stage Kruskal-Wallis statistical test, phosphorus concentrations in base-flow water samples collected from Spavinaw Creek significantly increased from the Maysville station to the Cherokee City station, probably because of discharge from a municipal wastewater-treatment plant between those stations. Phosphorus concentrations significantly decreased downstream from the Cherokee City station to the Colcord station. Phosphorus concentrations in base-flow water samples collected from Beaty Creek were significantly less than phosphorus in base-flow water samples collected from Spavinaw Creek downstream from the Maysville station. View report for unabridged abstract.
Bin, Ge; Liu, Haifeng; Zhao, Chunyuan; Zhou, Guangkai; Ding, Xuchen; Zhang, Na; Xu, Yongfang; Qi, Yanhua
2016-10-01
The purpose of this study was to evaluate the refractive errors and the demographic associations between drinking water with excessive fluoride and normal drinking water among residents in Northern China. Of the 1843 residents, 1415 (aged ≥40 years) were divided into drinking-water-excessive fluoride (DWEF) group (>1.20 mg/L) and control group (≤1.20 mg/L) on the basis of the fluoride concentrations in drinking water. Of the 221 subjects in the DWEF group, with 1.47 ± 0.25 mg/L (fluoride concentrations in drinking water), the prevalence rates of myopia, hyperopia, and astigmatism were 38.5 % (95 % confidence interval [CI] = 32.1-45.3), 19.9 % (95 % CI = 15-26), and 41.6 % (95 % CI = 35.1-48.4), respectively. Of the 1194 subjects in the control group with 0.20 ± 0.18 mg/L, the prevalence of myopia, hyperopia, and astigmatism were 31.5 % (95 % CI = 28.9-34.2), 27.6 % (95 % CI = 25.1-30.3), and 45.6 % (95 % CI = 42.8-48.5), respectively. A statistically significant difference was not observed in the association of spherical equivalent and fluoride concentrations in drinking water (P = 0.84 > 0.05). This report provides the data of the refractive state of the residents consuming drinking water with excess amounts of fluoride in northern China. The refractive errors did not result from ingestion of mild excess amounts of fluoride in the drinking water.
Ma, Liping; Li, Bing; Jiang, Xiao-Tao; Wang, Yu-Lin; Xia, Yu; Li, An-Dong; Zhang, Tong
2017-11-28
Excesses of antibiotic resistance genes (ARGs), which are regarded as emerging environmental pollutants, have been observed in various environments. The incidence of ARGs in drinking water causes potential risks to human health and receives more attention from the public. However, ARGs harbored in drinking water remain largely unexplored. In this study, we aimed at establishing an antibiotic resistome catalogue in drinking water samples from a wide range of regions and to explore the potential hosts of ARGs. A catalogue of antibiotic resistome in drinking water was established, and the host-tracking of ARGs was conducted through a large-scale survey using metagenomic approach. The drinking water samples were collected at the point of use in 25 cities in mainland China, Hong Kong, Macau, Taiwan, South Africa, Singapore and the USA. In total, 181 ARG subtypes belonging to 16 ARG types were detected with an abundance range of 2.8 × 10 -2 to 4.2 × 10 -1 copies of ARG per cell. The highest abundance was found in northern China (Henan Province). Bacitracin, multidrug, aminoglycoside, sulfonamide, and beta-lactam resistance genes were dominant in drinking water. Of the drinking water samples tested, 84% had a higher ARG abundance than typical environmental ecosystems of sediment and soil. Metagenomic assembly-based host-tracking analysis identified Acidovorax, Acinetobacter, Aeromonas, Methylobacterium, Methyloversatilis, Mycobacterium, Polaromonas, and Pseudomonas as the hosts of ARGs. Moreover, potential horizontal transfer of ARGs in drinking water systems was proposed by network and Procrustes analyses. The antibiotic resistome catalogue compiled using a large-scale survey provides a useful reference for future studies on the global surveillance and risk management of ARGs in drinking water. .
World Health Organization increases its drinking-water guideline for uranium.
Frisbie, Seth H; Mitchell, Erika J; Sarkar, Bibudhendra
2013-10-01
The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-water Quality in July, 2011. In this edition, the drinking-water guideline for uranium (U) was increased to 30 μg L(-1) despite the conclusion that "deriving a guideline value for uranium in drinking-water is complex, because the data [from exposures to humans] do not provide a clear no-effect concentration" and "Although some minor biochemical changes associated with kidney function have been reported to be correlated with uranium exposure at concentrations below 30 μg L(-1), these findings are not consistent between studies" (WHO, Uranium in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality, available: , accessed 13 October 2011). This paper reviews the WHO drinking-water guideline for U, from its introduction as a 2 μg L(-1) health-based guideline in 1998 through its increase to a 30 μg L(-1) health-based guideline in 2011. The current 30 μg L(-1) WHO health-based drinking-water guideline was calculated using a "no-effect group" with "no evidence of renal damage [in humans] from 10 renal toxicity indicators". However, this nominal "no-effect group" was associated with increased diastolic blood pressure, systolic blood pressure, and glucose excretion in urine. In addition, the current 30 μg L(-1) guideline may not protect children, people with predispositions to hypertension or osteoporosis, pre-existing chronic kidney disease, and anyone with a long exposure. The toxic effects of U in drinking water on laboratory animals and humans justify a re-evaluation by the WHO of its decision to increase its U drinking-water guideline.
Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.
2001-01-01
Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.
Barnes, Amber N; Anderson, John D; Mumma, Jane; Mahmud, Zahid Hayat; Cumming, Oliver
2018-01-01
Household drinking water can be contaminated by diarrheagenic enteropathogens at numerous points between the source and actual consumption. Interventions to prevent this contamination have focused on preventing exposure to human waste through interventions to improve drinking water, sanitation and hygiene (WASH). In many cases though, the infectious agent may be of zoonotic rather than human origin suggesting that unsafely managed animal waste may contribute to the contamination of household drinking water and the associated diarrheal disease burden. A cross-sectional household survey of 800 households was conducted across three informal peri-urban neighborhoods of Kisumu, Kenya, collecting stored drinking water samples, administering a household survey including water, sanitation and hygiene infrastructure and behaviors, and recording domestic animal presence and ownership. We used multivariate logistic regression to assess the association of traditional WASH factors and domestic animal presence and ownership on microbial contamination of household drinking water. The majority of households sampled had fecally contaminated drinking water (67%), defined by the presence of any colony forming units of the fecal indicator bacteria enterococci. After adjustment for potential confounders, including socio-economic status and water and sanitation access, both household animal ownership (aOR 1.31; CI 1.00-1.73, p = 0.05) and the presence of animal waste in the household compound (aOR 1.38; CI 1.01, 1.89, p = 0.04) were found to be significantly associated with household drinking water contamination. None of the conventional WASH variables were found to be significantly associated with household drinking water contamination in the study population. Water, sanitation, and hygiene strategies to reduce diarrheal disease should consider the promotion of safe animal contact alongside more traditional interventions focusing on the management of human waste. Future research on fecal contamination of unsafe household drinking water should utilize host-specific markers to determine whether the source is human or animal to prepare targeted public health messages.
Mumma, Jane; Mahmud, Zahid Hayat
2018-01-01
Introduction Household drinking water can be contaminated by diarrheagenic enteropathogens at numerous points between the source and actual consumption. Interventions to prevent this contamination have focused on preventing exposure to human waste through interventions to improve drinking water, sanitation and hygiene (WASH). In many cases though, the infectious agent may be of zoonotic rather than human origin suggesting that unsafely managed animal waste may contribute to the contamination of household drinking water and the associated diarrheal disease burden. Methods A cross-sectional household survey of 800 households was conducted across three informal peri-urban neighborhoods of Kisumu, Kenya, collecting stored drinking water samples, administering a household survey including water, sanitation and hygiene infrastructure and behaviors, and recording domestic animal presence and ownership. We used multivariate logistic regression to assess the association of traditional WASH factors and domestic animal presence and ownership on microbial contamination of household drinking water. Results The majority of households sampled had fecally contaminated drinking water (67%), defined by the presence of any colony forming units of the fecal indicator bacteria enterococci. After adjustment for potential confounders, including socio-economic status and water and sanitation access, both household animal ownership (aOR 1.31; CI 1.00–1.73, p = 0.05) and the presence of animal waste in the household compound (aOR 1.38; CI 1.01, 1.89, p = 0.04) were found to be significantly associated with household drinking water contamination. None of the conventional WASH variables were found to be significantly associated with household drinking water contamination in the study population. Conclusions Water, sanitation, and hygiene strategies to reduce diarrheal disease should consider the promotion of safe animal contact alongside more traditional interventions focusing on the management of human waste. Future research on fecal contamination of unsafe household drinking water should utilize host-specific markers to determine whether the source is human or animal to prepare targeted public health messages. PMID:29874284
Akaizina, A E; Akaizin, E S; Starodumov, V L
2015-01-01
The use of modern methods of analysis is aimed to the search of ultimately novel biological markers. Volatile fatty acids in saliva were not used previously for the assessment of the effects of contaminating substances in the drinking water on the body of children. The aim of the study is to investigate the informative value of volatile fatty acids in saliva as biological markers of the impact for the assessment of the exposure to contaminating substances in the drinking water on the body of children. Hygienic assessment of drinking water quality was made according to data of the own research of drinking water from centralized supply system of the city of Ivanovo. For the comparison of indices there was investigated the drinking water from wells at the village Podvyaznovsky of the Ivanovo region. In the Ivanovo water from the distributing network of centralized drinking water supply system of the city of Ivanovo, there were identified indices of the permanganate oxidation and the total concentration of residual chlorine exceeding norms, and also chloroform and carbon tetrachloride were in concentrations not exceeding the norms. Studied by us the samples of drinking water from Podvyaznovsky village wells, the water met the standards for all investigated parameters. The was studied the informative value of volatile fatty acids in the saliva of children aged 9-14 years from the city of Ivanovo and the Podvyaznovsky village, Ivanovo region. There was established the fall in acetic, butyric, isovaleric acids and the total amount of volatile fatty acids in the saliva in children of the city of Ivanovo, consuming water treated with chlorine of Ivanovo centralized drinking water supply system. Indices of volatile fatty acids in saliva are informative for the assessment of the impact of organic pollutants, residual chlorine and organic chlorine compounds of drinking water on the body of children.
Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor
NASA Astrophysics Data System (ADS)
Hashim, N. H.; Yusop, H. M.
2016-07-01
An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.
Application of LC/MS/MS Techniques to Development of US ...
This presentation will describe the U.S. EPA’s drinking water and ambient water method development program in relation to the process employed and the typical challenges encountered in developing standardized LC/MS/MS methods for chemicals of emerging concern. The EPA’s Drinking Water Contaminant Candidate List and Unregulated Contaminant Monitoring Regulations, which are the driving forces behind drinking water method development, will be introduced. Three drinking water LC/MS/MS methods (Methods 537, 544 and a new method for nonylphenol) and two ambient water LC/MS/MS methods for cyanotoxins will be described that highlight some of the challenges encountered during development of these methods. This presentation will provide the audience with basic understanding of EPA's drinking water method development program and an introduction to two new ambient water EPA methods.
Hentschel, W; Voigt, K; Heudorf, U
2006-08-01
The monitoring of drinking water based on the drinking water regulation is one of the central tasks of public health authorities in Germany. With the coming into force of the new drinking water regulation in the year 2003 also water supply plants "from which water is made available for the public, in particular in schools, kindergartens, hospitals, restaurants and other communal facilities" must be supervised for the first time (TrinkwV section sign 18). Thus, for Frankfurt/Main the number of the facilities/objects which are to be supervised rose from approx. 300 to approx. 4,700. Since appropriate expansion of personnel was not possible, innovative solutions were in demand for implementation of these tasks. These are introduced here.
PREDICTING CHLORINE RESIDUAL DECAY IN DRINKING WATER: A SECOND ORDER MODEL
A major objective of drinking water treatment is to provide water that is both microbiologically and chemically safe for human consumption. Drinking water chlorination, therefore, poses a dilemma. Chemical disinfection reduces the risk of infectious disease but the interaction be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL SECONDARY DRINKING WATER REGULATIONS § 143.1 Purpose. This part establishes National Secondary Drinking Water Regulations pursuant to section 1412 of the Safe Drinking Water Act, as amended (42 U.S.C. 300g-1...
76 FR 5691 - Cyprodinil; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
....'' This includes exposure through drinking water and in residential settings, but does not include... exposure from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for cyprodinil in drinking water. These simulation models take into account...
75 FR 17579 - Aminopyralid; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... exposure through drinking water and in residential settings, but does not include occupational exposure... from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for aminopyralid in drinking water. These simulation models take into account...
Development of EPA Method 525.3 for the Analysis of Semivolatiles in Drinking Water
The United States Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water (OGWDW) collects nationwide occurrence data on contaminants in drinking water using the Unregulated Contaminant Monitoring Regulations (UCMRs). The unregulated contaminants, which ar...
RELATIONSHIPS BETWEEN OXIDATION-REDUCTION, OXIDANT, AND PH IN DRINKING WATER
Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...