Science.gov

Sample records for downstream oil industry

  1. Libyan oil industry

    SciTech Connect

    Waddams, F.C.

    1980-01-01

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  2. Downstream processing in the biotechnology industry.

    PubMed

    Kalyanpur, Manohar

    2002-09-01

    The biotechnology industry today employs recombinant bacteria, mammalian cells, and transgenic animals for the production of high-value therapeutic proteins. This article reviews the techniques employed in this industry for the recovery of these products. The methods reviewed extend from the centrifugation and membrane filtration for the initial clarification of crude culture media to the final purification of the products by a variety of membrane-based and chromatographic methods. The subject of process validation including validation of the removal of bacterial and viral contaminants from the final products is also discussed with special reference to the latest regulatory guidelines.

  3. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  4. Benzene and total hydrocarbons exposures in the downstream petroleum industries.

    PubMed

    Verma, D K; Johnson, D M; Shaw, M L; des Tombe, K

    2001-01-01

    A review of studies, including both articles published in peer-reviewed journals and reports that were not peer reviewed, regarding occupational exposure to benzene and total hydrocarbons in the downstream petroleum industry operations was performed. The objective was to provide a broad estimate of exposures by compiling exposure data according to the following categories: refinery, pipeline, marine, rail, bulk terminals and trucks, service stations, underground storage tanks, tank cleaning, and site remediations. The data in each category was divided into personal occupational long-term and short-term samples. The summarized data offers valuable assistance to hygienists by providing them with an estimate and range of exposures. The traditional 8-hour time-weighted average (TWA) exposure and the 40-hour workweek do not generally coincide with exposure periods applicable to workers in marine, pipeline, railcar, and trucking operations. They are more comparable with short-term exposure or task-based exposure assessments. The marine sector has a large number of high exposures. Although relatively few workers are exposed, their exposures to benzene and total hydrocarbons are sometimes an order of magnitude higher than the respective exposure limits. It is recommended that in the future, it would be preferable to do more task-based exposure assessments and fewer traditional TWA long-term exposure assessments within the various sectors of the downstream petroleum industry.

  5. The World Oil Industry

    ERIC Educational Resources Information Center

    Rand, Christopher T.

    1976-01-01

    America's domestic petroleum industry and the international industry have been dominated by seven major firms. Although production costs decreased, sale prices soared with developing political-corporate interrelationships. (MR)

  6. The World Oil Industry

    ERIC Educational Resources Information Center

    Rand, Christopher T.

    1976-01-01

    America's domestic petroleum industry and the international industry have been dominated by seven major firms. Although production costs decreased, sale prices soared with developing political-corporate interrelationships. (MR)

  7. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    SciTech Connect

    Wu, K.; Pezeshki, S.

    1995-03-01

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  8. Oil Industry Aids

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The accompanying photos show two types of offshore oil platforms used by Exxon Corporation. In the upper photo is a leg-supported gravity platform; the other structure is a "jackettype" platform, built in sections, towed to sea and assembled on-site. In construction of platforms like these, Exxon Production Research Company, Houston, Texas, conducts extensive structural investigations of decks, supporting members and other platform components, making use of the NASTRAN @ (NASA Structural Analysis) computer program. NASTRAN is a predictive tool which analyzes a computerized design and reports how the structure will react to a great many conditions it will encounter in its operational environment; in this case, NASTRAN studies the effects of waves, winds, ocean storms and other stress-inducing factors. NASTRAN allows Exxon Production Research to perform more complex and more detailed analysis than was possible with previous programs. The same program has also been used by Exxon Research and Engineering Company, Florham Park, New Jersey, in analysis of pressure vessels, turbine components and composite building boards.

  9. Mercury trends in colonial waterbird eggs downstream of the oil sands region of Alberta, Canada.

    PubMed

    Hebert, Craig E; Campbell, David; Kindopp, Rhona; MacMillan, Stuart; Martin, Pamela; Neugebauer, Ewa; Patterson, Lucy; Shatford, Jeff

    2013-10-15

    Mercury levels were measured in colonial waterbird eggs collected from two sites in northern Alberta and one site in southern Alberta, Canada. Northern sites in the Peace-Athabasca Delta and Lake Athabasca were located in receiving waters of the Athabasca River which drains the oil sands industrial region north of Fort McMurray, Alberta. Temporal trends in egg mercury (Hg) levels were assessed as were egg stable nitrogen isotope values as an indicator of dietary change. In northern Alberta, California and Ring-billed Gulls exhibited statistically significant increases in egg Hg concentrations in 2012 compared to data from the earliest year of sampling. Hg levels in Caspian and Common Tern eggs showed a nonstatistically significant increase. In southern Alberta, Hg concentrations in California Gull eggs declined significantly through time. Bird dietary change was not responsible for any of these trends. Neither were egg Hg trends related to recent forest fires. Differences in egg Hg temporal trends between northern and southern Alberta combined with greater Hg levels in eggs from northern Alberta identified the likely importance of local Hg sources in regulating regional Hg trends. Hg concentrations in gull and Common Tern eggs were generally below generic thresholds associated with toxic effects in birds. However, in 2012, Hg levels in the majority of Caspian Tern eggs exceeded the lower toxicity threshold. Increasing Hg levels in eggs of multiple species nesting downstream of the oil sands region of northern Alberta warrant continued monitoring and research to further evaluate Hg trends and to conclusively identify sources.

  10. Charting a course downstream

    SciTech Connect

    Not Available

    1984-01-01

    In the petroleum industry, the term downstream refers to those business operations that take place after the search for and the production of crude oil. The actual purchase of crude oil, its transportation to refineries, its refining and the subsequent marketing and distribution of the refined products take place, in industry parlance, downstream. No other industry is required to coordinate the movement of so large a volume of liquids to so many destinations. And few other industries contend with raw material and end-product uncertainties so profound. Both the mixture of available world crude oil supplies and the demand patterns for petroleum products are subject to change. The downstream operations of Marathon Petroleum Company are discussed. The objective is to maximize profitability in the context of constantly changing prices for a variety of products.

  11. Biochemistry in an Industrial Context: Methods of Protein Purification and Downstream Processing.

    ERIC Educational Resources Information Center

    Weathers, Pamela J.

    1988-01-01

    Explores a graduate level bioprocess engineering course in protein purification and downstream processing. Designed to provide students with hands-on training in the design and implementation of product processing for the biotechnology industry. Includes syllabus and plan of study. (MVL)

  12. Biochemistry in an Industrial Context: Methods of Protein Purification and Downstream Processing.

    ERIC Educational Resources Information Center

    Weathers, Pamela J.

    1988-01-01

    Explores a graduate level bioprocess engineering course in protein purification and downstream processing. Designed to provide students with hands-on training in the design and implementation of product processing for the biotechnology industry. Includes syllabus and plan of study. (MVL)

  13. Vegetable Oil: Nutritional and Industrial Perspective.

    PubMed

    Kumar, Aruna; Sharma, Aarti; Upadhyaya, Kailash C

    2016-06-01

    Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non -renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or 'Fish oil'. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool.

  14. Vegetable Oil: Nutritional and Industrial Perspective

    PubMed Central

    Kumar, Aruna; Sharma, Aarti; Upadhyaya, Kailash C.

    2016-01-01

    Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non –renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or ‘Fish oil’. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool. PMID:27252590

  15. Microgravity, industry related research for oil recovery

    NASA Astrophysics Data System (ADS)

    Hart, D'arcy; Hansen, Noah; Legros, Jean-Claude; Schramm, Laurier L.

    1997-01-01

    C-CORE of St. John's, Canada, has established CIRUS-Consortium for Industrial Research in the Use of Space-whose mandate is to provide benefits to industry for the energy and environment sectors. Research to date has focused on enhanced oil recovery and contaminant transport by the study of fluid physics in microgravity. Three experiments performed by CIRUS members in ground-based or parabolic flight programs have been chosen for further development. These experiments are combined in a Get Away Special (GAS) container which will fly on board NASA's space shuttle. The development program for the GAS container is entitled MIRROR-Microgravity, Industry Related Research for Oil Recovery. Research projects in the MIRROR program include the study of diffusion coefficients of crude oil (DCCO), foam stability in the absence of gravity drainage and capillary flow in porous media. This paper describes the development and potential benefits of the DCCO and foam stability projects.

  16. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    PubMed

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers.

  17. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  18. Sensitive oil industry: users of advanced technology

    NASA Astrophysics Data System (ADS)

    Lindsey, Rhonda P.; Barnes, James L.

    1999-01-01

    The oil industry exemplifies mankind's search for resource sin a harsh environment here on the earth. Traditionally, the oil industry has created technological solutions to increasingly difficult exploration, drilling, and production activities as the need has arisen. The depths to which a well must be drilled to produce the finite hydrocarbon resources are increasing and the surface environments during oil and gas activities is the key to success, not information that is hours old or incomplete; but 'real-time' data that responds to the variable environment downhole and allows prediction and prevention. The difference that information makes can be the difference between a successfully drilled well and a blowout that causes permanent damage to the reservoir and may reduce the value of the reserves downhole. The difference that information makes can make the difference between recovering 22 percent of the hydrocarbon reserves in a profitable field and recovering none of the reserves because of an uneconomic bottom line. Sensors of every type are essential in the new oil and gas industry and they must be rugged, accurate, affordable, and long lived. It is not just for the sophisticated majors exploring the very deep waters of the world but for the thousands of independent producers who provide a lion's share of the oil and gas produced in the US domestic market. The Department of Energy has been instrumental in keeping reserves from being lost by funding advancements in sensor technology. Due to sponsorship by the Federal Government, the combined efforts of researchers in the National Laboratories, academic institutions, and industry research centers are producing increasingly accurate tools capable of functioning in extreme conditions with economics acceptable to the accountants of the industry. Three examples of such senors developed with Federal funding are given.

  19. Problems Caused by Microbes and Treatment Strategies Downstream Petroleum Microbiology - An Industry Perspective

    NASA Astrophysics Data System (ADS)

    McFarlane, Elaine

    In the mid 1800's it was discovered that crude oil could be extracted and exploited to produce energy. However, it was the invention of the first four-stroke internal combustion engine in 1876 that transformed the petroleum industry from a localised to a global business (Dell and Rand, 2004). Crude oil is made into useable products at the refinery via separation, conversion and treatment processes. Separation starts with distillation where the crude is evaporated and condensed into fractions based on their boiling ranges (Fig. 19.1). As well as carbon and hydrogen, the fractions consist of sulphur, nitrogen and oxygen (present in low concentrations) and metals like copper and iron (in trace amounts). After separation, heavy fractions are converted into lighter ones using intense heat, pressure and a catalyst to speed up chemical reactions. Molecules like sulphur can then be stripped out by heat treatment under pressure with hydrogen. Injection of refinery additives makes a finished fuel. For example, static dissipator is added to Automotive Gas Oil (AGO) to reduce the risk of spark and explosion during fuel movements; middle distillate flow improver to improve low temperature operability and lubricity improver to lubricate engine components. Finally, fuel quality measurements are made to ensure that the finished fuel meets the relevant specification.

  20. NORM Management in the Oil & Gas Industry

    NASA Astrophysics Data System (ADS)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-01

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil & gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  1. Iraqi oil industry slowly returning to normal

    SciTech Connect

    Not Available

    1992-09-07

    This paper reports that Iraq is making progress in putting its battered petroleum industry back together 1 1/2 years after the Persian Gulf war ended. OPEC News Agency (Opecna) reported the finish of reconstruction of Iraq's Mina al-Bakr oil terminal on the northern tip of the Persian Gulf, using Iraqi know-how and engineering personnel. The terminal, heavily damaged during the gulf conflict, has been restored to its prewar loading capacity of 1.6 million b/d at a cost of $16 million. Ninety per cent of the port had been damaged.

  2. Controlling Air Pollution from the Oil and Natural Gas Industry

    EPA Pesticide Factsheets

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  3. New Oil Pollution Act of 1990 will impact facilities, terminals, and transports in the oil industry

    SciTech Connect

    Not Available

    1990-01-01

    The magnitude of the Exxon Valdez spill galvanized the opinion of both the public and Congress on the need for new oil spill legislation. Consequently, the Oil Pollution Act of 1990 - a comprehensive prevention, response, liability, and compensation system for dealing with oil production - was passed by the 101st Congress. This book describes in detail the new law and the liabilities it imposes; the new financial responsibility requirements placed on oil-related facilities and vessels; oil spill prevention and response obligations; and the oil industry's activities to prevent and mitigate oil spills. Also discussed are the compliance problems faced by both fixed facilities and the transportation industry.

  4. Is oil consumption constrained by industrial structure? Evidence from China

    NASA Astrophysics Data System (ADS)

    Jia, Y. Q.; Duan, H. M.

    2017-08-01

    This paper examines whether oil consumption is constrained by output value, applying a cointegration test and an ECM to the primary, secondary, and tertiary sectors in China during 1985-2013. The empirical results indicate that oil consumption in China is constrained by the industrial structure both in the short run and in the long run. Regardless of the time horizon considered, the oil consumption constraint is the lowest for the primary sector as well as the highest for the tertiary sector. This is because the long-term industrial structure formation and the technological level of each sector underlines the existence of long run equilibrium and short run fluctuations of output value and oil consumption, with the latter being constrained by adjustments in industrial structure. In order to decrease the constraining effect of output value on oil consumption, the government should take some measures to improve the utilization rate, reducing the intensity of oil consumption, and secure the supply of oil.

  5. Assessment of industry needs for oil shale research and development

    SciTech Connect

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  6. Application of Nanotechnology and Nanomaterials in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi

    2011-12-01

    Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.

  7. Implications of Peak Oil for Industrialized Societies

    ERIC Educational Resources Information Center

    McPherson, Guy R.; Weltzin, Jake F.

    2008-01-01

    The world passed the halfway point of oil supply in 2005. World demand for oil likely will severely outstrip supply in 2008, leading to increasingly higher oil prices. Consequences are likely to include increasing gasoline prices, rapidly increasing inflation, and subsequently a series of increasingly severe recessions followed by a worldwide…

  8. Implications of Peak Oil for Industrialized Societies

    ERIC Educational Resources Information Center

    McPherson, Guy R.; Weltzin, Jake F.

    2008-01-01

    The world passed the halfway point of oil supply in 2005. World demand for oil likely will severely outstrip supply in 2008, leading to increasingly higher oil prices. Consequences are likely to include increasing gasoline prices, rapidly increasing inflation, and subsequently a series of increasingly severe recessions followed by a worldwide…

  9. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase

    PubMed Central

    Mahmoud, Soheil S.; Croteau, Rodney B.

    2003-01-01

    (+)-Pulegone is a central intermediate in the biosynthesis of (-)-menthol, the most significant component of peppermint essential oil. Depending on environmental conditions, this branch point metabolite may be reduced to (-)-menthone en route to menthol, by pulegone reductase (PR), or oxidized to (+)-menthofuran, by menthofuran synthase (MFS). To elucidate regulation of pulegone metabolism, we modified the expression of mfs under control of the CaMV 35S promoter in transformed peppermint plants. Overexpression and cosuppression of mfs resulted in the respective increase or decrease in the production of menthofuran, indicating that the control of MFS resides primarily at the level of transcription. Significantly, in both WT peppermint as well as in all transformed plants, the flux of (+)-pulegone through PR correlated negatively with the essential oil content of menthofuran, such that menthofuran, and pulegone increased, or decreased, in concert. These results suggested that menthofuran itself might influence the reduction of pulegone. Although (+)-menthofuran did not inhibit (+)-PR activity, stem feeding with menthofuran selectively decreased pr transcript levels in immature leaves, thereby accounting for decreased reductase activity and increased pulegone content. These data demonstrate that the metabolic fate of (+)-pulegone is controlled through transcriptional regulation of mfs and that menthofuran, either directly or indirectly, influences this process by down-regulating transcription from pr and/or decreasing pr message stability. The ability to reduce both menthofuran and pulegone levels is of commercial significance in improving essential oil quality; however, the physiological rationale for such complex regulation is presently unclear. PMID:14623962

  10. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase.

    PubMed

    Mahmoud, Soheil S; Croteau, Rodney B

    2003-11-25

    (+)-Pulegone is a central intermediate in the biosynthesis of (-)-menthol, the most significant component of peppermint essential oil. Depending on environmental conditions, this branch point metabolite may be reduced to (-)-menthone en route to menthol, by pulegone reductase (PR), or oxidized to (+)-menthofuran, by menthofuran synthase (MFS). To elucidate regulation of pulegone metabolism, we modified the expression of mfs under control of the CaMV 35S promoter in transformed peppermint plants. Overexpression and cosuppression of mfs resulted in the respective increase or decrease in the production of menthofuran, indicating that the control of MFS resides primarily at the level of transcription. Significantly, in both WT peppermint as well as in all transformed plants, the flux of (+)-pulegone through PR correlated negatively with the essential oil content of menthofuran, such that menthofuran, and pulegone increased, or decreased, in concert. These results suggested that menthofuran itself might influence the reduction of pulegone. Although (+)-menthofuran did not inhibit (+)-PR activity, stem feeding with menthofuran selectively decreased pr transcript levels in immature leaves, thereby accounting for decreased reductase activity and increased pulegone content. These data demonstrate that the metabolic fate of (+)-pulegone is controlled through transcriptional regulation of mfs and that menthofuran, either directly or indirectly, influences this process by down-regulating transcription from pr and/or decreasing pr message stability. The ability to reduce both menthofuran and pulegone levels is of commercial significance in improving essential oil quality; however, the physiological rationale for such complex regulation is presently unclear.

  11. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers.

    PubMed

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-04-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 microg/L).

  12. Review of the Soviet oil industry in 1986

    SciTech Connect

    Shabad, T.; Sagers, M.J.

    1986-09-01

    The recovery of oil production, mainly in West Siberia, the main oil-producing region, was probably the most striking development in the fuel industries in 1986. After having declined by 18 million tons, Soviet oil production rose again in 1986 by 20 million tons to reach a yearly total of 615 million tons. The 1986 goal of 616.7 million tons, which had been viewed as unrealistic, was virtually attained. Oil production in West Siberia is discussed in detail. This region is now producing nearly 65% of all Soviet oil and natural gas liquids. Production in other regions is also mentioned. An unusual development was the use of two small nuclear explosions to stimulate oil flow in the North Kama fields. Product pipelines are to expand by 7300 km, more than crude oil pipelines. No new refinery capacity is planned.

  13. Palm oil based surfactant products for petroleum industry

    NASA Astrophysics Data System (ADS)

    Permadi, P.; Fitria, R.; Hambali, E.

    2017-05-01

    In petroleum production process, many problems causing reduced production are found. These include limited oil recovery, wax deposit, asphaltene deposit, sludge deposit, and emulsion problem. Petroleum-based surfactant has been used to overcome these problems. Therefore, innovation to solve these problems using surfactant containing natural materials deserves to be developed. Palm oil-based surfactant is one of the potential alternatives for this. Various types of derivative products of palm oil-based surfactant have been developed by SBRC IPB to be used in handling problems including surfactant flooding, well stimulation, asphaltene dissolver, well cleaning, and wax removal found in oil and gas industry.

  14. Oil industry participation in emergency planning, 1941-1967

    SciTech Connect

    Wollstadt, R.

    1981-01-01

    This paper discusses the participation of oil company personnel in US government agencies and government-sponsored committees to plan and control oil industry activities in emergencies prior to the Arab oil embargo. The paper deals with World War II and the Korean War periods, the Middle East crises of 1951, 1956, and 1967, and an emergency preparedness organization that has never been activated. Two different organizational forms were used in the past. One is a government agency, with people from the oil industry and others with relevant expertise brought on board, subject to ultimate authority of an administrator responsible to the President. The other is an industry advisory committee or committees. The concluding section of this paper discusses the relevance of these past experiences and the two organizational forms to current problems.

  15. Results of industrial tests of carbonate additive to fuel oil

    NASA Astrophysics Data System (ADS)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  16. Logistics of Industrial Lubrication Oil Reclamation.

    DTIC Science & Technology

    1998-04-24

    anti-friction bearings , 0.5 micron and up. Clearances in many hydraulic components are very close, 0.5 micron and less. Another troublesome...oxidation by-products, and heat in the process in hydraulic oil will cause waxy and gummy residue on valve surface which will cause erratic valve performance...passing through to the coolant pump. The negative effect of fine contamination in cutting oil has a marked bearing on tool performance. Since the

  17. Wastewater treatment in the oil-shale industry

    SciTech Connect

    Fox, J.P.; Phillips, T.E.

    1980-08-01

    Because of the stringent state and federal standards governing the discharge of wastes into local waters and the limited water supplies in this area, an oil shale industry will probably reuse process effluents to the maximum extent possible and evaporate the residuals. Therefore, discharge of effluents into surface and ground waters may not be necessary. This paper reviews the subject of wastewater treatment for an oil shale industry and identifies key issues and research priorities that must be resolved before a large-scale commercial industry can be developed. It focuses on treatment of the waters unique to an oil shale industry: retort water, gas condensate, and mine water. Each presents a unique set of challenges.

  18. [Analysis on oil fume particles in catering industry cooking emission].

    PubMed

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  19. Political economy of the US oil industry

    SciTech Connect

    Isser, S.N.

    1989-01-01

    The political struggles over oil policy in the 1950s were contests between narrow economic interest groups to collect economic rents, as would be expected if government is considered to be just another forum for rent seeking behavior, with government intervention accepted as a norm. Conversely, the attempt to obtain decontrol of natural gas production during this period, during which consumer interests and pro-market ideology were important factors, presaged the oil politics of the 1970s. The significant impact of consumer interests on oil policy contradicts the expectations of public choice theorists that consumers will be disadvantaged in contests with well organized and wealthy interest groups. The ability of latent interest groups to influence policy when represented by politicians and private actors acting as political entrepreneurs was demonstrated during the 1970s as they dominated oil politics. Substantial economic rents, generated by the OPEC price increases, were transferred to consumers and refiners, while tax break were eliminated despite the economic resources available to producers. The pattern of distribution of those economic rents, as well as various tax breaks and exemptions from controls, was skewed toward small producers and refiners, reflecting a traditional ideological prejudice against big business. Econometric analysis revealed that ideology, party and oil production by constituents were the most important influences on congressional voting.

  20. Review of the Soviet oil industry in 1985

    SciTech Connect

    Shabad, T.

    1986-01-01

    A sharp decline in Soviet oil production was probably one of the most striking developments in the energy sphere in 1985. The Soviet Union relies on exports of crude oil and refined products for about 60% of its hard-currency revenue from the Western countries, and a decline in oil exports cut sharply into the hard-currency earnings in 1985. The continued decline of the price of oil on the world market also contributed to the fall of Soviet export earning in the West. The problem area in Soviet oil production has now become West Siberia, which over the last 20 years has emerged as the nation's main oil producing region, accounting in 1985 for 62% of national output. To maintain production smaller fields are being put into operation, which, given the climate and terrain of West Siberia, is causing slowdowns. The administrations of the oil fields are also a problem, which is discussed in some detail. Oil production from Kazakhstan and Azerbaijan is also described. Two potential new development areas are also mentioned: Barent Sea coast and East Siberia. The slowdown in the oil industry is also evident in plans for the construction of pipelines and refineries. The 12th five-year plan schedules the construction of 5900 km of crude oil pipelines and 7300 km of product pipelines. It appears that no further refinery capacity is needed for the time being.

  1. [Oil mist exposure in industrial health--a review].

    PubMed

    Karube, H; Aizawa, Y; Nakamura, K; Maeda, A; Hashimoto, K; Takata, T

    1995-03-01

    Many reports dealing with the toxicity of oil mist in industrial health have been published. The condition appears to be worldwide in distribution and the number of reported cases increases with increasing clinical awareness. In 158 reports published from 1965 to 1993 the following diseases were observed: Skin--contact dermatitis, oil acne and photosensitive allergic dermatitis; Scrotum--benign and malignant tumors; Respiratory system-nasal discomfort symptoms, rhinitis, nasal mucosal dysplasia, nasal mucosal tumor, laryngeal cancer, bronchitis, lipoid pneumonia, lung fibrosis, lung cancer and bronchial asthma; Others--possible carcinogenicity, high incidence of chromosomal change. This shows that oil mist appears to be involved in many industrial diseases, however, cause-and-effect relationship still remains a matter of conjecture; in which exposure dose and/or duration-dependent toxicity is highly probable. Further investigations will be required including immunotoxicological as well as environmental studies for oil mist exposure.

  2. Tempo of Argentinian oil and gas industry quickens

    SciTech Connect

    Aalund, L.R.

    1988-08-01

    Exploration and production programs that the Argentinian Government has set in motion are making the country, which will host the next World Petroleum Congress, a more active and visible member of the international oil industry. A high, but possibly diminishing, inflation rate of about 15%/month, external financial debt, and the depressed price of oil are still drags on progress. But there are positive factors at work too. The government has recognized that it is in the country's self interest to entice technologically experienced foreign oil companies to search for and exploit its probably abundant oil and gas resources. The government's primary objective is to add enough output to its some 430,000 b/d production to eliminate crude oil imports. A good start on this will be made early next year when the country's first offshore field begins production.

  3. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  4. Stress and accidents in the offshore oil and gas industry

    SciTech Connect

    Sutherland, V.J.; Cooper, C.L.

    1991-01-01

    This book is a comprehensive analysis of occupational stress and accidents among personnel working in the European offshore oil and gas industry. Identifies sources of stress and predicts stressor outcomes. Examines job dissatisfaction, mental well-being and their relation to accidents. Also explores the differences within occupational status (operator versus contractor) and type of installation (drilling rigs versus fixed production platforms). Conclusions presented include the growing need for extensive management involvement, responsibility, and understanding in this exceptionally high environmental stress industry.

  5. Oils and fats: changes due to culinary and industrial processes.

    PubMed

    Sanchez-Muniz, F J

    2006-07-01

    Diets of developed countries contain substantial quantities of fat subjected to different processing and heat treatments. Heating in the presence of air produces oxidative and thermal degradations in the unsaturated acyl groups of triacylglycerols and in other unsaturated compounds present in the oils and fats. These changes modify the nutritional properties of culinary fat and lead to the formation of many oxidized and polymerized compounds that present higher polarity than that of the original triacylglycerols. Some aspects of lipid peroxidation that occur in heated and used frying oils will be briefly presented and discussed. This paper will focus on appropriate methodology for the assessment of fat alteration (e.g. chromatography) and the point at which any oil used for frying should be discarded. Polar material (PM) and triacylglycerol oligomer content (TOC) determinations constitute the basis of legislation for oil discarding in some European countries; we will try to open some debate on whether PM or TOC is preferred for oil discarding assessment. Correct frying performance helps to lengthen oil frying-life and to decrease the alteration content in the fried food. Because many factors are present in the culinary and industrial frying, the effect of the process itself and that of the food and the type of oil used will be reviewed. The present report analyses and describes a wide variety of topics related to frying performance, and their nutritional implications with a special focus on the behavior during frying of most consumed oils in Mediterranean countries.

  6. Review of the Soviet oil industry in 1987

    SciTech Connect

    Sagers, M.J.

    1988-01-01

    Soviet oil production (including gas condensate) rose by 9.4 million tons in 1987 (up 1.5%) to reach a new all-time high of 624.2 million tons (an average of 12.48 million tons per day). For the first time in several years, the annual plan was not only met, but overfulfilled. Soviet output of gas condensate was apparently about 31 million tons in 1987, representing 5.0% of the total output of 624.2 million tons. About 52% is produced in West Siberia, from gas processing plants as well as field condensate from the gas and oil fields. Activities of the oil industry in West Siberia are described. Twenty new fields went into production. Other regional developments are cited. At least four small nuclear explosions were detonated to increase oil production in 2 regions. Pipeline and refinery developments are also described.

  7. Understanding the Canadian oil sands industry's greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Charpentier, Alex D.; Bergerson, Joule A.; MacLean, Heather L.

    2009-01-01

    The magnitude of Canada's oil sands reserves, their rapidly expanding and energy intensive production, combined with existing and upcoming greenhouse gas (GHG) emissions regulations motivate an evaluation of oil sands-derived fuel production from a life cycle perspective. Thirteen studies of GHG emissions associated with oil sands operations are reviewed. The production of synthetic crude oil (SCO) through surface mining and upgrading (SM&Up) or in situ and upgrading (IS&Up) processes is reported to result in emissions ranging from 62 to 164 and 99 to 176 kgCO2eq/bbl SCO, respectively (or 9.2-26.5 and 16.2-28.7 gCO2eq MJ-1 SCO, respectively), compared to 27-58 kgCO2eq/bbl (4.5-9.6 gCO2eq MJ-1) of crude for conventional oil production. The difference in emissions intensity between SCO and conventional crude production is primarily due to higher energy requirements for extracting bitumen and upgrading it into SCO. On a 'well-to-wheel' basis, GHG emissions associated with producing reformulated gasoline from oil sands with current SM&Up, IS&Up, and in situ (without upgrading) technologies are 260-320, 320-350, and 270-340 gCO2eq km-1, respectively, compared to 250-280 gCO2eq km-1 for production from conventional oil. Some variation between studies is expected due to differences in methods, technologies studied, and operating choices. However, the magnitude of the differences presented suggests that a consensus on the characterization of life cycle emissions of the oil sands industry has yet to be reached in the public literature. Recommendations are given for future studies for informing industry and government decision making.

  8. Physics-Driven Innovation In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2014-03-01

    In terms of sheer scale and financial investment and geographical footprint, nothing is bigger than the oil and gas industry. This ``mature industry'' employs a bewildering mix of technologies dating from the 19th century to the 21th. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, advanced 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To succeed at introducing new technology requires understanding which problems most need to be solved. The most esoteric technology can take off in this industry if it honestly offers the best solution to a key problem that is costing millions of dollars in risk or inefficiency. When the right breakthrough solution emerges, the resources to implement it can be almost limitless. However, the prevailing culture is conservative and brutally cost-driven: any cheaper or simpler solution that performs as well will prevail, no matter how inelegant!

  9. Industrial hygiene aspects of underground oil shale mining

    SciTech Connect

    Hargis, K.M.; Jackson, J.O.

    1982-01-01

    Health hazards associated with underground oil shale mining are summarized in this report. Commercial oil shale mining will be conducted on a very large scale. Conventional mining techniques of drilling, blasting, mucking, loading, scaling, and roof bolting will be employed. Room-and-pillar mining will be utilized in most mines, but mining in support of MIS retorting may also be conducted. Potential health hazards to miners may include exposure to oil shale dusts, diesel exhaust, blasting products, gases released from the oil shale or mine water, noise and vibration, and poor environmental conditions. Mining in support of MIS retorting may in addition include potential exposure to oil shale retort offgases and retort liquid products. Based upon the very limited industrial hygiene surveys and sampling in experimental oil shale mines, it does not appear that oil shale mining will result in special or unique health hazards. Further animal toxicity testing data could result in reassessment if findings are unusual. Sufficient information is available to indicate that controls for dust will be required in most mining activities, ventilation will be necessary to carry away gases and vapors from blasting and diesel equipment, and a combination of engineering controls and personal protection will likely be required for control of noise. Recommendations for future research are included.

  10. Ethos and industry: a critical study of oil industry advertising from 1974-1984

    SciTech Connect

    Kurzbard, G.

    1984-01-01

    This study examines the advocacy advertising of the oil industry in general, and Mobil and Exxon Corporations in particular, during the years 1974-1984. The prospects of divestiture and nationalization of the industry, as a result of both gasoline shortages and exponential increases in profits which begin in the early seventies', created a profound concern by the majors that increasing public disaffection might result in legislation inimical to the industry. Mobil and Exxon's advertising attempted to provide a justification not only for their own operations, but for the entire American socio-economic system. The industry's value system was clearly reflected in its efforts to convince the public that its motives grew from an abiding commitment to the nation's well-being. The ideational underpinnings of oil industry discourse are traced through a rhetorical exploration of specific advertising campaigns. The study maintains that the weltanschauung of Big Oil is both directly and indirectly manifest in its advertising. An overall assessment of oil industry advertising is provided within a Burkean framework to treat of the textural elements of its discourse.

  11. [Musculoskeletal disorders in the offshore oil industry].

    PubMed

    Morken, Tone; Tveito, Torill H; Torp, Steffen; Bakke, Ashild

    2004-10-21

    Musculoskeletal disorders are important causes of sick leave and disability among Norwegian offshore petroleum workers. More knowledge and interventions are needed in order to prevent this. In this review we consider prevalence and risk factors among offshore petroleum workers and point to the need for more research. Literature searches on ISI Web of Science and PubMed were supplemented by reports from Norwegian offshore industry companies and the Norwegian Petroleum Directorate. Few studies were found on musculoskeletal disorders among offshore petroleum workers. The disorders are widespread, particularly among catering, construction and drilling personnel. It is not clear whether the prevalence is different from that among onshore workers. Risk factors are physical stressors and fast pace of work. Among catering personnel, these disorders are important causes of loss of the required health certificate but we could not identify any review of causes in the offshore industry generally. More scientific studies are needed on musculoskeletal disorders as comparisons of prevalence and risk factors for offshore and onshore workers may point to more effective interventions. Better knowledge of the causes of loss of the health certificate may contribute to preventing early retirement. Interventions to prevent these disorders should be evaluated by controlled intervention studies.

  12. Oil industry development and trade liberalization in the Western Hemisphere

    SciTech Connect

    Randall, S.J.

    1993-12-31

    This paper provides an overview of oil industry developments in the Western Hemisphere with particular emphasis on Latin America since the inauguration of the Enterprise for the Americas Initiative by George Bush. The author discusses these developments in the context of the Canada-U.S. Free Trade Agreement (concluded in 1989), and the negotiation in 1992 of the North American Free Trade Agreement (NAFTA). This paper is concerned essentially with the oil industry and does not discuss the importance of natural gas for Canadian producers nor the fact that much of Latin American oil production (notably in Mexico) is associated with natural gas. The author examines the shift to trade and investment liberalization and privatization in the 1980s and early 1990s, especially in Latin America--where the most dramatic transformation has occurred. The author suggests that investment patterns in the industry have been only marginally related to trade liberalization, and have derived more from considerations of resource availability, exploration and development costs, market factors, and the general state of the international economy--all of which have contributed in the 1980s to significant restructuring and downsizing among a number of major corporations. The author also notes the important increase in an internal Latin American market, and the role of regional organizations such as ARPEL-the Association of Latin American State Oil Company Producers. 31 refs., 3 tabs.

  13. Fiber Bragg Grating Sensors for the Oil Industry

    PubMed Central

    Qiao, Xueguang; Shao, Zhihua; Bao, Weijia; Rong, Qiangzhou

    2017-01-01

    With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group’s research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for seismic exploration in the oil and gas industry need to be capable of measuring multiple physical parameters such as temperature, pressure, and acoustic waves in a hostile environment. This application requires that the FBG sensors display high sensitivity over the broad vibration frequency range of 5 Hz to 2.5 kHz, which contains the important geological information. We report the incorporation of mechanical transducers in the FBG sensors to enable enhance the sensors’ amplitude and frequency response. Whenever the FBG sensors are working within a well, they must withstand high temperatures and high pressures, up to 175 °C and 40 Mpa or more. We use femtosecond laser side-illumination to ensure that the FBGs themselves have the high temperature resistance up to 1100 °C. Using FBG sensors combined with suitable metal transducers, we have experimentally realized high- temperature and pressure measurements up to 400 °C and 100 Mpa. We introduce a novel technology of ultrasonic imaging of seismic physical models using FBG sensors, which is superior to conventional seismic exploration methods. Compared with piezoelectric transducers, FBG ultrasonic sensors demonstrate superior sensitivity, more compact structure, improved spatial resolution, high stability and immunity to electromagnetic interference (EMI). In the last section, we present a case study of a well-logging field to demonstrate the utility of FBG sensors in the oil and gas industry. PMID:28241460

  14. Fiber Bragg Grating Sensors for the Oil Industry.

    PubMed

    Qiao, Xueguang; Shao, Zhihua; Bao, Weijia; Rong, Qiangzhou

    2017-02-23

    With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group's research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for seismic exploration in the oil and gas industry need to be capable of measuring multiple physical parameters such as temperature, pressure, and acoustic waves in a hostile environment. This application requires that the FBG sensors display high sensitivity over the broad vibration frequency range of 5 Hz to 2.5 kHz, which contains the important geological information. We report the incorporation of mechanical transducers in the FBG sensors to enable enhance the sensors' amplitude and frequency response. Whenever the FBG sensors are working within a well, they must withstand high temperatures and high pressures, up to 175 °C and 40 Mpa or more. We use femtosecond laser side-illumination to ensure that the FBGs themselves have the high temperature resistance up to 1100 °C. Using FBG sensors combined with suitable metal transducers, we have experimentally realized high- temperature and pressure measurements up to 400 °C and 100 Mpa. We introduce a novel technology of ultrasonic imaging of seismic physical models using FBG sensors, which is superior to conventional seismic exploration methods. Compared with piezoelectric transducers, FBG ultrasonic sensors demonstrate superior sensitivity, more compact structure, improved spatial resolution, high stability and immunity to electromagnetic interference (EMI). In the last section, we present a case study of a well-logging field to demonstrate the utility of FBG sensors in the oil and gas industry.

  15. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  16. Stress and work ability in oil industry workers.

    PubMed

    Bresić, Jozo; Knezević, Bojana; Milosević, Milan; Tomljanović, Tomislav; Golubić, Rajna; Golubović, Rajna; Mustajbegović, Jadranka

    2007-12-01

    This cross-sectional study conducted between March and June 2006 examined stress at work and work ability of 180 people with different workplaces within an oil company. Office, laboratory, and oil-field workers were invited to complete the "Occupational Stress Assessment Questionnaire--the Oil Industry Version and Work Ability Index (WAI) Questionnaire". The overall response rate was 69.4%, and the final sample size was 125 workers who completed the questionnaires (57 office, 41 laboratory, 27 oil-field workers). Office, laboratory, and oil-field workers differed significantly with respect to age (P<0.001). The oldest were oil-field workers and the youngest were office workers. The average WAI score for office workers was 44.9, for laboratory workers 43.2 and for field workers 39.7, indicating satisfying work ability. After adjusting for age, the difference in WAI score between the groups of workers was still significant (P<0.001). Over 75% of all workers believed their job was stressful, but the perception of specific stressors depended on the workplace.

  17. Training using multimedia in the oil and gas industry

    SciTech Connect

    Bihn, G.C.

    1997-02-01

    Multimedia is becoming a widely used and accepted tool in general education. From preschool to the university, multimedia is promising and delivering some very impressive results. Its application in specific industry segments, like oil and gas, is expected to proliferate within the very near future. In fact, many titles are already on the market or in development. The objective of this article is to present an overview of the current state of multimedia as used in petroleum industry training and to provide managers with a feel for not only the technology but, more importantly, what benefit the technology is expected to bring to their organization.

  18. Robust control charts in industrial production of olive oil

    NASA Astrophysics Data System (ADS)

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  19. New Skills for an Old Industry: Transforming the Oil Industry in a Former Soviet Republic.

    ERIC Educational Resources Information Center

    Connor, John J.

    2001-01-01

    Explains how the existing workforce in Kazakhstan's oil industry is being upgraded in skills, knowledge, and competencies to bring them up to the standards of the West. Discusses the design phase, including career development plans, training plans, and business plans; job ladders and specifications; assessing skill levels; and an…

  20. A guide for the gas and oil industry

    SciTech Connect

    Not Available

    1994-12-01

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  1. Commitment to and preparedness for sustainable supply chain management in the oil and gas industry.

    PubMed

    Wan Ahmad, Wan Nurul K; Rezaei, Jafar; Tavasszy, Lóránt A; de Brito, Marisa P

    2016-09-15

    Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices.

  2. Application of game theory in decision making strategy: Does gas fuel industry need to kill oil based fuel industry?

    NASA Astrophysics Data System (ADS)

    Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami

    2017-03-01

    Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.

  3. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: implications for downstream impact and source identification.

    PubMed

    Yang, Liyang; Han, Dae Ho; Lee, Bo-Mi; Hur, Jin

    2015-05-01

    The quantity and spectroscopic features of dissolved organic matter (DOM) in treated wastewaters were studied for up to 57 facilities across 12 industrial categories to evaluate the potential influences of the effluents on downstream ecosystems and the feasibility of spectroscopic techniques in discriminating pollution sources. The average dissolved organic carbon (DOC) concentration was 3.30±0.70-73.4±14.0 mg L(-1) for each category, high enough to pollute downstream waterbodies. The average specific UV absorbance at 254 nm (SUVA) for each category spanned a broad range between 0.79±0.24 and 5.35±1.41 L(mg m)(-1), suggesting a variable aromaticity of DOM. Fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC) identified four humic-like and two protein-like components. The EEMs were grouped into seven clusters, five of which were dominated by a single PARAFAC component in each cluster. Fourier transform infrared (FT-IR) spectroscopy revealed notable variations in relative intensities of several characteristic absorbance bands among different wastewaters. The large variability in SUVA, PARAFAC and FT-IR features indicated that the chemical composition of DOM greatly differ among industrial wastewaters, and further implied variable biogeochemical reactivity in downstream waterbodies. The results also suggested the potential of DOM features in discriminating different wastewaters, although the variations within each industrial category were also significant.

  4. Pollution control of industrial wastewater from soap and oil industries: a case study.

    PubMed

    Abdel-Gawad, S; Abdel-Shafy, M

    2002-01-01

    Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.

  5. NORM Management in the Oil and Gas Industry

    SciTech Connect

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-07

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  6. Applications of Nanotechnology in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    Nanotechnology could be used to enhance the possibilities of developing conventional and stranded gas resources and to improve the drilling process and oil and gas production by making it easier to separate oil and gas in the reservoir. Nanotechnology can make the oil and gas industry considerably greener. There are numerous areas in which nanotechnology can contribute to more-efficient, less-expensive, and more-environmentally sound technologies than those that are readily available. We identified the following possibilities of nanotechnology in the petroleum industry: 1-Nanotechnology-enhanced materials that provide strength to increase performance in drilling, tubular goods, and rotating parts. 2- Designer properties to enhance hydro-phobic to enhance materials for water flooding applications. 3- Nano-particulate wetting carried out using molecular dynamics 4- Lightweight materials that reduce weight requirements on offshore platforms 5- Nano-sensors for improved temperature and pressure ratings 6- New imaging and computational techniques to allow better discovery, sizing, and characterization of reservoirs.

  7. NORM management in the oil and gas industry.

    PubMed

    Cowie, M; Mously, K; Fageeha, O; Nassar, R

    2012-01-01

    It has been established that naturally occurring radioactive material (NORM) may accumulate at various locations along the oil and gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become contaminated with NORM, and NORM can accumulate in the form of sludge, scale, scrapings, and other waste media. This can create a potential radiation hazard to workers, the general public, and the environment if certain controls are not established. Saudi Aramco has developed NORM management guidelines, and is implementing a comprehensive strategy to address all aspects of NORM management that aim to enhance NORM monitoring; control of NORM-contaminated equipment; control of NORM waste handling and disposal; and protection, awareness, and training of workers. The benefits of shared knowledge, best practice, and experience across the oil and gas industry are seen as key to the establishment of common guidance. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy, and its goals of establishing common guidance throughout the oil and gas industry.

  8. Fuel quality issues in the oil heat industry

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  9. Energetics Applications for the Oil and Gas Industry

    DOE PAGES

    Brinsden, Mark; Boock, Andrea; Baum, Dennis

    2015-08-07

    Here, early motivation and use of energetic materials in the Western World by Alfred Nobel was intended to facilitate mining, construction, and demolition activities. The motivation for the work was the recognized need for a safer energetic material as an alternate to unstabilized nitroglycerine. The invention of dynamite by Nobel was widely adopted in the civilian world and brought a fortune to Nobel, resulting in the formation of the annual Nobel Prize awards, recognizing significant achievements across many fields of endeavour. Nonetheless, further development of energetics was primarily motivated by and funded for military purposes, rather than civilian usage. Andmore » indeed much investment has been given to the development and characterization of military energetics and their application. An example application is the precision shaped charge, primarily developed as a means of focusing energy in a narrow metallic jet for deep penetration of heavy armor. However, the largest costumer today and for many years for shaped charges is not the military, but rather the oil and gas industry, which has adapted the military technology for perforation of oil and gas wells. While there are similar aspects to desired penetration capabilities in both applications, there are enough differences to warrant energetics R & D focused on oil and gas industry needs.« less

  10. Energetics Applications for the Oil and Gas Industry

    SciTech Connect

    Brinsden, Mark; Boock, Andrea; Baum, Dennis

    2015-08-07

    Here, early motivation and use of energetic materials in the Western World by Alfred Nobel was intended to facilitate mining, construction, and demolition activities. The motivation for the work was the recognized need for a safer energetic material as an alternate to unstabilized nitroglycerine. The invention of dynamite by Nobel was widely adopted in the civilian world and brought a fortune to Nobel, resulting in the formation of the annual Nobel Prize awards, recognizing significant achievements across many fields of endeavour. Nonetheless, further development of energetics was primarily motivated by and funded for military purposes, rather than civilian usage. And indeed much investment has been given to the development and characterization of military energetics and their application. An example application is the precision shaped charge, primarily developed as a means of focusing energy in a narrow metallic jet for deep penetration of heavy armor. However, the largest costumer today and for many years for shaped charges is not the military, but rather the oil and gas industry, which has adapted the military technology for perforation of oil and gas wells. While there are similar aspects to desired penetration capabilities in both applications, there are enough differences to warrant energetics R & D focused on oil and gas industry needs.

  11. Outlook for the Development of Oil and Gas Industry in Vietnam

    NASA Astrophysics Data System (ADS)

    Tsibulnikova, M. R.; Pham, V. A.; Aikina, T. Yu

    2016-09-01

    Oil and gas industry makes a significant contribution to Gross Domestic Product of Vietnam. In 2015 it appeared to be in an intricate situation under the conditions of fall in oil prices caused by excess of supply over demand in the oil market. On the one hand, low prices for oil enable Vietnam as an importer to purchase more oil in the world market. On the other hand, the state company PetroVietnam loses a part of its customers in the domestic market. This tendency can lead to stagnation of the oil and gas industry in Vietnam under weak oil prices if the government does not take timely action.

  12. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  13. Remote Sensing Application in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia

    2014-05-01

    The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.

  14. Determinants of Network News Coverage of the Oil Industry during the Late 1970s.

    ERIC Educational Resources Information Center

    Erfle, Stephen; McMillan, Henry

    1989-01-01

    Examines which firms and products best predict media coverage of the oil industry. Reports that price variations in testing oil and gasoline correlate with the extent of news coverage provided by network television. (MM)

  15. Determinants of Network News Coverage of the Oil Industry during the Late 1970s.

    ERIC Educational Resources Information Center

    Erfle, Stephen; McMillan, Henry

    1989-01-01

    Examines which firms and products best predict media coverage of the oil industry. Reports that price variations in testing oil and gasoline correlate with the extent of news coverage provided by network television. (MM)

  16. Withdrawal of 2016 Information Request for the Oil and Gas Industry

    EPA Pesticide Factsheets

    The Environmental Protection Agency (EPA) is providing notice that it is withdrawing its requests that owners and operators in the oil and natural gas industry provide information on equipment and emissions at existing oil and gas operations.

  17. Packaging design for the Greek olive oil industry

    NASA Astrophysics Data System (ADS)

    Kouveli, A.; Tzetzis, D.; Kyratsis, P.

    2016-11-01

    Packaging is one of the most important elements that characterize product design. It does not only refer to the appearance of the product, that creates the first impression to the user, but it is a whole communication code. This has been identified by the enterprises involved and their competition is high. Nowadays, the most successful of them pay a great deal of attention on every day's trends concerning packaging design and try to apply these trends upon their own designs. The present paper describes the packaging design in today's industries and the existing trends. It will therefore reveal what makes a package design successful, from the company's perspective and how the company studies such factors in order to achieve the best result. Those factors and the research results are applied on the olive oil packaging industry, producing a final packaging design solution.

  18. Industrial hygiene sampling at Rio Blanco oil shale facility

    SciTech Connect

    Gonzales, M.; Garcia, L.L.; Vigil, E.A.; Royer, G.W.; Tillery, M.I.; Ettinger, H.J.

    1982-02-01

    The Rio Blanco Oil Shale Company (RBOSC) facility, in its early stages of development, provided the unique opportunity to sample a Modified In-Situ (MIS) operation during the preparation phase of the first retort, during pyrolysis, and during preparation of a subsequent retort. Industrial hygiene measurements were made in the lowest (G) level (835 feet) of the mine, prior to and during the first 30 days of the Retort Zero burn. These measurements were designed to define and characterize potential inhalation exposures associated with the MIS shale oil recovery process. This information, along with bulk samples of oil shale materials and products, was provided for use in laboratory toxicological studies. Gas and vapor samples of the compounds of interest were all much below threshold limit values (TLV) both before and after retort zero ignition although slightly elevated after ignition. Airborne dust concentrations ranged from 0.1 to 2.9 mg/m/sup 3/ at sizes of 0.3- to 5.2-..mu..m mass median aerodynamic diameter and alpha quartz content ranged from 1.1 to 4.4 percent. Polyaromatic hydrocarbons were found in relatively low concentrations with the anthracene/phenanthrene mixture at the highest level of 0.6 ..mu..g/m/sup 3/. The wetness and ventilation in this mine apparently helped control airborne contaminant concentrations below their TLV values.

  19. Removal of industrial cutting oil from oil emulsions by polymeric ultra- and microfiltration membranes.

    PubMed

    Janknecht, Peter; Lopes, Ana D; Mendes, Adélio M

    2004-09-15

    The utilization of micro- and ultrafiltration with polymeric membranes for treatment of industrial cutting oil emulsion was investigated. The performance of 14 different membranes with pore sizes in the range of 1-800 nm, representing 8 different materials and varying hydrophobicity, was determined experimentally. Membrane permeances between 1.6 and 939 L m 2 h(-1) bar(-1) have been observed for the different samples as well as oil rejections between 3.42% and 99.99%. Membrane pore size and contact angle showed little influence on both values, while an interesting correlation is displayed to the individual membranes' capillary pressures. A possible explanation for this phenomenon is suggested based on the formation of oil films on the membrane surface. From the investigated membranes, the best-suited one for cutting oil treatment was selected and subjected to further experiments. The effect of process temperatures between 22 and 43 degrees C and of feed oil concentrations between 0 and 20 vol % on the removal performance was determined. The results correspond to the explanation suggested previously.

  20. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-09-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  1. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-01-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  2. Computational sciences in the upstream oil and gas industry.

    PubMed

    Halsey, Thomas C

    2016-10-13

    The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry.This article is part of the themed issue 'Energy and the subsurface'.

  3. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect

    Penny, N.P.

    1991-01-01

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  4. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    PubMed

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  5. Industry disputes administration report on oil and gas leasing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    Despite the Obama administration's efforts to make millions of acres of public lands available for oil and gas development, most of the acreage onshore and offshore of the contiguous United States remains idle, according to “Oil and gas lease utilization, onshore and offshore,” a 15 May report issued by the Department of the Interior (DOI). The report, which is being disputed by industry representatives, notes that 72% of the nearly 36 million leased offshore acres currently are inactive and that 50.6% of onshore leased acres (about 20.8 million acres) also are idle. “As part of the Obama administration's all-of- the-above energy strategy, we continue to make millions of acres of public lands available for safe and responsible domestic energy production on public lands and in federal waters,” said DOI secretary Ken Salazar. “These lands and waters belong to the American people, and they expect those energy supplies to be developed in a timely and responsible manner and with a fair return to taxpayers. We will continue to encourage companies to diligently bring production online quickly and safely on public lands already under lease.”

  6. Assessment of industry needs for oil shale research and development. Final report

    SciTech Connect

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  7. 76 FR 5107 - Regulation of Oil-Bearing Hazardous Secondary Materials From the Petroleum Refining Industry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... AGENCY 40 CFR Parts 260 and 261 RIN-2050-AE78 Regulation of Oil-Bearing Hazardous Secondary Materials..., ``Regulation of Oil-Bearing ] Hazardous Secondary Materials from the Petroleum Refining Industry Processed in a... reconsider the final rule, ``Regulation of Oil-Bearing Hazardous Secondary Materials from the...

  8. Composite materials in the UK offshore oil & gas industry

    SciTech Connect

    Barnes, F.

    1996-03-01

    Since 1988, the use of composite materials has been steadily increasing in the UK offshore oil and gas industry. The first applications were, surprisingly, for fire, blast and impact resistant structures which were used to protect steel structures from these effects. Subsequent developments have seen composites used for secondary and tertiary structures on existing and new offshore installations, such as sea water piping systems, gratings, handrails, ladders, vessels and tanks. More recently, carbon fiber composites have been used to strengthen existing primary steel structures on existing offshore installations. Development work is now underway to produce the short and long term mechanical property data for those composites and adhesives most likely to be used for offshore structural applications, validated design tools and a design guide that will provide a framework for approval and certification of structural composites in the offshore industry. This report reviews these developments and highlights some of the issues that must be dealt with if the vast potential of this new and exciting market is to be realized. 4 figs.

  9. Viscosity measurement of industrial oils using the droplet quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Ash, Dean C.; Joyce, Malcolm J.; Barnes, Chris; Booth, C. Jan; Jefferies, Adrian C.

    2003-11-01

    The application of the droplet quartz crystal microbalance (QCM) to the measurement of viscosity for industrial oils is reported. In this approach a small-volume droplet of fluid is investigated via its influence on the resonant frequency of a quartz oscillator. The droplet QCM viscosity response is investigated for a selection of industrial oils, including commercial automotive lubricants, heavy fuel oils, calibration oils and used automotive lubricating oils. This approach shows significant analytical promise for distinguishing between heavy fuel oils dyed to indicate their duty status. It is also demonstrated that lubricating oils aged in engine tests exhibit an enhanced QCM viscosity response than accepted viscosity measurements would otherwise indicate. The locus at which the viscosity response saturates due to violation of the small loading approximation (extreme viscosities) is identified and found to be qualitatively consistent with established equivalent circuit models. The identification of commercial lubricating oils is observed to be unreliable on the basis of viscosity response alone.

  10. The Mexican Oil Industry: Governance, Resource and Social Concerns

    DTIC Science & Technology

    2011-10-28

    Baker Institute: Mexico could become oil importer by 2010”, Oil & Gas Journal 31 “Mexico unveils new deepwater drilling regulations”, energy-pedia...Efficiency: The Politics of Investment Policies in the Oil Industry”, 17. 56 Ibid 57 “Mexico unveils new deepwater drilling regulations”, energy...Bogan, “With Easy Oil Gone, Pemex Sobers Up” 60 “Mexico unveils new deepwater drilling regulations”, energy-pedia news 61 Jeremy Martin “Oil in

  11. Recent patents in olive oil industry: New technologies for the recovery of phenols compounds from olive oil, olive oil industrial by-products and waste waters.

    PubMed

    Sabatini, N

    2010-06-01

    Olive oil is the major source of mono-unsaturated fatty acids in the Mediterranean basin. It has been demonstrated that several olive components play an important role in human health. Among these components, polyphenols play a very important role. They are responsible for olive oil stability and sensory attributes. Moreover, they have pharmacological properties, are natural antioxidants and inhibit the proliferation of many pathogen microorganisms. Studies in vitro have demonstrated that hydroxytyrosol scavenges free radicals, inhibits human low-density lipoprotein (LDL) oxidation which is a process involved in the pathogenesis of the atherosclerosis, inhibits platelet aggregation and discloses anticancer activity on cancer cells by means of pro-apoptotic mechanisms. It has also been demonstrated that hydroxytyrosol acts in vitro against both Gram-positive and Gram-negative bacteria, which are involved in many infections of respiratory and intestinal tracts. In this review, the most recent patents developed to improve technologies for recovering of antioxidant compounds of olive oil, olive oil industrial by products and waste-waters have been presented.

  12. Disposables in downstream processing.

    PubMed

    Gottschalk, Uwe

    2009-01-01

    Disposable equipment has been used for many years in the downstream processing industry, but mainly for filtration and buffer/media storage. Over the last decade, there has been increasing interest in the use of disposable concepts for chromatography, replacing steel and glass fixed systems with disposable plastic modules that can be discarded once exhausted, fouled or contaminated. These modules save on cleaning and validation costs, and their reduce footprints reduce buffer consumption, water for injection, labor and facility space, contributing to an overall reduction in expenditure that lowers the cost of goods. This chapter examines the practical and economic benefits of disposable modules in downstream processing.

  13. Use of waste ash from palm oil industry in concrete.

    PubMed

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.

  14. Case studies utilizing mobile on-site recycling of industrial oils for immediate reapplication{copyright}

    SciTech Connect

    Siegel, R.; Skidd, C.

    1995-09-01

    Since the early 1970s industrial oil users have sought effective and cost efficient methods of reducing the quantity of used oil entering our nations waste streams. Driven by environmental legislation and the ever growing cost and liability related to the handling and disposal of used oils, waste minimization has become the watchword of our times. Today`s industry is determined to eliminate waste by finding new methods to extend the useful life of their operating oils and fluids. The authors have seen the growth of a new service industry devoted to dealing with the complex problems of oil reclamation. Among these service organizations is a growing number of {open_quotes}on-site{close_quotes} mobile oil recycling companies. On-site services offer greater flexibility, speed and immediate emergency assistance. Additionally, they provide their clients with a high degree of environmental control. A physical analysis of recycled oil is given, showing the properties of viscosity, water content, and particle cleanliness for recycled oil approaches that of new oil. Outsourcing of fluids recycling via a mobile service provider has proven to be a cost effective and efficient means of extending the useful life of industrial fluids, while eliminating much of the cost and environmental concern related to used oil disposal. 1 fig., 3 tabs.

  15. Offshore industry: medical emergency response in the offshore oil and gas industry.

    PubMed

    Ponsonby, Will; Mika, Frano; Irons, Greg

    2009-08-01

    The hunt for oil and gas has taken workers into new more distant locations including those offshore. The remoteness of the offshore platforms and vessels coupled with the potential risk of being cut off by bad weather presents particular challenges for medical emergency response (MER). Firstly to define the challenges for MER in terms of locations, population and epidemiology of injuries and illnesses in the offshore environment. Secondly to give examples of legal requirements and industry standards to manage MER. Thirdly to look at existing and emerging practice to manage these challenges. A review of published literature was supplemented with a summary of current practice in the industry. Medical professionals (medics) working offshore on installations and vessels are primarily responsible for the medical care of the workers. The medics have clinics with suitable medical equipment for managing emergencies as well as providing limited primary care. Some countries have legislation that stipulate minimum requirements. Where there is no national legislation, industry and company guidance is used to define the MER standards. Supervision of the offshore medics is often provided by doctors on shore via radio and phone links. These methods of communication are now being augmented with more sophisticated telemedicine solutions such as the Internet and live video links. These newer solutions allow for prompt high-quality care and provide the scope for a variety of new treatment options to be available for the offshore workforce.

  16. 77 FR 61026 - Olive Oil: Conditions of Competition Between U.S. and Major Foreign Supplier Industries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... COMMISSION Olive Oil: Conditions of Competition Between U.S. and Major Foreign Supplier Industries AGENCY...-537, Olive Oil: Conditions of Competition between U.S. and Major Foreign Supplier Industries. DATES... commercial olive oil industry in the United States and major supplier countries, including production of...

  17. Integration of geoscience and engineering in the oil industry - just a dream?

    PubMed

    Stankiewicz, B Artur

    2003-11-20

    The past two decades of the twentieth century have been very 'rocky' for the oil industry, as shown by the overall negative perception of the oil companies by the general public. Fluctuating oil prices, many rounds of staff redundancies, environmental disasters and budget cuts supported the overall image of the oil industry as being 'the technology impaired and environmentally insensible giant'. But advances and positive changes have been quietly happening in most of the oil companies. In the twenty-first century, we will witness the metamorphosis of the oil and gas companies into energy businesses - the era of cleaner and safer oil and gas production, and alternative energy resources such as wind, solar and hydrogen is already underway.

  18. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1996-02-01

    The lubricating properties of mineral oils, and contaminants which affect those properties, are discussed. A contaminant is any material not in the original fresh oil, whether it is generated within the system or ingested. 5 refs.

  19. Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95

    SciTech Connect

    Premuzic, E.T.

    1996-08-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.

  20. Analyzing the oil refining industry in developing countries: A comparative study of China and India

    SciTech Connect

    Tang, F.C.

    1994-12-31

    The oil refining industry is a critical link in the energy chain in many developing and industrialized countries, transforming crude oil into transport fuels (gasoline, jet fuel, and diesel), residual fuel oil (widely used as a fuel in industry and the electric power sector), and other products such as kerosine, frequently for lighting an cooking usages. Three to four decades ago, the demand for oil products in most developing countries was centered to a few large cities; thus, few refineries were built in these regions. But because of the astonishing economic growth in many developing nations, demand for oil products has increased rapidly. As a result, the refining industry has expanded rapidly in such countries, even in cases were there is no domestic crude oil production. Oil product demand and refinery expansion in Asian developing countries in particular have experienced significant growth. Between 1976 and 1993, oil product demand and refinery capacity in that region (excluding Japan) increased annually an average of 5.2 percent and 4.3 percent, respectively, whereas the comparable figures for the world as a whole remained virtually unchanged during the same period. The substantial gains in Asia`s crude oil production in the 1970s is believed to have facilitated this refinery expansion.

  1. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica.

    PubMed

    Li, Xueyuan; van Loo, Eibertus N; Gruber, Jens; Fan, Jing; Guan, Rui; Frentzen, Margrit; Stymne, Sten; Zhu, Li-Hua

    2012-09-01

    Erucic acid (22 : 1) is a major feedstock for the oleochemical industry. In this study, a gene stacking strategy was employed to develop transgenic Crambe abyssinica lines with increased 22 : 1 levels. Through integration of the LdLPAAT, BnFAE1 and CaFAD2-RNAi genes into the crambe genome, confirmed by Southern blot and qRT-PCR, the average levels of 18 : 1, 18 : 2 and 18 : 3 were markedly decreased and that of 22 : 1 was increased from 60% in the wild type to 73% in the best transgenic line of T4 generation. In single seeds of the same line, the 22 : 1 level could reach 76.9%, an increase of 28.0% over the wild type. The trierucin amount was positively correlated to 22 : 1 in the transgenic lines. Unlike high erucic rapeseed, the wild-type crambe contains 22 : 1 in the seed phosphatidylcholine and in the sn-2 position of triacylglycerols (5% and 8%, respectively). The transgenic line with high 22 : 1 had decreased 22 : 1 level in phosphatidylcholine, and this was negatively correlated with the 22 : 1 level at the sn-2 position of TAG. The significances of this study include (i) achieving an unprecedented level of 22 : 1 in an oil crop; (ii) disclosing mechanisms in the channelling of a triacylglycerol-specific unusual fatty acid in oil seeds; (iii) indicating potential limiting factors involved in the erucic acid biosynthesis and paving the way for further increase of this acid and (iv) development of an added value genetically modified oil crop having no risk of gene flow into feed and food crops.

  2. Palm oil industry: A review of the literature on the modelling approaches and potential solution

    NASA Astrophysics Data System (ADS)

    Zabid, M. Faeid M.; Abidin, Norhaslinda Zainal

    2015-12-01

    Palm oil industry plays an important role as a backbone to the economy of a country, especially in many developing countries. Various issues related to the palm oil context have been studied rigorously by previous researchers using appropriate modeling approaches. Thus, the purpose of this paper is to present an overview of existing modeling approaches used by researchers in studying several issues in the palm oil industry. However, there are still limited numbers of researches that focus to determine the impact of strategy policies on palm oil studies. Furthermore, this paper introduces an improved system dynamics and genetic algorithm technique to facilitate the policy design process in palm oil industry. The proposed method is expected to become a framework for structured policy design process to assist the policy maker in evaluating and designing appropriate policies.

  3. DOE report assesses environmental impact of waste oil industry

    SciTech Connect

    Not Available

    1987-07-01

    Most current methods of used oil and unused waste oil utilization and disposal create risks of contaminating air, water, or soil with substances that pose hazards to human, animal, and plant life. Recent actions taken to regulate used oil may create severe constraints on those who generate, collect, and handle used oil, such that many of them may leave the market. This may lead to decreased availability of sound disposal options resulting in increased improper disposal of used oil. The U.S. EPA has tried several times to classify used oil as a hazardous waste. The rationale for proposing such a regulation was that its implementation would force more energy recovery through fuel reprocessing and lube oil re-refining. The release of 61-128 million gal/year of used oil into the environment would likely threaten ground and surface waters with oil contamination, thereby endangering drinking water supplies and aquatic life. Therefore, in its latest attempt to classify used oil as a hazardous waste, EPA concluded that such a listing would discourage recycling or reuse.

  4. Studies of the Scottish oil shale industry. Volume 3. Causes of death of Scottish oil shale workers. Final report

    SciTech Connect

    Miller, B.G.; Cowie, H.; Middleton, W.G.; Seaton, A.

    1985-05-01

    The hazards of the Scottish oil shale industry are reported in three volumes. This volume addresses the cause of death for personnel in the oil shale industry. Skin cancer deaths showed a hazard significantly greater than unity. In comparing oil shale workers mortality with that of the population of 2 counties, an increase in death from bronchitis and emphysema was demonstrated. Comparisons of mortality within the study group to determine if any particular jobs in the industry were more hazardous than others showed no significant associations. There appeared to be a slight excess of prostrate cancer among retort workers. In a case-control study, no significant increase in relative hazard of lung cancer was found in association with workers or residents in areas of high shale activity. 21 refs., 4 figs., 27 tabs. (DMC)

  5. Cancer incidence among 41,000 offshore oil industry workers.

    PubMed

    Stenehjem, J S; Kjærheim, K; Rabanal, K S; Grimsrud, T K

    2014-10-01

    Cancer incidence among Norwegian offshore oil industry workers has been studied in two equally sized cohorts of 28000 workers, in a survey-based cohort study followed 1999-2005 and a register-based cohort study followed 1981-2003. To determine the overall cancer incidence in both cohorts merged, with an extended follow-up. The merged cohort yielded 41,140 individuals followed for cancer diagnoses 1999-2009. Standardized incidence ratios (SIRs) with 95% confidence intervals (CIs) were computed by gender and by period of first employment using cancer registry data. Among female workers, the total number of cancers was slightly higher than expected (SIR 1.17, 95% CI 1.02-1.34), and excesses of acute myeloid leukaemia (AML) (SIR 5.29, 95% CI 1.72-12), malignant melanoma (SIR 2.13, 95% CI 1.41-3.08) and lung cancer (SIR 1.69, 95% CI 1.03-2.61) were observed. Among male workers, the total number of cancer cases was close to that expected (SIR 1.03, 95% CI 0.99-1.08), but cases of pleural cancer (SIR 2.56, 95% CI 1.58-3.91) and bladder cancer (SIR 1.25, 95% CI 1.05-1.49) were higher than expected. Among male workers first employed before 1986, the numbers of observed cancer cases were higher than expected for most sites, while this was not evident among those employed later. Further studies with exposure data and confounder control are needed to address whether the observed excesses of pleural cancer and AML can be attributed to offshore work. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Fatty acid profile of 25 plant oils and implications for industrial applications

    USDA-ARS?s Scientific Manuscript database

    The fatty acid (FA) profiles of plant oils extracted from twenty-five alternative feedstocks were determined. This information was utilized to determine what industrial application(s) each oil is best suited for. The basis for the selection was the premise that FA composition influences properties o...

  7. Competency Based Education Curriculum for the Orientation and Safety Program of the Oil and Gas Industry.

    ERIC Educational Resources Information Center

    United Career Center, Clarksburg, WV.

    This competency-based education curriculum for teaching the orientation and safety program for the oil and gas industry in West Virginia is organized into seven units. These units cover the following topics: introduction to oil and gas, first aid, site preparation, drilling operations, equipment familiarity, well completion, and preparation for…

  8. Novel potential inhibitors for adenylylsulfate reductase to control souring of water in oil industries.

    PubMed

    Dos Santos, Elias Silva; de Souza, Leila Cristiane Virgens; de Assis, Patrícia Nascimento; Almeida, Paulo Fernando; Ramos-de-Souza, Elias

    2014-01-01

    The biogenic production of hydrogen sulfide gas by sulfate-reducing bacteria (SRB) causes serious economic problems for natural gas and oil industry. One of the key enzymes important in this biologic process is adenosine phosphosulfate reductase (APSr). Using virtual screening technique we have discovered 15 compounds that are novel potential APSr inhibitors. Three of them have been selected for molecular docking and microbiological studies which have shown good inhibition of SRB in the produced water from the oil industry.

  9. Oil industry and road traffic fatalities in contemporary Colombia.

    PubMed

    Tasciotti, Luca; Alejo, Didier; Romero, Andrés

    2016-12-01

    This paper studies the effects that oil extraction activities in Colombia have on the number of dead/injured people as a consequence of road-related accidents. Starting in 2004, the increasing exploitation of oil wells in some Colombian departments has worsened the traffic conditions due to the increased presence of trucks transporting crude oil from the wells to the refineries; this phenomenon has not been accompanied by an improvement in the road system with dramatic consequences in terms of road viability. The descriptive and empirical analysis presented here focuses on the period 2004-2011; results from descriptive statistics indicate a positive relationship between the presence of oil extraction activities and the number of either dead/injured people. Panel regressions for the period 2004-2011 confirm that, among other factors, the presence of oil-extraction activities did play a positive and statistical significant role in increasing the number of dead/injured people.

  10. Timing and Institutions: Determinants of the Ownership Structure in the Oil and Gas Industry in Canada and Norway

    NASA Astrophysics Data System (ADS)

    Didier, Thomas

    In response to 1973 oil shock, both the Canadian and Norwegian states expanded public corporate ownership in the oil and gas industry. This thesis questions why the public share of total corporate ownership in the oil industry was greater in Norway than in Canada, and why Petro-Canada was privatized completely while Statoil was not. Two hypotheses are tested from a historical institutionalist perspective. First, the timing of oil development determined whether the private sector would establish itself as the dominant player in the oil and gas industry (in Canada) or not (in Norway) before the 1973 oil shock triggered government interest in public corporate ownership. Second, overlapping jurisdiction over oil resources (in Canada) undermined the effectiveness of mechanisms of reproduction of public corporate ownership. In Norway, the later discovery of oil thus gave the state a stronger bargaining position relative to the oil industry, and in a unitary state the uncontroversial redistributional activities of Statoil attracted more vested interests.

  11. Progress in modification of sunflower oil to expand its industrial value.

    PubMed

    Rauf, Saeed; Jamil, Nazia; Tariq, Sultan Ali; Khan, Maria; Kausar, Maria; Kaya, Yalcin

    2017-05-01

    Increasing the sunflower seed oil content as well as improving its quality makes it compatible for industrial demands. This is an important breeding objective of sunflower which increases its market value and ensures high returns for the producers. The present review focuses on determining the progress of improving sunflower seed oil content and modifying its quality by empirical and advanced molecular breeding methods. It is known that the sunflower oil content and quality have been altered through empirical selection methods and mutation breeding programmes in various parts of the world. Further improvement in seed oil content and its components (such as phytosterols, tocopherols and modified fatty acid profile) has been slowed down due to low genetic variation in elite germplasm and complex of hereditary traits. Introgression from wild species can be carried out to modify the fatty acids profile and tocopherol contents with linkage drags. Different transgenes introduced through biotechnological methods may produce novel long-chain fatty acids within sunflower oil. Bio-engineering of sunflower oil could allow it to be used in diverse industrial products such as bio-diesel or bio-plastics. These results showed that past and current trends of modifying sunflower oil quality are essential for its further expansion as an oilseed crop. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    PubMed Central

    Silva, Rita de Cássia F. S.; Almeida, Darne G.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  13. Real time EM waves monitoring system for oil industry three phase flow measurement

    NASA Astrophysics Data System (ADS)

    Al-Hajeri, S.; Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2009-07-01

    Monitoring fluid flow in a dynamic pipeline is a significant problem in the oil industry. In order to manage oil field wells efficiently, the oil industry requires accurate on line sensors to monitor the oil, gas, and water flow in the production pipelines. This paper describes a non-intrusive sensor that is based on an EM Waves cavity resonator. It determines and monitors the percentage volumes of each phase of three phase (oil, gas, and water) in the pipeline, using the resonant frequencies shifts that occur within an electromagnetic cavity resonator. A laboratory prototype version of the sensor system was constructed, and the experimental results were compared to the simulation results which were obtained by the use of High Frequency Structure Simulation (HFSS) software package.

  14. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    PubMed

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-07-15

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  15. Markets during world oil supply crises: an analysis of industry, consumer, and governmental response

    SciTech Connect

    Erfle, Stephen; Pound, John; Kalt, Joseph

    1981-04-01

    An analysis of the response of American markets to supply crises in world oil markets is presented. It addresses four main issues: the efficiency of the operation of American oil markets during oil supply crises; the problems of both economic efficiency and social equity which arise during the American adaptation process; the propriety of the Federal government's past policy responses to these problems; and the relationship between perceptions of the problems caused by world oil crises and the real economic natures of these problems. Specifically, Chapter 1 presents a theoretical discussion of the effects of a world supply disruption on the price level and supply availability of the world market oil to any consuming country including the US Chapter 2 provides a theoretical and empirical analysis of the efficiency of the adaptations of US oil product markets to higher world oil prices. Chapter 3 examines the responses of various groups of US oil firms to the alterations observed in world markets, while Chapter 4 presents a theoretical explanation for the price-lagging behavior exhibited by firms in the US oil industry. Chapter 5 addresses the nature of both real and imagined oil market problems in the US during periods of world oil market transition. (MCW)

  16. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1995-05-01

    The physical and chemical properties of mineral oils that affect lubrication are reviewed. Recognition of these properties is useful for designing lubrication systems, diagnostics, friction and wear problems, and selecting appropriate test methods.

  17. [Outlook for 1997 in the global oil and gas industries

    SciTech Connect

    1997-02-01

    This section contains 4 small articles which deal with the global outlook on the following: worldwide drilling (Middle East leads the charge); offshore drilling (US Gulf remains hot); worldwide oil production (Producers meet the challenge); and the Canadian outlook (Canada prepares for another brisk year by Hans Maciej). Tables are provided for the 1997 forecast of drilling outside the US, the 1997 forecast of offshore drilling worldwide, world crude oil/condensate production by country in 1995 and 1996, and Canadian drilling forecasts.

  18. The impact of internet-connected control systems on the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Martel, Ruth T.

    In industry and infrastructure today, communication is a way of life. In the oil and gas industry, the use of devices that communicate with the network at large is both commonplace and expected. Unfortunately, security on these devices is not always best. Many industrial control devices originate from legacy devices not originally configured with security in mind. All infrastructure and industry today has seen an increase in attacks on their networks and in some cases, a very dramatic increase, which should be a cause for alarm and action. The purpose of this research was to highlight the threat that Internet-connected devices present to an organization's network in the oil and gas industry and ultimately, to the business and possibly even human life. Although there are several previous studies that highlight the problem of these Internet-connected devices, there remains evidence that security response has not been adequate. The analysis conducted on only one easily discovered device serves as an example of the ongoing issue of the security mindset in the oil and gas industry. The ability to connect to a network through an Internet-connected device gives a hacker an anonymous backdoor to do great damage in that network. The hope is that the approach to security in infrastructure and especially the oil and gas industry, changes before a major catastrophe occurs involving human life.

  19. Optimization of oil retention in sesame based halva using emulsifiers and fibers: an industrial assay.

    PubMed

    Aloui, F; Maazoun, B; Gargouri, Y; Miled, N

    2016-03-01

    Oil bleeding during storage oleaginous seeds based confectionery products is a major problem affecting acceptance by consumers. Halva is a popular sweet food prepared from a sesame paste and a sugar mixture. The objective of this work was to improve the oil retention in this product by incorporating commercial fibers and emulsifiers: soya lecithin and monoglycerides (MG1 or MG2) during manufacturing. Oil retention yield was optimized on small batches, by response surface methodology using a central composite design applied with two factors, emulsifier concentration (0.25-2.25 %) and fibers concentration (0-2 %) at three levels. A centrifugation test was optimized to assess oil retention in halva samples. The experimental response (oil retention) was fitted with quadratic equations for each emulsifier, using multiple regression analysis. The emulsion stability increased with increasing the emulsifier concentration, particularly to 2.25 %. The oil bleeding assessed at 45 °C was slow but yielded similar results to those estimated by centrifugation test. The latter seems an attractive rapid method to quantify oil retention in oleaginous seeds and crops based food matrices. At an industrial scale, the increase of MG1 concentration to 2.25 % in halva enhances the oil retention of the product but does not affect its color or textural characteristics. Microscopic observations allowed us to explain high oil retention in this product by a homogeneous dispersion of oil droplets in the aqueous phase.

  20. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  1. Upper airway problems in industrial workers exposed to oil mist.

    PubMed

    Irander, K; Hellquist, H B; Edling, C; Odkvist, L M

    1980-01-01

    Exposure to oil mist used in metal work sometimes gives symptoms from skin and airways. This study was performed to evaluate histological and functional respiratory tract disorders. Six male lathe workers aged 31-64 years exposed to oil mist for 4-29 years were examined and compared with matched controls. The investigation included case history, ENT examination, nasal mucociliary function, routine blood tests, IgE, RAST, X-ray of sinus and lungs and biopsy of the nasal mucosa. The mucociliary test showed no difference between the groups. However, all 6 exposed workers had pathological histology findings in the nasal mucosa including lack of cilia, basal cell hyperplasia, goblet cell hyperplasia, squamous metaplasia and subepithelial hyalinization. The biopsies from the controls were mainly normal. The remainder of the investigations revealed no pathology. The study shows that exposure to oil mist--even below the permitted threshold limit--may cause airway symptoms and histological signs comparable to a premature ageing.

  2. Luminescence monitoring of oil or tar contamination for industrial hygiene

    NASA Astrophysics Data System (ADS)

    Gammage, Richard B.; Vo-Dinh, Tuan

    1980-09-01

    Synfuel plants produce potentially carcinogenic oils and tars. Exposure of workers to these tars and oils is difficult to avoid completely and occurs via direct contact with dirty surfaces or condensation of escaped fumes onto or within the body. Surface skin measurements are made directly with a near-ultraviolet luminoscope employing a fiber optics lightguide and a stethoscopic cap pressed against the skin. This instrument is especially suitable for measuring ng to μg/cm 2 amounts of residual contamination remaining on the surface of the skin after washing. To minimize the potential for carcinogenicity, the excitating ultraviolet light intensity is only 1/100 th that of sunlight.

  3. Powerful motors: Kinship, citizenship and the transformation of the Argentine oil industry

    NASA Astrophysics Data System (ADS)

    Shever, Elana

    The privatization of the Argentine oil industry has been described as an unprecedented transfer of property, capital and control from the state to the corporate sphere, but this study demonstrates that the privatization process is better understood as a transformation of the historical configurations of oil-fueled development, political communities and human subjectivities. This dissertation probes the development of the state-led oil industry, and the shift to a corporate-led one, through an ethnography of Argentines differently positioned in relation to the global oil industry. The ethnography explores the lives of middle class oil workers and their families in Northwest Patagonia, impoverished residents of the shanty neighborhoods near the refineries in metropolitan Buenos Aires, and affluent employees of the translocal corporations operating in the Argentine oil fields. After the Introduction delineates this study's four principal interventions into anthropological scholarship, each subsequent chapter engages a particular problem that cuts across the Argentine oil fields and the anthropological theoretical fields. Chapter Two scrutinizes the historical construction of the Argentine subterritory as a "natural" space of value. Chapters Three and Four investigate the articulation of capitalist production and filial reproduction. These chapters argue that sentiment is a crucial generative force that has shaped the oil industry, company towns and worker families from the founding of the state-owned oil company in beginning of the twentieth century to its conversion into a corporate-owned one at the century's close. Chapters Five and Six examine the emergence of consumer citizenship and corporate citizenship out of Argentine neoliberalismo and its transformation of the oil industry. They argue that consumer and corporate citizenship are both reformulations of the older traditions of liberalism and Peronism. All the chapters of this dissertation illustrate that the

  4. Estonia`s oil shale industry - meeting environmental standards of the future

    SciTech Connect

    Tanner, T.; Bird, G.; Wallace, D.

    1995-12-31

    Oil shale is Estonia`s greatest mineral resource. In the 1930s, it was used as a source of gasoline and fuel oil, but now it is mined primarily for thermal generation of electricity. With the loss of its primary market for electricity in the early 1990s and in the absence of another domestic source of fuel Estonia once again is considering the use of a larger proportion of its shale for oil production. However, existing retorting operations in Estonia may not attain western European environmental standards and desired conversion efficiencies. As a reference point, the Estonian authorities have documented existing environmental impacts. It is evaluating technologies to reduce the impacts and is setting a direction for the industry that will serve domestic needs. This paper provides a description of the existing oil shale industry in Estonia and options for the future.

  5. Large expansion of oil industry in the Ecuadorian Amazon: biodiversity vulnerability and conservation alternatives.

    PubMed

    Lessmann, Janeth; Fajardo, Javier; Muñoz, Jesús; Bonaccorso, Elisa

    2016-07-01

    Ecuador will experience a significant expansion of the oil industry in its Amazonian region, one of the most biodiverse areas of the world. In view of the changes that are about to come, we explore the conflicts between oil extraction interests and biodiversity protection and apply systematic conservation planning to identify priority areas that should be protected in different oil exploitation scenarios. First, we quantified the current extent of oil blocks and protected zones and their overlap with two biodiversity indicators: 25 ecosystems and 745 species (whose distributions were estimated via species distribution models). With the new scheme of oil exploitation, oil blocks cover 68% (68,196 km(2)) of the Ecuadorian Amazon; half of it occupied by new blocks open for bids in the southern Amazon. This region is especially vulnerable to biodiversity losses, because peaks of species diversity, 19 ecosystems, and a third of its protected zones coincide spatially with oil blocks. Under these circumstances, we used Marxan software to identify priority areas for conservation outside oil blocks, but their coverage was insufficient to completely represent biodiversity. Instead, priority areas that include southern oil blocks provide a higher representation of biodiversity indicators. Therefore, preserving the southern Amazon becomes essential to improve the protection of Amazonian biodiversity in Ecuador, and avoiding oil exploitation in these areas (33% of the extent of southern oil blocks) should be considered a conservation alternative. Also, it is highly recommended to improve current oil exploitation technology to reduce environmental impacts in the region, especially within five oil blocks that we identified as most valuable for the conservation of biodiversity. The application of these and other recommendations depends heavily on the Ecuadorian government, which needs to find a better balance between the use of the Amazon resources and biodiversity conservation.

  6. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  7. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    PubMed Central

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605

  8. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    PubMed

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  9. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    PubMed

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  10. The structure of the international oil industry in the 1980s

    SciTech Connect

    Luciani, G.

    1984-01-01

    An analysis is given of the strategy of international oil companies in relation to the Arab world since the momentous changes in their respective positions in the 1970s and the policies of oil importing countries, including the limits of ''government to government'' deals. On this basis of this analysis, the author constructs alternative scenarios on the evolution of the industry that are based on further disintegration or reintegration. In the case of reintegration, he offers an in-depth definition of its political and strategic implications for OPEC, the relations between oil exporters and importers, and relations among the U.S., Europe, and the Arab world.

  11. Radon concentrations in Algerian oil and gas industry.

    PubMed

    Hamlat, M S; Kadi, H; Djeffal, S; Brahimi, H

    2003-01-01

    Concentrations of 222Rn in produced water, crude oil, natural gas (NG) and natural gas liquids (NGL) in on-shore Algeria were measured using scintillation cell techniques (Lucas cells) and electret ion chamber (EIC). The first method, active, is based on the use of a Lucas-type scintillation chamber in conjunction with a portable monitor (model Pylon AB-5); the second method, passive, using an EIC with a 4 l glass analysis bottle. The activities of 222Rn were in the range of 0.98-18.50 Bq/l for produced water, 0.02-0.3 Bq/g for crude oil, 40-1000 Bq/m(3) for NG and 300-2500 Bq/m(3) for NGL, respectively. These values are compared with concentrations reported for other countries.

  12. Mismanagement of Oil and Gas Resource Revenues in Africa: Lessons for Ghana’s Budding Oil and Gas Industry

    DTIC Science & Technology

    2013-06-13

    countries, revenues from the petroleum industry have been managed to the benefit of a large percentage of the citizenry. Norway had a gross...revenues have generally benefitted the population. Kuwait’s export of 2.127 million barrels of oil per day, by 2011 estimates, made it the eighth largest...or tendency of people to seek personal benefits or privileges through political avenues. This includes trying to get subsidies for goods they

  13. Chemical Compositions and Aroma Evaluation of Volatile Oil from the Industrial Cultivation Medium of Enterococcus faecalis.

    PubMed

    Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Maeba, Keisuke; Yonejima, Yasunori; Toyoda, Masanori; Ikeda, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    Enterococcus faecalis is one of the major lactic acid bacterium (LAB) species colonizing the intestines of animals and humans. The characteristic odor of the volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of E. faecalis was investigated to determine the utility of the liquid medium. In total, fifty-six and thirty-two compounds were detected in the volatile oils from the MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were 2,5-dimethylpyrazine (19.3%), phenylacetaldehyde (19.3%), and phenylethyl alcohol (9.3%). The aroma extract dilution analysis (AEDA) method was performed using gas chromatography-olfactometry (GC-O). The total number of aroma-active compounds identified in the volatile oil from MBI and MAI was thirteen compounds; in particular, 5-methyl-2-furanmethanol, phenylacetaldehyde, and phenylethyl alcohol were the most primary aroma-active compounds in MAI oil. These results imply that the industrial cultivation medium after incubation of E. faecalis may be utilized as a source of volatile oils.

  14. The influence of nitrate on microbial processes in oil industry production waters.

    PubMed

    Davidova, I; Hicks, M S; Fedorak, P M; Suflita, J M

    2001-08-01

    Sulfide accumulation due to bacterial sulfate reduction is responsible for a number of serious problems in the oil industry. Among the strategies to control the activity of sulfate-reducing bacteria (SRB) is the use of nitrate, which can exhibit a variety of effects. We investigated the relevance of this approach to souring oil fields in Oklahoma and Alberta in which water flooding is used to enhance oil recovery. SRB and nitrate-reducing bacteria (NRB) were enumerated in produced waters from both oil fields. In the Oklahoma field, the rates of sulfate reduction ranged from 0.05 to 0.16 microM S day(-1) at the wellheads, and an order of magnitude higher at the oil-water separator. Sulfide production was greatest in the water storage tanks in the Alberta field. Microbial counts alone did not accurately reflect the potential for microbial activities. The majority of the sulfide production appeared to occur after the oil was pumped aboveground, rather than in the reservoir. Laboratory experiments showed that adding 5 and 10 mM nitrate to produced waters from the Oklahoma and Alberta oil fields, respectively, decreased the sulfide content to negligible levels and increased the numbers of NRB. This work suggests that sulfate reduction control measures can be concentrated on aboveground facilities, which will decrease the amount of sulfide reinjected into reservoirs during the disposal of oil field production waters.

  15. Fire Prevention and Control Training in the Oil Industry.

    ERIC Educational Resources Information Center

    Edney, G. A.

    1979-01-01

    Training for fire prevention and control in the petroleum industry is vital for all personnel, clerical and management as well as operators, maintenance men, and drivers. Basic training practices in Britain stressing safety, vigilance, preparation, and realistic exercises are described. (MF)

  16. Fire Prevention and Control Training in the Oil Industry.

    ERIC Educational Resources Information Center

    Edney, G. A.

    1979-01-01

    Training for fire prevention and control in the petroleum industry is vital for all personnel, clerical and management as well as operators, maintenance men, and drivers. Basic training practices in Britain stressing safety, vigilance, preparation, and realistic exercises are described. (MF)

  17. Environmental Conservation. The Oil and Gas Industries, Volume One.

    ERIC Educational Resources Information Center

    National Petroleum Council, Washington, DC.

    Prepared in response to a Department of the Interior request, this report is a comprehensive study of environmental conservation problems as they relate to or have impact on the petroleum industry. It contains the general comments and conclusions of The National Petroleum Council based on an analysis of detailed data. For presentation of key…

  18. Environmental Conservation. The Oil and Gas Industries, Volume One.

    ERIC Educational Resources Information Center

    National Petroleum Council, Washington, DC.

    Prepared in response to a Department of the Interior request, this report is a comprehensive study of environmental conservation problems as they relate to or have impact on the petroleum industry. It contains the general comments and conclusions of The National Petroleum Council based on an analysis of detailed data. For presentation of key…

  19. Technological properties of amazonian oils and fats and their applications in the food industry.

    PubMed

    Bezerra, Carolina Vieira; Rodrigues, Antonio Manoel da Cruz; de Oliveira, Pedro Danilo; da Silva, Dayala Albuquerque; da Silva, Luiza Helena Meller

    2017-04-15

    The application of lipids to food production is dependent on their physical, chemical, and nutritional properties. In this study, pracaxi oil, passion fruit oil, cupuassu fat, and palm stearin underwent physicochemical analyses and were combined at ratios of 40:60, 50:50, 60:40, and 70:30 to assess their potential applications in the food industry. Pracaxi oil, passion fruit oil, and cupuassu fat had interesting fatty acid profiles from a nutritional standpoint, displaying the lowest atherogenicity and thrombogenicity indices (0.02 and 0.14; 0.12 and 0.34; 0.16 and 0.65), respectively. Palm stearin had high thermal stability (7.23h). The primary applications of the blends obtained in this study are in table and functional margarine, particularly the pracaxi-stearin and passion fruit-stearin 40:60 and 50:50, pracaxi-cupuassu 60:40 and 70:30, and passion fruit-cupuassu 40:60 blends. The results suggest new industrial applications, especially for pracaxi and passion fruit oils, which are commonly applied in the cosmetic industry.

  20. Occupational exposures in the oil and gas extraction industry: State of the science and research recommendations.

    PubMed

    Witter, Roxana Z; Tenney, Liliana; Clark, Suzanne; Newman, Lee S

    2014-07-01

    The oil and gas extraction industry is rapidly growing due to horizontal drilling and high volume hydraulic fracturing (HVHF). This growth has provided new jobs and economic stimulus. The industry occupational fatality rate is 2.5 times higher than the construction industry and 7 times higher than general industry; however injury rates are lower than the construction industry, suggesting injuries are not being reported. Some workers are exposed to crystalline silica at hazardous levels, above occupational health standards. Other hazards (particulate, benzene, noise, radiation) exist. In this article, we review occupational fatality and injury rate data; discuss research looking at root causes of fatal injuries and hazardous exposures; review interventions aimed at improving occupational health and safety; and discuss information gaps and areas of needed research. We also describe Wyoming efforts to improve occupational safety in this industry, as a case example.

  1. Occupational Exposures in the Oil and Gas Extraction Industry: State of the Science and Research Recommendations

    PubMed Central

    Witter, Roxana Z.; Tenney, Liliana; Clark, Suzanne; Newman, Lee S.

    2015-01-01

    The oil and gas extraction industry is rapidly growing due to horizontal drilling and high volume hydraulic fracturing (HVHF). This growth has provided new jobs and economic stimulus. The industry occupational fatality rate is 2.5 times higher than the construction industry and 7 times higher than general industry; however injury rates are lower than the construction industry, suggesting injuries are not being reported. Some workers are exposed to crystalline silica at hazardous levels, above occupational health standards. Other hazards (particulate, benzene, noise, radiation) exist. In this article, we review occupational fatality and injury rate data; discuss research looking at root causes of fatal injuries and hazardous exposures; review interventions aimed at improving occupational health and safety; and discuss information gaps and areas of needed research. We also describe Wyoming efforts to improve occupational safety in this industry, as a case example. PMID:24634090

  2. Reliable Radiographic Inspection of Flexible Risers for the Oil Industry

    NASA Astrophysics Data System (ADS)

    Almeida, Rômulo M.; Rebello, Joao Marcos A.; Vaz, Murilo A.

    2010-02-01

    Flexible risers are composite tubular structures manufactured by the concentric assemblage of cylindrical polymeric and helically wound metallic layers employed to convey pressurized fluids such as oil, gas and water in the ocean environment. The metallic layers account for the flexible risers' structural strength and are dimensioned according to the static and dynamic loads. They are usually installed in a free hanging catenary configuration and are subjected to the direct action of waves and marine currents and wave induced motions from the oil production platform. The fatigue rupture of wire armours in the end fitting or within the riser segment protected by the bend stiffener is an object of major concern. Integrity models have been developed, however inspection techniques are mandatory to ensure that failure is detected. Gammagraphy has been used as a common inspection technique in all regions of the flexible riser, mainly with the single wall-single view method. On the other side, there is not any qualified radiographic procedure to this kind of structure. Radiographic simulation was adopted and its validation with actual gammagraphies and establishment of radiographic parameters to complex radiation geometries were done. Results show the viability of the radiographic inspection analyzing the armour wires' rupture and the displacement between wires.

  3. A new fracturing material in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Cai, Bo; Xu, Jiangwen; He, Chunming; Cheng, Ning; Gao, Yuebin; Chen, Jin; Wang, Jia

    2017-07-01

    In this study, a novel non-residual fracturing fluid was developed. This fracturing fluid system is crosslinked under acid condition and owns the advantages of fast dissolving, excellent sand carrying ability, non-residual, good anti-swelling property and low damage etc. Experimental results show that this system viscosity can reach 95% of peak viscosity in 3 minutes, the surface tension of the gel breaking liquid is 25 mN/m, the residue content of the gel breaking fluid is 10mg/L, core permeability damage rate less than 15% which greatly reduces the damage to formation and fracture conductivity. The shear viscosity of fracturing fluid for 90min is 260 mPa.s, it has good resistance to high temperature and shearing performance and can meet the requirements of fracturing in tight reservoir. The new fluid was tested in 65 wells in the tight gas and oil reservoir in western China. Oil &gas production after stimulation using the new fluid increased 2-5 times compared with wells in similar locations.

  4. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.).

    PubMed

    Nissen, Lorenzo; Zatta, Alessandro; Stefanini, Ilaria; Grandi, Silvia; Sgorbati, Barbara; Biavati, Bruno; Monti, Andrea

    2010-07-01

    The present study focused on inhibitory activity of freshly extracted essential oils from three legal (THC<0.2% w/v) hemp varieties (Carmagnola, Fibranova and Futura) on microbial growth. The effect of different sowing times on oil composition and biological activity was also evaluated. Essential oils were distilled and then characterized through the gas chromatography and gas chromatography-mass spectrometry. Thereafter, the oils were compared to standard reagents on a broad range inhibition of microbial growth via minimum inhibitory concentration (MIC) assay. Microbial strains were divided into three groups: i) Gram (+) bacteria, which regard to food-borne pathogens or gastrointestinal bacteria, ii) Gram (-) bacteria and iii) yeasts, both being involved in plant interactions. The results showed that essential oils of industrial hemp can significantly inhibit the microbial growth, to an extent depending on variety and sowing time. It can be concluded that essential oils of industrial hemp, especially those of Futura, may have interesting applications to control spoilage and food-borne pathogens and phytopathogens microorganisms.

  5. Tracing industrial sulfur emissions in atmospheric sulfate deposition in the Athabasca Oil Sands Region, Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard. Mayer; Mark E. Fenn

    2012-01-01

    Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in...

  6. The Environmental Education Voice of the Oil and Forest Industries, 1958-1977.

    ERIC Educational Resources Information Center

    Bavec, Nancy; And Others

    1979-01-01

    Reported is the analysis of a stratified random sample of oil and forestry industry advertisements in selected magazines over a 20-year period. The objective of the research was to characterize the tenor of the imparted environmental messages and trends. (RE)

  7. Occupational asthma induced by tall oil in the rubber tyre industry.

    PubMed

    Tarlo, S M

    1992-01-01

    A worker in the rubber tyre industry is described with occupational asthma from exposure to a solution of tall oil, a pine resin, confirmed by specific inhalation challenge. This supports studies of contact dermatitis which have suggested abietic and dehydroabietic acid oxidants to be the cause of colophony induced allergic reactions.

  8. The Impact of Post-Training on Job Performance in Nigera's Oil Industry

    ERIC Educational Resources Information Center

    Aibieyi, Stanley

    2012-01-01

    The Nigeria's oil industry has been criticized for some time now for its inability to render adequate services to the general public. This criticism is predicated on the fact that the standards of productivity in their services are low and that their facilities (i.e. the refineries) are not working up to capacity. This is evident in their…

  9. Working in verticalized platform vessel: an ergonomic approach in the oil industry.

    PubMed

    Garotti, Luciano; Mascia, Fausto

    2012-01-01

    In this paper we point some aspects of workers activities in offshore units in the oil industry. These units became more verticalized and have a greater number of operating systems. Our goal is to present the main difficulties that workers face in these units.

  10. The Environmental Education Voice of the Oil and Forest Industries, 1958-1977.

    ERIC Educational Resources Information Center

    Bavec, Nancy; And Others

    1979-01-01

    Reported is the analysis of a stratified random sample of oil and forestry industry advertisements in selected magazines over a 20-year period. The objective of the research was to characterize the tenor of the imparted environmental messages and trends. (RE)

  11. The Impact of Post-Training on Job Performance in Nigera's Oil Industry

    ERIC Educational Resources Information Center

    Aibieyi, Stanley

    2012-01-01

    The Nigeria's oil industry has been criticized for some time now for its inability to render adequate services to the general public. This criticism is predicated on the fact that the standards of productivity in their services are low and that their facilities (i.e. the refineries) are not working up to capacity. This is evident in their…

  12. [Evaluating efficiency of influenza vaccinal prevention among oil and gas industry workers].

    PubMed

    Bulanov, V E; Ivanov, A V; Shostak, G R

    2013-01-01

    Explore information about the incidence of employees of enterprises of the oil and gas industry with the influenza (SARS). The degree of influence of vaccination on the incidence of influenza, the number and structure of complications as a result of vaccination and their impact on efficiency. Evaluation of the cost-effectiveness of vaccination.

  13. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    USDA-ARS?s Scientific Manuscript database

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  14. SEASAT demonstration experiments with the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.; Balon, J. E.

    1979-01-01

    Despite its failure, SEASAT-1 acquired a reasonable volume of data that can be used by industrial participants on a non-real-time basis to prove the concept of microwave sensing of the world's oceans from a satellite platform. The amended version of 8 experimental plans are presented, along with a description of the satellite, its instruments, and the data available. Case studies are summarized for the following experiments: (1) Beaufort Sea oil, gas, and Arctic operations; (2) Labrador Sea oil, gas, and sea ice; (3) Gulf of Mexico pipelines; (4) U.S. East Coast offshore oil and gas; (5) worldwide offshore drilling and production operations; (6) Equatorial East Pacific Ocean mining; (7) Bering Sea ice project; and (8) North Sea oil and gas.

  15. Market entry mode and competency building of Western oil companies in the Russian up stream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Stephenson, Paul M.

    This dissertation investigated the market entry and competency building strategies within the context of the Russian oil and gas industry. The study was designed to be of interest to business practitioners and academics given the growing importance of fossil fuel in the energy balance of the global economy and the importance of Russia as a supplier and purchaser in the international market. The study's mixed methodology provides an understanding on the environmental factors that are postulated to impact foreign direct investment flow into Russia and the oil and gas sector. A case study of a fictitiously named Western-Russo oil company was conducted to provide a deep understanding of how capability is viewed by Russian and Western employees and the factors that influences the implementation of a successful competency development program. The case was centered on the development of a Well-Site supervisor group within a Western-Russian oil company. Findings of the study showed that there was no correlation between corruption and foreign direct investment inflow into the Russian economy. The findings also showed that both Russian and Western employees in the oil and gas industry are less focused on nontechnical competency development issues, that Western employees are more orientated towards the bottom-line than Russian employees, and that both groups see operational management as a core competency. In the area of financial management and technology application, there were significant differences in the viewpoint of both groups. Western employees saw a stronger need for financial management and less need for technology application when compared to their Russian counterparts. The results have implications for Western business contemplating entering the Russian oil and gas industry. Western firms need to understand the key drivers that will help them overcome the social and cultural barriers between Western and Russian employees. The role of the company leader is very

  16. A review of shape memory material’s applications in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2017-09-01

    The continuously increasing demand for oil and gas and the depleting number of new large reservoir discoveries have made it necessary for the oil and gas industry to investigate and design new, improved technologies that unlock new sources of energy and squeeze more from existing resources. Shape memory materials (SMM), with their remarkable properties such as the shape memory effect (SME), corrosion resistance, and superelasticity have shown great potential to meet these demands by significantly improving the functionality and durability of offshore systems. Shape memory alloy (SMA) and shape memory polymer (SMP) are two types of most commonly used SMM’s and are ideally suited for use over a range of robust engineering applications found within the oil and gas industry, such as deepwater actuators, valves, underwater connectors, seals, self-torqueing fasteners and sand management. The potential high strain and high force output of the SME of SMA can be harnessed to create a lightweight, solid state alternative to conventional hydraulic, pneumatic or motor based actuator systems. The phase transformation property enables the SMA to withstand erosive stresses, which is useful for minimizing the effect of erosion often experienced by downhole devices. The superelasticity of the SMA provides good energy dissipation, and can overcome the various defects and limitations suffered by conventional passive damping methods. The higher strain recovery during SME makes SMP ideal for developments of packers and sand management in downhole. The increasing number of SMM related research papers and patents from oil and gas industry indicate the growing research interest of the industry to implement SMM in offshore applications. This paper reviews the recent developments and applications of SMM in the offshore oil and gas industry.

  17. Broken trusts: The Texas Attorney General versus the oil industry, 1889-1909

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan Whitney

    The legal history of state antitrust enforcement and the oil industry in Texas illustrates how and why antitrust law contemplated complementary enforcement at the state and federal government level. Historians, economists, and lawyers have concentrated on federal antitrust law and enforcement, ignoring state efforts. Yet for most of the first twenty-five years following the enactment of the Sherman Antitrust Act, federal enforcement efforts were extremely limited, leaving the field to the states. Texas was one of several states that had strong antitrust laws, and whose attorneys general prosecuted antitrust violations with vigor. Political ambition was a factor in the decisions to investigate and prosecute cases against a highly visible target, the petroleum industry, but there was also a genuine belief in the goals of antitrust policy, and in the efficacy of enforcement of the laws. Enforcement efforts were also complicated by the fact that large oil companies provided vital commodities, articles of "prime necessity," to the citizens of Texas and following the discovery of large oil fields, played an increasingly important role in the economies of many Texas communities. The Texas Attorney General's antitrust enforcement efforts against the oil industry in this time of transition from an agricultural society to an industrial society provide insights into the litigation process, and reveal how well the rhetoric of trust-busting fit with the reality of antitrust enforcement. The antitrust crusade against the petroleum industry also highlights the changing roles of state government in the late nineteenth and early twentieth centuries, particularly the Attorney General's Department. The experience of Texas undermines the view that federal action has always dominated antitrust enforcement efforts and that antitrust litigation against Standard Oil was ineffective and ineffectual. Rather, the Texas Attorney General's litigations and their results suggest that some states

  18. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  19. Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers.

    PubMed

    Asatekin, Ayse; Mayes, Anne M

    2009-06-15

    The oil industry produces large volumes of wastewater, including oil well produced water brought to the surface during oil drilling, and refinery wastewater. These streams are difficult to treat due to large concentrations of oil. Ultrafiltration (UF) is very promising for their treatment to remove oil, but has been limited by economic obstacles due to severe membrane fouling. In a recent study, novel UF membranes incorporating the amphiphilic comb copolymer additive polyacrylonitrile-graft-poly(ethylene oxide), PAN-g-PEO, were found to exhibit complete resistance to irreversible fouling by several classes of organic foulants (J. Membr. Sci. 2007, 298, 136-146). The current work focuses on application of these novel UF membranes to the treatment of oily wastewater feed streams, employing three industrial samples of oil well produced water and refinery wastewater. UF membranes cast with 20 wt % PAN-g-PEO in PAN achieved removals of dispersed and free oils of over 96% based on chemical oxygen demand (COD) for produced water samples, comparable to a PAN UF commercial membrane control. For refinery wastewater treatment the COD removal values were substantially lower, between 41 and 44%, due to higher contents of dissolved organics. Comb copolymer modified membranes showed significantly better fouling resistance than controls, recovering fully their initial fluxes after a simulated backwash for each of the three wastewater samples tested. The results indicate that UF membranes incorporating PAN-g-PEO can be cleaned completely by physical methods alone, which should extend membrane lifetimes substantially and improve the process economics for treatment of oil-contaminated waters.

  20. Integrated process for the removal of emulsified oils from effluents in the steel industry

    SciTech Connect

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  1. The Oil Industries Fake Abundance Story: Is Distortion of the Truth Ever Appropriate?

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2014-12-01

    The oil industries and their cornucopian supporters (press, politicians, energy agencies) promote the story that in the oil is abundant and oil production will increase. The reality is that 1) World crude oil production has been on a plateau since 2005, in spite of new technology (fracking), record high prices (Brent Oil > 100 per barrel) and record spending on exploration and development (5.4 trillion over the past six years) and 2) The price of oil has risen steadily from 1999 to present. Typically when commodities are abundant the price tends to fall. How is this reality being distorted? 1) Resources are being equated with reserves (both are amounts), neither of which can be equated with each other or with production (a rate). 2) Crude oil (the price or which is rigorously defined by API density) has been redefined as total liquids, which includes substances (lease condensates, natural gas liquids, biofuels, refinery gains) which can not be used in the same way oil is or sold for the same price as oil. If what you are selling cannot be sold on the world market as crude oil, then it is not crude oil. 3) The demand for oil remains high, but World production is stagnant and World net-export production has been decreasing since 2005. Thus the price remains high and will only increase in the future. Growth in Global GDP is impacted by high-priced oil. How do you know unethical behavior when you see it? It has to do with intentionality and motivation. "Advocacy science" often reports data to support their cause. Is that unethical? Where is the divide between being an "Issue Advocate" and "Advocacy Science"? If data are reported poorly, is it unethical or just "bad science"? Do the same ethical standards apply to businesses (when profits are involved) and politicians (when elections are at stake)? Why would the definition of oil include NGL, condensates and refinery gains if not trying to inflate the numbers. The standards should be the same, but when there are no

  2. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry.

    PubMed

    Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A

    2009-02-01

    In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.

  3. Production of sorbent from paper industry solid waste for oil spill cleanup.

    PubMed

    Demirel Bayık, G; Altın, A

    2017-09-25

    The aim of the study is to select a cellulosic waste material from paper industry solid wastes and process it for sorbent production. Four different solid wastes were collected from a local paper production facility and rejects were selected due to its sorption capacity and processability. Oil sorption experiments were conducted according to the ASTM F 726-12 method. Effect of sorbent dosage, contact and dripping time, recovery of the oil, reusability of the sorbent and sorption from the water surface were also determined. Maximum oil sorption capacity was determined as 9.67, 12.92 and 12.84g/g for diesel oil, 0W30 and 10W30 motor oils respectively for the static test and 8.27, 10.45 and 11.69g/g for the dynamic test. An efficient and low-cost sorbent was produced from paper industry rejects that can be used on land and on water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Reflection on developing bio-energy industry of large oil company].

    PubMed

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  5. Lymphohaematopoietic malignancy around all industrial complexes that include major oil refineries in Great Britain

    PubMed Central

    Wilkinson, P.; Thakrar, B.; Walls, P.; Landon, M.; Falconer, S.; Grundy, C.; Elliott, P.

    1999-01-01

    OBJECTIVES: To examine the incidence of lymphohaematopoietic malignancy around industrial complexes that include major oil refineries in Great Britain after recent public and scientific concern of possible carcinogenic hazards of emissions from the petrochemical industry. METHODS: Small area study of the incidence of lymphohaematopoietic malignancies, 1974-91, within 7.5 km of all 11 oil refineries (grouped into seven sites) in Great Britain that were operational by the early 1970s and processed more than two million tonnes of crude oil in 1993. RESULTS: Combined analysis of data from all seven sites showed no significant (p < 0.05) increase in risk of these malignancies within 2 km or 7.5 km. Hodgkin's lymphoma, but no other malignancy, showed evidence (p = 0.02) of a decline in risk with distance from refineries, but there was an apparent deficit of cases of multiple myeloma near the refineries (p = 0.04). CONCLUSION: There was no evidence of association between residence near oil refineries and leukaemias, or non-Hodgkin's lymphoma. A weak positive association was found between risk of Hodgkin's disease and proximity to major petrochemical industry, and a negative association with multiple myeloma, which may be chance findings within the context of multiple statistical testing.   PMID:10615289

  6. [Methodologies as applied to the organization of socio-industrial monitoring in regions with developed petroleum chemical industry and oil refineries].

    PubMed

    Suleĭmanov, R A

    2002-01-01

    The authors tackle a problem of social and hygienic monitoring organization in territories with developed oil chemistry and oil processing industries. Analysis of longstanding observations over environmental objects and public health state serves to justify priority criteria to be included into social and hygienic monitoring system.

  7. Solid waste generation from oil and gas industries in United Arab Emirates.

    PubMed

    Elshorbagy, Walid; Alkamali, Abdulqader

    2005-04-11

    Solid wastes generated from oil and gas industrial activities are very diverse in their characteristics, large in their amounts and many of which are hazardous in nature. Thus, quantifying and characterizing the generated amounts in association with their types, classes, sources, industrial activities, and their chemical and biological characteristics is an obvious mandate when evaluating the possible management practices. This paper discusses the types, amounts, generation units, and the factors related to solid waste generation from a major oil and gas field in the United Arab Emirates (Asab Field). The generated amounts are calculated based on a 1-year data collection survey and using a database software specially developed and customized for the current study. The average annual amount of total solid waste generated in the studied field is estimated at 4061 t. Such amount is found equivalent to 650 kg/capita, 0.37 kg/barrel oil, and 1.6 kg/m3 of extracted gas. The average annual amount of hazardous solid waste is estimated at 55 t and most of which (73%) is found to be generated from gas extraction-related activities. The majority of other industrial non-hazardous solid waste is generated from oil production-related activities (41%), The present analysis does also provide the estimated generation amounts per waste type and class, amounts of combustible, recyclable, and compostable wastes, and the amounts dumped in uncontrolled way as well as disposed into special hazardous landfill facilities. The results should help the decision makers in evaluating the best alternatives available to manage the solid wastes generated from the oil and gas industries.

  8. Fish assemblages associated with oil industry structures on the continental shelf of north-western Australia.

    PubMed

    Pradella, N; Fowler, A M; Booth, D J; Macreadie, P I

    2014-01-01

    This study provides the first assessment of fish associations with oil and gas structures located in deep water (85-175 m) on Australia's north-west continental shelf, using rare oil industry video footage obtained from remotely operated vehicles. A diverse range of taxa were observed associating with the structures, including reef-dependent species and transient pelagic species. Ten commercially fished species were observed, the most abundant of which was Lutjanus argentimaculatus, with an estimated biomass for the two deepest structures (Goodwyn and Echo) of 109 kg.

  9. An electromagnetic cavity sensor for multiphase measurement in the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al-Hajeri, S.; Wylie, S. R.; Stuart, R. A.; Al-Shamma'a, A. I.

    2007-07-01

    The oil and gas industry require accurate sensors to monitor fluid flow in pipelines in order to manage wells efficiently. The sensor described in this paper uses the different relative permittivity values for the three phases: oil, gas and water to help determine the fraction of each phase in the pipeline, by monitoring the resonant frequencies that occur within an electromagnetic cavity. The sensor has been designed to be non-intrusive. This is advantageous, as it will prevent the sensor being damaged by the flow through the pipeline and allow pigging, the technique used for cleaning rust and wax from the inside of the pipeline using blades or brushes.

  10. Synthetic drilling fluids - a pollution prevention opportunity for the oil and gas industry

    SciTech Connect

    Veil, J.A.; Burke, C.J.; Moses, D.O.

    1995-12-31

    Offshore oil and gas operators use specialized drilling fluids, referred to as {open_quotes}muds,{close_quotes} to help maintain well control and to remove drill cuttings from the hole. Historically, either water-based muds (WBMs) or oil-based muds (OBMs) have been used for offshore wells. Recently, the drilling industry has developed several types of synthetic-based muds (SBMs) that combine the desirable operating qualities of OBMs with the lower toxicity and environmental impact qualities of WBMs. This report describes the operational, environmental, and economic features of all three types of muds and discusses potential EPA regulatory barriers to wider use of SBMs.

  11. Citrus Essential Oils: Current and Prospective Uses in the Food Industry.

    PubMed

    Mustafa, Nazik E M

    2015-01-01

    Citrus essential oils (CEOs) are gaining popularity in the food industry. This review summarises the chemical compositions of citrus essential oils (monoterpenes, sesquiterpenes and oxygenated derivatives) and explores their antimicrobial activities for use as preservatives in addition to highlight their uses as flavouring and antioxidant agents. The myriad uses of these compounds reflect a global trend towards the increased consumption of natural products. However, challenges such as production technologies, oxidation, chemical contamination by pesticides and consumption induced allergic effects still need to be addressed. Patents identified with CEO uses in food processing and those describe techniques of extraction are presented.

  12. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications.

    PubMed

    Lu, Chaofu; Napier, Johnathan A; Clemente, Thomas E; Cahoon, Edgar B

    2011-04-01

    Vegetable oils have historically been a valued commodity for food use and to a lesser extent for non-edible applications such as detergents and lubricants. The increasing reliance on biodiesel as a transportation fuel has contributed to rising demand and higher prices for vegetable oils. Biotechnology offers a number of solutions to meet the growing need for affordable vegetable oils and vegetable oils with improved fatty acid compositions for food and industrial uses. New insights into oilseed metabolism and its transcriptional control are enabling biotechnological enhancement of oil content and quality. Alternative crop platforms and emerging technologies for metabolic engineering also hold promise for meeting global demand for vegetable oils and for enhancing nutritional, industrial, and biofuel properties of vegetable oils.

  13. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.

    PubMed

    Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S

    2016-06-01

    The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production.

  14. [Medical care for expedition watch men in the oil industry].

    PubMed

    Kol'tsova, N I

    1991-01-01

    Shortcomings in the organization of medical care for watch keepers lead to the imperfection in the selection of professionals, narrowing of specialized care volume under conditions of watch, differences in the pattern and frequency of applications for medical care, limitation in the access to medical care for the workers of the basic industries, misrepresentation of the essence of the follow-up method, morbidity assessment by applications for medical care and temporary disability. The detected differences require the development of a basically new organizational model for the provision of medical care to persons engaged in expeditionary-watch labour including mobile medical facilities (physician's ambulatory office, sanatorium department with a unit of psychophysiological relief) subordination of public health institutions to the single management cycle, introduction of a document such as "Healthbook of a watch-keeper", reorientation of northern health units to a certain volume of follow-up measures for securing continuity of observation during watch, inter-watch (home) periods, carrying out of medical examinations before and after the flights.

  15. A threat intelligence framework for access control security in the oil industry

    NASA Astrophysics Data System (ADS)

    Alaskandrani, Faisal T.

    The research investigates the problem raised by the rapid development in the technology industry giving security concerns in facilities built by the energy industry containing diverse platforms. The difficulty of continuous updates to network security architecture and assessment gave rise to the need to use threat intelligence frameworks to better assess and address networks security issues. Focusing on access control security to the ICS and SCADA systems that is being utilized to carry out mission critical and life threatening operations. The research evaluates different threat intelligence frameworks that can be implemented in the industry seeking the most suitable and applicable one that address the issue and provide more security measures. The validity of the result is limited to the same environment that was researched as well as the technologies being utilized. The research concludes that it is possible to utilize a Threat Intelligence framework to prioritize security in Access Control Measures in the Oil Industry.

  16. Value-added utilization of oil palm ash: a superior recycling of the industrial agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-12-30

    Concern about environmental protection has increased over the years from a global viewpoint. To date, the infiltration of oil palm ash into the groundwater tables and aquifer systems which poses a potential risk and significant hazards towards the public health and ecosystems, remain an intricate challenge for the 21st century. With the revolution of biomass reutilization strategy, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of oil palm ash industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of oil palm ash in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy.

  17. Intensifying of the processes of mechanical separation of oil products from industrial waste water

    SciTech Connect

    Kostova, I.

    1995-11-01

    The raised requirements for discharge of industrial effluents in the Black Sea and in the rivers lead to the development of more efficient technologies for additional treatment and improving the existing facilities. Pollutants with concentrations which are several times higher than the admissible rates according to the Bulgarian Standards, are found at many places along the Black Sea Coast. This is due to the imperfect construction of the water treatment facilities and their improper maintenance. Oil products are one of the main pollutants in water basins. The negative influence which they have on the ecological balance comes from the fact that they are among the most difficulty and slowly dissociating organic substances. They have negative impact on the physical and chemical qualities of water and obstruct the self-purification process disrupting its biological life. In this paper the opportunity to intensify the processes of mechanical separation of oil products from industrial waste water is discussed.

  18. Early considerations: NAFTA: Possible indications for Mexico's oil and gas industry

    SciTech Connect

    Not Available

    1993-12-20

    After rancorous debate in the US over the North American Free Trade Agreement (NAFTA), the treaty is scheduled to become effective January 1, 1994. The topic of energy was scarcely mentioned during all of the discussions because NAFTA is expected to have only a negligible effect on the US energy industry. But NAFTA is a trade agreement among three oil producers, and that is worth remembering. According to the U.S. Congressional Budget Office, the U.S. energy industry can expect marginal gains and a framework for future opportunities in Mexico's energy sector as NAFTA takes effect. In terms of energy, Mexico gains the most from NAFTA.

  19. Study of the environmental hazard caused by the oil shale industry solid waste.

    PubMed

    Põllumaa, L; Maloveryan, A; Trapido, M; Sillak, H; Kahru, A

    2001-01-01

    The environmental hazard was studied of eight soil and solid waste samples originating from a region of Estonia heavily polluted by the oil shale industry. The samples were contaminated mainly with oil products (up to 7231mg/kg) and polycyclic aromatic hydrocarbons (PAHs; up to 434mg/kg). Concentrations of heavy metals and water-extractable phenols were low. The toxicities of the aqueous extracts of solid-phase samples were evaluated by using a battery of Toxkit tests (involving crustaceans, protozoa, rotifers and algae). Waste rock and fresh semi-coke were classified as of "high acute toxic hazard", whereas aged semi-coke and most of the polluted soils were classified as of "acute toxic hazard". Analysis of the soil slurries by using the photobacterial solid-phase flash assay showed the presence of particle-bound toxicity in most samples. In the case of four samples out of the eight, chemical and toxicological evaluations both showed that the levels of PAHs, oil products or both exceeded their respective permitted limit values for the living zone (20mg PAHs/kg and 500mg oil products/kg); the toxicity tests showed a toxic hazard. However, in the case of three samples, the chemical and toxicological hazard predictions differed markedly: polluted soil from the Erra River bank contained 2334mg oil/kg, but did not show any water-extractable toxicity. In contrast, spent rock and aged semi-coke that contained none of the pollutants in hazardous concentrations, showed adverse effects in toxicity tests. The environmental hazard of solid waste deposits from the oil shale industry needs further assessment.

  20. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.

  1. Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in the Oil and Gas Industry: A Review.

    PubMed

    Doyi, Israel; Essumang, David Kofi; Dampare, Samuel; Glover, Eric Tetteh

    Radiation is part of the natural environment: it is estimated that approximately 80 % of all human exposure comes from naturally occurring or background radiation. Certain extractive industries such as mining and oil logging have the potential to increase the risk of radiation exposure to the environment and humans by concentrating the quantities of naturally occurring radiation beyond normal background levels (Azeri-Chirag-Gunashli 2004).

  2. Prospects of Applying Vibration-Resistant Pressure Gauges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Cherentsov, D. A.; Gulyaev, B. A.

    2016-10-01

    The article presents justification for improving vibration protection of pressure gauges used in the oil and gas industry. A mathematical model of manometric tubular spring oscillations in a viscous medium is viewed. By the developed model, the authors have determined the impact of manometric spring geometric characteristics and damping fluid viscosity on oscillation attenuation parameters, as well as provided evaluation of the impact of the cross-sectional shape on the oscillation attenuation rate.

  3. A Structured Approach to Incident Response Management in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Line, Maria B.; Albrechtsen, Eirik; Jaatun, Martin Gilje; Tøndel, Inger Anne; Johnsen, Stig Ole; Longva, Odd Helge; Wærø, Irene

    Incident Response is the process of responding to and handling ICT security related incidents involving infrastructure and data. This has traditionally been a reactive approach, focusing mainly on technical issues. In this paper we present the Incident Response Management (IRMA) method, which combines traditional incident response with pro-active learning and socio-technical perspectives. The IRMA method is targeted at integrated operations within the oil and gas industry.

  4. Responsible management of peatlands in Canada, from peat industry to oil sands

    NASA Astrophysics Data System (ADS)

    Rochefort, Line

    2013-04-01

    Canada harbors one third of the peat resources of the world. Peat is an accumulated organic matter composed of dead and partly decomposed plant material, forming huge deposit through time in wetlands like peatlands and boreal coniferous swamps. Peat is a valuable resource as a growing media and soil amendments, an eco-friendly absorbent, also used as biofilters, for body care and for wastewater treatment. Peatlands also offer valuable ecological services : for example, they are the most efficient terrestrial ecosystem to store carbon on a long-term basis. Their ability to "cool off" the planet warrants a good look at their management. The horticultural peat industry of Canada has invested 22 years in R&D in habitat restoration and is now a strong leader in managing industrial peatlands in a sustainable way. The oil sand industry, which is strongly impacting the wetland landscapes of northern Canada, does realize that it has to reduce its ecological footprint, which is heavily criticized around the world. Decommissioned open mines near Fort McMurray have already begun recreating peatland ecosystems, and some restoration attempts of former oil pads are underway in the Peace River region. But the restoration of the largely disturbed wetland landscape of the oil sands is commanding innovative solutions.

  5. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  6. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  7. Facilitating Oil Industry Access to Federal Lands through Interagency Data Sharing

    SciTech Connect

    Paul Jehn; Ben Grunewald

    2007-05-31

    Much of the environmental and technical data useful to the oil and gas industry and regulatory agencies is now contained in disparate state and federal databases. Delays in coordinating permit approvals between federal and state agencies translate into increased operational costs and stresses for the oil and gas industry. Making federal lease stipulation and area restriction data available on state agency Web sites will streamline a potential lessors review of available leases, encourage more active bidding on unleased federal lands, and give third-party operators independent access to data who otherwise may not have access to lease restrictions and other environmental data. As a requirement of the Energy Policy Conservation Act (EPCA), the Bureau of Land Management (BLM) is in the process of inventorying oil and natural gas resources beneath onshore federal lands and the extent and nature of any stipulation, restrictions, or impediments to the development of these resources. The EPCA Phase 1 Inventory resulted in a collection of GIS coverage files organized according to numerous lease stipulation reference codes. Meanwhile, state agencies also collect millions of data elements concerning oil and gas operations. Much of the oil and gas data nationwide is catalogued in the Ground Water Protection Council's (GWPC's) successfully completed Risk Based Data Management System (RBDMS). The GWPC and the states of Colorado, New Mexico, Utah, and Montana are implementing a pilot project where BLM lease stipulation data and RBDMS data will be displayed in a GIS format on the Internet. This increased access to data will increase bid activity, help expedite permitting, and encourage exploration on federal lands. Linking environmental, lease stipulation and resource inventory assessment data and making a GIS interface for the data available to industry and other agencies via the internet represents an important step in the GWPC strategy for all oil and gas regulatory e

  8. Essays on the industrial composition of Texas oil and gas production

    NASA Astrophysics Data System (ADS)

    Peters, Genevieve Lynn

    This dissertation examines the changes in Texas oil and gas production from 1970--1996. Chapter II applies the survivor technique to the 300 largest oil producing firms in Texas for the years 1970--1996. The survivor technique is a powerful method to determine the efficient scale of production in a competitive industry. While previous applications of the survivor technique did not yield conclusive findings, Texas oil production is a competitive industry for which the technique provides clear results. Specifically, the technique shows that firms producing more than 100,000 barrels of oil per day in Texas have higher opportunity costs of production. Chapter III describes the size distribution of firms in Texas oil production. The Pareto distribution is found to correctly describe the size distribution of the 300 largest firms producing oil in Texas from 1970--1996, while the lognormal distribution is conclusively rejected. The k-firm concentration ratio reveals that Texas oil production became relatively less concentrated over this period. A simple relationship between the concentration ratio and the parameters of the Pareto distribution is defined and estimates of the Pareto distribution parameters are used to show that the size distribution of firms did not change significantly over the period 1970--1996. The fourth chapter analyses the impact of the changes in the regulatory environment of the Texas natural gas industry. In 1970, natural gas producers faced a quagmire of regulations governing the sale and price of their gas. Today, natural gas is a commodity traded freely in spot and futures markets. This chapter examines the pattern of production that resulted from this changing regulatory environment by examining the behavior of nine natural gas producing firms in Texas over the period 1970--1996. Each of these firms appeared on the list of the Texas top four natural gas producers at least once over this period. The analysis reveals that the majors have

  9. Effect of OPEC oil pricing on output, prices, and exchange rates in the United States and other industrialized countries

    SciTech Connect

    Fleisig, H.

    1981-01-01

    Following each major oil price increase, real gross national product (GNP) has fallen, unemployment and inflation have risen, and exchange rates have moved erratically. But how do oil price increases produce these effects. This paper discusses some of the macroeconomic consequences of too high and rising oil prices, and some of the policy options that might control these effects. It finds that the high and rising price of oil imports from the Organization of Petroleum Exporting Countries (OPEC) burdens the industrial oil-importing countries in two ways. First, because total expenditures on oil rise relative to income, the potential real standard of living in oil-importing countries falls. Together, the countries of the Organization for Economic Cooperation and Development (OECD), for example, may have paid as much as $150 billion more for oil in 1979 than they would have paid in a competitive oil market. Second, the rising oil price increases unemployment and inflation in ways that are difficult for policymakers in oil-importing countries to manage; on the one hand, the rising oil price produces general inflation, and on the other hand, it depresses domestic demand and employment. Policymakers attempt to control part of the inflation, at the cost of increasing unemployment. The total loss in output from the 1974 to 1975 recession, though part of it may have followed from factors unrelated to oil, was about $350 billion.

  10. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    PubMed Central

    Kanadasan, Jegathish; Ahmad Fauzi, Auni Filzah; Abdul Razak, Hashim; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-01-01

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC. PMID:28793579

  11. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry.

    PubMed

    Kanadasan, Jegathish; Fauzi, Auni Filzah Ahmad; Razak, Hashim Abdul; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-09-22

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.

  12. How a Physicist Can Add Value In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2011-03-01

    The talk will focus on some specific examples of innovative and fit-for-purpose physics applied to solve real-world oil and gas exploration and production problems. In addition, links will be made to some of the skills and areas of practical experience acquired in physics education and research that can prove invaluable for success in such an industrial setting with a rather distinct and unique culture and a highly-collaborative working style. The oil and gas industry is one of the largest and most geographically and organizationally diverse areas of business activity on earth; and as a `mature industry,' it is also characterized by a bewildering mix of technologies dating from the 19th century to the 21st. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To be successful at introducing new technology requires understanding which problems most need to be solved. The most exotic or improbable technologies can take off in this industry if they honestly offer the best solution to a real problem that is costing millions of dollars in risk or inefficiency. On the other hand, any cheaper or simpler solution that performs as well would prevail, no matter how inelegant! The speaker started out in atomic spectroscopy (Harvard), post-doc'ed in laser cooling and trapping of ions for high-accuracy time and frequency metrology (NIST), and then jumped directly into Drilling Engineering with Schlumberger Corp. in Houston. Since then, his career has moved through applied electromagnetics, geological imaging, nuclear magnetic resonance logging, some R and D portfolio

  13. Preventable disasters in the offshore oil industry: from Piper Alpha to Deepwater Horizon.

    PubMed

    Woolfson, Charles

    2012-01-01

    This article compares two industrial disasters in the offshore oil industry, the explosion and fire on Piper Alpha off the coast of Scotland in 1988, the world's worst offshore disaster, and the blowout and explosions on Deepwater Horizon in the Gulf of Mexico in 2010. It attempts to answer a simple question: Given the enormity of the first tragedy and the careful analysis of its circumstances and causes, why were the lessons of previous failure not learned by this globally organized industry, in the very heartland in the United States? The answer tells us much about the ability of corporate capital to configure regulatory regimes in its own interests and to do so in a manner that continues to threaten the safety and well-being of its employees and the wider environment.

  14. Assessing drivers of export orientation in the subsea oil and gas industry.

    PubMed

    Aarstad, Jarle; Pettersen, Inger Beate; Jakobsen, Stig-Erik

    2015-01-01

    The purpose of this short study was to identify the drivers of export orientation of firms in the subsea oil and gas industry in Western Norway. As the oil fields in the North Sea are approaching a stage of maturity, gaining knowledge of these drivers is crucial. An online survey was conducted of firms operating in the subsea oil and gas industry in the region. Consistent with previous research, the data reveal that product innovation and a majority share of international ownership increase firms' export rates. The use of instrumental variables indicates that both product innovation and international ownership are causes of subsea petroleum exports. The study moreover finds that subcontractors have a lower rate of direct exports than system providers, but international ownership in particular boosts subcontractors' export rates, probably by decreasing their market dependency on regional system providers. A clear recommendation for managers and stakeholders is that they should encourage foreign investments throughout the value chain. The results of such a strategy appear to be especially positive for subcontractors.

  15. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  16. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  17. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  18. Introduction of a compressed air breathing apparatus for the offshore oil and gas industry.

    PubMed

    Brooks, Chris J; MacDonald, Conor V; Carroll, Joel; Gibbs, Peter N G

    2010-07-01

    When a helicopter ditches the majority of crew and passengers have to make an underwater escape. Some may not be able to hold their breath and will drown. For at least 15 yr, military aircrew have been trained to use a scuba system. In the offshore oil and gas industry, there has been more caution about introducing a compressed air system and a rebreather system has been introduced as an alternative. Recently, Canadian industry and authorities approved the introduction of Helicopter Underwater Emergency Breathing Apparatus (HUEBA) training using compressed air. This communication reports the training of the first 1000 personnel. Training was introduced in both Nova Scotia and Newfoundland concurrently by the same group of instructors. Trainees filled out a questionnaire concerning their perceived ratings of the ease or difficulty of classroom training and the practical use of the HUEBA. Ninety-eight percent of trainees found the classroom and in-water training to be "good/very good". Trainees found it to be "easy/very easy" to clear the HUEBA and breathe underwater in 84% and 64% of cases, respectively. Divers reported a greater ease in learning all the practical uses of the HUEBA except application of the nose clip. There were problems with the nose clip fitting incorrectly, and interference of the survival suit hood with the regulator, which subsequently have been resolved. When carefully applied, the introduction of the HUEBA into training for offshore oil and gas industry helicopter crew and passengers can be safely conducted.

  19. Expert systems for material selection and analysis for the oil industry: An application-oriented perspective

    SciTech Connect

    Srinivasan, S.; Kane, R.D.

    1994-12-31

    Selection of metallic materials for oil and gas production and refining service poses a significant challenge to the materials engineer from the stand point of integrating material behavior with an understanding of different types of corrosion phenomena. Expert systems developed at Cortest Laboratories address this critical issue through computer programs that capture human expertise available in the industry to solve critical sour service material selection problems. Systems have been developed for evaluation of metallic materials for SSC (SUSCEPT{trademark}), selection of corrosion resistant alloys (SOCRATES{trademark}) and evaluation of steels and weldments in wet H{sub 2}S refineries and sour pipelines (STRATEGY{trademark}). This paper identifies the basic metallurgical and environmental parameters that influence the corrosion and cracking behavior of CRAs in oil and gas production and steels in sour pipelines and refineries. It also describes the knowledge base design and development methodology for the SOCRATES and STRATEGY expert systems.

  20. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    PubMed

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  1. Foam formation in a downstream digester of a cascade running full-scale biogas plant: Influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella.

    PubMed

    Lienen, T; Kleyböcker, A; Verstraete, W; Würdemann, H

    2014-02-01

    The microbial community composition in a full-scale biogas plant fed with sewage sludge and fat, oil and grease (FOG) was investigated over a 15-month period, including two foam formation events. Addition of FOG as a substrate in the biogas plant together with high abundances of Microthrix parvicella were found to promote foam formation in the downstream digester of a cascade of two biogas digesters. Genetic fingerprinting and quantitative PCR (qPCR) indicated a higher abundance of M. parvicella in the digester, when the digestion process was accompanied by excessive foaming relative to the reference digesters without disturbance. The creation of foam depended on the introduced proportion of FOG and the abundance of M. parvicella. Furthermore, shifts in the abundance of M. parvicella in the biogas plant were observed within the 15-month monitoring period corresponding to its seasonal abundance in the sludge of the wastewater treatment plant (WWTP).

  2. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.

    PubMed

    Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy

    2016-01-15

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters

  3. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    PubMed

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results.

  4. Investigating the Connections between Oil and Gas Industry Affiliation and Climate Change Concerns

    NASA Astrophysics Data System (ADS)

    Schrader, S. M.; Bunnell, D.; Danielson, C.; Borglum, S.

    2012-12-01

    In addition to the research on scientific aspects of climate change, significant work has also been done on the perception of climate change among various sectors of the population. This is an important area of research as in many cases the science policy of a country is a function of the popular sentiment. One area of interest is the relationship between education, specifically in related areas such as earth sciences and engineering, to one's views on climate change. While research has shown that there is a correlation between higher education and an acceptance of human caused climate change, this work looks into the question more specifically. The question asked here is: given a group of people with education and experience in the earth sciences, does the area of employment affect how they view the issue? In other words, does an engineer or geoscientist working in the oil and gas industry look at the data relating to climate change in the same way an equivalently educated engineer or geoscientist working in another field does? An understanding of whether or not employment in the oil and gas industry has a similar effect on views of climate change as political or religious ideologies may help in fostering communication between disciplines and working together for solutions. In order to look at this question, a survey is being conducted of members in the petroleum engineering community. The survey is designed along the lines of similar surveys to measure the respondents understanding of, concern with, and beliefs about climate change. It also includes other correlating factors such as political and religious views. A second group of engineers in fields that typically place them outside of the oil and gas industry are being surveyed as a control group. The results will determine whether individuals with similar educational backgrounds look at the data connected with climate change differently based on the field in which they work, and if so, are there other

  5. Subtask 1.23 - Mercury Removal from Barite the Oil Industry

    SciTech Connect

    Michael Holmes; Carolyn Nyberg; Katie Brandt; Kurt Eylands; Nathan Fiala; Grant Dunham

    2008-09-01

    Drilling muds are used by the oil and gas industry to provide a seal and to float rock chips to the surface during the drilling process. Barite (naturally occurring barium sulfate ore) is commonly used as a weighting agent additive in drilling muds because it is chemically nonreactive and has a high specific gravity (between 4.2 and 4.25 at 20 C). Because of environmental concerns, barite used by the oil and gas industry in the Gulf of Mexico must be certified to contain less than 1 mg/kg of mercury. Faced with these regulations, the U.S. Gulf Coast oil industry has looked to foreign sources of low-mercury barite, primarily India and China. These sources tend to have high-grade barite deposits and relatively inexpensive domestic transportation costs; as of late, however, U.S. purchasers have been forced to pay increasing costs for shipping to U.S. grinding plants. The objective of this project was to demonstrate two mercury removal techniques for high-mercury barite sources. Two barite samples of unique origins underwent processing to reduce mercury to required levels. The chemical treatment with dilute acid removed a portion of the mercury in both barite samples. The desired concentration of 1 mg/kg was achieved in both barite samples. An economic analysis indicates that thermal removal of mercury would not significantly add to the cost of barite processing, making higher-mercury barite a viable alternative to more expensive barite sources that contain lower concentrations of mercury.

  6. Deep water challenges: Oil industry moves off continental shelf; meets new oceanographic data-gathering challenges

    SciTech Connect

    Mardell, G.; Flynn, J.

    1995-08-01

    While offshore oil industry activities move from the continental shelves to the continental slope and even onto the abyssal plains of the deep oceans, new oceanographic problems arise - from riser-deforming internal waves to ocean-floor avalanches. As well as soliton-induced currents, other subsurface flows need to be monitored to provide data in support of wide ranging underwater activities, including exploration drilling, deployment of subsea systems, diver and ROV operations, and pipe design, lay and inspection. This article examines some of the work carried out over the past year or so with data-gathering deep water moorings.

  7. [The preserving-health model of employees of oil and gas industry].

    PubMed

    Tsaĭzer, D V; Poteriaeva, E L; Antipov, S A

    2012-01-01

    The state of occupational health problem and occupational rate of accident in Russia has been studied. It has been set forward the innovation model of health care of employees in oil and gas industry based on integrated approach, which combines the medical examination practice, the objective appraisal of workplaces on working condition, use of new saving production technologies, providing the employees with the means of individual protection, teaching the personnel to occupational safety and health culture and the first medical aid. The received results approve the efficiency of application of this model.

  8. Precipitate containing norm in the oil industry: modelling and laboratory experiments.

    PubMed

    Hamlat, M S; Kadi, H; Fellag, H

    2003-07-01

    In this work, the influence of factors that can affect the precipitate (scale) containing NORM (radium) in the oil industry is studied. From the experimental results, a mathematical model for calculating the precipitate is proposed. The statistical tests used to obtain this model show that precipitation: does not depend on the shaking velocity and contact time, depends on the temperature and mixing water ratio. Also, it depends on the interactions between temperature and mixing water ratio. The comparison of the experimental results and those obtained by the model appear to be in good agreement.

  9. Increase in the working life of valves for pumps used by the oil industry

    SciTech Connect

    Ivashchenko, V.T.; Nikiforchin, Y.N.

    1986-07-01

    Investigations have been carried out with the aim of developing protective coatings for the working surfaces of pumps used by the oil industry which would prolong their working life under conditions of hydroabrasive wear, repeated alternating loads, and exposure to aggressive media. The analysis of the mechanism of valve wear has demonstrated that stengthening the surface of their parts by diffusion methods shows promise. The investigation of coatings applied by methods of boronizing, chromium plating, and combined boronizing and chromium plating showed that the best effect is obtained by combined boronizing and chromium treatment in the liquid phase under the conditions of hydroabrasive wear and when exposed to aggressive media.

  10. Distribution of radium in oil and gas industry wastes from Malaysia.

    PubMed

    Omar, M; Ali, H M; Abu, M P; Kontol, K M; Ahmad, Z; Ahmad, S H S S; Sulaiman, I; Hamzah, R

    2004-05-01

    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.

  11. EPA compromises consistency in its coastal oil and gas industry cost-effectiveness analysis

    SciTech Connect

    Veil, J.A.

    1997-08-01

    The US Environmental Protection Agency (EPA) conducts a cost-effectiveness (CE) analysis to estimate the cost of complying with each newly proposed set of industrial effluent limitation guidelines (ELGs). CE is defined as the incremental annualized cost of a pollution control option in an industry per incremental pound equivalent (PE) of pollutant removed annually by that control options. EPA`s guidelines for conducting the CE analysis require that all costs be expressed in 1981 dollars so that comparison to other industries can be done on a consistent basis. In the results of its CE analyses, EPA presents information showing $/PE values for all the industries for which it has done the CE analysis. These examples indicate that EPA is interested in maintaining consistency and comparability. EPA is not legally bound by the results of a CE analysis; however, if the $/PE for a proposed ELG is calculated to be significantly higher than the $/PEs for other comparable ELGs, EPA might reconsider its proposal. EPA`s approach of using an expanded pollutant list and revised weighting factors probably generates a more accurate estimate of the PEs removed for the coastal oil and gas industry, but in doing so, EPA loses the ability to equitably compare this CE analysis to the CE analyses that have been done for other industries. This shortcoming is particularly obvious since the offshore Ce analysis, evaluating a nearly identical waste stream, was completed just two years earlier. Given EPA`s concern over consistency and comparability to other industries, it may be appropriate to modify this approach for the coastal CE analysis. Another alternative that would allow EPA to reflect the newest toxicological information and still preserve consistency and comparability would be to recalculate all earlier CE analyses whenever new weighting factors are developed.

  12. Continuous downstream processing of biopharmaceuticals.

    PubMed

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Corporate Diversity Programs and Gender Inequality in the Oil and Gas Industry.

    PubMed

    Williams, Christine L; Kilanski, Kristine; Muller, Chandra

    2014-11-01

    Since the 1980s, major U.S. corporations have embraced diversity as a management strategy to increase the number of women in top jobs. Diversity management programs include targeted recruitment, hiring, and promotions policies; mentoring programs; affinity groups; and diversity training. Few of these programs have proven effective in achieving gender diversity in the corporate world, despite their widespread popularity. To explore the reasons for this, the authors investigate the experiences of women scientists in the oil and gas industry who are targeted by these programs. In-depth interviews reveal possible reasons why these programs fail to achieve their intended goals. The authors find that these programs can paradoxically reinforce gender inequality and male dominance in the industry. The authors discuss alternative approaches for addressing gender inequality in work organizations and conclude with implications of their findings for corporate approaches to promoting diversity and for future research.

  14. Corporate Diversity Programs and Gender Inequality in the Oil and Gas Industry

    PubMed Central

    Williams, Christine L.; Kilanski, Kristine; Muller, Chandra

    2014-01-01

    Since the 1980s, major U.S. corporations have embraced diversity as a management strategy to increase the number of women in top jobs. Diversity management programs include targeted recruitment, hiring, and promotions policies; mentoring programs; affinity groups; and diversity training. Few of these programs have proven effective in achieving gender diversity in the corporate world, despite their widespread popularity. To explore the reasons for this, the authors investigate the experiences of women scientists in the oil and gas industry who are targeted by these programs. In-depth interviews reveal possible reasons why these programs fail to achieve their intended goals. The authors find that these programs can paradoxically reinforce gender inequality and male dominance in the industry. The authors discuss alternative approaches for addressing gender inequality in work organizations and conclude with implications of their findings for corporate approaches to promoting diversity and for future research. PMID:25558125

  15. A speculative look at the future of the American Petroleum Industry based on a full-cycle analysis of the American Whale Oil Industry

    SciTech Connect

    Coleman, J.L. Jr.

    1995-09-01

    A full-cycle, industry-scale look at the American whaling industry of the 19th century suggests a number of comparisons with the American petroleum industry of the 20th century. Using the King Hubbert production profile for extraction industries as a guide, both industries show a similar business life span. An understanding of the history of American whaling will, perhaps, gives us a more complete understanding of the history of the American petroleum industry. The rise of the American whaling industry to the premier investment opportunity of its day is little known to most in today`s oil and gas industry. Yet, we all know that abundant and inexpensive crude oil was a key factor in its demise. From a careful study of the history of the American whaling industry a set of factors (or stages of transition), common to similar extraction industries, can be developed, which may help investors and workers determine the state of health of our industry: (1) defection of highly skilled personnel to other, comparable, technical industries; (2) discovery and initial development of a replacement commodity; (3) major calamity, which adversely affects the industry in terms of significant loss of working capital and/or resources; (4) loss of sufficient investment capital to continue resource addition; (5) rapid development of a replacement commodity with attendant decrease in per unit price to a position lower than the primary commodity; (6) significant loss of market share by the primary commodity; and (7) end of the primary commodity as a major economic force.

  16. GIS and visualization: Environmental applications for the oil and gas industry

    SciTech Connect

    Sheppard, S.R.J.; Rubertis, C. de

    1995-04-01

    As practitioners in the imperfect world of environmental and engineering studies, we see the current pace of rapid change in computer applications to our business as an opportunity to improve our more basic skills, rather than necessarily adopting whatever is the latest and greatest. In the oil and gas industry, for example, there have long been centers of computing excellence and sophistication, in areas such as remote sensing, exploration geology and process engineering. However, a wide suite of newly available, simple PC-based tools offer to revolutionize our routine work across the disciplines, and democratize what was hitherto the domain of the advanced computer specialist. Appropriately applied, such systems can vastly improve our efficiency and communications abilities. This paper suggests ways in which basic, low-cost computer tools such as user-friendly GIS and 3-D data visualization, can benefit a wide variety of applications, through examples and case studies drawn primarily from the oil and gas industry. These include: (1) facility siting for E&P operations, (2) emergency response and crisis management, (3) GIS-based data management for refineries, (4) contaminated site remediation and risk assessment. Examples of GIS studies using databases derived from remote sensing and other typical sources, will include links to environmental models and image libraries; 3-D modelling and computer animation techniques will also be illustrated.

  17. Magnetotactic bacteria in microcosms originating from the French Mediterranean Coast subjected to oil industry activities.

    PubMed

    Postec, Anne; Tapia, Nicolas; Bernadac, Alain; Joseph, Manon; Davidson, Sylvain; Wu, Long-Fei; Ollivier, Bernard; Pradel, Nathalie

    2012-01-01

    Magnetotactic bacteria (MTB) mineralize nanosized magnetite or greigite crystals within cells and thus play an important role in the biogeochemical process. Despite decades of research, knowledge of MTB distribution and ecology, notably in areas subjected to oil industry activities, is still limited. In the present study, we investigated the presence of MTB in the Gulf of Fos, French Mediterranean coast, which is subjected to intensive oil industry activities. Microcosms containing sediments/water (1:2, v/v) from several sampling sites were monitored over several weeks. The presence of MTB was revealed in five of eight sites. Diverse and numerous MTB were revealed particularly from one site (named CAR), whilst temporal variations of a homogenous magnetotactic cocci population was shown within the LAV site microcosm over a 4-month period. Phylogenetic analysis revealed that they belonged to Alphaproteobacteria, and a novel genus from the LAV site was evidenced. Among the physicochemical parameters measured, a correlation was shown between the variation of MTB abundance in microcosms and the redox state of sulphur compounds.

  18. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751).

  19. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: Part 5--Asbestos-caused cancers and exposure of workers in the oil refining industry

    SciTech Connect

    Mehlman, M.A. )

    1991-01-01

    In the oil refining and petrochemical industries exposure to cancer-causing asbestos particles, especially during equipment repair and maintenance, is very high. Up to 90% of workers in the oil refining industry had direct and/or indirect contact with asbestos, and more than half of this contact occurred without the use of any kind of precaution, thus these workers are in high risk of developing lung cancer and mesothelioma, both fatal diseases. The hazards include: inadequate health and safety training for both company personnel and workers, failure to inform about the dangers and diseases (cancers) resulting from exposure to asbestos; excessive use of large numbers of untrained and uninformed contract workers; lack of use of protective equipment; and archaeological approaches and responses to repairing asbestos breaks and replacement of asbestos in oil refining facilities. For a better understanding of practices and policies in the oil refining industry, refer to Rachel Scott's Muscle and Blood, in particular the chapter Oil (E.P. Dutton, New York, 1974), as well as to an editorial which appeared in the Oil and Gas Journal, April, 1968.

  20. Cattle and the oil and gas industry in Alberta: A literature review with recommendations for environmental management

    SciTech Connect

    1996-12-31

    The purpose of this report is to bring together a review of published information on the potential effects of upstream oil and gas industry operations on the cattle industry in Alberta, some indication of the probability of occurrence of these effects, and recommendations on how they might be avoided or mitigated. Based on reviews of scientific papers and industry good-practice manuals, the report describes: The sources and quantities of environmental contaminants generated by Alberta`s oil and gas industry, including normal operations, accidental releases, and the effects of aging infrastructure; the chemical composition of the products, materials, and wastes associated with the industry; the fate and transport of the contaminants through air, water, and soil; cattle operations in Alberta; the toxicology of oil and gas industry contaminants in cattle; and selected Alberta case studies of accidental releases and planned experiments. Conclusions and recommendations deal with critical information gaps and strategies for the sustainable management of cattle and oil/gas operations in the province.

  1. Emissions of industrial furnaces burning diesel fuel oils of various sulfur contents with NaCl - contained atmospheric air

    SciTech Connect

    Lin, C.Y.; Hsieh, M.J.

    1996-04-01

    A small furnace associated with an industrial automatic burner was employed in this study to investigate the influences of sulfur content of fuel oils burned with NaCl contained atmospheric air on the emission characteristics of marine or industrial power-plants. The sulfur contents of 0.3 wt% and 1.0 wt% were considered. Diesel fuel oil A which approximates ASTM No. 2 fuel oil was atomized by the inlet air added with NaCl of 1.5 ppm concentration and thereafter burned within the furnace. It was found that under this burning condition the CO, SO{sub 2}, and O{sub 2} emissions increased with the addition of sulfur in the fuel oil. However, the gas temperature and NO{sub x} concentration were affected by the increase of sulfur content to only a minor extent. 14 refs., 10 figs.

  2. Microbial production of scleroglucan and downstream processing.

    PubMed

    Castillo, Natalia A; Valdez, Alejandra L; Fariña, Julia I

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  3. Microbial production of scleroglucan and downstream processing

    PubMed Central

    Castillo, Natalia A.; Valdez, Alejandra L.; Fariña, Julia I.

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  4. Enterprise Risk Management in the Oil and Gas Industry: An Analysis of Selected Fortune 500 Oil and Gas Companies' Reaction in 2009 and 2010

    ERIC Educational Resources Information Center

    Rogers, Violet C.; Ethridge, Jack R.

    2016-01-01

    In 2009, four of the top ten Fortune 500 companies were classified within the oil and gas industry. Organizations of this size typically have an advanced Enterprise Risk Management system in place to mitigate risk and to achieve their corporations' objectives. The companies and the article utilize the Enterprise Risk Management Integrated…

  5. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.

  6. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications.

    PubMed

    Rivera, D; Rommi, K; Fernandes, M M; Lantto, R; Tzanov, T

    2015-10-01

    Despite the great number of substances produced by the skincare industry, very few of them seem to truly have an effect on the skin. Therefore, given the social implications surrounding physical appearance, the search for new bioactive compounds to prevent or attenuate skin ageing and enhance self-image is a priority of current research. In this context, being rich in valuable compounds, such as proteins, phenolics, lipids and vitamins, this study is focused on the potential activity of rapeseed press cake hydrolysates to be used as raw materials for skincare applications. In this study, the protein-rich press residue from the rapeseed oil industry was converted enzymatically into short-chain biologically active peptides using four protease products with varying substrate specificity - Alcalase 2.4L FG, Protex 6L, Protamex and Corolase 7089. The antioxidant, anti-wrinkle and anti-inflammatory activities of the obtained hydrolysates were evaluated in vitro while their biocompatibility with human skin fibroblasts was tested. All hydrolysates were biocompatible with skin fibroblasts after 24 h of exposure, while the non-hydrolysed extract induced cell toxicity. Alcalase 2,4L FG and Protex 6L-obtained hydrolysates were the most promising extracts showing improved bioactivities suitable for skin anti-ageing formulations, namely antioxidant activity, inhibiting approximately 80% cellular reactive oxidative species, anti-inflammatory and anti-wrinkle properties, inhibiting around 36% of myeloperoxidase activity and over 83% of elastase activity. The enzymatic technology applied to the rapeseed oil industry costream results in the release of bioactive compounds suitable for skincare applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Downstream processing in marine biotechnology.

    PubMed

    Muffler, Kai; Ulber, Roland

    2005-01-01

    Downstream processing is one of the most underestimated steps in bioprocesses and this is not only the case in marine biotechnology. However, it is well known, especially in the pharmaceutical industry, that downstreaming is the most expensive and unfortunately the most ineffective part of a bioprocess. Thus, one might assume that new developments are widely described in the literature. Unfortunately this is not the case. Only a few working groups focus on new and more effective procedures to separate products from marine organisms. A major characteristic of marine biotechnology is the wide variety of products. Due to this variety a broad spectrum of separation techniques must be applied. In this chapter we will give an overview of existing general techniques for downstream processing which are suitable for marine bioprocesses, with some examples focussing on special products such as proteins (enzymes), polysaccharides, polyunsaturated fatty acids and other low molecular weight products. The application of a new membrane adsorber is described as well as the use of solvent extraction in marine biotechnology.

  8. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research.

    PubMed

    Dyer, John M; Mullen, Robert T

    2008-01-01

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of industrially important fatty acids, expression of these genes in transgenic plants has routinely resulted in a low accumulation of the desired fatty acids, indicating that significantly more knowledge of seed oil production is required before any future rational engineering designs are attempted. Here, we provide an overview of the cellular features of fatty acid desaturases, the so-called diverged desaturases, and diacylglycerol acyltransferases, three sets of enzymes that play a central role in determining the types and amounts of fatty acids that are present in seed oil, and as such, the final application and value of the oil. Recent studies of the intracellular trafficking, assembly and regulation of these enzymes have provided new insights to the mechanisms of storage oil production, and suggest that the compartmentalization of enzyme activities within specific regions or subdomains of the ER may be essential for both the synthesis of novel fatty acid structures and the channeling of these important fatty acids into seed storage oils.

  9. Radiological impact of NORM generated by oil and gas industries in the kingdom of Bahrain.

    PubMed

    Husain, Husain; Sakhnini, Lama

    2017-02-01

    A study of the external background radiation in areas affected by NORM generated by oil and gas industrial activities has been performed in the Kingdom of Bahrain. In this framework, two experimental residential areas, Awali and Riffa Views, were selected due to the presence of extensive oil and gas exploration and transportation. Additionally, two control residential areas, Isa Town and Al-Budaiya Village, were selected as they lack any industrial activities that would disrupt the radiation profile. The radiation dose rates were measured using Colibri Very Low Dose radiation survey meter with a built-in GPS. A total of 317 dose rates with their GPS coordinates were acquired. The lowest dose rate was 0.02 μSv/h acquired in Isa Town while the highest dose rate was 0.37 μSv/h acquired in Awali. Since there were no studies performed in the Kingdom to measure the average background radiation, the average external background radiation calculated from the control areas was used in this study which is 0.75 ± 0.31 mSv/y. The measured mean annual equivalent doses above the background radiation levels in Isa Town, Al-Budaiya, Riffa Views and Awali were -0.05 ± 0.05 mSv/y, 0.04 ± 0.04 mSv/y, 0.62 ± 0.13 mSv/y and 1.32 ± 0.35 mSv/y respectively. In other words, the radiation measurements were notably higher in the experimental areas. This was particularly true in south and southwestern Awali where the annual equivalent dose in some areas reached 2.49 mSv/y above average background levels. The geological constituent of the earth crust could be one source that contribute to overall background radiation. However, presence of NORM generated by extensive oil and gas operations and transportation is stronger justification for the higher radiation readings in the experimental areas than geological characteristic factor. Such high radiation values were found only near oil and gas installations and not in other locations of the same areas.

  10. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Applications of Seasat to the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.

    1977-01-01

    The NASA satellite Seasat-A (to be launched in 1978) has applications to the offshore oil, gas, and mining industries including: (1) improvements in weather and wave forecasting, (2) studies of past wind and wave statistics for planning design requirements, and (3) monitoring ice formation, breakup, and movement in arctic regions. The primary geographic areas which will be monitored by Seasat-A include: the Beaufort Sea, the Labrador Sea, the Gulf of Mexico, the U.S. east coast, West Africa, Equatorial East Pacific, the Gulf of Alaska, and the North Sea. Seasat-A instrumentation used in ocean monitoring consists of a radar altimeter, a radar scatterometer, a synthetic aperture radar, a microwave radiometer, and a visible and infrared radiometer. The future outlook of the Seasat program is planned in three phases: measurement feasibility demonstration (1978-1980), data accessibility/utility demonstration (1980-1983), and operational system demonstration (1983-1985).

  12. Applications of Seasat to the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.

    1977-01-01

    The NASA satellite Seasat-A (to be launched in 1978) has applications to the offshore oil, gas, and mining industries including: (1) improvements in weather and wave forecasting, (2) studies of past wind and wave statistics for planning design requirements, and (3) monitoring ice formation, breakup, and movement in arctic regions. The primary geographic areas which will be monitored by Seasat-A include: the Beaufort Sea, the Labrador Sea, the Gulf of Mexico, the U.S. east coast, West Africa, Equatorial East Pacific, the Gulf of Alaska, and the North Sea. Seasat-A instrumentation used in ocean monitoring consists of a radar altimeter, a radar scatterometer, a synthetic aperture radar, a microwave radiometer, and a visible and infrared radiometer. The future outlook of the Seasat program is planned in three phases: measurement feasibility demonstration (1978-1980), data accessibility/utility demonstration (1980-1983), and operational system demonstration (1983-1985).

  13. Lipase pre-hydrolysis enhance anaerobic biodigestion of soap stock from an oil refining industry.

    PubMed

    Cherif, Slim; Aloui, Fathi; Carrière, Frédéric; Sayadi, Sami

    2014-01-01

    A novel alcalophilic Staphylococcus haemolyticus strain with the lipolytic activity was used to perform enzymatic hydrolysis pretreatment of soap stock: a lipid rich solid waste from an oil refining industry. The culture liquid of the selected bacteria and an enzymatic preparation obtained by precipitation with ammonium sulphate from a filtrate of the same culture liquid were used for enzymatic pretreatment. The hydrolysis was carried with different incubation concentrations (10, 20 and 30%) of soap stock and the pretreatment efficiency was verified by running comparative biodegradability tests (crude and treated lipid waste). All pretreated assays showed higher reaction rate compared to crude lipid waste, which was confirmed by the increased levels of biogas production. The pretreatment of solutions containing 10% emulsified soap stock was optimized for 24 h hydrolysis time, enabling high-biogaz formation (800 ml). The use of enzymatic pre-treatment seemed to be a very promising alternative for treating soap stock having high fat contents.

  14. Study on pyrolysis gas in thermal extraction of Bai Yinhua lignite with industrial washing oil

    NASA Astrophysics Data System (ADS)

    Cui, Y. M.; Lian, X. P.; Zhao, F. Y.; Xu, Y. Q.; Hu, Y. Q.; Yuan, Z. K.; Hao, X. R.

    2016-08-01

    Industrial washing oil as solvent, pyrolysis gas produced from Bai Yinhua lignite during thermal extraction was studied by gas chromatography. The effects of temperature and solvent coal ration on coal pyrolysis gas were investigated. The results showed that: Pyrolysis gas produced mainly in CO, CO2, O2, H2, CH4, and so on, in which the total amount of oxygen containing compounds nearly 40%, significant effects of deoxidation was achieved. The increase of heat extraction temperature can significantly increase the degree of bond breaking and the gas formation rate, the gas yield and the rate of oxygen increase significantly, while the gas yield increases with the decrease of the solvent coal ration.

  15. Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry.

    PubMed

    Ross, Matthew S; Pereira, Alberto dos Santos; Fennell, Jon; Davies, Martin; Johnson, James; Sliva, Lucie; Martin, Jonathan W

    2012-12-04

    The Canadian oil sands industry stores toxic oil sands process-affected water (OSPW) in large tailings ponds adjacent to the Athabasca River or its tributaries, raising concerns over potential seepage. Naphthenic acids (NAs; C(n)H(2n-Z)O(2)) are toxic components of OSPW, but are also natural components of bitumen and regional groundwaters, and may enter surface waters through anthropogenic or natural sources. This study used a selective high-resolution mass spectrometry method to examine total NA concentrations and NA profiles in OSPW (n = 2), Athabasca River pore water (n = 6, representing groundwater contributions) and surface waters (n = 58) from the Lower Athabasca Region. NA concentrations in surface water (< 2-80.8 μg/L) were 100-fold lower than previously estimated. Principal components analysis (PCA) distinguished sample types based on NA profile, and correlations to water quality variables identified two sources of NAs: natural fatty acids, and bitumen-derived NAs. Analysis of NA data with water quality variables highlighted two tributaries to the Athabasca River-Beaver River and McLean Creek-as possibly receiving OSPW seepage. This study is the first comprehensive analysis of NA profiles in surface waters of the region, and demonstrates the need for highly selective analytical methods for source identification and in monitoring for potential effects of development on ambient water quality.

  16. Study on vacuum pyrolysis of coffee industrial residue for bio-oil production

    NASA Astrophysics Data System (ADS)

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2017-03-01

    Coffee industrial residue (CIR) is a biomass with high volatile content (64.94 wt.%) and heating value (21.3 MJ·kg-1). This study was carried out to investigate the pyrolysis condition and products of CIR using thermogravimetric analyser (TGA) and vacuum tube furnace. The influence of pyrolysis temperature, time, pressure and heating rate on the yield of pyrolysis products were discussed. There was an optimal pyrolysis condition: CIR was heated from normal temperature to 400 °C for 60 min, with 10 °C·min-1 heating rate and a pressure of 30 kPaabs. In this condition, the yields of bio-oil, char and non-condensable gas were 42.29, 33.14 and 24.57 wt.%, respectively. The bio-oil contained palmitic acid (47.48 wt.%), oleic acid (17.45 wt.%), linoleic acid (11.34 wt.%), octadecanoic acid (7.62 wt.%) and caffeine (5.18 wt.%).

  17. [Factors associated with metabolic syndrome in administrative workers in the oil industry].

    PubMed

    Felipe-de-Melo, Elizabeth Regina Torres; da Silva, Rita de Cássia Ribeiro; Assis, Ana Marlúcia Oliveira; Pinto, Elisabete de Jesus

    2011-08-01

    This is a cross-sectional study seeking to identify the factors associated with metabolic syndrome in administrative workers of an oil company. A total of 1,387 workers were examined, including their anthropometric and biochemical data, lifestyle, demographic and socioeconomic characteristics. Metabolic syndrome was defined in accordance with the First Set of Brazilian Guidelines for the Diagnosis and Treatment of Metabolic Syndrome. Factors associated with MS were examined by univariate and multivariate logistic regression models and 15% of the workers had MS symptoms. Multivariate analysis revealed that gender (OR=3.4; IC 95% 2.1- 5.5), age (OR=3.8; IC 95% 1.5-9.4) and smoking (current and past) (OR=1.6; CI 95% 1.2-2.3), were associated with metabolic syndrome. In conclusion, the prevalence of MS in administrative workers of the oil industry is high, especially among males, smokers, ex-smokers and those aged 40 years or more. Possibly, the greatest value of this diagnosis is to make it possible to identify workers with severe metabolic changes, which would justify the implementation of immediate intervention to reduce the identified risk factors. In this sense, actions aiming to promote a healthy lifestyle can be developed by the companies, in order to enhance the health and quality of life of their employees.

  18. Oil cakes - a by-product of agriculture industry as a fortificant in bakery products.

    PubMed

    Behera, Satyabadi; Indumathi, K; Mahadevamma, S; Sudha, M L

    2013-11-01

    Groundnut cake (GNC) and soybean cake (SBC) by-product of agriculture industry had protein and protein digestibility in the range of 42.7-50.5 and 71.3-76.8%, respectively. Polyphenols present in GNC and SBC were cholorogenic acid, syringic acid and p-coumaric acid. The number of bands separated in soybean meal was greater than the bands observed in GNC flour as seen in SDS-PAGE pattern, respectively. SEM of groundnut flour showed distension of protein bodies due to roasting of the oil cakes. The water absorption of wheat flour GNC blends decreased from 59.2 to 57.3% and increased in wheat flour SBC blends from 59.2 to 68.3% with an increase in oil cake from 0 to 20%. With increase in either GNC or SBC, the biscuits became harder. Addition of glycerol monostearate and sodium stearoyl lactylate in combination with 20% blend of GNC/SBC decreased the breaking strength values and increased the sensory parameters of the biscuits. Nutritionally rich biscuits were thus prepared by incorporating GNC/SBC.

  19. Oat (Avena sativa L.): Oil and Nutriment Compounds Valorization for Potential Use in Industrial Applications.

    PubMed

    Ben Halima, Nihed; Ben Saad, Rania; Khemakhem, Bassem; Fendri, Imen; Abdelkafi, Slim

    2015-01-01

    Oat is a promising plant for the future. It is edible and beneficial thanks to its nutritional, medicinal and pharmaceutical uses and, hence, recognized to be useful for a healthier world. The assessment of the vital functions of oat components is important for industries requiring correct health labelling, valid during the shelf life of any product. Oil, enzymes and other biomolecules of nutraceutic or dietary usage from oats would be valorized for this purpose. Although oats have a unique and versatile composition including antioxidants and biomolecules indispensable for health, they are undervalued in comparison with other staple cereals such as wheat, barley and rice. Furthermore, oats, apart from maize, comprise a high oil content used for a wide range of beneficial purposes. In addition, they contain beta glucan that has proven to be very helpful in reducing blood cholesterol levels and other cardiovascular diseases risks. In fact, there is diversity in the composition and content of the beneficial oat components within their genotypes and the different environmental conditions and, thus, oats are amenable to be enhanced by agronomic practices and genetic approaches.

  20. Critical challenges in ERP implementation: A qualitative case study in the Canadian oil and gas industry

    NASA Astrophysics Data System (ADS)

    Menon, Sreekumar A.

    This exploratory qualitative single-case study examines critical challenges encountered during ERP implementation based on individual perspectives in four project roles: senior leaders, project managers, project team members, and business users, all specifically in Canadian oil and gas industry. Data was collected by interviewing participants belonging to these categories, and by analyzing project documentation about ERP implementation. The organization for the case study was a leading multinational oil and gas company having a substantial presence in the energy sector in Canada. The study results were aligned with the six management questions regarding critical challenges in ERP: (a) circumstances to implement ERP, (b) benefits and process improvements achieved, (c) best practices implemented, (d) critical challenges encountered, (e) strategies and mitigating actions used, and (f) recommendations to improve future ERP implementations. The study results highlight six key findings. First, the study provided valid circumstances for implementing ERP systems. Second, the study underscored the importance of benefits and process improvements in ERP implementation. Third, the study highlighted that adoption of best practices is crucial for ERP Implementation. Fourth, the study found that critical challenges are encountered in ERP Implementation and are significant during ERP implementation. Fifth, the study found that strategies and mitigating actions can overcome challenges in ERP implementation. Finally, the study provided ten major recommendations on how to improve future ERP implementations.

  1. Treatment of oil-water emulsion from the machinery industry by Fenton's reagent.

    PubMed

    Feng, Chao; Sun, Henghu; Li, Suqin; Camarillo, Mary Kay; Stringfellow, William T; Liang, Yangyang

    2015-01-01

    An oil-water emulsion from the machinery industry was treated using Fenton's reagent. The objective was to reduce the high chemical oxygen demand (COD) of this waste stream so that it would meet the COD effluent limit of Chinese Standard JS-7740-95. The optimal [H2O2]/[Fe2+] ratio for COD removal was 3. An orthogonal experimental design was developed based on the optimal [H2O2]/[Fe2+] ratio to evaluate the significance of four parameters relevant to the treatment process, namely, H2O2 dosage, initial pH, oxidation time and coagulation pH. The influence of the four parameters on COD removal efficiency decreased as follows: H2O2 dosage>oxidation time>coagulation pH>initial pH. The COD removal efficiency was further investigated based on the most important single-factor parameter, which was H2O2 dosage, as discovered in the orthogonal test. A well-fitted empirical correlation was obtained from the single-factor analysis and up to 98% COD removal was attained using 50 mM H2O2. Using the doses and conditions identified in this study, the treated oil-water emulsion can be discharged according to Chinese Standard JS-7740-95.

  2. Empirical investigation of the extent of corporate financial disclosure in the oil and gas industry

    SciTech Connect

    Malone, J.D. Jr.

    1987-01-01

    Firms provide information because economic incentives exist beyond regulatory requirements. The discretionary information provided by firms offers an optimal solution in the market for financial information. In this study, systematic differences in financial disclosure by firms in the oil and gas industry were observed. Support was thus provided for the argument that the differences are an efficient solution within that market. In the presence of an efficient solution, regulators should impose standards of disclosure cautiously, in order to avoid upsetting the equilibrium of the market for financial disclosure. Extent of financial disclosure was measured by using a weighted index of disclosure items. The 10-K and annual reports of 125 oil and gas firms were examined in order to identify various financial disclosures provided by each firm. A stepwise regression model using the backward-elimination technique was used to determine which variables were best in explaining extent of financial disclosure. Of the ten independent variables entered,four were retained in the final model at the .20 level of significance, namely; exchange listing status, audit firm size, ratio of debt to total equity, and number of shareholders.

  3. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  4. 28. GENERAL DETAIL VIEW OF EQUIPMENT ON DOWNSTREAM SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. GENERAL DETAIL VIEW OF EQUIPMENT ON DOWNSTREAM SIDE OF OIL CIRCUIT BREAKER GALLERY ON LEVEL +65 OF POWERHOUSE #1. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  5. Neutrino Factory Downstream Systems

    SciTech Connect

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  6. The oil and gas industry of coastal Louisiana and its effects on land use and other socioeconomic patterns

    USGS Publications Warehouse

    Davis, Donald W.; Place, John L.

    1983-01-01

    Louisiana's coastal wetlands, alone with their well-drained urbanized strips, have been significantly affected by the oil and gas industry. Onshore, more than 6,300 exploratory wells and more than 21,000 development wells were drilled in Louisiana's eight southernmost parishes between 1937 and 1977. Nearly all those wells were in wetlands or inland water bodies. The wetlands, totaling more than 2 million hectares (ha), extend inland to roughly latitude 30? N, and are about 15 percent forested swamp and 85 percent nonforested marsh. Inland waters within the Louisiana coastal zone total more than 1 million ha. Nearly all these waters are quite shallow. More than 235,000 ha of this coastal area is used for major activities associated with the extraction of oil and gas. Production in the eight southern parishes peaked in 1970 to 120 million m3 of oil and 172 billion m 3 of gas. Connecting extensive onshore fields--and also servicing offshore fields--are intricate networks of canals for pipelines and maritime traffic related to the oil and gas industry. Offshore, more than 2,400 drilling and production platforms had been installed by May of 1981. Oil production from wells in both Federal and State waters off Louisiana peaked at 71 million m3 in 1972. Offshore gas production continues to increase, with 131 billion m3, in 1979. Since the early 1950's southern Louisiana's population has shifted from remote rural areas in the marshes to the more densely settled areas on the natural levees and beach ridges where employment is available in oil-field support industries and businesses. In 1975, in the 14 primary settlement clusters within the coastal wetlands, more than 3,600 advertised business activities were connected directly to the oil and gas industry. This compares to about 1,200 such activities in 1955, at the start of offshore development. These businesses are listed as water transportation, transportation equipment, pipelines, chemicals, special trade contractors, and

  7. Development of the Oil Industry in Cameroon and Its Implications for Education and Training. IIEP Research Report No. 79.

    ERIC Educational Resources Information Center

    Sanyal, Bikas C.; And Others

    A study analyzed how the oil industry in Cameroon developed and influenced the expansion, structure, and content of Cameroon's formal and nonformal education and training system. A survey of 213 employees and 8 enterprises was supplemented by a review of government reports and official published and unpublished documents. The economy of Cameroon…

  8. Synthesis of Azidohydrin from Hura crepitans Seed Oil: A Renewable Resource for Oleochemical Industry and Sustainable Development.

    PubMed

    Adewuyi, Adewale; Göpfert, Andrea; Wolff, Thomas; Rao, B V S K; Prasad, R B N

    2012-01-01

    The replacement of petrochemicals by oleochemical feedstocks in many industrial and domestic applications has resulted in an increase in demand for biobased products and as such recognizing and increasing the benefits of using renewable materials. In line with this, the oil extracted from the seed of Hura crepitans was characterized by an iodine value of 120.10 ± 0.70 g Iodine/100 g and a saponification number of 210.10 ± 0.40 mg KOH/g with the dominant fatty acid being C18:2 (52.8 ± 0.10%). The epoxidised fatty acid methyl esters prepared from the oil were used to synthesise the azidohydrin with a yield of 91.20%. The progress of the reaction was monitored and confirmed using FTIR and NMR. This showed the seed oil of Hura crepitans as a renewable resource that can be used to make valuable industrial and domestic products.

  9. [Complex study of various pathogenetic and physiologic parameters of the health status of watchmen in the oil industry].

    PubMed

    Il'inskikh, N N; Medvedev, M A; Potapova, G V; Perepechaev, L Ia; Urazaev, A M; Kudriavtseva, D P

    1989-12-01

    Complex examination of oil industry workers and those engaged in nonproductive area (control group) was undertaken. It was established that in both groups there were persons with a high level of cells with cytogenetic disturbances (micronuclear test). However, as opposed to control group, oil industry workers had higher levels of systolic and pulse pressure. Besides it was shown that after 12 hours of work at an oil field under winter conditions in the north area of the Tomsk Region they had higher body temperature. It appeared that these persons primarily had the longest term of professional service. Further examination of persons with especially high level of micronuclei cells showed that they had elevated lymphocyte amount with chromosome impairments and some parameters of T- and B-immunoreactivity, phagocytosis and activity of normal killer cells were changed.

  10. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale.

    PubMed

    Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid

    2014-05-01

    Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications.

  11. Examining Convergence in the Cultural Value Orientations of Norwegians in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Teague, Jennifer

    There is much debate in Norway as to whether Norwegian cultural values are being diluted by the increasing influx of international organizations. Little empirical work has been done to assess the effect of employment by international organizations on the cultural values of Norwegians. The aim of this study was to determine if individuals retain cultural values closest to their own nationality or the nationality of their employing organization. This objective was accomplished by comparing cultural value dimensions of Norwegians employed in organizations headquartered in one of five countries. Recruitment emails were sent to 612 possible participants and 160 individuals completed the survey completely, resulting in a sample size of N=160, a response rate of 26%. From the completed surveys, cultural dimension scores were calculated for each individual and group in the areas of power distance, individualism, masculinity, and uncertainty avoidance. Using those cultural dimension scores, three groups of one-way ANOVA tests were run in accordance with the parameters of each of three research questions. Comparing Norwegians employed in local government or a Norwegian oil and gas company, a significant difference existed only for uncertainty avoidance (p=.0074). Comparing cultural dimension scores of Norwegians employed in local government with those employed by one of four internationally-headquartered oil companies resulted in significant differences in scores for power distance (p=.0007), individualism (p=.0000), and uncertainty avoidance (p=.0000); however, there was not a statistically significant difference in masculinity scores between the two groups (p=.0792). Comparing cultural dimension scores of Norwegians employed in a Norwegian oil and gas company with those employed by one of four internationally-headquartered oil and gas companies also resulted in statistically significant differences in scores for power distance (p=.0015), individualism (p=.0000), and

  12. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  13. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    SciTech Connect

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  14. Predicting the Toxicity of Oil-shale Industry Wastewater by its Phenolic Composition.

    PubMed

    Kahru, A; Põllumaa, L; Reiman, R; Rätsep, A

    1999-01-01

    The chemical composition and toxicity of five phenolic wastewater samples collected from the Kohtla-Järve (Estonia) oil-shale industry region were analysed. The total phenolic contents (HPLC data) of these samples ranged from 0.7mg/l to 195mg/l. A total of 11 phenolic compounds were found in the wastewater samples, the most abundant being phenol (up to 84mg/l) and p-cresol (up to 74mg/l). Artificial phenolic mixtures were also composed, to mimic the content of phenolic compounds in the wastewater samples. The theoretical toxicities of these artificial mixtures were calculated by using the toxicities of the individual phenolic constituents to photobacteria (the BioTox™ test) and were assumed to have an additive mode of action. From the BioTox data, the additive toxic effects of phenolic compounds in the artificial mixtures were confirmed to be highly probable. The toxicities of the wastewater samples and their artificial phenolic analogues (mixtures) were studied by using a battery of Toxkit microbiotests (Daphtoxkit F™ magna, Thamnotoxkit F™, Protoxkit F™ and Rotoxkit F™) and three photobacterial tests (Microtox™, BioTox™ and Vibrio fischeri 1500). The wastewaters were classified as toxic (two samples), very toxic (two samples) and extremely toxic (one sample). Comparison of the test battery responses showed that the industrial wastewaters were 2-28-fold more toxic than the respective artificial phenolic mixtures. The photobacterial tests proved to be the most appropriate for screening purposes. This was the first attempt to use a test battery approach in the toxicity testing of Estonian wastewaters. The study showed that the toxicity of oil-shale industry wastewaters could not be predicted solely on the basis of their phenolic composition, since only 7-50% of their toxicity was shown to be due to phenolic compounds. It is true, to a certain extent, that the majority of environmental samples are usually very complex and contain various types of

  15. Novel multifunctional plant growth-promoting bacteria in co-compost of palm oil industry waste.

    PubMed

    Chin, Clament Fui Seung; Furuya, Yoshihide; Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Tashiro, Yukihiro; Sakai, Kenji

    2017-07-20

    Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobactersedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillustequilensis CE4 (biocontrolling and composting), Enterobactercloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganodermaboninense infection, and increasing the yield of palm oil. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Failing to Fix What is Found: Risk Accommodation in the Oil and Gas Industry.

    PubMed

    Stackhouse, Madelynn R D; Stewart, Robert

    2017-01-01

    The present program of research synthesizes the findings from three studies in line with two goals. First, the present research explores how the oil and gas industry is performing at risk mitigation in terms of finding and fixing errors when they occur. Second, the present research explores what factors in the work environment relate to a risk-accommodating environment. Study 1 presents a descriptive evaluation of high-consequence incidents at 34 oil and gas companies over a 12-month period (N = 873), especially in terms of those companies' effectiveness at investigating and fixing errors. The analysis found that most investigations were fair in terms of quality (mean = 75.50%), with a smaller proportion that were weak (mean = 11.40%) or strong (mean = 13.24%). Furthermore, most companies took at least one corrective action for high-consequence incidents, but few of these corrective actions were confirmed as having been completed (mean = 13.77%). In fact, most corrective actions were secondary interim administrative controls (e.g., having a safety meeting) rather than fair or strong controls (e.g., training, engineering elimination). Study 2a found that several environmental factors explain the 56.41% variance in safety, including management's disengagement from safety concerns, finding and fixing errors, safety management system effectiveness, training, employee safety, procedures, and a production-over-safety culture. Qualitative results from Study 2b suggest that a compliance-based culture of adhering to liability concerns, out-group blame, and a production-over-safety orientation may all impede safety effectiveness. © 2016 Society for Risk Analysis.

  17. An analysis of flaring and venting activity in the Alberta upstream oil and gas industry.

    PubMed

    Johnson, Matthew R; Coderre, Adam R

    2011-02-01

    Alberta, Canada, is an important global producer of petroleum resources. In association with this production, large amounts of gas (1.14 billion m3 in 2008) are flared or vented. Although the amount of flaring and venting has been measurably reduced since 2002, data from 2005 reveal sharp increases in venting, which have important implications in terms of resource conservation and greenhouse gas emissions (which exceeded 8 million tonnes of carbon dioxide equivalent in 2008). With use of extensive monthly production data for 18,203 active batteries spanning the years 2002-2008 obtained in close cooperation with the Alberta Energy Resources Conservation Board, a detailed analysis has been completed to examine activity patterns of flaring and venting and reasons behind these trends in the Alberta upstream oil and gas industry. In any given year, approximately 6000 batteries reported flaring and/or venting, but the distribution of volumes flared and vented at individual sites was highly skewed, such that small numbers of sites handled large fractions of the total gas flaring and venting in the Province. Examination of month-to-month volume variability at individual sites, cast in terms of a nominal turndown ratio that would be required for a compressor to capture that gas and direct it into a pipeline, further revealed that volumes at a majority of sites were reasonably stable and there was no evidence that larger or more stable sites had been preferentially reduced, leaving potential barriers to future mitigation. Through linking of geospatial data with production data coupled with additional statistical analysis, the 31.2% increase in venting volumes since 2005 was revealed to be predominantly associated with increased production of heavier oils and bitumen in the Lloydminster region of the Province. Overall, the data suggest that quite significant reductions in flaring and venting could be realized by seeking mitigation solutions for only the largest batteries in

  18. Study on the raw fish oil purification from PCDD/F and dl-PCB-industrial tests.

    PubMed

    Usydus, Zygmunt; Szlinder-Richert, Joanna; Polak-Juszczak, Lucyna; Malesa-Ciećwierz, Małgorzata; Dobrzański, Zbigniew

    2009-03-01

    The results of tests for the purification of fish oils with activated carbon for industrial use are presented. The optimum parameters for the process of purification (granulation of the activated carbon, its dosage, the oil temperature, and the duration of mixing the oil with activated carbon) were previously established for the laboratory scale. The optimization of the process consisted of selecting purification parameters that would allow for maximum reduction of the toxic polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans (PCDD/Fs) content, while retaining the favorable high fatty acid content [C20:5 n-3, eicosapentaenoic acid (EPA) and C22:6 n-3, docosahexaenoic acid (DHA)]. The use of that optimum parameters in industrial conditions confirmed the satisfactory results obtained in laboratory tests. Five types of oil derived from various Baltic fish were purified. Reduction in the PCDD/Fs content was 77.0-93.6% on average, whereas in the dioxin-like polychlorinated biphenyls (dl-PCBs)-it was 42.7-50.5% on average, with insignificant changes in the total amount of EPA and DHA content. Furthermore, a significant reduction in the content of arsenic was noted (by about 62% on average), with insignificant changes in the content of organochlorine pesticides (OCPs), and marker polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), cadmium, lead, and mercury. Purification provided fish oil having standardized parameters that allow for its use as feed additives, whilst retaining its favorable fatty acid content.

  19. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    PubMed

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  20. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.

    PubMed

    Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  1. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry

    PubMed Central

    Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony; Budiman, Muhammad A.; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T.; Jiang, Nan; Smith, Steven W.; Brown, Clyde R.; Kuek, Alex C. S.; Bahrain, Shabani; Hoynes-O’Connor, Allison; Nguyen, Amelia Y.; Chaudhari, Hemangi G.; Shah, Shivam A.; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  2. Crude oil prices: Are our oil markets too tight?

    SciTech Connect

    Simmons, M.R.

    1997-02-01

    The answer to the question posed in the title is that tightness in the market will surely prevail through 1997. And as discussed herein, with worldwide demand expected to continue to grow, there will be a strong call on extra oil supply. Meeting those demands, however, will not be straightforward--as many observers wrongly believe--considering the industry`s practice of maintaining crude stocks at ``Just in time`` inventory levels. Further, impact will be felt from the growing rig shortage, particularly for deepwater units, and down-stream capacity limits. While these factors indicate 1997 should be another good year for the service industry, it is difficult to get any kind of consensus view from the oil price market. With most observers` information dominated by the rarely optimistic futures price of crude, as reflected by the NYMEX, the important fact is that oil prices have remained stable for three years and increased steadily through 1996.

  3. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a

  4. Technological change, depletion and environmental policy in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Managi, Shunsuke

    Technological change is central to maintaining standards of living in modern economies with finite resources and increasingly stringent environmental goals. Successful environmental policies can contribute to efficiency by encouraging, rather than inhibiting, technological innovation. However, little research to date has focused on the design and implementation of environmental regulations that encourage technological progress, or in insuring productivity improvements in the face of depletion of natural resources and increasing stringency of environmental regulations. This study models and measures productivity change, with an application to offshore oil and gas production in the Gulf of Mexico using Data Envelopment Analysis. This is an important application because energy resources are central to sustaining our economy. The net effects of technological progress and depletion on productivity of offshore oil and gas production are measured using a unique field-level set of data of production from all wells in the Gulf of Mexico over the time period from 1946--1998. Results are consistent with the hypothesis that technological progress has mitigated depletion effects over the study period, but the pattern differs from the conventional wisdom for nonrenewable resource industries. The Porter Hypothesis was recast, and revised version was tested. The Porter Hypothesis states that well designed environmental regulations can potentially contribute to productive efficiency in the long run by encouraging innovation. The Porter Hypothesis was recast to include market and nonmarket outputs. Our results support the recast version of Porter hypothesis, which examine productivity of joint production of market and environmental outputs. But we find no evidence for the standard formulation of the Porter hypothesis, that increased stringency of environmental regulation lead to increased productivity of market outputs and therefore increased industry profits. The model is used to

  5. [Health and environmental licensing: a methodological proposal for assessment of the impact of the oil and gas industry].

    PubMed

    Barbosa, Eduardo Macedo; Barata, Matha Macedo de Lima; Hacon, Sandra de Souza

    2012-02-01

    Bearing in mind the importance of the impacts of the oil industry on human health, this article seeks to present a methodological proposal for analysis of these aspects in environmental impact assessment studies, based on the established legal parameters and a validated matrix for the hydroelectric sector. The lack of health considerations in the environmental impact assessment was detected in most of the 21 oil production enterprises analyzed, that were licensed in the period from January 1, 2004 through October 30, 2009. The health matrix proved to be an appropriate methodological approach to analyze these aspects in the environmental licensing process, guiding decisions and interventions in socio-environmental management.

  6. Regional resource depletion and industry activity: The case of oil and gas in the Gulf of Mexico

    USGS Publications Warehouse

    Attanasi, E.D.

    1986-01-01

    Stable and declining oil and gas prices have changed the industry's price expectations and, along with depletion of promising exploration prospects, has resulted in reduced exploration. Even with intensive additional exploration, production in most U.S. areas is expected to decline. What does this imply for the drilling and petroleum industry suppliers in particular regions? How should planners in government and the private sector project and incorporate the consequences of these changes in their strategies? This paper answers these questions for the industry operating in the offshore Gulf of Mexico. Future oil and gas production, as well as demand for offshore drilling and production facilities, are shown to depend on the size distribution of undiscovered fields, their associated production costs, and oil and gas prices. Declining well productivity is a consequence of development of progressively smaller fields so that long-run drilling demand should not decline in proportion to the expected production decline. Calculations show a substantial payoff to the drilling industry, in terms of potential demand increases, if it can develop and implement cost reducing technologies. Implications of these results for other offshore producing areas such as the North Sea are also discussed. ?? 1986.

  7. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production.

  8. Upstream Financial Review of the Global Oil and Natural Gas Industry

    EIA Publications

    2016-01-01

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  9. Development of an operational digital photogrammetric system for the North Sea oil and gas industry

    NASA Astrophysics Data System (ADS)

    Turner, John

    1993-02-01

    The Offshore Oil and Gas Industry in the North Sea has many requirements for three- dimensional measurements in air and underwater. A market audit found that use of conventional photogrammetry was being rejected for many applications because the information was not available fast enough. A development project was set up to replace the photographic cameras with a choice of video or high resolution digital electronic cameras, and the analysis system with a personal computer based image processing system. This solution is now in operation. The paper details the in-house development of the high resolution digital electronic camera and the personal computer based measurement hardware and software. It includes a discussion of the technological parameters, including the method for pixel for pixel correlation within the digital system, camera calibration techniques, the system algorithms, sub-pixel measurement and dimensional accuracy. It introduces the work that was carried out to make the final product acceptable to structural engineers, who now use it to transfer three- dimensional measurements to their CAD systems. It also looks at the work that is being carried out to transform the system into a closed loop control system for underwater robotic manipulators, which includes binary conversion, convolution filtering and tracking functions.

  10. Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry

    NASA Astrophysics Data System (ADS)

    Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.

    2017-05-01

    The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.

  11. Spatiotemporal Industrial Activity Model for Estimating the Intensity of Oil and Gas Operations in Colorado.

    PubMed

    Allshouse, William B; Adgate, John L; Blair, Benjamin D; McKenzie, Lisa M

    2017-09-05

    Oil and gas (O&G) production in the United States has increased in the last 15 years, and operations, which are trending toward large multiwell pads, release hazardous air pollutants. Health studies have relied on proximity to O&G wells as an exposure metric, typically using an inverse distance-weighting (IDW) approach. Because O&G emissions are dependent on multiple factors, a dynamic model is needed to describe the variability in air pollution emissions over space and time. We used information on Colorado O&G activities, production volumes, and air pollutant emission rates from two Colorado basins to create a spatiotemporal industrial activity model to develop an intensity-adjusted IDW well-count metric. The Spearman correlation coefficient between this metric and measured pollutant concentrations was 0.74. We applied our model to households in Greeley, Colorado, which is in the middle of the densely developed Denver-Julesburg basin. Our intensity-adjusted IDW increased the unadjusted IDW dynamic range by a factor of 19 and distinguishes high-intensity events, such as hydraulic fracturing and flowback, from lower-intensity events, such as production at single-well pads. As the frequency of multiwell pads increases, it will become increasingly important to characterize the range of intensities at O&G sites when conducting epidemiological studies.

  12. Cytogenetic damage in shallot ( Allium cepa) root meristems induced by oil industry "high-density brines".

    PubMed

    Vidaković-Cifrek, Z; Pavlica, M; Regula, I; Papes, D

    2002-10-01

    Saturated water solutions of calcium chloride, calcium bromide (densities 1.30 kg x dm(-3) and 1.61 kg x dm(-3), respectively) and their 1:1 mixture have been commonly used as oil industry "high-density brines." In our experiment they were added to tap water in amounts appropriate to achieve concentrations of 0.025, 0.05, 0.075, and 0.1 mol x dm(-3) to study their cytotoxic effect on the root tip cells of shallot ( Allium cepa L. var. ascalonicum). All tested solutions in concentrations of 0.075 and 0.1 mol x dm(-3) caused significant inhibition of shallot root growth. CaBr (2) showed this effect in concentration 0.05 mol x dm(-3). The investigated solutions in all concentrations applied decreased mitotic activity in root tip cells. The most of mitotic abnormalities were the consequence of spindle failure and chromosome stickiness. Furthermore, the cell microtubules were investigated by indirect immunofluorescence to confirm that most abnormalities observed were the consequence of spindle failure. The present study, as well as previously done Lemna tests and Chlorella tests showed that investigated samples have certain effects on plants, so constant control of their presence in the environment is needed.

  13. Chemical composition of turmeric oil--a byproduct from turmeric oleoresin industry and its inhibitory activity against different fungi.

    PubMed

    Jayaprakasha, G K; Negi, P S; Anandharamakrishnan, C; Sakariah, K K

    2001-01-01

    Curcumin, the yellow coloring pigment of turmeric is produced industrially from turmeric oleoresin. The mother liquor after isolation of curcumin from oleoresin known as curcumin removed turmeric oleoresin (CRTO) was extracted three times with n-hexane at room temperature for 30 min to obtain turmeric oil. The turmeric oil was subjected to fractional distillation under vacuum to get two fractions. These fractions were tested for antifugal activity against Aspergillus flavus, A. parasiticus, Fusarium moniliforme and Penicillium digitatum by spore germination method. Fraction II was found to be more active. The chemical constituents of turmeric oil, fraction I and fraction II were determined by GC and identified by GC-MS. Aromatic turmerone, turmerone and curlone were major compounds present in fraction II along with other oxygenated compounds.

  14. Restructuring of the world oil market

    SciTech Connect

    Kelly, M. )

    1989-01-01

    On November 10, 1988, Saudi Arabia agreed to acquire a 50 percent interest in Texaco's East and Gulf Coast refining and marketing network. In doing so it took a big step toward the country's new objective of full downstream integration. The joint venture, called Star Enterprise, is expected to be followed by others involving major players in world oil markets. For many, the Saudi deal represents further confirmation of the reintegration of the world oil industry begun a few years ago. They believe that as oil producing countries gain an equity interest in the downstream sector, the price of volatility of the 1980's will dissipate. Unfortunately, this consensus may be more wishful thinking than a reflection of how events will actually unfold. Although the shocks of the next ten years may be no worse than those of the last ten, certainly they will be different. These issues of the global oil market are addressed in this book.

  15. How Specific Microbial Communities Benefit the Oil Industry: Anaerobic Microbial Processes and the Prospect for Methane Production from Oil

    NASA Astrophysics Data System (ADS)

    Gieg, Lisa

    In strict anaerobic environments, oxygen is essentially non-existent. However, anaerobic microorganisms may thrive in such environments by metabolising organic or inorganic energy and/or carbon sources while respiring alternate electron acceptors such as nitrate, metals, or sulphate. Methanogenesis is the key electron accepting process in environments characterised by the absence of any electron acceptors other than CO2. Geological evidence has shown that most of the Earth's petroleum resources have been biodegraded over millennia, the extents to which likely depended on nutrient and water availability, temperature, and the requisite microorganisms (Röling et al., 2003; Head et al., 2003; Hallmann et al., 2008). Gases of biological origin including methane are believed to be primary byproducts of microbial oil metabolism in petroliferous deposits where oil quality has diminished due to the preferential consumption of valuable 'light' hydrocarbons (Head et al., 2003; Milkov and Dzou, 2007; Jones et al., 2008). While this phenomenon has enormous economic implications for recovering high-value light oil, it also sets the precedent for a potential alternate energy recovery strategy - that is, recovering energy as methane gas that is biologically produced as the result of methanogenic oil biodegradation in petroleum reservoirs that are at their economic limits.

  16. Palm oil derived trimethylolpropane triesters synthetic lubricants and usage in industrial metalworking fluid.

    PubMed

    Chang, Teck-Sin; Yunus, Robiah; Rashid, Umer; Choong, Thomas S Y; Awang Biak, Dayang Radiah; Syam, Azhari M

    2015-01-01

    Trimethylolpropane triesters are biodegradable synthetic lubricant base oil alternative to mineral oils, polyalphaolefins and diesters. These oils can be produced from trimethylolpropane (TMP) and fatty acid methyl esters via chemical or enzymatic catalyzed synthesis methods. In the present study, a commercial palm oil derived winter grade biodiesel (ME18) was evaluated as a viable and sustainable methyl ester source for the synthesis of high oleic trimethylolpropane triesters (HO-TMPTE). ME18 has fatty acid profile containing 86.8% oleic acid, 8.7% linoleic acid with the remaining minor concentration of palmitic acid, stearic acid and linolenic acid. It's high oleic property makes it superior to produce synthetic lubricant base oil that fulfills both the good low temperature property as well as good oxidative stability. The synthetic base oil produced had a viscosity of 44.3 mm(2)/s at 40°C meeting the needs for ISO 46 oils. It also exhibited an excellent viscosity index of 219 that is higher than some other commercial brands of trimethylolpropane trioleate. Properties of base oil such as cloud point, density, acid value, demulsibility and soap content were also examined. The oil was then used in the formulation of tapping oil and appraised in term of adaptability, stability and field test performance.

  17. Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties.

    PubMed

    Karaman, Safa; Karasu, Salih; Tornuk, Fatih; Toker, Omer Said; Geçgel, Ümit; Sagdic, Osman; Ozcan, Nihat; Gül, Osman

    2015-03-04

    Physicochemical, bioactive, and antimicrobial properties of different cold press edible oil byproducts (almond (AOB), walnut (WOB), pomegranate (POB), and grape (GOB)) were investigated. Oil, protein, and crude fiber content of the byproducts were found between 4.82 and 12.57%, between 9.38 and 49.05%, and between 5.87 and 45.83%, respectively. GOB had very high crude fiber content; therefore, it may have potential for use as a new dietary fiber source in the food industry. As GOB, POB, and WOB oils were rich in polyunsaturated fatty acids, AOB was rich in monounsaturated fatty acids. Oil byproducts were also found to be rich in dietary mineral contents, especially potassium, calcium, phosphorus, and magnesium. WOB had highest total phenolic (802 ppm), flavonoid (216 ppm), and total hydrolyzed tannin (2185 ppm) contents among the other byproducts. Volatile compounds of all the byproducts are mainly composed of terpenes in concentration of approximately 95%. Limonene was the dominant volatile compound in all of the byproducts. Almond and pomegranate byproduct extracts showed antibacterial activity depending on their concentration, whereas those of walnut and grape byproducts showed no antibacterial activity against any pathogenic bacteria tested. According to the results of the present study, walnut, almond, pomegranate, and grape seed oil byproducts possess valuable properties that can be taken into consideration for improvement of nutritional and functional properties of many food products.

  18. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates.

    PubMed

    Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta

    2016-03-22

    Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  19. Petroleum industry sensitivity and world oil market prices: The Nigerian example

    SciTech Connect

    Kalu, T.Ch.U.

    1995-12-31

    Most empirical studies have focused on the demand side of energy with little or no attention to the supply side. To deal with this defect, this paper adopts a microanalytic approach to the problem of the individual oil firms to provide a basis for determining the effects of changes in such macro-variables as prices on their operations. However, instead of the familiar econometric approach to energy studies, a goal programming approach is adopted. Using a multinational oil company as a case study, the effects of change in crude oil prices are examined. The results, among other things, support the hypersensitivity of oil companies to changes in economic cycles, the price inelasticity of demand for crude oil in the short run, and a time lag between price change and the time an oil company responds to it. The management and policy implications of the results are also discussed. 28 refs., 3 tabs.

  20. Water Use by Texas Oil and Gas Industry: A Look towards the Future

    NASA Astrophysics Data System (ADS)

    Nicot, J.; Ritter, S. M.; Hebel, A. K.

    2009-12-01

    The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” (aka, fracture stimulation) technologies needed to create pathways to produce gas from the very low permeability shales. This technology uses a large amount of fresh water (millions of gallons in a day or two on average) to develop a gas well. Now operators are taking aim at other shale gas plays in Texas including the Haynesville, Woodford, and Pearsall-Eagle Ford shales and at other tight formation such as the Bossier Sand. These promising gas plays are likely to be developed at an even steeper growth rate. There are currently over 12,000 wells producing gas from the Barnett Shale with many more likely to be drilled in the next couple of decades as the play expands out of its core area. Despite the recent gas price slump, thousands more wells may be drilled across the state to access the gas resource in the next few years. As an example, a typical vertical and horizontal well completion in the Barnett Shale consumes approximately 1.2 and 3.0 to 3.5 millions gallons of fresh water, respectively. This could raise some concerns among local communities and other surface water and groundwater stakeholders. We present a preliminary analysis of future water use by the Texas oil and gas industry and compare it to projections of total water use, including municipal use and irrigation. Maps showing large increase in total number of well completions in the Barnett Shale (black dots) from 1998 to 2008. Operators avoided the DFW metro area (center right on the map) until recently. Also shown are the structural limits of the Barnett Shale on its eastern boundaries.

  1. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R.; Guariguata, G.; Salmen, F.G.

    1994-12-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  2. Anicteric hepatoxicity: a potential health risk of occupational exposures in Nigerian petroleum oil refining and distribution industry

    PubMed Central

    2014-01-01

    Background Literature abounds linking one’s job to certain unpalatable health outcomes. Since exposures to hazardous conditions in industrial environments often results in sundry health effects among workers, we embarked on this study to investigate the hepatic health effects of occupational activities in the petroleum refining and distribution industry. Method Biochemical markers of liver functions were assayed in plasma, using Reflotron dry chemistry spectrophotometric system. The study was conducted on randomly selected workers of Port Harcourt Refining Company (PHRC) and Pipelines and Petroleum Product Marketing Company (PPMC) both in Alesa-Eleme near Port Harcourt, Nigeria, as well as non-oil work civil servants serving as control subjects. Result and conclusion Results showed that, bilirubin ranged 0.3-1.6 mg/dl with a mean of 0.66±0.20mg/dl among the oil workers as against 0.5-1.00mg/dl with a mean of 0.58±0.13mg/dl in non-oil workers, Alkaline phosphatase ranged 50.00-296.00u/l (mean: 126.21±39.49u/l) in oil workers as against 40.20-111u/l (mean: 66.83±18.54u/l) for non-oil workers, Aspartic transaminases (AST) ranged 5.80-140.20u/l (mean: 21.81±11.49u/l) in oil workers against 18.00-44.00u/l (mean: 26.89±6.99u/l) for non-oil workers, while Alanine transaminases (ALT) ranged 4.90-86.00u/l (mean: 22.14±11.28u/l) in oil workers as against 10.00-86.60u/l (mean: 22.30±10.22u/l) for the non-oil workers. A close study of the results revealed that although the mean values for all the studied parameters were still within the parametric reference ranges, however, relative to the referents, there were significant increases (P<0.05) in plasma bilirubin (though anicteric) and alkaline phosphatase that was not matched with a corresponding increase in the plasma transaminases, suggesting a possibility that toxic anicteric hepatoxicity is part of the potential health effects of sundry exposures in the Nigeria petroleum oil refining and distribution industry

  3. The use of near-infrared spectrometry in the olive oil industry.

    PubMed

    Armenta, S; Moros, J; Garrigues, S; de la Guardia, M

    2010-06-01

    The enormous possibilities offered by near-infrared (NIR) spectroscopy for the (on/in/at-line) quality control process of olive fruits, pastes, and oils are summarized throughout this paper. Special attention has been paid to the combination of NIR and chemometric treatments for the on-line analysis of olive fruits and also for the quality parameters evaluation on olive oils and pastes which can enhance the production of a high quality olive oil and the selection of olive fruit with superior properties. The implementation of NIR sensors in olive mills with successful results has also been reviewed and the commercial olive fruit and oil analyzers highlighted.

  4. Recovery of used frying sunflower oil with sugar cane industry waste and hot water.

    PubMed

    Ali, Rehab F M; El Anany, A M

    2014-11-01

    The main goal of the current investigation was to use sugar cane bagasse ash (SCBA) and to compare its adsorption efficiency with Magnesol XL as synthetic adsorbents to regenerate the quality of used frying sunflower oil. In addition, to evaluate the effect of water washing process on the quality of used frying oil and the treated oil. The metal patterns of sugar cane bagasse ash and Magnesol XL were determined. Some physical and chemical properties of unused, used frying and used-treated sunflower oil were determined. Sunflower oil sample was heated at 180 °C + 5 °C, then frozen French fries potato were fried every 30 min. during a continuous period of 20 h. Oil samples were taken every 4 h. The filter aids were added individually to the used frying oil at levels 1, 2 and 3 % (w / v), then mechanically stirred for 60 min at 105 °C. The results indicate that all the filter aids under study were characterized by high levels of Si and variable levels of other minerals. The highest level of Si was recorded for sugar cane bagasse ash (SCBA) was 76.79 wt. %. Frying process caused significant (P ≤ 0.05) increases in physico-chemical properties of sunflower oil. The treatments of used frying sunflower oil with different levels of sugar cane bagasse ash and Magnesol XL caused significant (P ≤ 0.05) increase in the quality of treated oil, however the soap content of treated oil was increased, therefore, the effect of water washing process on the quality of used frying and used-treated sunflower oil was evaluated. The values of soap and Total polar compounds after water treatment were about 4.62 and 7.27 times as low as that for sunflower oil treated with 3 % sugar cane bagasse ash (SCBA). The results of the present study indicate that filtration treatment with different levels of sugar cane bagasse ash( SCBA) regenerated the quality of used sunflower oil and possess higher adsorbing effects than the synthetic filter aid ( Magnesol XL ) in

  5. Enabling technologies: fermentation and downstream processing.

    PubMed

    Weuster-Botz, Dirk; Hekmat, Dariusch; Puskeiler, Robert; Franco-Lara, Ezequiel

    2007-01-01

    Efficient parallel tools for bioprocess design, consequent application of the concepts for metabolic process analysis as well as innovative downstream processing techniques are enabling technologies for new industrial bioprocesses from an engineering point of view. Basic principles, state-of-the-art techniques and cutting-edge technologies are briefly reviewed. Emphasis is on parallel bioreactors for bioprocess design, biochemical systems characterization and metabolic control analysis, as well as on preparative chromatography, affinity filtration and protein crystallization on a process scale.

  6. Economic implications for the potential development of a vegetable oil fuel industry

    SciTech Connect

    Dunn, J.R.; Schneeberger, K.C.

    1982-01-01

    The purposes in this paper were to (1) summarize the domestic and international oilseed situation with emphasis on trends which will affect the long-run supply and demand for oilseeds; (2) describe the existing oilseeds processing sector so as to focus on the existing linkage between food and potential fuel markets for vegetable oils; and (3) present a basic framework for analyzing the supply, demand, and price effects of significant use of vegetable oil as a fuel. The major determinants of demand worldwide for vegetable oils are price, incomes, and population. Government programs of taxes, quotas, or subsidies could affect vegetable oil supply and/or demand. International trade practices could change; altering the flow of oils between markets. The likely impact of a developing vegetable oils fuel market would be to increase vegetable oil prices. The size of the increase will depend on how large the fuel market demand ultimately becomes, and thus on the price of diesel fuel. It will also depend on how well oilseed production can be adapted, technologically, and in acreage, to meet the needs of a large fuels market while maintaining its critical role in the foods sector. There are many uncertainties in assessing the economic picture for vegetable oil use as a diesel fuel substitute. 1 figure, 3 tables. (DP)

  7. Reclamation problems and procedures for the oil industry and the canadian prairies

    SciTech Connect

    De Jong, E.

    1980-01-01

    Procedures used in western Canada to enhance biodegradation of waste oil are analyzed. In the prairie region, brine spills are more damaging to soil than oil spills are/ reclamation efforts aimed at neutralizing brine spills have been ineffective. Manure application is more immediately beneficial than gypsum application/ however, more research is needed to develop reclamation techniques that would provide acceptable soil reclamation.

  8. Model-centered approach to early planning and design of an eco-industrial park around an oil refinery.

    PubMed

    Zhang, Xiangping; Strømman, Anders H; Solli, Christian; Hertwich, Edgar G

    2008-07-01

    Industrial symbiosis promises environmental and economic gains through a utilization of the waste of some processes as a resource for other processes. Because of the costs and difficulties of transporting some wastes, the largest theoretical potential for industrial symbiosis is given when facilities are colocated in an eco-industrial park (EIP). This study proposes a model-centered approach with an eight-step procedure for the early planning and design of an eco-industrial park considering technical and environmental factors. Chemical process simulation software was used to model the energy and material flows among the prospective members and to quantify the benefits of integration among different firms in terms of energy and resources saved as compared to a reference situation. Process simulation was based on a combination of physical models of industrial processes and empirical models. The modeling allows for the development and evaluation of different collaboration opportunities and configurations. It also enables testing chosen configurations under hypothetical situations or external conditions. We present a case study around an existing oil and gas refinery in Mongstad, Norway. We used the approach to propose the colocation of a number of industrial facilities around the refinery, focused on integrating energy use among the facilities. An EIP with six main members was designed and simulated, matching new hypothetical members in size to the existing operations, modeling material and energy flows in the EIP, and assessing these in terms of carbon and hydrogen flows.

  9. Aquathermolysis of crude oils and natural bitumen: chemistry, catalysts and prospects for industrial implementation

    NASA Astrophysics Data System (ADS)

    Tumanyan, B. P.; Petrukhina, N. N.; Kayukova, G. P.; Nurgaliev, D. K.; Foss, L. E.; Romanov, G. V.

    2015-11-01

    The results of studies of alterations in the elemental and SARA compositions and physicochemical and rheological properties of highly viscous heavy crude oils upon catalytic and non-catalytic aquathermolysis are generalized. The chemistry of transformations of model hydrocarbons and heteroatomic compounds in aqueous media at high temperature, including subcritical and supercritical conditions, is considered. Comparative analysis of methods for activation of oil conversion via aquathermolysis using hydrogen donors, oil-soluble and water-soluble nanodispersed catalysts, ionic hydrogenation processes and various ways for reservoir heating is presented. Problems and prospects of oil-field implementation of catalytic aquathermolysis for upgrading heavy oils and natural bitumen are discussed. The bibliography includes 234 references.

  10. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    PubMed

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  11. Particle size distributions of oil mists in workplace atmospheres and their exposure concentrations to workers in a fastener manufacturing industry.

    PubMed

    Chen, Mei-Ru; Tsai, Perng-Jy; Chang, Chih-Ching; Shih, Tung-Sheng; Lee, Wen-Jhy; Liao, Pao-Chi

    2007-07-19

    This study was set out to characterize size distributions of oil mists in three workplace atmospheres of the forming, threading, and heat treatment in a fastener manufacturing industry and to assess their exposures to workers. Particle size segregating samplings were conducted on the workplace atmospheres of the three selected industrial processes by using the modified Marple 8-stage cascade impactor (m-Marple). We found that mass median aerodynamic diameter (MMAD) of the fine mode and coarse mode fell to the range 0.309-0.501 microm and 8.16-13.0 microm, respectively. The fractions of inhaled particles exposed to different regions of the respiratory tracts found that the alveolar region was consistently higher than both head and tracheobronchial regions in all three studied exposure groups. Personal inhalable oil mist samplings were conducted on workers in the three selected processes revealed their exposure levels as: threading workers (2.11 mg/m3)>forming workers (1.58 mg/m3)>heat treatment workers (0.0801 mg/m3). The estimated respirable exposure concentrations for both forming and threading workers (1.34 mg/m3 and 1.40 mg/m3, respectively) were higher than the level known for "increased risk of pulmonary injury" (0.20 mg/m3) suggesting that appropriate control measures should be taken to reduce their exposures to the oil mists of the respirable fraction immediately.

  12. Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.

    PubMed

    Arthur, Richard; Glover, Kwasi

    2012-05-01

    The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020.

  13. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    SciTech Connect

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait; Norm Warpinski; Mike Mayerhofer; Bill Minner; Craig Cipolla

    2007-10-17

    fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design

  14. [Influence of low doses of ionizing irradiation on parameters of the non-specific immunologically-mediated resistance in persons working in the oil industry].

    PubMed

    Mamedov, G M; Aliev, F G

    2010-01-01

    The authors have determined blood parameters reflected condition of the non-specific immunologically-mediated resistance (NIR) in workers of the oil industry, including persons directly participated in oil wells exploration and exposed for long period of time to low doses of ionizing radiation. The article presents obtained results of the percentage of neutrophils and natural killer cells as well as the level of alpha-interferon in the blood serum. Obtained results demonstrated that parameters of NIR of oil industry workers were not substantively different from analogous parameters of healthy person living in the same region.

  15. ARPEL: A regional petroleum association serving the Latin American oil industry since 1965

    SciTech Connect

    Brussoni, A.

    1993-12-31

    Established in 1965 as a non-governmental international organization aimed to foster the information exchange, cooperation and mutual assistance among its member companies, as well as to promote the economic integration of the Latin American petroleum Sector. Its original name standing for `Association for Reciprocal Assistance of Latin American State Oil Companies` was modified in May, 1993 simultaneously with its by-laws for `Association for Reciprocal Assistance of Latin American Oil Companies`, responding to the sweeping changes of the oil sector in the region. Since May the membership has been opened to the private regional companies.

  16. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2017-06-25

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  17. Alkylphenol metabolites in fish bile as biomarkers of exposure to offshore oil industry produced water in feral fish.

    PubMed

    Beyer, Jonny; Sundt, Rolf C; Sanni, Steinar; Sydnes, Magne O; Jonsson, Grete

    2011-01-01

    The measurement of low-concentration alkylphenol (AP) exposure in fish is relevant in connection with monitoring and risk assessment of offshore oil industry produced water (PW) discharges. Detection of AP markers in fish bile offers significantly greater sensitivity than detection of AP in tissues such as liver. Recent studies revealed that gas chromatography-mass spectrometry in electron ionization mode (GC-EI-MS) enabled a selective and sensitive analytical detection of PW AP in mixtures with unknown composition. A procedure consisting of enzymatic deconjugation of metabolites in fish bile followed by derivatization with bis(trimethylsilyl)trifluoroacetamide and then separation and quantification of derivatized AP using GC-EI-MS is presented. The use of this procedure as a possible recommended approach for assessment and biomonitoring of AP contamination in fish populations living down-current from offshore oil production fields is presented.

  18. The impact of the Sarbanes Oxley Act on auditing fees: An empirical study of the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Ezelle, Ralph Wayne, Jr.

    2011-12-01

    This study examines auditing of energy firms prior and post Sarbanes Oxley Act of 2002. The research explores factors impacting the asset adjusted audit fee of oil and gas companies and specifically examines the effect of the Sarbanes Oxley Act. This research analyzes multiple year audit fees of the firms engaged in the oil and gas industry. Pooled samples were created to improve statistical power with sample sizes sufficient to test for medium and large effect size. The Sarbanes Oxley Act significantly increases a firm's asset adjusted audit fees. Additional findings are that part of the variance in audit fees was attributable to the market value of the enterprise, the number of subsidiaries, the receivables and inventory, debt ratio, non-profitability, and receipt of a going concern report.

  19. Bioactive compounds with added value prepared from terpenes contained in solid wastes from the olive oil industry.

    PubMed

    Parra, Andres; Lopez, Pilar E; Garcia-Granados, Andres

    2010-02-01

    Starting from solid wastes from two-phase olive-oil extraction, the pentacyclic triterpenes oleanolic acid and maslinic acid were isolated. These natural compounds were transformed into methyl olean-12-en-28-oate (5), which then was transformed into several seco-C-ring triterpene compounds by chemical and photolytic modifications. The triene seco-products were fragmented through several oxidative procedures to produce, simultaneously, cis- and trans-decalin derivatives, both potential synthons for bioactive compounds. The chemical behavior of the isolated fragments was investigated, and a suitable approach to several low-molecular-weight terpenes was performed. These are interesting processes for the value-addition to solid waste from the olive-oil industry.

  20. A multi-isotope approach for assessing industrial contributions to atmospheric nitrogen deposition in the Athabasca oil sands region in Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard Mayer; Mark E. Fenn; Christopher S. Ross

    2013-01-01

    Industrial nitrogen (N) emissions in the Athabasca oil sands region (AOSR), Alberta, Canada, affect nitrate (NO3) and ammonium (NH4) deposition rates in close vicinity of industrial emitters. NO3-N and NH4-N open field and throughfall deposition rates were determined at various...

  1. 77 FR 22226 - Regulation of Oil-Bearing Hazardous Secondary Materials From the Petroleum Refining Industry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... From the Petroleum Refining Industry Processed in a Gasification System To Produce Synthesis Gas; Final... Petroleum Refining Industry Processed in a Gasification System To Produce Synthesis Gas,'' published in the... From the Petroleum Refining Industry Processed in a Gasification System To Produce Synthesis...

  2. Methane’s Role in Promoting Sustainable Development in the Oil and Natural Gas Industry

    EPA Pesticide Factsheets

    The document summarizes a number of established methods to identify, measure and reduce methane emissions from a variety of equipment and processes in oil and gas production and natural gas processing and transmission facilities.

  3. Studies of the Scottish oil shale industry. Final report. Volume 2. Shale workers' pneumoconiosis and skin conditions: epidemiological surveys of surviving ex-shale workers

    SciTech Connect

    Louw, S.J.; Cowie, H.; Seaton, A.

    1985-03-01

    This report (in 3 volumes) describes the now defunct Scottish oil shale industry and its effects on the health of its workers. This volume investigates the prevalence of skin disease and pneumoconiosis in Scottish ex-oil shale workers. A cross sectional epidemiological survey has been carried base on a population enrolled in the 1950 Scottish Oils Ltd Provident Fund. Investigation of the Fund indicated that it would have included almost all industrial workers employed in the oil shale industry between 1950 and its closure in 1962. It is concluded that workers in the Scottish shale oil industry in its latter years were not at excess risk of skin disease, perhaps because of steps taken within the industry to reduce the known hazards of dermatitis and skin cancer. However, pneumoconiosis was a definite hazard of miners and retort workers and its presence was associated with an impairment of lung function suggestive of fibrosis and possibly emphysema as well. It is suggested that prevention of this hazard might sensibly be based on the strategy used in the coalmining industry and, in the absence of further information on dust and fume exposures of shale workers, standards as applied in coalmining should be appropriate. Radiological surveillance of dust-exposed workers, whether in mines or at retorts or tips, is recommended. 39 refs., 10 figs., 48 tabs.

  4. SEASAT economic assessment. Volume 3: Offshore oil and natural gas industry case study and generalization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic benefits of improved ocean condition, weather and ice forecasts by SEASAT satellites to the exploration, development and production of oil and natural gas in the offshore regions are considered. The results of case studies which investigate the effects of forecast accuracy on offshore operations in the North Sea, the Celtic Sea, and the Gulf of Mexico are reported. A methodology for generalizing the results to other geographic regions of offshore oil and natural gas exploration and development is described.

  5. Toxic myopathy induced by industrial minerals oils: clinical and histopathological features.

    PubMed

    Rossi, B; Siciliano, G; Giraldi, C; Angelini, C; Marchetti, A; Paggiaro, P L

    1986-12-01

    We report a case of subacute myopathy in a 47 years old man engaged on boiler maintenance at an oil-fired thermoelectric power station. The occupational history highlighted heavy exposure to inhalation of ash derived from mineral oil combustion and containing several elements, metals and metalloids, including vanadium and nickel. The presenting symptoms, clinical course and muscle histopathology suggest that exposure to toxic agents probably played an important part in the causation of the myopathy.

  6. Synthesis and Biological Evaluation of Fatty Hydrazides of By-products of Oil Processing Industry

    PubMed Central

    Toliwal, S.; Jadav, K.; Patel, K.

    2009-01-01

    Some new 2-alkyl-5-mercapto-1,3,4-Oxadiazoles and 3-alkyl-5-mercapto-1,2,3-4H triazoles were synthesized from hydrazides of acid oil and oil recovered from spent bleaching earth. These newly synthesized compounds were characterized on the basis of elemental analysis and evaluated for biological properties. Certain derivatives exhibited fairly high antibacterial and antifungal activities when compared with streptomycin and immidil used as standard antibacterial and antifungal agents respectively. PMID:20336214

  7. The produced waters of oil deposits in Tomsk region: its use for iodine industrial production

    NASA Astrophysics Data System (ADS)

    Yankovskii, V. V.; Zippa, E. V.; Syskina, A. A.

    2016-03-01

    In world practice, groundwater is the main raw material for iodine production. In the current geopolitical conditions, a significant part of the traditional areas of iodine production is located outside the Russian Federation. As iodine is biogenic by its origin, it associates with oil and petroleum water. Therefore, the produced waters of oil deposits of Western Siberia acquire the leading role as the raw-material base for iodine production.

  8. Synthesis and Biological Evaluation of Fatty Hydrazides of By-products of Oil Processing Industry.

    PubMed

    Toliwal, S; Jadav, K; Patel, K

    2009-03-01

    Some new 2-alkyl-5-mercapto-1,3,4-Oxadiazoles and 3-alkyl-5-mercapto-1,2,3-4H triazoles were synthesized from hydrazides of acid oil and oil recovered from spent bleaching earth. These newly synthesized compounds were characterized on the basis of elemental analysis and evaluated for biological properties. Certain derivatives exhibited fairly high antibacterial and antifungal activities when compared with streptomycin and immidil used as standard antibacterial and antifungal agents respectively.

  9. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  10. Oil industry in Uganda: The socio-economic effects on the people of Kabaale Village, Hoima, and Bunyoro region in Uganda

    NASA Astrophysics Data System (ADS)

    Kyomugasho, Miriam

    This thesis examines the socio-economic effects of oil industry on the people of Kabaale Village, Hoima, and Bunyoro region in Uganda. The thesis analyses the current political economy of Uganda and how Uganda is prepared to utilize the proceeds from the oil industry for the development of the country and its people. In addition, the research examines the effects of industry on the people of Uganda by analyzing how the people of Kabaale in Bunyoro region were affected by the plans to construct oil refinery in their region. This field research was done using qualitative methods and the Historical Materialism theoretical framework guided the study. The major findings include; displacement of people from land especially women, lack of accountability from the leadership, and less citizen participation in the policy formulation and oil industry. Ugandans, East Africans and the wider Pan-African world need to re-organize their socio-economic structure to enable people own means of production; participate and form labor organizations. Additionally, there is a need for oil producing African countries to unite and setup and oil fund for resources and investment instead of relying on foreign multinationals or become rentier states.

  11. Internalizing production externalities: A structural estimation of real options in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Muehlenbachs, Lucija

    There are hundreds of thousands of crude oil and natural gas wells across North America that are currently not producing oil or gas. Many of these wells have not been permanently decommissioned to meet environmental standards for permanent closure, but are in an inactive state that enables them to be more easily reactivated. Some of these wells have been in this inactive state for more than sixty years which begs the question of whether they will ever contribute to our energy supply, or whether they are being left inactive because the environmental remediation costs are prohibitively high. I estimate a structural model of optimal well operations over time and under uncertainty to determine what conditions or policies might push any of the inactive wells out of the hysteresis in which they reside. The model is further used to forecast production from existing wells and recoverable reserves from existing pools. The estimation uses data on production decisions from 84 thousand conventional oil and gas wells and estimates of the remaining reserves of 47 thousand pools. As the producer's decision depends on their subjective belief for how prices and recoverable reserves change over time, I also estimate the probability of changes in prices and recovery technology. I model increases and decreases in the estimated recoverable reserves to depend on price, and predict that natural gas reserves are more responsive to changes in price than conventional oil reserves. Under high prices there is potential for large increases in gas reserves, however this is not the case for oil reserves when the oil price is high. And likewise, under low prices, gas reserves decrease more than oil reserves. The dynamic programming model predicts that with only a drastic, arguably implausible, increase in prices and recovery rates will there be a significant increase in the number of inactive wells that are reactivated. If ideal conditions are not enough to induce well reactivation then this

  12. Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods.

    PubMed

    Jones, Cynthia G; Silverman, Joseph; Al-Sheikhly, Mohamad; Neta, Pedatsur; Poster, Dianne L

    2003-12-15

    Used electrical transformer oils containing low or high concentrations of polychlorinated biphenyls (PCBs) were treated using electron, gamma, and ultraviolet radiation, and the conditions for complete dechlorination were developed. Dechlorination was determined by analysis of the inorganic chloride formed and the concentrations of remaining PCBs. Transformer oil containing approximately 95 microg g(-1) PCB (approximately 3.5 mmol L(-1) Cl) is completely dechlorinated by irradiation with 600 kGy after the addition of 10% triethylamine (TEA). Transformer oil containing >800,000 microg g(-1) PCB (17.7 mol L(-1) Cl) requires an additional solvent to prevent solidification. When this oil is diluted with 2-propanol (2-PrOH) and TEA (v/v/v, 1/79/20), complete dechlorination is achieved with a dose of 2500 kGy. Ultraviolet photolysis of the same oil/2-PrOH/TEA solutions led to 90% dechlorination after exposure for 120 h in our experimental setup. Such yields were obtained by radiolysis with a dose of 2000 kGy (300 h in our Gammacell). Replacing TEA with KOH in 2-PrOH solutions greatly increases the yield of dechlorination in both the radiolytic and the photolytic experiments, demonstrating that a chain reaction plays a role in both of these treatment methods and suggesting that both methods deserve further consideration for large-scale application.

  13. DEVELOPMENT OF A VIRTUAL INTELLIGENCE TECHNIQUE FOR THE UPSTREAM OIL INDUSTRY

    SciTech Connect

    Iraj A. Salehi; Shahab D. Mohaghegh; Samuel Ameri

    2004-09-01

    The objective of the research and development work reported in this document was to develop a Virtual Intelligence Technique for optimization of the Preferred Upstream Management Practices (PUMP) for the upstream oil industry. The work included the development of a software tool for identification and optimization of the most influential parameters in upstream common practices as well as geological, geophysical and reservoir engineering studies. The work was performed in cooperation with three independent producing companies--Newfield Exploration, Chesapeake Energy, and Triad Energy--operating in the Golden Trend, Oklahoma. In order to protect data confidentiality, these companies are referred to as Company One, Two, Three in a randomly selected order. These producing companies provided geological, completion, and production data on 320 wells and participated in frequent technical discussions throughout the project. Research and development work was performed by Gas Technology Institute (GTI), West Virginia University (WVU), and Intelligent Solutions Inc. (ISI). Oklahoma Independent Petroleum Association (OIPA) participated in technology transfer and data acquisition efforts. Deliverables from the project are the present final report and a user-friendly software package (Appendix D) with two distinct functions: a characterization tool that identifies the most influential parameters in the upstream operations, and an optimization tool that seeks optimization by varying a number of influential parameters and investigating the coupled effects of these variations. The electronic version of this report is also included in Appendix D. The Golden Trend data were used for the first cut optimization of completion procedures. In the subsequent step, results from soft computing runs were used as the guide for detailed geophysical and reservoir engineering studies that characterize the cause-and-effect relationships between various parameters. The general workflow and the main

  14. Corrosion Challenges for the Oil and Gas Industry in the State of Qatar

    NASA Astrophysics Data System (ADS)

    Johnsen, Roy

    In Qatar oil and gas has been produced from onshore fields in more than 70 years, while the first offshore field delivered its first crude oil in 1965. Due to the atmospheric conditions in Qatar with periodically high humidity, high chloride content, dust/sand combined with the temperature variations, external corrosion is a big treat to the installations and connecting infrastructure. Internal corrosion in tubing, piping and process systems is also a challenge due to high H2S content in the hydrocarbon mixture and exposure to corrosive aquifer water. To avoid corrosion different type of mitigations like application of coating, chemical treatment and material selection are important elements. This presentation will review the experiences with corrosion challenges for oil & gas installations in Qatar including some examples of corrosion failures that have been seen.

  15. Implementation of a World Wide Web server for the oil and gas industry

    SciTech Connect

    Blaylock, R.E.; Martin, F.D.; Emery, R.

    1996-10-01

    The Gas and Oil Technology Exchange and Communication Highway (GO-TECH) provides an electronic information system for the petroleum community for exchanging ideas, data, and technology. The PC-based system fosters communication and discussion by linking the oil and gas producers with resource centers, government agencies, consulting firms, service companies, national laboratories, academic research groups, and universities throughout the world. The oil and gas producers can access the GO-TECH World Wide Web (WWW) home page through modem links, as well as through the Internet. Future GO-TECH applications will include the establishment of virtual corporations consisting of consortia of small companies, consultants, and service companies linked by electronic information systems. These virtual corporations will have the resources and expertise previously found only in major corporations.

  16. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation.

    PubMed

    Moftah, Omar Ali Saied; Grbavčić, Sanja; Zuža, Milena; Luković, Nevena; Bezbradica, Dejan; Knežević-Jugović, Zorica

    2012-01-01

    Olive oil cake is a by-product from the olive oil processing industry and can be used for the lipase and protease production by Candida utilis in solid state fermentation. Different carbon and nitrogen sources were evaluated, and the results showed that the supplementation of the substrate with maltose and starch as carbon sources and yeast extract as a nitrogen source significantly increased the lipase production. The best results were obtained with maltose, whereas rather low lipase and protease activities were found with glucose and oleic acid. Response surface methodology and a five-level-three-factor central composite rotatable design were used to evaluate the effects of the initial moisture content, inoculum size and fermentation time on both lipase and protease activity levels. A lipase activity value of ≈25 U g(-1) and a protease activity value of 110 U g(-1) were obtained under the optimized fermentation conditions. An alkaline treatment of the substrate appeared to be efficient, leading to increases of 39% and 133% in the lipase and protease production, respectively. The results showed that the olive cake could be a good source for enzyme production by solid state fermentation.

  17. How Specific Microbial Communities Benefit the Oil Industry: Dynamics of Alcanivorax spp. in Oil-Contaminated Intertidal Beach Sediments Undergoing Bioremediation

    NASA Astrophysics Data System (ADS)

    Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, Martin D.; Röling, Wilfred F. M.; Head, Ian M.

    The industrial revolution has led to significant increases in the consumption of petroleum hydrocarbons. Concomitant with this increase, hydrocarbon pollution has become a global problem resulting from emissions related to operational use, releases during production, pipeline failures and tanker spills. Importantly, in addition to these anthropogenic sources of hydrocarbon pollution, natural seeps alone account for about 50% of total petroleum hydrocarbon releases in the aquatic environment (National Research Council, 2003). The annual input from natural seeps would form a layer of hydrocarbons 20 molecules thick on the sea surface globally if it remained un-degraded (Prince, 2005). By contrast with natural seeps, many oil spills, e.g. Sea Empress (Milford Haven, UK), Prestige (Galicia, Spain), EXXON Valdez (Prince William Sound, Alaska, USA), released huge amounts of oil (thousands to hundreds of thousand tonnes; Table 24.1) in a locally confined area over a short period of time with a huge acute impact on the marine environment. These incidents have attracted the attention of both the general public and the scientific community due to their great impact on coastal ecosystems. Although many petroleum hydrocarbons are toxic, they are degraded by microbial consortia naturally present in marine ecosystems.

  18. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry

    NASA Astrophysics Data System (ADS)

    Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.

    An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper

  19. Industry subsector analysis, Colombia: Oil and gas transport. Export trade information

    SciTech Connect

    Not Available

    1992-09-01

    According to the new development plan that the Columbian government designed for the oil/gas sector, known as the Dynamic Adjustment Plan, investments in oil/gas transportation equipment and facilities will amount to U.S. $1.1 billion during the next 5 years. The sum could significantly increase, providing that expectations created by the recent discoveries of important deposits are confirmed, socio-political disturbances are controlled, the new refinery is constructed as it has been programmed, and additional discoveries are made due to the dynamic exploration and drilling program, which is expected to be carried out during this period. Market research is presented.

  20. Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells.

    PubMed

    Friedman, Mendel

    2013-11-13

    Rice plants produce bioactive rice brans and hulls that have been reported to have numerous health-promoting effects in cells, animals, and humans. The main objective of this review is to consolidate and integrate the widely scattered information on the composition and the antioxidative, anti-inflammatory, and immunostimulating effects of rice brans from different rice cultivars, rice bran oils derived from rice brans, rice hulls, liquid rice hull smoke derived from rice hulls, and some of their bioactive compounds. As part of this effort, this paper also presents brief summaries on the preparation of health-promoting foods including bread, corn flakes, frankfurters, ice cream, noodles, pasta, tortillas, and zero-trans-fat shortening as well as industrial products such bioethanol and biodiesel fuels. Also covered are antibiotic, antiallergic, anticarcinogenic, antidiabetic, cardiovascular, allelochemical, and other beneficial effects and the mechanisms of the bioactivities. The results show that food-compatible and safe formulations with desirable nutritional and biological properties can be used to develop new multifunctional foods as well as bioethanol and biodiesel fuel. The overlapping aspects are expected to contribute to a better understanding of the potential impact of the described health-promoting potential of the rice-derived brans, oils, and hulls in food and medicine. Such an understanding will enhance nutrition and health and benefit the agricultural and industrial economies.

  1. Occupational Fatalities Resulting from Falls in the Oil and Gas Extraction Industry, United States, 2005-2014.

    PubMed

    Mason, Krystal L; Retzer, Kyla D; Hill, Ryan; Lincoln, Jennifer M

    2017-04-28

    During 2003-2013, fatality rates for oil and gas extraction workers decreased for all causes of death except those associated with fall events, which increased 2% annually during 2003-2013 (1). To better understand risk factors for these events, CDC examined fatal fall events in the oil and gas extraction industry during 2005-2014 using data from case investigations conducted by the Occupational Safety and Health Administration (OSHA). Sixty-three fatal falls were identified, accounting for 15% of all fatal events. Among fatal falls, 33 (52%) workers fell from a height of >30 feet (9 meters), and 22 (35%) fell from the derrick board, the elevated work platform located in the derrick (structure used to support machinery on a drilling rig). Fall fatalities occurred most frequently when drilling rigs were being assembled or disassembled at the well site (rigging up or rigging down) (14; 22%) or when workers were removing or inserting drill pipe into the wellbore (14; 22%). Measures that target derrickmen and workers engaged in assembling and disassembling drilling rigs (rigging up and down) could reduce falls in this industry. Companies should annually update their fall protection plans and ensure effective fall prevention programs are in place for workers at highest risk for falls, including providing trainings on proper use, fit, and inspection of personal protective equipment.

  2. Exploring seed oil biosynthetic pathway in lesquerella (Physaria fendleri), an important industrial crop

    USDA-ARS?s Scientific Manuscript database

    Lesquerella is currently being developed as a new industrial oilseed. Lesquerella is valued for its unusual hydroxy fatty acid (HFA), lesquerolic acid (20:1OH), which can be used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. As a step towards ge...

  3. Manufacturing Improvement Program for the Oil and Gas Industry Supply Chain and Marketing Cluster

    SciTech Connect

    Taylor, Robert

    2016-09-28

    This project supported upgrades for manufacturing companies in the oil and natural gas supply chain in Oklahoma. The goal is to provide assistance that will lead to the improved efficiency advancement of the manufacturing processes currently used by the existing manufacturing clients. The basis for the work is to improve the economic environment for the clients and the communities they serve.

  4. Renewable resources in the chemical industry--breaking away from oil?

    PubMed

    Nordhoff, Stefan; Höcker, Hans; Gebhardt, Henrike

    2007-12-01

    Rising prices for fossil-based raw materials suggest that sooner or later renewable raw materials will, in principle, become economically viable. This paper examines this widespread paradigm. Price linkages like those seen for decades particularly in connection with petrochemical raw materials are now increasingly affecting renewable raw materials. The main driving force is the competing utilisation as an energy source because both fossil-based and renewable raw materials are used primarily for heat, electrical power and mobility. As a result, prices are determined by energy utilisation. Simple observations show how prices for renewable carbon sources are becoming linked to the crude oil price. Whether the application calls for sugar, starch, virgin oils or lignocellulose, the price for the raw material rises with the oil price. Consequently, expectations regarding price trends for fossil-based energy sources can also be utilised for the valuation of alternative processes. However, this seriously calls into question the assumption that a rising crude oil price will favour the economic viability of alternative products and processes based on renewable raw materials. Conversely, it follows that these products and processes must demonstrate economic viability today. Especially in connection with new approaches in white biotechnology, it is evident that, under realistic assumptions, particularly in terms of achievable yields and the optimisation potential of the underlying processes, the route to utilisation is economically viable. This makes the paradigm mentioned at the outset at least very questionable.

  5. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  6. [The role of mutation of gene cyp1A1 and benzapilene in cytogenetic changes of urinary tract epitheliocytes in oil industry workers employed in the oil fields of the North of West Siberia].

    PubMed

    Il'inskikh, N N; Il'inskikh, E N; Il'inskikh, I N; Iamkovaia, E V

    2011-01-01

    The examination of 477 oil industry workers and office personnel (control) employed in the oil fields of the North of Tomsk and Tyumen regions has detected increased number of epithelyocytes with micronuclei and an elevated urine level ofbenzapilene in workers employed in oil production. Especially pronounced changes of the above parameters were observed in men with mutant alleles Val of CYP1A1 gene. An enhanced mutation process in oil production workers may be due to a resultant action of different factors on human genome. Involved may be both mutagens and factors of comutagenic nature. The results obtained in this study suggest a conclusion about urgent need of introduction of new scientifically validated criteria of selection of personnel for oil production in the North of the West Siberia. Health examination of the applicants must include genotyping.

  7. Effect of asphaltene deposition on the internal corrosion in the oil and gas industry

    SciTech Connect

    Palacios T, C.A.; Morales, J.L.; Viloria, A.

    1997-08-01

    Crude oil from Norte de Monagas field, in Venezuela, contains large amounts of asphaltenes. Some of them are very unstable with a tendency to precipitate. Because liquid is carried over from the separation process in the flow stations, asphaltenes are also present in the gas gathering and transmission lines, precipitating on the inner wall of pipelines. The gas gathering and transmission lines contain gas with high partial pressures of CO{sub 2}, some H{sub 2}S and are water saturated; therefore, inhibitors are used to control internal corrosion. There is uncertainty on how inhibitors perform in the presence of asphaltene deposition. The purpose of this paper is to describe the causes that enhance asphaltene deposition in gas pipelines and present some results from an ongoing research project carried out by the Venezuelan Oil Companies.

  8. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    PubMed Central

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples. PMID:21637622

  9. South Pacific: Another slow year is ahead. [Oil and gas industry outlook in the South Pacific

    SciTech Connect

    Langley, B. )

    1993-08-01

    This paper summarizes the oil and gas exploration activities in Australia, Papua New Guinea, and New Zealand in the 1992--1993 period and projects the near-future market and development of these resources. It provides statistics on numbers of new wells drilled, footage involved, number or completions, and production information. The paper also describes the main geographical areas of exploration, types of exploration equipment involved.

  10. A systematic quality assessment of Environmental Impact Statements in the oil and gas industry.

    PubMed

    Anifowose, B; Lawler, D M; van der Horst, D; Chapman, L

    2016-12-01

    The global economy relies heavily on oil and gas resources. However, hydrocarbon exploitation projects can cause significant impacts on the environment. But despite the production of numerous Environmental Impact Statements (EISs) to identify/mitigate such impacts, no study has specifically assessed the quality of EISs for both onshore and offshore oil and gas projects, with tested hypotheses. To address this research gap, our paper, for the first time, develops a modified Lee and Colley evaluation model to assess the quality of 19 sampled oil and gas project EISs produced from 1998 to 2008 in Nigeria. Our findings show that Project Description and Communication of Results are the main areas of strength. However, Environmental Impact Prediction, and Project Decommissioning, were among the key areas requiring attention. A key finding, though, is that Mann-Whitney tests suggest that there is no evidence that the quality of EISs for the latter period (2004-2008) is higher than that of the earlier period (1998-2004). We suggest that periodic systematic review of the quality of submitted/approved EISs (c. every 3-5years) should be established to monitor trends in EIS quality and identify strong and weak areas. This would help to drive continual improvement in both the EIA processes and the resultant EISs of technical engineering projects. Such reviews have the potential to illuminate some of the underlying problems of, and solutions to, oil and gas exploration, production and transportation, and their related environmental impacts. This suggested change would also be useful internationally, including for the burgeoning exploration and production of unconventional hydrocarbon resources. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. [Evaluation of health status among workers in the oil mining industry and problems of primary prophylaxis].

    PubMed

    Gimranova, G G

    2002-01-01

    Thorough medical examination covered 1,400 individuals who work with oil and gas extraction devices, are aged 20 to 58 and have length of service 5 to 30 years. Findings are high prevalence of locomotory disorders, cardiovascular and gastrointestinal diseases, signs of ear exposure to noise. The authors justified complex of primary prophylactic measures including work optimization, meticulous occupational selection, qualified medical control and sanative measures.

  12. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.

    PubMed

    Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark

    2014-01-01

    The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.

  13. The Strategy of Voluntary Certification in Italian Olive Oil Industry: Who and Why?

    PubMed

    Riganelli, Chiara; Marchini, Andrea

    2016-01-28

    The phenomenon of asymmetric information is central in the agri-food sector, in which often there is not full information transparency about product quality. This condition is particularly complex considering the high-end products. In order to reduce this information gap, a company can choose voluntarily to participate in certification programs that can be viewed also as a simplification of some organization issues. The research aims to understand the characteristics of firms oriented to use voluntary certifications as a tool to reduce information asymmetries between producers and final consumers. In particular, we want to consider two contexts of analysis: a structural one, considering some specific internal aspects and investment choices of the firms; a second one that takes into account some decisions related to market relationships. The study concerns small and medium olive oil company of Southern Italy. The results show significant values in both the two dimensions considered. Among the first one, there are significances in immaterial company investments but also in physical assets related to the olive oil process. There are several scientific developments relevant to the olive oil process and some of these patents have been reviewed in this paper. In the second part of analysis there are significances in some distribution channels as well as in the export activity. This work aims to contribute to the debate about the addressing of quality policy for a reduction of asymmetric information in the high-end products.

  14. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  15. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region

    PubMed Central

    Summers, Jamie C.; Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Wiklund, Johan A.; Cooke, Colin A.; Evans, Marlene S.; Smol, John P.

    2016-01-01

    Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead

  16. A conceptual framework and practical guide for assessing fitness-to-operate in the offshore oil and gas industry.

    PubMed

    Griffin, Mark A; Hodkiewicz, Melinda R; Dunster, Jeremy; Kanse, Lisette; Parkes, Katharine R; Finnerty, Dannielle; Cordery, John L; Unsworth, Kerrie L

    2014-07-01

    The paper outlines a systemic approach to understanding and assessing safety capability in the offshore oil and gas industry. We present a conceptual framework and assessment guide for understanding fitness-to-operate (FTO) that builds a more comprehensive picture of safety capability for regulators and operators of offshore facilities. The FTO framework defines three enabling capitals that create safety capability: organizational capital, social capital, and human capital. For each type of capital we identify more specific dimensions based on current theories of safety, management, and organizational processes. The assessment guide matches specific characteristics to each element of the framework to support assessment of safety capability. The content and scope of the FTO framework enable a more comprehensive coverage of factors that influence short-term and long-term safety outcomes. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Oil on the water: Government regulation of a carcinogen in the twentieth-century Lancashire cotton spinning industry.

    PubMed

    Higgins, David; Tweedale, Geoffrey

    2010-01-01

    In the Lancashire cotton textile industry, mule spinners were prone to a chronic and sometimes fatal skin cancer (often affecting the groin). The disease had reached epidemic proportions by the 1920s, which necessitated action by the government, employers, and trade unions. In contrast to previous accounts, this article focuses on the government's reaction to mule spinners' cancer. Using official records in the National Archives, the slow introduction of health and safety measures by the government is explored in detail. Although obstructionism by the employers played a key role, one of the reasons for government inaction was the ambiguity of scientific research on engineering oils. On the other hand, prolonged scientific research suited a government policy that was framed around self regulation - a policy that had proved largely ineffective by the 1950s.

  18. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica.

    PubMed

    Dobrowolski, Adam; Mituła, Paweł; Rymowicz, Waldemar; Mirończuk, Aleksandra M

    2016-05-01

    In this study, crude glycerol from various industries was used to produce lipids via wild type Yarrowia lipolytica A101. We tested samples without any prior purification from five different waste products; each contained various concentrations of glycerol (42-87%) as the sole carbon source. The best results for lipid production were obtained for medium containing glycerol from fat saponification. This reached 1.69gL(-1) (25% of total cell dry weight) with a biomass yield of 0.17gg(-1) in the flasks experiment. The batch cultivation in a bioreactor resulted in enhanced lipid production-it achieved 4.72gL(-1) with a biomass yield 0.21gg(-1). Moreover, the properly selected batch of crude glycerol provides a defined fatty acid composition. In summary, this paper shows that crude glycerol from soap production could be efficiently converted to single cell oil without any prior purification.

  19. Regulatory impact analysis of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    SciTech Connect

    Not Available

    1993-01-14

    For all major rulemaking actions, Executive Order 12291 requires a Regulatory Impact Analysis (RIA), in which benefits of the regulation are compared to costs imposed by the regulation. The report presents the Environmental Protection Agency's (EPA, or the Agency) RIA of the final rule on the effluent limitations guidelines for the Offshore Subcategory of the Oil and Gas Extraction Industry. The principal requirement of the Executive Order is that the Agency perform an analysis comparing the benefits of the regulation to the costs that the regulation imposes. Three types of benefits are analyzed in this RIA: quantified and monetized benefits; quantified and non-monetized benefits; and non-quantified and non-monetized benefits.

  20. Emerging technologies for development of green industrial products from natural oils

    USDA-ARS?s Scientific Manuscript database

    The need to find natural material which can replace the world’s diminishing petroleum is critical for the economy of the future. However, the successes of the American and European bio-diesel industries have caused controversy as well, with the food vs. fuel vs. feed debate likely to continue into ...

  1. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  2. Peanut oil stability and physical properties across a range of industrially relevant O/L ratios

    USDA-ARS?s Scientific Manuscript database

    High oleic cultivars are becoming increasing prevalent in the peanut industry due to their increased shelf life compared to conventional cultivars. High oleic peanuts are typically defined as having oleic acid/linoleic acid (O/L) ratios = 9, whereas most traditional varieties have O/L ratios near 1...

  3. Peanut Oil Stability and Physical Properties Across a Range of Industrially Relevant O/L Ratios

    USDA-ARS?s Scientific Manuscript database

    High oleic cultivars are becoming increasing prevalent in the peanut industry due to their increased shelf life compared to conventional cultivars. High oleic peanuts are typically defined as having oleic acid/linoleic acid (O/L) ratios = 9, whereas most traditional varieties have O/L ratios near 1....

  4. New Method to Produce an Industrial Lubrication Fluid from Vegetable Oil-based Materials

    USDA-ARS?s Scientific Manuscript database

    The projected demand for industrial and automotive lubricants in the U.S. is ~2.6 billion gallons by 2017, where bio-based lubricants will play an increasing role, from a share of 0.6% today to a possible 1.2% by 2017. This is accompanied by the expected price increase to >$7.00/gallon which will g...

  5. Risk perception and safety in the UK offshore oil and gas industry

    SciTech Connect

    Flin, R.H.; Mearns, K.; Gordon, R.P.E.; Fleming, M.T.

    1996-12-31

    This paper presents a selection of the final results from a study of risk perception and safety attitudes in workers on UKCS offshore oil and gas platforms, which was sponsored by the HSE Offshore Safety Division, Amerada Hess, British Gas, BP, Conoco, Elf Enterprise and Total Oil Marine. The study was designed in conjunction with Dr Rundmo of Trondheim University who was carrying out a matched survey with Norwegian offshore workers for the Norwegian Petroleum Directorate`. A representative sample of 622 UKCS workers on six production platforms were surveyed about their job characteristics, perceived risks, safety attitudes, safety satisfaction, accidents and injuries and the Safety Case. The results indicate that the relative feelings of safety in relation to major hazards (e.g. explosion, blow-out) are aligned with QRA calculations. In general, the workforce feel safe but are aware of the hazards in their environment. Further analyses and statistical modelling indicates that organizational factors (e.g. management commitment to safety, safety attitudes) have the greatest direct effect on workers perception of risk and their satisfaction with safety measures. The British and Norwegian data sets are now being merged and preliminary findings will be mentioned. To explore the emerging issues further, a new study on human factors in UK offshore safety has just been launched with the support of OSD, OCA and six operating and contractor companies. A brief outline will be presented.

  6. Corrosion of Advanced Steels: Challenges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Mishra, Brajendra; Apelian, Diran

    Drill pipe steels are in contact with CO2 and H2S environments, depending on the oil and gas field. These steels have to be resistant to various in-service conditions including aggressive environments containing CO2, H2S, O2, and chlorides, in addition to static and dynamic mechanical stresses. In this respect stress corrosion cracking susceptibility of two grades of drill pipe steel in CO2 environment have been studied simulating the bottom hole oil and gas well conditions. SSRT results show that SCC susceptibility or loss of ductility changes with temperature and increasing temperature increases the loss of ductility. No FeCO3 is observed below 100 °C, and density of FeCO3 is higher in grip section than gauge length and this is due to strain disturbance of growth of iron carbonate crystals. Material selection for down hole in CO2 containing environments needs has been reviewed and probability of SCC occurrence in higher temperatures has been included.

  7. [Integral methodologic approach to occupational health maintenance for oil industry workers in North-West Siberia (exemplified by JSC "Novosibirsknephtegaz" model)].

    PubMed

    Logvinenko, I I; Voevoda, M I; Samadova, D T; Kulinich, V N; Kopylova, O S

    2011-01-01

    The authors analyzed work conditions and health of workers in oil-extracting industry of Novosibirsk region. Findings are that work safety system based on workplace certification concerning work conditions and on occupational safety activities certification is the most important component in primary prevention of occupational hazardous effects on life and health of workers during the occupational activities.

  8. Textual synthesis of policies and guidance statements for remote healthcare practitioners on managing medical emergencies in the oil and gas industry: a systematic review protocol.

    PubMed

    Osakwe, Kennedy A; Cooper, Kay; Stewart, Derek; Wainwright, Cherry L; Klein, Susan

    2017-08-01

    The objective of this review is to collate, synthesize and present the available evidence on the policies and guidance statements for remote healthcare practitioners on managing medical emergencies in the offshore oil and gas industry.More specifically, the review seeks to answer the following questions.

  9. [Comparative analysis of occupational health services practice of international companies of oil and gas industry and ILO Convention "Occupational Health Services"].

    PubMed

    Gevorkian, É V; Spiridonov, V L; Shatokhin, A S; Ékgardt, E V; Avdokhin, A V; Iakovlev, A P

    2013-01-01

    A comparative analysis of current work practices of occupational health services of international companies of Russian oil & gas industry and provisions of ILO Convention 161 and Recommendation 171 "Occupational Health Services" has been carried out. Proposals for improvement and harmonization of labor legislation related to this problem have been formulated.

  10. Sarcoidal granuloma developing not only at the entry site of industrial lubricating oil, but also at a regional lymph node and entry points of venepuncture.

    PubMed

    Kogushi, Hazuki; Egawa, Kiyofumi; Ono, Tomomichi

    2006-01-01

    We describe a 40-year-old male who presented with sarcoidal granulomas not only at the entry site of an industrial lubricating oil containing silicone in the right thumb, but also in a regional lymph node and at the entry points of venepuncture in both forearms. Laboratory tests and chest X-ray showed no evidence of sarcoidosis. 2006 S. Karger AG, Basel

  11. Manitoba oil activity review, 1997

    SciTech Connect

    1998-12-01

    Annual review is presented of Manitoba Crown oil and gas dispositions, mineral owner leasing and revenue, geophysical and drilling activity, areas of activity, oil production and markets, oil prices, value of production, provincial revenue from oil production, surface owners, spills and reclamation, municipal taxes, the Manitoba Drilling Incentive Program, oil reserves, oil industry expenditures, and industry employment. Highlights of the current year are included.

  12. Cancer morbidity among men exposed to oil mist in the metal industry.

    PubMed

    Järvholm, B; Lillienberg, L; Sällsten, G; Thiringer, G; Axelson, O

    1981-05-01

    The cancer morbidity pattern among 788 men with at least five years' exposure to oil mist was investigated. Based on measurements, interviews of workers and a survey of changes over the years, the average exposure level was estimated to have been 5 mg/m3 or more prior to 1965. Exclusive of cancer of the scrotum, there were 39 observed cases of cancer compared to 52.9 expected. There were four cases of cancer of the scrotum among the turners but none among the grinders. Three cases of lung cancer were found, compared to 5.4 expected. Among the grinders there was a doubled, but not statistically significant, increase in cancer of the stomach. The mortality from all causes showed a so-called "healthy worker effect," that is, 126 deaths compared to 154.3 expected.

  13. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study.

    PubMed

    Benítez, E; Sainz, H; Melgar, R; Nogales, R

    2002-04-01

    The vermicomposting with Eisenia andrei of dry olive cake, a lignocellulosic waste produced during the extraction of olive oil, either alone or mixed with municipal biosolids, was studied in a nine-month pilot scale experiment. Number and biomass of earthworms and enzyme activities were periodically monitored and relevant properties of the final products were determined. In the assayed substrates, the total biomass of earthworms increased at the end of the experimental period between 9 and 12-fold respectively in comparison with the earthworm biomass initially inoculated. The increase in hydrolytic enzymes and overall microbial activity during the vermicomposting process indicated the biodegradation of the olive cake and resulted in the disappearance of the initial phytotoxicity of the substrate. However, the recalcitrant lignocellulosic nature of the dry olive cake prevented suitable humification during the vermicomposting process. For this reason, in addition to organic amendments, other management procedures should be considered.

  14. A fractional differential equation for a MEMS viscometer used in the oil industry

    NASA Astrophysics Data System (ADS)

    Fitt, A. D.; Goodwin, A. R. H.; Ronaldson, K. A.; Wakeham, W. A.

    2009-07-01

    A mathematical model is developed for a micro-electro-mechanical system (MEMS) instrument that has been designed primarily to measure the viscosity of fluids that are encountered during oil well exploration. It is shown that, in one mode of operation, the displacement of the device satisfies a fractional differential equation (FDE). The theory of FDEs is used to solve the governing equation in closed form and numerical solutions are also determined using a simple but efficient central difference scheme. It is shown how knowledge of the exact and numerical solutions enables the design of the device to be optimised. It is also shown that the numerical scheme may be extended to encompass the case of a nonlinear spring, where the resulting FDE is nonlinear.

  15. Aerosol sampling and characterization in the developing US oil-shale industry

    SciTech Connect

    Hargis, K.M.; Tillery, M.I.; Gonzales, M.; Garcia, L.L.

    1981-01-01

    Aerosol sampling and characterization studies of workplace air were conducted at four demonstration-scale oil shale facilities located in northwestern Colorado and northeastern Utah. These facilities consisted of an underground mining/aboveground retorting facility, two modified in situ retorting facilities with associated underground mining, and a true in situ retorting facility. Emphasis was placed on study of the retorting phase of operation at these facilities. Aerosol samples were collected on filter media by high volume air samplers, low volume portable sampling pumps with or without cyclone pre-separators, and cascade impactors. Samples were analyzed to determine total and respirable dust concentrations, particle size distributions, free silica content, total benzene or cyclohexane extractables, and selected polynuclear aromatic hydrocarbons. Total and respirable dust were observed to range from very low to very high concentrations, with significant free silica content. Measurable levels of polynuclear aromatic hydrocarbons were also observed at each of the facilities.

  16. Human and ecotoxicological impacts assessment from the Mexican oil industry in the Coatzacoalcos region, as revealed by the USEtox model.

    PubMed

    Morales-Mora, M A; Rodríguez-Pérez, B; Martínez-Delgadillo, S A; Rosa-Domínguez, E; Nolasco-Hipólito, C

    2014-01-01

    Human and ecotoxicological impacts were analyzed in the lower basin of the Coatzacoalcos River (Veracruz, State in Mexico). High pollution levels of contaminants from the oil industry have been reported in natural streams and the Coatzacoalcos River and in their sediments. USEtox model was employed to evaluate environmental fate, exposure, and effect of nine organic compounds (polycyclic aromatic hydrocarbons and one of which was in the group of polychlorinated biphenyls), a heavy metal (lead), and the effect of the industrial wastewater emitted into the river, on the Coatzacoalcos region. Most of these compounds are highly toxic; they bioaccumulate in human and animal tissue, mainly in the fatty tissues and can damage different organs and systemic targets such as the liver, kidney, hormonal system, nervous system, etc., of both humans and wildlife. The model estimates that 96% (3,247 kg/day) of organic compounds is transferred from the water into air, whereas only 4% (151 kg/day) remains in the water. In addition, it predicts that humans are mainly exposed to polychlorinated biphenyls (PCBs) congeners (28 and 153) by eating contaminated fish, due to PCBs accumulating in the fish fat tissue. The number of cases of cancer and noncancer (1 in 862 habitants per additional kilogram) is expected to have an increment due to the higher PCBs exposure of human population. Genetic damages in fishes, earthworms, and toads have been observed and related to higher exposure to organic compounds. The relationship between the field reported data and those one predicted by the USEtox model have been confirmed empirically by using the nonparametric correlation analysis (Spearman's rho). Based on the USEtox model, the environmental stress in the Coatzacoalcos industrial zone is between 2 and 6 orders of magnitude over geometric mean of acute aquatic EC₅₀s. We think that USEtox model can be used to expand the number of substances that have the current water quality guidelines to

  17. Environmental conservation: the oil and gas industries National Petroleum Council/1982

    SciTech Connect

    Not Available

    1981-01-01

    The National Petroleum Council (NPC) sought to identify those environmental issues that will be the focus of continued debate and research in the decade of the 1980's. The NPC also examined the impacts of the petroleum industry on the environment, and the impact of environmental legislative, regulatory, and administrative actions that adversely affect the cost or availability of petroleum products, natural gas, and synthetic fuels. The following significant environmental issues must be resolved promptly as the nation seeks in the 1980's to balance the goals of energy supply and security with the goals of environmental quality: Access to federal lands for the purpose of resource assessment and possible future development; delay and uncertainty caused by the complexity of regulatory requirements, including permitting procedures, the number of government authorities involved, and the opportunities for legal intervention by third parties; siting of energy facilities, especially production and transportation facilities, that are determined by the location of natural resources; incorporation of scientifically acceptable techniques in setting standards, such as National Ambient Air Quality Standards and Water Quality Standards; siting and operation of facilities for hazardous waste management; and the ecological and public health effects of, and the control strategies for, the synfuels industry. There are also a number of issues whose causes are not clearly defined and which are affected by many factors and industries. These issues are: the ecological and public health effects of, and the control strategies for, acid rain; the CO/sub 2/ greenhouse effect; groundwater contamination; and indoor air pollution. Separate abstracts have been prepared for each of the 8 chapters of this report for inclusion in the Energy Data Base.

  18. A new optical pressure sensor interrogated by speckles pattern for oil industry

    NASA Astrophysics Data System (ADS)

    Sperandio, Vinicius M.; Pontes, Maria J.; Neto, Anselmo F.; Webster, Lucas G.

    2015-09-01

    A new optical pressure control concept in petroleum industry based on laser speckle analysis, with inherent safety light, is investigated in this work. A plastic optical fiber (POF) utilized to instrument a conventional manometer enabled pressure monitoring of a system that is interrogated by speckle photography technique. Specklegrams were imaged on a CCD camera and then analyzed, after Mathematical Morphology Filter, regarding its movement. Tests demonstrated that the speckle pattern movement is radial towards the center of pressure and accordingly reverse during depressurization within 5% maximum error.

  19. The Strategy of Voluntary Certification in Italian Olive Oil Industry: Who and Why?

    PubMed

    Riganelli, Chiara; Marchini, Andrea

    2016-01-01

    The phenomenon of asymmetric information is central in the agri-food sector, in which often there is not full information transparency about product quality. This condition is particularly complex considering the high-end products. In particular, there are specific attributes (credence attributes) that are not assessable by consumers. For these reasons, a clear information about certification can give to consumers the possibility to make a rational choice. A company can choose voluntarily to participate in certification programs that can be viewed also as a simplification of some organization issues. Often the incentives to participate in voluntary programs arise from the need to have a positive economic performance of the firm. On the one hand, the firm may have benefits from the technical assistance of the certification, which allows it to reduce costs of controlling particular sensible steps of the process. On the other hand, the firm may provide a new certification label, in order to ensure a greater transparency of its processes. The research aims to understand the characteristics of firms oriented to use voluntary certifications as a tool to reduce information asymmetries between producers and final consumers. In particular, we want to consider two contexts of analysis: a structural one, considering some specific internal aspects and investment choices of the firms (typology, size, extraction system, storage system, material investments, immaterial investments); a second one that takes into account some decisions related to market relationships (sale to consumers, sale to HoReCa, sale to wholesalers, sale to purchasing groups, sale to GDO, export activity). The study concerns small and medium olive oil company of Southern Italy. We apply two logit models in order to show the determinants in the choice to introduce a voluntary certification. The results show significant values in both the two dimensions considered. Among the first one, there are significances

  20. Potential of agroindustrial waste from olive oil industry for fuel ethanol production.

    PubMed

    Georgieva, Tania I; Ahring, Birgitte K

    2007-12-01

    Olive pulp (OP) is a highly polluting semi-solid residue generated from the two-stage extraction processing of olives and is a major environmental issue in Southern Europe, where 80% of the world olive oil is produced. At present, OP is either discarded to the environment or combusted with low calorific value. In this work, utilization of OP as a potential substrate for production of bioethanol was studied. Enzymatic hydrolysis and subsequent glucose fermentation by baker's yeast were evaluated for OP from 10% to 30% dry matter (i.e., undiluted). Enzymatic hydrolysis resulted in an increase in glucose concentration by 75%, giving final glucose yields near 70%. Fermentation of undiluted OP hydrolysate (OPH) resulted in the maximum ethanol produced (11.2 g/L) with productivity of 2.1 g/L/h. Ethanol yields were similar for all tested OPH concentrations and were in the range of 0.49-0.51 g/g. Results showed that yeast could effectively ferment OPH even without nutrient addition, revealing the tolerance of yeast to OP toxicity. Because of low xylan (12.4%) and glucan (16%) content in OP, this specific type of OP is not a suitable material for producing only ethanol and thus, bioethanol production should be integrated with production of other value-added products.

  1. Recycling of palm oil industrial wastes using vermicomposting technology: its kinetics study and environmental application.

    PubMed

    Rupani, Parveen Fatemeh; Embrandiri, Asha; Ibrahim, Mahamad Hakimi; Shahadat, Mohammad; Hansen, Sune Balle; Ismail, Sultan Ahmed; Ab Kadir, Mohd Omar

    2017-05-01

    The present paper reports management of palm oil mill effluent (POME) mixed with palm-pressed fibre (PPF) POME-PPF mixture using eco-friendly, cost-effective vermicomposting technology. Vermicomposting of POME-PPF was performed to examine the optimal POME-PPF ratio with respect to the criteria of earthworm biomass and to evaluate the decomposition of carbon and nitrogen in different percentages of POME-PPF mixtures. Chemical parameters such as TOC, N, P and K contents were determined to achieve optimal decomposition of POME-PPF. On this basis, the obtained data of 50% POME-PPF mixture demonstrated more significant results throughout the experiment after addition of the earthworms. However, 60 and 70% mixtures found significant only in the last stages of the vermicomposting process. The decomposition rate in terms of -ln (CNt/CNo) showed that the 50% mixture has higher decomposition rate as compared to the 60 and 70% (k50% = 0.0498 day(-1)). The vermicomposting extracts (50, 60 and 70%) of POME-PPF mixtures were also tested to examine the growth of mung bean (Vigna radiata). It was found that among different extract dilutions, 50% POME-PPF vermicompost extract provided longer root and shoot length of mung bean. The present study concluded that the 50% mixture of POME-PPF could be chosen as the optimal mixture for vermicomposting in terms of both decomposition rate and fertilizer value of the final compost. Graphical abstract ᅟ.

  2. Crises Management in the Oil and Gas Industry: The Niger Delta Experience

    NASA Astrophysics Data System (ADS)

    Odemene, Glory C.

    The Niger Delta crises escalated beyond the borders of the Nigerian nation to become an issue that affected individuals and corporations around the world. This study led to the discovery of how the local crises escalated with international implications. This discovery was accomplished by addressing how the Niger Delta crises escalated from villages to international scenes, with notable impacts on the environment, health, safety, security, and financial segments of local, international, private, and corporate entities. Using Sweeny's crisis decision theory and Lazarus and Folkman's coping theory, the study considered the coping strategies of community members, the decisions, and actions they took in response to the management approaches of the government and the oil and gas companies (OGCs). This qualitative study utilized historical narrative to collect data by interviewing 4 participants who lived and worked in the region during the crises. NVivo was used for manual and automatic coding of data, as well as for categorization and connection of codes. Content analysis of identified codes and categories revealed the themes and trends in the experiences narrated by participants. Findings include the root causes, trend of escalation, and management strategies of the government and the OGCs that influenced the crises. These findings will help to influence policies and practices in the region and enhance effective management of current and emerging conflicts, with possibilities of restoring stability and security in the areas and in the nation at large.

  3. Diagnostic study of job design in oil industry: Fort McMurray, Alberta, Canada

    SciTech Connect

    Singh, M.

    1986-01-01

    The major purpose of this study was to diagnose the work situation of members of McMurray Independent Oil Workers (MIOW) Union, employed with Suncor, Inc., Fort McMurray and make recommendations for work improvements. Hackman and Oldham's Job Diagnostic Survey (JDS) and four scales of Leader Behavior Description Questionnaire Form XII were used to collect data from MIOW Union members with a sample size of 50% of the population. Ninety-eight usable questionnaires were received back by the investigator. The major concepts measured included job dimensions (skill variety, task identity, task significance, autonomy, feedback from job, feedback from agents, and dealing with others), affective outcomes (motivation, job satisfaction, and growth satisfaction), supervisory behaviors (initiating structure, consideration, production emphasis, persuasiveness) and demographic variables. Data were analyzed by using MINITAB and SPSSX statistical packages. Greater consideration and emotional support on the part of supervisors could increase affective outcomes and satisfaction with supervision and should result in greater organizational effectiveness. The overall pattern of quality of work life appeared to be production-oriented characterized by lack of supervisory considerations and less conducive for greater organizational performance.

  4. Determination of amines used in the oil and gas industry (upstream section) by ion chromatography.

    PubMed

    Kadnar, R

    1999-07-30

    During production and purification of crude oil and natural gas several different amines are used as chemicals or operating materials, e.g. film forming long chain amines as corrosion inhibitors, steam volatile amines for pH correction and corrosion protection, alkanolamines as absorbents in sour gas treatment plants, etc. For analytical checks, e.g. determination of corrosion inhibitor concentration in produced media, classical chemical methods are used predominantly, because most of them can be performed in small field laboratories. Some amines, especially the small molecular aliphatic and heterocyclic amines can also be determined by ion chromatography. In our laboratory two types of separation columns (IonPac CS10 and CS12A) were available for ion chromatographic separation. The analysis of the amines in low-salt-containing water, soft water or steam condensate can be performed without problems. The presence of alkali and/or alkaline earth ions in the sample can lead to coelution with these ions, to poor peak resolution or enhanced analysis times, depending on the chromatographic conditions. This work shows some examples of ion chromatography applications for the determination of low-molecular-mass ethanolamines, morpholine and piperazine and discusses the possible interferences and troubles caused by alkali and alkaline earth ions in the matrix.

  5. Outsourcing of common industry data within a major oil and gas exploration company

    SciTech Connect

    Hude, C.G. ); Glover, S. )

    1993-09-01

    Enhancing user productivity while reducing internal costs through improved accessibility and virtual elimination of data and software maintenance were the initial goals of this project. We achieved these objectives through the outsourcing of common well and production data with a major vendor. In this paper, we outline the changing internal business operations of a major oil company and its associated vendor relationship. The goals of this project were multifold: provide our users with real-time access to nationwide well and production data, eliminate data and system software maintenance and support, redeploy computer system resources and personnel for use elsewhere within the organization, and continue to provide users with the same level of service at less cost. We established a satisfactory interface between the users and the vendor database by employing existing technology. A mainframe-to-mainframe connection was established by installing a leased line between the two host sites. This allowed both companies to use existing network facilities with minimal modifications to each operating environment. This project was begun successfully in a relatively short time. Due to the success of this project, we are evaluating adding company proprietary data. However, because technology and requirements change, relational delivery of the data within a workstation/server environment can be addressed within this framework.

  6. Effect of ultrasonic treatment on total phenolic extraction from Lavandula pubescens and its application in palm olein oil industry.

    PubMed

    Rashed, Marwan M A; Tong, Qunyi; Abdelhai, Mandour H; Gasmalla, Mohammed A A; Ndayishimiye, Jean B; Chen, Long; Ren, Fei

    2016-03-01

    The aims of the current study were to evaluate the best technique for total phenolic extraction from Lavandula pubescens (Lp) and its application in vegetable oil industries as alternatives of synthetic food additives (TBHQ and BHT). To achieve these aims, three techniques of extraction were used: ultrasonic-microwave (40 kHz, 50 W, microwave power 480 W, 5 min), ultrasonic-homogenizer (20 kHz, 150 W, 5 min) and conventional maceration as a control. By using the Folin-Ciocalteu method, the total phenolic contents (TPC) (mg gallic acid equivalent/g dry matter) were found to be 253.87, 216.96 and 203.41 for ultrasonic-microwave extract, ultrasonic-homogenizer extract and maceration extract, respectively. The ultrasonic-microwave extract achieved the higher scavenger effect of DPPH (90.53%) with EC50 (19.54 μg/mL), and higher inhibition of β-carotene/linoleate emulsion deterioration (94.44%) with IC50 (30.62 μg/mL). The activity of the ultrasonic-microwave treatment could prolong the induction period (18.82 h) and oxidative stability index (1.67) of fresh refined, bleached and deodorized palm olein oil (RBDPOo) according to Rancimat assay. There was an important synergist effect between citric acid and Lp extracts in improving the oxidative stability of fresh RBDPOo. The results of this work also showed that the ultrasonic-microwave assisted extract was the most effective against Gram-positive and Gram-negative strains that were assessed in this study. The uses of ultrasonic-microwave could induce the acoustic cavitation and rupture of plant cells, and this facilitates the flow of solvent into the plant cells and enhances the desorption from the matrix of solid samples, and thus would enhance the efficiency of extraction based on cavitation phenomenon.

  7. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  8. Exposure to PAH compounds among cokery workers in the oil shale industry

    SciTech Connect

    Kuljukka, T.; Vaaranrinta, R.; Peltonen, K.

    1996-05-01

    The exposure of Estonian cokery workers to polynuclear aromatic hydrocarbons at an oil shale processing plant was assessed by occupational hygiene and biomonitoring measurements. To assess the external dose of exposure to polynuclear aromatic hydrocarbons, pyrene and benzo[a]pyrene concentrations were measured from the breathing zone of workers during a workshift. Skin contamination with pyrene and benzo[a]pyrene was assessed by skin wipe sampling. As a biomarker of exposure to polynuclear aromatic hydrocarbons and as an integral of all possible absorption routes of pyrene, 1-hydroxypyrene concentration was measured from post-shift urine samples. Eighteen percent of the personal air samples exceeded the Finnish threshold limit value of benzo[a]pyrene (10 {mu}g/m{sup 3}). Mean values for benzo[a]pyrene and pyrene were 5.7 {mu}g/m{sup 3} and 8.1 {mu}g/m{sup 3}, respectively. Based on skin wipe sample analyses, the skin contamination was also obvious. The mean value of benzo[a]pyrene on the samples collected after the shift was 1.2 ng/cm{sup 2}. In control samples, benzo[a]pyrene was not found. The mean value of urinary 1-hydroxypyrene concentration was 6.0 nmol/mmol creatinine for the exposed workers and 0.5 nmol/mmol creatinine for the controls. This study showed the usefulness of 1-hydroxypyrene as an indicator of internal dose of polynuclear aromatic hydrocarbons. We concluded that the cokery workers at the Kohtla-Jaerve plant are exposed to high concentrations of polynuclear aromatic compounds. 22 refs., 3 figs.

  9. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    PubMed

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.

  10. Exposure to PAH compounds among cokery workers in the oil shale industry.

    PubMed Central

    Kuljukka, T; Vaaranrinta, R; Veidebaum, T; Sorsa, M; Peltonen, K

    1996-01-01

    The exposure of Estonian cokery workers to polynuclear aromatic hydrocarbons at an oil shale processing plant was assessed by occupational hygiene and biomonitoring measurements. To assess the external dose of exposure to polynuclear aromatic hydrocarbons, pyrene and benzo[a]pyrene concentrations were measured from the breathing zone of workers during a workshift. Skin contamination with pyrene and benzo[a]pyrene was assessed by skin wipe sampling. As a biomarker of exposure to polynuclear aromatic hydrocarbons and as an integral of all possible absorption routes of pyrene, 1-hydroxypyrene concentration was measured from post-shift urine samples. Eighteen percent of the personal air samples exceeded the Finnish threshold limit value of benzol[a]pyrene (10 micrograms/m3). Mean values for benzo[a]pyrene and pyrene were 5.7 micrograms/m3 and 8.1 micrograms/m3, respectively. Based on skin wipe sample analyses, the skin contamination was also obvious. The mean value of benzo[a]pyrene on the samples collected after the shift was 1.2 ng/cm2. In control samples, benzo[a]pyrene was not found. The mean value of urinary 1-hydroxypyrene concentration was 6.0 nmol/mmol creatinine for the exposed workers and 0.5 nmol/mmol creatinine for the controls. This study showed the usefulness of 1-hydroxypyrene as an indicator of internal dose of polynuclear aromatic hydrocarbons. We concluded that the cokery workers at the Kohtla-Järve plant are exposed to high concentrations of polynuclear aromatic compounds. PMID:8781379

  11. Exposure to PAH compounds among cokery workers in the oil shale industry.

    PubMed

    Kuljukka, T; Vaaranrinta, R; Veidebaum, T; Sorsa, M; Peltonen, K

    1996-05-01

    The exposure of Estonian cokery workers to polynuclear aromatic hydrocarbons at an oil shale processing plant was assessed by occupational hygiene and biomonitoring measurements. To assess the external dose of exposure to polynuclear aromatic hydrocarbons, pyrene and benzo[a]pyrene concentrations were measured from the breathing zone of workers during a workshift. Skin contamination with pyrene and benzo[a]pyrene was assessed by skin wipe sampling. As a biomarker of exposure to polynuclear aromatic hydrocarbons and as an integral of all possible absorption routes of pyrene, 1-hydroxypyrene concentration was measured from post-shift urine samples. Eighteen percent of the personal air samples exceeded the Finnish threshold limit value of benzol[a]pyrene (10 micrograms/m3). Mean values for benzo[a]pyrene and pyrene were 5.7 micrograms/m3 and 8.1 micrograms/m3, respectively. Based on skin wipe sample analyses, the skin contamination was also obvious. The mean value of benzo[a]pyrene on the samples collected after the shift was 1.2 ng/cm2. In control samples, benzo[a]pyrene was not found. The mean value of urinary 1-hydroxypyrene concentration was 6.0 nmol/mmol creatinine for the exposed workers and 0.5 nmol/mmol creatinine for the controls. This study showed the usefulness of 1-hydroxypyrene as an indicator of internal dose of polynuclear aromatic hydrocarbons. We concluded that the cokery workers at the Kohtla-Järve plant are exposed to high concentrations of polynuclear aromatic compounds.

  12. Volatility of bitumen prices and implications for the industry

    USGS Publications Warehouse

    Attanasi, E.D.

    2008-01-01

    Sustained crude oil price increases have led to increased investment in and production of Canadian bitumen to supplement North American oil supplies. For new projects, the evaluation of profitability is based on a prediction of the future price path of bitumen and ultimately light/medium crude oil. This article examines the relationship between the bitumen and light crude oil prices in the context of a simple error-correction economic-adjustment model. The analysis shows bitumen prices to be significantly more volatile than light crude prices. Also, the dominant effect of an oil price shock on bitumen prices is immediate and is amplified, both in absolute terms and percentage price changes. It is argued that the bitumen industry response to such market risks will likely be a realignment toward vertical integration via new downstream construction, mergers, or on a de facto basis by the establishment of alliances. ?? 2008 International Association for Mathematical Geology.

  13. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.

    PubMed

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2016-12-01

    This study was carried out to investigate the kinetics of coffee industrial residue (CIR) pyrolysis, the effect of pyrolysis factors on yield of bio-oil component and components separation of bio-oil. The kinetics of CIR pyrolysis was analyzed using distributed activation energy model (DAEM), based on the experiments in thermogravimetric analyzer (TGA), and it indicated that the average of activation energy (E) is 187.86kJ·mol(-1). The bio-oils were prepared from CIR pyrolysis in vacuum tube furnace, and its components were determined by gas chromatography/mass spectrometry (GC-MS). Among pyrolysis factors, pyrolysis temperature is the most influential factor on components yield of bio-oil, directly concerned with the volatilization and yield of components (palmitic acid, linoleic acid, oleic acid, octadecanoic acid and caffeine). Furthermore, a new method (sequencing temperature-raising pyrolysis) was put forward and applied to the components separation of bio-oil. Based on experiments, a solution of components separation of bio-oil was come out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Transboundary Atmospheric Pollution of Oil-Gas Industry Emissions from North Caspian region of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Zakarin, E.; Balakay, L.; Mirkarimova, B.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2012-04-01

    The Atyraus region (Republic of Kazahstan) is occupied with more than 60 oil-gas fields which are actively developing. Moreover, a new world largest field so-called Kashagan has been discovered on the Caspian Sea shelf and its exploitation is planned by the end of 2012. In our study, this region has been selected as a source region of sulphates emissions accounting about 15 tons (2009 estimates). Three locations have been chosen in the region covering adjacent Caspian Sea aquatoria, and emissions were equally distributed among these locations (with an emission rate of 4.72*10-4 kg/sec). From original sulphates emissions between 46-82% are subjected to atmospheric transport away from the sources. Releases were considered to be continuous. The long-term modelling of atmospheric transport, dispersion and deposition of sulphates was done employing the Lagrangian type model called DERMA, run at the NEC SX6 supercomputing facilities. After each day of release the atmospheric transport has been tracked for the next 2 week period. Input meteorological 3D fields were obtained from the ECMWF data archives. The generated output included air concentration (at model levels), time integrated air concentration, dry and wet deposition (at the surface). The results of dispersion modelling had been post-processed and integrated into GIS environment (using ArcGIS). These have been further used to calculate annual averaged and summary concentration and deposition fields for administrative regions, counties and cities of Kazakhstan, as well as territories of the neighboring countries. It has been found that on an annual scale, the dominating atmospheric transport of pollution from the Atyraus region is toward east and north-east, mostly due to prevailing westerlies. Although on a hemispheric scale, the wet deposition dominates over dry (63 vs. 37%), for Kazakhstan the wet deposition contribution is slightly larger (65%). For Turkmenistan, dry deposition is almost twice higher compared

  15. Functionalized Vegetable Oils for Utilization as Polymer Building Blocks: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

    SciTech Connect

    Carde, T.

    2001-09-12

    Vegetable oils such as soybean oil will be converted to novel polymers using hydroformylation and other catalytic processes. These polymers can be used in the construction, automotive, packaging, and electronic sectors.

  16. Coenzyme Q10-containing composition (Immugen) protects against occupational and environmental stress in workers of the gas and oil industry.

    PubMed

    Korkina, Ludmila; Deeva, Irina; Ibragimova, Galina; Shakula, Alexander; Luci, Antonio; De Luca, Chiara

    2003-01-01

    The manual workers of the gas-and-oil extraction industry are exposed to hostile environmental and occupational conditions, resulting in elevated mortality and disability, due to chronic neurological and cardiovascular diseases. We evaluated the degree of oxidative stress, often associated with these pathological features, in the blood of manual and office employees of Russian Siberian extraction plants, and their psycho-physiological conditions. Results showed increased levels of spontaneous (p < 0.05) and PMA-activated (p < 0.01) luminol-dependent chemiluminescence (LDCL) in the white blood cells (WBC), and decreased peroxynitrite levels (p < 0.05) in the group of manual workers, and less markedly in the clerks and technicians working on spot, vs. a control group of city clerks. Superoxide release by WBC, and plasma/WBC membrane ubiquinol levels did not display major differences in the three groups. A relevant percentage of manual/office workers of extraction platforms presented impaired cardiovascular and neurological functions. The short term administration of a nutraceutical formulation based on coenzyme10, vitamin E, selenium, methionine and phospholipids led to significant improvement of cardiovascular parameters and psycho-emotional status, consistent with the normalization of LDCL and peroxynitrite production by WBC, with a good compliance to treatment confirmed by the increased blood levels of ubiquinol.

  17. Biocidal potential and chemical composition of industrial essential oils from Hyssopus officinalis, Lavandula x intermedia var. super and Santolina chamaecyparissus.

    PubMed

    de Elguea-Culebras, Gonzalo Ortiz; Sánchez-Vioque, Raúl; Berruga, María Isabel; Herraiz-Peñalver, David; González-Coloma, Azucena; Andrés, María Fé; Santana-Méridas, Omar

    2017-08-12

    This work presents the biocidal (insecticidal, ixodicidal, nematicidal and phytotoxic) effects and chemical compositions of three essential oils obtained from the industrial steam distillation (IEOs) of hyssop (Hyssopus officinalis L.), lavandin (Lavandula x intermedia or L. x hybrida var. Super) and cotton lavender (Santolina chamaecyparissus L.). Their chemical composition analyzed by gas chromatography coupled to mass spectrometry showed 1,8-cineole (53%) and β-pinene (16%) as the major components of H. officinalis, linalyl acetate (38%) and linalool (29%) of L. x intermedia; and 1,8-cineole (10%) and 8-methylene-3-oxatricyclo[5.2.0.0(2.4)]nonane (8%) in S. chamaecyparissus. The biocidal tests showed that L. x intermedia IEO was the most active against the insect Spodoptera littoralis and toxic to the tick Hyalomma lusitanicum, IEO of H. officinalis was strongly active against S. littoralis, and finally, S. chamaecyparissus IEO was a strong antifeedant against the aphid Rhopalosiphum padi, toxic to H. lusitanicum and with moderate effects against Leptinotarsa decemlineata, S. littoralis and Lolium perenne. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review.

    PubMed

    Şahin, Selin; Bilgin, Mehmet

    2017-08-11

    Research into finding new uses for by-products of table olive and olive oil industry are of great value not only to the economy but also to the environment where olives are grown and to the human health. Since leaves represent around 10% of the total weight of olives arriving at the mill, it is worth obtaining high added-value compounds from those materials for the preparation of dietary supplements, nutraceuticals, functional food ingredients or cosmeceuticals. In this review article, olive tree (Olea europaea L.) leaf is reviewed as being a potential inexpensive, renewable and abundant source of biophenols. The importance of this agricultural and industrial waste is emphasised by means of describing its availability, nutritional and therapeutic effects and studies conducted on this field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus.

    PubMed

    Zorpas, Antonis A; Costa, Costa N

    2010-10-01

    Co-composting of olive oil solid residue (OOSR) and treated wastewaters (with Fenton) from the olive oil production process has been studied as an alternative method for the treatment of wastewater containing high organic and toxic pollutants in small olive oil industry in Cyprus. The experimental results indicated that the olive mill wastewater (OMW) is detoxified at the end of Fenton Process and the COD is reduced up to 70%. The final co-composted material of OOSR with the treated olive mile wastewater (TOMW) is presented with optimum characteristics and is suitable for agricultural purpose. The final product coming out from an in-Vessel reactor seems to mature faster than the product from the windrow system and is presented with a better soil conditioner.

  20. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities. Study design and data collection II. Location of study herds relative to the oil and gas industry in Western Canada.

    PubMed

    Waldner, Cheryl L

    2008-01-01

    During the late part of 2000 and early months of 2001, project veterinarians recruited 205 beef herds to participate in a study of the effects of emissions from the upstream oil and gas industry on cattle reproduction and health. Researchers developed herd-selection criteria to optimize the range of exposure to facilities, including oil and gas wells, battery sites, and gas-gathering and gas-processing facilities across the major cattle-producing areas of Western Canada. Herds were initially selected on the basis of a ranking system of exposure potential on the basis of herd-owner reports of the locations of their operations in relation to oil and gas industry facilities. At the end of the study, researchers summarized data obtained from provincial regulatory agencies on facility location and reported flaring and venting volumes for each herd and compared these data to the original rankings of herd-exposure potential. Through this selection process, the researchers were successful in obtaining statistically significant differences in exposure to various types of oil and gas facility types and reported emissions among herds recruited for the study.

  1. Potential applications of bioprocess technology in petroleum industry.

    PubMed

    Singh, Ajay; Singh, Brajesh; Ward, Owen

    2012-11-01

    Petroleum refining is traditionally based on the use of physicochemical processes such as distillation and chemical catalysis that operate under high temperatures and pressures conditions, which are energy intensive and costly. Biotechnology has become an important tool for providing new approaches in petroleum industry during oil production, refining and processing as well as managing environmentally safe pollutant remediation and disposal practices. Earlier biotechnology applications in the petroleum industry were limited to microbial enhanced oil recovery, applications of bioremediation to contaminated marine shorelines, soils and sludges. The potential role of bioprocess technology in this industry has now expanded further into the areas of biorefining and upgrading of fuels, production of fine chemicals, control of souring during production and air VOC biofiltration. In this paper we provide an overview of the major applications of bioprocesses and technology development in the petroleum industry both in upstream and downstream areas and highlight future challenges and opportunities.

  2. Biotransformation of 1,8-cineole by solid-state fermentation of Eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus.

    PubMed

    Omarini, Alejandra; Dambolena, José Sebastián; Lucini, Enrique; Jaramillo Mejía, Santiago; Albertó, Edgardo; Zygadlo, Julio A

    2016-03-01

    Biotechnological conversion of low-cost agro-industrial by-products, such as industrial waste or terpenes from the distillation of essential oils from plants into more valuable oxygenated derivatives, can be achieved by using microbial cells or enzymes. In Argentina, the essential oil industry produces several tons of waste each year that could be used as raw materials in the production of industrially relevant and value-added compounds. In this study, 1,8-cineole, one of the components remaining in the spent leaves of the Eucalyptus cinerea waste, was transformed by solid-state fermentation (SSF) using the two edible mushrooms Pleurotus ostreatus and Favolus tenuiculus. As a result, two new oxygenated derivatives of 1,8-cineole were identified: 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-ol and 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-one. Additionally, changes in the relative percentages of other aroma compounds present in the substrate were observed during SSF. Both fungal strains have the ability to produce aroma compounds with potential applications in the food and pharmaceutical industries.

  3. Discarded seeds from red pepper (Capsicum annum) processing industry as a sustainable source of high added-value compounds and edible oil.

    PubMed

    Azabou, Samia; Taheur, Fadia Ben; Jridi, Mourad; Bouaziz, Mohamed; Nasri, Moncef

    2017-08-09

    The chemical composition and the antioxidant properties of Capsicum annum discarded seeds from processing industry with their corresponding extracted oil were investigated. C. annum seeds had high levels of crude proteins (18.30%), crude oil (11.04%), and dietary fibers (60.96%). The lipophilic fraction of C. annum seeds showed higher radical scavenging activity compared to their hydrophilic fraction, while this latter exhibited the highest reducing power. The results of fatty acid composition showed that fatty acids present in C. annum seed oil were mainly polyunsaturated (84.23%), with linoleic acid being the major polyunsaturated fatty acid (70.93%). The major monounsaturated fatty acid was oleic acid (12.18%), while the main saturated fatty acid was palmitic acid (11.90%). C. annum seed oil showed high absorbance in the UV-B, UV-A, and visible ranges. Owing to their composition, C. annum seeds discarded from pepper processing industry as by-product could be potentially used as high added-value ingredients in some food or nutraceutical formulations because they are well endowed with essential nutriments required for human health.

  4. Relocating and Characterizing the 10 Feb 2006 "Green Canyon" Gulf of Mexico Earthquake Using Oil-Industry Data

    NASA Astrophysics Data System (ADS)

    Dellinger, J. A.; Dewey, J. W.; Blum, J.; Nettles, M.

    2007-12-01

    On 10 Feb 2006, a magnitude 5.2 earthquake occurred in the Green Canyon deep-water block of the Gulf of Mexico offshore Louisiana. At the time, this was the largest earthquake in the Northern Gulf of Mexico since at least the early 1970's. This earthquake is of particular interest to the oil industry because of its location in an area of significant underwater infrastructure development. The earthquake is also of interest to the earthquake seismology community because of its unusual intra-plate location and anomalous signature. The earthquake's radiated high-frequency body waves were unusually weak compared to its surface waves, and attempts to fit the earthquake with a typical double-couple source mechanism have been unsuccessful. The event could not be well located using traditional seismic monitoring networks because of the lack of any nearby observations, especially to the South. Two nearby oil-exploration seismic surveys did serendipitously record the event from the South, however: the BP-BHP Atlantis Ocean-Bottom-Node survey, and the CGG Green-Canyon phase VIII multi-client streamer survey. These surveys' instruments were not designed for recording frequencies below 5Hz, so the earthquake signals were weak -- much weaker than the high-frequency signals from the surveys' own airguns (which is what the instruments were designed to record). However, by low-pass filtering the data and beam-forming the arrays (of several hundred receivers each) we were able to extract usable earthquake arrivals. These new seismic observations were then used by the USGS in a first-arrival traveltime inversion to relocate the earthquake. We also measured the phase velocity and azimuth of the earthquake arrivals across the arrays, and used those azimuths as an independent method of estimating the event's location. The event was also recorded by a SeaStar Tension-Leg Platform, which reported an apparent local subsidence of the seafloor of\\ .8 inches associated with the event. We are

  5. A comparison of different regulatory approaches, analysis of the relative benefits of command and control, reflexive law and social licensing in ensuring oil industry compliance with environmentally sustainable practices and obligations

    NASA Astrophysics Data System (ADS)

    Ghanaati, Sahar

    This paper explores the relative benefits of command and control, reflexive law and social licensing in ensuring oil industry compliance with environmentally sustainable practices and obligations. Recognizing why oil sands and their development are significant, the background and development are reviewed first, and then the focus is shifted to look at its economics including the benefits, uncertainties and environmental costs of development. This paper examines how lawmakers in Canada have failed to meet their respective obligation. Drawing on environmental provisions, case law and legal scholars’ articles, books and reports, this paper examines the very problematic issue of oil sands regulation. It proposes to provide an in depth analysis of each regulatory forms and their application to the oil sands. It concludes that in order to solve the oil sands regulation challenges, a collaborative stringent enforcement of regulation from both federal and provincial governments, oil industry and public Pressure is required.

  6. Oil and Natural Gas Industry Sources Covered by the 2012 New Source Performance Standards (NSPS) for Volatile Organic Compounds (VOCs) and the 2016 NSPS for Methane and VOCs, by Site

    EPA Pesticide Factsheets

    This is a 2016 table that looks at oil and natural gas industry site types and lists the applicable rules for the 2012 and 2016 new source performance standards (NSPS) and Volatile Organic Compounds (VOC) rules.

  7. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry-Overview and a North Sea case study.

    PubMed

    Skovhus, Torben Lund; Eckert, Richard B; Rodrigues, Edgar

    2017-08-20

    Microbiologically influenced corrosion (MIC) is the terminology applied where the actions of microorganisms influence the corrosion process. In literature, terms such as microbial corrosion, biocorrosion, microbially influenced/induced corrosion, and biodegradation are often applied. MIC research in the oil and gas industry has seen a revolution over the past decade, with the introduction of molecular microbiological methods: (MMM) as well as new industry standards and procedures of sampling biofilm and corrosion products from the process system. This review aims to capture the most important trends the oil and gas industry has seen regarding MIC research over the past decade. The paper starts out with an overview of where in the process stream MIC occurs - from the oil reservoir to the consumer. Both biotic and abiotic corrosion mechanisms are explained in the context of managing MIC using a structured corrosion management (CM) approach. The corrosion management approach employs the elements of a management system to ensure that essential corrosion control activities are carried out in an effective, sustainable, well-planned and properly executed manner. The 3-phase corrosion management approach covering of both biotic and abiotic internal corrosion mechanisms consists of 1) corrosion assessment, 2) corrosion mitigation and 3) corrosion monitoring. Each of the three phases are described in detail with links to recent field cases, methods, industry standards and sampling protocols. In order to manage the corrosion threat, operators commonly use models to support decision making. The models use qualitative, semi-quantitative or quantitative measures to help assess the rate of degradation caused by MIC. The paper reviews four existing models for MIC Threat Assessment and describe a new model that links the threat of MIC in the oil processing system located on an offshore platform with a Risk Based Inspection (RBI) approach. A recent field case highlights and explains

  8. The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds.

    PubMed

    Reid, T; VanMensel, D; Droppo, I G; Weisener, C G

    2016-09-01

    Within the oil sands industry, tailings ponds are used as a means of retaining tailings until a reclamation technology such as end pit lakes (EPLs) can be developed and optimized to remediate such tailings with a water cap (although dry-land strategies for tailing reclamation are also being developed). EPLs have proven successful for other mining ventures (e.g. metal rock mines) in eventually mitigating contaminant loads to receiving waters once biochemical remediation has taken place (although the duration for this to occur may be decades). While the biological interactions at the sediment water interface of tailings ponds or EPLs have been shown to control biogeochemical processes (i.e. chemical fluxes and redox profiles), these have often been limited to static microcosm conditions. Results from such experiments may not tell the whole story given that the sediment water interface often represents a dynamic environment where erosion and deposition may be occurring in association with microbial growth and decay. Mobilization of sediments and associated contaminants may therefore have a profound effect on remediation rates and, as such, may decrease the effectiveness of EPLs as viable reclamation strategies for mining industries. Using a novel core erosion system (U-GEMS), this paper examines how the microbial community can influence sediment water interface stability and how the biofilm community may change with tailings age and after disturbance (biofilm reestablishment). Shear strength, eroded mass measurements, density gradients, high-resolution microscopy, and microbial community analyses were made on 2 different aged tailings (fresh and ∼38 years) under biotic and abiotic conditions. The same experiments were repeated as duplicates with both sets of experiments having consolidation/biostabilization periods of 21 days. Results suggest that the stability of the tailings varies between types and conditions with the fresh biotic tailings experiencing up to 75

  9. Upstream and downstream strategies to economize biodiesel production.

    PubMed

    Hasheminejad, Meisam; Tabatabaei, Meisam; Mansourpanah, Yaghoub; Khatami far, Mahdi; Javani, Azita

    2011-01-01

    In recent years biodiesel has drawn considerable amount of attention as a clean and renewable fuel. Biodiesel is produced from renewable sources such as vegetable oils and animal fat mainly through catalytic or non-catalytic transesterification method as well as supercritical method. However, as a consequence of disadvantages of these methods, the production cost increases dramatically. This article summarizes different biodiesel production methods with a focus on their advantages and disadvantages. The downstream and upstream strategies such as using waste cooking oils, application of non-edible plant oils, plant genetic engineering, using membrane separation technology for biodiesel production, separation and purification, application of crude glycerin as an energy supplement for ruminants, glycerin ultra-purification and their consequent roles in economizing the production process are fully discussed in this article. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Downstream behavior of fission products

    SciTech Connect

    Johnson, I.; Farahat, M.K.; Settle, J.L.; Johnson, C.E.; Ritzman, R.

    1986-01-01

    The downstream behavior of fission products has been investigated by injecting mixtures of CsOH, CsI, and Te into a flowing steam/hydrogen stream and determining the physical and chemical changes that took place as the gaseous mixture flowed down a reaction duct on which a temperature gradient (1000/sup 0/ to 200/sup 0/C) had been imposed. Deposition on the wall of the duct occurred by vapor condensation in the higher temperature regions and by aerosol deposition in the remainder of the duct. Reactions in the gas stream between CsOH and CsI and between CsOH and Te had an effect on the vapor condensation. The aerosol was characterized by the use of impingement tabs placed in the gas stream.

  11. Auxin perception and downstream events

    PubMed Central

    Strader, Lucia; Zhao, Yunde

    2016-01-01

    Auxin responses have been arbitrarily divided into two categories: genomic and non-genomic effects. Genomic effects are largely mediated by SCFTIR1/AFB-Aux/IAA auxin receptor complexes whereas it has been postulated that AUXIN BINDING PROTEIN 1 (ABP1) controls the non-genomic effects. However, the roles of ABP1 in auxin signaling and plant development were recently called into question. In this paper, we present recent progress in understanding the SCFTIR1/AFB-Aux/IAA pathway. In more detail, we discuss the current understanding of ABP1 research and provide an updated view of ABP1-related genetic materials. Further, we propose a model in which auxin efflux carriers may play a role in auxin perception and we briefly describe recent insight on processes downstream of auxin perception. PMID:27131035

  12. Middle-Skilled Workforce Needs in a Changing Oil and Gas Industry: the Role of Flexibility. As the Oil Industry continues to shed jobs due to the global downturn in oil prices, one of the most vulnerable sectors to job loss are the middle-skilled workers such as the technicians and drill operators. We present options and ideas to mitigate the problem.

    NASA Astrophysics Data System (ADS)

    Waddell, K.

    2015-12-01

    Middle-skilled workers are those whose jobs require considerable skill but not an advanced degree. Nationwide, one-third of the projected job growth for 2010-2020 will require middle-skilled workers. The educational paths to these jobs include career and technical education (CTE), certificates and associate's degrees from community colleges, apprenticeship programs, and training provided by employers. In the oil industry, the demand is expected to about 150,000 jobs. In environmental restoration and monitoring, there will be a need for at least 15,000 middle-skilled workers. Examples of the types of jobs include geological and petroleum technicians, derrick and drill operators, and pump system and refinery operators for the oil and gas sector. For the environmental restoration and monitoring sector, the types of jobs include environmental science technicians, and forest (and coastal) conservation technicians and workers. However, all of these numbers will be influenced by the growth and contraction of the regional or national economy that is not uncommon in the private sector. Over the past year, for example, the oil and gas industry has shed approximately 75,000 jobs (out of a workforce of 600,000) here in the United States, due almost exclusively to the drop of oil prices globally. A disproportionate number of the lost jobs were among the middle-skilled workforce. Meanwhile, the recent settlements stemming from the Deepwater Horizon oil spill are expected to create a surge of environmental restoration activity in the Gulf of Mexico region that has the potential to create thousands of new jobs over the next decade and beyond. Consequently, there is a need to develop education, training and apprenticeship programs that will help develop flexibility and complementary skill sets among middle-skilled workers that could help reduce the impacts of economic downturns and meet the needs of newly expanding sectors such as the environmental restoration field. This

  13. US energy industry financial developments, 1993 first quarter

    SciTech Connect

    Not Available

    1993-06-25

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

  14. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  15. Levels of benzo(a)pyrene in oil shale industry wastes, some bodies of water in the Estonian S.S.R. and in water organisms.

    PubMed Central

    Veldre, I A; Itra, A R; Paalme, L P

    1979-01-01

    Data on the content of benzo(a)pyrene (BP) in oil shale industry wastewater, the effectiveness of various effluent treatment processes (evaporation, extraction with butyl acetate, trickling filters, aeration tanks) in reducing the level of BP in oil shale wastewater, the level of BP in various bodies of water of Estonia, and in fish and other water organisms are reviewed. The quantitative determination of BP in concentrated diethyl ether extracts of water samples was carried out by ultraviolet and spectroluminescence procedures by use of the quasi-linear spectra at -196 degrees C in solid paraffins. It has been found that oil shale industry wastewater contains large amounts of BP. The most efficient purification process for removing the BP in oil shale industry phenol water is extraction with butyl acetate. The level of BP in the rivers of the oil shale industry area is comparatively higher than in other bodies of water of the Republic. The concentration of BP in the lakes of the Estonian S.S.R. is on the whole insignificant. Even the maximum concentration found in our lakes is as a rule less than the safety limit for BP in bodies of water (0.005 microgram/l). During water is treated at the waterworks. The effectiveness of the water treatment in reducing the level of BP varies from 11 to 88%. Filtration was found to be the most effective treatment. About 20 samples of fish from nine bodies of water in Estonia have been analyzed for content of BP. The average content of BP in the muscular tissue of various species of fish is as a rule less than 1 microgram/kg. There is no significant difference in the concentration of BP in sea and freshwater fish. There is no important difference in the content of BP in the organs of various fish. Fat fish contain more BP than lean ones. The weight (age) of fish does not influence the content of BP in the muscular tissue of fish. PMID:571803

  16. Levels of benzo(a)pyrene in oil shale industry wastes, some bodies of water in the Estonian S.S.R. and in water organisms.

    PubMed

    Veldre, I A; Itra, A R; Paalme, L P

    1979-06-01

    Data on the content of benzo(a)pyrene (BP) in oil shale industry wastewater, the effectiveness of various effluent treatment processes (evaporation, extraction with butyl acetate, trickling filters, aeration tanks) in reducing the level of BP in oil shale wastewater, the level of BP in various bodies of water of Estonia, and in fish and other water organisms are reviewed. The quantitative determination of BP in concentrated diethyl ether extracts of water samples was carried out by ultraviolet and spectroluminescence procedures by use of the quasi-linear spectra at -196 degrees C in solid paraffins. It has been found that oil shale industry wastewater contains large amounts of BP. The most efficient purification process for removing the BP in oil shale industry phenol water is extraction with butyl acetate. The level of BP in the rivers of the oil shale industry area is comparatively higher than in other bodies of water of the Republic. The concentration of BP in the lakes of the Estonian S.S.R. is on the whole insignificant. Even the maximum concentration found in our lakes is as a rule less than the safety limit for BP in bodies of water (0.005 microgram/l). During water is treated at the waterworks. The effectiveness of the water treatment in reducing the level of BP varies from 11 to 88%. Filtration was found to be the most effective treatment. About 20 samples of fish from nine bodies of water in Estonia have been analyzed for content of BP. The average content of BP in the muscular tissue of various species of fish is as a rule less than 1 microgram/kg. There is no significant difference in the concentration of BP in sea and freshwater fish. There is no important difference in the content of BP in the organs of various fish. Fat fish contain more BP than lean ones. The weight (age) of fish does not influence the content of BP in the muscular tissue of fish.

  17. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.

  18. US energy industry financial developments, 1993 third quarter

    SciTech Connect

    Not Available

    1993-12-01

    Based on information provided in 1993 third quarter financial disclosures, the average net income for 112 petroleum companies -- including 18 majors -- rose 13 percent between the third quarter of 1992 and the third quarter of 1993. The gain in overall petroleum income was derived from increases in refined product consumption and margins, which improved the profitability of downstream petroleum (refining, marketing and transport) operations. A 17-percent decline in crude oil prices led to reduced income for upstream (oil and gas exploration, development and production) operations. A 16-percent rise in natural gas wellhead prices only partially offset the negative effects of low crude oil prices. Electric utilities also reported improved financial results for the third quarter of 1993 as hotter summer temperatures relative to the year-earlier quarter helped boost air conditioning demand and overall electricity usage. The following points highlight third-quarter energy industry financial developments: (1) Refined product demand and margins lift downstream earnings. Petroleum product consumption rose 2 percent between the third quarter of 1992 and the third quarter of 1993. Although petroleum product prices declined in the most recent reporting period, they did not decline as much as crude oil input prices. As a consequence, refined product margins widened. (2) Lower crude oil prices reduce upstream earnings. Crude oil prices fell 17 percent between the third quarter of 1992 and the third quarter of 1993 leading to a substantial reduction in income for the major petroleum companies` upstream operations. (3) Drilling income rises with increased North American exploratory activity.

  19. A downstream voyage with mercury

    USGS Publications Warehouse

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  20. Identification of Critical Operation Conditions of Industrial Gearboxes by 24/7 Monitoring of Oil Quality, Oil Aging, and Additive Consumption

    NASA Astrophysics Data System (ADS)

    Mauntz, M.; Peuser, J.

    2017-05-01

    The demand for wind energy grows at exponential rates. At the same time improving reliability, reduced operation and maintenance costs are the key priorities in wind tur-bine maintenance strategies [1]. This paper provides information about a novel online oil condition monitoring system to give a solution to the mentioned priorities. The presented sensor system enables damage prevention of the wind turbine gear-box by an advanced warning time of critical operation conditions and an enhanced oil exchange interval realized by a precise measurement of the electrical conductivity, the relative permittivity and the oil temperature. A new parameter, the WearSens® Index (WSi) is introduced. The mathematical model of the WSi combines all measured values and its gradients in one single parameter for a comprehensive monitoring to prevent wind turbines from damage. Furthermore, the WSi enables a long-term prognosis on the next oil change by 24/7 server data logging. Corrective procedures and/or maintenance can be carried out before actual damage occurs. First WSi results of an onshore wind turbine installation compared to traditional vibration monitoring are shown.

  1. Medical evacuations in the oil and gas industry: a retrospective review with implications for future evacuation and preventative strategies.

    PubMed

    Toner, Sharyn; Andrée Wiltens, Derkje H; Berg, Johannes; Williams, Hector; Klein, Susan; Marshall, Simon; Nerwich, Neil; Copeland, Ryan

    2017-05-01

    Businesses increasingly conduct operations in remote areas where medical evacuation [Medevac(s)] carries more risk. Royal Dutch Shell developed a remote healthcare strategy whereby enhanced remote healthcare is made available to the patient through use of telemedicine and telemetry. To evaluate that strategy, a review of Medevacs of Shell International employees [i.e. expatriate employees (EEs) and frequent business travellers (FBTs)] was undertaken. A retrospective review of Medevac data (period 2008-12) that were similar in operational constraints and population profile was conducted. Employee records and Human Resource data were used as a denominator for the population. Analogous Medevac data from specific locations were used to compare patterns of diagnoses. A total of 130 Medevacs were conducted during the study period, resulting in a Medevac rate of 4 per 1000 of population with 16 per 1000 for females and 3 per 1000 for males, respectively. The youngest and oldest age-groups required Medevacs in larger proportions. The evacuation rates were highest for countries classified as 'high' or 'extreme risk'. The most frequent diagnostic categories for Medevac were: trauma, digestive, musculoskeletal, cardiac and neurological. In 9% of the total, a strong to moderate link could be made between the pre-existing medical condition and diagnosis leading to Medevac. This study uniquely provides a benchmark Medevac rate (4 per 1000) for EEs and FBTs and demonstrates that Medevac rates are highest from countries identified as 'high risk'; there is an age and gender bias, and pre-existing medical conditions are of notable relevance. It confirms a change in the trend from injury to illness as a reason for Medevac in the oil and gas industry and demonstrates that diagnoses of a digestive and traumatic nature are the most frequent. A holistic approach to health (as opposed to a predominant focus on fitness to work), more attention to female travellers, and the application of

  2. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    NASA Astrophysics Data System (ADS)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  3. Recombinant endo-mannanase (ManB-1601) production using agro-industrial residues: Development of economical medium and application in oil extraction from copra.

    PubMed

    Kaira, Gaurav Singh; Panwar, Deepesh; Kapoor, Mukesh

    2016-06-01

    Expression of pRSETA manb-1601 construct in Hi-Control Escherichia coli BL21 (DE3) cells improved recombinant endo-mannanase (ManB-1601) production by 2.73-fold (1821±100U/ml). A low-cost, agro-industrial residue supplemented industrial medium for enhanced and economical production of ManB-1601 was developed in two mutual phases. Phase-I revealed the potential of various pre- (induction time: 5h, induction mode: lactose 0.5mM) and post-induction [peptone supplementation: 0.94%(w/v), glycerol 0.123%(v/v)] parameters for enhanced production of ManB-1601 and resulted in 4.61-fold (8406±400U/ml) and 2.53-fold (3.30g/l) higher ManB-1601 and biomass production, respectively. Under phase-II, economization of phase-I medium was carried out by reducing/replacing costly ingredients with solubilized-defatted flax seed meal (S-DFSM), which resulted in 3.25-fold (5926U/ml) higher ManB-1601 production. Industrial potential of ManB-1601 was shown in oil extraction from copra as enzyme treatment led to cracks, peeling, fracturing and smoothening of copra, which facilitated higher (18.75%) oil yield.

  4. Partial Reform Equilibrium in Russia: A Case Study of the Political Interests of and in the Russian Gas and Oil Industry

    NASA Astrophysics Data System (ADS)

    Everett, Rabekah

    While several theories abound that attempt to explain the obstacles to democracy in Russia, Joel Hellman's partial reform equilibrium model is an institutional theory that illustrates how weak institutions, combined with an instrumentalist cultural approach to the law and authoritarian-minded leadership, allowed the struggle over interests to craft and determine the nature of Russia's political structure. This thesis builds on the work of Hellman by using the partial reform theory to understand the evolution of interest infiltration and their impact on the formation of policies and institutions in favour of the elites or winners from 2004 to the present time period that allow them to wield law as a political weapon. The hypothesis posits that through their vested interests in state politics, the political and economic elites of the oil and gas industry have successfully stalled reform in Russia resulting in partial reform equilibrium. This is illustrated in a case study that was designed to collect the names, backgrounds, and social networks of gas and oil executives in order to determine how many of them have a history of, or are currently working as, ministers in the government or representatives in the Federation Council. The objective being to measure the degree to which gas and oil interests are present in government decision-making and conversely, the degree to which the government is present in the gas and oil industry. The thesis stresses the importance of institutional structure in determining Russia's political evolution, and uses vested interests as a primary source of structural institutional change, while also stressing on the social and international implications of this evolution.

  5. Method of evaluating the impact of ERP implementation critical success factors - a case study in oil and gas industries

    NASA Astrophysics Data System (ADS)

    Gajic, Gordana; Stankovski, Stevan; Ostojic, Gordana; Tesic, Zdravko; Miladinovic, Ljubomir

    2014-01-01

    The so far implemented enterprise resource planning (ERP) systems have in many cases failed to meet the requirements regarding the business process control, decrease of business costs and increase of company profit margin. Therefore, there is a real need for an evaluation of the influence of ERP on the company's performance indicators. Proposed in this article is an advanced model for the evaluation of the success of ERP implementation on organisational and operational performance indicators in oil-gas companies. The recommended method establishes a correlation between a process-based method, a scorecard model and ERP critical success factors. The method was verified and tested on two case studies in oil-gas companies using the following procedure: the model was developed, tested and implemented in a pilot gas-oil company, while the results were implemented and verified in another gas-oil company.

  6. 75 FR 75995 - Request for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... production of oil and natural gas. Background: Helium-3 is a non-radioactive isotope of Helium that is a byproduct of the decay of Tritium. Its main use is for neutron detection devices used in scientific...

  7. Oil Industry, Solar Energy Industry, and Mining Occupations. Curriculum for Petroleum, Mining and Solar Energy Secretaries. July 1, 1977-June 30, 1978.

    ERIC Educational Resources Information Center

    Martinez, Gloria E.

    This document is a packet of instructional materials for training secretaries and clerks for the petroleum, mining, and solar energy fields. Developed by Eastern New Mexico University and the New Mexico State Department of Vocational Education, and aimed at New Mexico industry, the curriculum is divided into three units of petroleum, mining, and…

  8. Oil Industry, Solar Energy Industry, and Mining Occupations. Curriculum for Petroleum, Mining and Solar Energy Secretaries. July 1, 1977-June 30, 1978.

    ERIC Educational Resources Information Center

    Martinez, Gloria E.

    This document is a packet of instructional materials for training secretaries and clerks for the petroleum, mining, and solar energy fields. Developed by Eastern New Mexico University and the New Mexico State Department of Vocational Education, and aimed at New Mexico industry, the curriculum is divided into three units of petroleum, mining, and…

  9. Self-reported Occupational Exposures Relevant for Cancer among 28,000 Offshore Oil Industry Workers Employed between 1965 and 1999

    PubMed Central

    Stenehjem, Jo S; Friesen, Melissa C; Eggen, Tone; Kjærheim, Kristina; Bråtveit, Magne; Grimsrud, Tom K

    2016-01-01

    The objective of this study was to examine self-reported frequency of occupational exposure reported by 28,000 Norwegian offshore oil workers in a 1998 survey. Predictors of self-reported exposure frequency were identified to aid future refinements of an expert-based job-exposure-time matrix (JEM). We focus here on reported frequencies for skin contact with oil and diesel, exposure to oil vapor from shaker, to exhaust fumes, vapor from mixing chemicals used for drilling, natural gas, chemicals used for water injection and processing, and to solvent vapor. Exposure frequency was reported by participants as the exposed proportion of the work shift, defined by six categories, in their current or last position offshore (between 1965 and 1999). Binary Poisson regression models with robust variance were used to examine the probabilities of reporting frequent exposure (≥¼ vs. <¼ of work shift) according to main activity, time period, supervisory position, type of company, type of installation, work schedule, and education. Holding a non-supervisory position, working shifts, being employed in the early period of the offshore industry, and having only compulsory education increased the probability of reporting frequent exposure. The identified predictors and group-level patterns may aid future refinement of the JEM previously developed for the present cohort. PMID:25671393

  10. Self-reported Occupational Exposures Relevant for Cancer among 28,000 Offshore Oil Industry Workers Employed between 1965 and 1999.

    PubMed

    Stenehjem, Jo S; Friesen, Melissa C; Eggen, Tone; Kjærheim, Kristina; Bråtveit, Magne; Grimsrud, Tom K

    2015-01-01

    The objective of this study was to examine self-reported frequency of occupational exposure reported by 28,000 Norwegian offshore oil workers in a 1998 survey. Predictors of self-reported exposure frequency were identified to aid future refinements of an expert-based job-exposure-time matrix (JEM). We focus here on reported frequencies for skin contact with oil and diesel; exposure to oil vapor from shaker, to exhaust fumes, vapor from mixing chemicals used for drilling, natural gas, chemicals used for water injection and processing, and to solvent vapor. Exposure frequency was reported by participants as the exposed proportion of the work shift, defined by six categories, in their current or last position offshore (between 1965 and 1999). Binary Poisson regression models with robust variance were used to examine the probabilities of reporting frequent exposure (≥¼ vs. <¼ of work shift) according to main activity, time period, supervisory position, type of company, type of installation, work schedule, and education. Holding a non-supervisory position, working shifts, being employed in the early period of the offshore industry, and having only compulsory education increased the probability of reporting frequent exposure. The identified predictors and group-level patterns may aid future refinement of the JEM previously developed for the present cohort.

  11. Extractive leviathan: The role of the government in the relationships between oil and gas industries and indigenous communities in the Arctic regions of Canada, United States and Russia

    NASA Astrophysics Data System (ADS)

    Sidorova, Evgeniia

    This comparative research analyzes the extent to which the governments of Canada, the United States and Russia affect the relationships between the petroleum extractive industries and Indigenous peoples of the Arctic in order to protect Indigenous peoples from the negative impacts of oil and gas extraction. The hypothesis of this study is that the government can protect Indigenous communities only by providing for their participation in decision-making processes about oil and gas development. The comparative analysis showed that in comparison with Canada and the United States, Russia has the worst legal protection of Indigenous peoples in petroleum-extractive regions. The recognition of Aboriginal title by Canada and the U.S. allowed Indigenous communities the best opportunities to be involved in oil and gas development, whereas Russia failed to grant this recognition. Therefore, the recognition of land claims by the government is the best way to protect traditional lands and lifestyles of Indigenous peoples from the negative externalities of petroleum extraction.

  12. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Lísa, Miroslav; Holcapek, Michal

    2008-07-11

    Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.

  13. NO sub x control for industrial boilers utilizing the NOxOUT process firing gas or oil, gas and fiberfuel or oil and fiberfuel

    SciTech Connect

    Confuorto, N. ); Sommerlad, R.E. ); Hofmann, J. ); Karpeles, R.S.; Zinsky, L.P. )

    1992-01-01

    As a result of recent legislation Garden State Paper Co., Inc., (GSP) a major producer of recycled newspaper, was required to develop a new disposal technique for its by-product fiber fines and deinking residuals sludge. The system chosen was not an alternative disposal technique but rather one that results in recycle as a recovered fuel in its own boilers. In order not to turn a water pollution solution into an air pollution problem, severe air emissions controls were employed. The recycled sludge after drying, known as Fiberfuel, will be burned in two GSP boilers in new burners. These burners have the capability of burning Fiberfuel in combination with gas or oil, and gas or oil alone. In order to minimize NO{sub x} emissions the two boilers were equipped with low-NO{sub x} burners and the NOxOUT Process, the first such commercial application of this process with Fiberfuel. This paper focuses on the successful design, implementation, and test plans of the NOxOUT with the various fuel combinations.

  14. Safe Drinking Water and Satisfaction with Environmental Quality of Life in Some Oil and Gas Industry Impacted Cities of Nigeria

    ERIC Educational Resources Information Center

    Ejechi, E. O.; Ejechi, B. O.

    2008-01-01

    The availability and safety of drinking water and the environmental quality of life was investigated in five cities located in an oil-producing area of Nigeria using questionnaire-based scales, discussion and laboratory tests. Polythene-packaged sachet water and commercial and non-commercial private boreholes largely met the drinking water…

  15. [The influence of smoking and occupational factors on the development of chronic obstructive pulmonary disease in oil industry workers].

    PubMed

    Abdullaev, A Iu

    2012-01-01

    The influence of smoking and occupational factors on the development of chronic obstructive pulmonary disease (COPD) in employees of a sea oil and gas company is considered. The primary role of smoking in pathogenesis of COPD is confirmed Direct and indirect influence of smoking is enhanced by occupational and climatic factors leading to the development of persistent disturbances of ventilation.

  16. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  17. Safe Drinking Water and Satisfaction with Environmental Quality of Life in Some Oil and Gas Industry Impacted Cities of Nigeria

    ERIC Educational Resources Information Center

    Ejechi, E. O.; Ejechi, B. O.

    2008-01-01

    The availability and safety of drinking water and the environmental quality of life was investigated in five cities located in an oil-producing area of Nigeria using questionnaire-based scales, discussion and laboratory tests. Polythene-packaged sachet water and commercial and non-commercial private boreholes largely met the drinking water…

  18. Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information

    SciTech Connect

    1997-12-15

    The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

  19. FACT SHEET: EPAS STRATEGY FOR REDUCING METHANE AND OZONE-FORMING POLLUTION FROM THE OIL AND NATURAL GAS INDUSTRY

    EPA Pesticide Factsheets

    January 14, 2015 -- As part of the Obama Administration's commitment to addressing climate change, the U.S. Environmental Protection Agency (EPA) has outlined a series of steps it plans to take to address methane and smog-forming VOC emissions from the oil

  20. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry.

    PubMed

    Kahru, Anne; Maloverjan, Alla; Sillak, Helgi; Põllumaa, Lee

    2002-01-01

    Phenol, cresols, dimethylphenols and resorcinols considered major pollutants in the oil-shale semi-coke dump leachates (up to 380 mg phenols/L) that contaminate the surrounding soils and pose a threat to the groundwater in the North-East of Estonia. However; despite high residual concentrations of polyaromatic hydrocarbons (PAHs) and oil products in these soils, the concentration of phenols (especially their water-extractable fraction) was low, not exceeding 0.7 mg/kg dwt. The aim of the current study was to evaluate the role of biodegradation and aging on the decrease of hazard caused by phenolic pollution. The extractability of phenols (phenol, cresols, dimethylphenols and resorcinols) and their biodegradability by the microbial population was studied in the 13 soils sampled from the Estonian oil-shale region, territories of former gas stations, and from presumably non-polluted areas. Phenol, 5-methylresorcinol, p-cresol and resorcinol could be considered easily degradable in the soils as the microbial populations from majority of the soils studied were able to grow on mineral medium supplemented with these phenols as a single source of carbon. 2,3- and 2,4- and 3,4-dimethylphenols could be considered less easily biodegradable. The semi-coke dump leachate polluted soil (containing no dibasic phenols, 43 mg of monobasic phenols, 1348 mg of oil products and 35 mg of PAHs per g dwt) was analyzed chemically (HPLC) and toxicologically (Flash-Assay using Vibrio fischeri) for the leaching of phenols during shaking of soil-water slurries for 24 h. Only 5.8% of the total concentration of phenols was water-extractable, whereas about 50% of the leached amount was biodegraded by the soil microorganisms. Phenol and cresols were biodegraded by 80%, but the concentration of dimethylphenols practically did not change. The pollutants (measured as total water-extractable toxicity) were desorbed from the soil particles by the 8th h of extraction, whereas the toxicity of the aqueous

  1. Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry.

    PubMed

    Saha, Gobinda C; Khan, Tahir I; Glenesk, Larry B

    2009-07-01

    Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.7 trillion barrels of bitumen, of which over 175 billion are recoverable with current technology, and 315 billion barrels are ultimately recoverable with technological advances. A major problem of operating machinery and equipment in the oil sands is the unpredictable failure from operating in this highly aggressive environment. One of the significant causes of that problem is premature material wear. An approach to minimize this wear is the use of protective coatings and, in particular, a cermet thin coating. A high level of coating homogeneity is critical for components such as bucketwheels, draglines, conveyors, shovels, heavyhauler trucks etc. that are subjected to severe degradation through abrasive wear. The identification, development and application of optimum wear solutions for these components pose an ongoing challenge. Nanostructured cermet coatings have shown the best results of achieving the degree of homogeneity required for these applications. In this study, WC-17Co cermet powder with nanocrystalline WC core encapsulated with 'duplex' Co layer was used to obtain a nanostructured coating. To apply this coating, high velocity oxy-fuel (HVOF) thermal spraying technique was used, as it is known for producing wear-resistant coatings superior to those obtained from plasma-based techniques. Mechanical, sliding wear and microstructural behavior of the coating was compared with those of the microstructured coating obtained from spraying WC-10Co-4Cr cermet powder by HVOF technique. Results from the nanostructured coating, among others, showed an average of 25% increase in microhardness, 30% increase in sliding wear resistance and

  2. From Process Development to Manufacturing: Lab-Intensive Courses in Downstream Bioprocessing

    ERIC Educational Resources Information Center

    Gilleskie, Gary L.; Reeves, Baley A.

    2014-01-01

    Most chemical engineering graduates work in industry, a fact that underscores the need for courses to provide experiences that prepare them for industry. The Biomanufacturing Training and Education Center (BTEC) at North Carolina State University has addressed this need by developing and delivering a comprehensive downstream bioprocessing program…

  3. From Process Development to Manufacturing: Lab-Intensive Courses in Downstream Bioprocessing

    ERIC Educational Resources Information Center

    Gilleskie, Gary L.; Reeves, Baley A.

    2014-01-01

    Most chemical engineering graduates work in industry, a fact that underscores the need for courses to provide experiences that prepare them for industry. The Biomanufacturing Training and Education Center (BTEC) at North Carolina State University has addressed this need by developing and delivering a comprehensive downstream bioprocessing program…

  4. Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil.

    PubMed

    Boda, Ravi Kiran; Majeti, Narasimha Vara Prasad; Suthari, Sateesh

    2017-07-09

    Ricinus communis L. (castor bean or castor oil plant) was found growing on metal-contaminated sites (4) of peri-urban Greater Hyderabad comprises of erstwhile industrial areas viz Bollaram, Patancheru, Bharatnagar, and Kattedan industrial areas. During 2013-2017, about 60 research papers have appeared focusing the role of castor bean in phytoremediation of co-contaminated soils, co-generation of biomaterials, and environmental cleanup, as bioenergy crop and sustainable development. The present study is focused on its use as a multipurpose phytoremediation crop for phytostabilization and revegetation of waste disposed peri-urban contaminated soils. To determine the plant tolerance level, metal accumulation, chlorophyll, protein, proline, lipid peroxidation, oil content, and soil properties were characterized. It was noticed that the castor plant and soils have high concentration of metals such as cadmium (Cd), lead (Pb), iron (Fe), manganese (Mn), and zinc (Zn). The soils have high phosphorous (P), adequate nitrogen (N), and low concentration of potassium (K). Iron (Fe) concentrations ranged from1672±50.91 to 2166±155.78 mg kg(-1) in the soil. The trend of metal accumulation Fe>Zn>Mn>Pb>Cd was found in different plant parts at polluted sites. The translocation of Cd and Pb showed values more than one in industrial areas viz Bollaram, Kattedan, and Bharatnagar indicating the plants resistance to metal toxicity. Chlorophyll and protein content reduced while proline and malondialdehyde increased due to its tolerance level under metal exposure. The content of ricinoleic acid was higher, and the fatty acids composition of polluted areas was almost similar to that of the control area. Thus, R. communis L. can be employed for reclamation of heavy metal contaminated soils.

  5. Tea tree oil.

    PubMed

    Hartford, Orville; Zug, Kathryn A

    2005-09-01

    Tea tree oil is a popular ingredient in many over-the-counter healthcare and cosmetic products. With the explosion of the natural and alternative medicine industry, more and more people are using products containing tea tree oil. This article reviews basic information about tea tree oil and contact allergy, including sources of tea tree oil, chemical composition, potential cross reactions, reported cases of allergic contact dermatitis, allergenic compounds in tea tree oil, practical patch testing information, and preventive measures.

  6. Recovery Act: Develop a Modular Curriculum for Training University Students in Industry Standard CO{sub 2} Sequestration and Enhanced Oil Recovery Methodologies

    SciTech Connect

    Trentham, R. C.; Stoudt, E. L.

    2013-05-31

    CO{sub 2} Enhanced Oil Recovery, Sequestration, & Monitoring Measuring & Verification are topics that are not typically covered in Geoscience, Land Management, and Petroleum Engineering curriculum. Students are not typically exposed to the level of training that would prepare them for CO{sub 2} reservoir and aquifer sequestration related projects when they begin assignments in industry. As a result, industry training, schools & conferences are essential training venues for new & experienced personnel working on CO{sub 2} projects for the first time. This project collected and/or generated industry level CO{sub 2} training to create modules which faculties can utilize as presentations, projects, field trips and site visits for undergrad and grad students and prepare them to "hit the ground running" & be contributing participants in CO{sub 2} projects with minimal additional training. In order to create the modules, UTPB/CEED utilized a variety of sources. Data & presentations from industry CO{sub 2} Flooding Schools & Conferences, Carbon Management Workshops, UTPB Classes, and other venues was tailored to provide introductory reservoir & aquifer training, state-of-the-art methodologies, field seminars and road logs, site visits, and case studies for students. After discussions with faculty at UTPB, Sul Ross, Midland College, other universities, and petroleum industry professionals, it was decided to base the module sets on a series of road logs from Midland to, and through, a number of Permian Basin CO{sub 2} Enhanced Oil Recovery (EOR) projects, CO{sub 2} Carbon Capture and Storage (CCUS) projects and outcrop equivalents of the formations where CO{sub 2} is being utilized or will be utilized, in EOR projects in the Permian Basin. Although road logs to and through these projects exist, none of them included CO{sub 2} specific information. Over 1400 miles of road logs were created, or revised specifically to highlight CO{sub 2} EOR projects. After testing a number of

  7. Positive organizational behavior and safety in the offshore oil industry: Exploring the determinants of positive safety climate

    PubMed Central

    Hystad, Sigurd W.; Bartone, Paul T.; Eid, Jarle

    2013-01-01

    Much research has now documented the substantial influence of safety climate on a range of important outcomes in safety critical organizations, but there has been scant attention to the question of what factors might be responsible for positive or negative safety climate. The present paper draws from positive organizational behavior theory to test workplace and individual factors that may affect safety climate. Specifically, we explore the potential influence of authentic leadership style and psychological capital on safety climate and risk outcomes. Across two samples of offshore oil-workers and seafarers working on oil platform supply ships, structural equation modeling yielded results that support a model in which authentic leadership exerts a direct effect on safety climate, as well as an indirect effect via psychological capital. This study shows the importance of leadership qualities as well as psychological factors in shaping a positive work safety climate and lowering the risk of accidents. PMID:24454524

  8. Positive organizational behavior and safety in the offshore oil industry: Exploring the determinants of positive safety climate.

    PubMed

    Hystad, Sigurd W; Bartone, Paul T; Eid, Jarle

    2014-01-01

    Much research has now documented the substantial influence of safety climate on a range of important outcomes in safety critical organizations, but there has been scant attention to the question of what factors might be responsible for positive or negative safety climate. The present paper draws from positive organizational behavior theory to test workplace and individual factors that may affect safety climate. Specifically, we explore the potential influence of authentic leadership style and psychological capital on safety climate and risk outcomes. Across two samples of offshore oil-workers and seafarers working on oil platform supply ships, structural equation modeling yielded results that support a model in which authentic leadership exerts a direct effect on safety climate, as well as an indirect effect via psychological capital. This study shows the importance of leadership qualities as well as psychological factors in shaping a positive work safety climate and lowering the risk of accidents.

  9. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1991-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  10. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  11. Downstream Benefits of Energy Management Systems

    DTIC Science & Technology

    2015-12-01

    of downstream benefits associated with EMSs: addressing errors that cause energy waste, identifying wasteful buildings on an installation, and...identifying valuable follow- on investments. Much of the value associated with EMSs is in analyzing the data provided, and future improvements in EMS data...downstream benefits, return on investment 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18

  12. Introduction to industrial crops

    USDA-ARS?s Scientific Manuscript database

    While any seed oil can fill certain non-food applications, there are hundreds of seed oils containing a different complement of fatty acids that impart physical and chemical properties making the oil and associated fatty acids especially useful for industrial and other non-food uses. These differenc...

  13. Report: future industrial solid waste management in pars Special Economic Energy Zone (PSEEZ), Iran.

    PubMed

    Mokhtarani, Babak; Moghaddam, Mohammad Reza Alavi; Mokhtarani, Nader; Khaledi, Hossein Jomeh

    2006-06-01

    The Pars Special Economic Energy Zone (PSEEZ) is located in the south of Iran, on the northern coastline of the Persian Gulf. This area was established in 1998 for the utilization of south Pars field oil and gas resources. This field is one of the largest gas resources in the world and contains about 6% of the total fossil fuels known. Petrochemical industries, gas refineries and downstream industries are being constructed in this area. At present there are three gas refineries in operation and five more gas refineries are under construction. In this study, different types of solid waste including municipal solid waste (MSW) and industrial wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the environmental impact. In the first stage, the types and amounts of industrial waste in PSEEZ were evaluated by an inventory. The main types of industrial waste are oil products (fuel oil, light oil, lubricating oil), spent catalysts, adsorbents, resins, coke, wax and packaging materials. The waste management of PSEEZ is quite complex because of the different types of industry and the diversity of industrial residues. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. Recently a design has been prepared for a disposal site in PSEEZ for the industrial waste that cannot be reused or recycled. The total surface area of this disposal site where the industrial waste should be tipped for the next 20 years was estimated to be about 42 000 m2.

  14. [The influence of the oil and gas industry on environmental safety and population health in the Khanty-Mansiĭskiĭ Region - Iugra].

    PubMed

    Samutin, N M; Vorob'ev, V O; Butorin, N N

    2013-01-01

    Production activities of oil and gas industry plants are related to technogenic impact on the environment, which has a high environmental risk. This is associated with low levels of environmental orientation of sheer technological processes of exploration and exploitation of hydrocarbons and also used in this technical means, materials and chemical reagents. The main pollutants that deteriorate the toxic characteristics of drilling waste, are the most likely drilling fluids, mud flush agents and chemicals, which enter into their composition. Existing methods of disposal of drilling wastes are not effective, the technology of their use is often violated. Dumping drilling waste into water bodies and burying toxic waste in water protection areas under the guise of processed waste has been observed. In the region there are significantly exceeded the national average values rate of morbidity of allergic, cardiovascular, pulmonary and cancer diseases, mediated by environmental factors and new monofactorial and multifactorial diseases appear.

  15. The role of passive sampling in monitoring the environmental impacts of produced water discharges from the Norwegian oil and gas industry.

    PubMed

    Hale, Sarah E; Oen, Amy M P; Cornelissen, Gerard; Jonker, Michiel T O; Waarum, Ivar-Kristian; Eek, Espen

    2016-10-15

    Stringent and periodic iteration of regulations related to the monitoring of chemical releases from the offshore oil and gas industry requires the use of ever changing, rapidly developing and technologically advancing techniques. Passive samplers play an important role in water column monitoring of produced water (PW) discharge to seawater under Norwegian regulation, where they are used to; i) measure aqueous concentrations of pollutants, ii) quantify the exposure of caged organisms and investigate PW dispersal, and iii) validate dispersal models. This article summarises current Norwegian water column monitoring practice and identifies research and methodological gaps for the use of passive samplers in monitoring. The main gaps are; i) the range of passive samplers used should be extended, ii) differences observed in absolute concentrations accumulated by passive samplers and organisms should be understood, and iii) the link between PW discharge concentrations and observed acute and sub-lethal ecotoxicological end points in organisms should be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effect of essential oil from sage (Salvia officinalis L.) herbal dust (food industry by-product) on the microbiological stability of fresh pork sausages

    NASA Astrophysics Data System (ADS)

    Šojić, B.; Ikonić, P.; Pavlić, B.; Zeković, Z.; Tomović, V.; Kocić-Tanackov, S.; Džinić, N.; Škaljac, S.; Ivić, M.; Jokanović, M.; Tasić, T.

    2017-09-01

    The effect of essential oil obtained from sage (Salvia officinalis L.) herbal dust (a food industry by-product) (SEO), on the pH value, microbiological stability and sensory properties of fresh pork sausages prepared without chemical additives was evaluated during 8 days of aerobic storage at 3±1°C. The addition of SEO significantly (p<0.05) reduced the microbial growth in fresh pork sausages. Moreover, SEO added at a level of 0.05 µL/g had no negative effect on sensory properties of this meat product. Hence, the results of this study showed significant antimicrobial activity of SEO obtained from sage filter tea processing byproducts and the potential for utilising SEO in fresh pork sausages in order to enhance their stability and safety.

  17. Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: rapid and simple determination of all four homologues (α, β, γ and δ) by RP-HPLC/FLD.

    PubMed

    Górnaś, Paweł

    2015-04-01

    The tocochromanol profile was studied in seed oils recovered from by-products of fruit industry, five dessert and seven crab apple varieties grown in Eastern Europe (Latvia). The seed oils obtained from dessert apples were characterized by higher contents of tocopherols (191.05-379.08 mg/100g oil) when compared to seed oils recovered from crab apples (130.55-202.54 mg/100g oil). The predominant homologues of tocopherol in all the studied samples were α and β over γ and δ. However, seed oils recovered from the apple cultivars 'Antej' and 'Beforest' had a unique profile of four tocopherol homologues (α:β:γ:δ) 91.41:80.55:72.46:79.03 and 114.55:112.84:78.69:73.00 mg/100g oil, respectively. A single dilution of seed oils in 2-propanol facilitated the direct use samples in the DPPH assay as well as injection into the RP-HPLC system containing a PFP (pentafluorophenyl) column, which resulted in a rapid separation of all four tocopherol homologues with excellent repeatability and reproducibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Single cell oil production from a newly isolated Candida viswanathii Y-E4 and agro-industrial by-products valorization.

    PubMed

    Ayadi, Ines; Kamoun, Omama; Trigui-Lahiani, Hèla; Hdiji, Anouar; Gargouri, Ali; Belghith, Hafedh; Guerfali, Mohamed

    2016-07-01

    Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel and added-value compounds production. To this end, new oleaginous yeast, Candida viswanathii Y-E4 was isolated, characterized and used for single cell oil (SCO) production. Physiologic and nutritional parameters optimization was carried out for improved biomass and lipid production. Y-E4 strain was able to use a wide range of substrates, especially C5 and C6 sugars as well as glycerol and hydrophobic substrates. The fatty acid profile analysis showed that oleic acid was the main component produced using different substrates. Batch and fed-bath fermentation were conducted using glucose as carbon source. Lipid production rate is twice higher in fed-batch culture providing a lipid content of 50 % (w/w). To minimize the SCO production cost, C. viswanathii Y-E4 was evaluated for its capacity to use different agro-industrial by-products for microbial oil production and changes in the fatty acid profile were monitored.

  19. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  20. Digging Deep for Meaning: A Critical Hermeneutic Analysis of CEO Letters to Shareholders in the Oil Industry.

    ERIC Educational Resources Information Center

    Prasad, Anshuman; Mir, Raza

    2002-01-01

    Uses the methodology of critical hermeneutics to analyze Chief Executive Officers' letters to shareholders in the United States petroleum industry during the 1970s and 1980s. Suggests these letters were deployed to produce a certain attitude toward OPEC (Organization of Petroleum Exporting Countries) among their readers that deflected attention of…

  1. Digging Deep for Meaning: A Critical Hermeneutic Analysis of CEO Letters to Shareholders in the Oil Industry.

    ERIC Educational Resources Information Center

    Prasad, Anshuman; Mir, Raza

    2002-01-01

    Uses the methodology of critical hermeneutics to analyze Chief Executive Officers' letters to shareholders in the United States petroleum industry during the 1970s and 1980s. Suggests these letters were deployed to produce a certain attitude toward OPEC (Organization of Petroleum Exporting Countries) among their readers that deflected attention of…

  2. Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.

    PubMed

    Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

    2014-01-22

    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status.

  3. A geoprocessing model for the selection of populations most affected by diffuse industrial contamination: the case of oil refinery plants.

    PubMed

    Pasetto, Roberto; De Santis, Marco

    2013-01-01

    A method to select populations living in areas affected by diffuse environmental contamination is presented, with particular regard to oil refineries, in the Italian context. The reasons to use municipality instead of census tract populations for environment and health small-area studies of contaminated sites are discussed. Populations most affected by diffuse environmental contamination are identified through a geoprocessing model. Data from the national census 2001 were used to estimate census tract level populations. A geodatabase was developed using the municipality and census tract layers provided by the Italian National Bureau of Statistics (ISTAT). The orthophotos of the Italian territory - year 2006 - available on the geographic information systems (GIS) of the National Cartographic Portal, were considered. The area within 2 km from the plant border was used as an operational definition to identify the area at major contamination. The geoprocessing model architecture is presented. The results of its application to the selection of municipality populations in a case study are shown. The application of the proposed geoprocessing model, the availability of long time series of mortality and morbidity data, and a quali-quantitative estimate of contamination over time, could allow an appraisal of the health status of populations affected by oil refinery emissions.

  4. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.

    PubMed

    Gudiña, Eduardo J; Rodrigues, Ana I; Alves, Eliana; Domingues, M Rosário; Teixeira, José A; Rodrigues, Lígia R

    2015-02-01

    In this work, biosurfactant production by a Pseudomonas aeruginosa strain was optimized using low-cost substrates. The highest biosurfactant production (3.2 g/l) was obtained using a culture medium containing corn steep liquor (10% (v/v)) and molasses (10% (w/v)). The biosurfactant reduced the surface tension of water up to 30 mN/m, and exhibited a high emulsifying activity (E24=60%), with a critical micelle concentration as low as 50 mg/l. The biosurfactant produced in this alternative medium was characterized as a mixture of eight different rhamnolipid congeners, being the most abundant the mono-rhamnolipid Rha-C10-C10. However, using LB medium, nine different rhamnolipid congeners were identified, being the most abundant the di-rhamnolipid Rha-Rha-C10-C10. The rhamnolipid mixture produced in the alternative medium exhibited a better performance in removing oil from contaminated sand when compared with two chemical surfactants, suggesting its potential use as an alternative to traditional chemical surfactants in enhanced oil recovery or bioremediation.

  5. Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments

    SciTech Connect

    Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd; Hernandez, Rafael; Claupein, Wilhelm; Holmes, William E.; Merkt, Nikolaus

    2012-01-01

    The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-value by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.

  6. Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments

    DOE PAGES

    Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd; ...

    2012-01-01

    The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-valuemore » by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.« less

  7. Why Big Bad Oil?

    ERIC Educational Resources Information Center

    Olien, Diana Davids; Olien, Roger M.

    1996-01-01

    Investigates the negative and hostile public opinion towards the oil industry, in general, and Standard Oil, in particular. Discovers that those most responsible for criticizing Standard Oil had an economic interest in doing so. Defends the company's record and refutes its critics' charges. (MJP)

  8. Results from modeling and simulation of chemical downstream etch systems

    SciTech Connect

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  9. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  10. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  11. Beyond Texas City: the state of process safety in the unionized U.S. oil refining industry.

    PubMed

    McQuiston, Thomas H; Lippin, Tobi Mae; Bradley-Bull, Kristin; Anderson, Joseph; Beach, Josie; Beevers, Gary; Frederick, Randy J; Frederick, James; Greene, Tammy; Hoffman, Thomas; Lefton, James; Nibarger, Kim; Renner, Paul; Ricks, Brian; Seymour, Thomas; Taylor, Ren; Wright, Mike

    2009-01-01

    The March 2005 British Petroleum (BP) Texas City Refinery disaster provided a stimulus to examine the state of process safety in the U.S. refining industry. Participatory action researchers conducted a nation-wide mail-back survey of United Steelworkers local unions and collected data from 51 unionized refineries. The study examined the prevalence of highly hazardous conditions key to the Texas City disaster, refinery actions to address those conditions, emergency preparedness and response, process safety systems, and worker training. Findings indicate that the key highly hazardous conditions were pervasive and often resulted in incidents or near-misses. Respondents reported worker training was insufficient and less than a third characterized their refineries as very prepared to respond safely to a hazardous materials emergency. The authors conclude that the potential for future disasters plagues the refining industry. In response, they call for effective proactive OSHA regulation and outline ten urgent and critical actions to improve refinery process safety.

  12. New geoscientific technology for the E and P industry. [Use of statistical data to help oil and gas exploration success

    SciTech Connect

    Not Available

    1993-09-01

    A valuable resource of computer technologies is available to address the rapidly expanding mass of information geoscientists encounter in interpreting geophysical, geologic and related data for the purpose of helping operators decide where and how to drill. Some of these new techniques have been recently described by operating and service companies in various technical meetings. A related problem--for which industry is working on a solution--is how to number wells to keep track of valuable data as cooperative surveys incorporate more and more separate properties. These considerations are the subjects of three following articles which cover: GIS--Geographic Information Systems, which facilitate spatial and descriptive data management and analysis--functions crucial to the E and P industry. GIS also holds promise as a primary management planning and decision-support tool.

  13. Conference preview and participant profiles. 18 GIS (geographic information systems) vendors match product capabilities against oil industry needs

    SciTech Connect

    Leonard, J.E.; Fried, C.C.

    1989-10-01

    Operation Database/Petroleum GIS is designed to channel information between the petroleum industry and vendors of geographic information systems (GIS). This will be accomplished through standardized presentation of industry requirements and GIS vendor/product descriptions and demonstrations. The goal is increased awareness in both communities - vendors who know the special needs of the petroleum market, and energy professionals cognizant of how GIS may meet those needs. Geobyte is reporting results of the GIS phase in several issues: Vendors are working on a standard set of problems and tasks, which was published in August. This issue presents vendor-supplied descriptions of their products' features and capabilities. Solutions to the data and problem sets, with examples of output, will be presented in November during the National Computer Graphics Association's Mapping and GIS conference in Los Angeles, with publications scheduled for the December issue.

  14. Downstream extent of the N Reactor plume

    SciTech Connect

    Dauble, D.D.; Ecker, R.M.; Vail, L.W.; Neitzel, D.A.

    1987-09-01

    The downstream extent of the N Reactor thermal plume was studied to assess the potential for fisheries impacts downstream of N Reactor. The N Reactor plume, as defined by the 0.5/sup 0/F isotherm, will extend less than 10 miles downstream at river flows greater than or equal to annual average flows (120,000 cfs). Incremental temperature increases at the Oregon-Washington border are expected to be less than 0.5/sup 0/F during all Columbia River flows greater than the minimum regulated flows (36,000 cfs). The major physical factor affecting Columbia River temperatures in the Hanford Reach is solar radiation. Because the estimated temperature increase resulting from N Reactor operations is less than 0.3/sup 0/F under all flow scenarios, it is unlikely that Columbia River fish populations will be adversely impacted.

  15. Economic benefits of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    SciTech Connect

    Not Available

    1993-01-14

    The report provides an overview of the benefits analysis of the effluent limitation guidelines for offshore oil and gas facilities. Regulatory options were evaluated for two wastestreams: (1) drilling fluids (muds) and cuttings; and (2) produced water. The analysis focuses on the human health-related benefits of the regulatory options considered. These health risk reduction benefits are associated with reduced human exposure to various carcinogenic and noncarcinogenic contaminants, including lead, by way of consumption of shrimp and recreationally caught finfish from the Gulf of Mexico. Most of the health-risk reduction benefits analysis is based upon a previous report (RCG/Hagler, Bailly, January 1991), developed in support of the proposed rulemaking. Recreational, commercial, and nonuse benefits have not been estimated for these regulations, due to data limitations and the difficulty of estimating these values for effluent controls in the open-water marine environment.

  16. Productive reorganization, outsourcing, and work relations in the offshore oil industry in the Campos Basin, Rio de Janeiro.

    PubMed

    Figueiredo, Marcelo; Alvarez, Denise; Athayde, Milton; Suarez, José Diego; Pereira, Renata; Soares, Leonardo

    2008-01-01

    This article analyzes the relationship between the intensive use of outsourcing and labor organizations on offshore oil platforms in the Campos Basin, Rio de Janeiro, Brazil. The theoretical and methodological framework applied in our research is based on Ergonomics of Activity and the Psychodynamics of Work, from an ergological perspective. In addition to the more general trend of increasing precariousness, we highlight the potential loss of formal and informal knowledge resulting from the fragmentation of work collectives, as we consider the cohesion of these collectives to be a crucial element contributing to reliability in process operations. Increasing precariousness of work contributes to this fragmentation and one of its main causes is the uncontrolled increase in outsourcing of work. This situation has had nefarious consequences for workers' health and safety, suggesting that those who have adopted outsourcing as a labor management tool have failed to consider these harmful consequences as rigorously as necessary.

  17. Philippines' downstream sector poised for growth

    SciTech Connect

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  18. South American oil

    SciTech Connect

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  19. Volumetric Velocity Fields Downstream of a 2-Bladed Turbine

    NASA Astrophysics Data System (ADS)

    Troolin, Daniel

    2013-11-01

    Tip vortices of axial-flow turbines are important in understanding the mean and turbulent characteristics of the wake. Volumetric 3-component velocimetry (V3V) was used to examine the flow downstream of a model two-bladed turbine in air. The turbine had a diameter of 177.8 mm and was powered by a motor operating at approximately 150 rpm. The measurement volume (50 × 50 × 20 mm) was positioned approximately 5 mm downstream of the blade tip, in order to examine the tip vortex structure. The V3V system utilized three 4MP cameras with 85 mm lenses positioned in a fixed triangular frame located at a distance of 450 mm from the back of the measurement volume. The illumination source was a 200 mJ dual-head pulsed Nd:YAG laser operating at 7.25 Hz and illuminating 1 micron olive oil droplets as tracer particles. The particle images were then analyzed to produce volumetric vector fields. The focus was placed on visualizing the complex interaction between the turbine tip vortices. Insights on the tip vortex dynamics and three dimensional characteristics of the wake flow will be discussed.

  20. Quality user support supporting quality users. [Historical trends and developments in computer support in the oil and gas industry

    SciTech Connect

    Woolley, T.C.

    1994-10-01

    This paper describes how Oryx Energy Co. addressed problems and opportunities created by the explosive growth in computing power and needs coupled with industry contraction. A successful user-support strategy is described. Characteristics of the program include (1) client-driven support, (2) empowerment of highly skilled professionals to fill the support role, (3) routine and ongoing modification of the support plan, (4) use of the support assignment to create highly trained advocates on the line, and (5) integration of the support role to the reservoir management team. Results of the plan include a highly trained work force, stakeholder teams that include support personnel, and global support from a centralized support organization.

  1. U.S. Geological Survey and Afghanistan Ministry of Mines and Industry cooperative assessment of Afghanistan's undiscovered oil and gas

    USGS Publications Warehouse

    Wandrey, Craig J.; Ulmishek, Gregory; Agena, Warren; Klett, Timothy R.; ,

    2006-01-01

    Results of the U.S. Geological Survey and Afghanistan Ministry of Mines and Industry cooperative assessment of undiscovered petroleum resources of northern Afghanistan were first released through this presentation on March 14, 2006, at the Afghan Embassy in Washington, D.C. On March 15 the results were presented in Kabul, Afghanistan. The purpose of the assessment and release of the results is to provide energy data required to implement the rebuilding and development of Afghanistan's energy infrastructure. This presentation includes a summary of the goals, process, methodology, results, and accomplishments of the assessment. It provides context for Fact Sheet 2006-3031, a summary of assessment results provided in the presentations.

  2. Overview of infrared in the petroleum industry

    NASA Astrophysics Data System (ADS)

    Ohliger, Albert A.

    2003-04-01

    Infrared Thermography has been found to be a very valuable tool in the petroleum industry. It has had focus in surveying all the types of equipment in its asset base. This includes electrical distribution systems, pumping systems, piping systems, exchangers, flares, process fired heaters and many other types of equipment. The petroleum industry is divided into three basic operating areas; Upstream, Midstream and Downstream. Upstream operation covers the exploration, drilling and production of natural gas and crude oil. Midstream operation in the petroleum industry is the distribution and storage system between the Upstream to the Downstream systems. Downstream operations make the finished energy product and are the refineries and chemical plants. As in other industries, the petroleum industry has mechanical equipment, electrical equipment, pressure-containing equipment, and fixed structures. In addition to this equipment, there is some specialty equipment which includes items such as fired heaters and specialty process vessels. The industry has put in place infrared programs as a predictive maintenance tool in many of their operating areas. Using infrared to monitor the operating integrity on equipment is one of the synergies now being better developed. The opportunity is to define measurable thermal patterns that can be used to define defects and predict failures. Infrared technology is a mature reliability work process and been around for many years. The first commercial infrared camera was available in the '70's. These radiometric cameras and the support equipment have had many improvements since then. The use of the technology has also been improved with synergies incorporated from many type of industries, including the military. Infrared is a technology that has been added to the predictive & preventative maintenance toolbox of the petroleum industry reliability focus. An important part of any reliability work process is to have predictive tools to define

  3. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities. Study design and data collection III. Methods of assessing animal exposure to contaminants from the oil and gas industry.

    PubMed

    Waldner, Cheryl L

    2008-01-01

    Researchers measured exposure to oil and gas industry emissions in 205 cow-calf herds located in Western Canada. They measured airborne concentrations of sulfur dioxide, hydrogen sulfide, and volatile organic compounds with passive monitors placed in each pasture, wintering, or calving area that contained study animals from the start of the breeding season in the spring of 2001 until June 30, 2002. Researchers continued air monitoring in a subset of herds to the end of the study in fall 2002. Each sampling device was exposed for 1 month and then shipped to the laboratory for analysis. New samplers were installed and the shelters relocated, as necessary, to follow the movements of herd-management groups between pastures. Researchers linked the results of the air-monitoring analysis to individual animals for the relevant month. For the 205 herds examined at pregnancy testing in 2001, monthly mean exposures on the basis of all available data were as follows: sulfur dioxide, geometric mean (GM)=0.5 ppb, geometric standard deviation (GSD)=2.2; hydrogen sulfide, GM=0.14 ppb, GSD=2.3; benzene, GM=0.247 microg/m3, GSD=2.5; and toluene, GM=0.236 microg/m3, GSD=2.7. Benzene and toluene were surrogates for volatile organic compound exposure. In addition to passive measurements of air quality, researchers obtained data from provincial regulatory agencies on the density of oil and gas field facilities and on flaring and venting from the surrounding facilities. They developed the data into additional measures of exposure that were linked to each animal at each location for each month of the study.

  4. The Relationship Between Seismicity and the Oil and Gas Industry in Western Alberta and Eastern B.C.

    NASA Astrophysics Data System (ADS)

    Atkinson, G. M.; Eaton, D. W. S.; Ghofrani, H.; Walker, D.; Cheadle, B.; Schultz, R.; Shcherbakov, R.; Tiampo, K. F.; Gu, Y. J.; Harrington, R. M.; Liu, Y.

    2015-12-01

    Significantly increased production of hydrocarbons in North America is being driven by the development of unconventional resources whose commercial viability, in many cases, depends upon massive subsurface injection of fluids. Although relatively uncommon, elevated pore pressure from fluid injection of any kind can induce earthquake activity by activating slip on a proximal fault. In the western Canada sedimentary basin (which follows the Rocky Mountain foothills region and straddles the border between Alberta and B.C.), we find that hydraulic fracture treatment, wherein fluids are injected under high pressure in long laterally-drilled wells in order to induce localized fracturing of a rock formation, is the primary triggering mechanism of induced seismicity. This contrasts with the central U.S., where most induced seismicity has been attributed to large-scale wastewater injection into deep disposal wells. Our findings are based on a comprehensive statistical analysis of seismicity at the M≥3 level since 1985, along with a complete well database for the region, containing information on many thousands of oil and gas wells. Since 2010, most of the regional earthquakes of M≥3 are correlated in both time and space with hydraulic fracturing. Monte Carlo simulations confirm that the observed correlations are extremely unlikely (<<1%) to have been obtained by chance. Improved understanding of regional variability in fault activation processes, accounting for operational and geological factors, will aid in the development and validation of predictive models for the time-dependent hazards from induced earthquakes.

  5. Antioxidant response in sesame plants grown on industrially contaminated soil: effect on oil yield and tolerance to lipid peroxidation.

    PubMed

    Gupta, Amit K; Sinha, Sarita

    2009-01-01

    The plants of sesame white (Sesamum indicum L. var. T55) grown on tannery sludge (TS) contaminated soil have shown that Cr level in the seeds was found below detection limits in 10% and 25% TS, however, the levels of Ni, Pb and Cd were found above the recommended limits. In roots, the level of antioxidants increased in the plants grown upto 35% TS at 30d over their respective controls. Total chlorophyll content increased significantly (p<0.5) in the plants (leaves) grown on lower sludge amendments (upto 35% TS at 30d and 25% TS at 60d) over their respective controls. In addition, the oil content increased (35% increase over control) in the plants grown on 35% TS. No significant change was observed in thiobarbituric acid reactive substances (TBARS), a lipid peroxidation index, in the plants (upto 50% TS). The number of trichomes in the leaves of treated plants was found more than control. In lower and upper leaves surfaces, the anterior end of the trichomes was found acute tipped and bent downwards, whereas, the trichome tip was straight and blunt in control. The stomata on upper and lower surfaces of the leaves were found partially or totally closed in the plants grown on 100% TS as compared to control. The toxicity was observed at higher amendments which are evident from the observed morphological changes and decrease in chlorophyll content. This study concludes that it is not advisable to grow the plants on contaminated area, besides its healthy growth.

  6. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.

    PubMed

    Bagheri Lotfabad, Tayebe; Ebadipour, Negisa; Roostaazad, Reza; Partovi, Maryam; Bahmaei, Manochehr

    2017-04-01

    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover, rhamnolipid mixtures extracted from different cultures showed critical micelle concentrations (CMC) in the range of ≃24 to ≃36mg/l with capability to reduce the surface tension of aqueous solution from 72 to ≃27-32mN/m. However, the sol-gel technique using tetraethyl orthosilicate (TEOS) was used as a gentler method in order to entrap the P. aeruginosa MR01 cells in mold silica gels. Immobilized cells can be utilized several times in consecutive fermentation batches as well as in flow fermentation processes. In this way, reusability of the cells may lead to a more economical fermentation process. Approximately 90% of cell viability was retained during the silica sol-gel immobilization and ≃84% of viability of immobilized cells was preserved for 365days of immobilization and storage of the cells in phosphate buffer at 4°C and 25°C. Moreover, mold gels showed good mechanical stability during the seven successive fermentation batches and the entrapped cells were able to efficiently preserve their biosurfactant-producing potential.

  7. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1993--February 15, 1994

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first demonstrations been completed and the combustion performance of the burner that was provided with the boiler has been determined to be unacceptable. Consequently, the first demonstration has been concluded at 500 hours. The second demonstration will be conducted after a proven CWSF-designed burner is installed on the boiler. During this reporting period, the construction of the fuel preparation facility that will contain the CWSF circuit (as well as a dry, micronized coal circuit) was completed. Proposals from potential suppliers of the flue gas treatment systems were reviewed by Penn State and DOE.

  8. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1994--August 15, 1994

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new system specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. During this reporting period, the construction of the CWSF preparation circuit (as well as a dry, micronized coal circuit) continued. The CWSF preparation circuit will be completed by November 1,1994. Additional activities included receiving a coal-designed burner and installing it on the demonstration boiler, and working with DOE in selecting pollution control systems to install on the boiler.

  9. Radiological source tracking in oil/gas, medical and other industries: requirements and specifications for passive RFID technology

    SciTech Connect

    Dowla, Farid U.

    2016-01-01

    Subsurface sensors that employ radioisotopes, such 241Am-Be and 137Cs, for reservoir characterization must be tracked for safety and security reasons. Other radiological sources are also widely used in medicine. The radiological source containers, in both applications, are small, mobile and used widely worldwide. The nuclear sources pose radiological dispersal device (RDD) security risks. Security concerns with the industrial use of radionuclide sources is in fact quite high as it is estimated that each year hundreds of sealed sources go missing, either lost or stolen. Risk mitigation efforts include enhanced regulations, source-use guidelines, research and development on electronic tracking of sources. This report summarizes the major elements of the requirements and operational concepts of nuclear sources with the goal of developing automated electronic tagging and locating systems.

  10. Favorable conditions noted for Australia shale oil

    SciTech Connect

    Not Available

    1986-09-01

    After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

  11. Demographic and lifestyle predictors of body mass index among offshore oil industry workers: cross-sectional and longitudinal findings.

    PubMed

    Parkes, Katharine R

    2003-05-01

    Significant overweight among offshore workers on North Sea oil and gas installations has been linked to high calorie intake, lack of active leisure-time pursuits, and environmental factors conducive to weight gain. However, the prevalence of overweight among offshore workers has not been examined in recent data, and no longitudinal studies of body mass index (BMI) in this occupational group have been reported. Aims The present study sought to examine BMI levels in a sample of UK offshore personnel, and to evaluate demographic factors, smoking and work-related physical activity as predictors of BMI, and 5 year change in BMI. Survey data (including age, education, marital status, work-related physical activity and height/weight) were collected in 1995 from male workers on 17 North Sea installations (n = 1581, 83% response rate); follow-up data were obtained in 2000 (n = 354, 34.9% of the potential sample). Overall mean BMI was 25.6 (2.8) kg/m(2): rates of obesity (BMI > 30) and overweight (BMI = 25-30) were 7.5 and 47.3%, respectively. Mean age was 38.7 (8.9) years; linear and quadratic age terms predicted BMI. Age-adjusted BMI values were very similar to those reported from other offshore studies over the past 15 years. Age, marital status, education, smoking and physical activity significantly predicted baseline BMI, but only age (and some interactive effects) predicted 5 year BMI change. The present age-adjusted BMI values were closely similar to those found offshore in the mid-1980s, but also to recent national data; thus, North Sea personnel do not appear to reflect current population trends towards increased BMI levels. This result accords with the emphasis now given to health promotion (particularly dietary change) on offshore installations; the present findings also highlight the need to focus these initiatives on workers with sedentary jobs and/or low education.

  12. Environmental Defense Fund Oil and Gas Methane Studies: Principles for Collaborating with Industry Partners while Maintaining Scientific Objectivity

    NASA Astrophysics Data System (ADS)

    Hamburg, S.

    2016-12-01

    Environmental Defense Fund (EDF) launched a series of 16 research studies in 2012 to quantify methane emissions from the U.S. oil and gas (O&G) supply chain. In addition to EDF's funding from philanthropic individuals and foundations and in-kind contributions from universities, over forty O&G companies contributed money to the studies. For a subset of studies that required partner companies to provide site access to measure their equipment, five common principles were followed to assure that research was objective and scientifically rigorous. First, academic scientists were selected as principal investigators (PIs) to lead the studies. In line with EDF's policy of not accepting money from corporate partners, O&G companies provided funding directly to academic PIs. Technical work groups and steering committees consisting of EDF and O&G partner staff advised the PIs in the planning and implementation of research, but PIs had the final authority in scientific decisions including publication content. Second, scientific advisory panels of independent experts advised the PIs in the study design, data analysis, and interpretation. Third, studies employed multiple methodologies when possible, including top-down and bottom-up measurements. This helped overcome the limitations of individual approaches to decrease the uncertainty of emission estimates and minimize concerns with data being "cherry-picked". Fourth, studies were published in peer-reviewed journals to undergo an additional round of independent review. Fifth, transparency of data was paramount. Study data were released after publication, although operator and site names of individual data points were anonymized to ensure transparency and allow independent analysis. Following these principles allowed an environmental organization, O&G companies, and academic scientists to collaborate in scientific research while minimizing conflicts of interest. This approach can serve as a model for a scientifically rigorous

  13. Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry.

    PubMed

    Gana, Mohamed Lamine; Kebbouche-Gana, Salima; Touzi, Abdelkader; Zorgani, Mohamed Amine; Pauss, André; Lounici, Hakim; Mameri, Nabil

    2011-03-01

    The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10-15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry.

  14. Automotive gear oil lubricant from soybean oil

    USDA-ARS?s Scientific Manuscript database

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  15. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry.

    PubMed

    Mandalari, G; Bennett, R N; Bisignano, G; Trombetta, D; Saija, A; Faulds, C B; Gasson, M J; Narbad, A

    2007-12-01

    To evaluate the antimicrobial properties of flavonoid-rich fractions derived from bergamot peel, a byproduct from the Citrus fruit processing industry and the influence of enzymatic deglycosylation on their activity against different bacteria and yeast. Bergamot ethanolic fractions were tested against Gram-negative bacteria (Escherichia coli, Pseudomonas putida, Salmonella enterica), Gram-positive bacteria (Listeria innocua, Bacillus subtilis, Staphylococcus aureus, Lactococcus lactis) and the yeast Saccharomyces cerevisiae. Bergamot fractions were found to be active against all the Gram-negative bacteria tested, and their antimicrobial potency increased after enzymatic deglycosylation. The minimum inhibitory concentrations of the fractions and the pure flavonoids, neohesperidin, hesperetin (aglycone), neoeriocitrin, eriodictyol (aglycone), naringin and naringenin (aglycone), were found to be in the range 200 to 800 microg ml(-1). The interactions between three bergamot flavonoids were also evaluated. The enzyme preparation Pectinase 62L efficiently converted common glycosides into their aglycones from bergamot extracts, and this deglycosylation increased the antimicrobial potency of Citrus flavonoids. Pairwise combinations of eriodictyol, naringenin and hesperetin showed both synergistic and indifferent interactions that were dependent on the test indicator organism. Bergamot peel is a potential source of natural antimicrobials that are active against Gram-negative bacteria.

  16. H. R. 5593: A Bill to maintain the viability of the domestic oil industry by enhancing capital investment and ensuring future oil and gas exploration, and for other purposes. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, September 12, 1990

    SciTech Connect

    Not Available

    1990-01-01

    This bill would maintain the viability of the domestic oil industry by enhancing capital investment and ensuring future oil and gas exploration by amending certain sections of the Internal Revenue Code of 1986. The bill describes the following provisions under the title, Percentage depletion and intangible drilling costs: increase in percentage depletion; percentage depletion permitted after transfer of proven property; percentage depletion allowed for stripper well production of integrated producers; net income limitation not to apply to oil or gas wells; and definitions of intangible drilling costs. Under Title II, Domestic energy improvement tax credits, the following tax credits are described: marginal production; exploring for oil or gas; vehicles fueled by clean-burning fuels, property converting vehicles to be so fueled, and facilities for the retail delivery of such fuels; conversion to natural gas equipment; clean fuel alternatives research; and tertiary recovery methods research.

  17. Effects of small impoundments on downstream crayfish assemblages

    Treesearch

    Susan B. Adams

    2013-01-01

    Dams and impoundments, both large and small, affect downstream physicochemical characteristics and up- and downstream biotic communities. I tested whether small dams and their impoundments altered downstream crayfish assemblages in northern Mississippi. I sampled crayfish and measured physicochemical variables at 4 sites downstream of impoundments (outlet sites) and 4...

  18. Downstream Development of a Laminar Spot

    NASA Astrophysics Data System (ADS)

    Sekiya, Naoki; Matsumoto, Akira

    It was well-known that a disturbance, introduced artificially into a supercritical laminar boundary layer along a flat plate, is still laminar in the initial stage of its downstream development. Thus, we named it a "laminar spot" because it resembles a turbulent spot though its velocity perturbation remains laminar. From velocity measurements using a rake-type 16-channel hot-wire probe, we found that in the first stage of the downstream development of a laminar spot, its maximum width was at 0.2δ (what is called the critical layer) and one-half of its lateral growth angle was about 5°, which is almost one-half that of a turbulent spot. We call this region a "laminar spot region". In the present study, we measured in detail the velocity field of a laminar spot using a new hot-wire probe in the laminar spot region. The results showed that a laminar spot consists of some hairpin vortices and some induced U-shaped vortices under the hairpin vortices. Because of the interaction of the velocities induced by the respective vortex legs, the legs of the U-shaped vortices were located at the outermost part of the spot. Moreover, the new vortex legs extended spanwise at about 4° as the spot traveled downstream. Consequently, we concluded that the laminar spot grew spanwise in accordance with the span of these vortex legs.

  19. Fish reproductive guilds downstream of dams.

    PubMed

    Vasconcelos, L P; Alves, D C; Gomes, L C

    2014-11-01

    Fish reproductive guilds were used to evaluate the responses of species with different reproductive strategies during two different periods of post-dam construction. The data used for the comparisons were collected in the upper Paraná River floodplain (Brazil), downstream of the Porto Primavera dam, 2 and 10 years after impoundment. The abundance (catch per unit effort, CPUE), species richness, evenness and structure of communities, all within reproductive guilds, were used to test the hypothesis that these metrics vary spatially and temporally. The influence of damming on species structure and the diversity of fish reproductive guilds varied spatiotemporally, and species with opportunistic reproductive strategies tended to be less affected. Conversely, long-distance migratory species responded more markedly to spatiotemporal variations, indicating that the ecosystem dynamics exert greater effects on populations of these species. Thus, the effects of a dam, even if attenuated, may extend over several years, especially downstream. This finding emphasizes the importance of maintaining large undammed tributaries downstream of reservoirs.

  20. The effects of BaSO₄ loading on OPC cementing system for encapsulation of BaSO₄ scale from oil and gas industry.

    PubMed

    Hussein, O; Utton, C; Ojovan, M; Kinoshita, H

    2013-10-15

    The BaSO4 scales obtained from piping decontamination from oil and gas industries are most often classified as low level radioactive waste. These wastes could be immobilised by stable cement matrix to provide higher safety of handling, transportation, storage and disposal. However, the information available for the effects of the basic formulation such as waste loading on the fundamental properties is still limited. The present study investigated the effect of BaSO4 loading and water content on the properties of OPC-BaSO4 systems containing fine BaSO4 powder and coarse granules. The BaSO4 with different particle size had a marked effect on the compressive strength due to their different effects on hydration products formed. Introduction of fine BaSO4 powder resulted in an increased formation of CaCO3 in the system, which significantly contributed to the compressive strength of the products. Amount of water was important to control the CaCO3 formation, and water to cement ratio of 0.53 was found to be a good level to maintain a low porosity of the products both for fine BaSO4 powder and coarse BaSO4 granule. BaSO4 loading of up to 60 wt% has been achieved satisfying the minimum compressive strength of 5 MPa required for the radioactive wasteforms.

  1. Fatigue in seafarers working in the offshore oil and gas re-supply industry: effects of safety climate, psychosocial work environment and shift arrangement.

    PubMed

    Hystad, Sigurd W; Saus, Evelyn-Rose; Sætrevik, Bjørn; Eid, Jarle

    2013-01-01

    This study examined the influence of safety climate and psychosocial work environment on the reported fatigue of seafarers working in the offshore oil and gas re-supply industry (n = 402). We found that seafarers who reported high psychological demands and perceived the organisational-level safety climate negatively,reported significantly more mental fatigue, physical fatigue, and lack of energy. In addition, seafarers who reported having high levels of job control reported being significantly less mentally fatigued. We also found some combined effects of safety climate and shift arrangement. Organisational-level safety climate did not influence the levels of physical fatigue in seafarers working on the night shift. On the contrary, seafarers working during the days reported to be more physically fatigued when they perceived the organisational-level climate to be negative compared with the positive. The opposite effect was found for group-level safety climate: seafarers working during the nights reported to be more physically fatigued when they perceived the group-level climate to be negative compared with the positive. The results from this study point to the importance of taking into consideration aspects of the psychosocial work environment and safety climate,and their potential impact on fatigue and safety in the maritime organisations.

  2. Automated analyser for monitoring the contents of hydrocarbons in gas emitted from exploratory bore-holes in the gas and oil industry

    PubMed Central

    Janicki, Wacław; Żwan, Paweł; Namieśnik, Jacek

    2003-01-01

    An automated analyser for total hydrocarbon contents and hydrocarbon composition (from methane to pentanes) was constructed and tested in both laboratory and field exploitation. It used two-channel analysis: continuous measurements of total hydrocarbon contents and periodic (90 or 150 s) composition analysis after separation of hydrocarbons on a gas chromatographic column. Flame ionization detectors were used in both channels. A simple 16-bit analogue-to-digital converter was used (4.8, practically four orders of magnitude), while the full measuring range (six orders of magnitude) was ensured by automatic dilution of the sample (or standard) with clean air. Full control of the operating (calibration/analyses) cycle was performed by microcomputer. An external programme, based on a computer provided with full information on the instrument operating conditions, presents the results of calibrations/analyses and enables them to be archived in a standard database used in the oil/gas drilling industry (N-LAB) by providing a suitable link. The instrument measuring range was 1 ppm to 100% with precision not worse than 5% at the detection limit. The analyser can operate autonomously for two months, recalibrating itself daily. PMID:18924624

  3. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity.

    PubMed

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics.

  4. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity

    PubMed Central

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z.

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics. PMID:25566212

  5. Challenges in Modelling and Control of Offshore De-oiling Hydrocyclone Systems

    NASA Astrophysics Data System (ADS)

    Durdevic, Petar; Pedersen, Simon; Yang, Zhenyu

    2017-01-01

    Offshore de-oiling installations are facing an increasing challenge with regards to removing oil residuals from produced water prior to discharge into the ocean. The de-oiling of produced water is initially achieved in the primary separation processes using gravity-based multi-phase separators, which can effectively handle large amounts of oil-well fluids but may struggle with the efficient separation of small dispersed oil particles. Thereby hydrocyclone systems are commonly employed in the downstream Produced Water Treatment (PWT) process for further reducing the oil concentration in the produced water before it can be discharged into the ocean. The popularity of hydrocyclone technology in the offshore oil and gas industry is mainly due to its rugged design and low maintenance requirements. However, to operate and control this type of system in an efficient way is far less simple, and alternatively this task imposes a number of key control challenges. Specifically, there is much research to be performed in the direction of dynamic modelling and control of de-oiling hydrocyclone systems. The current solutions rely heavily on empirical trial-and-error approaches. This paper gives a brief review of current hydrocyclone control solutions and the remaining challenges and includes some of our recent work in this topic and ends with a motivation for future work.

  6. Natural Origin Lycopene and Its "Green" Downstream Processing.

    PubMed

    Papaioannou, Emmanouil H; Liakopoulou-Kyriakides, Maria; Karabelas, Anastasios J

    2016-01-01

    Lycopene is an abundant natural carotenoid pigment with several biological functions (well-known for its antioxidant properties) which is under intensive investigation in recent years. Lycopene chemistry, its natural distribution, bioavailability, biological significance, and toxicological effects are briefly outlined in the first part of this review. The second, major part, deals with various modern downstream processing techniques, which are assessed in order to identify promising approaches for the recovery of lycopene and of similar lipophilic compounds. Natural lycopene is synthesized in plants and by microorganisms, with main representatives of these two categories (for industrial production) tomato and its by-products and the fungus Blakeslea trispora, respectively. Currently, there is a great deal of effort to develop efficient downstream processing for large scale production of natural-origin lycopene, with trends strongly indicating the necessity for "green" and mild extraction conditions. In this review, emphasis is placed on final product safety and ecofriendly processing, which are expected to totally dominate in the field of natural-origin lycopene extraction and purification.

  7. The impact of accounting methods on the association between unexpected earnings and abnormal returns: The case of oil and gas industry

    NASA Astrophysics Data System (ADS)

    Suwardjono

    Full cost (FC) and successful efforts (SE) are two competing accounting methods that account for exploration and development expenditures in oil and gas industry. In 1977, the Financial Accounting Standards Board (FASB) abolished the FC method but the abolishment was overruled by the Securities and Exchange Commission (SEC) in 1978. Many studies have addressed the issue and focused on the market reaction to the uncertain status of the standard rather than on the information content of earnings. This study examines the extent to which the differences in variability of stock price responses to earnings announcements are associated with the FC and SE accounting methods. The purpose of this study is to investigate whether the market reacts differently to the release of earnings by FC and SE firms. The study contributes to the current literature by comparing the earnings response coefficient (ERC) of FC and SE firms and providing an alternative model to measure unexpected earnings. The study examines cross-sectional differences in ERCs associated with firm-characteristics (such as accounting method and size) and compare the results with firm-specific differences in ERCs which have not been used in previous oil and gas studies. The larger sample, the longer sample period, and the different source of data position this study as a triangulation to previous ERC studies. The study finds that pooled cross-sectional estimation results support previous findings that ERCs for SE firms are significantly higher than those for FC firms especially for return intervals before (including) the earnings release date. However, ERCs for FC firms tend to be larger than those for SE firms when firm-specific estimations are performed. For return intervals immediately following the announcement date, the firm-specific ERCs for FC firms are significantly higher than those of SE firms. This study also finds that the unexpected earnings variances are not homogeneous across firms and the firm

  8. AKT/PKB Signaling: Navigating Downstream

    PubMed Central

    Manning, Brendan D.; Cantley, Lewis C.

    2009-01-01

    The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. PMID:17604717

  9. Downstream patterns of riverbed scour and fill

    USGS Publications Warehouse

    Emmett, William W.; Leopold, Luna Bergere

    1963-01-01

    Progress has been made in describing riverbed scour and fill at a given stream section. One needs only the data routinely collected at a stream-gaging station to observe scour and fill at that station. However, similar progress has not been made to determine whether or not the scour and fill observed at a given section extends over a relatively long reach of the channel. Gaging stations are generally located too far apart to draw any conclusions as to scour processes between stations. It remains necessary then to establish a sufficient number of cross sections along a channel to describe the downstream pattern of riverbed scour.

  10. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    PubMed

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  11. Plasma waves downstream of weak collisionless shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.

    1993-01-01

    In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

  12. Upstream and Downstream Influence in STBLI Instability

    NASA Astrophysics Data System (ADS)

    Martin, Pino; Priebe, Stephan; Helm, Clara

    2016-11-01

    Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.

  13. Removing antinutrients from rapeseed press-cake and their benevolent role in waste cooking oil-derived biodiesel: conjoining the valorization of two disparate industrial wastes.

    PubMed

    Das Purkayastha, Manashi; Das, Subrata; Manhar, Ajay Kumar; Deka, Dhanapati; Mandal, Manabendra; Mahanta, Charu Lata

    2013-11-13

    Valorization of oilseed processing wastes is thwarted due to the presence of several antinutritional factors such as phenolics, tannins, glucosinolates, allyl isothiocyanates, and phytates; moreover, literature reporting on their simultaneous extraction and subsequent practical application is scanty. Different solvent mixtures containing acetone or methanol pure or combined with water or an acid (hydrochloric, acetic, perchloric, trichloroacetic, phosphoric) were tested for their efficiency for extraction of these antinutritive compounds from rapeseed press-cake. Acidified extraction mixtures (nonaqueous) were found to be superior to the nonacidified ones. The characteristic differences in the efficacy of these wide varieties of solvents were studied by principal component analysis, on the basis of which the mixture 0.2% perchloric acid in methanol/acetone (1:1 v/v) was deemed as "the best" for detoxification of rapeseed meal. Despite its high reductive potential, hemolytic activity of the extract from this solvent mixture clearly indicated the toxicity of the above-mentioned compounds on mammalian erythrocytes. Because of the presence of a high amount of antinutritive antioxidants, the study was further extended to examine the influence of this solvent extract on the stability of waste cooking oil-derived biodiesel. Treatment with the extract harbored significant improvement (p < 0.05) in the induction periods and pronounced reduction in microbial load of stored biodiesel investigated herein. Thus, a suitable solvent system was devised for removing the major antinutrients from rapeseed press-cake, and the solvent extract can, thereafter, be used as an effective exogenous antioxidant for biodiesel. In other words, integrated valorization of two different industrial wastes was successfully achieved.

  14. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement.

    PubMed

    Lepik, Riina; Tenno, Toomas

    2012-01-01

    The aim of this study was to investigate the biodegradation of phenol, o-cresol and p-cresol individually and as bi-substrate mixtures at low initial substrate concentrations. Activated sludge was taken from the Kohtla-Järve wastewater treatment plant, Estonia, which is also treating phenolic wastewater from the oil-shale chemical industry and is considered to be acclimated to the phenolic compounds. Respirometric data have been used for evaluation of the kinetic parameters describing the bio-oxidation of substrates. Activated sludge was able to degrade phenol and p-cresol faster than o-cresol, showing better affinity to p-cresol. However, at higher concentrations, phenol and p-cresol exhibited also an inhibitory effect to the microorganisms. The highest values for maximum rate of oxygen uptake (V(O2,max)) were obtained for the bi-substrate system of phenol--p-cresol among the mixtures containing both substrates at equal concentrations from 0.005 mM to 0.050 mM. Concerning the systems containing one substrate at 0.1 mM and the other substrate varied in the abovementioned range, the highest V(O2,max) values were found for phenol--o-cresol(0.1 mM). The interaction parameters indicated that phenol had a stronger inhibition effect on the biodegradation of p-cresol than p-cresol had on the biodegradation of phenol. However, the obtained interaction parameters for systems of phenol--o-cresol indicated that o-cresol had a stronger inhibition effect on the biodegradation of phenol, which in turn had a mild inhibition or even enhancing effect on the biodegradation of o-cresol. In the case of a 1:1 mixture, phenol and o-cresol had a similar mild inhibition effect on each other's biodegradation.

  15. The downstream decay of trapped lee waves

    NASA Astrophysics Data System (ADS)

    Hills, Matthew O. G.

    The mechanisms through which trapped lee waves decay, and where this decay occurs, are of utmost importance in order to understand the impact that these waves have on the larger-scale climate system. Previous studies have shown trapped waves as contributing a significant fraction of the total orographic drag, but they remain poorly understood. In this dissertation, two decay mechanisms are analyzed and compared --- stratospheric leakage, and boundary layer absorption. Decay of lee waves through upward leakage of wave energy towards the stable stratosphere is studied primarily using a linear Boussinesq model, forced by either a three-layer atmosphere or a more realistic four-layer atmosphere containing vertical wind shear and an elevated inversion. Weak downstream decay occurs due to the stratosphere in the highly-idealized three-layer atmosphere, albeit at too slow of a rate for the typical decay seen in nature. In the more realistic profile, rapid downstream decay occurs through stratospheric leakage --- leading to a removal of the wavetrain within 1.5 wavelengths in the most extreme case of a 200 m deep elevated inversion. As the depth the elevated inversion is reduced, the potential rate of downstream decay is increased. For all profiles, the rate of leakage due to the stratosphere is shown to be maximized for values of stratospheric stability (N s) slightly larger than for the threshold for decay, with a decreasing trend in the rate of decay as the stratospheric stability is further increased. The impact of the stratosphere and boundary layer on trapped wave decay are both simulated using a full nonlinear numerical model. Decay through boundary layer absorption is seen to vary slightly with the atmospheric profile --- relating to the location and the structure of the resonant wave duct compared to the boundary layer. Rates of downstream decay due to the stratosphere agree well between the linear and nonlinear models. Given the highly-idealized atmospheric

  16. US energy industry financial developments, 1993 second quarter

    SciTech Connect

    Not Available

    1993-09-29

    US Energy Industry Financial Developments, 1993 Second Quarter provides information on the financial performance of energy companies during the most recent reporting period. The data are taken from public sources such as the Wall Street Journal, Energy Information Administration publications, corporate press releases, and other public sources. Based on information provided in 1993 second quarter financial disclosures, net income for 114 petroleum companies--including 19 majors--rose 33 percent between the second quarter of 1992 and the second quarter of 1993. Both upstream (oil and gas exploration, development and production) operations and downstream (petroleum refining, marketing, and transport) contributed to the improved financial Performance of petroleum companies consolidated operations. Rate-regulated industries also showed positive income growth between the second quarter of 1992 and the second quarter of 1993 due to higher natural gas prices and increased electricity consumption.

  17. 9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH SIDE OF DOWNSTREAM BANK OF DAM - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  18. Unit 5, downstream from Hickory Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, downstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  19. Unit 4, downstream from Johns Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 4, downstream from Johns Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  20. Unit 1, downstream from Laurel Run Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 1, downstream from Laurel Run - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA