Science.gov

Sample records for downstream pressure perturbations

  1. Dynamic response of ramjet inlets to downstream perturbations

    NASA Astrophysics Data System (ADS)

    Sajben, M.; Bogar, T. J.; Kroutil, J. C.

    1983-01-01

    An external-compression inlet with high-aspect-ratio, rectangular cross sections was investigated in a semi-freejet arrangement at M(infinity) = 1.84 and zero incidence, over a wide range of super- and subcritical conditions. The response of the inlet flows to periodic perturbations imposed at the downstream end was determined. The perturbations were created by mechanical modulation of the choked exhaust area at frequencies from 20 to 360 Hz. The amplitude of the pressure fluctuations induced at the downstream end of the inlet was varied up to 8% of the time-mean static pressure at the same location. The observed oscillations were categorized according to position ranges associated with the shock motion. In supercritical oscillations, the pressure fluctuation amplitudes within the inlet were found to be linearly proportional to the fluctuation intensity at the exit station, establishing the latter as the appropriate quantity for normalization. In subcritical conditions, the inlet displays a large-amplitude natural oscillation (buzz). Superimposed excitation may couple with the natural oscillations in two distinctly different ways, both strongly nonlinear. Combinations of mean flow condition, excitation amplitude, and frequency that cause the terminal shock to move upstream of the cowl or the ramp were determined.

  2. Enhanced diamagnetic perturbations and electric currents observed downstream of the high power helicon

    SciTech Connect

    Roberson, B. Race; Winglee, Robert; Prager, James

    2011-05-15

    The high power helicon (HPH) is capable of producing a high density plasma (10{sup 17}-10{sup 18} m{sup -3}) and directed ion energies greater than 20 eV that continue to increase tens of centimeters downstream of the thruster. In order to understand the coupling mechanism between the helicon antenna and the plasma outside the immediate source region, measurements were made in the plasma plume downstream from the thruster of the propagating wave magnetic field and the perturbation of the axial bulk field using a type 'R' helicon antenna. This magnetic field perturbation ({Delta}B) peaks at more than 15 G in strength downstream of the plasma source, and is 3-5 times larger than those previously reported from HPH. Taking the curl of this measured magnetic perturbation and assuming azimuthal symmetry suggests that this magnetic field is generated by a (predominantly) azimuthal current ring with a current density on the order of tens of kA m{sup -2}. At this current density the diamagnetic field is intense enough to cancel out the B{sub 0} axial magnetic field near the source region. The presence of the diamagnetic current is important as it demonstrates modification of the vacuum fields well beyond the source region and signifies the presence of a high density, collimated plasma stream. This diamagnetic current also modifies the propagation of the helicon wave, which facilitates a better understanding of coupling between the helicon wave and the resultant plasma acceleration.

  3. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    PubMed

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  4. Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells

    PubMed Central

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-01-01

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: http://dx.doi.org/10.7554/eLife.04640.001 PMID:26284497

  5. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  6. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-08-26

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  7. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  8. Pressure perturbation calorimetry of unfolded proteins.

    PubMed

    Tsamaloukas, Alekos D; Pyzocha, Neena K; Makhatadze, George I

    2010-12-16

    We report the application of pressure perturbation calorimetry (PPC) to study unfolded proteins. Using PPC we have measured the temperature dependence of the thermal expansion coefficient, α(T), in the unfolded state of apocytochrome C and reduced BPTI. We have shown that α(T) is a nonlinear function and decreases with increasing temperature. The decrease is most significant in the low (2-55 °C) temperature range. We have also tested an empirical additivity approach to predict α(T) of unfolded state from the amino acid sequence using α(T) values for individual amino acids. A comparison of the experimental and calculated functions shows a very good agreement, both in absolute values of α(T) and in its temperature dependence. Such an agreement suggests the applicability of using empirical calculations to predict α(T) of any unfolded protein.

  9. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure

    PubMed Central

    Scallan, Joshua P; Wolpers, John H; Davis, Michael J

    2013-01-01

    Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (−3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow. PMID:23045335

  10. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure.

    PubMed

    Scallan, Joshua P; Wolpers, John H; Davis, Michael J

    2013-01-15

    Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (-3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow.

  11. Plume diagnostics of SRM static firings for pressure perturbation studies

    NASA Technical Reports Server (NTRS)

    Sambamurthi, J. K.; Alvarado, Alexis; Mathias, Edward C.

    1995-01-01

    During the shuttle launches, the solid rocket motors (SRM) occasionally experience pressure perturbations (8-13 psi) between 65 and 75 seconds into the motor burn time. The magnitudes of these perturbations are very small in comparison with the operating motor chamber pressure, which is over 600 psi during this time frame. These SRM pressure perturbations are believed to be caused primarily by the expulsion of slag (aluminum oxide). Two SRM static tests, TEM-11 and FSM-4, were instrumented extensive]y for the study of the phenomenon associated with pressure perturbations. The test instrumentation used included nonintrusive optical and infrared diagnostics of the plume, such as high-speed photography, radiometers, and thermal image cameras. Results from all these nonintrusive observations strongly support the scenario that the pressure perturbation event in the shuttle SRM is caused primarily by the expulsion of molten slag. The slag was also expelled preferentially near the bottom of the nozzle due to slag accumulation at the bottom of the aft end of the horizontally oriented motor.

  12. Pressure-driven amplification and penetration of resonant magnetic perturbations

    SciTech Connect

    Loizu, J.; Hudson, S. R.; Lazerson, S. A.; Bhattacharjee, A.; Helander, P.

    2016-05-15

    We show that a resonant magnetic perturbation applied to the boundary of an ideal plasma screw-pinch equilibrium with nested surfaces can penetrate inside the resonant surface and into the core. The response is significantly amplified with increasing plasma pressure. We present a rigorous verification of nonlinear equilibrium codes against linear theory, showing excellent agreement.

  13. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    SciTech Connect

    H.E. Mynick and A.H. Boozer

    2008-05-23

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation δΒ. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of δΒ. Here, we analytically compute the pressure anisoptropy, anisoptropy, pll, p⊥ ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  14. Plasma density perturbation caused by probes at low gas pressure

    NASA Astrophysics Data System (ADS)

    Sternberg, Natalia; Godyak, Valery

    2017-09-01

    An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.

  15. Application of pressure perturbation calorimetry to lipid bilayers.

    PubMed

    Heerklotz, Heiko; Seelig, Joachim

    2002-03-01

    Pressure perturbation calorimetry (PPC) is a new method that measures the heat consumed or released by a sample after a sudden pressure jump. The heat change can be used to derive the thermal volume expansion coefficient, alpha(V), as a function of temperature and, in the case of phase transitions, the volume change, DeltaV, occurring at the phase transition. Here we present the first report on the application of PPC to determine these quantities for lipid bilayers. We measure the volume changes of the pretransition and main transition of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the thermal expansivity of the fluid phase of DMPC and of two unsaturated lipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine. The high sensitivity of PPC instrumentation gives accurate data for alpha(V) and DeltaV even upon the application of relatively low pressures of approximately 5 bar.

  16. A theoretical model for the cross spectra between pressure and temperature downstream of a combustor

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Krejsa, E. A.

    1984-01-01

    A theoretical model developed to calculate pressure-temperature cross spectra, pressure spectra, temperature spectra and pressure cross spectra in a ducted combustion system is presented. The model assumes the presence of a fluctuating-volumetric-heat-release-rate disk source and takes into account the spatial distribution of the steady-state volumetric-heat flux. Using the model, pressure, velocity, and temperature perturbation relationships can be obtained. The theoretical results show that, at a given air mass flow rate, the calculated pressure-temperature cross spectra phase angle at the combustor exit depends on the model selected for the steady-state volumetric-heat flux in the combustor. Using measurements of the phase angle, an appropriate source region model was selected. The model calculations are compared with the data. The comparison shows good agreement and indicates that with the use of this model the pressure-temperature cross spectra measurements provide useful information on the physical mechanisms active at the combustion noise source.

  17. Effect of a downstream ventilated gas cavity on turbulent boundary layer wall pressure fluctuation spectra

    NASA Astrophysics Data System (ADS)

    Young, Steven D.; Brungart, Timothy A.; Lauchle, Gerald C.; Howe, Michael S.

    2005-12-01

    An analytical and experimental investigation is made of the effect of a 2-D ventilated gas cavity on the spectrum of turbulent boundary layer wall pressure fluctuations upstream of a gas cavity on a plane rigid surface. The analytical model predicts the ratio of the wall pressure spectrum in the presence of the cavity to the blocked wall pressure spectrum that would exist if the cavity were absent. The ratio is found to oscillate in amplitude with upstream distance (-x) from the edge of the cavity. It approaches unity as -ωx/Uc-->∞, where ω is the radian frequency and Uc is the upstream turbulence convection velocity. To validate these predictions an experiment was performed in a water tunnel over a range of mean flow velocities. Dynamic wall pressure sensors were flush mounted to a flat plate at various distances upstream from a backward facing step. The cavity was formed downstream of the step by injecting carbon dioxide gas. The water tunnel measurements confirm the predicted oscillatory behavior of the spectral ratio, as well as its relaxation to unity as -ωx/Uc-->∞. For -ωx/Uc>7 the cavity has a negligible influence on the upstream wall pressure fluctuations.

  18. The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D

    DOE PAGES

    Frerichs, H.; Schmitz, Oliver; Evans, Todd; ...

    2015-07-13

    High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e. where the safety factor is equal to rational values q = m/n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are alignedmore » with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. Lastly, an additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.« less

  19. The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Evans, T.; Feng, Y.; Reiter, D.

    2015-07-01

    High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e., where the safety factor is equal to rational values q = m / n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are aligned with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. An additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.

  20. Relationships between pressure, flow, lip motion, and upstream and downstream impedances for the trombone.

    PubMed

    Boutin, Henri; Fletcher, Neville; Smith, John; Wolfe, Joe

    2015-03-01

    This experimental study investigates ten subjects playing the trombone in the lower and mid-high range of the instrument, B♭2 to F4. Several techniques are combined to show the pressures and the impedance spectra upstream and downstream of the lips, the acoustic and total flows into the instrument, the component of the acoustic flow due to the sweeping motion of the lips, and high speed video images of the lip motion and aperture. The waveforms confirm that the inertance of the air in the channel between the lips is usually negligible. For lower notes, the flow caused by the sweeping motion of the lips contributes substantially to the total flow into the mouthpiece. The phase relations among the waveforms are qualitatively similar across the range studied, with no discontinuous behavior. The players normally played at frequencies about 1.1% above that of the impedance peak of the bore, but could play below as well as above this frequency and bend from above to below without discontinuity. The observed lip motion is consistent with two-degree-of-freedom models having varying effective lengths. These provide insight into why lips can auto-oscillate with an inertive or compliant load, or without a downstream resonator.

  1. Turbulent Pressure and Velocity Perturbations Induced by Gentle Hills Covered with Sparse and Dense Canopies

    NASA Astrophysics Data System (ADS)

    Patton, Edward G.; Katul, Gabriel G.

    2009-11-01

    How the spatial perturbations of the first and second moments of the velocity and pressure fields differ for flow over a train of gentle hills covered by either sparse or dense vegetation is explored using large-eddy simulation (LES). Two simulations are investigated where the canopy is composed of uniformly arrayed rods each with a height that is comparable to the hill height. In the first simulation, the rod density is chosen so that much of the momentum is absorbed within the canopy volume yet the canopy is not dense enough to induce separation on the lee side of the hill. In the second simulation, the rod density is large enough to induce recirculation inside the canopy on the lee side of the hill. For this separating flow case, zones of intense shear stress originating near the canopy-atmosphere interface persist all the way up to the middle layer, ‘contaminating’ much of the middle and outer layers with shear stress gradients. The implications of these persistent shear-stress gradients on rapid distortion theory and phase relationships between higher order velocity statistics and hill-induced mean velocity perturbations (Δ u) are discussed. Within the inner layer, these intense shear zones improve predictions of the spatial perturbation by K-theory, especially for the phase relationships between the shear stress ( ∂Δ u/∂ z) and the velocity variances, where z is the height. For the upper canopy layers, wake production increases with increasing leaf area density resulting in a vertical velocity variance more in phase with Δ u than with ∂Δ u/∂ z. However, background turbulence and inactive eddies may have dampened this effect for the longitudinal velocity variance. The increase in leaf area density does not significantly affect the phase relationship between mean surface pressure and topography for the two simulations, though the LES results here confirm earlier findings that the minimum mean pressure shifts downstream from the hill crest. The

  2. Plume Diagnostics of the RSRM Static Firings for the Pressure Perturbation Studies

    NASA Technical Reports Server (NTRS)

    Mathias, Edward C.; Sambamurthi, Jay K.; Alvarado, Alexis

    1995-01-01

    During the STS-54 launch (RSRM-29), the right hand solid rocket motor experienced a 13.9 psi chamber pressure perturbation at 67 seconds into the motor operation. This pressure augmentation equated to a thrust change of 51 klb. Concerns were raised regarding the adverse effects of this thrust imbalance on the shuttle system and the overall thrust into the external tank structural elements. Pressure perturbations have been observed in solid rocket motors due to expulsion of igniter or insulation materials; the motor thrust during such events drop abruptly before rising. However, the RSRM motors do not exhibit such behavior during the large chamber pressure perturbation events. Several scenarios were investigated to explain these pressure perturbations in the RSRM motors based on a fault tree developed after STS-54. Of these, the expulsion of the slag accumulated in the submerged nozzle region appeared to be the most plausible scenario to explain the observations. Slag is a natural combustion product of aluminized solid rocket motors. The RSRM propellant contains 16% by weight of aluminum. Any ejection of this slag mass during nozzle vectoring or other side loads on the motor will result in the chamber pressure perturbation. Two RSRM static firings were instrumented extensively to further understand the slag expulsion phenomenon in the RSRM and the associated pressure perturbations.

  3. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim

    2007-11-15

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  4. Debris perturbed by radiation pressure: relative velocities across circular orbits

    NASA Astrophysics Data System (ADS)

    Celestino, C.; Winter, O.; Prado, A.

    It is widely know that there is a large amount of space debris and meteoroid particles around the Earth. The objects larger than 10 cm can be tracked by radar and others means allowing the satellites/ships to be maneuvered to avoid collisions. However, the detection and the attendance of the orbital dynamics of objects smaller than 10 cm (particles) is very difficult. These particles can be generated by explosions of larger objects, collisions between large objects, or simply for the reaction of the oxygen in the wall of an object could generate the escape of paint pieces. The importance of studying the dynamics of these particles is that they can have relative high speeds and their effects in a collision could cause damages and even compromise the space missions. In this present work we considered a dynamical system of mm size particles around the Earth subject to the effects of radiation pressure. Our main goal is to study the evolution of its relative velocity to the circular orbits that it crosses.Firstly, it is considered that the particle is initially in circular orbit. The effect of the radiation pressure produces variations in its eccentricity, resulting in a change in its orbital velocity. The results show that the variation of the radial distance and the relative velocity can be divided in three parts: secular, long period and short period. For the radial distance the secular variation is constant, because the semi-axis is constant. The long period variation presents a configuration that repeats with period inferior to the orbital period of the Earth. And, finally, the short period variation presents points of local maxima and minima for the variation of the width of the radial distance. When considering the variation of the relative velocity we have that the secular behavior and of long period are similar to those obtained for the variation of the radial distance. However, for the short period variation, we have a larger number of local maxima and minima

  5. Simulation study of breast tissue hemodynamics during pressure perturbation.

    PubMed

    Nioka, Shoko; Wen, Simon; Zhang, Jun; Du, Juan; Intes, Xavior; Zhao, Zhongyao; Chance, Britton

    2005-01-01

    We simulated the effects of compression of the breast on blood volume and tissue oxygenation. We sought to answer the question: how does the compression during breast examination impact on the circulatory systems of the breast tissue, namely blood flow, blood pooling, and oxygen concentration? We assumed that the blood was distributed in two compartments, arterial and venous. All the parameters were expressed with oxy- and deoxyhemoglobin quantities and were measured with a non-invasive method, Near Infrared Spectroscopy (NIRS). The simulated data showed that the blood volume pool in the breast decreased due to lower arterial flow and higher venous outflow, as the breast was squeezed under 100 cm H2O with a 10 cm diameter probe (or 78 cm2). The blood volume was reversed when the pressure was released. The breast venous oxygen saturation dropped, but overall tissue saturation (presenting NIRS signal, volume weighted average saturation) was increased. The results showed that simulation can be used to obtain venous and average oxygen saturation as well as blood flow in compressed breast tissues.

  6. Cross spectra between temperature and pressure in a constant area duct downstream of a combustor

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.

    1983-01-01

    The feasibility of measuring pressure temperature cross spectra and coherence and temperature-temperature cross spectra and coherence at spatially separated points along with pressure and temperature auto-spectra in a combustion rig was investigated. The measurements were made near the inlet and exit of a 6.44 m long duct attached to a J-47 combustor. The fuel used was Jet A. The cross spectra and coherence measurements show the pressure and temperature fluctuations correlate best at low frequencies. At the inlet the phenomena controlling the phase relationship between pressure and temperature could not be identified. However, at the duct exit the phase angle of the pressure is related to the phase angle of the temperature by the convected flow time delay.

  7. Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit

    DTIC Science & Technology

    2014-09-01

    1 Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit Charles J. Wetterer and Keric Hill...has highlighted the need for physically consistent radiation pressure and Bidirectional Reflectance Distribution Function (BRDF) models. This paper...seeks to evaluate the impact of BRDF-consistent radiation pres- sure models compared to changes in the other BRDF parameters. The differences in

  8. Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Hill, K.; Jah, M.

    2014-09-01

    Recent research has highlighted the need for physically consistent radiation pressure and Bidirectional Reflectance Distribution Function (BRDF) models. This paper seeks to evaluate the impact of BRDF-consistent radiation pressure models compared to changes in the other BRDF parameters. The differences in orbital position arising because of changes in the shape, attitude, angular rates, BRDF parameters, and radiation pressure model are plotted as a function of time for simulated rocket bodies and debris at geo-synchronous orbit (GEO). The initial position and velocity of the space object is kept fixed, and the orbital position difference between a baseline or-bit and the perturbed orbit are plotted as a function of time. This is similar to how the effects of perturbations have been visualized in the past in commonly used astrodynamics references.

  9. Effects of the pressure perturbation field in numerical models of unidirectionally sheared thunderstorm convection - Two versus three dimensions

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1984-01-01

    The physical roles of 'buoyant' and 'dynamic' pressure components, and the distinction between buoyant and hydrostatic pressure perturbations, are aspects of the pressure perturbation field in strongly sheared convective storms studied by means of two- and three-dimensional anelastic numerical modeling experiments with common environmental profiles. The pressure analysis clarifies the differences between two- and three-dimensional storms. In the main updraft, strong midlevel thermal buoyancy is partly opposed by a downward-perturbed vertical pressure gradient force. This, however, occurs to a much greater extent in two dimensions than in three, contributing to smaller net upward accelerations. While the buoyant and hydrostatic fields are intimately related to the total buoyancy distribution, the buoyant pressure perturbation is smoother and of lower amplitude than its hydrostatic counterpart. For the model experiments, this distinction is far greater in three dimensions than in two, in association with the smaller scale of the active convection in three dimensions.

  10. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  11. A novel high-pressure liquid-liquid extraction process for downstream processing in biotechnology: extraction of cardiac glycosides.

    PubMed

    Adrian, T; Freitag, J; Maurer, G

    2000-09-05

    This investigation examines phase equilibrium phenomena that can be used to create two water-like solvents for liquid-liquid extraction in downstream processing in biotechnology: a completely miscible, binary liquid mixture of water and a hydrophilic organic solvent (e. g., an alcohol) reveals a liquid phase split, when it is pressurized with a "near-critical" gas (i.e., a substance which at ambient conditions is a gas, near its critical temperature). This phase split results in two hydrophilic liquid phases. Making use of this phenomenon in process development first requires research on the phase split phenomenon and, second, research on the feasibility of biomolecule extraction and separation. In this study, basic fluid phase equilibrium phenomena are briefly described. Then, experimental results are reported for the partitioning of small amounts of cardiac glycosides (digitoxin and digoxin) on coexisting liquid phases in the high-pressure, three-phase, vapor-liquid-liquid equilibrium of the ternary system of "near critical" CO(2) + water + 1-propanol, at 313 K and 333 K. Finally, a process for extraction and separation of the aforementioned glycosides by means of the high-pressure phase equilibrium phenomenon is discussed. Copyright 2000 John Wiley & Sons, Inc.

  12. Atomic oxygen behavior at downstream of AC excited atmospheric pressure He plasma jet

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Sekine, Makoto; Hori, Masaru

    2016-09-01

    Applications of atmospheric pressure plasma jets (APPJ) have been investigated in the plasma medical fields such as cancer therapy, blood coagulation, etc. Reactive species generated by the plasma jet interacts with the biological surface. Therefore, the issue attracts much attentions to investigate the plasma effects on targets. In our group, a spot-size AC excited He APPJ have been used for the plasma medicine. From diagnostics of the APPJ using optical emission spectroscopy, the gas temperature and the electron density was estimated to be 299 K and 3.4 ×1015 cm-3. The AC excited He APPJ which affords high density plasma at room temperature is considered to be a powerful tool for the medical applications. In this study, by using vacuum ultraviolet absorption spectroscopy, the density of atomic oxygen on a floating copper as a target irradiated by the He APPJ was measured as a function of the distance between the plasma source and the copper wire. The measured density became a maximum value around 8 ×1013 cm-3 at 12 mm distance, and then decreased over the distance. It is considered that the behavior was due to the changes in the plasma density on the copper wire and influence of ambient air.

  13. Second-order perturbations of a zero-pressure cosmological medium: Comoving versus synchronous gauge

    SciTech Connect

    Hwang, Jaichan; Noh, Hyerim

    2006-02-15

    Except for the presence of gravitational wave source term, the relativistic perturbation equations of a zero-pressure irrotational fluid in a flat Friedmann world model coincide exactly with the Newtonian ones to the second order in perturbations. Such a relativistic-Newtonian correspondence is available in a special gauge condition (the comoving gauge) in which all the variables are equivalently gauge invariant. In this work we compare our results with the ones in the synchronous gauge which has been used often in the literature. Although the final equations look simpler in the synchronous gauge, the variables have remnant gauge modes. Except for the presence of the gauge mode for the perturbed-order variables, however, the equations in the synchronous gauge are gauge invariant and can be exactly identified as the Newtonian hydrodynamic equations in the Lagrangian frame. In this regard, the relativistic equations to the second order in the comoving gauge are the same as the Newtonian hydrodynamic equations in the Eulerian frame. We resolve several issues related to the two gauge conditions often to fully nonlinear orders in perturbations.

  14. Pressure perturbations from geologic carbon sequestration: Area-of-review boundaries and borehole leakage driving forces

    SciTech Connect

    Nicot, J.-P.; Oldenburg, C.M.; Bryant, S.L.; Hovorka, S.D.

    2009-07-01

    We investigate the possibility that brine could be displaced upward into potable water through wells. Because of the large volumes of CO2 to be injected, the influence of the zone of elevated pressure on potential conduits such as well boreholes could extend many kilometers from the injection site-farther than the CO2 plume itself. The traditional approach to address potential brine leakage related to fluid injection is to set an area of fixed radius around the injection well/zone and to examine wells and other potentially open pathways located in the ''Area-of-Review'' (AoR). This suggests that the AoR eeds to be defined in terms of the potential for a given pressure perturbation to drive upward fluid flow in any given system rather than on some arbitrary pressure rise. We present an analysis that focuses on the changes in density/salinity of the fluids in the potentially leaking wellbore.

  15. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy.

    PubMed

    Davydov, Dmitri R; Yang, Zhongyu; Davydova, Nadezhda; Halpert, James R; Hubbell, Wayne L

    2016-04-12

    We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.

  16. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy

    PubMed Central

    Davydov, Dmitri R.; Yang, Zhongyu; Davydova, Nadezhda; Halpert, James R.; Hubbell, Wayne L.

    2016-01-01

    We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of −36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A′ and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes. PMID:27074675

  17. Spatial distribution of the electrical potential and ion concentration in the downstream area of atmospheric pressure remote plasma

    NASA Astrophysics Data System (ADS)

    Mishin, M. V.; Protopopova, V. S.; Uvarov, A. A.; Alexandrov, S. E.

    2014-10-01

    This paper presents the results from an experimental study of the ion flux characteristics behind the remote plasma zone in a vertical tube reaction chamber for atmospheric pressure plasma enhanced chemical vapor deposition. Capacitively coupled radio frequency plasma was generated in pure He and gas mixtures: He-Ar, He-O2, He-TEOS. We previously used the reaction system He-TEOS for the synthesis of self-assembled structures of silicon dioxide nanoparticles. It is likely that the electrical parameters of the area, where nanoparticles have been transported from the synthesis zone to the substrate, play a significant role in the self-organization processes both in the vapor phase and on the substrate surface. The results from the spatial distribution of the electrical potential and ion concentration in the discharge downstream area measured by means of the external probe of original design and the special data processing method are demonstrated in this work. Positive and negatives ions with maximum concentrations of 106-107 cm-3 have been found at 10-80 mm distance behind the plasma zone. On the basis of the revealed distributions for different gas mixtures, the physical model of the observed phenomena is proposed. The model illustrates the capability of the virtual ion emitter formation behind the discharge gap and the presence of an extremum of the electrical potential at the distance of approximately 10-2-10-1 mm from the grounded electrode.

  18. Oyster Creek RETRAN model benchmark to pressure and level perturbation tests

    SciTech Connect

    Alammar, M.A.

    1986-01-01

    As part of GPU Nuclear's program to establish an in-house reload capability for Oyster Creek, the RETRAN-02 MOD4 SPL Computer Code has been chosen to analyze Chapter 15 Final Safety Analysis Report transients. To qualify Oyster Creek RETRAN model, a series of startup tests has been chosen to benchmark the model. Two of those tests, involved water level and vessel pressure perturbations at 100% power. Both tests were analyzed using point kinetics and one-dimensional kinetics with no noticeable impact on level or pressure. A small impact was noticed on power but was thought to be of minor significance. This is because for such mild transients the neutron flux shape function does not change appreciably throughout the transient.

  19. Pressure perturbation calorimetry, heat capacity and the role of water in protein stability and interactions.

    PubMed

    Cooper, A; Cameron, D; Jakus, J; Pettigrew, G W

    2007-12-01

    It is widely acknowledged, and usually self-evident, that solvent water plays a crucial role in the overall thermodynamics of protein stabilization and biomolecular interactions. Yet we lack experimental techniques that can probe unambiguously the nature of protein-water or ligand-water interactions and how they might change during protein folding or ligand binding. PPC (pressure perturbation calorimetry) is a relatively new technique based on detection of the heat effects arising from application of relatively small pressure perturbations (+/-5 atm; 1 atm=101.325 kPa) to dilute aqueous solutions of proteins or other biomolecules. We show here how this can be related to changes in solvation/hydration during protein-protein and protein-ligand interactions. Measurements of 'anomalous' heat capacity effects in a wide variety of biomolecular interactions can also be related to solvation effects as part of a quite fundamental principle that is emerging, showing how the apparently unusual thermodynamics of interactions in water can be rationalized as an inevitable consequence of processes involving the co-operative interaction of multiple weak interactions. This leads to a generic picture of the thermodynamics of protein folding stabilization in which hydrogen-bonding plays a much more prominent role than has been hitherto supposed.

  20. An Analytical Theory for the Perturbative Effect of Solar Radiation Pressure on Natural and Artificial Satellites

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.

    Solar radiation pressure is the largest non-gravitational perturbation for most satellites in the solar system, and can therefore have a significant influence on their orbital dynamics. This work presents a new method for representing the solar radiation pressure force acting on a satellite, and applies this theory to natural and artificial satellites. The solar radiation pressure acceleration is modeled as a Fourier series which depends on the Sun's location in a body-fixed frame; a new set of Fourier coefficients are derived for every latitude of the Sun in this frame, and the series is expanded in terms of the longitude of the Sun. The secular effects due to the solar radiation pressure perturbations are given analytically through the application of averaging theory when the satellite is in a synchronous orbit. This theory is then applied to binary asteroid systems to explain the Binary YORP effect. Long term predictions of the evolution of the near-Earth asteroid 1999 KW4 are discussed under the influence of solar radiation pressure, J2, and 3rd body gravitational effects from the Sun. Secular effects are shown to remain when the secondary asteroid becomes non-synchronous due to a librational motion. The theory is also applied to Earth orbiting spacecraft, and is shown to be a valuable tool for improved orbit determination. The Fourier series solar radiation pressure model derived here is shown to give comparable results for orbit determination of the GPS IIR-M satellites as JPL's solar radiation pressure model. The theory is also extended to incorporate the effects of the Earth's shadow analytically. This theory is briefly applied to the evolution of orbital debris to explain the assumptions that are necessary in order to use the cannonball model for debris orbit evolution, as is common in the literature. Finally, the averaging theory methodology is applied to a class of Earth orbiting solar sail spacecraft to show the orbital effects when the sails are made

  1. Unique Features of the Folding Landscape of a Repeat Protein Revealed by Pressure Perturbation

    PubMed Central

    Rouget, Jean-Baptiste; Schroer, Martin A.; Jeworrek, Christoph; Pühse, Matthias; Saldana, Jean-Louis; Bessin, Yannick; Tolan, Metin; Barrick, Doug; Winter, Roland; Royer, Catherine A.

    2010-01-01

    Abstract The volumetric properties of proteins yield information about the changes in packing and hydration between various states along the folding reaction coordinate and are also intimately linked to the energetics and dynamics of these conformations. These volumetric characteristics can be accessed via pressure perturbation methods. In this work, we report high-pressure unfolding studies of the ankyrin domain of the Notch receptor (Nank1–7) using fluorescence, small-angle x-ray scattering, and Fourier transform infrared spectroscopy. Both equilibrium and pressure-jump kinetic fluorescence experiments were consistent with a simple two-state folding/unfolding transition under pressure, with a rather small volume change for unfolding compared to proteins of similar molecular weight. High-pressure fluorescence, Fourier transform infrared spectroscopy, and small-angle x-ray scattering measurements revealed that increasing urea over a very small range leads to a more expanded pressure unfolded state with a significant decrease in helical content. These observations underscore the conformational diversity of the unfolded-state basin. The temperature dependence of pressure-jump fluorescence relaxation measurements demonstrated that at low temperatures, the folding transition state ensemble (TSE) lies close in volume to the folded state, consistent with significant dehydration at the barrier. In contrast, the thermal expansivity of the TSE was found to be equivalent to that of the unfolded state, indicating that the interactions that constrain the folded-state thermal expansivity have not been established at the folding barrier. This behavior reveals a high degree of plasticity of the TSE of Nank1–7. PMID:20513416

  2. Unique features of the folding landscape of a repeat protein revealed by pressure perturbation.

    PubMed

    Rouget, Jean-Baptiste; Schroer, Martin A; Jeworrek, Christoph; Pühse, Matthias; Saldana, Jean-Louis; Bessin, Yannick; Tolan, Metin; Barrick, Doug; Winter, Roland; Royer, Catherine A

    2010-06-02

    The volumetric properties of proteins yield information about the changes in packing and hydration between various states along the folding reaction coordinate and are also intimately linked to the energetics and dynamics of these conformations. These volumetric characteristics can be accessed via pressure perturbation methods. In this work, we report high-pressure unfolding studies of the ankyrin domain of the Notch receptor (Nank1-7) using fluorescence, small-angle x-ray scattering, and Fourier transform infrared spectroscopy. Both equilibrium and pressure-jump kinetic fluorescence experiments were consistent with a simple two-state folding/unfolding transition under pressure, with a rather small volume change for unfolding compared to proteins of similar molecular weight. High-pressure fluorescence, Fourier transform infrared spectroscopy, and small-angle x-ray scattering measurements revealed that increasing urea over a very small range leads to a more expanded pressure unfolded state with a significant decrease in helical content. These observations underscore the conformational diversity of the unfolded-state basin. The temperature dependence of pressure-jump fluorescence relaxation measurements demonstrated that at low temperatures, the folding transition state ensemble (TSE) lies close in volume to the folded state, consistent with significant dehydration at the barrier. In contrast, the thermal expansivity of the TSE was found to be equivalent to that of the unfolded state, indicating that the interactions that constrain the folded-state thermal expansivity have not been established at the folding barrier. This behavior reveals a high degree of plasticity of the TSE of Nank1-7. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Stability of very-high pressure arc discharges against perturbations of the electron temperature

    SciTech Connect

    Benilov, M. S.; Hechtfischer, U.

    2012-04-01

    We study the stability of the energy balance of the electron gas in very high-pressure plasmas against longitudinal perturbations, using a local dispersion analysis. After deriving a dispersion equation, we apply the model to a very high-pressure (100 bar) xenon plasma and find instability for electron temperatures, T{sub e}, in a window between 2400 K and 5500-7000 K x 10{sup 3} K, depending on the current density (10{sup 6}-10{sup 8} A/m{sup 2}). The instability can be traced back to the Joule heating of the electron gas being a growing function of T{sub e}, which is due to a rising dependence of the electron-atom collision frequency on T{sub e}. We then analyze the T{sub e} range occurring in very high-pressure xenon lamps and conclude that only the near-anode region exhibits T{sub e} sufficiently low for this instability to occur. Indeed, previous experiments have revealed that such lamps develop, under certain conditions, voltage oscillations accompanied by electromagnetic interference, and this instability has been pinned down to the plasma-anode interaction. A relation between the mechanisms of the considered instability and multiple anodic attachments of high-pressure arcs is discussed.

  4. ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION

    SciTech Connect

    Jelínek, P.; Karlický, M.; Murawski, K.

    2015-10-20

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  5. Perturbed Newtonian description of the Lemaître model with non-negligible pressure

    SciTech Connect

    Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao E-mail: valerio.marra@me.com E-mail: misao@yukawa.kyoto-u.ac.jp

    2016-03-01

    We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ{sup 2})—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ{sup 2}),O(c{sub s}{sup 2φ} δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c{sub s} are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ{sup 2}) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1.

  6. Perturbed Newtonian description of the Lemaître model with non-negligible pressure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao

    2016-03-01

    We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential phi is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+phi=Script O(phi2)—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+phi= [Script O(phi2),Script O(cs2phi δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to -1, where w and cs are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+phi=Script O(phi2) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to -1.

  7. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2014-07-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency, positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than further downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  8. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2015-02-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than farther downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  9. Fast Pressure Jumps Can Perturb Calcium and Magnesium Binding to Troponin C F29W

    PubMed Central

    Pearson, David S.; Swartz, Darl R.; Geeves, Michael A.

    2009-01-01

    We have used rapid pressure jump and stopped-flow fluorimetry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL.mol-1). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000 s-1 and 100 s-1. Between pCa 8-5.4 and at troponin C concentrations of 8-28 μM, the slow relaxation times were invariant indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200 - 300 μM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo. PMID:18942859

  10. Applications of pressure perturbation calorimetry to study factors contributing to the volume changes upon protein unfolding.

    PubMed

    Pandharipande, Pranav P; Makhatadze, George I

    2016-05-01

    Pressure perturbation calorimetry (PPC) is a biophysical method that allows direct determination of the volume changes upon conformational transitions in macromolecules. This review provides novel details of the use of PPC to analyze unfolding transitions in proteins. The emphasis is made on the data analysis as well as on the validation of different structural factors that define the volume changes upon unfolding. Four case studies are presented that show the application of these concepts to various protein systems. The major conclusions are: 1. Knowledge of the thermodynamic parameters for heat induced unfolding facilitates the analysis of the PPC profiles. 2. The changes in the thermal expansion coefficient upon unfolding appear to be temperature dependent.3.Substitutions on the protein surface have negligible effects on the volume changes upon protein unfolding. 4. Structural plasticity of proteins defines the position dependent effect of amino acid substitutions of the residues buried in the native state. 5. Small proteins have positive volume changes upon unfolding which suggests difference in balance between the cavity/void volume in the native state and the hydration volume changes upon unfolding as compared to the large proteins that have negative volume changes. The information provided here gives a better understanding and deeper insight into the role played by various factors in defining the volume changes upon protein unfolding. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Volume and expansivity changes of micelle formation measured by pressure perturbation calorimetry.

    PubMed

    Fan, Helen Y; Nazari, Mozhgan; Chowdhury, Saria; Heerklotz, Heiko

    2011-03-01

    We present the application of pressure perturbation calorimetry (PPC) as a new method for the volumetric characterization of the micelle formation of surfactants. The evaluation is realized by a global fit of PPC curves at different surfactant concentration ranging, if possible, from below to far above the CMC. It is based on the knowledge of the temperature dependence of the CMC, which can for example be characterized by isothermal titration calorimetry. We demonstrate the new approach for decyl-β-maltopyranoside (DM). It shows a strong volume increase upon micelle formation of 16 ± 2.5 mL/mol (+4%) at 25 °C, and changes with temperature by -0.1 mL/(mol K). The apparent molar expansivity (E(S)) decreases upon micelle formation from 0.44 to 0.31 mL/(mol K) at 25 °C. Surprisingly, the temperature dependence of the expansivity of DM in solution (as compared with that of maltose) does not agree with the principal behavior described for polar (E(S)(T) decreasing) and hydrophobic (E(S)(T) increasing) solutes or moieties before. The results are discussed in terms of changes in hydration of the molecules and internal packing of the micelles and compared with the volumetric effects of transitions of proteins, DNA, lipids, and polymers.

  12. Thermal expansivities of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry.

    PubMed

    Pandharipande, Pranav P; Makhatadze, George I

    2015-04-01

    The main goal of this work was to provide direct experimental evidence that the expansivity of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry (PPC), can serve as a proxy to characterize relative compactness of proteins, especially the denatured state ensemble. This is very important as currently only small angle X-ray scattering (SAXS), intrinsic viscosity and, to a lesser degree, fluorescence resonance transfer (FRET) experiments are capable of reporting on the compactness of denatured state ensembles. We combined the expansivity measurements with other biophysical methods (far-UV circular dichroism spectroscopy, differential scanning calorimetry, and small angle X-ray scattering). Three case studies of the effects of conformational changes on the expansivity of polypeptides in solution are presented. We have shown that expansivity appears to be insensitive to the helix-coil transition, and appears to reflect the changes in hydration of the side-chains. We also observed that the expansivity is sensitive to the global conformation of the polypeptide chain and thus can be potentially used to probe hydration of different collapsed states of denatured or even intrinsically disordered proteins.

  13. Jet Perturbation by HE target

    SciTech Connect

    Poulsen, P; Kuklo, R M

    2001-03-01

    We have previously reported the degree of attenuation and perturbation by a Cu jet passing through Comp B explosive. Similar tests have now been performed with high explosive (HE) targets having CJ pressures higher than and lower than the CJ pressure of Comp B. The explosives were LX-14 and TNT, respectively. We found that the measured exit velocity of the jet where it transitions from perturbed to solid did not vary significantly as a function of HE type for each HE thickness. The radial momentum imparted to the perturbed jet segment did vary as a function of HE type, however, and we report the radial spreading of the jet and the penetration of a downstream target as a function of HE type and thickness.

  14. Pressure Perturbation Calorimetry of Apolipoproteins in Solution and in Model Lipoproteins

    PubMed Central

    Benjwal, Sangeeta; Gursky, Olga

    2009-01-01

    High-density lipoproteins (HDL) are complexes of lipids and proteins (termed apolipoproteins) that remove cell cholesterol and protect from atherosclerosis. Apolipoproteins contain amphipathic α-helices that have high content (≥1/3) and distinct distribution of charged and apolar residues, adopt molten globule-like conformations in solution, and bind to lipid surfaces. We report the first pressure perturbation calorimetry (PPC) study of apolipoproteins. In solution, the main HDL protein, apoA-I, shows relatively large volume contraction, ΔVunf=-0.33%, and an apparent reduction in thermal expansivity upon unfolding, Δαunf≤0, which has not been observed in other proteins. We propose that these values are dominated by increased charged residue hydration upon α-helical unfolding, which may result from disruption of multiple salt bridges. At 5°C, apoA-I shows large thermal expansion coefficient, α(5°) = 15·10-4 K-1, that rapidly declines upon heating from 5-40°C, α(40°)-α(5°)=-4·10-4 K-1; apolipoprotein C-I shows similar values of α(5°) and α(40°). These values are larger than in globular proteins. They indicate dominant effect of charged residue hydration, which may modulate functional apolipoprotein interactions with a broad range of their protein and lipid ligands. The first PPC analysis of a protein-lipid complex is reported, which focuses on the chain melting transition in model HDL containing apoA-I or apoC-I, dimyristoyl phosphatidylcholine, and 0–20% cholesterol. The results may provide new insights into volumetric properties of HDL that modulate metabolic lipoprotein remodeling during cholesterol transport. PMID:19927327

  15. Volumetric characterization of ester- and ether-linked lipid bilayers by pressure perturbation calorimetry and densitometry.

    PubMed

    Tamai, Nobutake; Nambu, Yuko; Tanaka, Saeko; Goto, Masaki; Matsuki, Hitoshi; Kaneshina, Shoji

    2012-04-01

    We investigated the thermotropic volume behavior of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and dihexadecylphosphatidylcholine (DHPC) membranes using pressure perturbation calorimetry (PPC) and densitometry. The ln φ(2) vs temperature curves (φ(2): apparent molar volume of phospholipid) obtained from the PPC data using an analysis method that we developed agreed with the results from the density measurements for these lipids within the relative difference of about 0.62%. From those curves, the volume changes with the main transition were estimated at 18.0±0.49, 23.5±2.33 and 23.0±0.33 cm(3) mol(-1) for DMPC, DPPC and DHPC, respectively. For DPPC and DMPC, the average volume per methylene group of the hydrocarbon chains v(CH2) calculated by referring to the procedure by Nagle and Wilkinson was consistent with the previous result, which indicates that the DPPC bilayer in the gel state has denser hydrophobic bilayer core than the DMPC bilayer. For DHPC, the volume of the headgroup region v(H) was calculated to be 244 Å(3) by assuming that v(CH2) of DHPC equals that of DPPC above 45°C. This value was comparable to that of DPPC when the volume of the carbonyl groups was considered, which may signify that there is no significant conformational difference in the polar headgroups of both phospholipids. However, it was suggested from the consideration on v(H) of DHPC at 20°C that expansion of the headgroup region should occur as the interdigitated structure is formed, which means some conformational change of the headgroup region is induced by the interdigitation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Downstream Hepatic Arterial Blood Pressure Changes Caused by Deployment of the Surefire AntiReflux Expandable Tip

    SciTech Connect

    Rose, Steven C. Kikolski, Steven G.; Chomas, James E.

    2013-10-15

    Purpose: The purpose of this work was to evaluate blood pressure changes caused by deployment of the Surefire antireflux expandable tip. The pressure measurements are relevant because they imply changes in hepatoenteric arterial blood flow within this liver compartment during hepatic artery delivery of cytotoxic agents. Methods: After positioning the Surefire antireflux system in the targeted hepatic artery, blood pressure was obtained initially with the tip collapsed (or through a femoral artery sheath), then again after the tip was expanded before chemoembolization or yttrium 90 ({sup 90}Y) radioembolization. Results: Eighteen patients with liver malignancy underwent 29 procedures in 29 hepatic arteries (3 common hepatic, 22 lobar, 4 segmental). Systolic, diastolic, and mean blood pressure were all decreased by a mean of 29 mm Hg (p = 0.000004), 14 mm Hg (p = 0.0000004), and 22 mm Hg (p = 0.00000001), respectively. Conclusion: When the Surefire expandable tip is deployed to prevent retrograde reflux of agents, it also results in a significant decrease in blood pressure in the antegrade distribution, potentially resulting in hepatopedal blood flow in vessels that are difficult to embolize, such as the supraduodenal arteries.

  17. The influence of a high pressure gradient on unsteady velocity perturbations in the case of a turbulent supersonic flow

    NASA Technical Reports Server (NTRS)

    Dussauge, J. P.; Debieve, J. F.

    1980-01-01

    The amplification or reduction of unsteady velocity perturbations under the influence of strong flow acceleration or deceleration was studied. Supersonic flows with large velocity, pressure gradients, and the conditions in which the velocity fluctuations depend on the action of the average gradients of pressure and velocity rather than turbulence, are described. Results are analyzed statistically and interpreted as a return to laminar process. It is shown that this return to laminar implies negative values in the turbulence production terms for kinetic energy. A simple geometrical representation of the Reynolds stress production is given.

  18. Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core.

    PubMed

    de Oliveira, Guilherme A P; Marques, Mayra de A; Cruzeiro-Silva, Carolina; Cordeiro, Yraima; Schuabb, Caroline; Moraes, Adolfo H; Winter, Roland; Oschkinat, Hartmut; Foguel, Debora; Freitas, Mônica S; Silva, Jerson L

    2016-11-30

    Parkinson's disease is a neurological disease in which aggregated forms of the α-synuclein (α-syn) protein are found. We used high hydrostatic pressure (HHP) coupled with NMR spectroscopy to study the dissociation of α-syn fibril into monomers and evaluate their structural and dynamic properties. Different dynamic properties in the non-amyloid-β component (NAC), which constitutes the Greek-key hydrophobic core, and in the acidic C-terminal region of the protein were identified by HHP NMR spectroscopy. In addition, solid-state NMR revealed subtle differences in the HHP-disturbed fibril core, providing clues to how these species contribute to seeding α-syn aggregation. These findings show how pressure can populate so far undetected α-syn species, and they lay out a roadmap for fibril dissociation via pathways not previously observed using other approaches. Pressure perturbs the cavity-prone hydrophobic core of the fibrils by pushing water inward, thereby inducing the dissociation into monomers. Our study offers the molecular details of how hydrophobic interaction and the formation of water-excluded cavities jointly contribute to the assembly and stabilization of the fibrils. Understanding the molecular forces behind the formation of pathogenic fibrils uncovered by pressure perturbation will aid in the development of new therapeutics against Parkinson's disease.

  19. Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core

    PubMed Central

    de Oliveira, Guilherme A. P.; Marques, Mayra de A.; Cruzeiro-Silva, Carolina; Cordeiro, Yraima; Schuabb, Caroline; Moraes, Adolfo H.; Winter, Roland; Oschkinat, Hartmut; Foguel, Debora; Freitas, Mônica S.; Silva, Jerson L.

    2016-01-01

    Parkinson’s disease is a neurological disease in which aggregated forms of the α-synuclein (α-syn) protein are found. We used high hydrostatic pressure (HHP) coupled with NMR spectroscopy to study the dissociation of α-syn fibril into monomers and evaluate their structural and dynamic properties. Different dynamic properties in the non-amyloid-β component (NAC), which constitutes the Greek-key hydrophobic core, and in the acidic C-terminal region of the protein were identified by HHP NMR spectroscopy. In addition, solid-state NMR revealed subtle differences in the HHP-disturbed fibril core, providing clues to how these species contribute to seeding α-syn aggregation. These findings show how pressure can populate so far undetected α-syn species, and they lay out a roadmap for fibril dissociation via pathways not previously observed using other approaches. Pressure perturbs the cavity-prone hydrophobic core of the fibrils by pushing water inward, thereby inducing the dissociation into monomers. Our study offers the molecular details of how hydrophobic interaction and the formation of water-excluded cavities jointly contribute to the assembly and stabilization of the fibrils. Understanding the molecular forces behind the formation of pathogenic fibrils uncovered by pressure perturbation will aid in the development of new therapeutics against Parkinson’s disease. PMID:27901101

  20. Station coordinates in the standard earth 3 system and radiation-pressure perturbations from ISAGEX camera data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.; Latimer, J.; Mendes, G.

    1975-01-01

    Simultaneous and individual camera observations of GEOS 1, GEOS 2, Pageos, and Midas 4 obtained during the International Satellite Geodesy Experiment are utilized to determine station coordinates. The Smithsonian Astrophysical Observatory Standard Earth III system of coordinates is used to tie the geometrical network to a geocentric system and as a reference for calculating satellite orbits. A solution for coordinates combining geometrical and dynamical methods is obtained, and a comparison between the solutions and terrestrial data is made. The radiation-pressure and earth-albedo perturbations for Pageos are very large, and Pageos' orbits are used to evaluate the analytical treatment of these perturbations. Residual effects, which are probably of interest to aeronomists, remain in the Pageos orbits.

  1. Evaluation of the pressure tensor and surface tension for molecular fluids with discontinuous potentials using the volume perturbation method.

    PubMed

    Jiménez-Serratos, Guadalupe; Vega, Carlos; Gil-Villegas, Alejandro

    2012-11-28

    In this article we apply the volume-perturbation method to systems of particles interacting via discontinuous potentials. We have found that an accurate Monte Carlo simulation protocol can be used in order to study properties of very general non-spherical systems with discontinuous potentials, such as chain molecules and spherocylinders with square-well interactions, and chain molecules with square-well and square-shoulder interactions. From the simulation results obtained for these systems we verify that: (1) the method reproduces the pressure as used in NPT simulations; (2) discontinuous infinite repulsive interactions give asymmetric contributions to the pressure when compression and expansion movements are used; however for finite interactions these contributions are symmetric; and (3) the pressure contributions preserve the additivity of the potential interactions. Density profiles and surface tension for subcritical conditions are accurately predicted.

  2. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    SciTech Connect

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  3. Calculation of the surface tension and pressure components from a non-exponential perturbation method of the thermodynamic route

    NASA Astrophysics Data System (ADS)

    Ghoufi, A.; Malfreyt, P.

    2012-01-01

    Surface tension is probably the most important interfacial property and a large number of techniques have been devoted to its calculation. Usually, this calculation is carried out using mechanical or thermodynamic definitions. The mechanical route uses an arbitrary choice to affect the contribution of the pairwise force. To overcome this arbitrariness, a thermodynamic route based on the area perturbation (test-area (TA) method) has been developed for the calculation of surface tension. The volume perturbation (VP) method provides an original route to compute the components of the pressure tensor. These two routes are developed from the perturbation theory leading to working expressions using exponential averages of energy. The use of exponential averages makes the calculation strongly dependent on the occurrence of low values of ΔU. Additionally, the decomposition of the energy to obtain local surface tension is nontrivial. From the explicit derivation of the partition function the exponential average is avoided providing an interesting alternative to TA, VP, and mechanical methods. To make a consistent comparison, we study the profiles of the surface tension along the direction normal to the surface for the different definitions and techniques in the cases of liquid-vapor interfaces of acids gases, binary, and apolar systems.

  4. Subtleties in the calculation of the pressure and pressure tensor of anisotropic particles from volume-perturbation methods and the apparent asymmetry of the compressive and expansive contributions

    NASA Astrophysics Data System (ADS)

    Brumby, Paul E.; Haslam, Andrew J.; de Miguel, Enrique; Jackson, George

    2011-01-01

    An efficient and versatile method to calculate the components of the pressure tensor for hard-body fluids of generic shape from the perspective of molecular simulation is presented. After due consideration of all the possible repulsive contributions exerted by molecules upon their surroundings during an anisotropic system expansion, it is observed that such a volume change can, for non-spherical molecules, give rise to configurations where overlaps occur. This feature of anisotropic molecules has to be taken into account rigorously as it can lead to discrepancies in the calculation of tensorial contributions to the pressure. Using the condition of detailed balance as a basis, a perturbation method developed for spherical molecules has been extended so that it is applicable to non-spherical and non-convex molecules. From a series of 'ghost' anisotropic volume perturbations the residual contribution to the components of the pressure tensor may be accurately calculated. Comparisons are made with prior methods and, where relevant, results are evaluated against existing data. For inhomogeneous systems this method provides a particularly convenient route to the calculation of the interfacial tension (surface free energy) from molecular simulations.

  5. Statistical mechanics of light elements at high pressure. VII - A perturbative free energy for arbitrary mixtures of H and He

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Dewitt, H. E.

    1985-01-01

    A model free energy is presented which accurately represents results from 45 high-precision Monte Carlo calculations of the thermodynamics of hydrogen-helium mixtures at pressures of astrophysical and planetophysical interest. The free energy is calculated using free-electron perturbation theory (dielectric function theory), and is an extension of the expression given in an earlier paper in this series. However, it fits the Monte Carlo results more accurately, and is valid for the full range of compositions from pure hydrogen to pure helium. Using the new free energy, the phase diagram of mixtures of liquid metallic hydrogen and helium is calculated and compared with earlier results. Sample results for mixing volumes are also presented, and the new free energy expression is used to compute a theoretical Jovian adiabat and compare the adiabat with results from three-dimensional Thomas-Fermi-Dirac theory. The present theory gives slightly higher densities at pressures of about 10 megabars.

  6. Statistical mechanics of light elements at high pressure. VII - A perturbative free energy for arbitrary mixtures of H and He

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Dewitt, H. E.

    1985-01-01

    A model free energy is presented which accurately represents results from 45 high-precision Monte Carlo calculations of the thermodynamics of hydrogen-helium mixtures at pressures of astrophysical and planetophysical interest. The free energy is calculated using free-electron perturbation theory (dielectric function theory), and is an extension of the expression given in an earlier paper in this series. However, it fits the Monte Carlo results more accurately, and is valid for the full range of compositions from pure hydrogen to pure helium. Using the new free energy, the phase diagram of mixtures of liquid metallic hydrogen and helium is calculated and compared with earlier results. Sample results for mixing volumes are also presented, and the new free energy expression is used to compute a theoretical Jovian adiabat and compare the adiabat with results from three-dimensional Thomas-Fermi-Dirac theory. The present theory gives slightly higher densities at pressures of about 10 megabars.

  7. Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)--the effects of hydration, cosolvents and crowding.

    PubMed

    Suladze, Saba; Kahse, Marie; Erwin, Nelli; Tomazic, Daniel; Winter, Roland

    2015-04-01

    Pressure perturbation calorimetry (PPC) is an efficient technique to study the volumetric properties of biomolecules in solution. In PPC, the coefficient of thermal expansion of the partial volume of the biomolecule is deduced from the heat consumed or produced after small isothermal pressure-jumps. The expansion coefficient strongly depends on the interaction of the biomolecule with the solvent or cosolvent as well as on its packing and internal dynamic properties. This technique, complemented with molecular acoustics and densimetry, provides valuable insights into the basic thermodynamic properties of solvation and volume effects accompanying interactions, reactions and phase transitions of biomolecular systems. After outlining the principles of the technique, we present representative examples on protein folding, including effects of cosolvents and crowding, together with a discussion of the interpretation, and further applications.

  8. RELAP5-3D Analysis of Pressure Perturbation at the Peach Bottom BWR During Low-Flow Stability Tests

    SciTech Connect

    Lombardi Costa, Antonella; Petruzzi, Alessandro; D'Auria, Francesco

    2006-07-01

    Experimental and theoretical studies about the BWR (Boiling Water Reactor) stability have been performed to design a stable core configuration. BWR instabilities can be caused by inter-dependencies between thermal-hydraulic and reactivity feedback parameters such as the void-coefficient, for example, during a pressure perturbation event. In the present work, the pressure perturbation is considered in order to study in detail this type of transient. To simulate this event, including the strong feedback effects between core neutronic and reactor thermal-hydraulics, and to verify core behavior and evaluate parameters related to safety, RELAP5-3D code has been used in the analyses. The simulation was performed making use of Peach Bottom-2 BWR data to predict the dynamics of a real reactor during this type of event. Stability tests were conducted in the Peach Bottom 2 BWR, in 1977, and were done along the low-flow end of the rated power-flow line, and along the power-flow line corresponding to minimum recirculation pump speed. The calculated results are herein compared against the available experimental data. (authors)

  9. Pressure-induced perturbation on the active site of beta-amylase monitored from the sulfhydryl reaction.

    PubMed

    Tanaka, N; Mitani, D; Kunugi, S

    2001-05-22

    We investigated the pressure effect on the conformation of beta-amylase by monitoring the chemical reaction of the unpaired cysteine. Sweet potato beta-amylase is composed of four identical subunits, each of which contains six cysteine residues. These residues are inert to 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the native state due to steric hindrance. With the increase of the pressure from 0.1 to 400 MPa, the reactivity of one cysteine out of six residues was enhanced. We have identified that the reacted cysteine residue was Cys345 by the chemical cleavage at the reacted site. The reaction kinetics of Cys345 were pseudo-first-order, and the apparent rate constant was increased from 0.001 to 0.05 min(-)(1) with the increase of pressure from 100 to 400 MPa. The activation volume of the reaction rate was calculated as -24 +/- 2 mL/mol from the slope of the logarithmic plot of the pressure dependence of the rate constant. Hysteresis was not evident in the change of intrinsic fluorescence during the cycle of compression and decompression between 0.1 and 400 MPa, indicating that the tetramer does not dissociate under high pressure. This indicates that the enhancement of the reactivity of Cys345 was caused by the perturbation of local conformation under high pressure. The reaction of Cys345 was also enhanced by low concentrations of GuHCl, suggesting the significant role of hydration-driven fluctuation in the pressure-induced enhancement of the reactivity.

  10. Experimental study of pressure fluctuations and flow perturbations in air flow through vibrating pipes

    NASA Astrophysics Data System (ADS)

    Bagchi, K.; Gupta, S. K.; Kushari, A.; Iyengar, N. G. R.

    2009-12-01

    This paper discusses the results of an experimental study of the effect of pipe oscillations on the wall pressure field and flow rate through a metallic pipe with air flowing through it. The data presented in this paper show that the frequencies of pressure oscillations in a non-oscillating pipe are identical to the natural structural modes of the pipe suggesting the influence of structural properties on the fluid dynamics of the flow. The results presented in this paper also show that the wall pressure undergoes both a temporal as well as a spatial oscillation if the pipe is forced to oscillate periodically. The pressure oscillations are found to be harmonics of the pipe oscillations. There is a drop in the mean pressure when the pipe is subjected to periodic oscillations. The flow rate through the pipe is seen to undergo a periodic change over a range of almost 7 percent variation when the pipe is oscillated. The study presented in this paper elucidates the dominant effect of system dynamics on determining the flow behavior through a rigid pipe. The adverse effect of flow oscillations, induced by pipe motion, can lead to departure of the flow from the intended design conditions and can render the fluid supply system inadequate.

  11. A coupled cluster and Møller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal

    SciTech Connect

    Grüneis, Andreas

    2015-09-14

    We employ Hartree–Fock, second-order Møller-Plesset perturbation, coupled cluster singles and doubles (CCSD) as well as CCSD plus perturbative triples (CCSD(T)) theory to study the pressure induced transition from the rocksalt to the cesium chloride crystal structure in LiH. We show that the calculated transition pressure converges rapidly in this series of increasingly accurate many-electron wave function based theories. Using CCSD(T) theory, we predict a transition pressure for the structural phase transition in the LiH crystal of 340 GPa. Furthermore, we investigate the potential energy surface for this transition in the parameter space of the Buerger path.

  12. Exospheric perturbations by radiation pressure. 2: Solution for orbits in the ecliptic plane

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1980-01-01

    The instantaneous rates of change for the orbital elements eccentricity, longitude of perigee from the Sun, and longitude from the Sun of the ascending node are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tightly bound to the planet and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms escaping from Earth due to radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to deteriorate into the Earth's atmosphere.

  13. Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars

    NASA Astrophysics Data System (ADS)

    El Goresy, Ahmed; Gillet, Ph.; Miyahara, M.; Ohtani, E.; Ozawa, S.; Beck, P.; Montagnac, G.

    2013-01-01

    Shergottites and Chassignites practiced major deformation effects whose nature, magnitude and relevance were controversially evaluated and disputatively debated. Our studies of many shocked shergottites present, contrary to numerous previous reports, ample evidence for pervasive shock-induced melting amounting of at least 23 vol.% of the shergottite consisting of maskelynite and pyrrhotite, partial melting of pyroxene, titanomagnetite, ilmenite and finding of several high-pressure polymorphs and pressure-induced dissociation reactions. Our results cast considerable doubt on using the refractive index (RI) or cathodoluminescence (CL) spectra of maskelynite, in estimating the magnitudes of peak-shock pressure in both shergottites and ordinary chondrites. RI of maskelynite was set after quenching of the feldspar liquid before decompression to maskelynite glass followed by glass relaxation after decompression at the closure temperature of relaxation. The RI procedure widely practiced in the past 38 years revealed unrealistic very high-pressure estimates discrepant with the high-pressure mineral inventory in shocked shergottites and ordinary chondrites and with results obtained by robust laboratory static experiments. Shergottites contain the silica high-pressure polymorphs: the scrutinyite-structured polymorph seifertite, a monoclinic ultra dense polymorph of silica with ZrO2-structure, stishovite, a dense liquidus assemblage consisting of stishovite + Na-hexa-aluminosilicate (Na-CAS) and both K-lingunite and Ca-lingunite. Applying individual high-pressure silica polymorphs alone like stishovite, to estimate the equilibrium shock pressure, is inadequate due to the considerable shift of their nominal upper pressure bounds intrinsically induced by spatially variable absorptions of minor oxides like Al2O3, Na2O, FeO, MgO and TiO2. This practice revealed variable pressure estimates even within the same shergottite subjected to the same peak-shock pressure. Occurrence of Na

  14. Development of an experimental approach to explore in situ fracture hydromechanics with ground surface tiltmeters and periodic fluid pressure perturbations

    NASA Astrophysics Data System (ADS)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-04-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. The characterization of such systems remains challenging, especially at scales where transport processes are critically controlled by the structure and properties of fracture networks. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and fluid storage. It also governs stability issues, that is to say medium failure and associated seismicity. Laboratory, numerical or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are less commonplace, mainly because of technical, instrumental or cost limitations. Here, we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It consists in combining the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid and may be applied to natural media where high fluid pressures cannot be tolerated or achieved. In addition, the perturbation's oscillatory nature is intended to: 1) facilitate the recognition of its signature in tilt measurements; 2) explore various volumes of rock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, which is a broadly used data processing method in seismology, we managed to detect small tilt amplitudes associated to pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the 3 tested fractures but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are

  15. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure

    PubMed Central

    Ma, Yanbao; Sun, Chien-Pin; Fields, Michael; Li, Yang; Haake, David A; Churchill, Bernard M; Ho, Chih-Ming

    2009-01-01

    An unsteady microfluidic T-form mixer driven by pressure disturbances was designed and investigated. The performance of the mixer was examined both through numerical simulation and experimentation. Linear Stokes equations were used for these low Reynolds number flows. Unsteady mixing in a micro-channel of two aqueous solutions differing in concentrations of chemical species was described using a convection-dominated diffusion equation. The task was greatly simplified by employing linear superimposition of a velocity field for solving a scalar species concentration equation. Low-order-based numerical codes were found not to be suitable for simulation of a convection-dominated mixing process due to erroneous computational dissipation. The convection-dominated diffusion problem was addressed by designing a numerical algorithm with high numerical accuracy and computational-cost effectiveness. This numerical scheme was validated by examining a test case prior to being applied to the mixing simulation. Parametric analysis was performed using this newly developed numerical algorithm to determine the best mixing conditions. Numerical simulation identified the best mixing condition to have a Strouhal number (St)of 0.42. For a T-junction mixer (with channel width = 196 μm), about 75% mixing can be finished within a mixing distance of less than 3 mm (i.e. 15 channel width) at St = 0.42 for flow with a Reynolds number less than 0.24. Numerical results were validated experimentally by mixing two aqueous solutions containing yellow and blue dyes. Visualization of the flow field under the microscope revealed a high level of agreement between numerical simulation and experimental results. PMID:19177174

  16. Physical properties of archaeal tetraether lipid membranes as revealed by differential scanning and pressure perturbation calorimetry, molecular acoustics, and neutron reflectometry: effects of pressure and cell growth temperature.

    PubMed

    Zhai, Yong; Chong, Parkson Lee-Gau; Taylor, Leeandrew Jacques-Asa; Erlkamp, Mirko; Grobelny, Sebastian; Czeslik, Claus; Watkins, Erik; Winter, Roland

    2012-03-20

    The polar lipid fraction E (PLFE) is a major tetraether lipid component in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Using differential scanning and pressure perturbation calorimetry as well as ultrasound velocity and density measurements, we have determined the compressibilities and volume fluctuations of PLFE liposomes derived from different cell growth temperatures (T(g) = 68, 76, and 81 °C). The compressibility and volume fluctuation values of PLFE liposomes, which are substantially less than those detected from diester lipid membranes (e.g., DPPC), exhibit small but significant differences with T(g). Among the three T(g)s employed, 76 °C leads to the least compressible and most tightly packed PLFE membranes. This temperature is within the range for optimal cell growth (75-80 °C). It is known that a decrease in T(g) decreases the number of cyclopentane rings in archael tetraether lipids. Thus, our data enable us to present the new view that membrane packing in PLFE liposomes varies with the number of cyclopentane rings in a nonlinear manner, reaching maximal tightness when the tetraether lipids are derived from cells grown at optimal T(g)s. In addition, we have studied the effects of pressure on total layer thickness, d, and neutron scattering length density, ρ(n), of a silicon-D(2)O interface that is covered with a PLFE membrane using neutron reflectometry (NR). At 55 °C, d and ρ(n) are found to be rather insensitive to pressure up to 1800 bar, suggesting minor changes of the thickness of the membrane's hydrophobic core and headgroup orientation upon compression only.

  17. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  18. Analysis of Mesoscopic Structured 2-Propanol/Water Mixtures Using Pressure Perturbation Calorimetry and Molecular Dynamic Simulation.

    PubMed

    Bye, Jordan W; Freeman, Colin L; Howard, John D; Herz, Gregor; McGregor, James; Falconer, Robert J

    2017-01-01

    In this paper we demonstrate the application of pressure perturbation calorimetry (PPC) to the characterization of 2-propanol/water mixtures. PPC of different 2-propanol/water mixtures provides two useful measurements: (i) the change in heat (ΔQ); and (ii) the [Formula: see text] value. The results demonstrate that the ΔQ values of the mixtures deviate from that expected for a random mixture, with a maximum at ~20-25 mol% 2-propanol. This coincides with the concentration at which molecular dynamics (MD) simulations show a maximum deviation from random distribution, and also the point at which alcohol-alcohol hydrogen bonds become dominant over alcohol-water hydrogen bonds. Furthermore, the [Formula: see text] value showed transitions at 2.5 mol% 2-propanol and at approximately 14 mol% 2-propanol. Below 2.5 mol% 2-propanol the values of [Formula: see text] are negative; this is indicative of the presence of isolated 2-propanol molecules surrounded by water molecules. Above 2.5 mol% 2-propanol [Formula: see text] rises, reaching a maximum at ~14 mol% corresponding to a point where mixed alcohol-water networks are thought to dominate. The values and trends identified by PPC show excellent agreement not only with those obtained from MD simulations but also with results in the literature derived using viscometry, THz spectroscopy, NMR and neutron diffraction.

  19. A study of the relationship between water and anions of the Hofmeister series using pressure perturbation calorimetry.

    PubMed

    Bye, Jordan W; Falconer, Robert J

    2015-06-07

    Pressure perturbation calorimetry (PPC) was used to study the relationship between water and sodium salts with a range of different anions. At temperatures around 25 °C the heat on pressurisation (ΔQ) from 1 to 5 bar was negative for all solutions relative to pure water. The raw data showed that as the temperature rose, the gradient was positive relative to pure water and the transition temperature where ΔQ was zero was related to anion surface charge density and was more pronounced for the low-charge density anions. A three component model was developed comprising bulk water, the hydration layer and the solute to calculate the molar expansivity of the hydration layer around the ions in solution. The calculated molar expansivities of water in the hydration layer around the ions were consistently less than pure water. ΔQ at different disodium hydrogen phosphate concentrations showed that the change in molar enthalpy relative to pure water was not linear even as it approached infinite dilution suggesting that while hydration layers can be allocated to the water around ions this does not rule out interactions between water and ions extending beyond the immediate hydration layer.

  20. A normal-mode formula for the derivative of a waveguide pressure field with respect to an arbitrary three-dimensional sound speed perturbation

    NASA Astrophysics Data System (ADS)

    Thode, Aaron

    2003-10-01

    Semi-analytic expressions are derived for the first order derivative of a pressure field in a laterally homogeneous depth waveguide, with respect to an arbitrary three-dimensional refractive index perturbation in either the water column or ocean bottom. These expressions for the environmental derivative, derived using an adjoint method, require a three-dimensional spatial correlation between two Greens functions, weighted by an environmental parameter basis function, with the Greens functions expressed in terms of normal modes. When a particular set of orthogonal spatial basis functions is chosen, the three-dimensional spatial integral can be converted into a set of one-dimensional integrations over depth and azimuth. The use of the orthogonal basis permits environmental derivatives to be computed for any arbitrary sound-speed perturbation. To illustrate the formulas, a sensitivity study is presented that explores the impact of three-dimensional plane wave and cylindrical perturbations on the environmental derivative. Under certain circumstances it is found that perturbation components outside the vertical plane connecting the source and receiver have non-negligible effects on the pressure derivative. Potential applications of these formulas include benchmarking three-dimensional propagation codes, computing Cramer-Rao bounds for three-dimensional environmental parameter estimates, and potentially inverting for small three-dimensional refractive index distributions.

  1. Local pressure components and interfacial tension at a liquid-solid interface obtained by the perturbative method in the Lennard-Jones system

    NASA Astrophysics Data System (ADS)

    Fujiwara, K.; Shibahara, M.

    2014-07-01

    A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure components and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.

  2. Local pressure components and interfacial tension at a liquid-solid interface obtained by the perturbative method in the Lennard-Jones system.

    PubMed

    Fujiwara, K; Shibahara, M

    2014-07-21

    A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure components and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.

  3. Local pressure components and interfacial tension at a liquid-solid interface obtained by the perturbative method in the Lennard-Jones system

    SciTech Connect

    Fujiwara, K.; Shibahara, M.

    2014-07-21

    A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure components and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.

  4. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.

    PubMed

    Chong, Parkson Lee-Gau; Ravindra, Revanur; Khurana, Monika; English, Verrica; Winter, Roland

    2005-09-01

    Differential scanning calorimetry (DSC) and pressure perturbation calorimetry (PPC) were used to characterize thermal phase transitions, membrane packing, and volumetric properties in multilamellar vesicles (MLVs) composed of the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius grown at different temperatures. For PLFE MLVs derived from cells grown at 78 degrees C, the first DSC heating scan exhibits an endothermic transition at 46.7 degrees C, a small hump near 60 degrees C, and a broad exothermic transition at 78.5 degrees C, whereas the PPC scan reveals two transitions at approximately 45 degrees C and 60 degrees C. The endothermic peak at 46.7 degrees C is attributed to a lamellar-to-lamellar phase transition and has an unusually low DeltaH (3.5 kJ/mol) and DeltaV/V (0.1%) value, as compared to those for the main phase transitions of saturated diacyl monopolar diester lipids. This result may arise from the restricted trans-gauche conformational changes in the dibiphytanyl chain due to the presence of cyclopentane rings and branched methyl groups and due to the spanning of the lipid molecules over the whole membrane. The exothermic peak at 78.5 degrees C probably corresponds to a lamellar-to-cubic phase transition and exhibits a large and negative DeltaH value (-23.2 kJ/mol), which is uncommon for normal lamellar-to-cubic phospholipid phase transformations. This exothermic transition disappears in the subsequent heating scans and thus may involve a metastable phase, which is irreversible at the scan rate used. Further, there is no distinct peak in the plot of the thermal expansion coefficient alpha versus temperature near 78.5 degrees C, indicating that this lamellar-to-cubic phase transition is not accompanied by any significant volume change. For PLFE MLVs derived from cells grown at 65 degrees C, similar DSC and PPC profiles and thermal history responses were obtained. However, the lower growth temperature

  5. Continuous downstream processing of biopharmaceuticals.

    PubMed

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Worst case scenario: Investigation of the suitability of high frequency velocity and pressure methodologies to identify the flow conditions most likely to induce bedrock scour downstream from a dam

    NASA Astrophysics Data System (ADS)

    Humphries, R. P.; Rock, A.; Annandale, G. W.

    2011-12-01

    Erosion of bedrock by highly turbulent flows immediately downstream from dams can be detrimental to the stability of their structure. Therefore, determining the flow condition that induces maximum scour is a critical component of dam design analysis. Here, we investigate the suitability of two data collection methods for the purpose of assessing the occurrence and magnitude of scour. High temporal and spatial resolution data, collected simultaneously using both a 2-dimensional acoustic Doppler velocimeter (ADV), and a flush mounted pressure transducer, are used to assess the potential for bedrock scour. We present the results of a physical model designed to simulate conditions downstream of a dam where penstocks discharge highly turbulent flows onto a bedrock outcrop. Preliminary results display a strong correlation between the turbulent characteristics of both data sets, indicating their ability to characterize the properties of the flow. However, the results of spectral analysis of both wave forms illustrate the greater suitability of the ADV to capture the turbulent properties of the flow conditions at lower discharges, without the interference of the boundary. Unfortunately, lower signal strength adversely affects the quality of the ADV results in more turbulent flows, thus advocating for the use of the pressure data under more turbulent conditions. Additionally, results also indicate the backwater effect that increases flow depth in the discharge basin has a dampening effect on the turbulent flow properties of the highest discharges, producing a non-linear correlation between scour potential and discharge.

  7. Charting a course downstream

    SciTech Connect

    Not Available

    1984-01-01

    In the petroleum industry, the term downstream refers to those business operations that take place after the search for and the production of crude oil. The actual purchase of crude oil, its transportation to refineries, its refining and the subsequent marketing and distribution of the refined products take place, in industry parlance, downstream. No other industry is required to coordinate the movement of so large a volume of liquids to so many destinations. And few other industries contend with raw material and end-product uncertainties so profound. Both the mixture of available world crude oil supplies and the demand patterns for petroleum products are subject to change. The downstream operations of Marathon Petroleum Company are discussed. The objective is to maximize profitability in the context of constantly changing prices for a variety of products.

  8. Disposables in downstream processing.

    PubMed

    Gottschalk, Uwe

    2009-01-01

    Disposable equipment has been used for many years in the downstream processing industry, but mainly for filtration and buffer/media storage. Over the last decade, there has been increasing interest in the use of disposable concepts for chromatography, replacing steel and glass fixed systems with disposable plastic modules that can be discarded once exhausted, fouled or contaminated. These modules save on cleaning and validation costs, and their reduce footprints reduce buffer consumption, water for injection, labor and facility space, contributing to an overall reduction in expenditure that lowers the cost of goods. This chapter examines the practical and economic benefits of disposable modules in downstream processing.

  9. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    SciTech Connect

    Samanta, Atanu; Singh, Abhishek K.; Jain, Manish

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  10. The membrane lateral pressure-perturbing capacity of parabens and their effects on the mechanosensitive channel directly correlate with hydrophobicity.

    PubMed

    Kamaraju, Kishore; Sukharev, Sergei

    2008-10-07

    Lipid bilayers provide a natural anisotropic environment for membrane proteins and can serve as apolar reservoirs for lipid-derived second messengers or lipophilic drugs. Partitioning of lipophilic agents changes the lateral pressure distribution in the bilayer, affecting integral proteins. p-Hydroxybenzoic acid esters (parabens) are amphipathic compounds widely used as food and cosmetics preservatives, but the mechanisms of their broad antibacterial action are unknown. Here we describe effects of ethyl, propyl, and butyl parabens on the gating of the bacterial mechanosensitive channel of small conductance (MscS) and compare them with the surface activity and lateral pressure changes measured in lipid monolayers in the presence of these substances. Near the bilayer-monolayer equivalence pressure of 35 mN/m, ethyl, propyl, or butyl paraben present in the subphase at 1 mM increased the surface pressure of the monolayer by 5, 12.5, or 20%, respectively. No spontaneous activation of MscS channels was observed in patch-clamp experiments with parabens added from either the cytoplasmic or periplasmic side. Increasing concentrations of parabens on the cytoplasmic side of excised patches shifted activation curves of MscS toward higher tensions. A good correlation between the pressure increases in monolayers and shifts in activation midpoints in patch-clamp experiments suggested that the more hydrophobic parabens partition more strongly into the lipid and exert larger effects on channel gating through changes in lateral pressure. We show that cytoplasmically presented ethyl or butyl parabens both hasten the process of desensitization of MscS and influence inactivation differently. The higher rate of desensitization is likely due to increased lateral pressure in the cytoplasmic leaflet surrounding the gate. Neither of the parabens strongly affects the rate of recovery and does not seem to penetrate the TM2-TM3 interhelical clefts in MscS. We conclude that the bacterial

  11. Neutrino Factory Downstream Systems

    SciTech Connect

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  12. Brine Flow Up a Borehole Caused by Pressure Perturbation From CO2 Storage: Static and Dynamic Evaluations

    EPA Science Inventory

    Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...

  13. Brine Flow Up a Borehole Caused by Pressure Perturbation From CO2 Storage: Static and Dynamic Evaluations

    EPA Science Inventory

    Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...

  14. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    NASA Astrophysics Data System (ADS)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  15. A Semi-Analytical Solution for Large-Scale Injection-Induced PressurePerturbation and Leakage in a Laterally Bounded Aquifer-AquitardSystem

    SciTech Connect

    Zhou, Quanlin; Birkholzer, Jens T.; Tsang, Chin-Fu

    2008-07-15

    A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer-aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a 'laterally bounded' system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer's radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated.

  16. Perturbing turbulence beyond collapse

    NASA Astrophysics Data System (ADS)

    Kühnen, Jakob; Scarselli, Davide; Hof, Björn; Nonlinear Dynamics; Turbulence Group Team

    2016-11-01

    Wall-bounded turbulent flows are considered to be in principle stable against perturbations and persist as long as the Reynolds number is sufficiently high. We show for the example of pipe flow that a specific perturbation of the turbulent flow field disrupts the genesis of new turbulence at the wall. This leads to an immediate collapse of the turbulent flow and causes complete relaminarisation further downstream. The annihilation of turbulence is effected by a steady manipulation of the streamwise velocity component only, greatly simplifying control efforts which usually require knowledge of the highly complex three dimensional and time dependent velocity fields. We present several different control schemes from laboratory experiments which achieve the required perturbation of the flow for total relaminarisation. Transient growth, a linear amplification mechanism measuring the efficiency of eddies in redistributing shear that quantifies the maximum perturbation energy amplification achievable over a finite time in a linearized framework, is shown to set a clear-cut threshold below which turbulence is impeded in its formation and thus permanently annihilated.

  17. Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Statnikov, Vladimir; Sayadi, Taraneh; Meinke, Matthias; Schmid, Peter; Schröder, Wolfgang

    2015-01-01

    A sparsity promoting dynamic mode decomposition (DMD) combined with a classical data-based statistical analysis is applied to the turbulent wake of a generic axisymmetric configuration of an Ariane 5-like launcher at Ma∞ = 6.0 computed via a zonal Reynolds-averaged Navier-Stokes/large-eddy simulation (RANS/LES) method. The objective of this work is to gain a better understanding of the wake flow dynamics of the generic launcher by clarification and visualization of initially unknown pressure perturbation sources on its after-body in coherent flow patterns. The investigated wake topology is characterized by a subsonic cavity region around the cylindrical nozzle extension which is formed due to the displacement effect of the afterexpanding jet plume emanating from the rocket nozzle (Mae = 2.52, pe/p∞ = 100) and the shear layer shedding from the main body. The cavity region contains two toroidal counter-rotating large-scale vortices which extensively interact with the turbulent shear layer, jet plume, and rocket walls, leading to the shear layer instability process to be amplified. The induced velocity fluctuations in the wake and the ultimately resulting pressure perturbations on the after-body feature three global characteristic frequency ranges, depending on the streamwise position inside the cavity. The most dominant peaks are detected at SrD r3 = 0.85 ± 0.075 near the nozzle exit, while the lower frequency peaks, in the range of SrD r2 = 0.55 ± 0.05 and SrD r1 = 0.25 ± 0.05, are found to be dominant closer to the rocket's base. A sparse promoting DMD algorithm is applied to the time-resolved velocity field to clarify the origin of the detected peaks. This analysis extracts three low-frequency spatial modes at SrD = 0.27, 0.56, and 0.85. From the three-dimensional shape of the DMD modes and the reconstructed modulation of the mean flow in time, it is deduced that the detected most dominant peaks of SrD r3 ≈ 0.85 are caused by the radial flapping motion of

  18. Thermal perturbation of the Sun

    NASA Technical Reports Server (NTRS)

    Twigg, L. W.; Endal, A. S.

    1982-01-01

    Thermal perturbations of the solar convection zone can be modeled (to the first order) by perturbing the mixing length parameter alpha (equal to the ratio of the mixing length to the pressure scale height) used in the standard mixing length theory of convection. Results of such an analysis are presented and discussed in relation to recent work by others.

  19. PERTURBING LIGNIFICATION

    USDA-ARS?s Scientific Manuscript database

    Perturbing lignification is possible in multiple and diverse ways. Without obvious growth/development phenotypes, transgenic angiosperms can have lignin levels reduced to half the normal level, can have compositions ranging from very high-guaiacyl/low-syringyl to almost totally syringyl, and can eve...

  20. Downstream Development of a Laminar Spot

    NASA Astrophysics Data System (ADS)

    Sekiya, Naoki; Matsumoto, Akira

    It was well-known that a disturbance, introduced artificially into a supercritical laminar boundary layer along a flat plate, is still laminar in the initial stage of its downstream development. Thus, we named it a "laminar spot" because it resembles a turbulent spot though its velocity perturbation remains laminar. From velocity measurements using a rake-type 16-channel hot-wire probe, we found that in the first stage of the downstream development of a laminar spot, its maximum width was at 0.2δ (what is called the critical layer) and one-half of its lateral growth angle was about 5°, which is almost one-half that of a turbulent spot. We call this region a "laminar spot region". In the present study, we measured in detail the velocity field of a laminar spot using a new hot-wire probe in the laminar spot region. The results showed that a laminar spot consists of some hairpin vortices and some induced U-shaped vortices under the hairpin vortices. Because of the interaction of the velocities induced by the respective vortex legs, the legs of the U-shaped vortices were located at the outermost part of the spot. Moreover, the new vortex legs extended spanwise at about 4° as the spot traveled downstream. Consequently, we concluded that the laminar spot grew spanwise in accordance with the span of these vortex legs.

  1. A novel approach for the isolation of the sound and pseudo-sound contributions from near-field pressure fluctuation measurements: analysis of the hydroacoustic and hydrodynamic perturbation in a propeller-rudder system

    NASA Astrophysics Data System (ADS)

    Felli, Mario; Grizzi, Silvano; Falchi, Massimo

    2014-01-01

    The main scope of the present work is to investigate the mechanisms underlying the hydroacoustic and hydrodynamic perturbations in a rudder operating in the wake of a free running marine propeller. The study consisted of detailed near-field pressure fluctuation measurements which were acquired on the face and back surfaces of the rudder, at different deflection angles. To this aim, a novel wavelet-filtering procedure was applied to separate and analyze distinctly the acoustic and hydrodynamic components of the recorded near-field pressure signals. The filtering procedure undertakes the separation of intermittent pressure peaks induced by the passage of eddy structures, interpreted as pseudo-sound, from homogenous background fluctuations, interpreted as sound. The use of wavelet in the filtering procedure allows to overcome the limitations of the earlier attempts based on frequency (wave number) band-pass filtering, retrieving the overall frequency content of both the acoustic and the hydrodynamic components and returning them as independent signals in the time domain. Acoustic and hydrodynamic pressure distributions were decomposed harmonically and compared to the corresponding topologies of the vorticity field, derived from earlier LDV measurements performed by Felli and Falchi (Exp Fluids 51(5):1385-1402, 2011). The study highlighted that the acoustic perturbation is mainly correlated with the unsteady load variations of the rudder and to the shear layer fluctuations of the propeller streamtube. Conversely, the dynamics of the propeller tip and hub vortices underlies the hydrodynamic perturbation.

  2. Dynamic Perturbation of a Turbulent Boundary Layer and Experimental Identification of Critical-Layer-Type Behavior

    NASA Astrophysics Data System (ADS)

    Jacobi, Ian; McKeon, Beverley J.

    2010-11-01

    A zero-pressure gradient turbulent boundary layer is perturbed by a spatially impulsive patch of two-dimensional roughness elements, which are actuated dynamically to alternate between smooth and rough surface conditions, and the downstream response is measured by hot-wire anemometry and particle image velocimetry. The dynamic perturbation is observed to contribute a periodic signature to the downstream flow-field, which manifests itself in critical-layer type behavior. The downstream flow field is reconstructed in a phase-locked sense in order to compare the observed behavior with asymptotic representations of the expected behavior at matched flow conditions. Perturbation using a periodic disturbance is shown to reveal underlying features of the turbulent boundary layer which are intimately connected to the critical layer framework for turbulent pipe flow proposed by McKeon & Sharma (see the DFD-2010 presentation on `Structure from the critical layer framework in turbulent flow' by Sharma & McKeon), while simultaneously providing practical insight on the manipulation of the structure of boundary layers.

  3. The downstream decay of trapped lee waves

    NASA Astrophysics Data System (ADS)

    Hills, Matthew O. G.

    profile, boundary layer decay is dominant with minimal decay occurring through stratospheric leakage at any Ns. With the realistic profile shown by the linear model to be suitable for strong stratospheric leakage, downstream decay is stronger due to the stratosphere than for the roughest lower boundary simulated (z0 = 0.5 m, where z0 is the roughness length). A move towards understanding the decay of trapped waves in three dimensions is also discussed through use of high-resolution simulations of lee waves downwind of the Aleutian islands using WRF. In the control run, close agreement is found between the modeled wave field, and that observed by satellite. As the roughness length of the lower boundary is increased, the rate of decay is noted to increase by approximately 10% across the range of z0 simulated --- although much of this increase occurs across the change from 10-2 m to 10-1 m, rather than the more linear increase seen in our 2D simulations. An additional subject discussed is the generation of striations in stacked lenticular clouds. High-resolution numerical simulations show that striations in excess of 150 m in width may be generated by perturbations in the relative humidity as small as +/- 0.25%. Perturbations of this scale are small enough to be likely ubiquitous in nature, explaining why these clouds always have a layered appearance.

  4. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  5. Local pressure components and interfacial tensions of a liquid film in the vicinity of a solid surface with a nanometer-scale slit pore obtained by the perturbative method

    SciTech Connect

    Fujiwara, K.; Shibahara, M.

    2015-03-07

    A classical molecular dynamics simulation was conducted for a liquid-solid interfacial system with a nanometer-scale slit pore in order to reveal local thermodynamic states: local pressure components and interfacial tensions of a liquid film in the vicinity of the slit. The simulation also examined the transition mechanism between the two states of the liquid film: (a) liquid film on the slit and (b) liquid film in the slit, based on the local thermodynamic quantities from a molecular point of view. An instantaneous expression of the local pressure components and interfacial tensions, which is based on a volume perturbation, was presented to investigate time-dependent phenomena in molecular dynamics simulations. The interactions between the particles were described by the 12-6 Lennard-Jones potential, and effects of the fluid-solid interaction intensity on the local pressure components and interfacial tensions of the fluid in the vicinity of the slit were examined in detail by the presented perturbative method. The results revealed that the local pressure components tangential to the solid surface in the vicinity of the 1st fluid layer from the solid surface are different in a two dimensional plane, and the difference became pronounced in the vicinity of the corner of the slit, for cases where the fluid-solid interaction intensities are relatively strong. The results for the local interfacial tensions of the fluid inside the slit suggested that the local interfacial tensions in the vicinity of the 2nd and 3rd layers of the solid atoms from the entrance of the slit act as a trigger for the transition between the two states under the influence of a varying fluid-solid interaction.

  6. Perturbed Radius of Geosynchronous-Satellite Orbit

    NASA Astrophysics Data System (ADS)

    Kawase, Sei-Ichiro

    We analyze theoretically how the radius of geosynchronous orbits would vary owing to the perturbations due to the sun/moon gravity, solar radiation pressure, and the oblate earth. The analysis is simple, as it uses a diagrammatic method to solve near-circular orbital motions. Results are obtained in seven terms of corrections to the radius of non-perturbed ideal orbits. Each correction term is derived, with clear physical meaning, from each component of the perturbing forces.

  7. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  8. Downstream processing in marine biotechnology.

    PubMed

    Muffler, Kai; Ulber, Roland

    2005-01-01

    Downstream processing is one of the most underestimated steps in bioprocesses and this is not only the case in marine biotechnology. However, it is well known, especially in the pharmaceutical industry, that downstreaming is the most expensive and unfortunately the most ineffective part of a bioprocess. Thus, one might assume that new developments are widely described in the literature. Unfortunately this is not the case. Only a few working groups focus on new and more effective procedures to separate products from marine organisms. A major characteristic of marine biotechnology is the wide variety of products. Due to this variety a broad spectrum of separation techniques must be applied. In this chapter we will give an overview of existing general techniques for downstream processing which are suitable for marine bioprocesses, with some examples focussing on special products such as proteins (enzymes), polysaccharides, polyunsaturated fatty acids and other low molecular weight products. The application of a new membrane adsorber is described as well as the use of solvent extraction in marine biotechnology.

  9. Simple Theory of Geosynchronous-Orbit Perturbations

    NASA Astrophysics Data System (ADS)

    Kawase, Sei-Ichiro

    A simple perturbation theory is introduced for modeling geosynchronous orbits. The theory uses diagrammatic representations of orbits, and derives the perturbations in a direct manner without using differential equations. Perturbations of major importance are derived, including satellite-longitude changes due to the earth’s asymmetric shape, orbital eccentricity increase due to the sun-radiation pressure, and orbital plane inclination due to the sun/moon attraction. The theory clarifies the physical/geometrical meaning of the perturbations while using minimal mathematical analysis.

  10. Boundary perturbation theory for nonanalytic perturbations

    SciTech Connect

    Pomraning, G.C.

    1983-10-01

    First-order perturbation formulas are derived that give the change in the eigenvalue of a reactive system due to a perturbation in the exterior shape of the system. In physical terms, this perturbation involves adding a thin layer of arbitrary material to the surface of the unperturbed system (or deleting material past a material discontinuity). From a mathematical viewpoint, the perturbation is sufficiently general to give rise to a nonanalytic behavior of the eigenvalue on the smallness parameter. Both transport theory and the diffusion approximation are treated.

  11. Discrete Newtonian cosmology: perturbations

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.; Gibbons, Gary W.

    2015-03-01

    In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.

  12. Tenacious myths about cosmological perturbations larger than the horizon size

    NASA Astrophysics Data System (ADS)

    Press, W. H.; Vishniac, E. T.

    1980-07-01

    The linear perturbation theory of the Einstein-de Sitter (k = 0, Friedmann) big-bang cosmology in synchronous gauge is reviewed, with particular care taken to distinguish physical perturbations, which are locally measurable, from pure-gauge perturbations, which correspond to an unperturbed spacetime written in gauge-perturbed coordinates. Some new results are obtained about the growth of physical perturbations at early times, while they are still outside their horizon; and some commonly accepted rules for estimating the growth and decay of perturbations are shown to be false. Source terms corresponding to inhomogeneous perturbations in the equation of state (or, equivalently, to isothermal perturbations) are next included: the density perturbations that are induced are calculated, including both pressure terms and (higher-order) pressure-gradient terms. Here also, some uncritical beliefs are shown to be incorrect.

  13. Tenacious myths about cosmological perturbations larger than the horizon size

    SciTech Connect

    Press, W.H.; Vishniac, E.T.

    1980-07-01

    We review the linear perturbation theory of the Einstein--de Sitter (k=0, Friedmann) big-bang cosmology in synchronous gauge, taking particular care to distinguish physical perturbations, which are locally measurable, from pure-gauge perturbations, which correspond to an unperturbed spacetime written in gauge-perturbed coordinates. Some new results are obtained about the growth of physical perturbations at early times, while they are still outside their horizon; and some commonly accepted rules for estimating the growth and decay of perturbations are shown to be false. Source terms corresponding to inhomogeneous perturbations in the equation of state (or, equivalently, to isothermal perturbations) are next included: we calculate the density perturbations that are induced, including both pressure terms and (higher-order) pressure-gradient terms. Here also, some uncritical beliefs are shown to be incorrect.

  14. Downstream behavior of fission products

    SciTech Connect

    Johnson, I.; Farahat, M.K.; Settle, J.L.; Johnson, C.E.; Ritzman, R.

    1986-01-01

    The downstream behavior of fission products has been investigated by injecting mixtures of CsOH, CsI, and Te into a flowing steam/hydrogen stream and determining the physical and chemical changes that took place as the gaseous mixture flowed down a reaction duct on which a temperature gradient (1000/sup 0/ to 200/sup 0/C) had been imposed. Deposition on the wall of the duct occurred by vapor condensation in the higher temperature regions and by aerosol deposition in the remainder of the duct. Reactions in the gas stream between CsOH and CsI and between CsOH and Te had an effect on the vapor condensation. The aerosol was characterized by the use of impingement tabs placed in the gas stream.

  15. Auxin perception and downstream events

    PubMed Central

    Strader, Lucia; Zhao, Yunde

    2016-01-01

    Auxin responses have been arbitrarily divided into two categories: genomic and non-genomic effects. Genomic effects are largely mediated by SCFTIR1/AFB-Aux/IAA auxin receptor complexes whereas it has been postulated that AUXIN BINDING PROTEIN 1 (ABP1) controls the non-genomic effects. However, the roles of ABP1 in auxin signaling and plant development were recently called into question. In this paper, we present recent progress in understanding the SCFTIR1/AFB-Aux/IAA pathway. In more detail, we discuss the current understanding of ABP1 research and provide an updated view of ABP1-related genetic materials. Further, we propose a model in which auxin efflux carriers may play a role in auxin perception and we briefly describe recent insight on processes downstream of auxin perception. PMID:27131035

  16. Experimental and analytical investigation of fan flow interaction with downstream struts

    NASA Technical Reports Server (NTRS)

    Olsen, T. L.; Ng, W. F.; Obrien, W. F., Jr.

    1985-01-01

    An investigation which was designed to provide insight into the fundamental aspects of fan rotor-downstream strut interaction was undertaken. High response, miniature pressure transducers were embedded in the rotor blades of an experimental fan rig. Five downstream struts were placed at several downstream locations in the discharge flow annulus of the single-stage machine. Significant interaction of the rotor blade surface pressures with the flow disturbance produced by the downstream struts was measured. Several numerical procedures for calculating the quasi-steady rotor response due to downstream flow obstructions were developed. A preliminary comparison of experimental and calculated fluctuating blade pressures on the rotor blades shows general agreement between the experimental and calculated values.

  17. Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions.

    PubMed

    Cooper, A; Johnson, C M; Lakey, J H; Nöllmann, M

    2001-11-28

    Modern techniques in microcalorimetry allow us to measure directly the heat changes and associated thermodynamics for biomolecular processes in aqueous solution at reasonable concentrations. All these processes involve changes in solvation/hydration, and it is natural to assume that the heats for these processes should reflect, in some way, such changes in solvation. However, the interpretation of data is still somewhat ambiguous, since different non-covalent interactions may have similar thermodynamic signatures, and analysis is frustrated by large entropy-enthalpy compensation effects. Changes in heat capacity (Delta C(p)) have been related to changes in hydrophobic hydration and non-polar accessible surface areas, but more recent empirical and theoretical work has shown how this need not always be the case. Entropy-enthalpy compensation is a natural consequence of finite Delta C(p) values and, more generally, can arise as a result of quantum confinement effects, multiple weak interactions, and limited free energy windows, giving rise to thermodynamic homeostasis that may be of evolutionary and functional advantage. The new technique of pressure perturbation calorimetry (PPC) has enormous potential here as a means of probing solvation-related volumetric changes in biomolecules at modest pressures, as illustrated with preliminary data for a simple protein-inhibitor complex.

  18. Gas phase oxidation downstream of a catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Anderson, D. N.

    1979-01-01

    Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.

  19. A downstream voyage with mercury

    USGS Publications Warehouse

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  20. Collisionless relaxation of downstream ion distributions in low-Mach number shocks

    SciTech Connect

    Gedalin, M.; Friedman, Y.; Balikhin, M.

    2015-07-15

    Collisionlessly formed downstream distributions of ions in low-Mach number shocks are studied. General expressions for the asymptotic value of the ion density and pressure are derived for the directly transmitted ions. An analytical approximation for the overshoot strength is suggested for the low-β case. Spatial damping scale of the downstream magnetic oscillations is estimated.

  1. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine.

    PubMed

    Phillips, Aaron A; Krassioukov, Andrei V; Ainslie, Philip N; Warburton, Darren E R

    2014-03-15

    Individuals with spinal cord injury (SCI) above the T6 spinal segment suffer from orthostatic intolerance. How cerebral blood flow (CBF) responds to orthostatic challenges in SCI is poorly understood. Furthermore, it is unclear how interventions meant to improve orthostatic tolerance in SCI influence CBF. This study aimed to examine 1) the acute regional CBF responses to rapid changes in blood pressure (BP) during orthostatic stress in individuals with SCI and able-bodied (AB) individuals; and 2) the effect of midodrine (alpha1-agonist) on orthostatic tolerance and CBF regulation in SCI. Ten individuals with SCI >T6, and 10 age- and sex-matched AB controls had beat-by-beat BP and middle and posterior cerebral artery blood velocity (MCAv, PCAv, respectively) recorded during a progressive tilt-test to quantify the acute CBF response and orthostatic tolerance. Dynamic MCAv and PCAv to BP relationships were evaluated continuously in the time domain and frequency domain (via transfer function analysis). The SCI group was tested again after administration of 10 mg midodrine to elevate BP. Coherence (i.e., linearity) was elevated in SCI between BP-MCAv and BP-PCAv by 35% and 22%, respectively, compared with AB, whereas SCI BP-PCAv gain (i.e., magnitudinal relationship) was reduced 30% compared with AB (all P < 0.05). The acute (i.e., 0-30 s after tilt) MCAv and PCAv responses were similar between groups. In individuals with SCI, midodrine led to improved PCAv responses 30-60 s following tilt (10 ± 3% vs. 4 ± 2% decline; P < 0.05), and a 59% improvement in orthostatic tolerance (P < 0.01). The vertebrobasilar region may be particularly susceptible to hypoperfusion in SCI, leading to increased orthostatic intolerance.

  2. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine

    PubMed Central

    Phillips, Aaron A.; Krassioukov, Andrei V.; Ainslie, Philip N.

    2014-01-01

    Individuals with spinal cord injury (SCI) above the T6 spinal segment suffer from orthostatic intolerance. How cerebral blood flow (CBF) responds to orthostatic challenges in SCI is poorly understood. Furthermore, it is unclear how interventions meant to improve orthostatic tolerance in SCI influence CBF. This study aimed to examine 1) the acute regional CBF responses to rapid changes in blood pressure (BP) during orthostatic stress in individuals with SCI and able-bodied (AB) individuals; and 2) the effect of midodrine (alpha1-agonist) on orthostatic tolerance and CBF regulation in SCI. Ten individuals with SCI >T6, and 10 age- and sex-matched AB controls had beat-by-beat BP and middle and posterior cerebral artery blood velocity (MCAv, PCAv, respectively) recorded during a progressive tilt-test to quantify the acute CBF response and orthostatic tolerance. Dynamic MCAv and PCAv to BP relationships were evaluated continuously in the time domain and frequency domain (via transfer function analysis). The SCI group was tested again after administration of 10 mg midodrine to elevate BP. Coherence (i.e., linearity) was elevated in SCI between BP-MCAv and BP-PCAv by 35% and 22%, respectively, compared with AB, whereas SCI BP-PCAv gain (i.e., magnitudinal relationship) was reduced 30% compared with AB (all P < 0.05). The acute (i.e., 0–30 s after tilt) MCAv and PCAv responses were similar between groups. In individuals with SCI, midodrine led to improved PCAv responses 30–60 s following tilt (10 ± 3% vs. 4 ± 2% decline; P < 0.05), and a 59% improvement in orthostatic tolerance (P < 0.01). The vertebrobasilar region may be particularly susceptible to hypoperfusion in SCI, leading to increased orthostatic intolerance. PMID:24436297

  3. Basic Equations in Statics and Kinetics of Protein Polymerization and the Mechanism of the Formation and Dissociation of Amyloid Fibrils Revealed by Pressure Perturbation.

    PubMed

    Tachibana, Hideki

    2015-01-01

    Studies of the pressure-dissociation of several amyloid or amyloid-like fibrils have shown that the fibril state is considerably voluminous. Quantitative characterization of the protein fibrillation reaction with respect to volumetric parameters is necessary to elucidate mechanisms of amyloid fibrillation in molecular terms such as protein cavity and hydration. Here we discuss, firstly, basic equations in statics and kinetics of protein polymerization as employed to obtain thermodynamic, volumetric, and kinetic parameters. Equilibrium treatment of the reactions with the scheme such as one-step polymerization, linear-association polymerization, or nucleation-dependent polymerization, and kinetic treatment of seeded linear-polymerization or spontaneous nucleation-elongation polymerization are described. In particular we will detail kinetics of the dissociation of fibrils which have been produced under the linear-association mechanism and therefore the length-distribution of which conforms to a geometric sequence in the degree of polymerization with a common ratio r, which is less than, and usually very close to, unity. In this case, an observed macroscopic rate of dissociation is shown to be a product of the microscopic elementary dissociation rate constant and a factor (1-r), extremely reduced compared with the intrinsic elementary rate. Secondly, we discuss protein conformational states in fibrillogenesis with molecular and volumetric observations reported, such as the unfolded state responsible for the association with seeds and the extension of amyloid fibrils, the transition state in which protein cavity formation and dehydration occur to intermediate levels, and the fibril state in which they occur to final respective levels which, in some cases, depend on the maturity of the fibril.

  4. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  5. Downstream boundary effects on the frequency of self-excited oscillations in transonic diffuser flows

    NASA Astrophysics Data System (ADS)

    Hsieh, T.

    1986-10-01

    Investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows were conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with two equation turbulence models. It was found that the flow fields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity, and shock. The existence of a suction slot in the experimental setpup obscures the physical downstream boundary and therefore presents a difficulty for quantitative comparisons between computation and experiment.

  6. Instantons from perturbation theory

    NASA Astrophysics Data System (ADS)

    Serone, Marco; Spada, Gabriele; Villadoro, Giovanni

    2017-07-01

    In quantum mechanics and quantum field theory perturbation theory generically requires the inclusion of extra contributions nonperturbative in the coupling, such as instantons, to reproduce exact results. We show how full nonperturbative results can be encoded in a suitable modified perturbative series in a class of quantum mechanical problems. We illustrate this explicitly in examples which are known to contain nonperturbative effects, such as the (supersymmetric) double-well potential, the pure anharmonic oscillator, and the perturbative expansion around a false vacuum.

  7. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  8. Non-gravitational perturbations and satellite geodesy

    SciTech Connect

    Milani, A.; Nobill, A.M.; Farinella, P.

    1987-01-01

    This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.

  9. Density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  10. Closed-loop control of flow-induced sound in a flow duct with downstream resonant cavities.

    PubMed

    Lu, Z B; Halim, D; Cheng, L

    2013-03-01

    A closed-loop-controlled surface perturbation technique was developed for controlling the flow-induced sound in a flow duct and acoustic resonance inside downstream cavities. The surface perturbation was created by piezo-ceramic THUNDER (THin layer composite UNimorph Driver and sEnsoR) actuators embedded underneath the surface of a test model with a semi-circular leading edge. A modified closed-loop control scheme based on the down-sampling theory was proposed and implemented due to the practical vibration characteristic limitation of THUNDER actuators. The optimally tuned control achieved a sound pressure reduction of 17.5 dB in the duct and 22.6 dB inside the cavity at the vortex shedding frequency, respectively. Changes brought up by the control in both flow and acoustic fields were analyzed in terms of the spectrum phase shift of the flow field over the upper surface of the test model, and a shift in the vortex shedding frequency. The physical mechanism behind the control was investigated in the view of developing an optimal control strategy.

  11. The symmetric turbulent plane wake downstream of a sharp trailing edge

    NASA Technical Reports Server (NTRS)

    Bogucz, E. A.

    1991-01-01

    The analysis and modeling of the symmetric turbulent plane wake downstream of a sharp trailing edge is addressed. A compact description of the flow near the trailing edge is formulated using the results of a previous asymptotic analysis. The new description retains the two-layered structure identified in the previous work, and it clarifies the principal dynamics of the flow in the near-wake outer layer, away from the wake centerline. For zero-pressure-gradient flow, the near-wake outer layer is shown to be represented to leading order by the similarity solution that governs the outer region of the surface boundary layer. The leading perturbation in the outer layer due to the developing near-wake inner-layer flow is identified, and this is shown to be asymptotically smaller than undetermined higher-order terms associated with the surface boundary-layer flow. Results of the new near-wake analysis are used to formulate an algebraic eddy viscosity model for wake flow predictions at arbitrary distances from the trailing edge. The model is used in a numerical solution of the boundary layer equations, and computed velocity and Reynolds stress profiles are shown to compare well with experimental data.

  12. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  13. The Perturbed Puma Model

    NASA Astrophysics Data System (ADS)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  14. Alfvén wings in the lunar wake: The role of pressure gradients

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Khurana, K. K.; Kivelson, M. G.; Fatemi, S.; Holmström, M.; Angelopoulos, V.; Jia, Y. D.; Wan, W. X.; Liu, L. B.; Chen, Y. D.; Le, H. J.; Shi, Q. Q.; Liu, W. L.

    2016-11-01

    Strongly conducting or magnetized obstacles in a flowing plasma generate structures called Alfvén wings, which mediate momentum transfer between the obstacle and the plasma. Nonconducting obstacles such as airless planetary bodies can generate such structures, which, however, have so far been seen only in sub-Alfvénic regime. A novel statistical analysis of simultaneous measurements made by two ARTEMIS satellites, one in the solar wind upstream of the Moon and one in the downstream wake, and comparison of the data with results of a three-dimensional hybrid model of the interaction reveal that the perturbed plasma downstream of the Moon generates Alfvén wings in super-Alfvénic solar wind. In the wake region, magnetic field lines bulge toward the Moon and the plasma flows are significantly perturbed. We use the simulation to show that some of the observed bends of the field result from field-aligned currents. The perturbations in the wake thus arise from a combination of compressional and Alfvénic perturbations. Because of the super-Alfvénic background flow of the solar wind, the two Alfvén wings fold back to form a small intersection angle. The currents that form the Alfvén wing in the wake are driven by both plasma flow deceleration and a gradient of plasma pressure, positive down the wake from the region just downstream of the Moon. Such Alfvén wing structures, caused by pressure gradients in the wake and the resulting plasma slowdown, should exist downstream of any nonconducting body in a super-Alfvénic plasma flow.

  15. Downstream Benefits of Energy Management Systems

    DTIC Science & Technology

    2015-12-01

    of downstream benefits associated with EMSs: addressing errors that cause energy waste, identifying wasteful buildings on an installation, and...identifying valuable follow- on investments. Much of the value associated with EMSs is in analyzing the data provided, and future improvements in EMS data...downstream benefits, return on investment 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18

  16. Perturbed nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Proctor, T. G.

    1974-01-01

    For perturbed nonlinear systems, a norm, other than the supremum norm, is introduced on some spaces of continuous functions. This makes possible the study of new types of behavior. A study is presented on a perturbed nonlinear differential equation defined on a half line, and the existence of a family of solutions with special boundedness properties is established. The ideas developed are applied to the study of integral manifolds, and examples are given.

  17. Downstream boundary effects on the frequency of self-excited oscillations in transonic diffuser flows

    NASA Technical Reports Server (NTRS)

    Hsieh, T.; Coakley, T. J.

    1987-01-01

    An investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows has been conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with a two-equation turbulence model. It was found that the unsteady diffuser flowfields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity and shock. Computational results suggest that the mechanism causing the self-excited oscillation changes from viscous convective wave dominated oscillations to inviscid acoustic wave dominated oscillations when the location of downstream boundary varies from 8.66 to 134.7 throat height. The existence of a suction slot in the experimental setup obscures the physical downstream boundary and, therefore, presents a difficulty for quantitative comparisons between computation and experiment.

  18. Meander cutoffs nonlocally accelerate upstream and downstream migration and channel widening

    NASA Astrophysics Data System (ADS)

    Schwenk, Jon; Foufoula-Georgiou, Efi

    2016-12-01

    The hydrologic and sediment dynamics within and near cutoffs have long been studied, establishing them as effective agents of rapid local geomorphic change. However, the morphodynamic impact of individual cutoffs at the reachwide scale remains unknown, mainly due to insufficient observations of channel adjustments over large areal extents and at high temporal frequency. Here we show via annually resolved, Landsat-derived channel masks of the dynamic meandering Ucayali River in Peru that cutoffs act as perturbations that nonlocally accelerate river migration and drive channel widening both upstream and downstream of the cutoff locations. By tracking planform changes of individual meander bends near cutoffs, we find that the downstream distance of cutoff influence scales linearly with the length of the removed reach. The discovery of nonlocal cutoff influence supports the hypothesis of "avalanche"-type behavior in meander cutoff dynamics and presents new challenges in modeling and prediction of rivers' self-adjusting responses to perturbations.

  19. Pressure reducing regulator

    DOEpatents

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  20. Pressure reducing regulator

    DOEpatents

    Whitehead, John C.; Dilgard, Lemoyne W.

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  1. Downstream extent of the N Reactor plume

    SciTech Connect

    Dauble, D.D.; Ecker, R.M.; Vail, L.W.; Neitzel, D.A.

    1987-09-01

    The downstream extent of the N Reactor thermal plume was studied to assess the potential for fisheries impacts downstream of N Reactor. The N Reactor plume, as defined by the 0.5/sup 0/F isotherm, will extend less than 10 miles downstream at river flows greater than or equal to annual average flows (120,000 cfs). Incremental temperature increases at the Oregon-Washington border are expected to be less than 0.5/sup 0/F during all Columbia River flows greater than the minimum regulated flows (36,000 cfs). The major physical factor affecting Columbia River temperatures in the Hanford Reach is solar radiation. Because the estimated temperature increase resulting from N Reactor operations is less than 0.3/sup 0/F under all flow scenarios, it is unlikely that Columbia River fish populations will be adversely impacted.

  2. Results from modeling and simulation of chemical downstream etch systems

    SciTech Connect

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  3. Philippines' downstream sector poised for growth

    SciTech Connect

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  4. Twisting perturbed parafermions

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2017-07-01

    The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang-Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6) nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current-current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3) sigma model which is reformulated as perturbed parafermions.

  5. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  6. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  7. Evolution of dark energy perturbations in scalar-tensor cosmologies

    SciTech Connect

    Bueno Sanchez, J. C.; Perivolaropoulos, L.

    2010-05-15

    We solve analytically and numerically the generalized Einstein equations in scalar-tensor cosmologies to obtain the evolution of dark energy and matter linear perturbations. We compare our results with the corresponding results for minimally coupled quintessence perturbations. We find that scalar-tensor dark energy density perturbations are amplified by a factor of about 10{sup 4} compared to minimally coupled quintessence perturbations on scales less than about 1000 h{sup -1} Mpc (sub-Hubble scales). On these scales dark energy perturbations constitute a fraction of about 10% compared to matter density perturbations. Scalar-tensor dark energy density perturbations are anticorrelated with matter linear perturbations on sub-Hubble scales. This anticorrelation of matter with negative pressure perturbations induces a mild amplification of matter perturbations by about 10% on sub-Hubble scales. The evolution of scalar field perturbations on sub-Hubble scales is scale independent and therefore corresponds to a vanishing effective speed of sound (c{sub s{Phi}=}0). We briefly discuss the observational implications of our results, which may include predictions for galaxy and cluster halo profiles that are modified compared to {Lambda}CDM. The observed properties of these profiles are known to be in some tension with the predictions of {Lambda}CDM.

  8. Perturbed nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Proctor, T. G.

    1972-01-01

    The existence of a solution defined for all t and possessing a type of boundedness property is established for the perturbed nonlinear system y = f(t,y) + F(t,y). The unperturbed system x = f(t,x) has a dichotomy in which some solutions exist and are well behaved as t increases to infinity, and some solution exists and are well behaved as t decreases to minus infinity. A similar study is made for a perturbed nonlinear differential equation defined on a half line, R+, and the existence of a family of solutions with special boundedness properties is established. The ideas are applied to integral manifolds.

  9. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  10. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  11. Asymmetric Separation and Perturbation Sensitivity in an Annular Diffuser

    NASA Astrophysics Data System (ADS)

    Coffman, Jesse; Morris, Scott; Jemcov, Aleksander; Cameron, Joshua

    2013-11-01

    When an annular diffuser stalls, the separation can take many forms. Experiments show that one type of separation appears to be asymmetric and periodic. This asymmetry appears to be influenced by upstream and downstream components and inlet flow conditions. By understanding the changes effected at the exit of the diffuser by the inlet perturbations, the diffuser performance can be more accurately predicted within a system. This work aims to understand the influence of velocity perturbations at the inlet of the diffuser on the overall duct performance. This is done by application of the Euler equations and a RANS simulation for various circumferential wavenumbers.

  12. Cosmological perturbations of a perfect fluid and noncommutative variables

    SciTech Connect

    De Felice, Antonio; Gerard, Jean-Marc; Suyama, Teruaki

    2010-03-15

    We describe the linear cosmological perturbations of a perfect fluid at the level of an action, providing thus an alternative to the standard approach based only on the equations of motion. This action is suited not only to perfect fluids with a barotropic equation of state, but also to those for which the pressure depends on two thermodynamical variables. By quantizing the system we find that (1) some perturbation fields exhibit a noncommutativity quite analogous to the one observed for a charged particle moving in a strong magnetic field, (2) local curvature and pressure perturbations cannot be measured simultaneously, (3) ghosts appear if the null energy condition is violated.

  13. Perturbations of the Robertson-Walker space

    NASA Astrophysics Data System (ADS)

    Hwang, Jai Chan

    This dissertation contains three parts consisting of thirteen chapters. Each chapter is self-contained, and can be read independently. In chapter 1, we have presented a complete set of cosmological perturbation equations using the covariant equations. We also present an explicit solution for the evolution of large scale cosmological density perturbations assuming a perfect fluid. In chapter 2, two independent gauge-invariant variables are derived which are continuous at any transition where there is a discontinuous change in pressure. In chapter 3, we present a Newtonian counterpart to the general relativistic covariant approach to cosmological perturbations. In chapter 4, we present a simple way of deriving cosmological perturbation equations in generalized gravity theories which accounts for metric perturbations in gauge-invariant way. We apply this approach to the f(phi,R)-omega(phi)phi, cphi;c Lagrangian. In chapter 5, we have derived second order differential equations for cosmological perturbations in a Robertson-Walker space, for each of the following gravity theories: f(R) gravity, generalized scalar-tensor gravity, gravity with non-minimally coupled scalar field, and induced gravity. Asymptotic solutions are derived for the large and small scale limits. In chapter 6, classical evolution of density perturbations in the large scale limit is clarified in the generalized gravity theories. In chapter 7, we apply our method to a theory with the Lagrangian L approximately f(R) + gamma RR;c;c. In chapter 8, T(M)ab;b equals 0 is shown in a general ground. In chapter 9, the origin of the Friedmann-like behavior of the perturbed model in the large scale limit is clarified in a comoving gauge. Thus, when the imperfect fluid contributions are negligible, the large scale perturbations in a nearly flat background evolve like separate Friedmann models. In chapter 10, we generalize the perturbation equations applicable to a class of generalized gravity theories with multi

  14. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  15. Downstream cumulative effects of land use on freshwater communities

    NASA Astrophysics Data System (ADS)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities

  16. Consistent perturbations in an imperfect fluid

    SciTech Connect

    Sawicki, Ignacy; Amendola, Luca; Saltas, Ippocratis D.; Kunz, Martin E-mail: i.saltas@sussex.ac.uk E-mail: martin.kunz@unige.ch

    2013-01-01

    We present a new prescription for analysing cosmological perturbations in a more-general class of scalar-field dark-energy models where the energy-momentum tensor has an imperfect-fluid form. This class includes Brans-Dicke models, f(R) gravity, theories with kinetic gravity braiding and generalised galileons. We employ the intuitive language of fluids, allowing us to explicitly maintain a dependence on physical and potentially measurable properties. We demonstrate that hydrodynamics is not always a valid description for describing cosmological perturbations in general scalar-field theories and present a consistent alternative that nonetheless utilises the fluid language. We apply this approach explicitly to a worked example: k-essence non-minimally coupled to gravity. This is the simplest case which captures the essential new features of these imperfect-fluid models. We demonstrate the generic existence of a new scale separating regimes where the fluid is perfect and imperfect. We obtain the equations for the evolution of dark-energy density perturbations in both these regimes. The model also features two other known scales: the Compton scale related to the breaking of shift symmetry and the Jeans scale which we show is determined by the speed of propagation of small scalar-field perturbations, i.e. causality, as opposed to the frequently used definition of the ratio of the pressure and energy-density perturbations.

  17. Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica

    SciTech Connect

    Matthews, M J; Bass, I L; Guss, G M; Widmayer, C C; Ravizza, F L

    2007-10-29

    Mitigation of 351nm laser-induced damage sites on fused silica exit surfaces by selective CO{sub 2} treatment has been shown to effectively arrest the exponential growth responsible for limiting the lifetime of optics in high-fluence laser systems. However, the perturbation to the optical surface profile following the mitigation process introduces phase contrast to the beam, causing some amount of downstream intensification with the potential to damage downstream optics. Control of the laser treatment process and measurement of the associated phase modulation is essential to preventing downstream 'fratricide' in damage-mitigated optical systems. In this work we present measurements of the surface morphology, intensification patterns and damage associated with various CO{sub 2} mitigation treatments on fused silica surfaces. Specifically, two components of intensification pattern, one on-axis and another off-axis can lead to damage of downstream optics and are related to rims around the ablation pit left from the mitigation process. It is shown that control of the rim structure around the edge of typical mitigation sites is crucial in preventing damage to downstream optics.

  18. Effects of small impoundments on downstream crayfish assemblages

    Treesearch

    Susan B. Adams

    2013-01-01

    Dams and impoundments, both large and small, affect downstream physicochemical characteristics and up- and downstream biotic communities. I tested whether small dams and their impoundments altered downstream crayfish assemblages in northern Mississippi. I sampled crayfish and measured physicochemical variables at 4 sites downstream of impoundments (outlet sites) and 4...

  19. Enabling technologies: fermentation and downstream processing.

    PubMed

    Weuster-Botz, Dirk; Hekmat, Dariusch; Puskeiler, Robert; Franco-Lara, Ezequiel

    2007-01-01

    Efficient parallel tools for bioprocess design, consequent application of the concepts for metabolic process analysis as well as innovative downstream processing techniques are enabling technologies for new industrial bioprocesses from an engineering point of view. Basic principles, state-of-the-art techniques and cutting-edge technologies are briefly reviewed. Emphasis is on parallel bioreactors for bioprocess design, biochemical systems characterization and metabolic control analysis, as well as on preparative chromatography, affinity filtration and protein crystallization on a process scale.

  20. Renormalized Lie perturbation theory

    SciTech Connect

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another.

  1. Fish reproductive guilds downstream of dams.

    PubMed

    Vasconcelos, L P; Alves, D C; Gomes, L C

    2014-11-01

    Fish reproductive guilds were used to evaluate the responses of species with different reproductive strategies during two different periods of post-dam construction. The data used for the comparisons were collected in the upper Paraná River floodplain (Brazil), downstream of the Porto Primavera dam, 2 and 10 years after impoundment. The abundance (catch per unit effort, CPUE), species richness, evenness and structure of communities, all within reproductive guilds, were used to test the hypothesis that these metrics vary spatially and temporally. The influence of damming on species structure and the diversity of fish reproductive guilds varied spatiotemporally, and species with opportunistic reproductive strategies tended to be less affected. Conversely, long-distance migratory species responded more markedly to spatiotemporal variations, indicating that the ecosystem dynamics exert greater effects on populations of these species. Thus, the effects of a dam, even if attenuated, may extend over several years, especially downstream. This finding emphasizes the importance of maintaining large undammed tributaries downstream of reservoirs.

  2. Covariant Bardeen perturbation formalism

    NASA Astrophysics Data System (ADS)

    Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.

    2014-05-01

    In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.

  3. Amplitudes of Spiral Perturbations

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Patsis, P. A.

    2014-03-01

    It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.

  4. Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS

    PubMed Central

    Stelniec-Klotz, Iwona; Legewie, Stefan; Tchernitsa, Oleg; Witzel, Franziska; Klinger, Bertram; Sers, Christine; Herzel, Hanspeter; Blüthgen, Nils; Schäfer, Reinhold

    2012-01-01

    RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here, we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT–PCR and western blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions, we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype. PMID:22864383

  5. Identification of novel stress-induced genes downstream of chop.

    PubMed Central

    Wang, X Z; Kuroda, M; Sok, J; Batchvarova, N; Kimmel, R; Chung, P; Zinszner, H; Ron, D

    1998-01-01

    CHOP (GADD153) is a small nuclear protein that dimerizes avidly with members of the C/EBP family of transcription factors. Normally undetectable, it is expressed at high levels in cells exposed to conditions that perturb protein folding in the endoplasmic reticulum and induce an endoplasmic reticulum stress response. CHOP expression in stressed cells is linked to the development of programmed cell death and, in some instances, cellular regeneration. In this study, representational difference analysis was used to compare the complement of genes expressed in stressed wild-type mouse embryonic fibroblasts with those expressed in cells nullizygous for chop. CHOP expression, in concert with a second signal, was found to be absolutely required for the activation by stress of a set of previously undescribed genes referred to as DOCs (for downstream of CHOP). DOC4 is a mammalian ortholog of a Drosophila gene, Tenm/Odz, implicated in patterning of the early fly embryo, whereas DOC6 encodes a newly recognized homolog of the actin-binding proteins villin and gelsolin. These results reveal the existence of a novel CHOP-dependent signaling pathway, distinct from the known endoplasmic reticulum unfolded protein response, which may mediate changes in cell phenotype in response to stress. PMID:9649432

  6. Adiabatic expansion effect of natural gas at the downstream extremity of the pipeline

    NASA Astrophysics Data System (ADS)

    Kessal, Mohand; Amara, Khadidja; Belaidi, Idir

    2017-02-01

    Two numerical simulation examples of natural gas transients are studied, based on the conservation equations of fluid mechanics and energy, discribed by the flow parameters, pressure (P) and the speed (V) and temperature (T) in a gas pipeline. The considered exemple is under static pressure, at which two boundary conditions are applied to its downstream end, whith an adiabatic discharge to the atmosphere. Obtained results have shown the parameters variation induced by the conditions of these instantaneous gas output conditions.

  7. Discrete reductive perturbation technique

    SciTech Connect

    Levi, Decio; Petrera, Matteo

    2006-04-15

    We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.

  8. Perturbative cavity quantum electrodynamics

    SciTech Connect

    Hinds., E.A.

    1994-12-31

    Charged particles are coupled to the electromagnetic radiation field at a fundamental level. Even in a vacuum, an atom is perturbed by the zero-point quantum noise of the electromagnetic field, and this coupling is responsible for some basic phenomena such as the Lamb shift and spontaneous radiative decay. These radiative effects can be calculated to high precision using the theory of quantum electrodynamics (QED), and for cases when the atom is in free space, remarkable agreement has been found between theory and experiment. One is led to conclude QED provides a reliable description of the coupling between the charged particles and electromagnetic fields. 101 refs., 20 figs.

  9. AKT/PKB Signaling: Navigating Downstream

    PubMed Central

    Manning, Brendan D.; Cantley, Lewis C.

    2009-01-01

    The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. PMID:17604717

  10. Downstream patterns of riverbed scour and fill

    USGS Publications Warehouse

    Emmett, William W.; Leopold, Luna Bergere

    1963-01-01

    Progress has been made in describing riverbed scour and fill at a given stream section. One needs only the data routinely collected at a stream-gaging station to observe scour and fill at that station. However, similar progress has not been made to determine whether or not the scour and fill observed at a given section extends over a relatively long reach of the channel. Gaging stations are generally located too far apart to draw any conclusions as to scour processes between stations. It remains necessary then to establish a sufficient number of cross sections along a channel to describe the downstream pattern of riverbed scour.

  11. Perturbations of gravitational instantons

    NASA Astrophysics Data System (ADS)

    Torre, C. G.

    1990-06-01

    Ashtekar's spinorial formulation of general relativity is used to study perturbations of gravitational instantons corresponding to finite-action solutions of the Euclidean Einstein equations (with a nonzero cosmological constant) possessing an anti-self-dual Weyl curvature tensor. It is shown that, with an appropriate ``on-shell'' form of infinitesimal gauge transformations, the space of solutions to the linearized instanton equation can be described in terms of an elliptic complex; the cohomology of the complex defines gauge-inequivalent perturbations. Using this elliptic complex we prove that there are no nontrivial solutions to the linearized instanton equation on conformally anti-self-dual Einstein spaces with a positive cosmological constant. Thus, the space of gravitational instantons is discrete when the cosmological constant is positive; i.e., the dimension of the gravitational moduli space in this case is zero. We discuss the issue of linearization stability as well as the feasibility of using the Atiyah-Singer index theorem to compute the dimension of the gravitational moduli space when the cosmological constant is negative.

  12. Plasma waves downstream of weak collisionless shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.

    1993-01-01

    In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

  13. Upstream and Downstream Influence in STBLI Instability

    NASA Astrophysics Data System (ADS)

    Martin, Pino; Priebe, Stephan; Helm, Clara

    2016-11-01

    Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.

  14. 9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH SIDE OF DOWNSTREAM BANK OF DAM - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  15. Unit 5, downstream from Hickory Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, downstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  16. Unit 4, downstream from Johns Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 4, downstream from Johns Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  17. Unit 1, downstream from Laurel Run Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 1, downstream from Laurel Run - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  18. Unit 6, downstream from Ferndale Bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 6, downstream from Ferndale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  19. Unit 2, downstream from Coppersdale Bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 2, downstream from Coppersdale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  20. Unit 5, downstream from Haynes Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, downstream from Haynes Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  1. Unit 3, downstream from Fourth Avenue Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, downstream from Fourth Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  2. Unit 6, downstream from Horner Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 6, downstream from Horner Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  3. Unit 3, downstream from Point Park Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, downstream from Point Park - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  4. Unit 4, downstream from First Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 4, downstream from First Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  5. Network response to internal and external perturbations in large sand-bed braided rivers

    NASA Astrophysics Data System (ADS)

    Schuurman, F.; Kleinhans, M. G.; Middelkoop, H.

    2015-03-01

    The intrinsic instability of bars, bifurcations and branches in large braided rivers is a challenge to understand and predict. Even more, the reach-scale effect of human-induced perturbations on the braided channel network is still unresolved. In this study, we used a physics-based model to simulate the hydromorphodynamics in a large braided river and applied different types of perturbations. We analyzed the propagation of the perturbations through the braided channel network. The results showed that the perturbations initiate an instability that propagates in downstream direction by means of bifurcation instability. It alters and rotates the approaching flow of the bifurcations. The propagation celerity is in the same order of magnitude as the theoretical sand wave propagation rate. The adjustments of the bifurcations also change bar migration and reshape, with a feedback to the upstream bifurcation and alteration of the approaching flow to the downstream bifurcation. This way, the morphological effect of a perturbation amplifies in downstream direction. Thus, the interplay of bifurcation instability and asymmetrical reshaping of bars was found to be essential for propagation of the effects of a perturbation. The study also demonstrated that the large-scale bar statistics are hardly affected.

  6. Conformal perturbation theory

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Magnoli, Nicodemo

    2017-08-01

    Statistical systems near a classical critical point have been intensively studied from both theoretical and experimental points of view. In particular, correlation functions are of relevance in comparing theoretical models with the experimental data of real systems. In order to compute physical quantities near a critical point, one needs to know the model at the critical (conformal) point. In this line, recent progress in the knowledge of conformal field theories, through the conformal bootstrap, gives the hope of getting some interesting results also outside of the critical point. In this paper, we will review and clarify how, starting from the knowledge of the critical correlators, one can calculate in a safe way their behavior outside the critical point. The approach illustrated requires the model to be just scale invariant at the critical point. We will clarify the method by applying it to different kind of perturbations of the 2D Ising model.

  7. Perturbative theory for Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  8. Perturbative theory for Brownian vortexes.

    PubMed

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  9. Downstream hydraulic geometry of alluvial rivers

    NASA Astrophysics Data System (ADS)

    Julien, P. Y.

    2015-03-01

    This article presents a three-level approach to the analysis of downstream hydraulic geometry. First, empirical concepts based on field observations of "poised" conditions in irrigation canals are examined. Second, theoretical developments have been made possible by combining basic relationships for the description of flow and sediment transport in alluvial rivers. Third, a relatively new concept of equivalent channel widths is presented. The assumption of equilibrium may describe a perpetual state of change and adjustments. The new concepts define the trade-offs between some hydraulic geometry parameters such as width and slope. The adjustment of river widths and slope typically follows a decreasing exponential function and recent developments indicate how the adjustment time scale can be quantified. Some examples are also presented to illustrate the new concepts presented and the realm of complex river systems.

  10. Turbulence decay downstream of an active grid

    NASA Astrophysics Data System (ADS)

    Bewley, Gregory; Bodenschatz, Eberhard

    2015-11-01

    A grid in a wind tunnel stirs up turbulence that has a certain large-scale structure. The moving parts in a so-called ``active grid'' can be programmed to produce different structures. We use a special active grid in which each of 129 paddles on the grid has its own position-controlled servomotor that can move independently of the others. We observe among other things that the anisotropy in the amplitude of the velocity fluctuations and in the correlation lengths can be set and varied with an algorithm that oscillates the paddles in a specified way. The variation in the anisotropies that we observe can be explained by our earlier analysis of anisotropic ``soccer ball'' turbulence (Bewley, Chang and Bodenschatz 2012, Phys. Fluids). We define the influence of this variation in structure on the downstream evolution of the turbulence. with Eberhard Bodenschatz and others.

  11. Widespread Inducible Transcription Downstream of Human Genes

    PubMed Central

    Vilborg, Anna; Passarelli, Maria C.; Yario, Therese A.; Tycowski, Kazimierz T.; Steitz, Joan A.

    2015-01-01

    Summary Pervasive transcription of the human genome generates RNAs whose mode of formation and functions are largely uncharacterized. Here, we combine RNA-Seq with detailed mechanistic studies to describe a transcript type derived from protein-coding genes. The resulting RNAs, which we call DoGs for downstream of gene containing transcripts, possess long non-coding regions (often >45 kb) and remain chromatin bound. DoGs are inducible by osmotic stress through an IP3 receptor signaling-dependent pathway, indicating active regulation. DoG levels are increased by decreased termination of the upstream transcript, a previously undescribed mechanism for rapid transcript induction. Relative depletion of polyA signals in DoG regions correlates with increased levels of DoGs after osmotic stress. We detect DoG transcription in several human cell lines and provide evidence for thousands of DoGs genome-wide. PMID:26190259

  12. Channel changes downstream from a dam

    USGS Publications Warehouse

    Hadley, R.F.; Emmett, W.W.

    1998-01-01

    A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the riffle to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.

  13. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  14. The downstream financial effect of hepatology.

    PubMed

    Cohen, Stanley Martin; Gundlapalli, Sushama; Shah, Ami R; Johnson, Tricia J; Rechner, John A; Jensen, Donald M

    2005-05-01

    As a more consultative but less procedurally oriented specialty, Hepatology has been considered a financial liability in some academic centers. However, no actual data exist on the relative contribution of a Hepatology practice. The purpose of this study was to evaluate the direct and indirect (i.e., downstream effect) charges generated by a Hepatology section in comparison with a Gastroenterology section. Using a computerized database, retrospective cohorts of new outpatient consultations and initial admissions seen by the Hepatology and Gastroenterology sections over a 3-month period were created. The cohorts were followed for 12 months. Charges generated directly to the section (direct charges) and to the hospital system (indirect charges) were calculated. Each cohort consisted of 179 patients. The Hepatology patients generated 5,851,463 dollars in overall charges for the hospital, compared with 2,273,339 dollars for the Gastroenterology cohort. Only 3.6% of the Hepatology charges were direct, compared with 15.9% of the Gastroenterology charges. For every 1 dollar billed by Hepatology, the hospital system generated an additional 26.95 dollars in charges (51.03 dollars for the orthotopic liver transplantation patients, and 14.26 dollars for the non-orthotopic liver transplantation patients). For every 1 dollar billed by Gastroenterology, the hospital system generated an additional 5.31 dollars in charges. Similar inpatient collection rates were seen between the two groups (27.7% for hepatology and 33.6% for gastroenterology). In conclusion, although Hepatology generates only a small amount of direct charges, it accounts for a very substantial amount of indirect or downstream billing for an academic medical center. This study validates the importance of a hospital's support for a Hepatology section, especially in a center performing orthotopic liver transplantation.

  15. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  16. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  17. Perturbing a quantum gravity condensate

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen

    2015-02-01

    In a recent proposal using the group field theory approach, a spatially homogeneous (generally anisotropic) universe is described as a quantum gravity condensate of "atoms of space," which allows the derivation of an effective cosmological Friedmann equation from the microscopic quantum gravity dynamics. Here we take a first step towards the study of cosmological perturbations over the homogeneous background. We consider a state in which a single "atom" is added to an otherwise homogeneous condensate. Backreaction of the perturbation on the background is negligible and the background dynamics can be solved separately. The dynamics for the perturbation takes the form of a quantum cosmology Hamiltonian for a "wave function," depending on background and perturbations, of the product form usually assumed in a Born-Oppenheimer approximation. We show that the perturbation we consider corresponds to a spatially homogeneous metric perturbation, and for this case derive the usual procedures in quantum cosmology from fundamental quantum gravity.

  18. Cosmological perturbations in massive bigravity

    SciTech Connect

    Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk

    2014-12-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.

  19. Drug target prioritization by perturbed gene expression and network information

    PubMed Central

    Isik, Zerrin; Baldow, Christoph; Cannistraci, Carlo Vittorio; Schroeder, Michael

    2015-01-01

    Drugs bind to their target proteins, which interact with downstream effectors and ultimately perturb the transcriptome of a cancer cell. These perturbations reveal information about their source, i.e., drugs’ targets. Here, we investigate whether these perturbations and protein interaction networks can uncover drug targets and key pathways. We performed the first systematic analysis of over 500 drugs from the Connectivity Map. First, we show that the gene expression of drug targets is usually not significantly affected by the drug perturbation. Hence, expression changes after drug treatment on their own are not sufficient to identify drug targets. However, ranking of candidate drug targets by network topological measures prioritizes the targets. We introduce a novel measure, local radiality, which combines perturbed genes and functional interaction network information. The new measure outperforms other methods in target prioritization and proposes cancer-specific pathways from drugs to affected genes for the first time. Local radiality identifies more diverse targets with fewer neighbors and possibly less side effects. PMID:26615774

  20. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  1. An experimental study of turbine vane heat transfer with leading edge and downstream film cooling

    NASA Astrophysics Data System (ADS)

    Nirmalan, V.; Hylton, L. D.

    1989-06-01

    This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.

  2. Mean Flow Perturbation Analysis of an Underexpanded Jet

    NASA Astrophysics Data System (ADS)

    Bhaumik, Swagata; Gaitonde, Datta; Shen, Hao; Acoustics Technology, Boeing Research; Technology, Boeing Company Collaboration

    2015-11-01

    Here, we illustrate a novel method to predict sound generated by imperfectly expanded jets where the resulting shock-cells can yield significant broadband noise in the far-field. We describe continued development of mean flow perturbation method to analyze the response of an underexpanded jet to small perturbations. This method originates from the work of Touber & Sandham (Theor. Comput. Fluid. Dyn., 2009) for nominally 2D shock-wave turbulent-boundary layer interactions. This method is an initial boundary value problem and is equally applicable to flows with sharp gradients. It degenerates into the LST, global and PSE analysis under suitable conditions. We use this method to study finer details of the noise generation mechanisms of an under-expanded round jet at M = 1 . 0 . Preliminary results on time-averaged mean turbulent flow-field perturbed by an annular multi-periodic excitation close to the nozzle-exit plane show interaction of downstream propagating disturbances with the feet of the shock-cells. This causes significant amplification of disturbances resulting in the formation of toroidal vortical structures. This further destabilize the shock-cells, finally resulting in acoustic wave propagation in two distinct downstream and upstream directions.

  3. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  4. The influence of downstream passage on the flow within an annular S-shaped duct

    SciTech Connect

    Sonoda, T.; Arima, T.; Oana, M.

    1998-10-01

    Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the influence of the shape of the downstream passage located at the exit of the duct on the flow. A duct with six struts and the same geometry as that used to connect the compressor spools on the new experimental small two-spool turbofan engine was investigated. Two types of downstream passage were used. One type had a straight annular passage and the other a curved annular passage with a meridional flow path geometry similar to that of the centrifugal compressor. Results showed that the total pressure loss near the hub is large due to instability of the flow, as compared with that near the casing. Also, a vortex related to the horseshoe vortex was observed near the casing. In the case of the curved annular passage, the total pressure loss near the hub was greatly increased compared with the case of the straight annular passage, and the spatial position of this vortex depends on the passage core pressure gradient. Furthermore, results of calculation using an in-house-developed three-dimensional Navier-Stokes code with a low-Reynolds-number {kappa}-{epsilon} turbulence model were in good qualitative agreement with experimental results. According to the simulation results, a region of very high pressure loss is observed near the hub at the duct exit with the increase of inlet boundary layer thickness. Such regions of high pressure loss may act on the downstream compressor as a large inlet distortion, and strongly affect downstream compressor performance.

  5. Microbial production of scleroglucan and downstream processing.

    PubMed

    Castillo, Natalia A; Valdez, Alejandra L; Fariña, Julia I

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  6. Upstream/downstream: Issues in environmental ethics

    SciTech Connect

    Scherer, D.

    1991-01-01

    Upstream/Downstream reminds us that there are four issues that are more or less distinctive to environmental ethics. First, and most distinctively, environmental issues involve the standing of nonhuman living things and systems. Thus, environmental politics is only partly a clash among the interest of the parties involved; it often involves actions on behalf of the existence rights of nonhuman life forms. Second, environmental ethics concern the intergenerational distribution of benefits more explicitly than do most other ethical issues, which brings out serious weaknesses in legal frameworks that rely on claims for damages. Third, the complexity and indirectness of many environmental impacts introduces a high degree of uncertainty and thus technical as well as ethical issues of prudent behavior. Specifically, where science may not fully reveal environmental risks, should development proceed; should analysis proceed if it is known to have a Pollyanna bias Fourth, insofar as environmental damage is typically done to common property, and thus its regulation is generally a matter for governmental regulation, the obligations of private actors to make sacrifices beyond what government requires is at issue - an issue that one would expect to be taken up at length in the other volumes.

  7. Microbial production of scleroglucan and downstream processing

    PubMed Central

    Castillo, Natalia A.; Valdez, Alejandra L.; Fariña, Julia I.

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  8. Transport studies in fusion plasmas: Perturbative experiments

    SciTech Connect

    Cardozo, N.J.L.

    1996-03-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to transport driven by the pressure and temperature gradients. Importantly, off-diagonal elements in the transport matrix appear to be important. This has also implications for the interpretation of the so-called `power balance` diffusivity, determined from the steady state fluxes and gradients. Experimental techniques, analysis techniques, basic formulas, etc., are briefly reviewed. Experimental results are summarized. The fundamental question whether the fluxes are linear functions of the gradients or not is discussed. 31 refs.

  9. On dark energy isocurvature perturbation

    SciTech Connect

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn

    2011-06-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.

  10. Perturbation theory in electron diffraction

    NASA Astrophysics Data System (ADS)

    Bakken, L. N.; Marthinsen, K.; Hoeier, R.

    1992-12-01

    The Bloch-wave approach is used for discussing multiple inelastic electron scattering and higher-order perturbation theory in inelastic high-energy electron diffraction. In contrast to previous work, the present work describes three-dimensional diffraction so that higher-order Laue zone (HOLZ) effects are incorporated. Absorption is included and eigenvalues and eigenvectors are calculated from a structure matrix with the inclusion of an absorptive potential. Centrosymmetric as well as non-centrosymmetric crystal structures are allowed. An iteration method with a defined generalized propagation function for solving the inelastic coupling equations is described. It is shown that a similar iteration method with the same propagation function can be used for obtaining higher-order perturbation terms for the wave-function when a perturbation is added to the crystal potential. Finally, perturbation theory by matrix calculations when a general perturbation is added to the structure matrix is considered.

  11. Computing singularities of perturbation series

    SciTech Connect

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.

  12. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  13. Perturbation solution of the shape of a nonaxisymmetric sessile drop.

    PubMed

    Prabhala, Bharadwaj; Panchagnula, Mahesh; Subramanian, Venkat R; Vedantam, Srikanth

    2010-07-06

    We develop an approximate analytical solution for the shape of a nonaxisymmetric sessile drop using regular perturbation methods and ignoring gravity. We assume that the pinned, contorted triple-line shape is known and is a small perturbation of the circular footprint of a spherical cap. We obtain an analytical solution using regular perturbation methods that we validate by comparing to the numerical solution of the Young-Laplace equation obtained using publicly available Surface Evolver software. In this process, we also show that the pressure inside the perturbed drop is unchanged and relate this to the curvature of the drop using the Young-Laplace equation. The rms error between the perturbation and Evolver solutions is calculated for a range of contact angles and amplitudes of triple-line perturbations. We show that the perturbation solution matches the numerical results well for a wide range of contact angles. In addition, we calculate the extent to which the drop surface is affected by triple-line contortions. We discuss the applicability of this solution to the possibility of real time hybrid experimental/computational characterization of the 3D sessile drop shapes, including obtaining local contact angle information.

  14. Stability of the flow in a soft tube deformed due to an applied pressure gradient

    NASA Astrophysics Data System (ADS)

    Verma, M. K. S.; Kumaran, V.

    2015-04-01

    A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012), 10.1017/jfm.2011.55]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.

  15. Revised Perturbation Statistics for the Global Scale Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1975-01-01

    Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.

  16. The power of perturbation theory

    NASA Astrophysics Data System (ADS)

    Serone, Marco; Spada, Gabriele; Villadoro, Giovanni

    2017-05-01

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the PicardLefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  17. Instabilities in mimetic matter perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  18. Lunar fossil magnetism and perturbations of the solar wind.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Mihalov, J. D.

    1972-01-01

    Perturbations of the solar wind downstream of the moon and lying outside of the rarefaction wave that defines the diamagnetic cavity are used to define possible source regions comprised of intrinsically magnetized areas of the moon. A map of the moon is constructed showing that a model in which the sources are exposed to the grazing solar wind during the lunation yields a selenographically invariant set of regions strongly favoring the lunar highlands over the maria. An alternative model with the source due to electromagnetic induction is explored. The ages of the field sources should be consistent with those based on the basalt ages and possibly far older if the sources are connected with the formation of the highland rocks themselves. The perturbations are tentatively identified as weak shock waves, and a Mach angle in accord with nominal values for the solar wind is found.

  19. Lunar fossil magnetism and perturbations of the solar wind.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Mihalov, J. D.

    1972-01-01

    Perturbations of the solar wind downstream of the moon and lying outside of the rarefaction wave that defines the diamagnetic cavity are used to define possible source regions comprised of intrinsically magnetized areas of the moon. A map of the moon is constructed showing that a model in which the sources are exposed to the grazing solar wind during the lunation yields a selenographically invariant set of regions strongly favoring the lunar highlands over the maria. An alternative model with the source due to electromagnetic induction is explored. The ages of the field sources should be consistent with those based on the basalt ages and possibly far older if the sources are connected with the formation of the highland rocks themselves. The perturbations are tentatively identified as weak shock waves, and a Mach angle in accord with nominal values for the solar wind is found.

  20. Characterisation of turbulence downstream of a linear compressor cascade

    NASA Astrophysics Data System (ADS)

    di Mare, Luca; Jelly, Thomas; Day, Ivor

    2014-11-01

    Characterisation of turbulence in turbomachinery remains one of the most complex tasks in fluid mechanics. In addition, current closure models required for Reynolds-averaged Navier-Stokes computations do not accurately represent the action of turbulent forces against the mean flow. Therefore, the statistical properties of turbulence in turbomachinery are of significant interest. In the current work, single- and two-point hot-wire measurements have been acquired downstream of a linear compressor cascade in order to examine the properties of large-scale turbulent structures and to assess how they affect turbulent momentum and energy transfer in compressor passages. The cascade has seven controlled diffusion which are representative of high-pressure stator blades found in turbofan engines. Blade chord, thickness and camber are 0.1515 m, 9.3% and 42 degrees, respectively. Measurements were acquired at a chord Reynolds number of 6 . 92 ×105 . Single-point statistics highlight differences in turbulence structure when comparing mid-span and end-wall regions. Evaluation of two-point correlations and their corresponding spectra reveal the length-scales of the energy-bearing eddies in the cascade. Ultimately, these measurements can be used to calibrate future computational models. The authors gratefully acknowledge Rolls-Royce plc for funding this work and granting permission for its publication.

  1. 5. DOWNSTREAM ELEVATION OF BRIDGE AND SUBSTRUCTURE (with graduated meter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DOWNSTREAM ELEVATION OF BRIDGE AND SUBSTRUCTURE (with graduated meter pole); VIEW TO NORTH-NORTHEAST. - Auwaiakeakua Bridge, Spanning Auwaiakekua Gulch at Mamalahoa Highway, Waikoloa, Hawaii County, HI

  2. 88. photographer unknown undated DOWNSTREAM VIEW OF CONSTRUCTION ON NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. photographer unknown undated DOWNSTREAM VIEW OF CONSTRUCTION ON NORTH HALF OF MAIN DAM, COFFERDAM IN BACKGROUND. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  3. 74. photographer unknown 10 February 1936 DOWNSTREAM SIDE OF SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. photographer unknown 10 February 1936 DOWNSTREAM SIDE OF SOUTH HALF OF MAIN DAM. BRADFORD ISLAND IN BACKGROUND. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  4. 1. GENERAL EXTERIOR VIEW LOOKING SOUTHEAST AT DOWNSTREAM FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW LOOKING SOUTHEAST AT DOWNSTREAM FACE OF DAM/SPILLWAY. VIEW TAKEN FROM WASHINGTON SHORELINE. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  5. Downstream boundary conditions for viscous flow problems

    NASA Technical Reports Server (NTRS)

    Fix, G.; Gunzburger, M.

    1977-01-01

    The problem of the specification of artificial outflow conditions in flow problems is studied. It is shown that for transport type equations incorrect outflow conditions will adversely affect the solution only in a small region near the outflow boundary, while for elliptic equations, e.g. those governing the streamfunction or pressure, a correct boundary specification is essential. In addition, integral outflow boundary conditions for fluid dynamical problems are considered. It is shown that such conditions are well posed, and their effect on the solutions of the Navier-Stokes equations is also considered.

  6. Newtonian perturbations on models with matter creation

    NASA Astrophysics Data System (ADS)

    Jesus, J. F.; Oliveira, F. A.; Basilakos, S.; Lima, J. A. S.

    2011-09-01

    Creation of cold dark matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework, we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin, and Brandenberger, MNRAS 291, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the ΛCDM model. The difference between the CCDM and ΛCDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple χ2-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances, the CCDM scenario analyzed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating ΛCDM cosmology.

  7. Evolution of the solar wind electron distribution function downstream of the termination shock

    NASA Astrophysics Data System (ADS)

    Fahr, Hans-Jörg

    2017-04-01

    Evolution of the solar wind electron distribution function downstream of the termination shock We theoretically describe the evolution of the solar wind electron distribution function downstream of the termination shock under the effect of shock-induced injection of KeV-energetic overshoot electrons. We start from a kinetic phase-space transport equation in the bulk frame of the heliosheath plasma flow that takes into account convective processes, cooling processes and whistler-wave-induced energy diffusion. From this kinetic equation we then proceed to an associated pressure moment equation and arrive at a so-called pressure transport equation describing the evolution of the electron pressure in the co-moving rest frame. Assuming that the local electron distribution can be represented as a local kappa function with a kappa parameter that varies with the streamline coordinate s, we obtain an ordinary differential equation for kappa as function of s. With this result we gain the the heliosheath electron distribution function along the plasma streamlines downstream from the termination shock. These results we then compare with electron flux data obtained with the VOYAGER-2 electron detector.

  8. The effect of catalyst length and downstream reactor distance on catalytic combustor performance

    NASA Technical Reports Server (NTRS)

    Anderson, D.

    1980-01-01

    A study was made to determine the effects on catalytic combustor performance which resulted from independently varying the length of a catalytic reactor and the length available for gas-phase reactions downstream of the catalyst. Monolithic combustion catalysts from three manufacturers were tested in a combustion test rig with no. 2 diesel fuel. Catalytic reactor lengths of 2.5 and 5.4 cm, and downstream gas-phase reaction distances of 7.3, 12.4, 17.5, and 22.5 cm were evaluated. Measurements of carbon monoxide, unburned hydrocarbons, nitrogen oxides, and pressure drop were made. The catalytic-reactor pressure drop was less than 1 percent of the upstream total pressure for all test configurations and test conditions. Nitrogen oxides and unburned hydrocarbons emissions were less than 0.25 g NO2/kg fuel and 0.6 g HC/kg fuel, respectively. The minimum operating temperature (defined as the adiabatic combustion temperature required to obtain carbon monoxide emissions below a reference level of 13.6 g CO/kg fuel) ranged from 1230 K to 1500 K for the various conditions and configurations tested. The minimum operating temperature decreased with increasing total (catalytic-reactor-plus-downstream-gas-phase-reactor-zone) residence time but was independent of the relative times spent in each region when the catalytic-reactor residence time was greater than or equal to 1.4 ms.

  9. Plasma actuator electron density measurement using microwave perturbation method

    SciTech Connect

    Mirhosseini, Farid; Colpitts, Bruce

    2014-07-21

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  10. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  11. Inflationary perturbations in bimetric gravity

    SciTech Connect

    Cusin, Giulia; Durrer, Ruth; Guarato, Pietro; Motta, Mariele E-mail: ruth.durrer@unige.ch E-mail: mariele.motta@unige.ch

    2015-09-01

    In this paper we study the generation of primordial perturbations in a cosmological setting of bigravity during inflation. We consider a model of bigravity which can reproduce the ΛCDM background and large scale structure and a simple model of inflation with a single scalar field and a quadratic potential. Reheating is implemented with a toy-model in which the energy density of the inflaton is entirely dissipated into radiation. We present analytic and numerical results for the evolution of primordial perturbations in this cosmological setting. We find that the amplitude of tensor perturbations generated during inflation is sufficiently suppressed to avoid the effects of the tensor instability discovered in refs. [1,2] which develops during the cosmological evolution in the physical sector. We argue that from a pure analysis of the tensor perturbations this bigravity model is compatible with present observations. However, we derive rather stringent limits on inflation from the vector and scalar sectors.

  12. Perturbative gadgets at arbitrary orders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen P.; Farhi, Edward

    2008-06-01

    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k -body effective interactions from two-body Hamiltonians. These effective interactions arise from the k th order in perturbation theory.

  13. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  14. Thermal Instability of Advection-Dominated Disks against Revised Local Perturbations

    NASA Astrophysics Data System (ADS)

    Kato, Shoji; Yamasaki, Tatsuya; Abramowicz, Marek A.; Chen, Xingming

    1997-04-01

    The thermal stability of advection-dominated accretion disks against local perturbations is re-examined in order to correct some errors in our previous paper. Thermal perturbations which are local in the radial direction are found to also be local in the vertical direction. Because of this, the using of vertically integrated quantities was irrelevant in analyzing the stability of local thermal perturbations when the disks are geometrically thick. Our new results, obtained by correcting the error, show that if the turbulence acts as a diffusion process in thermal energy transport, it strongly dampens the thermal perturbations. In these cases when the diffusion process is weak, however, perturbations grow due to a variation of the viscous heating associated with the perturbations. One such example of growth is in the case where radiation pressure greatly dominates the gas pressure.

  15. Robust stability under additive perturbations

    NASA Technical Reports Server (NTRS)

    Bhaya, A.; Desoer, C. A.

    1985-01-01

    A MIMO linear time-invariant feedback system 1S(P,C) is considered which is assumed to be U-stable. The plant P is subjected to an additive perturbation Delta P which is proper but not necessarily stable. It is proved that the perturbed system is U-stable if and only if Delta P(I + Q x Delta P) exp -1 is U-stable.

  16. Lectures on perturbative string theories

    SciTech Connect

    Ooguri, Hirosi; Yin, Z. |

    1997-02-01

    These lecture notes on String Theory constitute an introductory course designed to acquaint the students with some basic factors of perturbative string theories. They are intended as preparation for the more advanced courses on non-perturbative aspects of string theories in the school. The course consists of five lectures: (1) Bosonic String, (2) Toroidal Compactifications, (3) Superstrings, (4) Heterotic Strings, and (5) Orbifold Compactifications.

  17. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-02-03

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  18. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-01-01

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  19. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, D.J.

    1984-05-30

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.

  20. More many-body perturbation theory for an electron-ion system

    SciTech Connect

    Baker, G.A. Jr.; Johnson, J.D.

    1997-10-01

    From previous finite-temperature, quantum, many-body perturbation theory results for the grand partition function of an electron-ion fluid through order {epsilon}{sup 4}, we compute the electron and ion fugacities in terms of the volume per ion and the temperature to that same order in perturbation theory. From these results we also give the pressure, again to the same order in perturbation theory about the values for the non-interacting fluid.

  1. Cosmological perturbations without inflation

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2017-01-01

    A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e. with an equation of state ρ +3p=0 , where ρ and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands–Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the {{1}\\circ}{ {--}}{{10}\\circ} fluctuations in the CMB correspond almost exactly to the Planck length at the Planck time, firmly supporting the view that CMB observations may already be probing trans-Planckian physics.

  2. 11. VIEW NORTH ALONG DOWNSTREAM BANK OF DAM FROM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW NORTH ALONG DOWNSTREAM BANK OF DAM FROM SOUTH SIDE OF CHANNEL ON DOWNSTREAM SIDE OF RESERVOIR - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  3. 1. VIEW OF DOWNSTREAM SIDE OF DIVERSION DAM ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DOWNSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, LOOKING NORTHEAST. NOTE HEADGATE STRUCTURE ON NORTH BANK, SPILLWAY ON LEFT SIDE OF DAM, AND SPLASH LOGS ON DOWNSTREAM SIDE OF DAM. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  4. A floating trap for sampling downstream migrant fishes.

    Treesearch

    Carl E. McLemore; Fred H. Everest; William R. Humphreys; Mario F. Solazzi

    1989-01-01

    Fishery scientists and managers are interested in obtaining information about downstream movements of fish species for biological and economic reasons. Different types of nets and traps have been used for this purpose with only partial success. The floating, self-cleaning downstream migrant trap described here proved successful for sampling several salmoniform and...

  5. High and Low Latitude types of the Downstream Influences of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Song, J.

    2013-12-01

    Using reanalysis data, we find that the downstream-propagating quasi-stationary Rossby wave train associated with the North Atlantic Oscillation (NAO) generally propagates along a high (low)-latitude pathway during warm (cold) El Niño-Southern Oscillation (ENSO) boreal winters. Consistent with the different propagation directions of the NAO-related downstream wave train, during the warm (cold) ENSO winters, the NAO is associated with significant 300 hPa geopotential height anomalies over eastern Siberia (the Arabian Sea, the east coast of Asia at around 40N, and the North Pacific), and the near-surface air temperature (SAT) perturbations associated with the NAO over the high latitudes of Asia are relatively strong (weak). Based on these differences, we argue that the NAO has two distinct types of downstream influence: a high-latitude type and a low-latitude type. Furthermore, we argue that the two types of NAO's downstream influence are modulated by the intensity of the subtropical potential vorticity (PV) meridional gradient over Africa. When this gradient is weak (strong), as in the warm (cold) ENSO winters, the NAO's downstream influence tends to be of the high (low)-latitude type. These results are further supported by analysis of intraseasonal NAO events. We separate NAO events into two categories in terms of the intensity of the subtropical PV gradient over Africa. Composites of the NAO events accompanied by a weak (strong) subtropical PV gradient show that the NAO-related downstream wave train tends to propagate along a high (low)-latitude pathway. Fig. 1 Regressed monthly anomalous meridional wind at 300 hPa (V 300hPa, thin contours, interval is 1 m/s) onto the monthly NAO index and the corresponding stationary wave activity fluxes (vectors, unit is m2s-2) during a) the warm ENSO winters and b) cold ENSO winters. Solid (dashed) contours represent positive (negative) values and the zero contours are omitted. The regressed results at the 95% confidence level

  6. Organization of Functional Postural Responses Following Perturbations in Multiple Directions in Elderly Fallers Standing Quietly

    ERIC Educational Resources Information Center

    Matjacic, Zlatko; Sok, David; Jakovljevic, Miroljub; Cikajlo, Imre

    2013-01-01

    The objective of the study was to assess functional postural responses by analyzing the center-of-pressure trajectories resulting from perturbations delivered in multiple directions to elderly fallers. Ten elderly individuals were standing quietly on two force platforms while an apparatus delivered controlled perturbations at the level of pelvis…

  7. Organization of Functional Postural Responses Following Perturbations in Multiple Directions in Elderly Fallers Standing Quietly

    ERIC Educational Resources Information Center

    Matjacic, Zlatko; Sok, David; Jakovljevic, Miroljub; Cikajlo, Imre

    2013-01-01

    The objective of the study was to assess functional postural responses by analyzing the center-of-pressure trajectories resulting from perturbations delivered in multiple directions to elderly fallers. Ten elderly individuals were standing quietly on two force platforms while an apparatus delivered controlled perturbations at the level of pelvis…

  8. High-order perturbations of a spherical collapsing star

    NASA Astrophysics Data System (ADS)

    Brizuela, David; Martín-García, José M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-11-01

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martín-García, and G. A. Mena Marugán, Phys. Rev. DPRVDAQ1550-7998 74, 044039 (2006);10.1103/PhysRevD.74.044039 D. Brizuela, J. M. Martín-García, and G. A. Mena Marugán, Phys. Rev. DPRVDAQ1550-7998 76, 024004 (2007)10.1103/PhysRevD.76.024004]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid’s pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  9. High-order perturbations of a spherical collapsing star

    SciTech Connect

    Brizuela, David; Martin-Garcia, Jose M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-11-15

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 74, 044039 (2006); D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 76, 024004 (2007)]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid's pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  10. Stimulus Pauses and Perturbations Differentially Delay or Promote the Segregation of Auditory Objects: Psychoacoustics and Modeling

    PubMed Central

    Rankin, James; Osborn Popp, Pamela J.; Rinzel, John

    2017-01-01

    Segregating distinct sound sources is fundamental for auditory perception, as in the cocktail party problem. In a process called the build-up of stream segregation, distinct sound sources that are perceptually integrated initially can be segregated into separate streams after several seconds. Previous research concluded that abrupt changes in the incoming sounds during build-up—for example, a step change in location, loudness or timing—reset the percept to integrated. Following this reset, the multisecond build-up process begins again. Neurophysiological recordings in auditory cortex (A1) show fast (subsecond) adaptation, but unified mechanistic explanations for the bias toward integration, multisecond build-up and resets remain elusive. Combining psychoacoustics and modeling, we show that initial unadapted A1 responses bias integration, that the slowness of build-up arises naturally from competition downstream, and that recovery of adaptation can explain resets. An early bias toward integrated perceptual interpretations arising from primary cortical stages that encode low-level features and feed into competition downstream could also explain similar phenomena in vision. Further, we report a previously overlooked class of perturbations that promote segregation rather than integration. Our results challenge current understanding for perturbation effects on the emergence of sound source segregation, leading to a new hypothesis for differential processing downstream of A1. Transient perturbations can momentarily redirect A1 responses as input to downstream competition units that favor segregation. PMID:28473747

  11. Computing singularities of perturbation series

    NASA Astrophysics Data System (ADS)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-01

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schrödinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with δ-function interactions for which Møller-Plesset perturbation theory is considered and the radius of convergence found.

  12. Structural fluctuation of proteins induced by thermodynamic perturbation

    SciTech Connect

    Hirata, Fumio; Akasaka, Kazuyuki

    2015-01-28

    A theory to describe structural fluctuations of protein induced by thermodynamic perturbations, pressure, temperature, and denaturant, is proposed. The theory is formulated based on the three methods in the statistical mechanics: the generalized Langevin theory, the linear response theory, and the three dimensional interaction site model (3D-RISM) theory. The theory clarifies how the change in thermodynamic conditions, or a macroscopic perturbation, induces the conformational fluctuation, which is a microscopic property. The theoretical results are applied, on the conceptual basis, to explain the experimental finding by Akasaka et al., concerning the NMR experiment which states that the conformational change induced by pressure corresponds to structural fluctuations occurring in the ambient condition. A method to evaluate the structural fluctuation induced by pressure is also suggested by means of the 3D-RISM and the site-site Kirkwood-Buff theories.

  13. Effects of core perturbations on the structure of the sun

    SciTech Connect

    Sweigart, A.V.

    1983-10-15

    A number of numerical experiments have been carried out in order to investigate the sensivity of the solar luminosity and radius to perturbations within the radiative core. In these experiments the core was perturbed by suddenly mixing various parts of the composition profile during evolutionary sequences for the present Sun. The hydrostatic readjustment caused by these ''mixing events'' induced an immediate change in the surface luminosity and radius on both the hydrodynamic time scale (approx.15 minutes) and the thermal time scale of the superadiabatic layers (approx.1 day). The subsequent evolution of the luminosity and radius perturbations was followed for 5 x 10/sup 5/ yr after each mixing event. The time-dependent behavior of these perturbations was found to depend on where the mixing event occurred. In all cases, however, the ratio W(t) = ..delta.. log R/..delta.. log L had an initial value of 0.71 and showed only a mild time dependence during the first several thousand years. Two other relationships between the luminosity and radius perturbations are also discussed. One of these, V(t) = (d log R/dd)/(d log L/dt), has a fairly constant value of 0.3 +- 0.1. Both perturbations in the mixing-length ratio ..cap alpha.. and perturbations in the magnetic pressure within the solar convective envelope yield the same value for V/(t). During the normal unperturbed evolution of the present Sun, V(t) = 0.4. Our results show that core perturbations such as the present mixing events cannot explain the decrease in the solar radius indicated by the solar eclipse data between 1925 and 1980.

  14. Solitary perturbations in the steep boundary of magnetized toroidal plasma

    NASA Astrophysics Data System (ADS)

    Lee, J. E.; Yun, G. S.; Lee, W.; Kim, M. H.; Choi, M.; Lee, J.; Kim, M.; Park, H. K.; Bak, J. G.; Ko, W. H.; Park, Y. S.

    2017-03-01

    Solitary perturbations (SPs) localized both poloidally and radially are detected within ~100 μs before the partial collapse of the high pressure gradient boundary region (called pedestal) of magnetized toroidal plasma in the KSTAR tokamak device. The SP develops with a low toroidal mode number (typically unity) in the pedestal ingrained with quasi-stable edge-localized mode (QSM) which commonly appears during the inter-collapse period. The SPs have smaller mode pitch and different (often opposite) rotation velocity compared to the QSMs. Similar solitary perturbations are also frequently observed before the onset of complete pedestal collapse, suggesting a strong connection between the SP generation and the pedestal collapse.

  15. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Astrophysics Data System (ADS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-11-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  16. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Technical Reports Server (NTRS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-01-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  17. An experimental study on the onset of detonation downstream of a perforated plate with staggered orifices

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhou, Jin; Lin, Zhiyong; Liu, Shijie

    2017-09-01

    The present study investigated the onset of detonation (OD) process which takes place downstream of a 0.9-mm-thick perforated plate. The orifice diameter of the plate is 1.6 mm with a blockage of 59%, and it was placed perpendicular to the axial direction of a smooth detonation tube. `Stable' mixture C2H2 + 2.5O2 + 70%Ar and `unstable' mixture C2H2 + 5N2O were tested, respectively. Ionization probes and smoked foils were used to record detonation velocities and corresponding cellular patterns. Excellent agreement of the velocity trends and smoked foil results shows that a critical pressure range exists to identify `go' and `no go' of OD downstream of the perforated plate. However, the OD mechanisms for these two gaseous mixtures are distinct: for the `stable' mixture, OD occurs in the downstream near field (6 tube diameters in this study), whereas, OD in the `unstable' mixture could also observed in the far field via the transition of deflagration to detonation after a long duration of quasi-steady regime. This distance reaches up to tens of tube diameters when close to the critical pressure.

  18. Multi-field inflation and cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Gong, Jinn-Ouk

    We provide a concise review on multi-field inflation and cosmological perturbations. We discuss convenient and physically meaningful bases in terms of which perturbations can be systematically studied. We give formal accounts on the gauge fixing conditions and present the perturbation action in two gauges. We also briefly review nonlinear perturbations.

  19. Thermal perturbation of the Sun

    NASA Technical Reports Server (NTRS)

    Twigg, L. W.; Endal, A. S.

    1981-01-01

    An investigation of thermal perturbations of the solar convective zone via changes in the mixing length parameter were carried out, with a view toward understanding the possible solar radius and luminosity changes cited in the literature. The results show that: (a) a single perturbation of alpha is probably not the cause of the solar radius change and (b) the parameter W = d lambda nR./d lambda nL. can not be characterized by a single value, as implied in recent work.

  20. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  1. Running vacuum cosmological models: linear scalar perturbations

    NASA Astrophysics Data System (ADS)

    Perico, E. L. D.; Tamayo, D. A.

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  2. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    NASA Astrophysics Data System (ADS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  3. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  4. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  5. Downstream evolution of turbulence from heated screens: Experimental and analytical results

    SciTech Connect

    O`Hern, T.J.; Shagam, R.N.; Neal, D.R.; Suo-Anttila, A.J.; Torczynski, J.R.

    1993-02-01

    This report discusses recent efforts to characterize the flow and density nonuniformities downstream of heated screens placed in a uniform flow. The Heated Screen Test Facility (HSTF) at Sandia National Laboratories and the Lockheed Palo Alto Flow Channel (LPAFC) were used to perform experiments over wide ranges of upstream velocities and heating rates. Screens of various mesh configurations were examined, including multiple screens sequentially positioned in the flow direction. Diagnostics in these experiments included pressure manometry, hot-wire anemometry, interferometry, Hartmann wavefront slope sensing, and photorefractive schlieren photography. A model was developed to describe the downstream evolution of the flow and density nonuniformities. Equations for the spatial variation of the mean flow quantities and the fluctuation magnitudes were derived by incorporating empirical correlations into the equations of motion. Numerical solutions of these equations are in fair agreement with previous and current experimental results.

  6. A novel cell autolysis system for cost-competitive downstream processing.

    PubMed

    Hajnal, Ivan; Chen, Xiangbin; Chen, Guo-Qiang

    2016-11-01

    The industrial production of low value-added biological products poses significant challenges due to cost pressures. In recent years, it has been argued that synthetic biology approaches will lead to breakthroughs that eliminate price bottlenecks for the production of a wide range of biological products including bioplastics and biofuels. One significant bottleneck lies in the necessity to break the tough cell walls of microbes in order to release intracellular products. We here report the implementation of the first synthetic biology standard part based on the lambda phage SRRz genes and a synthetic ribosome binding site (RBS) that works in Escherichia coli and Halomonas campaniensis, which enables the producer strains to induce lysis after the addition of small amounts (1-5 %) of solvents or to spontaneously lyse during the stresses of downstream processing, and thus has the potential to eliminate the mechanical cell disruption step as both an efficiency bottleneck and a significant capex barrier when implementing downstream bioprocesses.

  7. Up- and downstream sheaths in an ion-beam-plasma system

    SciTech Connect

    Wei, Zi-an; Ma, J. X.

    2016-02-15

    Ion sheaths formed in the up- and downstream sides of a negatively biased metal plate/mesh in an ion-beam-background-plasma system were experimentally investigated in a double plasma device. Measured potential profiles near the plate exhibit asymmetric structure, showing thicker sheath in the downstream side. The presence of the ion beam causes the shrink of the sheaths on both sides. The sheath thickness decreases with the increase of beam energy and density. Furthermore, the sheaths near the mesh are substantially thinner than that near the plate because of the partial transmission of the mesh to the ions. In addition, the increase of neutral gas pressure leads to the reduction of the beam energy and density, resulting in the increase of the sheath thickness.

  8. Suitability of air sampling locations downstream of bends and static mixing elements.

    PubMed

    McFarland, A R; Gupta, R; Anand, N K

    1999-12-01

    The revised standard for sampling effluent air from stacks and ducts of the nuclear industry places limits on the non-uniformity of velocity and contaminant profiles at the sampling location; namely, the coefficients of variation must not exceed 20% over an area that encompasses at least the center 2/3 of the cross sectional area. Tests were conducted to characterize the degree of mixing at downstream locations as affected by several types of flow disturbances, including 90 degree elbows and commercial static mixing devices. Flow straighteners were incorporated into the ducting upstream of the mixer to be tested to simulate the dampening of flow turbulence that might occur because of upstream HEPA filters. The coefficients of variation of velocity and tracer gas concentration measured in a straight tube at a distance of 3 diameters downstream from a 90 degree elbow were 17% and 69%, respectively. The mixing is impacted by the upstream flow turbulence. Without a flow straightener, the tracer gas concentration coefficient of variation was reduced to 33% at the 3-diameter location. The use of static mixing elements can greatly enhance the mixing process. A ring placed just downstream of a 90 degree elbow, which blocks the outer 56% of the cross sectional area, results in a coefficient of variation of 19% for tracer gas concentration at the 3-diameter location. Pressure loss across the elbow with the ring is about nine times that of the basic elbow. One of the commercially available static mixers provides coefficients of variation that are less than 10% for both velocity and tracer gas concentration at 4 diameters downstream from the mixer with a pressure loss that is only about 3.5 times as large as that of a 90 degree elbow.

  9. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  10. 32. Otter Lake Dam. View from downstream show how the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Otter Lake Dam. View from downstream show how the dam blends into its environment. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  11. 27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END OF WEST MAIN LOCK WALL, LOOKiNG SOUTHEAST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  12. DOWNSTREAM LOCK GATE DETAIL VIEW WITH DOG HOUSE. NOTE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DOWNSTREAM LOCK GATE DETAIL VIEW WITH DOG HOUSE. NOTE CONTROL ARM AND GEAR FOR GATE. LOOKING NORTHWEST. - Illinois Waterway, Dresden Island Lock and Dam , 7521 North Lock Road, Channahon, Will County, IL

  13. 15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO SETTLING BASIN, SHOWING RIGHT FORK WITH GATE IN PLACE AND A FEW NEEDLES IN PLACE - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  14. 14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, SHOWING RIGHT FORK TO BYPASS, LEFT FORK TO BASIN - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  15. 25. Camp housing, downstream and south of river, at Mormon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Camp housing, downstream and south of river, at Mormon Flat Dam. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  16. 19. Downstream face of Mormon Flat Dam completed. Power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Downstream face of Mormon Flat Dam completed. Power plant is nearing completion. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  17. 76. photographer unknown undated STRUCTURAL STEEL TRUSSES FOR DOWNSTREAM THIRD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. photographer unknown undated STRUCTURAL STEEL TRUSSES FOR DOWNSTREAM THIRD STEP COFFERDAM IN PLACE. TWO PADS FOR THIS COFFERDAM ARE LAYING ON THE BAFFLES TO THE LEFT OF THE TRUSSES. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  18. MAIN CANAL HEADWORKS, FROM DOWNSTREAM (TO RIGHT), NOTE SAND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAIN CANAL HEADWORKS, FROM DOWNSTREAM (TO RIGHT), NOTE SAND AND SILT SLUICE GATE FOR DIVERSION DAM ON LEFT, VIEW TO NORTHWEST - Salmon Creek Diversion Dam, Main Canal Headworks, Salmon Creek, Okanogan, Okanogan County, WA

  19. VIEW OF DOWNSTREAM SIDE OF TUMALO DIVERSION DAM AND SPILLWAY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF DOWNSTREAM SIDE OF TUMALO DIVERSION DAM AND SPILLWAY, WITH FISH LADDER TO RIGHT OF VIEW. FROM WEST BANK OF TUMALO CREEK. LOOKING SOUTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  20. 25. GENERAL EXTERIOR VIEW LOOKING WEST, SHOWING FISH LADDER DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. GENERAL EXTERIOR VIEW LOOKING WEST, SHOWING FISH LADDER DOWNSTREAM FROM THE DAM/SPILLWAY ON THE WASHINGTON SHORE. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  1. 2. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING DOWNSTREAM FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING DOWNSTREAM FACE OF DAM/SPILLWAY; PARKING LOT/WORK AREA ON WASHINGTON SHORE IS VISIBLE IN FOREGROUND. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  2. 68. photographer unknown 15 January 1936 DOWNSTREAM SIDE OF SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. photographer unknown 15 January 1936 DOWNSTREAM SIDE OF SOUTH HALF OF MAIN DAM. COFFERDAM AND RIVER IN BACKGROUND. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  3. 17. Oblique view to southsoutheast of downstream (west) side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Oblique view to south-southeast of downstream (west) side of bridge, with southbound 'piggyback' train on structure. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA

  4. 7. Contextual view to eastnortheast showing downstream (west) side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Contextual view to east-northeast showing downstream (west) side of bridge in setting, depicting dense riparian nature of area. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA

  5. 10. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM UNDERSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM UNDERSIDE OF GARDEN STATE PARKWAY ABUTMENT - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  6. 5. VIEW SHOWING THE DOWNSTREAM SIDE OF SWAN FALLS DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING THE DOWNSTREAM SIDE OF SWAN FALLS DAM AND POWER HOUSE, LOOKING UPSTREAM TO SOUTH FROM THE A MOUND OF DEBRIS ABOUT THIRTY TO FORTY FEET ABOVE THE RIVER - Swan Falls Dam, Snake River, Kuna, Ada County, ID

  7. View of Lake Sabrina Dam downstream face from parking lot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam downstream face from parking lot showing concrete outlet structure on tow of dam at left edge of photo, view southeast - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  8. 76. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: DOWNSTREAM ELEVATION, SHEET 3; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  9. 6. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  10. 5. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  11. 4. DETAIL VIEW OF CCCBUILT RIVERCOBBLE WING WALL ON DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF CCC-BUILT RIVER-COBBLE WING WALL ON DOWNSTREAM SIDE OF OUTLET WORKS AT DAM 87, LOOKING WEST - Upper Souris National Wildlife Refuge, Dam 87, Souris River Basin, Foxholm, Surrey (England), ND

  12. View of downstream debris field at the Merry Generator House, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of downstream debris field at the Merry Generator House, showing possible concrete generator seats, looking south - Arthur Holmes Merry Generator House, Signal Lake North of Range Road, Fort Gordon, Richmond County, GA

  13. 60. Storage Area for Structural Members, Iowa Side (downstream from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Storage Area for Structural Members, Iowa Side (downstream from bridge), work on Iowa Draw Span, about Sept. 20, 1895. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  14. DOWNSTREAM VIEW OF LOCK. CONTROL TOWER AT REAR. DAM GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DOWNSTREAM VIEW OF LOCK. CONTROL TOWER AT REAR. DAM GATE STRUCTURE AT RIGHT. NOTE TRAFFIC LIGHT FOR SHIPPING. LOOKING SOUTH SOUTHWEST. - Illinois Waterway, Peoria Lock and Dam, 1071 Wesley Road, Creve Coeur, Tazewell County, IL

  15. 31. VIEW OF TWIN FALLS MAIN CANAL BRIDGE FROM DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF TWIN FALLS MAIN CANAL BRIDGE FROM DOWNSTREAM LOOKING UPSTREAM. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  16. 24. TWIN FALLS MAIN CANAL HEADWORKS, DOWNSTREAM LOOKING TOWARD THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. TWIN FALLS MAIN CANAL HEADWORKS, DOWNSTREAM LOOKING TOWARD THE EAST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  17. 10. Downstream face of Mormon Flat Dam under construction. Cement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Downstream face of Mormon Flat Dam under construction. Cement storage shed is at center right. Photographer unknown, September 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  18. 15. DETAIL VIEW OF BUTTRESSES AND STRUTTIE BEAMS ON DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL VIEW OF BUTTRESSES AND STRUT-TIE BEAMS ON DOWNSTREAM SIDE OF DAM--1971 - Mountain Dell Dam, Parley's Canyon, Northwest side of I-80, West of State Route 39, Salt Lake City, Salt Lake County, UT

  19. 54. Downstream face of Agua Fria project's diversion dam showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Downstream face of Agua Fria project's diversion dam showing initial masonry construction and poured concrete capping. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  20. 2. OVERALL VIEW OF DAM, SHOWING CREST AND DOWNSTREAM FACE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF DAM, SHOWING CREST AND DOWNSTREAM FACE, WITH CONCRETE EXTENSION IN FOREGROUND, LOOKING NORTH - High Mountain Dams in Bonneville Unit, Fire Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  1. 7. VIEW OF MAIN CANAL, LOOKING SOUTH, IMMEDIATELY DOWNSTREAM FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF MAIN CANAL, LOOKING SOUTH, IMMEDIATELY DOWNSTREAM FROM THE SNAKE RIVER VALLEY IRRIGATION DISTRICT, SECTION 34, T2N, R37E - Woodville Canal Company, West side of Snake River (River Mile 796), Woodville, Bingham County, ID

  2. 65. Close up view of downstream face of arch, buttress ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. Close up view of downstream face of arch, buttress ties and roadway support work. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  3. 42. View of emergency spillway excavation looking downstream from spillway. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. View of emergency spillway excavation looking downstream from spillway. Photographer unknown, 1929. Source: ADWR. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  4. 69. View of downstream face from west or right abutment. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. View of downstream face from west or right abutment. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  5. 51. Downstream end of diversion tunnel around east end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Downstream end of diversion tunnel around east end of Humbug Creek Diversion Dam. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  6. 57. Downstream side of left section of diversion dam. Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Downstream side of left section of diversion dam. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  7. 70. Downstream view of Waddell Dam spillway and taintor gates. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. Downstream view of Waddell Dam spillway and taintor gates. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  8. 49. Downstream face of Humbug Creek Diversion Dam with sluice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Downstream face of Humbug Creek Diversion Dam with sluice opening at center. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  9. 40. Reservoir behind Pleasant Dam, looking downstream, spillway is at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Reservoir behind Pleasant Dam, looking downstream, spillway is at right. Photographer unknown, c. late 1920s. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  10. 27. Evening view of downstream face of Pleasant Dam under ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Evening view of downstream face of Pleasant Dam under construction. Part of construction camp housing is visible in foreground. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  11. 28. View of construction shops looking west and downstream. Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. View of construction shops looking west and downstream. Photographer unknown, October 29, 1926. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  12. 55. Downstream face of diversion dam looking northwest. Photographer Mark ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Downstream face of diversion dam looking northwest. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  13. 6. DOWNSTREAM SIDE OF LOWER MITER GATES WITH FULL LOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DOWNSTREAM SIDE OF LOWER MITER GATES WITH FULL LOCK CHAMBER, VISITORS, AND LOCKMASTER'S HOUSE IN BACKGROUND. VIEW TO NORTHEAST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  14. 8. EMPTY LOCK CHAMBER FROM DOWNSTREAM (WEST) END, WITH VISITORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EMPTY LOCK CHAMBER FROM DOWNSTREAM (WEST) END, WITH VISITORS CENTER (LEFT) AND LOCKMASTER'S HOUSE ON NORTH BANK. VIEW TO NORTHEAST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  15. 1. VIEW NORTHWEST, DOWNSTREAM SIDE File photo, Caltrans Office of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHWEST, DOWNSTREAM SIDE File photo, Caltrans Office of Structures Maintenance, March, 1938. Photographer unknown. Photocopy of photograph. - San Roque Canyon Bridge, State Highway 192, Santa Barbara, Santa Barbara County, CA

  16. 8. VIEW OF DOWNSTREAM OUTLET CULVERT AND WING RETAINING WALLS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF DOWNSTREAM OUTLET CULVERT AND WING RETAINING WALLS, LOOKING NORTHWEST - High Mountain Dams in Upalco Unit, Twin Pots Dam, Ashley National Forest, 10.1 miles North of Mountain Home, Mountain Home, Duchesne County, UT

  17. 29. VIEW OF STONE BUILDING, ABOUT ONE MILE DOWNSTREAM OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF STONE BUILDING, ABOUT ONE MILE DOWNSTREAM OF DAM, USED TO STORE EXPLOSIVES DURING THE CONSTRUCTION OF HORSE MESA - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  18. view downstream of inside of lower lock gates closed with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    view downstream of inside of lower lock gates closed with southeast machinery house, SF 109, on right, view towards northeast - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  19. 28. GENERAL DETAIL VIEW OF EQUIPMENT ON DOWNSTREAM SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. GENERAL DETAIL VIEW OF EQUIPMENT ON DOWNSTREAM SIDE OF OIL CIRCUIT BREAKER GALLERY ON LEVEL +65 OF POWERHOUSE #1. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  20. 5. Downstream face of Rock Creek Diversion Dam, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Downstream face of Rock Creek Diversion Dam, looking west (Diversion into Irrigation District canal) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  1. 2. VIEW TO NORTHNORTHWEST. DOWNSTREAM SIDE OF BRIDGE FROM WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW TO NORTH-NORTHWEST. DOWNSTREAM SIDE OF BRIDGE FROM WEST OF CENTER OF RIVER. (Photographed from boat) - Gianella Bridge, Spanning Sacramento River at State Highway 32, Hamilton City, Glenn County, CA

  2. 3. VIEW TO WESTNORTHWEST. DOWNSTREAM SIDE OF BRIDGE FROM EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW TO WEST-NORTHWEST. DOWNSTREAM SIDE OF BRIDGE FROM EAST OF CENTER OF RIVER. (Photographed from boat) - Gianella Bridge, Spanning Sacramento River at State Highway 32, Hamilton City, Glenn County, CA

  3. 32. VIEW TO NORTHEAST. OBLIQUE VIEW OF DOWNSTREAM SIDE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW TO NORTHEAST. OBLIQUE VIEW OF DOWNSTREAM SIDE FROM WEST BANK Photographer unknown, January 12, 1955 - Gianella Bridge, Spanning Sacramento River at State Highway 32, Hamilton City, Glenn County, CA

  4. Detail of downstream face of dam showing water being discharged ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of downstream face of dam showing water being discharged through diversion tube. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  5. View of downstream face of Grand Coulee Dam (from just ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of downstream face of Grand Coulee Dam (from just below No. 3 Powerhouse), looking southwest. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  6. 2. GENERAL EXTERIOR VIEW LOOKING WEST, SHOWING CHANNEL DOWNSTREAM FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL EXTERIOR VIEW LOOKING WEST, SHOWING CHANNEL DOWNSTREAM FROM NAVIGATION LOCK #1; MOVABLE BRIDGE IS VISIBLE IN LEFT FOREGROUND. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR

  7. 9. DETAIL EXTERIOR VIEW LOOKING SOUTHEAST, SHOWING DOWNSTREAM MITER GATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL EXTERIOR VIEW LOOKING SOUTHEAST, SHOWING DOWNSTREAM MITER GATES FOR NAVIGATION LOCK #1. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR

  8. 3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE HOUSE AT ELEVATION 1044, 1989. - Skagit Power Development, Diablo Dam, On Skagit River, 6.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  9. 24. DOWNSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DOWNSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND DECK TRUSS END PANELS. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  10. 22. DOWNSTREAM DETAIL OF PIER NO. 3, TRUSS TOWER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DOWNSTREAM DETAIL OF PIER NO. 3, TRUSS TOWER AND CANTILEVER ARMS. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  11. 4. DOWNSTREAM ELEVATION. DETAIL OF BUTTRESS ADDITION ON NORTHEAST WING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DOWNSTREAM ELEVATION. DETAIL OF BUTTRESS ADDITION ON NORTHEAST WING WALL. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA

  12. 9. A CLOSEUP VIEW LOOKING NORTH OF THE DOWNSTREAM SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. A CLOSE-UP VIEW LOOKING NORTH OF THE DOWNSTREAM SIDE OF PIER. ALSO VISIBLE IS THE NORTHWEST ABUTMENT AND WING WALL. - Cement Plant Road Bridge, Spanning Leatherwood Creek on County Road 50 South, Bedford, Lawrence County, IN

  13. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  14. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  15. New results in perturbative QCD

    SciTech Connect

    Ellis, R.K.

    1985-11-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: (2 2) jet phenomena calculated in O( sT); new techniques for the calculation of tree graphs; and colour coherence in jet phenomena. 31 refs., 6 figs.

  16. Disformal invariance of curvature perturbation

    SciTech Connect

    Motohashi, Hayato; White, Jonathan E-mail: jwhite@post.kek.jp

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  17. VHS Movies: Perturbations for Morphogenesis.

    ERIC Educational Resources Information Center

    Holmes, Danny L.

    This paper discusses the concept of a family system in terms of an interactive system of interrelated, interdependent parts and suggests that VHS movies can act as perturbations, i.e., change promoting agents, for certain dysfunctional family systems. Several distinct characteristics of a family system are defined with particular emphasis on…

  18. Recent Developments in Perturbative QCD

    SciTech Connect

    Dixon, Lance J.; /SLAC

    2005-07-11

    I review recent progress in perturbative QCD on two fronts: extending next-to-next-to-leading order QCD corrections to a broader range of collider processes, and applying twistor-space methods (and related spinoffs) to computations of multi-parton scattering amplitudes.

  19. PERTURBATION APPROACH FOR QUANTUM COMPUTATION

    SciTech Connect

    G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH

    2001-04-01

    We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.

  20. Singularly Perturbed Lie Bracket Approximation

    SciTech Connect

    Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; Ebenbauer, Christian

    2015-03-27

    Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.

  1. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  2. Semidiurnal perturbations to the surge of Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Valle-Levinson, Arnoldo; Olabarrieta, Maitane; Valle, Alvaro

    2013-04-01

    Hurricane Sandy drove storm surges throughout the eastern seaboard of the United States, from Miami to Maine, at the end of October 2012. The surge was particularly high (>3 m) in coastal New York. In the southeastern United States, the surge was <1 m but had striking semidiurnal perturbations that reached a range of ~0.5 m in northern Florida and southern Georgia. These oscillations are typically not considered in surge forecasts and therefore, it is essential to understand their origin for future forecasts. Analytical and numerical approaches indicated that semidiurnal perturbations arose from an interaction between astronomical tide and atmospheric forcing from wind and barometric pressure. This combination of forcing caused phase shifts between incident and reflected tidal waves that customarily produce quasi-standing tidal conditions in the area. Atmospheric forcing of sufficient strength, which threshold remains to be established, disrupted such quasi-standing tidal behavior and triggered the semidiurnal perturbations.

  3. A critical evaluation of perturbation theories by Monte Carlo simulation of the first four perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Gross, Joachim

    2017-07-01

    The Helmholtz energy of a fluid interacting by a Lennard-Jones pair potential is expanded in a perturbation series. Both the methods of Barker-Henderson (BH) and of Weeks-Chandler-Andersen (WCA) are evaluated for the division of the intermolecular potential into reference and perturbation parts. The first four perturbation terms are evaluated for various densities and temperatures (in the ranges ρ*=0 -1.5 and T*=0.5 -12 ) using Monte Carlo simulations in the canonical ensemble. The simulation results are used to test several approximate theoretical methods for describing perturbation terms or for developing an approximate infinite order perturbation series. Additionally, the simulations serve as a basis for developing fully analytical third order BH and WCA perturbation theories. The development of analytical theories allows (1) a careful comparison between the BH and WCA formalisms, and (2) a systematic examination of the effect of higher-order perturbation terms on calculated thermodynamic properties of fluids. Properties included in the comparison are supercritical thermodynamic properties (pressure, internal energy, and chemical potential), vapor-liquid phase equilibria, second virial coefficients, and heat capacities. For all properties studied, we find a systematically improved description upon using a higher-order perturbation theory. A result of particular relevance is that a third order perturbation theory is capable of providing a quantitative description of second virial coefficients to temperatures as low as the triple-point of the Lennard-Jones fluid. We find no reason to prefer the WCA formalism over the BH formalism.

  4. Downstream coding region determinants of bacterio-opsin, muscarinic acetylcholine receptor and adrenergic receptor expression in Halobacterium salinarum.

    PubMed

    Bartus, Cynthia L; Jaakola, Veli-Pekka; Reusch, Regina; Valentine, Helene H; Heikinheimo, Pirkko; Levay, Agata; Potter, Lincoln T; Heimo, Heikki; Goldman, Adrian; Turner, George J

    2003-02-17

    The aim of this work is to develop a prokaryotic system capable of expressing membrane-bound receptors in quantities suitable for biochemical and biophysical studies. Our strategy exploits the endogenous high-level expression of the membrane protein bacteriorhodopsin (BR) in the Archaeon Halobacterium salinarum. We attempted to express the human muscarinic acetylcholine (M(1)) and adrenergic (a2b) receptors by fusing the coding region of the m1 and a2b genes to nucleotide sequences known to direct bacterio-opsin (bop) gene transcription. The fusions included downstream modifications to produce non-native carboxyl-terminal amino acids useful for protein identification and purification. bop mRNA and BR accumulation were found to be tightly coupled and the carboxyl-terminal coding region modifications perturbed both. m1 and a2b mRNA levels were low, and accumulation was sensitive to both the extent of the bop gene fusion and the specific carboxyl-terminal coding sequence modifications included. Functional a2b adrenergic receptor expression was observed to be dependent on the downstream coding region. This work demonstrates that a critical determinant of expression resides in the downstream coding region of the wild-type bop gene and manipulation of the downstream coding region of heterologous genes may affect their potential for expression in H. salinarum. Copyright 2003 Elsevier Science B.V.

  5. Effect of Body Perturbations on Hypersonic Flow Over Slender Power Law Bodies

    NASA Technical Reports Server (NTRS)

    Mirels, Harold; Thornton, Philip R.

    1959-01-01

    Hypersonic-slender-body theory, in the limit as the free-stream Mach number becomes infinite, is used to find the effect of slightly perturbing the surface of slender two-dimensional and axisymmetric power law bodies, The body perturbations are assumed to have a power law variation (with streamwise distance downstream of the nose of the body). Numerical results are presented for (1) the effect of boundary-layer development on two dimensional and axisymmetric bodies, (2) the effect of very small angles of attack (on tow[dimensional bodies), and (3) the effect of blunting the nose of very slender wedges and cones.

  6. Evaluation of effects of main perturbation forces on the LEO orbit design

    NASA Astrophysics Data System (ADS)

    Jiang, Hu

    With the successful deployment and effective operations of U.S.A. sponsored GPS/MET experiment and some follow-up campaigns, for example, SAC-C sponsored by NASA of U.S.A. and Argentina, and CHAMP by Germany, radio occultation via GPS constellation has been demonstrated to be one of the competitive alternatives for monitoring of the terrestrial atmosphere. As far as Low Earth orbiters are concerned, the perturbation forces, for instance, air drag, luni-solar gravitation, N-body perturbation, solar radiation pressure and tidal perturbation and so on, are analyzed, and the formulations for derivation of perturbation sources are summarized. Also, the orders of magnitude for the perturbation forces are assessed based on the presented formulations. According to the particular requirement of stability for radio occultation footprints, force models are singled out for efficiency purpose. The effects of perturbation force models on the orbit design are estimated.

  7. Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection

    SciTech Connect

    Lapenta, Giovanni; Goldman, Martin; Newman, David; Markidis, Stefano; Divin, Andrey

    2014-05-15

    The electromagnetic energy equation is analyzed term by term in a 3D simulation of kinetic reconnection previously reported by Vapirev et al. [J. Geophys. Res.: Space Phys. 118, 1435 (2013)]. The evolution presents the usual 2D-like topological structures caused by an initial perturbation independent of the third dimension. However, downstream of the reconnection site, where the jetting plasma encounters the yet unperturbed pre-existing plasma, a downstream front is formed and made unstable by the strong density gradient and the unfavorable local acceleration field. The energy exchange between plasma and fields is most intense at the instability, reaching several pW/m{sup 3}, alternating between load (energy going from fields to particles) and generator (energy going from particles to fields) regions. Energy exchange is instead purely that of a load at the reconnection site itself in a region focused around the x-line and elongated along the separatrix surfaces. Poynting fluxes are generated at all energy exchange regions and travel away from the reconnection site transporting an energy signal of the order of about S≈10{sup −3}W/m{sup 2}.

  8. Dams and Rivers: A Primer on the Downstream Effects of Dams

    USGS Publications Warehouse

    Collier, Michael; Webb, Robert H.; Schmidt, John C.

    1996-01-01

    The U.S. Geological Survey is charged with monitoring the water and mineral resources of the United States. Beginning in 1889, the Survey established a network of water gaging stations across most of the country's rivers; some also measured sediment content of the water. Consequently, we now have valuable long-term data with which to track water supply, sediment transport, and the occurrence of floods. Many variables affect the flow of water from mountain brook to river delta. Some are short-term perturbations like summer thunderstorms. Others occur over a longer period of time, like the El Ninos that might be separated by a decade or more. We think of these variables as natural occurrences, but humans have exerted some of the most important changes -- water withdrawals for agriculture, inter-basin transfers, and especially the construction of an extensive system of dams. Dams have altered the flow of many of the Nation's rivers to meet societal needs. We expect floods to be contained. Irrigation is possible where deserts once existed. And water is released downstream not according to natural cycles but as dictated by a region's hour-by-hour needs for water or electricity. As a result, river channels below dams have changed dramatically. Depending on annual flow, flood peaks, and a river's sediment load, we might see changes such as sand building up in one channel, vegetation crowding into another, and extensive bank erosion in another. This Circular explores the emerging scientific arena of change in rivers below dams. This science tries first to understand and then anticipate changes to river beds and banks, and to riparian habitats and animal communities. To some degree, these downstream changes can be influenced by specific strategies of dam management. Scientists and resource managers have a duty to assemble this information and present it without bias to the rest of society. Society can then more intelligently choose a balance between the benefits and adverse

  9. BRST quantization of cosmological perturbations

    SciTech Connect

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  10. BRST quantization of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-01

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  11. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  12. The natural and perturbed troposphere

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.; Hameed, S.; Pinto, J.

    1978-01-01

    A quantitative assessment of the chemical and climatic effects of industrial emissions into the atmosphere requires an understanding of the complex interactions of species within the atmosphere and of the atmosphere with other physical systems such as the oceans, lithosphere, and biosphere. The concentration of a particular species is determined by competition between various production and loss processes. The abundances of tropospheric gases are examined. The reactions of the members of the oxygen group are considered along with the models which have been developed to describe the involved relationships. Attention is also given to the natural carbon cycle, perturbations to the carbon cycle, the natural nitrogen cycle, perturbations to the nitrogen cycle, the hydrogen group, the sulfur group, and the halogen group.

  13. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  14. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  15. Downstream hydraulic geometry relationships: Gathering reference reach-scale width values from LiDAR

    NASA Astrophysics Data System (ADS)

    Sofia, G.; Tarolli, P.; Cazorzi, F.; Dalla Fontana, G.

    2015-12-01

    This paper examines the ability of LiDAR topography to provide reach-scale width values for the analysis of downstream hydraulic geometry relationships along some streams in the Dolomites (northern Italy). Multiple reach-scale dimensions can provide representative geometries and statistics characterising the longitudinal variability in the channel, improving the understanding of geomorphic processes across networks. Starting from the minimum curvature derived from a LiDAR DTM, the proposed algorithm uses a statistical approach for the identification of the scale of analysis, and for the automatic characterisation of reach-scale bankfull widths. The downstream adjustment in channel morphology is then related to flow parameters (drainage area and stream power). With the correct planning of a LiDAR survey, uncertainties in the procedure are principally due to the resolution of the DTM. The outputs are in general comparable in quality to field survey measurements, and the procedure allows the quick comparison among different watersheds. The proposed automatic approach could improve knowledge about river systems with highly variable widths, and about systems in areas covered by vegetation or inaccessible to field surveys. With proven effectiveness, this research could offer an interesting starting point for the analysis of differences between watersheds, and to improve knowledge about downstream channel adjustment in relation, for example, to scale and landscape forcing (e.g. sediment transport, tectonics, lithology, climate, geomorphology, and anthropic pressure).

  16. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport

    USGS Publications Warehouse

    Horvath, T.G.; Lamberti, G.A.

    1999-01-01

    1. Streams flowing from lakes which contain zebra mussels, Dreissena polymorpha, provide apparently suitable habitats for mussel colonization and downstream range expansion, yet most such streams contain few adult mussels. We postulated that mussel veligers experience high mortality during dispersal via downstream transport. They tested this hypothesis in Christiana Creek, a lake-outlet stream in south-western Michigan, U.S.A., in which adult mussel density declined exponentially with distance downstream. 2. A staining technique using neutral red was developed and tested to distinguish quickly live and dead veligers. Live and dead veligers were distinguishable after an exposure of fresh samples to 13.3 mg L-1 of neutral red for 3 h. 3. Neutral red was used to determine the proportion of live veligers in samples taken longitudinally along Christiana Creek. The proportion of live veligers (mean ?? SE) declined from 90 ?? 3% at the lake outlet to 40 ?? 8% 18 km downstream. 4. Veligers appear to be highly susceptible to damage by physical forces (e.g. shear), and therefore, mortality in turbulent streams could be an important mechanism limiting zebra mussel dispersal to downstream reaches. Predictions of zebra mussel spread and population growth should consider lake-stream linkages and high mortality in running waters.

  17. Modeling downstream fining in sand-bed rivers. I: Formulation

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2005-01-01

    In this paper a numerical modeling formulation is presented for simulation of the development of the longitudinal profile and bed sediment distribution in sand-bed rivers. The objective of the model application, which is presented in the companion paper (Wright and Parker, 2005), is to study the development of two characteristics of large, low-slope, sand-bed rivers: (1) a downstream decrease in bed slope (i.e. concave upward longitudinal profile) and (2) a downstream decrease in characteristic bed sediment diameter (e.g. the median bed surface size D50). Three mechanisms that lead to an upward concave profile and downstream fining are included in the modeling formulation: (1) a delta prograding into standing water at the downstream boundary, (2) sea-level rise, and (3) tectonic subsidence. In the companion paper (Wright and Parker, 2005) the model is applied to simulate the development of the longitudinal profile and downstream fining in sand-bed rivers flowing into the ocean during the past 5000 years of relatively slow sea-level rise. ?? 2005 International Association of Hydraulic Engineering and Research.

  18. Perturbation analysis analyzed - Mathematical modeling of intact and perturbed gene regulatory circuits for animal development

    PubMed Central

    de-Leon, Smadar Ben-Tabou

    2010-01-01

    Gene regulatory networks for animal development are the underlying mechanisms controlling cell fate specification and differentiation. The architecture of gene regulatory circuits determines their information processing properties and their developmental function. It is a major task to derive realistic network models from exceedingly advanced high throughput experimental data. Here we use mathematical modeling to study the dynamics of gene regulatory circuits to advance the ability to infer regulatory connections and logic function from experimental data. This study is guided by experimental methodologies that are commonly used to study gene regulatory networks that control cell fate specification. We study the effect of a perturbation of an input on the level of its downstream genes and compare between the cis-regulatory execution of OR and AND logics. Circuits that initiate gene activation and circuits that lock on the expression of genes are analyzed. The model improves our ability to analyze experimental data and construct from it the network topology. The model also illuminates information processing properties of gene regulatory circuits for animal development. PMID:20599898

  19. Modulations of perturbed KdV wavetrains

    SciTech Connect

    Forest, M.G.; Mclaughlin, D.W.

    1984-04-01

    The modulations of N-phase Korteweg-de Vries (KdV) wavetrains in the presence of external perturbations is investigated. An invariant representation of these modulation equations in terms of differentials on a Riemann surface is derived from averaged perturbed conservation laws. In particular, the explicit dependence of the representation on the external perturbation is obtained. This invariant representation is used to place the equation in a Riemann diagonal form, whose dependence on the external perturbation is explicitly computed. 15 references.

  20. Effects of downstream genes on synthetic genetic circuits.

    PubMed

    Moriya, Takefumi; Yamamura, Masayuki; Kiga, Daisuke

    2014-01-01

    In order to understand and regulate complex genetic networks in living cells, it is important to build simple and well-defined genetic circuits. We designed such circuits using a synthetic biology approach that included mathematical modeling and simulation, with a focus on the effects by which downstream reporter genes are involved in the regulation of synthetic genetic circuits. Our results indicated that downstream genes exert two main effects on genes involved in the regulation of synthetic genetic circuits: (1) competition for regulatory proteins and (2) protein degradation in the cell. Our findings regarding the effects of downstream genes on regulatory genes and the role of impedance in driving large-scale and complex genetic circuits may facilitate the design of more accurate genetic circuits. This design will have wide applications in future studies of systems and synthetic biology.

  1. Downstream effects of mine effluent on an intermontane riparian system

    USGS Publications Warehouse

    Moore, Johnnie N.; Luoma, Samuel N.; Peters, Donald

    1991-01-01

    Metal concentrations were determined in benthic biota, fish livers, water, and fine-grained sediment through 215 km of an intermontane river system (Blackfoot River, Montana, USA) affected by headwater inputs of acid-mine effluent. Solute and particulate contaminants decreased rapidly downstream from headwater sources, but some extended through an extensive marsh system. Particulate contaminants penetrated through the marsh system, effectively resulting in food web contamination downstream of the marshes. Metals differed in their bioavailability within and below the marsh system. Cadmium was most consistently accumulated in the food web, and the general order of downstream mobilization of bioavailable metals appears to be Cd, Zn > Cu > As, Ni. Depauperate benthic communities and reduced fish populations occurred coincident with the sediment contamination.

  2. Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows

    NASA Astrophysics Data System (ADS)

    Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin

    2016-08-01

    The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.

  3. Plasma physics and environmental perturbation laboratory. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Space physics and plasma physics experiments that can be performed from the space shuttle were identified. Potential experiment concepts were analyzed to derive requirements for a spaceborne experiment facility. The laboratory, known as the Plasma Physics and Environmental Perturbation Laboratory consists of a 33-foot pallet of instruments connected to a 25-foot pressurized control module. Two 50-meter booms, two subsatellites, a high power transmitter, a multipurpose accelerator array, a set of deployable canisters, and a gimbaled instrument platform are the primary systems deployed from the pallet. The pressurized module contains all the control and display equipment required to conduct the experiments, and life support and power subsystems.

  4. Comparison of pitot traverses taken at varying distances downstream of obstructions.

    PubMed

    Guffey, S E; Booth, D W

    1999-01-01

    This study determined the deviations between pitot traverses taken under "ideal" conditions--at least seven duct diameter's lengths (i.e., distance = 7D) from obstructions, elbows, junction fittings, and other disturbances to flows--with those taken downstream from commonplace disturbances. Two perpendicular 10-point, log-linear velocity pressure traverses were taken at various distances downstream of tested upstream conditions. Upstream conditions included a plain duct opening, a junction fitting, a single 90 degrees elbow, and two elbows rotated 90 degrees from each other into two orthogonal planes. Airflows determined from those values were compared with the values measured more than 40D downstream of the same obstructions under ideal conditions. The ideal measurements were taken on three traverse diameters in the same plane separated by 120 degrees in honed drawn-over-mandrel tubing. In all cases the pitot tubes were held in place by devices that effectively eliminated alignment errors and insertion depth errors. Duct velocities ranged from 1500 to 4500 ft/min. Results were surprisingly good if one employed two perpendicular traverses. When the averages of two perpendicular traverses was taken, deviations from ideal value were 6% or less even for traverses taken as close as 2D distance from the upstream disturbances. At 3D distance, deviations seldom exceeded 5%. With single diameter traverses, errors seldom exceeded 5% at 6D or more downstream from the disturbance. Interestingly, percentage deviations were about the same at high and low velocities. This study demonstrated that two perpendicular pitot traverses can be taken as close as 3D from these disturbances with acceptable (< or = 5%) deviations from measurements taken under ideal conditions.

  5. Geometric Hamiltonian structures and perturbation theory

    SciTech Connect

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.

  6. Continuous pressure letdown system

    DOEpatents

    Sprouse, Kenneth M.; Matthews, David R.; Langowski, Terry

    2010-06-08

    A continuous pressure letdown system connected to a hopper decreases a pressure of a 2-phase (gas and solid) dusty gas stream flowing through the system. The system includes a discharge line for receiving the dusty gas from the hopper, a valve, a cascade nozzle assembly positioned downstream of the discharge line, a purge ring, an inert gas supply connected to the purge ring, an inert gas throttle, and a filter. The valve connects the hopper to the discharge line and controls introduction of the dusty gas stream into the discharge line. The purge ring is connected between the discharge line and the cascade nozzle assembly. The inert gas throttle controls a flow rate of an inert gas into the cascade nozzle assembly. The filter is connected downstream of the cascade nozzle assembly.

  7. Transition duct with divided upstream and downstream portions

    DOEpatents

    McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Maldonado, Jaime Javier; Dillard, Daniel Jackson; Flanagan, James Scott

    2015-07-14

    Turbine systems are provided. In one embodiment, a turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion extending from the inlet and a downstream portion extending from the outlet. The turbine system further includes a rib extending from an outer surface of the duct passage, the rib dividing the upstream portion and the downstream portion.

  8. Identifying Network Perturbation in Cancer

    PubMed Central

    Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed—having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341

  9. Potential Flow Downstream of the Heliospheric Terminal Shock: A Non-Spherical Shock

    NASA Technical Reports Server (NTRS)

    Nerney, Steven; Suess, S. T.

    1995-01-01

    We have solved for the potential flow downstream of the terminal shock of the solar wind in the limit of small departures from a spherical shock due to a latitudinal ram pressure variation in the supersonic solar wind. The solution connects anisotropic streamlines at the shock to uniform streamlines down the heliotail because we use a non-slip boundary condition on the heliopause at large radii. The rotational velocity about the heliotail in the near-field solution decays as the fourth power of distance from the shock. The polar divergence of the streamlines will have consequences for the previously discussed magnetic pressure ridge that may build-up just inside the heliopause.

  10. Potential flow downstream of the heliospheric terminal shock: A non-spherical shock

    NASA Technical Reports Server (NTRS)

    Nerney, Steven; Suess, Steven T.

    1994-01-01

    We have solved for the potential flow downstream of the terminal shock of the solar wind in the limit of small departures from a spherical shock due to a latitudinal ram pressure variation in the supersonic solar wind. The solution connects anisotropic streamlines at the shock to uniform streamlines down the heliotail because we use a non-slip boundary condition on the heliopause at large radii. The rotational velocity about the heliotail in the near-field solution decays as the fourth power of distance from the shock. The polar divergence of the streamlines will have consequences for the previously discussed magnetic pressure ridge that may build-up just inside the heliopause.

  11. Transport Studies Using Perturbative Experiments

    SciTech Connect

    Hogeweij, G.M.D.

    2004-03-15

    By inducing a small electron temperature perturbation in a plasma in steady state one can in principle determine the conductive and convective components of the electron heat ux, and the associated thermal diffusivity and convection velocity. The same can be done for other plasma parameters, like density or ion temperature.In this paper experimental and analysis techniques are briey reviewed. The fundamental question whether the uxes are linear functions of the gradients or not is discussed. Experimental results are summarized, including so-called 'non-local' phenomena.

  12. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  13. Characteristics of a separating confluent boundary layer and the downstream wake

    NASA Technical Reports Server (NTRS)

    Adair, Desmond; Horne, W. Clifton

    1987-01-01

    Measurements of pressure and velocity characteristics are presented and analyzed for flow over and downstream of a NACA 4412 airfoil equipped with a NACA 4415 single-slotted flap at high angle of attack and close to maximum lift. The flow remained attached over the main element while a large region of recirculating flow occurred over the aft 61 percent of the flap. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8x10 to the 6th power in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. Measurement of mean and fluctuation velocities were obtained in regions of recirculation and high turbulence intensity using 3-D laser velocimetry. In regions where the flow had a preferred direction and relatively low turbulence intensity, hot-wire anemometry was used. Emphasis was placed on obtaining characteristics in the confluent boundary layer, the region of recirculating flow, and in the downstream wake. Surface pressure measurements were made on the main airfoil, flap, wind tunnel roof and floor. It is thought likely that because the model is large when compared to the wind tunnel cross section, the wind tunnel floor and ceiling interference should be taken into account when the flow field is calculated.

  14. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    SciTech Connect

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  15. 16. Detail, lower chord connection point on downstream side at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, lower chord connection point on downstream side at end panel showing lower chord eye bars, vertical tension eye bar, original and supplemental floor beams, turnbuckled lower laterals. View to northwest. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  16. Riparian canopy gaps: within-gap heating and downstream cooling

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Coats, W. A.

    2016-12-01

    Summer stream temperatures are a primary determinant of stream habitat suitability for cold-water species. Trout, for example, are at the southern end of their range in the Southern Appalachian Mountains due to temperature constraints. Short and longwave radiation exchange with the atmosphere are the dominant drivers of spatial and temporal variability in stream temperatures. Consequently, when riparian forest cover is absent, stream temperatures rise until the outgoing longwave radiation (proportional to Tabs^4) matches the incoming shortwave. We have observed both rapid increases of daytime stream temperatures within riparian gaps and rapid declines of daytime stream temperatures after the stream returns to forested riparian conditions. Others have previously documented downstream cooling below riparian gaps, but with low replication. These previous case studies have found very different rates of cooling below gaps. To quantify and better understand cooling downstream of gaps, we measured temperatures above, within, and below 12 riparian gaps within and near the Upper Little Tennessee River basin in the Southern Appalachian Mountains of western North Carolina. Temperature responses to riparian cover changes varied widely. Below gaps, some streams cooled rapidly, some cooled slowly, and some continued to warm. The data suggest that smaller streams can cool rapidly below riparian gaps. Temperature increases within gaps were similarly variable. Akaike Information Criteria (AIC) is applied to candidate model variable sets for explaining within-gap temperature sensitivity and downstream cooling rates. Understanding downstream cooling is critical for the development of riparian management policies for cold-water species.

  17. 5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS TO CLEAR THE SYSTEM ABOVE THE SILT AND DEBRIS AND TO STOP THE FLOW OF WATER INTO THE SYSTEM DOWN LINE. BOX FLUME CONTINUES DOWN LINE TO SEDIMENTATION CHAMBER. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  18. 27. A DOWNSTREAM VIEW FROM THE LOWER END OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. A DOWNSTREAM VIEW FROM THE LOWER END OF THE OUTLET CONDUIT, SHOWING STILLING BASIN BAFFLE PIERS.... Volume XVII, No. 17, November 29, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. 1. CONTEXTUAL VIEW, LOOKING DOWNSTREAM (NORTHERLY) OF THE CONCRETE ARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW, LOOKING DOWNSTREAM (NORTHERLY) OF THE CONCRETE ARCH ('ONE-WAY BRIDGE') THAT PROVIDES PRIVATE (WWP) ACCESS TO THE MIDDLE CHANNEL OF THE POST FALLS POWER PLANT. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  20. 1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. POWER PLANT AND INTAKE GATES ARE IN THE LEFT FOREGROUND, AND THE ATTACHED 'OLD SWITCHING BUILDING' (NOW ABANDONED) IS IN THE RIGHT BACKGROUND, LOOKING NORTHWEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  1. 51. Photocopy of photograph, October 16, 1942. VIEW, LOOKING DOWNSTREAM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of photograph, October 16, 1942. VIEW, LOOKING DOWNSTREAM, OF POWER HOUSE DURING FLOOD. (Courtesy of the Potomac Edison Company Library (Hagerstown, MD), Historical Data Files, Dam NO. 5 listing) - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  2. 14. DETAIL EXTERIOR VIEW LOOKING EAST AT DOWNSTREAM SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL EXTERIOR VIEW LOOKING EAST AT DOWNSTREAM SIDE OF NORTH END OF DAM/SPILLWAY; GANTRY CRANE ABOVE MOVABLE STONEY GATE IS VISIBLE IN CENTER BACKGROUND; FISH LADDER ON WASHINGTON SHORE IS VISIBLE IN FOREGROUND. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  3. 1. Contextual view of bridge in setting, from downstream, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Contextual view of bridge in setting, from downstream, view to south from edge of bluff east of Rawson Road. Bridge visible among trees at left center. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  4. 60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed to be just subsequent to construction. Photograph by C.G. Duffey, Long Beach, California. (38' x 11' framed print). - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  5. 46. View of downstream face of fish screens at Dingle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. View of downstream face of fish screens at Dingle Basin, looking southeast from north side of basin. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  6. 44. View of log boom (downstream) protecting fish screens at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. View of log boom (downstream) protecting fish screens at Dingle Basin, looking northeast from south side of basin. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  7. 8. View of gabeon west wall added downstream from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of gabeon west wall added downstream from the lower dam. Photograph taken from east side of Millstone Creek. VIEW SOUTH - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  8. 17. VIEW EASTERLY ALONG DOWNSTREAM END OF THE SPILLWAY, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW EASTERLY ALONG DOWNSTREAM END OF THE SPILLWAY, SHOWING CELL WALL CONSTRUCTION IN THE CRIB CUTOFF.... Volume XX, No. 4, August 3, 1940. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  9. 1. CONTEXTUAL VIEW FROM DOWNSTREAM OF BRIDGE IN ITS SETTING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW FROM DOWNSTREAM OF BRIDGE IN ITS SETTING, LOOKING NORTH-NORTHEAST FROM PIONEER BRIDGE (BUSINESS ROUTE 80). CAPITOL BANK OF COMMERCE BUILDING IS AT EXTREME RIGHT. - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  10. 23. The Salt River, downstream, from atop Mormon Flat Dam. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. The Salt River, downstream, from atop Mormon Flat Dam. HEFU generator deck is at center bottom. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  11. 5. Downstream elevation, view to southeast. Dark stains on side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Downstream elevation, view to southeast. Dark stains on side of main girder are from deck drain scuppers, marking deck level within the girders. Compare this view and CA-126-7 to CA-126-19 for indication of severity of siltation of Salt River channel has silted. - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA

  12. LOOKING DOWNSTREAM FROM KACHESS DAM CREST, 1910 RIVER CUTOFF CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING DOWNSTREAM FROM KACHESS DAM CREST, 1910 RIVER CUTOFF CHANNEL WITH CRIB STRUCTURE IN CENTER. BRIDGE FOOTING CRIB STRUCTURE AT RIGHT (Upstream face of Kachess Dam in foreground) - Kachess Dam, Cutoff Channel and Crib Structures, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  13. 7. SEDIMENTATION CHAMBER AT 520', CONSTRUCTED 19371938, VIEWED FROM DOWNSTREAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SEDIMENTATION CHAMBER AT 520', CONSTRUCTED 1937-1938, VIEWED FROM DOWNSTREAM. DEBRIS REMOVED FROM TOP PLANKS FOR CLARITY. ONE OF TWO SPILLWAYS SEEN AT RIGHT. FLUSH VALVE SEEN AT LOWER LEFT AND WRENCH FOR VALVES IS PROPPED AGAINST CHAMBER. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  14. Downstream processing of monoclonal antibodies--application of platform approaches.

    PubMed

    Shukla, Abhinav A; Hubbard, Brian; Tressel, Tim; Guhan, Sam; Low, Duncan

    2007-03-15

    This paper presents an overview of large-scale downstream processing of monoclonal antibodies and Fc fusion proteins (mAbs). This therapeutic modality has become increasingly important with the recent approval of several drugs from this product class for a range of critical illnesses. Taking advantage of the biochemical similarities in this product class, several templated purification schemes have emerged in the literature. In our experience, significant biochemical differences and the variety of challenges to downstream purification make the use of a completely generic downstream process impractical. Here, we describe the key elements of a flexible, generic downstream process platform for mAbs that we have adopted at Amgen. This platform consists of a well-defined sequence of unit operations with most operating parameters being pre-defined and a small subset of parameters requiring development effort. The platform hinges on the successful use of Protein A chromatography as a highly selective capture step for the process. Key elements of each type of unit operation are discussed along with data from 14 mAbs that have undergone process development. Aspects that can be readily templated as well as those that require focused development effort are identified for each unit operation. A brief description of process characterization and validation activities for these molecules is also provided. Finally, future directions in mAb processing are summarized.

  15. Connectivity of Streams and Wetlands to Downstream Waters ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency's (USEPA) Office of Research and Development has finalized the report Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence. The report reviews more than 1,200 peer-reviewed publications and summarizes current scientific understanding about the connectivity and mechanisms by which streams and wetlands, singly or in aggregate, affect the physical, chemical, and biological integrity of downstream waters. The focus of the report is on surface and shallow subsurface connections by which small or temporary streams, nontidal wetlands, and open waters affect larger waters such as rivers, lakes, reservoirs, and estuaries. This report represents the state-of-the-science on the connectivity and isolation of waters in the United States. It makes five major conclusions, summarized below, that are drawn from a broad range of peer reviewed scientific literature. The scientific literature unequivocally demonstrates that streams, regardless of their size or frequency of flow, are connected to downstream waters and strongly influence their function. The scientific literature clearly shows that wetlands and open waters in riparian areas (transitional areas between terrestrial and aquatic ecosystems) and floodplains are physically, chemically, and biologically integrated with rivers via functions that improve downstream water quality. These system

  16. 28. VIEW FROM IMMEDIATELY DOWNSTREAM OF TWIN FALLS MAIN CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW FROM IMMEDIATELY DOWNSTREAM OF TWIN FALLS MAIN CANAL HEADWORKS WITH CANAL BRIDGE IN DISTANCE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  17. DETAIL VIEW OF LOCK WALL RECESS AT THE DOWNSTREAM END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF LOCK WALL RECESS AT THE DOWNSTREAM END OF LOCK 70. THE RECESS,TYPICAL OF BOTH WALLS IN ALL OF THE LOCKS, PROVIDED SPACE FOR OPEN LOCK GATES TO ALLOW UNIMPEDED PASSAGE OF LOCK TRAFFIC. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY

  18. 1. LOOKING DOWNSTREAM (NORTHEAST) ALONG WINTER'S RUN TOWARD THE MITCHELL'S ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING DOWNSTREAM (NORTHEAST) ALONG WINTER'S RUN TOWARD THE MITCHELL'S MILL BRIDGE, SHOWING THE SETTING OF THE BRIDGE. CARRS MILL ROAD APPROACHES THE BRIDGE FROM THE SOUTH, ON THE RIGHT. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  19. Density Fluctuations Upstream and Downstream of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream-stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  20. 12. Close up view of construction on the downstream face. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Close up view of construction on the downstream face. Track at lower center conveyed aggregate from the stream bed to the mixing plant. Photographer unknown, October 15, 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  1. 6. AN IMAGE OF LOOKING NORTHEAST FROM THE DOWNSTREAM SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AN IMAGE OF LOOKING NORTHEAST FROM THE DOWNSTREAM SIDE OF THE BRIDGE, SHOWING THE ENTRADOS, SOLID-RAIL PARAPET, THE BEAM, THE NORTHWEST ABUTMENT AND PART OF THE PIER. - Cement Plant Road Bridge, Spanning Leatherwood Creek on County Road 50 South, Bedford, Lawrence County, IN

  2. 8. Chandler Falls, looking downstream, and downhill from the edge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Chandler Falls, looking downstream, and downhill from the edge of the mesa (from south). Penstock and foundation of the hydropower plant visible on left. Photographer: Mark Durben, February 1989. Source: SRPA - Tempe Canal, South Side Salt River in Tempe, Mesa & Phoenix, Tempe, Maricopa County, AZ

  3. 4. VIEW OF DOWNSTREAM FACE OF DAM, WITH SCARS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF DOWNSTREAM FACE OF DAM, WITH SCARS FROM EARTH MOVING TO CONSTRUCT DAM IN FOREGROUND, LOOKING NORTHWEST - High Mountain Dams in Upalco Unit, Five Point Lake Dam, Ashley National Forest, 12 miles Northwest of Swift Creek Campground, Mountain Home, Duchesne County, UT

  4. 9. SOUTHERLY VIEW OF THE ACCESS ROAD TO THE DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SOUTHERLY VIEW OF THE ACCESS ROAD TO THE DOWNSTREAM SIDE OF BIG DALTON DAM EXTENDING FROM THE DAM TO THE FOOTBRIDGE. VIEW FROM BIG DALTON DAM SHOWING THE TOE WEIR IN FOREGROUND AND FOOTBRIDGE IN BACKGROUND. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  5. 5. WESTERLY VIEW OF THE ACCESS ROAD TO THE DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. WESTERLY VIEW OF THE ACCESS ROAD TO THE DOWNSTREAM SIDE OF BIG TUJUNGA DAM EXTENDING FROM THE DAM TO THE FOOTBRIDGE. VIEW FROM BIG TUJUNGA DAM CREST SHOWING THE END OF PLUNGE POOL IN FOREGROUND AND FOOTBRIDGE IN BACKGROUND. - Big Tujunga Dam, 809 West Big Tujunga Road, Sunland, Los Angeles County, CA

  6. 9. NORTHEAST VIEW OF THE ACCESS ROAD TO THE DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NORTHEAST VIEW OF THE ACCESS ROAD TO THE DOWNSTREAM SIDE OF BIG TUJUNGA DAM EXTENDING FROM THE DAM TO THE FOOTBRIDGE. BIG TUJUNGA DAM SPILLWAY BRIDGE IN BACKGROUND. - Big Tujunga Dam, 809 West Big Tujunga Road, Sunland, Los Angeles County, CA

  7. Using stable isotopes to examine watershed connectivity to downstream waters

    EPA Science Inventory

    Water bodies within the USA are protected by the US Clean Water Act when they have a significant nexus to downstream navigable waters. As a research scientist with the US Environmental Protection Agency, I have used water stable isotopes to examine hydrologic connectivity dynami...

  8. 2. EXTERIOR VIEW OF DOWNSTREAM SIDE OF COTTAGE 191 TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW OF DOWNSTREAM SIDE OF COTTAGE 191 TAKEN FROM ROOF OF GARAGE 393. CAMERA FACING SOUTHEAST. COTTAGE 181 AND CHILDREN'S PLAY AREA VISIBLE ON EITHER SIDE OF ROOF. GRAPE ARBOR IN FOREGROUND. - Swan Falls Village, Cottage 191, Snake River, Kuna, Ada County, ID

  9. 2. View from the Minnesota bank looking downstream (northnorthwest) at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View from the Minnesota bank looking downstream (north-northwest) at bridge's southwest elevation; the bridge approach is missing - Enloe Bridge No. 90021, Spanning Red River of North between Minnesota & North Dakota on County State Aid Highway 28, Wolverton, Wilkin County, MN

  10. 59. Downstream view of Waddell Dam showing buttress ties, crane, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Downstream view of Waddell Dam showing buttress ties, crane, housing over penstock outlet (left) and storage building (right). Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  11. 53. Humbug Creek looking downstream from Humbug Diversion Dam. Retaining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Humbug Creek looking downstream from Humbug Diversion Dam. Retaining wall for canal is visible beginning at left center. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  12. 71. Close up view of downstream view of four large ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. Close up view of downstream view of four large taintor gates and section for sector gate (now removed). Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  13. 13. OVERALL VIEW OF DOWNSTREAM FACE OF LIFT GATE SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OVERALL VIEW OF DOWNSTREAM FACE OF LIFT GATE SECTION (FROM EDGE OF COFFERDAM) WITH BOILERHOUSE AND TAINTER GATE SECTION IN BACKGROUND TO THE RIGHT. VIEW TO SOUTHEAST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  14. 19. Downstream elevation of bridge. Original photograph published in The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Downstream elevation of bridge. Original photograph published in The Architect and Engineer, July 1920, p.90, photographer unknown. Note width of channel, and compare to CA-126-5 and CA-126-7. - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA

  15. 7. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, WITH OUTLET CULVERT AND WING RETAINING WALLS, LOOKING NORTH - High Mountain Dams in Upalco Unit, Twin Pots Dam, Ashley National Forest, 10.1 miles North of Mountain Home, Mountain Home, Duchesne County, UT

  16. Oblique view of southeast machinery house, SF 109, at downstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of southeast machinery house, SF 109, at downstream end of lock, with interior of lack gate at left, view towards southeast - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  17. Distant view from downstream of lock with southeast machinery house, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Distant view from downstream of lock with southeast machinery house, SF 109, and timber guide wall on left, exterior view of closed lower lock gates and hydro-electric power house and dam in background, view towards west - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  18. View from downstream of lock with northeast machinery house, SF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from downstream of lock with northeast machinery house, SF 107, at center, exterior view of closed lower lock gates and concrete pylon on right, view towards west - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  19. 6. DETAIL VIEW OF THE MASONRY FACING ON THE DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF THE MASONRY FACING ON THE DOWNSTREAM SIDE OF THE HISTORIC OUTLET WORKS. VIEW LOOKING NORTHEAST. - Twin Lakes Dam & Outlet Works, Beneath Twin Lakes Reservoir, T11S, R80W, S22, Twin Lakes, Lake County, CO

  20. 4. DOWNSTREAM VIEW OF HISTORIC OUTLET WORKS TAKEN FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DOWNSTREAM VIEW OF HISTORIC OUTLET WORKS TAKEN FROM THE NORTH BANK OF THE CHANNEL BETWEEN THE OLD WORKS AND TWIN LAKES DAM. VIEW LOOKING WEST. - Twin Lakes Dam & Outlet Works, Beneath Twin Lakes Reservoir, T11S, R80W, S22, Twin Lakes, Lake County, CO

  1. 5. DETAIL OF THE DOWNSTREAM SIDE OF THE GATES SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF THE DOWNSTREAM SIDE OF THE GATES SHOWING REINFORCEMENT AND THE TOP EDGE OF THE UPSTREAM MASONRY WALL OF THE HISTORIC OUTLET WORKS TAKEN FROM THE SOUTHERN EMBANKMENT. VIEW LOOKING NORTH. - Twin Lakes Dam & Outlet Works, Beneath Twin Lakes Reservoir, T11S, R80W, S22, Twin Lakes, Lake County, CO

  2. 3. DOWNSTREAM VIEW OF HISTORIC OUTLET WORKS TAKEN FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DOWNSTREAM VIEW OF HISTORIC OUTLET WORKS TAKEN FROM THE SOUTH SIDE OF THE CHANNEL BETWEEN THE OLD WORKS AND TWIN LAKES DAM. VIEW LOOKING NORTHWEST - Twin Lakes Dam & Outlet Works, Beneath Twin Lakes Reservoir, T11S, R80W, S22, Twin Lakes, Lake County, CO

  3. OVERALL VIEW OF DOWNSTREAM (EAST) SIDE OF COMPLEX, WITH NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF DOWNSTREAM (EAST) SIDE OF COMPLEX, WITH NORTH EMBANKMENT (MI-98-A) IN FOREGROUND, AND (R-L) SPILLWAY (MI-98-B), POWERHOUSE (MI-98-C), SUBSTATION (MI-98-D), AND SOUTH EMBANKMENT (MI-98-E). VIEW TO SOUTH - Cooke Hydroelectric Plant, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  4. 4. Downstream face of Rock Creek Diversion Dam, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Downstream face of Rock Creek Diversion Dam, looking west (Irrigation District canal to right, creek gate and weir to left) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  5. View of downstream face of Grand Coulee Dam (from hillside ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of downstream face of Grand Coulee Dam (from hillside north of No. 3 Powerhouse), looking southwest. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  6. DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING DOWNSTREAM; AFTER COMPLETION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING DOWNSTREAM; AFTER COMPLETION OF MONTAG & SONS CONTRACT. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, November 24, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  7. 20. VIEW FROM DOWNSTREAM SIDE OF DAM SHOWING BUTTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW FROM DOWNSTREAM SIDE OF DAM SHOWING BUTTS OF LOGS PROJECTING BETWEEN CROSS LOGS. FREQUENTLY WHOLE TREES WERE USED IN CONSTRUCTING THESE DAMS. THE BRANCHES WERE PLACED UPSTREAM AND COVERED WITH EARTH AND STONE TO ANCHOR THEM. Photographed November 6, 1935. - Forge Creek Dam-John Cable Mill, Townsend, Blount County, TN

  8. View of Flume Bridge #5 from FS 502 looking downstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Flume Bridge #5 from FS 502 looking downstream (south). Bridge is on the left side of the photograph. This is similar to other flume bridges in the system and is the only photograph representing these features. - Childs-Irving Hydroelectric Project, Childs System, Flume Bridge No. 5, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  9. 1. GENERAL EXTERIOR VIEW LOOKING SOUTHWEST, SHOWING DOWNSTREAM END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW LOOKING SOUTHWEST, SHOWING DOWNSTREAM END OF NAVIGATION LOCK #1 WITH CHAMBER FILLED; THE CONTROL HOUSE IS ON RIGHT; VIEW IS TAKEN FROM ROOF OF POWERHOUSE #1. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR

  10. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    SciTech Connect

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  11. The Role of Headwater Streams in Downstream Water Quality1

    PubMed Central

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  12. The Role of Headwater Streams in Downstream Water Quality.

    PubMed

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-02-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  13. The role of headwater streams in downstream water quality

    USGS Publications Warehouse

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  14. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  15. Downstream-migrating fluvial point bars in the rock record

    NASA Astrophysics Data System (ADS)

    Ghinassi, Massimiliano; Ielpi, Alessandro; Aldinucci, Mauro; Fustic, Milovan

    2016-04-01

    Classical models developed for ancient fluvial point bars are based on the assumption that meander bends invariably increase their radius as meander-bend apices migrate in a direction transverse to the channel-belt axis (i.e., meander bend expansion). However, many modern meandering rivers are also characterized by down-valley migration of the bend apex, a mechanism that takes place without a significant change in meander radius and wavelength. Downstream-migrating fluvial point bars (DMFPB) are the dominant architectural element of these types of meander belts. Yet they are poorly known from ancient fluvial-channel belts, since their disambiguation from expansional point bars often requires fully-3D perspectives. This study aims to review DMFPB deposits spanning in age from Devonian to Holocene, and to discuss their main architectural and sedimentological features from published outcrop, borehole and 3D-seismic datasets. Fluvial successions hosting DMFPB mainly accumulated in low accommodation conditions, where channel belts were affected by different degrees of morphological (e.g., valleys) or tectonic (e.g., axial drainage of shortening basins) confinement. In confined settings, bends migrate downstream along the erosion-resistant valley flanks and little or no floodplain deposits are preserved. Progressive floor aggradation (e.g., valley filling) allow meander belts with DMFPB to decrease their degree of confinement. In less confined settings, meander bends migrate downstream mainly after impinging against older, erosion-resistant channel fill mud. By contrast, tectonic confinement is commonly associated with uplifted alluvial plains that prevented meander-bend expansion, in turn triggering downstream translation. At the scale of individual point bars, translational morphodynamics promote the preservation of downstream-bar deposits, whereas the coarser-grained upstream and central beds are less frequently preserved. However, enhanced preservation of upstream

  16. "Phonon" scattering beyond perturbation theory

    NASA Astrophysics Data System (ADS)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  17. Downstream migrating antidunes or in-phase waves?

    NASA Astrophysics Data System (ADS)

    Núñez González, Francisco

    2014-05-01

    Late back in the beginning of the 20th century, Gilbert observed bedforms that migrated in opposite direction to flow. Since this feature was remarkable and inverse to the behavior of dunes (most often observed in rivers and flumes), he called the new species antidunes. Subsequent researchers identified other characteristic attributes of the new species, and it was later commonly accepted that a defining characteristic of antidunes was that undulations of bed and water profiles were roughly in-phase. Due to its generality, such definition has given place to some ambiguities, particularly when dealing with bedforms close to the critical-supercritical transition, as occurs with bedforms with bed and water profiles roughly in-phase but migrating downstream. Such bedforms are described by different researchers, but they are not always classified as antidunes. Some sedimentologists argue that given the depositional pattern of such streamwise migrating forms is different to that of upstream-migrating antidunes, the more generic term "in-phase waves" should be applied to consider them as a different class. The lack of a stability field for 2D downstream-migrating antidunes in the classical theoretical study of Kennedy in the early sixties, has also contributed to some confusion. According to such theoretical diagram, downstream-migrating antidunes could only exist being 3D, but empirical evidences -even from Kennedy- contradict this outcome. In this work, such results and other morphodynamic features of downstream-migrating antidunes will be discussed, in light of experimental data and a simple hydraulic analysis of the direction of movement of antidunes. An open question will be left to debate about the appropriateness of classifying downstream-migrating in-phase waves as antidunes, and it will be emphasized that finding consensus between different disciplines involved with the study of bedforms will be advantageous.

  18. A novel virtual hub approach for multisource downstream service integration

    NASA Astrophysics Data System (ADS)

    Previtali, Mattia; Cuca, Branka; Barazzetti, Luigi

    2016-08-01

    A large development of downstream services is expected to be stimulated starting from earth observations (EO) datasets acquired by Copernicus satellites. An important challenge connected with the availability of downstream services is the possibility for their integration in order to create innovative applications with added values for users of different categories level. At the moment, the world of geo-information (GI) is extremely heterogeneous in terms of standards and formats used, thus preventing a facilitated access and integration of downstream services. Indeed, different users and data providers have also different requirements in terms of communication protocols and technology advancement. In recent years, many important programs and initiatives have tried to address this issue even on trans-regional and international level (e.g. INSPIRE Directive, GEOSS, Eye on Earth and SEIS). However, a lack of interoperability between systems and services still exists. In order to facilitate the interaction between different downstream services, a new architectural approach (developed within the European project ENERGIC OD) is proposed in this paper. The brokering-oriented architecture introduces a new mediation layer (the Virtual Hub) which works as an intermediary to bridge the gaps linked to interoperability issues. This intermediation layer de-couples the server and the client allowing a facilitated access to multiple downstream services and also Open Data provided by national and local SDIs. In particular, in this paper an application is presented integrating four services on the topic of agriculture: (i) the service given by Space4Agri (providing services based on MODIS and Landsat data); (ii) Gicarus Lab (providing sample services based on Landsat datasets) and (iii) FRESHMON (providing sample services for water quality) and services from a several regional SDIs.

  19. Perturbative Methods in Path Integration

    NASA Astrophysics Data System (ADS)

    Johnson-Freyd, Theodore Paul

    This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the

  20. Scalar perturbations in a Friedmann-like metric with non-null Weyl tensor

    SciTech Connect

    Santos, G.B.; Bittencourt, E.; Salim, J.M. E-mail: eduardo.bittencourt@icranet.org

    2015-06-01

    In a previous work the authors have solved the Einstein equations of General Relativity for a class of metrics with constant spatial curvature, where it was found a non vanishing Weyl tensor in the presence of a primordial magnetic field with an anisotropic pressure component. Here, we perform the perturbative analysis of this model in order to study the gravitational stability under linear scalar perturbations. For this purpose, we take the Quasi-Maxwellian formalism of General Relativity as our framework, which offers a naturally covariant and gauge-invariant approach to deal with perturbations that are directly linked to observational quantities. We then compare this scenario with the perturbed dust-dominated Friedmann model emphasizing how the growth of density perturbations are enhanced in our case.

  1. Vector and tensor contributions to the curvature perturbation at second order

    SciTech Connect

    Carrilho, Pedro; Malik, Karim A. E-mail: k.malik@qmul.ac.uk

    2016-02-01

    We derive the evolution equation for the second order curvature perturbation using standard techniques of cosmological perturbation theory. We do this for different definitions of the gauge invariant curvature perturbation, arising from different splits of the spatial metric, and compare the expressions. The results are valid at all scales and include all contributions from scalar, vector and tensor perturbations, as well as anisotropic stress, with all our results written purely in terms of gauge invariant quantities. Taking the large-scale approximation, we find that a conserved quantity exists only if, in addition to the non-adiabatic pressure, the transverse traceless part of the anisotropic stress tensor is also negligible. We also find that the version of the gauge invariant curvature perturbation which is exactly conserved is the one defined with the determinant of the spatial part of the inverse metric.

  2. Cosmological perturbations and quasistatic assumption in f (R ) theories

    NASA Astrophysics Data System (ADS)

    Chiu, Mu-Chen; Taylor, Andy; Shu, Chenggang; Tu, Hong

    2015-11-01

    f (R ) gravity is one of the simplest theories of modified gravity to explain the accelerated cosmic expansion. Although it is usually assumed that the quasi-Newtonian approach (a combination of the quasistatic approximation and sub-Hubble limit) for cosmic perturbations is good enough to describe the evolution of large scale structure in f (R ) models, some studies have suggested that this method is not valid for all f (R ) models. Here, we show that in the matter-dominated era, the pressure and shear equations alone, which can be recast into four first-order equations to solve for cosmological perturbations exactly, are sufficient to solve for the Newtonian potential, Ψ , and the curvature potential, Φ . Based on these two equations, we are able to clarify how the exact linear perturbations fit into different limits. We find that the Compton length controls the quasistatic behaviors in f (R ) gravity. In addition, regardless the validity of quasistatic approximation, a strong version of the sub-Hubble limit alone is sufficient to reduce the exact linear perturbations in any viable f (R ) gravity to second order. Our findings disagree with some previous studies where we find little difference between our exact and quasi-Newtonian solutions even up to k =10 c-1H0.

  3. Pressure locking test results

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  4. Perturbations i have Known and Loved

    NASA Astrophysics Data System (ADS)

    Field, Robert W.

    2011-06-01

    A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go

  5. Initial conditions for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  6. Inflationary perturbations and precision cosmology

    SciTech Connect

    Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard

    2005-02-15

    Inflationary cosmology provides a natural mechanism for the generation of primordial perturbations which seed the formation of observed cosmic structure and lead to specific signals of anisotropy in the cosmic microwave background radiation. In order to test the broad inflationary paradigm as well as particular models against precision observations, it is crucial to be able to make accurate predictions for the power spectrum of both scalar and tensor fluctuations. We present detailed calculations of these quantities utilizing direct numerical approaches as well as error-controlled uniform approximations, comparing with the (uncontrolled) traditional slow-roll approach. A simple extension of the leading-order uniform approximation yields results for the power spectra amplitudes, the spectral indices, and the running of spectral indices, with accuracy of the order of 0.1%--approximately the same level at which the transfer functions are known. Several representative examples are used to demonstrate these results.

  7. Accuracy of perturbative master equations.

    PubMed

    Fleming, C H; Cummings, N I

    2011-03-01

    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

  8. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  9. Investigation of flow pattern downstream of spiral grooved runner cone in pump-turbine

    NASA Astrophysics Data System (ADS)

    Sano, T.; Maekawa, M.; Okamoto, N.; Yano, H.; Miyagawa, K.

    2012-11-01

    High amplitude of pressure fluctuation is observed in a draft tube of a hydraulic turbine and a pump-turbine, for the case of partial load operation. Several methods had been reported to mitigate the amplitude so far, such as, air or water injection to the draft tube, fins on the draft tube surface, or runner replacement with optimized velocity profile at runner exit. However, several problems for each method can be considered, such as, negative influence on efficiency, high cost, technical difficulties for installation, and so on. To solve these problems and satisfy the demand for mitigating the amplitude of pressure fluctuation simultaneously, a new runner cone with spiral grooves on the surface was developed. It was developed with unsteady draft tube calculation based on Design of Experiment (DOE) method, and the effect was confirmed by model tests. Finally, developed runner cone was installed to the prototype pump turbine, and predicted performance was confirmed by on-site tests. However, the reason why the grooved runner cone can mitigate the amplitude of pressure fluctuation in draft tube was not clarified. Therefore, numerical investigation focusing around runner cone was carried out. As a result, it was clarified that the velocity profile at runner outlet was modified by the grooved runner cone, such as, reverse flow downstream of runner cone and tangential velocity was reduced. It means the shear stress between main stream and dead water core region was weakened, therefore, it can be estimated that the amplitude of draft pressure fluctuation was reduced.

  10. A case of self-perturbation: channel responses to meander cutoffs in the Ucayali River, Peru

    NASA Astrophysics Data System (ADS)

    Schwenk, Jonathan; Foufoula-Georgiou, Efi

    2017-04-01

    In 1997, the most drastic change in the course of the Ucayali River in over 200 years took place with the cutoff of a human-induced, 72 km triple-lobed meander bend near Pucallpa, Peru. The cutoff's anthropogenic origins are attributed to local ribereños, who decades earlier in an effort to reduce canoe travel time carved a meter deep by 2 m wide shortcut channel across the neck of the bend. The river responded dramatically in the following years, undergoing accelerated migration and channel widening both up- and downstream of the cutoff that led to the eventual cutoff of four additional cutoffs (three downstream and one upstream). In this study, we quantify Ucayali's response to this major cutoff event as well as twelve additional cutoffs occurring since 1992 through the analysis of annual, bankfull-resolving, Landsat-derived channel masks. Cutoff-induced accelerated morphodynamics occurred downstream of all 13 cutoffs, with 11/13 cutoffs spurring accelerated migration and 8/13 causing channel widening. We attempt to understand the mechanisms driving the observed nonlocal accelerated morphodynamics by computing the change in length of the river due to cutoff, which is approximately proportional to the slope perturbation, and the volumes of sediment released to the downstream reaches through the excavation of chute channels. By tracking planform changes of individual meander bends near cutoffs, we find that the downstream distance of cutoff influence scales linearly with the length of the removed reach. Our findings highlight the understated role of cutoff perturbations as drivers of nonlocal morphologic change and provide insight toward improved predictions of channel responses.

  11. Solitary perturbations in the steep boundary of magnetized toroidal plasma

    PubMed Central

    Lee, J. E.; Yun, G. S.; Lee, W.; Kim, M. H.; Choi, M.; Lee, J.; Kim, M.; Park, H. K.; Bak, J. G.; Ko, W. H.; Park, Y. S.

    2017-01-01

    Solitary perturbations (SPs) localized both poloidally and radially are detected within ~100 μs before the partial collapse of the high pressure gradient boundary region (called pedestal) of magnetized toroidal plasma in the KSTAR tokamak device. The SP develops with a low toroidal mode number (typically unity) in the pedestal ingrained with quasi-stable edge-localized mode (QSM) which commonly appears during the inter-collapse period. The SPs have smaller mode pitch and different (often opposite) rotation velocity compared to the QSMs. Similar solitary perturbations are also frequently observed before the onset of complete pedestal collapse, suggesting a strong connection between the SP generation and the pedestal collapse. PMID:28338046

  12. Kinematic strategies for mitigating gust perturbations in insects.

    PubMed

    Vance, J T; Faruque, I; Humbert, J S

    2013-03-01

    Insects are attractive models for the development of micro-aerial vehicles (MAVs) due to their relatively simple sensing, actuation and control architectures as compared to vertebrates, and because of their robust flight ability in dynamic and heterogeneous environments, characterized by turbulence and gusts of wind. How do insects respond to gust perturbations? We investigated this question by perturbing freely-flying honey bees and stalk-eye flies with low-pressure bursts of compressed air to simulate a wind gust. Body and wing kinematics were analyzed from flight sequences, recorded using three high-speed digital video cameras. Bees quickly responded to body rotations caused by gusts through bilateral asymmetry in stroke amplitude, whereas stalk-eye flies used a combination of asymmetric stroke amplitude and wing rotation angle. Both insects coordinated asymmetric and symmetric kinematics in response to gusts, which provides model strategies for simple yet robust flight characteristics for MAVs.

  13. Relativistic perturbations in ΛCDM: Eulerian and Lagrangian approaches

    SciTech Connect

    Villa, Eleonora; Rampf, Cornelius E-mail: cornelius.rampf@port.ac.uk

    2016-01-01

    We study the relativistic dynamics of a pressure-less and irrotational fluid of dark matter (CDM) with a cosmological constant (Λ), up to second order in cosmological perturbation theory. In our analysis we also account for vector and tensor perturbations and include primordial non-Gaussianity. We consider three gauges: the synchronous-comoving gauge, the Poisson gauge and the total matter gauge, where the first is the unique relativistic Lagrangian frame of reference, and the latters are convenient gauge choices for Eulerian frames. Our starting point is the metric and fluid variables in the Poisson gauge up to second order. We then perform the gauge transformations to the synchronous-comoving gauge and subsequently to the total matter gauge. Our expressions for the metrics, densities, velocities, and the gauge generators are novel and coincide with known results in the limit of a vanishing cosmological constant.

  14. PIV measurements of the flow field just downstream of an oscillating collapsible tube.

    PubMed

    Bertram, C D; Truong, N K; Hall, S D

    2008-12-01

    We probed the time-varying flow field immediately downstream of a flexible tube conveying an aqueous flow, during flow-induced oscillation of small amplitude, at time-averaged Reynolds numbers (Re) in the range 300-550. Velocity vector components in the plane of a laser sheet were measured by high-speed ("time-resolved") particle image velocimetry. The sheet was aligned alternately with both the major axis and the minor axis of the collapsing tube by rotating the pressure chamber in which the tube was mounted. The Womersley number of the oscillations was approximately 10. In the major-axis plane the flow fields were characterized by two jets that varied in lateral spacing. The rapid deceleration of flow at maximal collapse caused the jets momentarily to merge about one diameter into the downstream pipe, and strengthened and enlarged the existing retrograde flow lateral to each jet. Collapse also spread the jets maximally, allowing retrograde flow between them during the ascent from its minimum of the pressure at the end of the flexible tube. The minor-axis flow fields showed that the between-jet retrograde flow at this time extended all the way across the pipe. Whereas the retrograde flow lateral to the jets terminated within three diameters of the tube end at Re=335 at all times, it extended beyond three diameters at Re=525 for some 25% of the cycle including the time of maximal flow deceleration. Off-axis sheet positioning revealed the lateral jets to be crescent shaped. When the pressure outside the tube was increased, flattening the tube more, the jets retained a more consistent lateral position. These results illuminate the flows created by collapsible-tube oscillation in a laminar regime accessible to numerical modeling.

  15. 15. Detail, lower chord connection point on downstream side, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail, lower chord connection point on downstream side, showing pinned connection of lower chord eye bars, laced vertical compression member, diagonal eye bar tension members, turnbuckled diagonal counters, and floor beam. Note also timber floor stringers supported by floor beam, and exposed ends of timber deck members visible at left above lower chord eye bar. View to northwest. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  16. "No. 172. General view of the dam, looking downstream from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "No. 172. General view of the dam, looking downstream from the east end. F.E.D. June, 1916." Compare this historic image, taken upon dam completion (1916), with current-condition photograph HAER CO-90-1. The dam retains a remarkable degree of integrity of design and setting - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  17. Dynamics of wakes downstream of wind turbine towers

    NASA Technical Reports Server (NTRS)

    Snyder, M. H.; Wentz, W. H., Jr.

    1981-01-01

    The near field wakes downstream of circular cylinders and of 12 sided cylinders were surveyed in a wind tunnel. Local velocity and velocity deficit diagrams are presented. The variation of turbulence in the wake was surveyed and the frequency of the periodic component of wake motion was determined. Differences between wakes of circular cylinders and of 12 sided cylinders are discussed. Also effects of strakes, orientation of the 12 sided cylinders, and rounding of the corners are noted.

  18. Enhancer Complexes Located Downstream of Both Human Immunoglobulin Cα Genes

    PubMed Central

    Mills, Frederick C.; Harindranath, Nagaradona; Mitchell, Mary; Max, Edward E.

    1997-01-01

    To investigate regulation of human immunoglobulin heavy chain expression, we have cloned DNA downstream from the two human Cα genes, corresponding to the position in the mouse IgH cluster of a locus control region (LCR) that includes an enhancer which regulates isotype switching. Within 25 kb downstream of both the human immunoglobulin Cα1 and Cα2 genes we identified several segments of DNA which display B lymphoid–specific DNase I hypersensitivity as well as enhancer activity in transient transfections. The corresponding sequences downstream from each of the two human Cα genes are nearly identical to each other. These enhancers are also homologous to three regions which lie in similar positions downstream from the murine Cα gene and form the murine LCR. The strongest enhancers in both mouse and human have been designated HS12. Within a 135-bp core homology region, the human HS12 enhancers are ∼90% identical to the murine homolog and include several motifs previously demonstrated to be important for function of the murine enhancer; additional segments of high sequence conservation suggest the possibility of previously unrecognized functional motifs. On the other hand, certain functional elements in the murine enhancer, including a B cell–specific activator protein site, do not appear to be conserved in human HS12. The human homologs of the murine enhancers designated HS3 and HS4 show lower overall sequence conservation, but for at least two of the functional motifs in the murine HS4 (a κB site and an octamer motif  ) the human HS4 homologs are exactly conserved. An additional hypersensitivity site between human HS3 and HS12 in each human locus displays no enhancer activity on its own, but includes a region of high sequence conservation with mouse, suggesting the possibility of another novel functional element. PMID:9294139

  19. Influence of sediment storage on downstream delivery of contaminated sediment

    USGS Publications Warehouse

    Malmon, D.V.; Reneau, S.L.; Dunne, T.; Katzman, D.; Drakos, P.G.

    2005-01-01

    Sediment storage in alluvial valleys can strongly modulate the downstream migration of sediment and associated contaminants through landscapes. Traditional methods for routing contaminated sediment through valleys focus on in-channel sediment transport but ignore the influence of sediment exchanges with temporary sediment storage reservoirs outside the channel, such as floodplains. In theory, probabilistic analysis of particle trajectories through valleys offers a useful strategy for quantifying the influence of sediment storage on the downstream movement of contaminated sediment. This paper describes a field application and test of this theory, using 137Cs as a sediment tracer over 45 years (1952-1997), downstream of a historical effluent outfall at the Los Alamos National Laboratory (LANL), New Mexico. The theory is parameterized using a sediment budget based on field data and an estimate of the 137Cs release history at the upstream boundary. The uncalibrated model reasonably replicates the approximate magnitude and spatial distribution of channel- and floodplain-stored 137Cs measured in an independent field study. Model runs quantify the role of sediment storage in the long-term migration of a pulse of contaminated sediment, quantify the downstream impact of upstream mitigation, and mathematically decompose the future 137Cs flux near the LANL property boundary to evaluate the relative contributions of various upstream contaminant sources. The fate of many sediment-bound contaminants is determined by the relative timescales of contaminant degradation and particle residence time in different types of sedimentary environments. The theory provides a viable approach for quantifying the long-term movement of contaminated sediment through valleys. Copyright 2005 by the American Geophysical Union.

  20. Downstream influence of swept slot injection in hypersonic turbulent flow

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. B.

    1977-01-01

    Results of an experimental and numerical investigation of tangential swept slot injection into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection were investigated. The data were compared with that for unswept slots, and it was found that cooling effectiveness and skin friction reductions are not significantly affected by sweeping the slot.

  1. Pattern of downstream eddies in stratocumulus clouds over Pacific Ocean

    NASA Image and Video Library

    1973-08-01

    SL3-121-2371 (July-September 1973) --- A pattern of downstream eddies in the stratocumulus clouds over the Pacific Ocean west of Baja California, as photographed by the crewmen of the second Skylab manned mission (Skylab 3) from the space station cluster in Earth orbit. The clouds, produced by the cold California current running to the south and southwest, are prevented from rising by warm air above them. Photo credit: NASA

  2. Modelling downstream effects in the presence of technological change.

    PubMed

    Mortimer, Duncan

    2008-01-01

    Downstream effects are typically evaluated given current technology and current practice patterns rather than for technology and practice patterns that will be available at the time when downstream effects accrue. Where a relatively short time horizon can be expected to capture all relevant costs and effects, the current approach is unlikely to introduce substantial error into estimates of the costs and benefits attributed to an intervention; the estimates will remain valid so long as the context to which estimates relate remains unchanged. However, for longer time horizons, the magnitude of error associated with the current approach might be substantial. This paper describes three strategies for incorporating uncertainty associated with technological change into modeled economic evaluations: (i) discounting; (ii) within-trial analysis; and (iii) threshold/sensitivity analysis with horizon scanning. The appropriateness of each strategy for handling uncertainty associated with technological change is then considered under various possible situations defined over the characteristics of technological change (pace and whether technological change produces interventions that are dominant, cost increasing or cost saving) and the characteristics of downstream effects (proximity and the sensitivity of policy recommendations to their inclusion/exclusion). Selecting the appropriate strategy (or strategies) for the situation should permit estimation of more realistic upper and lower bounds around base-case estimates.

  3. Targeting pathways downstream of KRAS in lung adenocarcinoma

    PubMed Central

    Zhu, Zehua; Golay, Hadrien G; Barbie, David A

    2014-01-01

    Oncogenic KRAS activation is responsible for the most common genetic subtype of lung cancer. Although many of the major downstream signaling pathways that KRAS engages have been defined, these discoveries have yet to translate into effective targeted therapy. Much of the current focus has been directed at inhibiting the activation of RAF/MAPK and PI3K/AKT signaling, but clinical trials combining multiple different agents that target these pathways have failed to show significant activity. In this article, we will discuss the evidence for RAF and PI3K as key downstream RAS effectors, as well as the RAL guanine exchange factor, which is equally essential for transformation. Furthermore, we will delineate alternative pathways, including cytokine activation and autophagy, which are co-opted by oncogenic RAS signaling and also represent attractive targets for therapy. Finally, we will present strategies for combining inhibitors of these downstream KRAS signaling pathways in a rational fashion, as multitargeted therapy will be required to achieve a cure. PMID:25303301

  4. Perturbations of a close-earth satellite due to sunlight diffusely reflected from the earth. II - Variable albedo

    NASA Technical Reports Server (NTRS)

    Lautman, D. A.

    1977-01-01

    A semianalytical method has been developed to calculate the radiation-pressure perturbations of a close-earth satellite due to sunlight reflected from the earth. It is assumed that the satellite is spherically symmetric and that the solar radiation is reflected from the earth according to Lambert's law. To account for the increasing reflectivity of the earth toward the poles, its albedo is assumed to have a latitudinal dependence. The effect of the terminator on the perturbations has been neglected. The perturbations within a particular revolution are given analytically, while the long-range perturbations are obtained by accumulation.

  5. Perturbations of a close-earth satellite due to sunlight diffusely reflected from the earth. II - Variable albedo

    NASA Technical Reports Server (NTRS)

    Lautman, D. A.

    1977-01-01

    A semianalytical method has been developed to calculate the radiation-pressure perturbations of a close-earth satellite due to sunlight reflected from the earth. It is assumed that the satellite is spherically symmetric and that the solar radiation is reflected from the earth according to Lambert's law. To account for the increasing reflectivity of the earth toward the poles, its albedo is assumed to have a latitudinal dependence. The effect of the terminator on the perturbations has been neglected. The perturbations within a particular revolution are given analytically, while the long-range perturbations are obtained by accumulation.

  6. Kato expansion in quantum canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, Andrey

    2016-06-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  7. Generic perturbations of linear integrable Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Bounemoura, Abed

    2016-11-01

    In this paper, we investigate perturbations of linear integrable Hamiltonian systems, with the aim of establishing results in the spirit of the KAM theorem (preservation of invariant tori), the Nekhoroshev theorem (stability of the action variables for a finite but long interval of time) and Arnold diffusion (instability of the action variables). Whether the frequency of the integrable system is resonant or not, it is known that the KAM theorem does not hold true for all perturbations; when the frequency is resonant, it is the Nekhoroshev theorem that does not hold true for all perturbations. Our first result deals with the resonant case: we prove a result of instability for a generic perturbation, which implies that the KAM and the Nekhoroshev theorem do not hold true even for a generic perturbation. The case where the frequency is nonresonant is more subtle. Our second result shows that for a generic perturbation the KAM theorem holds true. Concerning the Nekhrosohev theorem, it is known that one has stability over an exponentially long (with respect to some function of ɛ -1) interval of time and that this cannot be improved for all perturbations. Our third result shows that for a generic perturbation one has stability for a doubly exponentially long interval of time. The only question left unanswered is whether one has instability for a generic perturbation (necessarily after this very long interval of time).

  8. Kato expansion in quantum canonical perturbation theory

    SciTech Connect

    Nikolaev, Andrey

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  9. Perturbative spacetimes from Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Luna, Andrés; Monteiro, Ricardo; Nicholson, Isobel; Ochirov, Alexander; O'Connell, Donal; Westerberg, Niclas; White, Chris D.

    2017-04-01

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  10. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  11. Supernovae data and perturbative deviation from homogeneity

    SciTech Connect

    Enqvist, Kari; Mattsson, Maria; Rigopoulos, Gerasimos E-mail: maria.ronkainen@helsinki.fi

    2009-09-01

    We show that a spherically symmetric perturbation of a dust dominated Ω = 1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.

  12. Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy

    PubMed Central

    Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O.; Emili, Andrew

    2016-01-01

    Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function. PMID:27742792

  13. Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy.

    PubMed

    Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O; Emili, Andrew

    2016-11-01

    Phospholamban (PLN) plays a central role in Ca(2+) homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca(2+)-ATPase 2A (SERCA2A) Ca(2+) pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function.

  14. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  15. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  16. Non-perturbative approach for curvature perturbations in stochastic δ N formalism

    SciTech Connect

    Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-10-01

    In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.

  17. Perturbations of a close-earth satellite due to sunlight diffusely reflected from the earth. I - Uniform albedo

    NASA Technical Reports Server (NTRS)

    Lautman, D. A.

    1977-01-01

    A semianalytic method has been developed to calculate the radiation-pressure perturbations of a close-earth satellite due to sunlight reflected from the earth. The assumptions made are that the satellite is spherically symmetric and that the solar radiation is reflected from the earth according to Lambert's Law with uniform albedo. By using expressions for the components of the radiation-pressure force due to Lochry, the expressions for the perturbations of the elements were developed into series in the true anomaly. The perturbations within a given revolution can be obtained analytically by integrating with respect to v while holding all slowly varying quantities constant. The long-range perturbations are then obtained by accumulating the net perturbations at the end of each revolution.

  18. Perturbations of a close-earth satellite due to sunlight diffusely reflected from the earth. I - Uniform albedo

    NASA Technical Reports Server (NTRS)

    Lautman, D. A.

    1977-01-01

    A semianalytic method has been developed to calculate the radiation-pressure perturbations of a close-earth satellite due to sunlight reflected from the earth. The assumptions made are that the satellite is spherically symmetric and that the solar radiation is reflected from the earth according to Lambert's Law with uniform albedo. By using expressions for the components of the radiation-pressure force due to Lochry, the expressions for the perturbations of the elements were developed into series in the true anomaly. The perturbations within a given revolution can be obtained analytically by integrating with respect to v while holding all slowly varying quantities constant. The long-range perturbations are then obtained by accumulating the net perturbations at the end of each revolution.

  19. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate

    NASA Astrophysics Data System (ADS)

    Singer, Gabriel A.; Fasching, Christina; Wilhelm, Linda; Niggemann, Jutta; Steier, Peter; Dittmar, Thorsten; Battin, Tom J.

    2012-10-01

    Besides their role in the hydrological cycle, glaciers could play an important role in the carbon cycle. They store and transform organic carbon, which on release could support downstream microbial life. Yet the origin and composition of glacial organic carbon, and its implications for the carbon cycle, remain unclear. Here, we examine the molecular composition, radiocarbon age and bioavailability of dissolved organic matter (DOM) in 26 glaciers in the European Alps, using ultrahigh-resolution mass spectrometry, fluorescence spectroscopy and incubation experiments. We also measure carbon dioxide partial pressures in glacier-fed streams. We show that the glacier organic matter is highly diverse, and that a significant fraction of this material is bioavailable. Phenolic compounds derived from vascular plants or soil dominate, together with peptides and lipids, potentially derived from in situ microbial communities. Combustion products, in contrast, seem to contribute only marginally to the DOM sampled. We further show that organic matter bioavailability is positively correlated with in-stream carbon dioxide concentrations. We suggest that glacier-derived DOM contributes to downstream carbon cycling in glacier-fed streams. Our findings highlight the relevance of mountain glaciers for carbon cycling--a role that may change as glaciers recede.

  20. Highly resolved numerical simulation of combustion downstream of a rocket engine igniter

    NASA Astrophysics Data System (ADS)

    Buttay, R.; Gomet, L.; Lehnasch, G.; Mura, A.

    2017-07-01

    We study ignition processes in the turbulent reactive flow established downstream of highly under-expanded coflowing jets. The corresponding configuration is typical of a rocket engine igniter, and to the best knowledge of the authors, this study is the first that documents highly resolved numerical simulations of such a reactive flowfield. Considering the discharge of axisymmetric coaxial under-expanded jets, various morphologies are expected, depending on the value of the nozzle pressure ratio, a key parameter used to classify them. The present computations are conducted with a value of this ratio set to fifteen. The simulations are performed with the massively parallel CREAMS solver on a grid featuring approximately 440,000,000 computational nodes. In the main zone of interest, the level of spatial resolution is D/74, with D the central inlet stream diameter. The computational results reveal the complex topology of the compressible flowfield. The obtained results also bring new and useful insights into the development of ignition processes. In particular, ignition is found to take place rather far downstream of the shock barrel, a conclusion that contrasts with early computational studies conducted within the unsteady RANS computational framework. Consideration of detailed chemistry confirms the essential role of hydroperoxyl radicals, while the analysis of the Takeno index reveals the predominance of a non-premixed combustion mode.

  1. Turbulence statistics downstream of a vorticity generator at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Habchi, Charbel; Lemenand, Thierry; Della Valle, Dominique; Peerhossaini, Hassan

    2016-10-01

    Vortex generators (VGs) are inserted in turbulent pipe flows in order to improve mixing and heat and mass transfer while a moderate pressure drop is maintained. The purpose of the present study is to contribute to the elaboration of scaling laws for the turbulence decay downstream a row of VGs. This knowledge will help in the design of such systems, especially for optimal geometry and spacing of the VG. The experimental study is carried out using laser Doppler anemometry at different locations downstream of the row of VGs so as to probe the streamwise velocity field. The Taylor microscale Reynolds number Reλ ranges between 15 and 80 so that, for the lowest flow rates, fully developed turbulence conditions are not fulfilled. Comparison of the integral length scale to data in the open literature shows that the conventional scaling laws at the dissipative scale are fairly assessed. It is shown that the turbulence macroscale increases in the streamwise direction and is scaled by the VG dimensions. The normalized turbulent energy dissipation rate has values between 0.5 and 2.8, with -1 power-law decay as a function of the Taylor microscale Reynolds number. This observation is consistent with previous findings using direct numerical simulations (DNS). The streamwise variation of the turbulence energy dissipation rate shows an exponential decay; it reaches an asymptotic value after a distance of about 6 times the VG height.

  2. Highly resolved numerical simulation of combustion downstream of a rocket engine igniter

    NASA Astrophysics Data System (ADS)

    Buttay, R.; Gomet, L.; Lehnasch, G.; Mura, A.

    2017-02-01

    We study ignition processes in the turbulent reactive flow established downstream of highly under-expanded coflowing jets. The corresponding configuration is typical of a rocket engine igniter, and to the best knowledge of the authors, this study is the first that documents highly resolved numerical simulations of such a reactive flowfield. Considering the discharge of axisymmetric coaxial under-expanded jets, various morphologies are expected, depending on the value of the nozzle pressure ratio, a key parameter used to classify them. The present computations are conducted with a value of this ratio set to fifteen. The simulations are performed with the massively parallel CREAMS solver on a grid featuring approximately 440,000,000 computational nodes. In the main zone of interest, the level of spatial resolution is D/74, with D the central inlet stream diameter. The computational results reveal the complex topology of the compressible flowfield. The obtained results also bring new and useful insights into the development of ignition processes. In particular, ignition is found to take place rather far downstream of the shock barrel, a conclusion that contrasts with early computational studies conducted within the unsteady RANS computational framework. Consideration of detailed chemistry confirms the essential role of hydroperoxyl radicals, while the analysis of the Takeno index reveals the predominance of a non-premixed combustion mode.

  3. Examination of a genetic algorithm for the application in high-throughput downstream process development.

    PubMed

    Treier, Katrin; Berg, Annette; Diederich, Patrick; Lang, Katharina; Osberghaus, Anna; Dismer, Florian; Hubbuch, Jürgen

    2012-10-01

    Compared to traditional strategies, application of high-throughput experiments combined with optimization methods can potentially speed up downstream process development and increase our understanding of processes. In contrast to the method of Design of Experiments in combination with response surface analysis (RSA), optimization approaches like genetic algorithms (GAs) can be applied to identify optimal parameter settings in multidimensional optimizations tasks. In this article the performance of a GA was investigated applying parameters applicable in high-throughput downstream process development. The influence of population size, the design of the initial generation and selection pressure on the optimization results was studied. To mimic typical experimental data, four mathematical functions were used for an in silico evaluation. The influence of GA parameters was minor on landscapes with only one optimum. On landscapes with several optima, parameters had a significant impact on GA performance and success in finding the global optimum. Premature convergence increased as the number of parameters and noise increased. RSA was shown to be comparable or superior for simple systems and low to moderate noise. For complex systems or high noise levels, RSA failed, while GA optimization represented a robust tool for process optimization. Finally, the effect of different objective functions is shown exemplarily for a refolding optimization of lysozyme. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  5. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    DOE PAGES

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The wavesmore » grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.« less

  6. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    SciTech Connect

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.

  7. Lensing signals from spin-2 perturbations

    SciTech Connect

    Adamek, Julian; Durrer, Ruth; Tansella, Vittorio E-mail: ruth.durrer@unige.ch

    2016-01-01

    We compute the angular power spectra of the E-type and B-type lensing potentials for gravitational waves from inflation and for tensor perturbations induced by scalar perturbations. We derive the tensor-lensed CMB power spectra for both cases. We also apply our formalism to determine the linear lensing potential for a Bianchi I spacetime with small anisotropy.

  8. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    SciTech Connect

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-09-25

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory.

  9. The recursion relation in Lagrangian perturbation theory

    SciTech Connect

    Rampf, Cornelius

    2012-12-01

    We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.

  10. Covariant generalization of cosmological perturbation theory

    SciTech Connect

    Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo

    2007-01-15

    We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.

  11. Perturbative stability of catenoidal soap films

    NASA Astrophysics Data System (ADS)

    Jana, Soumya; Kar, Sayan

    2013-09-01

    The perturbative stability of catenoidal soap films formed between parallel, equal radii, coaxial rings is studied using analytical and semi-analytical methods. Using a theorem on the nature of eigenvalues for a class of Sturm-Liouville operators, we show that, for the given boundary conditions, azimuthally asymmetric perturbations are stable, while symmetric perturbations lead to an instability --a result demonstrated in Ben Amar et al. (Eur. Phys. J. B 3, 197 (1998)) using numerics and experiment. Further, we show how to obtain the lowest real eigenvalue of perturbations, using the semi-analytical Asymptotic Iteration Method (AIM). Conclusions using AIM support the analytically obtained result as well as the results by Ben Amar et al.. Finally, we compute the eigenfunctions and show, pictorially, how the perturbed soap film evolves in time.

  12. A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Zelazny, S. W.

    1972-01-01

    A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.

  13. On the role of successive downstream development in East Asian polar air outbreaks

    NASA Technical Reports Server (NTRS)

    Jung, C. H.; Hitchman, M. H.

    1982-01-01

    Common features were drawn from 16 events of wintertime migration of cold Siberian air moving southeastward across the east Asia coast, accompanied by strong northerly winds. Criteria for including an event as an instance of a typical synoptic scale occurrence comprised a surface pressure gradient over Korea exceeding 2.5 mb/100 km, and a drop in the daily mean temperature of over 5 C in one day. The events were required to have at least a 10 day separation. A sequence of events was discerned, including the formation of troughs and ridges over the western north Atlantic 6-7 days before an event, their development and decay downstream from one another across the Eurasian continent, and then an outbreak of polar weather. The troughs and ridges displayed maximum amplitude in the same places in the majority of cases studied, with the center moving along a curved trajectory of the 300 mb flow at nearly 30 deg longitudinally every day.

  14. Effect of initial conditions on turbulent reattachment downstream of a backward-facing step

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Johnston, J. P.

    1984-01-01

    The reattachment of a fully turbulent, two-dimentional shear layer downstream of a backward-facing step has been studied experimentally. The work examines the effect of variations in inlet conditions on the process of reattachment. A series of experiments was conducted in a low-speed wind tunnel using specialized instrumentation suited to the highly turbulent reversing flow near reattachment. Accurate characterization of the time-mean features of the reattaching flows was possible. Assuming linear scaling normalized on distance from reattachment, distributions of normalized pressure coefficient and forward flow fraction, and time-averaged skin friction coefficient appear universal for two-dimensional reattachment, independent of initial conditions and step height, for given duct geometry (area ratio) and for high step-height Reyolds numbers with thin separating boundary layers. The results suggest universal flow structure in the reattachment zone.

  15. Alfven waves and associated energetic ions downstream from Uranus

    SciTech Connect

    Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )

    1991-02-01

    The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.

  16. Novel upstream and downstream sequence elements contribute to polyadenylation efficiency

    PubMed Central

    Darmon, Sarah K.; Lutz, Carol S.

    2012-01-01

    Polyadenylation is a 3′ mRNA processing event that contributes to gene expression by affecting stability, export and translation of mRNA. Human polyadenylation signals (PAS) have core and auxiliary elements that bind polyadenylation factors upstream and downstream of the cleavage site. The majority of mRNAs do not have optimal upstream and downstream core elements and therefore auxiliary elements can aid in polyadenylation efficiency. Auxiliary elements have previously been identified and studied in a small number of mRNAs. We previously used a global approach to examine auxiliary elements to identify overrepresented motifs by a bioinformatic survey. This predicted information was used to direct our in vivo validation studies, all of which were accomplished using both a tandem in vivo polyadenylation assay and using reporter protein assays measured as luciferase activity. Novel auxiliary elements were placed in a test polyadenylation signal. An in vivo polyadenylation assay was used to determine the strength of the polyadenylation signal. All but one of the novel auxiliary elements enhanced the test polyadenylation signal. Effects of these novel auxiliary elements were also measured by a luciferase assay when placed in the 3′ UTR of a firefly luciferase reporter. Two novel downstream auxiliary elements and all of the novel upstream auxiliary elements showed an increase in reporter protein levels. Many well known auxiliary polyadenylation elements have been found to occur in multiple sets. However, in our study, multiple copies of novel auxiliary elements brought reporter protein levels as well as polyadenylation choice back to wild type levels. Structural features of these novel auxiliary elements may also affect the role of auxiliary elements. A MS2 structure placed upstream of the polyadenylation signal can affect polyadenylation in both the positive and negative direction. A large change in RNA structure by using novel complementary auxiliary element also

  17. Acoustic resonance excitation of turbulent heat transfer and flow reattachment downstream of a fence

    NASA Astrophysics Data System (ADS)

    Selcan, Claudio; Cukurel, Beni; Shashank, Judah

    2016-10-01

    The current work investigates the aero-thermal impact of standing sound waves, excited in a straight channel geometry, on turbulent, separating and reattaching flow over a fence. Effects of distinct frequency resonant forcing (ReH = 10,050 and f = 122 Hz) are quantified by wall static pressure measurements and detailed convective heat transfer distributions via liquid crystal thermometry. Acoustic boundary conditions are numerically predicted and the computed longitudinal resonance mode shapes are experimentally verified by surface microphone measurements. Findings indicate the presence of a resonant sound field to exert strong influence on local heat transfer downstream of the fence, whereas the boundary layer upstream of the obstacle remains notable unaffected. Upstream shift of the maximum heat transfer location and an earlier pressure recovery indicate a reduction in time averaged flow reattachment length of up to 37 %. Although the streamwise peak Nusselt increased by only 5 %, the heat transfer level in the vicinity of the unexcited reattachment zone was locally enhanced up to 25 %. Despite prominent impact of resonant forcing on the fence wake flow, the total pressure drop penalty remained invariant. Observations demonstrate the significant aero-thermal implications of shear layer excitation by standing sound waves superimposed on the channel flow field.

  18. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  19. Growth Characteristics Downstream of a Shallow Bump: Computation and Experiment

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Grosch, Chester E.

    1996-01-01

    Measurements of the velocity field created by a shallow bump on a wall revealed that an energy peak in the spanwise spectrum associated with the driver decays and an initially small-amplitude secondary mode rapidly grows with distance downstream of the bump. Linear theories could not provide an explanation for this growing mode. The present Navier-Stokes simulation replicates and confirms the experimental results. Insight into the structure of the flow was obtained from a study of the results of the calculations and is presented.

  20. Commissioning The Darht-II Accelerator Downstream Transport And Target

    SciTech Connect

    Ekdahl, Carl; Schulze, Martin E

    2008-01-01

    The DARHT-II accelerator produces a 2-kA, 17-MeV beam in a 1600-ns pulse. After exiting the accelerator, the pulse is sliced into four short pulses by a kicker and quadrupole septum and then transported for several meters to a tantalum target for conversion to x-rays for radiography. They describe the commissioning of the kicker, septum, transport, and multi-pulse converter target. The results of beam measurements made during the commissioning of the downstream transport are described.