Sample records for downstream water users

  1. Water-Energy Nexus: Examining The Crucial Connection Through Simulation Based Optimization

    NASA Astrophysics Data System (ADS)

    Erfani, T.; Tan, C. C.

    2014-12-01

    With a growing urbanisation and the emergence of climate change, the world is facing a more water constrained future. This phenomenon will have direct impacts on the resilience and performance of energy sector as water is playing a key role in electricity generation processes. As energy is becoming a thirstier resource and the pressure on finite water sources is increasing, modelling and analysing this closely interlinked and interdependent loop, called 'water-energy nexus' is becoming an important cross-disciplinary challenge. Conflict often arises in transboundary river where several countries share the same source of water to be used in productive sectors for economic growth. From the perspective of the upstream users, it would be ideal to store the water for hydropower generation and protect the city against drought whereas the downstream users need the supply of water for growth. This research use the case study on the transboundary Blue Nile River basin located in the Middle East where the Ethiopian government decided to invest on building a new dam to store the water and generate hydropower. This leads to an opposition by downstream users as they believe that the introduction of the dam would reduce the amount of water available downstream. This calls for a compromise management where the reservoir operating rules need to be derived considering the interdependencies between the resources available and the requirements proposed by all users. For this, we link multiobjective optimization algorithm to water-energy use simulation model to achieve effective management of the transboundary reservoir operating strategies. The objective functions aim to attain social and economic welfare by minimizing the deficit of water supply and maximizing the hydropower generation. The study helps to improve the policies by understanding the value of water and energy in their alternative uses. The results show how different optimal reservoir release rules generate different trade-off solutions inherently involved in upstream and downstream users requirements and decisions. This study stimulates the research in this context by using simulation based optimization techniques to manage for security for food, water and energy generation, which leads to improve sustainability and long-term political stability.

  2. Estimating the value of watershed services following forest restoration

    NASA Astrophysics Data System (ADS)

    Mueller, Julie M.; Swaffar, Wes; Nielsen, Erik A.; Springer, Abraham E.; Lopez, Sharon Masek

    2013-04-01

    Declining forest health, climate change, and development threaten the sustainability of water supplies in the western United States. While forest restoration may buffer threats to watershed services, funding shortfalls for landscape-scale restoration efforts limit management action. The hydrologic response and reduction in risk to watersheds following forest restoration treatments could create significant nonmarket benefits for downstream water users. Historic experimental watershed studies indicate a significant and positive response from forest thinning by a reallocation of water from evapotranspiration to surface-water yield. In this study, we estimate the willingness to pay (WTP) for improved watershed services for one group of downstream users, irrigators, following forest restoration activities. We find a positive and statistically significant WTP within our sample of 183.50 per household, at an aggregated benefit of more than 400,000 annually for 2181 irrigators. Our benefit estimate provides evidence that downstream irrigators may be willing to invest in landscape-scale forest restoration to maintain watershed services.

  3. Pennsylvania StreamStats--A web-based application for obtaining water-resource-related information

    USGS Publications Warehouse

    Stuckey, Marla H.; Hoffman, Scott A.

    2010-01-01

    StreamStats is a national web-based Geographic Information System (GIS) application, developed by the U.S. Geological Survey (USGS), in cooperation with Environmental Systems Research Institute, Inc., to provide a variety of water-resource-related information. Users can easily obtain descriptive information, basin characteristics, and streamflow statistics for USGS streamgages and ungaged stream locations throughout Pennsylvania. StreamStats also allows users to search upstream and (or) downstream from user-selected points to identify locations of and obtain information for water-resource-related activities, such as dams and streamgages.

  4. Metaphor in Natural Resource Gaming: Insights from the RIVER BASIN GAME

    ERIC Educational Resources Information Center

    Lankford, Bruce; Watson, Drennan

    2007-01-01

    The RIVER BASIN GAME is a dialogue tool for decision makers and water users tested in Tanzania and Nigeria. It comprises a physical representation of a river catchment. A central channel flows between an upper watershed and a downstream wetland and has on it several intakes into irrigation systems. Glass marbles, representing water, roll down the…

  5. From Management to Negotiation: Technical and Institutional Innovations for Integrated Water Resource Management in the Upper Comoé River Basin, Burkina Faso

    NASA Astrophysics Data System (ADS)

    Roncoli, Carla; Kirshen, Paul; Etkin, Derek; Sanon, Moussa; Somé, Léopold; Dembélé, Youssouf; Sanfo, Bienvenue J.; Zoungrana, Jacqueline; Hoogenboom, Gerrit

    2009-10-01

    This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users’ needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.

  6. Use of StreamStats in the Upper French Broad River Basin, North Carolina: A Pilot Water-Resources Web Application

    USGS Publications Warehouse

    Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia

    2009-01-01

    StreamStats is a Web-based Geographic Information System (GIS) application that was developed by the U.S. Geological Survey (USGS) in cooperation with Environmental Systems Research Institute, Inc. (ESRI) to provide access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and selected ungaged sites. StreamStats also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that can affect streamflow conditions. This functionality can be accessed through a map-based interface with the user's Web browser or through individual functions requested remotely through other Web applications.

  7. Computer-program documentation of an interactive-accounting model to simulate streamflow, water quality, and water-supply operations in a river basin

    USGS Publications Warehouse

    Burns, A.W.

    1988-01-01

    This report describes an interactive-accounting model used to simulate streamflow, chemical-constituent concentrations and loads, and water-supply operations in a river basin. The model uses regression equations to compute flow from incremental (internode) drainage areas. Conservative chemical constituents (typically dissolved solids) also are computed from regression equations. Both flow and water quality loads are accumulated downstream. Optionally, the model simulates the water use and the simplified groundwater systems of a basin. Water users include agricultural, municipal, industrial, and in-stream users , and reservoir operators. Water users list their potential water sources, including direct diversions, groundwater pumpage, interbasin imports, or reservoir releases, in the order in which they will be used. Direct diversions conform to basinwide water law priorities. The model is interactive, and although the input data exist in files, the user can modify them interactively. A major feature of the model is its color-graphic-output options. This report includes a description of the model, organizational charts of subroutines, and examples of the graphics. Detailed format instructions for the input data, example files of input data, definitions of program variables, and listing of the FORTRAN source code are Attachments to the report. (USGS)

  8. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  9. A dynamic water accounting framework based on marginal resource opportunity cost

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Marques, G.; Mohamed, Y.

    2014-10-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependent on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbours at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding hypothetical transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  10. A dynamic water accounting framework based on marginal resource opportunity cost

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Marques, G.; Mohamed, Y.

    2015-03-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins have become more and more developed, downstream water users and ecosystems have become increasingly dependent on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoir operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding hypothetical transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  11. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  12. Using GIS Models to Identify Relative Nitrogen Attenuation by Riparian Buffers in the Coastal Plain of North Carolina

    EPA Science Inventory

    Riparian areas have demonstrated the ability to attenuate nutrients and provide water quality services at the field scale, but services of riparian buffers for downstream users should be assessed at watershed scales. GIS-based riparian models have been developed to connect ripari...

  13. Optimal joint management of a coastal aquifer and a substitute resource

    NASA Astrophysics Data System (ADS)

    Moreaux, M.; Reynaud, A.

    2004-06-01

    This article characterizes the optimal joint management of a coastal aquifer and a costly water substitute. For this purpose we use a mathematical representation of the aquifer that incorporates the displacement of the interface between the seawater and the freshwater of the aquifer. We identify the spatial cost externalities created by users on each other and we show that the optimal water supply depends on the location of users. Users located in the coastal zone exclusively use the costly substitute. Those located in the more upstream area are supplied from the aquifer. At the optimum their withdrawal must take into account the cost externalities they generate on users located downstream. Last, users located in a median zone use the aquifer with a surface transportation cost. We show that the optimum can be implemented in a decentralized economy through a very simple Pigouvian tax. Finally, the optimal and decentralized extraction policies are simulated on a very simple example.

  14. Decline of aspen (Populus tremuloides) in the Interior West [Abstract 2

    Treesearch

    Dale L. Bartos

    1997-01-01

    It is commonly recognized that aspen (Populus tremuloides) ecosystems in the Interior West provide numerous benefits: (1) forage for livestock, (2) habitat for wildlife, (3) water for downstream users, (4) esthetics, (5) sites for recreational opportunities, (6) wood fiber, and (7) landscape diversity. Loss or potential loss of aspen on these lands can be attributed...

  15. Streamwater Contamination After Aerial Application of a Pelletized Herbicide

    Treesearch

    James H. Miller; A.C. Bace

    1980-01-01

    Concentrations of hexazinone and its metabolites were monitored in a Piedmont stream for 8 months after aerial application of a pelletized formulation (Velpar® Gridball™). Downstream water-users and fish are probably safe from toxic exposure if treatment areas have only small streams (less than 50 cm average channel width) and if labeled rates are not exceeded....

  16. A novel virtual hub approach for multisource downstream service integration

    NASA Astrophysics Data System (ADS)

    Previtali, Mattia; Cuca, Branka; Barazzetti, Luigi

    2016-08-01

    A large development of downstream services is expected to be stimulated starting from earth observations (EO) datasets acquired by Copernicus satellites. An important challenge connected with the availability of downstream services is the possibility for their integration in order to create innovative applications with added values for users of different categories level. At the moment, the world of geo-information (GI) is extremely heterogeneous in terms of standards and formats used, thus preventing a facilitated access and integration of downstream services. Indeed, different users and data providers have also different requirements in terms of communication protocols and technology advancement. In recent years, many important programs and initiatives have tried to address this issue even on trans-regional and international level (e.g. INSPIRE Directive, GEOSS, Eye on Earth and SEIS). However, a lack of interoperability between systems and services still exists. In order to facilitate the interaction between different downstream services, a new architectural approach (developed within the European project ENERGIC OD) is proposed in this paper. The brokering-oriented architecture introduces a new mediation layer (the Virtual Hub) which works as an intermediary to bridge the gaps linked to interoperability issues. This intermediation layer de-couples the server and the client allowing a facilitated access to multiple downstream services and also Open Data provided by national and local SDIs. In particular, in this paper an application is presented integrating four services on the topic of agriculture: (i) the service given by Space4Agri (providing services based on MODIS and Landsat data); (ii) Gicarus Lab (providing sample services based on Landsat datasets) and (iii) FRESHMON (providing sample services for water quality) and services from a several regional SDIs.

  17. Studying strategic interaction under environmental and economic uncertainties among water users in the Zambezi River Basin - From descriptive analysis to institutional design for better transboundary management

    NASA Astrophysics Data System (ADS)

    Beck, L.; Siegfried, T. U.; Bernauer, T.

    2009-12-01

    The Zambezi River Basin (ZRB) is one of the largest freshwater catchments in Africa and worldwide. Consumptive water use in the ZRB is currently estimated at 15 - 20 percent of total runoff. This suggests many development possibilities, particularly for irrigated agriculture and hydropower production. The key drivers in the basin are population development on the demand side as well as uncertain impacts from climate change for supply. Development plans of the riparian countries suggest that consumptive water use might increase up to 40 percent of total runoff by 2025. This suggests that expanding water use in the Zambezi basin could become a source of disputes among the eight riparian countries. We study the surface water allocation in the basin by means of a couple hydrological-economic modeling approach. A conceptual lumped-parameter rainfall-runoff model for the ZRB was constructed and calibrated on the best available runoff data for the basin. Water users are modeled based on an agent-based framework and implemented as distributed sequential decision makers that act in an uncertain environment. Given the current non-cooperative status quo, we use the stochastic optimization technique of reinforcement learning to model the individual agents’ behavior. Their goals include the maximization of a) their long-term reward as conditioned on the state of the multi-agent system and b) the immediate reward obtained from operational decisions of reservoirs and water diversions under their control. We feed a wide range of water demand drivers as well as climate change predictions into the model and assess agents’ responses and the resulting implications for runoff at key points in the water catchment, including Victoria Falls, Kariba reservoir, Kafue Gorge, and Cahora Bassa reservoir in the downstream. It will be shown that considerable benefits exist if the current non-cooperative regime is replaced by a basin-wide, coordinated allocation strategy that regulates water storage and allocation in this complex multi-reservoir river basin. Benefits increase along the river towards the downstream, which suggests the establishment of an upstream-downstream compensation approach. The latter considers tradeoffs from water and hydropower exchanges during respective seasons and locations of peak demand.

  18. StreamStats: A water resources web application

    USGS Publications Warehouse

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations. Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.

  19. Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects

    NASA Astrophysics Data System (ADS)

    McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

    2013-12-01

    Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present results demonstrating the heterogeneity of these individual measures and discuss the influence of topography, network design, household behaviors and water governance on the overall performance of these water projects. This work is the foundation for an agent-based model of these water projects that investigates the impact of climate change and population pressure on sustained agricultural production in the region. Additionally, the study highlights the utility of pairing distinct fields of scholarship by utilizing both survey responses and hydrological data to study complex social-ecological systems. This pairing allows for insights regarding governance structures that are effectively managing river water in the present and helps to understand the structures that may be suitable for future water management.

  20. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation.

    PubMed

    Leitman, S; Pine, W E; Kiker, G

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  1. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation

    NASA Astrophysics Data System (ADS)

    Leitman, S.; Pine, W. E.; Kiker, G.

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  2. User's Guide to the Water-Analysis Screening Tool (WAST): A Tool for Assessing Available Water Resources in Relation to Aquatic-Resource Uses

    USGS Publications Warehouse

    Stuckey, Marla H.; Kiesler, James L.

    2008-01-01

    A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.

  3. Environmental flows for rivers and economic compensation for irrigators.

    PubMed

    Sisto, Nicholas P

    2009-02-01

    Securing flows for environmental purposes from an already fully utilized river is an impossible task--unless users are either coerced into freeing up water, or offered incentives to do so. One sensible strategy for motivating users to liberate volumes is to offer them economic compensation. The right amount for that compensation then becomes a key environmental management issue. This paper analyses a proposal to restore and maintain ecosystems on a stretch of the Río Conchos in northern Mexico, downstream from a large irrigation district that consumes nearly all local flows. We present here estimates of environmental flow requirements for these ecosystems and compute compensation figures for irrigators. These figures are derived from crop-specific irrigation water productivities we statistically estimate from a large set of historical production and irrigation data obtained from the district. This work has general implications for river ecosystem management in water-stressed basins, particularly in terms of the design of fair and effective water sharing mechanisms.

  4. Unchartered innovation? Local reforms of national formal water management in the Mkoji sub-catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Mehari, Abraham; Koppen, Barbara Van; McCartney, Matthew; Lankford, Bruce

    Tanzania is currently attempting to improve water resources management through formal water rights and water fees systems, and formal institutions. The water rights system is expected to facilitate water allocation. The water fees system aims at cost-recovery for water resources management services. To enhance community involvement in water management, Water User Associations (WUAs) are being established and, in areas with growing upstream-downstream conflicts, apex bodies of all users along the stressed river stretch. The Mkoji sub-catchment (MSC) in the Rufiji basin is one of the first where these formal water management systems are being attempted. This paper analyzes the effectiveness of these systems in the light of their expected merits and the consequences of the juxtaposition of contemporary laws with traditional approaches. The study employed mainly qualitative, but also quantitative approaches on social and technical variables. Major findings were: (1) a good mix of formal (water fees and WUAs) and traditional (rotation-based water sharing, the Zamu) systems improved village-level water management services and reduced intra-scheme conflicts; (2) the water rights system has not brought abstractions into line with allocations and (3) so far, the MSC Apex body failed to mitigate inter-scheme conflicts. A more sophisticated design of allocation infrastructure and institutions is recommended.

  5. Chemical characteristics of Delaware River water, Trenton, New Jersey, to Marcus Hook, Pennsylvania

    USGS Publications Warehouse

    Durfor, Charles N.; Keighton, Walter B.

    1954-01-01

    This progress report gives the results of an investigation of the quality of water in the Delaware River from Trenton, N. J. to Marcus Hook, Pa., for the period August 1949 to December 1952. The Delaware River is the principal source of water for the many industries and municipal water supplies along this reach of the river and both industries and municipalities use it for the disposal of their wastes. Consequently, a study of the quality of the water and variations in the quality caused by changes in streamflow, tidal effects, pollution and other factors is important to the many users. In both New Jersey and Pennsylvania steps are being taken to abate pollution, thus it is of more than passing interest to measure the effects of waste treatment on the quality of the Delaware River water. At average or higher rates of streamflow the mineral content of the water increases slightly from Trenton to Marcus Hook. There is little variation in the concentration of dissolved minerals from bank to bank or from top to bottom of the river. At times of protracted low rates of flow the effect of ocean water mixing with the river water may be noted as far upstream as Philadelphia. At such times the salinity is often greater near the bottom of the river than near the top. The increase in chloride concentration upstream from Philadelphia is small compared to the rapid increase downstream from Philadelphia. Temperatures of offshore water vary with the season, but on a given day are substantially uniform throughout the reach of the river from Trenton to Marcus Hook. The water contains less dissolved oxygen as it flows downstream indicating that oxygen is being consumed by oxidizable matter. From Philadelphia downstream there are periods, especially in late summer, when the dissolved oxygen is barely sufficient to meet the oxygen demands of the pollution load.

  6. Method to identify wells that yield water that will be replaced by water from the Colorado River downstream from Laguna Dam in Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.

    2000-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water-surface profiles of the Colorado River from Laguna Dam to about the downstream limit of perennial flow at Morelos Dam. The accounting surface extends outward from the edges of the flood plain to the subsurface boundary of the river aquifer. Maps at a scale of 1:100,000 show the extent of the river aquifer and elevation of the accounting surface downstream from Laguna Dam in Arizona and California.

  7. An update on USGS studies of the Summitville Mine and its downstream environmental effects

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Edelmann, Patrick R.

    1995-01-01

    The Summitville gold mine, located at ~3800 meters (11,500 ft) elevation in the San Juan Mountains of southwestern Colorado, was the focus of extensive public attention in 1992 and 1993 for environmental problems stemming from recent open-pit mining activities. Summitville catalyzed national debates about the environmental effects of modern mining activities, and became the focus of arguments for proposed revisions to the 1872 Mining Law governing mining activities on public lands. In early 1993, the State of Colorado, U.S. Environmental Protection Agency (EPA), U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS), Colorado State University, San Luis Valley agencies, downstream water users, private companies, and individuals began a multi-disciplinary research program to provide needed scientific information on Summitville's environmental problems and downstream environmental effects. Detailed results of this multi-agency effort were presented, along with legal and policy issues, at the Summitville Forum in January, 1995, at Colorado State University, Fort Collins, Colorado.

  8. The impact of conjunctive use of canal and tube well water in Lagar irrigated area, Pakistan

    NASA Astrophysics Data System (ADS)

    Kazmi, Syed Iftikhar; Ertsen, Maurits W.; Asi, Muhammad Rafique

    Introduction of the large gravity irrigation system in the Indus Basin in the late 19th century without a drainage system resulted in a rising water table, which resulted in water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem, the Pakistan government initiated installation of 10,000 tube wells in different areas. This not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the irrigation opportunities motivated framers to install private tube wells. The Punjab area meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tube wells, creating a pattern of private and public water control. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. The field work in the Lagar irrigated area, discussed in this paper, show that within the general picture of conjunctive use of canal water and groundwater, there is a clear spatial pattern between upstream and downstream areas, with upstream areas depending much less on groundwater than downstream areas. The irrigation context in the study area proves to be highly complex, with water users having differential access to canal and tube well water, resulting in different responses of farmers with their irrigation strategies, which in turn affect the salinity and water balances on the fields.

  9. Characterization of floodflows along the Arkansas River without regulation by Pueblo Reservoir, Portland to John Martin Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Little, John R.; Bauer, Daniel P.

    1981-01-01

    The need for a method for estimating flow characteristics of flood hydrographs between Portland, Colo., and John Martin Reservoir has been promoted with the construction of the Pueble Reservoir. To meet this need a procedure was developed for predicting floodflow peaks, traveltimes, and volumes at any point along the Arkansas River between Portland and John Martin Reservoir without considering the existing Pueble Reservoir detention effects. A streamflow-routing model was calibrated initially and then typical flood simulations were made for the 164.8-mile study reach. Simulations were completed for varying magnitudes of floods and antecedent streamflow conditions. Multiple regression techniques were then used with simulation results as input to provide predictive relationships for food peak, volume, and traveltime. Management practices that may be used to benefit water users in the area include providing methods for the distribution and allotment of the flood waters upstream of Portland to different downstream water users according to Colorado water law and also under the Arkansas River Compact. (USGS)

  10. Irrigation Dynamics and Tactics - Developing a Sustainable and Profitable Irrigation Strategy for Agricultural Areas

    NASA Astrophysics Data System (ADS)

    Van Opstal, J.; Neale, C. M. U.; Lecina, S.

    2014-12-01

    Irrigation management is a dynamic process that adapts according to weather conditions and water availability, as well as socio-economic influences. The goal of water users is to adapt their management to achieve maximum profits. However, these decisions should take into account the environmental impact on the surroundings. Agricultural irrigation systems need to be viewed as a system that is an integral part of a watershed. Therefore changes in the infrastructure, operation and management of an irrigated area, has an impact on the water quantity and quality available for other water users. A strategy can be developed for decision-makers using an irrigation system modelling tool. Such a tool can simulate the impact of the infrastructure, operation and management of an irrigation area on its hydrology and agricultural productivity. This combination of factors is successfully simulated with the Ador model, which is able to reproduce on-farm irrigation and water delivery by a canal system. Model simulations for this study are supported with spatial analysis tools using GIS and remote sensing. Continuous measurements of drainage water will be added to indicate the water quality aspects. The Bear River Canal Company located in Northern Utah (U.S.A.) is used as a case study for this research. The irrigation area encompasses 26,000 ha and grows mainly alfalfa, grains, corn and onions. The model allows the simulation of different strategies related to water delivery, on-farm water use, crop rotations, and reservoirs and networks capacities under different weather and water availability conditions. Such changes in the irrigation area will have consequences for farmers in the study area regarding crop production, and for downstream users concerning both the quantity and quality of outflows. The findings from this study give insight to decision-makers and water users for changing irrigation water delivery strategies to improve the sustainability and profitability of agriculture in the future.

  11. Improved algorithms in the CE-QUAL-W2 water-quality model for blending dam releases to meet downstream water-temperature targets

    USGS Publications Warehouse

    Rounds, Stewart A.; Buccola, Norman L.

    2015-01-01

    Water-quality models allow water resource professionals to examine conditions under an almost unlimited variety of potential future scenarios. The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced and augmented with new features to help dam operators and managers explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths. The modified blending algorithm in version 3.7 of CE-QUAL-W2 allows the user to specify a time-series of target release temperatures, designate from 2 to 10 floating or fixed-elevation outlets for blending, impose minimum and maximum head and flow constraints for any blended outlet, and set priority designations for each outlet that allow the model to choose which outlets to use and how to balance releases among them. The modified model was tested with a variety of examples and against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. These updates to the blending algorithms will allow more complicated dam-operation scenarios to be evaluated somewhat automatically with the model, with decreased need for multiple model runs or preprocessing of model inputs to fully characterize the operational constraints.

  12. The role of scenario analysis in water resources management in Yanqi Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Li, N.; Kinzelbach, W. K.; Li, W.; Dong, X.

    2011-12-01

    With the rapid increase of world population and food demand, the demand for water resources is also increasing. At the same time shifts in rain patterns due to global climate change make the water resources situation more uncertain. A global water crisis can therefore not be excluded. The socio-economic and environmental problems induced by such a water crisis are especially prominent in arid and semiarid regions. The Yanqi Basin in Xinjiang province is a typical case study in China's arid and semi-arid areas, where rainfall is scarce and evaporation is extremely high. Thus its water resources have been under great pressure to satisfy the increasing water demand of agriculture and urban and industrial expansion in the last decades. The development has been accompanied by a number of environmental problems. Yanqi Basin is an important cultivated area which is irrigated by water diverted from rivers. Because of the long-term flood irrigation and an inefficient drainage system, the groundwater level under the cultivated area rose, accelerating the phreatic evaporation and leading to increased soil salinization. Simultaneously, the water quantity and quality of Boston Lake have been impaired in past years because of the decreased river discharge and the increased salt flux contained in the drainage discharge. Thus the ecosystems depending on the inflow to and outflow from the lake suffered. The riverine forests in the downstream area were degraded due to declining groundwater levels, and aquatic life as well as downstream water users had to cope with deteriorating water quality. The big challenge for decision makers in the basin is how to balance the justified requirements of agriculture, industrial development and the ecosystem. In order to provide a scientific basis to the decision making process, a scenario analysis was adopted. Here several scenarios are proposed: the basic scenario, scenario 1, describes the status of the year 2008. A second scenario maximizes the use of groundwater. Scenario 3 applies water saving for maximum increase of discharge to the downstream area, and scenario 4 looks at different climatic extremes. As groundwater lends it self readily to water saving irrigation, a present danger is over pumping of groundwater which leads to less efficient drainage, and recycling and accumulation of TDS. In an effort to allow high groundwater use scenario 5 analyses the use of irrigation channels for artificial groundwater recharge by surface water. All of the scenarios are implemented and compared through simulation, using an integrated 3D distributed flow and transport model of Yanqi Basin based on MikeSHE/Mike11 software. After the comparison of the different scenarios, an optimal combination of surface and groundwater resources use is suggested to reach an acceptable and sustainable compromise between the various water users i.e. agriculture, industry and the ecosystem.

  13. Digital-model simulation of the Toppenish alluvial aquifer, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Bolke, E.L.; Skrivan, James A.

    1981-01-01

    Increasing demands for irrigating additional lands and proposals to divert water from the Yakima River by water users downstream from the Yakima Indian Reservation have made an accounting of water availability important for present-day water management in the Toppenish Creek basin. A digital model was constructed and calibrated for the Toppenish alluvial aquifer to help fulfill this need. The average difference between observed and model-calculated aquifer heads was about 4 feet. Results of model analysis show that the net gain from the Yakima River to the aquifer is 90 cubic feet per second, and the net loss from the aquifer to Toppenish Creek is 137 cubic feet per second. Water-level declines of about 5 feet were calculated for an area near Toppenish in response to a hypothetical tenfold increase in 1974 pumping rates. (USGS)

  14. Drought allocations using the Systems Impact Assessment Model: Klamath River

    USGS Publications Warehouse

    Flug, M.; Campbell, S.G.

    2005-01-01

    Water supply and allocation scenarios for the Klamath River, Ore. and Calif., were evaluated using the Systems Impact Assessment Model (SIAM), a decision support system developed by the U.S. Geological Survey. SIAM is a set of models with a graphical user interface that simulates water supply and delivery in a managed river system, water quality, and fish production. Simulation results are presented for drought conditions, one aspect of Klamath River water operations. The Klamath River Basin has experienced critically dry conditions in 1992, 1994, and 2001. Drought simulations are useful to estimate the impacts of specific legal or institutional flow constraints. In addition, simulations help to identify potential adverse water quality consequences including evaluating the potential for reducing adverse temperature impacts on anadromous fish. In all drought simulations, water supply was insufficient to fully meet upstream and downstream targets for endangered species.

  15. In the Way of Peacemaker Guide Curve between Water Supply and Flood Control for Short Term Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.

    2012-04-01

    Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by taking inflow, elevation, precipitation and snow water equivalent into consideration to propose alternative simulations as a decision support system. After that, the releases are subjected to user-defined rules. Thus, previous year reservoir simulations are compared with observed reservoir levels and releases. Hypothetical flood scenarios are tested in case of different storm event timing and sizing. Numerical weather prediction data of Mesoscale Model 5 (MM5) can be used for temperature and precipitation forecasts that will form the inputs for a hydrological model. The estimated flows can be used for real time short term decisions for reservoir simulation based on variable guide curve and user defined rules.

  16. Improved Algorithms for Blending Dam Releases to Meet Downstream Water-Temperature Targets in the CE-QUAL-W2 Water-Quality Model

    NASA Astrophysics Data System (ADS)

    Rounds, S. A.; Buccola, N. L.

    2014-12-01

    The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced with new features to help dam operators and managers efficiently explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths in the reservoir. The original blending algorithm in this version of the model was limited to mixing releases from two outlets at a time, and few constraints could be imposed. The new enhanced blending algorithm allows the user to (1) specify a time-series of target release temperatures, (2) designate from 2 to 10 floating or fixed-elevation outlets for blending, (3) impose maximum head constraints as well as minimum and maximum flow constraints for any blended outlet, and (4) set a priority designation for each outlet that allows the model to choose which outlets to use and how to balance releases among them. The modified model was tested against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. The enhanced model code is being used to evaluate operational and structural scenarios at multiple dam/reservoir systems in the Willamette River basin in Oregon, where downstream temperature management for endangered fish is a high priority for resource managers and dam operators. These updates to the CE-QUAL-W2 blending algorithm allow scenarios involving complicated dam operations and/or hypothetical outlet structures to be evaluated more efficiently with the model, with decreased need for multiple/iterative model runs or preprocessing of model inputs to fully characterize the operational constraints.

  17. Possible changes in ground-water flow to the Pecos River caused by Santa Rosa Lake, Guadalupe County, New Mexico

    USGS Publications Warehouse

    Risser, D.W.

    1987-01-01

    In 1980 Santa Rosa Dam began impounding water on the Pecos River about 7 miles north of Santa Rosa, New Mexico, to provide flood control, sediment control, and storage for irrigation. Santa Rosa Lake has caused changes in the groundwater flow system, which may cause changes in the streamflow of the Pecos River that cannot be detected at the present streamflow gaging stations. Data collected at these stations are used to measure the amount of water available for downstream users. A three-dimensional groundwater flow model for a 950 sq mi area between Anton Chico and Puerto de Luna was used to simulate the effects of Santa Rosa Lake on groundwater flow to a gaining reach of the Pecos River for lake levels of 4,675, 4,715, 4,725, 4,750, 4,776, and 4,797 feet above sea level and durations of impoundment of 30, 90, 182, and 365 days for all levels except 4 ,797 feet. These simulations indicated that streamflow in the Pecos River could increase by as much as 2 cu ft/sec between the dam and Puerto de Luna if the lake level were maintained at 4 ,797 feet for 90 days or 4,776 feet for 1 year. About 90% of this increased streamflow would occur < 0.5 mi downstream from the dam, some of which would be measured at the streamflow gaging station located 0.2 mile downstream from the dam. Simulations also indicated that the lake will affect groundwater flow such that inflow to the study area may be decreased by as much as 1.9 cu ft/sec. This water may leave the Pecos River drainage basin or be diverted back to the Pecos River downstream from the gaging station near Puerto de Luna. In either case, this quantity represents a net loss of water upstream from Puerto de Luna. Most simulations indicated that the decrease in groundwater flow into the study area would be of about the same quantity as the simulated increase in streamflow downstream from the dam. Therefore, the net effect of the lake on the flow of the Pecos River in the study area appears to be negligible. Model simulations indicated that effect of lake levels below 4 ,750 feet on water levels in observation wells completed in the San Andres Limestone could not be distinguished from the effects of other hydrologic stresses. (Author 's abstract)

  18. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2015-01-01

    Valley-fill aquifers are modest resources within the area, as indicated by the common practice of completing supply wells in the underlying bedrock rather than the overlying glacial deposits. Groundwater turbidity problems curtail use of the resource. However, additional groundwater resources have been identified by test drilling, and there are remaining untested areas. New groundwater supplies that stress localized aquifer areas will alter the groundwater flow system. Considerations include potential water-quality degradation from nearby land use(s) and, where withdrawals induce infiltration of surface-water, balancing withdrawals with flow requirements for downstream users or for maintenance of stream ecological health.

  19. Automated Routines for Calculating Whole-Stream Metabolism: Theoretical Background and User's Guide

    USGS Publications Warehouse

    Bales, Jerad D.; Nardi, Mark R.

    2007-01-01

    In order to standardize methods and facilitate rapid calculation and archival of stream-metabolism variables, the Stream Metabolism Program was developed to calculate gross primary production, net ecosystem production, respiration, and selected other variables from continuous measurements of dissolved-oxygen concentration, water temperature, and other user-supplied information. Methods for calculating metabolism from continuous measurements of dissolved-oxygen concentration and water temperature are fairly well known, but a standard set of procedures and computation software for all aspects of the calculations were not available previously. The Stream Metabolism Program addresses this deficiency with a stand-alone executable computer program written in Visual Basic.NET?, which runs in the Microsoft Windows? environment. All equations and assumptions used in the development of the software are documented in this report. Detailed guidance on application of the software is presented, along with a summary of the data required to use the software. Data from either a single station or paired (upstream, downstream) stations can be used with the software to calculate metabolism variables.

  20. Glacier loss and emerging hydrologic vulnerabilities in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; McKenzie, J. M.; Baraer, M.; Lagos, P.; Lautz, L.; Carey, M.; Bury, J.; Crumley, R.; Wigmore, O.; Somers, L. D.

    2015-12-01

    Accelerating glacier recession in the tropical Andes is transforming downstream hydrology, while increasing demands for water by end-users (even beyond the watershed limits) is complicating the assessment of vulnerability. Future scenarios of hydro-climatic vulnerability require a better understanding of coupled hydrologic and human systems, involving both multiscale process studies and more robust models of glacier-climate interactions. We synthesize research in two proglacial valleys of glacierized mountain ranges in different regions of Peru that are both in proximity to growing water usage from urban sectors, agriculture, hydroelectric generation, and mining. In both the Santa River watershed draining the Cordillera Blanca and the Shullcas River watershed below Hyuatapallana Mountain in Junin, glaciers have receded over 25% since the 1980s. Historical runoff and glacier data, combined with glacier-climate modeling, show a long-term decrease in discharge resulting from a net loss of stored water. We find evidence that this altered hydrology is transforming proglacial wetland ecology and water quality, even while water resource use has intensified. Beyond glaciers, our results show that over 60% of the dry season base flow in each watershed is groundwater sourced from heterogeneous aquifers. Municipal water supply in Huancayo already relies on 18 groundwater wells. Perceptions of water availability and actual water use practices remain relatively divorced from the actual water resources provided from each mountain range. Critical changes in glacier volume and water supply are not perceived or acknowledged consistently amongst different water users, nor reflected in water management decisions. In order to identify, understand, model, and adapt to climate-glacier-water changes, it is vital to integrate the analysis of water availability and groundwater processes (the domain of hydrologists) with that of water use (the focus for social scientists). Attention must be drawn to evaluating risks and adaptation options with rigorous, data-based scenario evaluations of how management decisions impact all end users.

  1. Effects of a network of sand-storage dams on the hydrology on catchment scale

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits; Strohschein, Paul; Onencan, Abby; van de Giesen, Nick

    2015-04-01

    Water conservation is a high priority in the drier areas of sub-Saharan Africa. Storage of water from the rainy season to the dry season, or even from wet years to dry years is highly important. Small multi-purpose sub-surface water reservoirs recharged through infiltration are used to provide water for humans, livestock and crops in the Kitui region in Kenya. The groundwater dams obstruct the natural flow of water in wet seasons or periods, and provide storage of water during dry seasons or periods. This paper links the hydrology of the sand-storage dams to human agency. When is a dam a success in hydrological terms? When it provides water every year? Every two years? How many months? What happens in very dry years? Obviously, water use will decrease the water volume and thus the water level upstream of the dam, but to what extent typically depends on the amounts used compared to the size of the dam and the water use itself. Longer-term effects on groundwater levels to be expected depend strongly on the way the water is used. Household water use and river banks infiltration increasing seasonal storage can go hand in hand. However, when water in dams is used for higher water demanding activities such as (motorized) irrigation, the infiltration effect into banks may be minimal. A dam can also be "too effective" and decrease water availability for water users further downstream. It is unlikely, however, that an individual farmer will effect on the downstream users of the resources he/she is tapping, but a network of dams as in Kitui may have considerable effect. Measurements indicate that only about 2% to 3% of the total yearly runoff within the catchment directly associated with a single dam is stored in its reservoir. Therefore only this small percentage of the total flow of a seasonal river with dams is blocked. The paper will detail these general concepts with a case study of the Kiindu catchment. The hydrology of the Kiindu catchment is dependent on different aspects which influence each other. The physical environment determines the living conditions of the people directly and indirectly through the availability of water. The society on the other hand changes the physical environment directly by building sand dams or digging terraces directly and by the water use indirectly. Within the catchment, different sub-catchments show specific outcomes of this interaction. This means that even on a small scale of a catchment of some 20 kilometres, significant differences in water availability and quality can be found.

  2. Water quality degradation effects on freshwater availability: Impacts to human activities

    USGS Publications Warehouse

    Peters, N.E.; Meybeck, Michel

    2000-01-01

    The quality of freshwater at any point on the landscape reflects the combined effects of many processes along water pathways. Human activities on all spatial scales affect both water quality and quantity. Alteration of the landscape and associated vegetation has not only changed the water balance, but typically has altered processes that control water quality. Effects of human activities on a small scale are relevant to an entire drainage basin. Furthermore, local, regional, and global differences in climate and water flow are considerable, causing varying effects of human activities on land and water quality and quantity, depending on location within a watershed, geology, biology, physiographic characteristics, and climate. These natural characteristics also greatly control human activities, which will, in turn, modify (or affect) the natural composition of water. One of the most important issues for effective resource management is recognition of cyclical and cascading effects of human activities on the water quality and quantity along hydrologic pathways. The degradation of water quality in one part of a watershed can have negative effects on users downstream. Everyone lives downstream of the effects of some human activity. An extremely important factor is that substances added to the atmosphere, land, and water generally have relatively long time scales for removal or clean up. The nature of the substance, including its affinity for adhering to soil and its ability to be transformed, affects the mobility and the time scale for removal of the substance. Policy alone will not solve many of the degradation issues, but a combination of policy, education, scientific knowledge, planning, and enforcement of applicable laws can provide mechanisms for slowing the rate of degradation and provide human and environmental protection. Such an integrated approach is needed to effectively manage land and water resources.

  3. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?

    NASA Astrophysics Data System (ADS)

    Lathuillière, Michael J.; Coe, Michael T.; Johnson, Mark S.

    2016-06-01

    The Amazon Basin is a region of global importance for the carbon and hydrological cycles, a biodiversity hotspot, and a potential centre for future economic development. The region is also a major source of water vapour recycled into continental precipitation through evapotranspiration processes. This review applies an ecohydrological approach to Amazonia's water cycle by looking at contributions of water resources in the context of future agricultural production. At present, agriculture in the region is primarily rain-fed and relies almost exclusively on green-water resources (soil moisture regenerated by precipitation). Future agricultural development, however, will likely follow pathways that include irrigation from blue-water sources (surface water and groundwater) as insurance from variability in precipitation. In this review, we first provide an updated summary of the green-blue ecohydrological framework before describing past trends in Amazonia's water resources within the context of land use and land cover change. We then describe green- and blue-water trade-offs in light of future agricultural production and potential irrigation to assess costs and benefits to terrestrial ecosystems, particularly land and biodiversity protection, and regional precipitation recycling. Management of green water is needed, particularly at the agricultural frontier located in the headwaters of major tributaries to the Amazon River, and home to key downstream blue-water users and ecosystem services, including domestic and industrial users, as well as aquatic ecosystems.

  4. Decision support for the management of water resources at Sub-middle of the São Francisco river basin in Brazil using integrated hydro-economic modeling and scenarios for land use changes

    NASA Astrophysics Data System (ADS)

    Moraes, M. G. A.; Souza da Silva, G.

    2016-12-01

    Hydro-economic models can measure the economic effects of different operating rules, environmental restrictions, ecosystems services, technical constraints and institutional constraints. Furthermore, water allocation can be improved by considering economical criteria's. Likewise, climate and land use change can be analyzed to provide resilience. We developed and applied a hydro-economic optimization model to determine the optimal water allocation of main users in the Lower-middle São Francisco River Basin in Northeast (NE) Brazil. The model uses demand curves for the irrigation projects, small farmers and human supply, rather than fixed requirements for water resources. This study analyzed various constraints and operating alternatives for the installed hydropower dams in economic terms. A seven-year period (2000-2006) with water scarcity in the past has been selected to analyze the water availability and the associated optimal economic water allocation. The used constraints are technical, socioeconomic and environmental. The economically impacts of scenarios like prioritizing human consumption, impacts of the implementation of the São Francisco river transposition, human supply without high distribution losses, environmental hydrographs, forced reservoir level control, forced reduced reservoir capacity, alteration of lower flow restriction were analyzed. The results in this period show that scarcity costs related ecosystem service and environmental constraints are significant, and have major impacts (increase of scarcity cost) for consumptive users like irrigation projects. In addition, institutional constraints such as prioritizing human supply, minimum release limits downstream of the reservoirs and the implementation of the transposition project impact the costs and benefits of the two main economic sectors (irrigation and power generation) in the region of the Lower-middle of the São Francisco river basin. Scarcity costs for irrigation users generally increase more (in percentage terms) than the other users associated to environmental and institutional constraints.

  5. Benefits and Risks of using Linear Anionic Polyacrylamide (LA-PAM) for Seepage Reduction in Unlined Water Delivery Canals

    NASA Astrophysics Data System (ADS)

    Susfalk, R. B.; Martin, C.; Sada, D.; Young, M.; Gates, T.; Shanafield, M.; Fitzgerald, B.; Smith, D.

    2008-12-01

    As water resources continue to be constrained in the arid western United States, there is a need to improve the efficiency in how water is transported from its sources to end-users. In particular, there is a growing need for cost-effective technologies capable of reducing undesirable seepage from water delivery canals where traditional canal sealing methods, such as concrete and geomembranes, are not suitable or cost-prohibitive. One alternative is the use of a linear, anionic polyacrylamide (LA-PAM) applied as granular solid to a flowing canal. The benefits and risks of LA-PAM use in unlined water delivery canals will be discussed in context of a diverse set of experiments that were conducted in the laboratory, at the furrow-scale, and in working water delivery canals. When properly used, the application of LA-PAM reduced seepage rates between 28 and 87 percent at a cost of 78 to 213 km-1. LA-PAM provided a cost-effective tool for canal operators to better manage the volume, timing, and extent of water losses from their canals. However, these benefits must be weighed against potential risks associated with LA-PAM use. Potential risks included the release of small concentrations of residual acrylamide (AMD) monomer, a cumulative neurotoxin and a suspected human carcinogen, and potential impacts on aquatic communities and downstream users.

  6. Adding the human dimension to drought: an example from Chile

    NASA Astrophysics Data System (ADS)

    Rangecroft, Sally; Van Loon, Anne; Maureira, Héctor; Rojas, Pablo; Alejandro Gutiérrez Valdés, Sergio; Verbist, Koen

    2016-04-01

    Drought and water scarcity are important hazards and can lead to severe socio-economic impacts in many regions of the world. Given the interlinked interactions and feedbacks of hydrological droughts and their impacts and management, we need tools to evaluate these complexities and effects on the availability of water resources. Here we use a real-world case study of the Huasco basin (Northern Chile) in which we quantify the influence of human activities on hydrological drought signals. In this arid region, Andean snowmelt provides water essential for users, with agriculture acting as the main water consumer (85% of total). An increasing water demand from different water sectors (agriculture, mining, and domestic water usage) has increased pressure on available water and its management. Consequently, the Santa Juana dam was built by 1995 to increase irrigation security for downstream users, and recent management and restrictions have been established with the objective to limit impacts of hydrological droughts across the basin. The feedbacks between water availability and water management are explored for this water stressed region in Chile. Hydro-meteorological (e.g. precipitation, temperature, streamflow, reservoir levels) variables have been analysed to assess trends and drought patterns. Data over the past three decades has indicated a decrease in surface water supply, with the basin entering a situation of water scarcity during the recent multiyear drought (2007 - to-date), partly caused by meteorological drought and partly by abstraction. During this period, water supply failed to meet the demands of water users, resulting in the implementation of water restrictions. As well as the necessary continuous hydro-meteorological data, here we used information on human water users and scenario modeling, allowing for the analysis and quantification of feedbacks. This work highlights the importance of local knowledge, especially in understanding water laws, rights, regulations and therefore interpretation of the data and results. We will repeat the analysis done in Chile in a diverse series of case studies across the world to reflect different natural and human influences on the water cycle. This will enable an increased understanding of our influence on water resources and the feedbacks involved, which may be both positive and negative. Ultimately, this research will develop a methodology for identifying and quantifying human activities and use this information in combination with water management modeling and forecasting for effective drought early warning and risk management.

  7. Four-fold increase in users of time-wavelength division multiplexing (TWDM) passive optical network (PON) by delayed optical amplitude modulation (AM) upstream

    NASA Astrophysics Data System (ADS)

    Kachhatiya, Vivek; Prince, Shanthi

    2016-12-01

    In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as ;pay as you grow; network for both service providers and the users perspectives. Users are classified into two categories viz home-user and business-user, with an option for easy up-gradation. Proposed architecture operates on next generation passive optical network stage 2 (NG-PON2) wavelength plan, with symmetrical data rate. Downstream performance is investigated by comparing, high power laser source with a conventional laser source and the L-band Erbium-doped fiber amplifier (EDFA) of gain 10 dB and 20 dB. Downstream eight wavelengths perform error-free up to 40 Km fiber reach and 1024 splitting points. Power budget of the proposed architecture incorporates the N1, N2, E1 and E2 optical path loss class.

  8. Effects of backpacker use, pack stock trail use, and pack stock grazing on water-quality indicators, including nutrients, E. coli, hormones, and pharmaceuticals, in Yosemite National Park, USA

    USGS Publications Warehouse

    Forrester, Harrison; Clow, David W.; Roche, James W.; Heyvaert, Alan C.; Battaglin, William A.

    2017-01-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012–2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL−1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL−1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL−1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  9. Effects of Backpacker Use, Pack Stock Trail Use, and Pack Stock Grazing on Water-Quality Indicators, Including Nutrients, E. coli, Hormones, and Pharmaceuticals, in Yosemite National Park, USA

    NASA Astrophysics Data System (ADS)

    Forrester, Harrison; Clow, David; Roche, James; Heyvaert, Alan; Battaglin, William

    2017-09-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012-2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL-1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL-1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL-1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  10. The role of headwater streams in downstream water quality

    USGS Publications Warehouse

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.

  11. Analysis of water use strategies of the desert riparian forest plant community in inland rivers of two arid regions in northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.

    2014-10-01

    Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited no significant difference, but the water use and consumption of Populus euphratica in the downstream of the Tarim River in the day was significantly higher than that in the downstream of the Heihe River, and the essential reason for this is the groundwater depth. The ecology in the downstream of the Heihe River has been in balance in the maintenance and development stage, while desert riparian forest plants in the downstream of the Tarim River are still in severe arid stress.

  12. The Role of Headwater Streams in Downstream Water Quality1

    PubMed Central

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565

  13. The use and re-use of unsustainable groundwater for irrigation: A global budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex

    Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted bymore » reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ~600 km 3 yr –1. Lastly, these findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.« less

  14. The use and re-use of unsustainable groundwater for irrigation: A global budget

    DOE PAGES

    Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex; ...

    2017-03-08

    Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted bymore » reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ~600 km 3 yr –1. Lastly, these findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.« less

  15. The use and re-use of unsustainable groundwater for irrigation: a global budget

    NASA Astrophysics Data System (ADS)

    Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex; Lammers, Richard B.; Frolking, Steve

    2017-03-01

    Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted by reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ∽600 km3 yr-1. These findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.

  16. Hydro-economic modelling in mining catchments

    NASA Astrophysics Data System (ADS)

    Ossa Moreno, J. S.; McIntyre, N.; Rivera, D.; Smart, J. C. R.

    2017-12-01

    Hydro-economic models are gaining momentum because of their capacity to model both the physical processes related to water supply, and socio-economic factors determining water demand. This is particularly valuable in the midst of the large uncertainty upon future climate conditions and social trends. Agriculture, urban uses and environmental flows have received a lot of attention from researchers, as these tend to be the main consumers of water in most catchments. Mine water demand, although very important in several small and medium-sized catchments worldwide, has received less attention and only few models have attempted to reproduce its dynamics with other users. This paper describes an on-going project that addresses this gap, by developing a hydro-economic model in the upper Aconcagua River in Chile. This is a mountain catchment with large scale mining and hydro-power users at high altitudes, and irrigation areas in a downstream valley. Relevant obstacles to the model included the lack of input climate data, which is a common feature in several mining areas, the complex hydrological processes in the area and the difficulty of quantifying the value of water used by mines. A semi-distributed model developed within the Water Evaluation and Planning System (WEAP), was calibrated to reproduce water supply, and this was complemented with an analysis of the value of water for mining based on two methods; water markets and an analysis of its production processes. Agriculture and other users were included through methods commonly used in similar models. The outputs help understanding the value of water in the catchment, and its sensitivity to changes in climate variables, market prices, environmental regulations and changes in the production of minerals, crops and energy. The results of the project highlight the importance of merging hydrology and socio-economic calculations in mining regions, in order to better understand trade-offs and cost of opportunity of using water for an economic activity with high revenues, averse to water risks and with potentially large catchment impacts.

  17. The National Hydrography Dataset

    USGS Publications Warehouse

    ,

    1999-01-01

    The National Hydrography Dataset (NHD) is a newly combined dataset that provides hydrographic data for the United States. The NHD is the culmination of recent cooperative efforts of the U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS). It combines elements of USGS digital line graph (DLG) hydrography files and the USEPA Reach File (RF3). The NHD supersedes RF3 and DLG files by incorporating them, not by replacing them. Users of RF3 or DLG files will find the same data in a new, more flexible format. They will find that the NHD is familiar but greatly expanded and refined. The DLG files contribute a national coverage of millions of features, including water bodies such as lakes and ponds, linear water features such as streams and rivers, and also point features such as springs and wells. These files provide standardized feature types, delineation, and spatial accuracy. From RF3, the NHD acquires hydrographic sequencing, upstream and downstream navigation for modeling applications, and reach codes. The reach codes provide a way to integrate data from organizations at all levels by linking the data to this nationally consistent hydrographic network. The feature names are from the Geographic Names Information System (GNIS). The NHD provides comprehensive coverage of hydrographic data for the United States. Some of the anticipated end-user applications of the NHD are multiuse hydrographic modeling and water-quality studies of fish habitats. Although based on 1:100,000-scale data, the NHD is planned so that it can incorporate and encourage the development of the higher resolution data that many users require. The NHD can be used to promote the exchange of data between users at the national, State, and local levels. Many users will benefit from the NHD and will want to contribute to the dataset as well.

  18. The "WFD-effect" on upstream-downstream relations in international river basins - insights from the Rhine and the Elbe basins

    NASA Astrophysics Data System (ADS)

    Moellenkamp, S.

    2007-06-01

    The upstream-downstream relationship in international river basins is a traditional challenge in water management. Water use in upstream countries often has a negative impact on water use in downstream countries. This is most evident in the classical example of industrial pollution in upstream countries hindering drinking water production downstream. The European Water Framework Directive (WFD) gives new impetus to the river basin approach and to international co-operation in European catchments. It aims at transforming a mainly water quality oriented management into a more integrated approach of ecosystem management. After discussing the traditional upstream-downstream relationship, this article shows that the WFD has a balancing effect on upstream-downstream problems and that it enhances river basin solidarity in international basins. While it lifts the downstream countries to the same level as the upstream countries, it also leads to new duties for the downstream states. Following the ecosystem approach, measures taken by downstream countries become increasingly more important. For example, downstream countries need to take measures to allow for migrating fish species to reach upstream stretches of river systems. With the WFD, fish populations receive increased attention, as they are an important indicator for the ecological status. The European Commission acquires a new role of inspection and control in river basin management, which finally also leads to enhanced cooperation and solidarity among the states in a basin. In order to achieve better water quality and to mitigate upstream-downstream problems, also economic instruments can be applied and the WFD does not exclude the possibility of making use of financial compensations, if at the same time the polluter pays principle is taken into account. The results presented in this article originate from a broader study on integrated water resources management conducted at Bonn University and refer to the Rhine and Elbe basins (Moellenkamp, 2006).

  19. Fostering cooperation in power asymmetrical water systems by the use of direct release rules and index-based insurance schemes

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Castelletti, Andrea; Giuliani, Matteo; Characklis, Gregory W.

    2018-05-01

    In river basin systems, power asymmetry is often responsible of inefficient and unbalanced water allocations. Climate change and anthropogenic pressure will possibly exacerbate such disparities as the dominant party controls an increasingly limited shared resource. In this context, the deployment of cooperation mechanisms giving greater consideration to a balanced distribution of the benefits, while improving system-wide efficiency, may be desirable. This often implies the intervention of a third party (e.g., the river basin water authority) imposing normative constraints (e.g., a minimum release) on the party in the dominant position. However, this imposition will be more acceptable to the dominant party if coupled with some form of compensation. For a public agency, compensation may be burdensome, especially when the allowance is triggered by natural events whose timing and magnitude are highly uncertain. In this context, index-based insurance contracts may represent a viable alternative and reduce the cost of achieving socially desirable outcomes. In this paper, we develop a hybrid cooperation mechanism composed of i) a direct normative constraint imposed by a regulator, and ii) an indirect financial tool, an index-based insurance contract, to be used as a compensation measure. The approach is developed for the Lake Como multi-purpose water system, Italy: a complex Alpine river basin, supporting several hydropower reservoirs and finally flowing into a regulated lake which supplies water to several downstream uses, mostly irrigated agriculture. The system is characterized by a manifest geographic power asymmetry: the upstream hydropower companies are free to release their stored water in time irrespective of the timing of the downstream demands. This situation can lead to financial losses by the downstream users and undesirable social outcomes. Results suggest that financial instruments may offer a reliable and relatively inexpensive alternative to other forms of compensation, and thereby favor more balanced management of multi-purpose water systems characterized by power asymmetry. This finding is especially relevant in times when granting of licenses to use/withdrawal water are often being reviewed with attention to environmental protection and equity issues.

  20. A web-based Tamsui River flood early-warning system with correction of real-time water stage using monitoring data

    NASA Astrophysics Data System (ADS)

    Liao, H. Y.; Lin, Y. J.; Chang, H. K.; Shang, R. K.; Kuo, H. C.; Lai, J. S.; Tan, Y. C.

    2017-12-01

    Taiwan encounters heavy rainfalls frequently. There are three to four typhoons striking Taiwan every year. To provide lead time for reducing flood damage, this study attempt to build a flood early-warning system (FEWS) in Tanshui River using time series correction techniques. The predicted rainfall is used as the input for the rainfall-runoff model. Then, the discharges calculated by the rainfall-runoff model is converted to the 1-D river routing model. The 1-D river routing model will output the simulating water stages in 487 cross sections for the future 48-hr. The downstream water stage at the estuary in 1-D river routing model is provided by storm surge simulation. Next, the water stages of 487 cross sections are corrected by time series model such as autoregressive (AR) model using real-time water stage measurements to improve the predicted accuracy. The results of simulated water stages are displayed on a web-based platform. In addition, the models can be performed remotely by any users with web browsers through a user interface. The on-line video surveillance images, real-time monitoring water stages, and rainfalls can also be shown on this platform. If the simulated water stage exceeds the embankments of Tanshui River, the alerting lights of FEWS will be flashing on the screen. This platform runs periodically and automatically to generate the simulation graphic data of flood water stages for flood disaster prevention and decision making.

  1. Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Y.; Disse, M.; Chiogna, G.

    2017-12-01

    In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.

  2. DOWNSTREAM-WATER-LEVEL CONTROL TEST RESULTS ON THE WM LATERAL CANAL

    USDA-ARS?s Scientific Manuscript database

    On steep canals, distant downstream water-level control can be challenging. SacMan (Software for Automated Canal Management) was developed, in part, to test various distant downstream water level controllers. It was implemented on the WM canal of the Maricopa Stanfield Irrigation and Drainage Distri...

  3. StreamStats in North Carolina: a water-resources Web application

    USGS Publications Warehouse

    Weaver, J. Curtis; Terziotti, Silvia; Kolb, Katharine R.; Wagner, Chad R.

    2012-01-01

    A statewide StreamStats application for North Carolina was developed in cooperation with the North Carolina Department of Transportation following completion of a pilot application for the upper French Broad River basin in western North Carolina (Wagner and others, 2009). StreamStats for North Carolina, available at http://water.usgs.gov/osw/streamstats/north_carolina.html, is a Web-based Geographic Information System (GIS) application developed by the U.S. Geological Survey (USGS) in consultation with Environmental Systems Research Institute, Inc. (Esri) to provide access to an assortment of analytical tools that are useful for water-resources planning and management (Ries and others, 2008). The StreamStats application provides an accurate and consistent process that allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and user-selected ungaged sites. In the North Carolina application, users can compute 47 basin characteristics and peak-flow frequency statistics (Weaver and others, 2009; Robbins and Pope, 1996) for a delineated drainage basin. Selected streamflow statistics and basin characteristics for data-collection sites have been compiled from published reports and also are immediately accessible by querying individual sites from the web interface. Examples of basin characteristics that can be computed in StreamStats include drainage area, stream slope, mean annual precipitation, and percentage of forested area (Ries and others, 2008). Examples of streamflow statistics that were previously available only through published documents include peak-flow frequency, flow-duration, and precipitation data. These data are valuable for making decisions related to bridge design, floodplain delineation, water-supply permitting, and sustainable stream quality and ecology. The StreamStats application also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that may affect streamflow conditions. This functionality can be accessed through a map-based interface with the user’s Web browser, or individual functions can be requested remotely through Web services (Ries and others, 2008).

  4. Pathways to sustainable intensification through crop water management

    NASA Astrophysics Data System (ADS)

    MacDonald, Graham K.; D'Odorico, Paolo; Seekell, David A.

    2016-09-01

    How much could farm water management interventions increase global crop production? This is the central question posed in a global modelling study by Jägermeyr et al (2016 Environ. Res. Lett. 11 025002). They define the biophysical realm of possibility for future gains in crop production related to agricultural water practices—enhancing water availability to crops and expanding irrigation by reducing non-productive water consumption. The findings of Jägermeyr et al offer crucial insight on the potential for crop water management to sustainably intensify agriculture, but they also provide a benchmark to consider the broader role of sustainable intensification targets in the global food system. Here, we reflect on how the global crop water management simulations of Jägermeyr et al could interact with: (1) farm size at more local scales, (2) downstream water users at the river basin scale, as well as (3) food trade and (4) demand-side food system strategies at the global scale. Incorporating such cross-scale linkages in future research could highlight the diverse pathways needed to harness the potential of farm-level crop water management for a more productive and sustainable global food system.

  5. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  6. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Everman, E.; Kuo, I.; Sprague, L.; Murphy, L.

    2011-12-01

    A new web-based decision support system has been developed as part of the U.S. Geological Survey (USGS) National Water Quality Assessment Program's (NAWQA) effort to provide ready access to Spatially Referenced Regressions On Watershed attributes (SPARROW) results of stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via an intuitive graphical user interface with a map-based display. The SPARROW Decision Support System (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions, distribution of nutrient sources, nutrient delivery to downstream waterbodies, and simulations of altered nutrient inputs including atmospheric and agricultural sources. The DSS offers other features for analysis including various background map layers, model output exports, and the ability to save and share prediction scenarios. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. The underlying modeling framework and server infrastructure illustrate innovations in the information technology and geosciences fields for delivering SPARROW model predictions over the web by performing intensive model computations and map visualizations of the predicted conditions within the stream network.

  7. Wildfire effects on source-water quality--Lessons from Fourmile Canyon fire, Colorado, and implications for drinking-water treatment

    USGS Publications Warehouse

    Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    Forested watersheds provide high-quality source water for many communities in the western United States. These watersheds are vulnerable to wildfires, and wildfire size, fire severity, and length of fire season have increased since the middle 1980s (Westerling and others, 2006). Burned watersheds are prone to increased flooding and erosion, which can impair water-supply reservoirs, water quality, and drinking-water treatment processes. Limited information exists on the degree, timing, and duration of the effects of wildfire on water quality, making it difficult for drinking-water providers to evaluate the risk and develop management options. In order to evaluate the effects of wildfire on water quality and downstream ecosystems in the Colorado Front Range, the U.S. Geological Survey initiated a study after the 2010 Fourmile Canyon fire near Boulder, Colorado. Hydrologists frequently sampled Fourmile Creek at monitoring sites upstream and downstream of the burned area to study water-quality changes during hydrologic conditions such as base flow, spring snowmelt, and summer thunderstorms. This fact sheet summarizes principal findings from the first year of research. Stream discharge and nitrate concentrations increased downstream of the burned area during snowmelt runoff, but increases were probably within the treatment capacity of most drinking-water plants, and limited changes were observed in downstream ecosystems. During and after high-intensity thunderstorms, however, turbidity, dissolved organic carbon, nitrate, and some metals increased by 1 to 4 orders of magnitude within and downstream of the burned area. Increases of such magnitude can pose problems for water-supply reservoirs, drinking-water treatment plants, and downstream aquatic ecosystems.

  8. Connectivity of Streams and Wetlands to Downstream Waters ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency's (USEPA) Office of Research and Development has finalized the report Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence. The report reviews more than 1,200 peer-reviewed publications and summarizes current scientific understanding about the connectivity and mechanisms by which streams and wetlands, singly or in aggregate, affect the physical, chemical, and biological integrity of downstream waters. The focus of the report is on surface and shallow subsurface connections by which small or temporary streams, nontidal wetlands, and open waters affect larger waters such as rivers, lakes, reservoirs, and estuaries. This report represents the state-of-the-science on the connectivity and isolation of waters in the United States. It makes five major conclusions, summarized below, that are drawn from a broad range of peer reviewed scientific literature. The scientific literature unequivocally demonstrates that streams, regardless of their size or frequency of flow, are connected to downstream waters and strongly influence their function. The scientific literature clearly shows that wetlands and open waters in riparian areas (transitional areas between terrestrial and aquatic ecosystems) and floodplains are physically, chemically, and biologically integrated with rivers via functions that improve downstream water quality. These system

  9. User experience network. Erroneous downstream occlusion alarms may disable Smiths Medical CADD-Solis infusion pumps.

    PubMed

    2010-10-01

    Due to an issue in manufacturing, downstream occlusion (DSO) sensors in some Smiths Medical CADD-Solis infusion pumps may drift out of calibration, potentially resulting in erroneous alarms that disable the units. Hospitals experiencing the problem should return affected units to Smiths Medical for recalibration (free of charge) and should consider testing all their CADD-Solis pumps during routine maintenance to ensure that they alarm appropriately for downstream occlusions.

  10. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated high flows. Conveyance losses in the Pebble-Topaz reach were greatest, about 283 cubic feet per second, during the spring regulated high flows and were attributed to a hydroelectric project.Comparison of water levels in 30 wells in the Portneuf Valley during September and October 1968 and 2001 indicated long-term declines since 1968; the median decline was 3.4 feet. September and October were selected for characterizing long-term ground-water-level fluctuations because declines associated with irrigation reach a maximum at the end of the irrigation season. The average annual snowpack in the study area has declined significantly; 1945 85 average annual snowpack was 16.1 inches, whereas 1986 through 2002 average annual snowpack was 11.6 inches. Water-level declines during 1998 2002 may be partially attributable to the extended dry climatic conditions. It is unclear whether the declines could be partially attributed to increases in ground-water withdrawals. Between 1968 and 1980, water rights for ground-water withdrawals nearly doubled from 23,500 to 46,000 acre-feet per year. During this period, ground-water levels were relatively constant and did not exhibit a declining trend that could be related to increased ground-water withdrawal rights. However, ground-water withdrawals are not measured in the valley; thus, the amount of water pumped is not known. Since the 1990s, there have been several years when the Chesterfield Reservoir has not completely refilled, and the water in storage behind the reservoir has been depleted by the middle of the irrigation season. In this situation, surface-water diversions for irrigation were terminated before the end of the irrigation season, and irrigators, who were relying in part on diversions from the Portneuf River, had to rely solely on ground water as an alternate supply. Smaller volumes of water in the Chesterfield Reservoir since the 1990s indicate a growing demand for ground-water supplies.

  11. Using stable isotopes to examine watershed connectivity to downstream waters

    EPA Science Inventory

    Water bodies within the USA are protected by the US Clean Water Act when they have a significant nexus to downstream navigable waters. As a research scientist with the US Environmental Protection Agency, I have used water stable isotopes to examine hydrologic connectivity dynami...

  12. Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis

    EPA Science Inventory

    Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluv...

  13. Fixation filter, device for the rapid in situ preservation of particulate samples

    NASA Astrophysics Data System (ADS)

    Taylor, C. D.; Edgcomb, V. P.; Doherty, K. W.; Engstrom, I.; Shanahan, T.; Pachiadaki, M. G.; Molyneaux, S. J.; Honjo, S.

    2015-02-01

    Niskin bottle rosettes have for years been the workhorse technology for collection of water samples used in biological and chemical oceanography. Studies of marine microbiology and biogeochemical cycling that aim to analyze labile organic molecules including messenger RNA, must take into account factors associated with sampling methodology that obscure an accurate picture of in situ activities/processes. With Niskin sampling, the large and often variable times between sample collection and preservation on deck of a ship, and the sometimes significant physico-chemical changes (e.g., changes in pressure, light, temperature, redox state, etc.) that water samples and organisms are exposed to, are likely to introduce artifacts. These concerns are likely more significant when working with phototrophs, deep-sea microbes, and/or organisms inhabiting low-oxygen or anoxic environments. We report here the development of a new technology for the in situ collection and chemical preservation of particulate microbial samples for a variety of downstream analyses depending on preservative choice by the user. The Fixation Filter Unit, version 3 (FF3) permits filtration of water sample through 47 mm diameter filters of the user's choice and upon completion of filtration, chemically preserves the retained sample within 10's of seconds. The stand-alone devices can be adapted to hydrocasting or mooring-based platforms.

  14. Draft Scientific Report Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence

    EPA Pesticide Factsheets

    Synthesizes peer-reviewed scientific literature on the biological, chemical, and hydrologic connectivity of waters and the effects that small streams, wetlands, and open waters have on larger downstream waters such as rivers, lakes, estuaries, and oceans.

  15. Upstream water resource management to address downstream pollution concerns: A policy framework with application to the Nakdong River basin in South Korea

    NASA Astrophysics Data System (ADS)

    Yoon, Taeyeon; Rhodes, Charles; Shah, Farhed A.

    2015-02-01

    An empirical framework for assisting with water quality management is proposed that relies on open-source hydrologic data. Such data are measured periodically at fixed water stations and commonly available in time-series form. To fully exploit the data, we suggest that observations from multiple stations should be combined into a single long-panel data set, and an econometric model developed to estimate upstream management effects on downstream water quality. Selection of the model's functional form and explanatory variables would be informed by rating curves, and idiosyncrasies across and within stations handled in an error term by testing contemporary correlation, serial correlation, and heteroskedasticity. Our proposed approach is illustrated with an application to the Nakdong River basin in South Korea. Three alternative policies to achieve downstream BOD level targets are evaluated: upstream water treatment, greater dam discharge, and development of a new water source. Upstream water treatment directly cuts off incoming pollutants, thereby presenting the smallest variation in its downstream effects on BOD levels. Treatment is advantageous when reliability of water quality is a primary concern. Dam discharge is a flexible tool, and may be used strategically during a low-flow season. We consider development of a new water corridor from an extant dam as our third policy option. This turns out to be the most cost-effective way for securing lower BOD levels in the downstream target city. Even though we consider a relatively simple watershed to illustrate the usefulness of our approach, it can be adapted easily to analyze more complex upstream-downstream issues.

  16. Water quality effects of herded stream crossings by domestic sheep bands.

    PubMed

    Clark, Patrick E; Moffet, Corey A; Lewis, Gregory S; Seyfried, Mark S; Hardegree, Stuart P; Pierson, Fredrick B

    2012-01-01

    Livestock impacts on total suspended solids (TSS) and pathogen (e.g., ) levels in rangeland streams are a serious concern worldwide. Herded stream crossings by domestic sheep () are periodic, necessary managerial events on high-elevation rangelands, but their impacts on stream water quality are largely unknown. We evaluated the effects of herded, one-way crossings by sheep bands (about 2000 individuals) on TSS and concentration and load responses in downstream waters. Crossing trials were conducted during the summers of 2005 and 2006 on two reaches within each of three perennial streams in the Centennial Mountains of eastern Idaho and southwestern Montana. Water samples were collected at 2-min intervals at an upstream background station and at stations 25, 100, 500, and 1500 m downstream just before and during each crossing trial. Crossings produced substantial increases in TSS and concentrations and loads downstream, but these concentration increases were localized and short lived. Maximum TSS concentration was highest 25 m downstream, declined as a function of downstream distance, and at 500 m downstream was similar to background. Post-peak TSS concentrations at all downstream stations decreased to <25 mg L within 24 to 48 min after reaching their maxima. Findings for concentration and load responses were similar to that of TSS but less clear cut. Stream-crossing sheep do affect water quality; therefore, producers and resource managers should continue to evaluate the efficacy of herdsmanship techniques for reducing water quality impact. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Assessment and management of the performance risk of a pilot reclaimed water disinfection process.

    PubMed

    Zhou, Guangyu; Zhao, Xinhua; Zhang, Lei; Wu, Qing

    2013-10-01

    Chlorination disinfection has been widely used in reclaimed water treatment plants to ensure water quality. In order to assess the downstream quality risk of a running reclaimed water disinfection process, a set of dynamic equations was developed to simulate reactions in the disinfection process concerning variables of bacteria, chemical oxygen demand (COD), ammonia and monochloramine. The model was calibrated by the observations obtained from a pilot disinfection process which was designed to simulate the actual process in a reclaimed water treatment plant. A Monte Carlo algorithm was applied to calculate the predictive effluent quality distributions that were used in the established hierarchical assessment system for the downstream quality risk, and the key factors affecting the downstream quality risk were defined using the Regional Sensitivity Analysis method. The results showed that the seasonal upstream quality variation caused considerable downstream quality risk; the effluent ammonia was significantly influenced by its upstream concentration; the upstream COD was a key factor determining the process effluent risk of bacterial, COD and residual disinfectant indexes; and lower COD and ammonia concentrations in the influent would mean better downstream quality.

  18. Mountains, Climate Change and North American Water Security

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Rasouli, K.; Harder, P.; Siemens, E.; Pradhananga, D.

    2016-12-01

    The juxtaposition of cold high precipitation catchments in mountains and low precipitation in downstream lowlands means that mountain water supplies support over half the world's population and sustain most irrigation agriculture. How secure is this mountain water in northern North America? Irrigation and other consumptive downstream uses have put immense pressure on water supplied from the Canadian Rockies. Excess water from these rivers also carries risk. Downstream communities are often located in the flood plains of mountain rivers, making them subject to the extreme hydrometeorology of the headwaters as was evident in the BC/Alberta/Saskatchewan floods of 2013 and droughts of 2015/2016. Climate change is disproportionately warming high mountain areas and the impacts of warming on water are magnified in high mountains because seasonal snowpacks, perennial snowfields and glaciers form important stores of water and control the timing of release of water and the seasonal and annual discharge of major mountain rivers. Changes in mountain snow and glacial regimes are rapidly occurring in Western Canada and this is already impacting downstream water security by changing flood risk, streamflow timing and volume. Hydrological process modelling is diagnosing the causes of intensification of hydrological cycling and coupled to climate models suggesting that the timing and quantity of mountain waters will shift under certain climate, glacier cover and forest cover scenarios and so impact the water security of downstream food production. So far, changes in precipitation are matched by evapotranspiration and sublimation providing some resilience to change in streamflow due to intensification of hydrological cycling. Faster glacier melt in drought periods has buffered low flows but this capacity id dwindling as glaciers ablate. The International Network for Alpine Research Catchment Hydrology (INARCH) project of GEWEX is quantifying water resiliency and risk in mountain headwaters so as to better assess the water security of downstream regions. INARCH results from Western Canada suggest current mountain river resiliency is at risk from increased climate variability as rainfall runoff replaces snowmelt and glacier melt runoff processes.

  19. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    NASA Astrophysics Data System (ADS)

    van der Zaag, Pieter; Juizo, Dinis; Vilanculos, Agostinho; Bolding, Alex; Uiterweer, Nynke Post

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use irrigation (4000 ha). This development includes the expansion of sugar cane production for the production of ethanol as a biofuel. Total additional water requirements may amount to 1.3 × 10 9 m 3/a or more. A simple river basin simulation model was constructed in order to assess different irrigation development scenarios, and at two storage capacities of the existing Massingir dam. Many uncertainties surround current and future water availability in the Lower Limpopo River Basin. Discharge measurements are incomplete and sometimes inconsistent, while upstream developments during the last 25 years have been dramatic and future trends are unknown. In Mozambique it is not precisely known how much water is currently consumed, especially by the many small-scale users of surface and shallow alluvial groundwater. Future impacts of climate change increase existing uncertainties. Model simulations indicate that the Limpopo River does not carry sufficient water for all planned irrigation. A maximum of approx. 58,000 ha of irrigated agriculture can be sustained in the Mozambican part of the basin. This figure assumes that Massingir will be operated at increased reservoir capacity, and implies that only about 44,000 ha of new irrigation can be developed, which is 60% of the envisaged developments. Any additional water use would certainly impact downstream users and thus create tensions. Some time will elapse before 44,000 ha of new irrigated land will have been developed. This time could be used to improve monitoring networks to decrease current uncertainties. Meanwhile the four riparian Limpopo States are preparing a joint river basin study. In this study a methodology could be developed to estimate and safeguard water availability for those users who under the law do not need registration - but who do need water.

  20. Quality of water in Luxapallia Creek at Columbus, Mississippi

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    1982-01-01

    The results of a water quality study of a short reach of Luxapallila Creek at Columbus, Mississippi, during September 9-12, 1979, indicate that the water is colored (60 units) and has a low dissolved solids content (44 mg/L). The dissolved oxygen concentration, temperature, and pH of the water in Luxapallila Creek changed a slightly downstream through the study reach. The mean specific conductance almost doubled and the five-day biochemical oxygen demand load increased over four times through the study reach. The fecal coliform to fecal streptococcus ration of 3 to 5 samples collected at the downstream site was greater than 4.0, strongly suggesting the presence of human waste. The concentrations of iron and manganese at the downstream site exceeded the U.S. Environmental Protection Agency 's criteria for domestic water supplies. High concentrations of iron, manganese, and lead also were present in a bottom material sample at the downstream site. (USGS)

  1. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate to within about 0.005 degrees Celsius (?C). In addition to assessing the effects of point-source heat trades, the models were used to evaluate the temperature effects of several shade-restoration scenarios. Restoration of riparian shade along the entire Long Tom River, from its mouth to Fern Ridge Dam, was calculated to have a small but significant effect on daily maximum temperatures in the main-stem Willamette River, on the order of 0.03?C where the Long Tom River enters the Willamette River, and diminishing downstream. Model scenarios also were run to assess the effects of restoring selected 5-mile reaches of riparian vegetation along the main-stem Willamette River from river mile (RM) 176.80, just upstream of the point where the McKenzie River joins the Willamette River, to RM 116.87 near Albany, which is one location where cumulative point-source heating effects are at a maximum. Restoration of riparian vegetation along the main-stem Willamette River was shown by model runs to have a significant local effect on daily maximum river temperatures (0.046 to 0.194?C) at the site of restoration. The magnitude of the cooling depends on many factors including river width, flow, time of year, and the difference in vegetation characteristics between current and restored conditions. Downstream of the restored reach, the cooling effects are complex and have a nodal nature: at one-half day of travel time downstream, shade restoration has little effect on daily maximum temperature because water passes the restoration site at night; at 1 full day of travel time downstream, cooling effects increase to a second, diminished maximum. Such spatial complexities may complicate the trading of heat allocations between point and nonpoint sources. Upstream dams have an important effect on water temperature in the Willamette River system as a result of augmented flows as well as modified temperature releases over the course of the summer and autumn. The TMDL was formulated prior t

  2. 77 FR 74985 - Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... pollution in fresh water systems can significantly negatively impact aquatic life and long-term ecosystem... Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for Lakes... its numeric water quality standards for nutrients in Florida that were promulgated and published on...

  3. Effects of Hardened Low-Water Crossings on Periphyton and Water Quality in Selected Streams at the Fort Polk Military Reservation, Louisiana, 1998-99 and 2003-04

    USGS Publications Warehouse

    Bryan, Barbara W.; Bryan, C. Frederick; Lovelace, John K.; Tollett, Roland W.

    2007-01-01

    In 2003, the U.S. Geological Survey (USGS), at the request of the U.S. Army Joint Readiness Training Center and Fort Polk, began a follow-up study to determine whether installation and modification of hardened low-water crossings had short-term (less than 1 year) or long-term (greater than 1 year) effects on periphyton or water quality in five streams at the Fort Polk Military Reservation, Louisiana. Periphyton data were statistically analyzed for possible differences between samples collected at upstream and downstream sites and before and after low-water crossings were modified on three streams, Big Brushy Creek, Tributary to East Fork of Sixmile Creek, and Tributary to Birds Creek, during 2003?04. Periphyton data also were analyzed for possible differences between samples collected at upstream and downstream sites on two streams, Tributary to Big Brushy Creek and Little Brushy Creek, during 1998?99 and 2003. Variations in periphyton communities could not be conclusively attributed to the modifications. Most of the significant changes in percent frequency of occurrence and average cell density of the 10 most frequently occurring periphyton taxa were increases at downstream sites after the hardened low-water crossing installations or modifications. However, these changes in the periphyton community are not necessarily deleterious to the community structure. Water-quality data collected from upstream and downstream sites on the five streams during 2003?04 were analyzed for possible differences caused by the hardened crossings. Generally, average water-quality values and concentrations were similar at upstream and downstream sites. When average water-quality values or concentrations changed significantly, they almost always changed significantly at both the upstream and downstream sites. It is probable that observed variations in water quality at both upstream and downstream sites are related to differences in rainfall and streamflow during the sample collection periods rather than an effect of the hardened low-water crossing installations or modifications, but additional study is needed.

  4. Organic compounds downstream from a treated-wastewater discharge near Dallas, Texas, March 1987

    USGS Publications Warehouse

    Buszka, P.M.; Barber, L.B.; Schroeder, M.P.; Becker, L.D.

    1994-01-01

    Comparison of instantaneous flux values of selected organic compounds in water from downstream sites indicates: (1) the formation of chloroform in the stream following the discharge of the treated effluent, and that (2) instream biodegradation may be decreasing concentrations of linear alkylbenzene compounds in water. The relative persistence of many of the selected organic compounds in Rowlett Creek downstream from the municipal wastewater-treatment plant indicates that they could be transported into Lake Ray Hubbard, a source of municipal water supply.

  5. Downstream movement of fish in a tributary of southern Lake Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manion, P.J.

    1977-01-01

    The influence of two environmental factors, stream flow and water temperature, on the downstream movement of four fish species in the Big Garlic River over a 12-yr period is described. Brook trout (Salvelinus fontinalis) migrated after floods had subsided in the spring and during rising water in the fall at temperatures of about 10/sup 0/C. Brook sticklebacks (Culaea inconstans) moved downstream chiefly in winter. Mottled sculpins (Cottus bairdi) moved primarily in the winter and during floods. Yellow perch (Perca flavescens) appeared to move generally in the fall as water levels increased and water temperatures decreased.

  6. Research on the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fang, D., VI; Xu, J.; Dong, Q.

    2017-12-01

    The Lancang-Mekong River is an important international river, cascaded hydropower stations development in which attracts the attention of downstream countries. In this paper, we proposed a coordination framework for water resources utilization on the interests of mutual compensation to relieve the conflict of upstream and downstream countries. Firstly, analyze the benefits and risks caused by the cascaded hydropower stations development and the evolution process of water resources use conflict between upstream and downstream countries. Secondly, evaluate the benefits and risks of flood control, water supply, navigation and power generation based on the energy theory of cascaded hydropower stations development in Lancang-Mekong River. Thirdly, multi-agent cooperation motivation and cooperation conditions between upstream and downstream countries in Lancang-Mekong River is given. Finally, the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River is presented. This coordination framework for water resources utilization can increase comprehensive benefits in Lancang-Mekong River.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.J.

    Whether water resource developers are utility operators, cities, industrialists of agriculturalists, their interests and those of affected landowners must accommodate each other. They must come together as men, and compromise their difficulties. Past disputes and their resolutions are guides to present and future flood-hazard settlement. Utah Lake and the Jordan River were once the setting for an equitable settlement of a flood hazard. In 1885, President John Taylor (President Taylor) of the Church of Jesus Christ of Latter-day Saints played a significant role in bringing about a compromise between downstream water users in Salt Lake County, Utah, and adversely affectedmore » upstream landowners in Provo and other parts of Utah County. Subsequent periodic flooding resulted in a second compromise agreement a century later. This paper considers the Utah Lake and Jordan River experiences. It examines the two compromises, how they came about, and their impact upon water resource management. In addition to their historical interest, these settlements provide useful guidance for negotiation and resolution of flood hazard disputes.« less

  8. Index-Based Insurance Contracts to FOSTER Cooperation Between Agents Exposed to Uncorrelated Drought and Flooding Risks

    NASA Astrophysics Data System (ADS)

    Denaro, S.; Giuliani, M.; Castelletti, A.; Characklis, G. W.

    2017-12-01

    Worldwide, conflict over shared water resources is exacerbated by population growth, economic development and climate change. In multi-purpose water systems, stakeholders can face higher financial risks as a consequence of increased hydrological uncertainty and recurrent extreme events. In this context, a financial hedging tool able to bundle together the uncorrelated risks faced by different stakeholders may be an efficient solution to both foster cooperation and manage the financial losses associated with extreme events. In this work we explore the potential of risk diversification strategies involving index-based insurance joint contract solutions, to manage financial risk in a multi-purpose water system prone to both drought and flood risk. Risk diversification can allow for reduced insurance premiums in situations in which the bundled risks are entirely, or mostly, uncorrelated. Jointly covering flood and drought related risks from competing users in the same geographic area represents a novel application. The approach is demonstrated using a case study on Lake Maggiore, a regulated lake whose management is highly controversial due to numerous and competing human activities. In particular we focus on the ongoing conflict among the lakeshore population, affected by flood risk, and the downstream farmers' districts, facing drought related losses. Results are promising and indicate that bundling uncorrelated risks from competing users is beneficial to both promoting insurance premium affordability and facilitating collaboration schemes at the catchment scale.

  9. Experimental Floods in a Time of Drought: The 2014 Pulse Flow in the Lower Colorado River, Arizona, USA, and Mexico

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Ramirez-Hernandez, J.; Ramirez, J.

    2015-12-01

    In March and April, 2014, an unprecedented experimental "pulse flow" with a total volume of over 100 million cubic meters (81,000 acre-feet) of water was released from Morelos Dam into the normally dry lower Colorado River below Yuma, Arizona, for the primary purpose of restoring native vegetation and habitat. Significant infiltration and attenuation of the flood peak occurred within the limitrophe reach that forms the US-Mexico border, with total volume reduced to 57 million cubic meters at the southerly international boundary at San Luis Rio Colorado, Sonora, Mexico (32 kilometers downstream). Groundwater levels in piezometers adjacent to the stream channel rose as much as 10 meters, and surface water/groundwater connection was established throughout the reach, despite depths-to-water greater than 15 meters prior to the pulse flow. Based on groundwater levels, a groundwater mound remained in the vicinity of the stream channel for several months but had largely dissipated into the regional groundwater system by fall 2014. Ultimately, a large amount of water was moved from storage in an upstream reservoir (Lake Mead), where it is potentially available to many users but where evaporation losses can be high, to the regional aquifer in the Yuma-Mexicali area, where the water could be available to local users but cannot be precisely quantified as it moves through the groundwater system. During a time of drought, tradeoffs between local vs. upstream storage, and reservoir vs. subsurface storage, will likely be increasingly important considerations in planning future experimental floods on the Colorado River.

  10. Multi-agent Water Resources Management

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in order to meet its design objectives. The proposed approach is numerically tested on a synthetic case study, characterized by two multi-purpose reservoirs in cascade, two diversion dams and four different conflicting water uses: hydropower energy production, drinking supply, flooding prevention along the reservoir shores and irrigation supply. The system is therefore composed by four agents: the two operators of the diversion dams, which are purely reactive agents since they simply respond directly to the environment, and the operators of the two reservoirs, which are more complex agents because they have an internal state and their decisions are taken according to a closed-loop control scheme. In particular, the set of agents can act considering only their own objectives or they can coordinate to jointly reach better compromise solutions. Different interaction scenarios between the two extreme behaviours of centralized management and completely non-cooperation are simulated and analysed.

  11. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    PubMed

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  12. Large transboundary watersheds: Climate, water and streams of thought

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2001-05-01

    Water is a "fugitive" resource in the sense that it flows naturally from one place to another, from one reserve to another (e.g., groundwater to surface), and from one physical state (solid, liquid and gas) to another. Thus "trans-boundary" can mean many things including: transitions from wet to arid zones, from upstream to downstream, from one country or province to the next etc. The Convention on the Protection and Use of Transboundary Watercourses and International Lakes (1992) defines "transboundary waters" to mean "any surface or ground waters which mark, cross or are located on the boundaries between two or more states". Emerging issues in water resources emanate from three categories of problems; (1) transboundary water availability; (2) transboundary groundwater allocation, management, and conservation; and (3) transboundary water quality. Transboundary fluctuations and changes in river flow can be attributed to (1) climate variations and change on several timescales, and, (2) physical and biological transformations of basin hydrology including increased storage, diversions, and landscape changes. Researchers and practitioners have identified numerous factors underlying international disputes involving river flows, including: the variability and uncertainty of supply, interdependencies among users, increasing over-allocation and rising costs, the increasing vulnerability of water quality and aquatic ecosystems to human activities, ways and means of supplying safe water facilities, and the mobilization of financial resources for water development and management. Many of these issues derive from general concerns in water resources management. How these concerns are met is strongly shaped by the choice of the spatial unit within which studies and management actions are conducted, by the way problems have been defined and changed over time, and by who benefits from defining problems in a particular way. In the following discussion the scales of human activities and interactions with large river basins are put in the context of streamflow changes on the time scales of century, decadal, seasonal and extreme events. These conditioning factors on flow variability and change are discussed in general. Three basins, the Nile, the Colorado, and the Parana-Paraguay River systems, are then selected for detailed illustration. While governing institutions that more closely correspond with the physical water system can help to assure appropriate consideration of efficiency and equity, domestic policy can pose major institutional barriers to international agreements and management across national borders. Ultimately, the main tasks in the foreseeable future will be how to share common but variable water resources in a catchment area between upstream and downstream users, between various sectors, between rural and urban areas, between preservation of functioning ecosystems and more direct tangible needs. Engaging the many dimensions of transboundary river flow requires, more than ever, the need to understand these "regions" as integrators of social, cultural, climatic, economic, and ecological histories and networks, that help to shape shared community interests and values.

  13. The effects of large-scale afforestation and climate change on water allocation in the Macquarie River catchment, NSW, Australia.

    PubMed

    Herron, Natasha; Davis, Richard; Jones, Roger

    2002-08-01

    Widespread afforestation has been proposed as one means of addressing the increasing dryland and stream salinity problem in Australia. However, modelling results presented here suggest that large-scale tree planting will substantially reduce river flows and impose costs on downstream water users if planted in areas of high runoff yield. Streamflow reductions in the Macquarie River, NSW, Australia are estimated for a number of tree planting scenarios and global warming forecasts. The modelling framework includes the Sacramento rainfall-runoff model and IQQM, a streamflow routing tool, as well as various global climate model outputs from which daily rainfall and potential evaporation data files have been generated in OzClim, a climate scenario generator. For a 10% increase in tree cover in the headwaters of the Macquarie, we estimate a 17% reduction in inflows to Burrendong Dam. The drying trend for a mid-range scenario of regional rainfall and potential evaporation caused by a global warming of 0.5 degree C may cause an additional 5% reduction in 2030. These flow reductions will decrease the frequency of bird-breeding events in Macquarie Marshes (a RAMSAR protected wetland) and reduce the security of supply to irrigation areas downstream. Inter-decadal climate variability is predicted to have a very significant influence on catchment hydrologic behaviour. A further 20% reduction in flows from the long-term historical mean is possible, should we move into an extended period of below average rainfall years, such as occurred in eastern Australia between 1890 and 1948. Because current consumptive water use is largely adapted to the wetter conditions of post 1949, a return to prolonged dry periods would cause significant environmental stress given the agricultural and domestic water developments that have been instituted.

  14. Balancing-out floods and droughts: Opportunities to utilize floodwater harvesting and groundwater storage for agricultural development in Thailand

    NASA Astrophysics Data System (ADS)

    Pavelic, Paul; Srisuk, Kriengsak; Saraphirom, Phayom; Nadee, Suwanchai; Pholkern, Kewaree; Chusanathas, Sumrit; Munyou, Sitisak; Tangsutthinon, Theerasak; Intarasut, Teerawash; Smakhtin, Vladimir

    2012-11-01

    SummaryThailand's naturally high seasonal endowment of water resources brings with it the regularly experienced problems associated with floods during the wet season and droughts during the dry season. Downstream-focused engineering solutions that address flooding are vital, but do not necessarily capture the potential for basin-scale improvements to water security, food production and livelihood enhancement. Managed aquifer recharge, typically applied to annual harvesting of wet season flows in dry climates, can also be applied to capture, store and recover episodic extreme flood events in humid environments. In the Chao Phraya River Basin it is estimated that surplus flows recorded downstream above a critical threshold could be harvested and recharged within the shallow alluvial aquifers in a distributed manner upstream of flood prone areas without significantly impacting existing large-medium storages or the Gulf and deltaic ecosystems. Capturing peak flows approximately 1 year in four by dedicating around 200 km2 of land to groundwater recharge would reduce the magnitude of flooding and socio-economic impacts and generate around USD 250 M/year in export earnings for smallholder rainfed farmers through dry season cash cropping without unduly compromising the demands of existing water users. It is proposed that farmers in upstream riparian zones be co-opted as flood harvesters and thus contribute to improved floodwater management through simple water management technologies that enable agricultural lands to be put to higher productive use. Local-scale site suitability and technical performance assessments along with revised governance structures would be required. It is expected that such an approach would also be applicable to other coastal-discharging basins in Thailand and potentially throughout the Asia region.

  15. EVALUATION OF ANDROSTENEDIONE AS AN ANDROGENIC COMPONENT OF RIVER WATER DOWNSTREAM OF A PULP AND PAPER MILL EFFLUENT

    EPA Science Inventory

    This study evaluates a recent report indicating that androstenedione contributes to the androgenicity of water downstream of a pulp and paper mill discharge on the Fenholloway River, Florida, USA. Extraction and concentration of Fenholloway water with C18 solid phase extraction c...

  16. Integrated landscape-based approach of remote sensing, GIS, and physical modelling to study the hydrological connectivity of wetlands to the downstream water: progress and challenge

    NASA Astrophysics Data System (ADS)

    Yeo, I. Y.

    2015-12-01

    We report the recent progress on our effort to improve the mapping of wetland dynamics and the modelling of its functioning and hydrological connection to the downstream waters. Our study focused on the Coastal Plain of the Chesapeake Bay Watershed (CBW), the Delmarva Peninsula, where the most of wetlands in CBW are densely distributed. The wetland ecosystem plays crucial roles in improving water quality and ecological integrity for the downstream waters and the Chesapeake Bay, and headwater wetlands in the region, such as Delmarva Bay, are now subject to the legal protection under the Clean Water Rules. We developed new wetland maps using time series Landsat images and a highly accurate LiDAR map over last 30 years. These maps show the changes in surface water fraction at a 30-m grid cell at annual time scale. Using GIS, we analyse these maps to characterize changing dynamics of wetland inundation due to the physical environmental factors (e.g., weather variability, tide) and assessed the hydrological connection of wetlands to the downstream water at the watershed scale. Focusing on the two adjacent watersheds in the upper region of the Choptank River Basin, we study how wetland inundation dynamics and the hydrologic linkage of wetlands to downstream water would vary by the local hydrogeological setting and attempt to identify the key landscape factors affecting the wetland ecosystems and functioning. We then discuss the potential of using remote sensing products to improve the physical modelling of wetlands from our experience with SWAT (Soil and Water Assessment Tool).

  17. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  18. Particulate organic matter dynamics in ephemeral tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater ephemeral tributaries are external interfaces between uplands and downstream waters. Terrestrial particulate organic matter (POM) is important in fueling aquatic ecosystems, however the extent to which ephemeral tributaries are functionally connected to downstream water...

  19. The use of an aeration system to prevent thermal stratification of a freshwater impoundment and its effect on downstream fish assemblages.

    PubMed

    Miles, N G; West, R J

    2011-03-01

    Warm-water riverine fish assemblages were investigated downstream of an impoundment before and after thermal stratification and the associated cold-water pollution was prevented using an aeration system. Temperatures below the dam significantly increased after installation of the aeration system and this correlated with an increased abundance and greater number of species downstream. Overall, aeration appeared to be beneficial for both the lake (upstream) and the downstream riverine environments. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  20. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.

  1. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  2. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century.

    PubMed

    Veldkamp, T I E; Wada, Y; Aerts, J C J H; Döll, P; Gosling, S N; Liu, J; Masaki, Y; Oki, T; Ostberg, S; Pokhrel, Y; Satoh, Y; Kim, H; Ward, P J

    2017-06-15

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.

  3. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    PubMed Central

    Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Döll, P.; Gosling, S. N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; Satoh, Y.; Kim, H.; Ward, P. J.

    2017-01-01

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971–2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4–16.5%) of the global population but alleviating it for another 8.3% (6.4–15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI. PMID:28643784

  4. Water Scarcity Hotspots Travel Downstream Due to Human Interventions in the 20th and 21st Century

    NASA Technical Reports Server (NTRS)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Doell, P.; Gosling, S. N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; hide

    2017-01-01

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971 - 2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8%(7.4 - 16.5 %) ) of the global population but alleviating it for another 8.3 % (6.4 -15.8 %). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.

  5. Linking hydrology of traditional irrigation canals and socio-economic aspects of agricultural water use around Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Kimaro, Jerome; Scharsich, Valeska; Huwe, Bernd; Bogner, Christina

    2017-04-01

    Traditional irrigation network around Mt. Kilimanjaro has been an important resource for both ecosystem functioning and agricultural production. However, a number of irrigation furrows can no longer maintain their discharge throughout the year and their future sustainability is uncertain. The actual efforts to improve the water supply were unsuccessful. We attribute this failure to a lack of information about the actual causes and extent of the problem. We suppose that there is a strong link between the socio-economic aspects like institutional and community management of the furrows and conflicts about water use. Therefore, we conducted a study to determine the relationship between current hydrological patterns and socio-economic aspects of agricultural water use. We measured discharge at 11 locations along an altitudinal gradient on the southern slopes of Mt. Kilimanjaro. Additionally, we conducted focus group discussions with participants from 15 villages and key informants interviews (n = 15). We found that the mean discharge did not differ significantly between dry and rainy seasons (ANOVA, p = 0.17). The overall discharge pattern indicated that furrows located in lower altitude had higher mean monthly discharge rate of 65 l s-1 compared to 11.5 l s-1 at the source area of the canals. This is due to the convergence of canals downstream. 41% of furrows were seasonal, 22% dry and only 37% perennial. Despite of a seemingly better water resource availability downstream, water conflicts are a major challenge across the whole mountain communities. Key informants and group discussions reported poor management of water on the district level. The Rural Moshi and Hai District Councils operate on a top down approach that give less power to the local water management committees. However, the latter have been an important part of the traditional management system for decades. Since 1990, the district authorities are using 65% of springs from the catchment to abstract water for 8 big gravity pipe water projects for urban areas, for example. This abstraction of water amplifies several conflicts over water use between smallholder farmers, smallholder farmers and large irrigation schemes and between farmers and non-agricultural water users downstream. Furthermore, encroachments in the Mt. Kilimanjaro National Park were reported. In particular, forest communities adjacent to the park are involved in illegal activities like logging, grazing, cultivation and cutting firewood. Since most irrigation furrow start in the park, ongoing forest disturbances could have direct impact on their hydrology. We attribute those encroachments to poverty, low environmental awareness, poor land tenure system and a lack of an effective forest patrol. To resolve water use conflicts around Mt. Kilimanjaro, good governance practices including improved water distribution and resource management is required. This could be achieved through an integrated water resources management approach where both traditional and formal management institutions should work synergetically.

  6. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    NASA Astrophysics Data System (ADS)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two large natural storm events. To our knowledge, this study is the first to use multiple downstream field sites to characterize how dam-induced SW-GW interactions and in-stream temperature and solute transport behave under hydropeaking conditions.

  7. Estimating the impacts of a reservoir for improved water use in irrigation in the Yarabamba region, Peru

    NASA Astrophysics Data System (ADS)

    Swiech, Theoclea; Ertsen, Maurits W.; Pererya, Carlos Machicao

    The pressure on irrigation is increasing worldwide, not only because of - perceived or real - high water consumption in the irrigated sector, but also because an increased world population puts stress on food production. Numerous irrigated areas around the world face similar issues of water scarcity, disparity in water distribution and deficient infrastructure. As a result, farmers are typically restricted in their production strategies. A general strategy in the irrigation sector is the introduction of so-called modern techniques in existing irrigation systems, with the aim to increase agricultural production. This paper discusses such a modernization effort in the sub-basin of Yarabamba, Arequipa, Peru, in which a reservoir is being constructed to improve water use and stimulate economic development. Based on fieldwork, including interviews and scenario modeling with WEAP, the relationships between water users, their irrigation systems and the water balances in the basin were studied. Scenario studies showed that the reservoir might alleviate the current water shortages in the sub-basin, but that restrictions in the current infrastructure and management of irrigation may be of more importance than the reservoir. Especially existing interests and actions of upstream and downstream areas appear to be important factors; these will not be automatically solved with the new reservoir.

  8. User guide for the PULSE program

    USGS Publications Warehouse

    Rutledge, A.T.

    2002-01-01

    This manual describes the use of the PULSE computer program for analysis of streamflow records. The specific instructions included here and the computer files that accompany this manual require streamflow data in a format that can be obtained from U.S. Geological Survey (USGS) sites on the World Wide Web. The program is compiled to run on a personal computer that uses a Microsoft Windows-based operating system. This manual provides instructions for use of Microsoft Excel for plotting hydrographs, though users may choose to use other software for plotting. The program calculates a hydrograph of ground-water discharge to a stream on the basis of user-specified recharge to the water table. Two different formulations allow recharge to be treated as instantaneous quantities or as gradual rates. The process of ground-water evapotranspiration can be approximated as a negative gradual recharge. The PULSE program is intended for analyzing a ground-water-flow system that is characterized by diffuse areal recharge to the water table and ground-water discharge to a stream. Program use can be appropriate if all or most ground water in the basin discharges to the stream and if a streamflow-gaging station at the downstream end of the basin measures all or most outflow. Ground-water pumpage and the regulation and diversion of streamflow should be negligible. More information about the application of the method is included in Rutledge, 1997, pages 2-3. The program can be used in conjunction with ground-water-level data. If a well is open to the surficial aquifer, observed water-level rises in the well can be used to evaluate the timing of recharge. Such evaluation is most effective if there are numerous water-level observation wells in the basin. Water levels in observation wells can also be used to evaluate the rate of ground-water discharge estimated by the PULSE program. The results of such an evaluation may be problematic, however, because the relation between ground-water level and ground-water discharge may not be unique. Departures from the linear model of recession occur because of areal variation in transmissivity and because of the longitudinal component of ground-water flow (parallel to the stream). If the PULSE program is used to estimate ground-water recharge, the recession index should not be obtained from periods of extreme low flow, and the calibration process should include plotting flow on the linear scale in addition to plotting flow on the log scale.

  9. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    USGS Publications Warehouse

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and structural options were explored with the model scenarios. Multiple downstream temperature targets were used along with three sets of environmental forcing conditions representing cool/wet, normal, and hot/dry conditions. Five structural options at Detroit Dam were modeled, including the use of existing outlets, one hypothetical variable-elevation outlet such as a sliding gate, a hypothetical combination of a floating outlet and a fixed-elevation outlet, and a hypothetical combination of a floating outlet and a sliding gate. Finally, 14 sets of operational guidelines for Detroit Dam were explored to gain an understanding of the effects of imposing different downstream minimum streamflows, imposing minimum outflow rules to specific outlets, and managing the level of the lake with different timelines through the year. Selected subsets of these combinations of operational and structural scenarios were run through the downstream models of Big Cliff Reservoir and the North Santiam and Santiam Rivers to explore how hypothetical changes at Detroit Dam might provide improved temperatures for endangered salmonids downstream of the Detroit-Big Cliff Dam complex. Conclusions that can be drawn from these model scenarios include: *The water-temperature targets set by the U.S. Army Corps of Engineers for releases from Detroit Dam can be met through a combination of new dam outlets or a delayed drawdown of the lake in autumn. *Spring and summer dam operations greatly affect the available release temperatures and operational flexibility later in the autumn. Releasing warm water during midsummer tends to keep more cool water available for release in autumn. *The ability to meet downstream temperature targets during spring depends on the characteristics of the available outlets. Under existing conditions, although warm water sometimes is present at the lake surface in spring and early summer, such water may not be available for release if the lake level is either well below or well above the spillway crest. *Managing lake releases to meet downstream temperature targets depends on having outlet structures that can access both (warm) lake surface water and (cold) deeper lake water throughout the year. The existing outlets at Detroit Dam do not allow near-surface waters to be released during times when the lake surface level is below the spillway (spring and autumn). *Using the existing outlets at Detroit Dam, lake level management is important to the water temperature of releases because it controls the availability and depth of water at the spillway. When lake level is lowered below the spillway crest in late summer, the loss of access to warm water at the lake surface can result in abrupt changes to release temperatures. *Because the power-generation intakes (penstocks) are 166 feet below the full-pool lake level, imposing minimum power production requirements at Detroit Dam limits the amount of warm surface water that can be expelled from the lake in midsummer, thereby postponing and amplifying warm outflows from Detroit Lake into the autumn spawning season. *Likewise, imposing minimum power production requirements at Detroit Dam in autumn can limit the amount of cool hypolimnetic water that is released from the lake, thereby limiting cool outflows from Detroit Lake during the autumn spawning season. *Model simulations indicate that a delayed drawdown of Detroit Lake in autumn would result in better control over release temperatures in the immediate downstream vicinity of Big Cliff Dam, but the reduced outflows necessary to retain more water in the lake in late summer are more susceptible to rapid heating downstream. *Compared to the existing outlets at Detroit Dam, floating or sliding-gate outlet structures can provide greater control over release temperatures because they provide better access to warm water at the lake surface and cooler water at depth. These conclusions can be grouped into several common themes. First, optimal and flexible management and achievement of downstream temperature goals requires that releases of warm water near the surface of the lake and cold water below the thermocline are both possible with the available dam outlets during spring, summer, and autumn. This constraint can be met to some extent with existing outlets, but only if access to the spillway is extended into autumn by keeping the lake level higher than called for by the current rule curve (the typical target water-surface elevation throughout the year). If new outlets are considered, a variable-elevation outlet such as a sliding gate structure, or a floating outlet in combination with a fixed-elevation outlet at sufficient depth to access cold water, is likely to work well in terms of accessing a range of water temperatures and achieving downstream temperature targets. Furthermore, model results indicate that it is important to release warm water from near the lake surface during midsummer. If not released downstream, the warm water will build up at the top of the lake as a result of solar energy inputs and the thermocline will deepen, potentially causing warm water to reach the depth of deeper fixed-elevation outlets in autumn, particularly when the lake level is drawn down to make room for flood storage. Delaying the drawdown in autumn can help to keep the thermocline above such outlets and preserve access to cold water. Although it is important to generate hydropower at Detroit Dam, minimum power-production requirements limit the ability of dam operators to meet downstream temperature targets with existing outlet structures. The location of the power penstocks below the thermocline in spring and most of summer causes the release of more cool water during summer than is optimal. Reducing the power-production constraint allows the temperature target to be met more frequently, but at the cost of less power generation. Finally, running the Detroit Dam, Big Cliff Dam, and North Santiam and Santiam River models in series allows dam operators to evaluate how different operational strategies or combinations of new dam outlets might affect downstream temperatures for many miles of critical endangered salmonid habitat. Temperatures can change quickly in these downstream reaches as the river exchanges heat with its surroundings, and heating or cooling of 6 degrees Celsius is not unusual in the 40–50 miles downstream of Big Cliff Dam. The results published in this report supersede preliminary results published in U.S. Geological Survey Open-File Report 2011-1268 (Buccola and Rounds, 2011). Those preliminary results are still valid, but the results in this report are more current and comprehensive.

  10. Conditions to generate Steam Fog Occurred around the Chungju Lake in the South Korea

    NASA Astrophysics Data System (ADS)

    Byungwoo, J.

    2017-12-01

    We have collected the field observation data of the steam fog occurred around the Chungju Lake in the South Korea for 3 years(2014 2016) and analyzed conditions in which the steam fog occurred. The Chungju Lake is an artificial lake made by the Chungju Dam with a water storage of 2.7 billion tons, which is the second largest in South Korea. The Chungju Dam have discharged water of the average 2.2 million tons downstream to produce electricity per day. The drainage water heats downstream of the Chungju dam and the air above water surface of downstream of that. When the warm, humid air above the downstream water mixed with cold air mass, it caused "steam fog" around the downstream of Chungju lake regardless of amount of the discharged water. The condition that promote the generation of steam fog in autumn and winter is as follows: (1) cloudless night with light winds below 1.5 m/s. (2) The differences between the temperature of discharged water from the Chungju Dam and the air temperature above the discharged water varied from 3° to 15° in autumn, from 15° to 20° in winter respectively. (3) When stream fog was generated, sensible heat flux ranged in autumn from 5 to 15 W/m2, in winter from 15 to 20 W/m2 respectively. Latent heat flux ranged in autumn from 15 to 20 W/m2, in winter from 10 to 15 W/m2 respectively.

  11. Effects of Packstock Use and Backpackers on Water Quality in Yosemite National Park, California

    NASA Astrophysics Data System (ADS)

    Forrester, H.; Clow, D. W.; Roche, J. W.; Heyvaert, A.

    2016-12-01

    Visitor use, primarily backpacker camping, packstock (horse and mule) trail use, and packstock grazing, in designated Wilderness, increases the potential for negative effects on water quality. To determine the effects of visitor use on water quality in Wilderness in Yosemite National Park, we collected and analyzed surface-water samples for water quality indicators, consisting of fecal indicator bacteria (Escherichia coli), nutrients (nitrogen, phosphorus), suspended sediment concentration (SSC), and hormones (e.g. estrogen compounds) during the summers of 2012-2014. We collected samples upstream and downstream from different types of visitor use at routine intervals (weekly or biweekly) and during storms. Additionally, we sampled upstream and downstream from meadows, and targeted different types of visitor use during a park-wide synoptic sampling campaign (n=63). At packstock stream crossings, statistically significant (P≤0.05) increases in Escherichia coli (E. coli) and SSC occurred downstream from crossings compared to upstream conditions during routine sampling (median difference: 3 CFU 100ml-1, and >0.3 mg l-1, respectively) and during storms (median difference: 32 CFU 100ml-1, and 2.9 mg l-1). At backpacker campsites, during routine sampling, significant increases occurred downstream from backpacker camping for E. coli (median difference: 1 CFU 100ml-1), and estrogen hormones were detected. At packstock grazing areas, which are located in meadows, no significant increases were detected for any of the measured water quality indicators downstream from grazing. Most synoptic sample concentrations were near or below detection limits. Our results indicate that under current use levels: 1) packstock trail use and backpacker camping are associated with detectable effects on water quality, which are most pronounced during storms; 2) increases in water quality indicators were not detected downstream from meadows where packstock were grazed; and 3) environmental processes in meadows provide a valuable ecosystem service by reducing human related sources of microbial contamination.

  12. Climate change impact on infection risks during bathing downstream of sewage emissions from CSOs or WWTPs.

    PubMed

    Sterk, Ankie; de Man, Heleen; Schijven, Jack F; de Nijs, Ton; de Roda Husman, Ana Maria

    2016-11-15

    Climate change is expected to influence infection risks while bathing downstream of sewage emissions from combined sewage overflows (CSOs) or waste water treatment plants (WWTPs) due to changes in pathogen influx, rising temperatures and changing flow rates of the receiving waters. In this study, climate change impacts on the surface water concentrations of Campylobacter, Cryptosporidium and norovirus originating from sewage were modelled. Quantitative microbial risk assessment (QMRA) was used to assess changes in risks of infection. In general, infection risks downstream of WWTPs are higher than downstream CSOs. Even though model outputs show an increase in CSO influxes, in combination with changes in pathogen survival, dilution within the sewage system and bathing behaviour, the effects on the infection risks are limited. However, a decrease in dilution capacity of surface waters could have significant impact on the infection risks of relatively stable pathogens like Cryptosporidium and norovirus. Overall, average risks are found to be higher downstream WWTPs compared to CSOs. Especially with regard to decreased flow rates, adaptation measures on treatment at WWTPs may be more beneficial for human health than decreasing CSO events. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milostan, Catharina; Levin, Todd; Muehleisen, Ralph T.

    Many electric utilities operate energy efficiency incentive programs that encourage increased dissemination and use of energy-efficient (EE) products in their service territories. The programs can be segmented into three broad categories—downstream incentive programs target product end users, midstream programs target product distributors, and upstream programs target product manufacturers. Traditional downstream programs have had difficulty engaging Small Business/Small Portfolio (SBSP) audiences, and an opportunity exists to expand Commercial Midstream Incentive Programs (CMIPs) to reach this market segment instead.

  14. Using stochastic dynamic programming to support catchment-scale water resources management in China

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2013-04-01

    A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in simulation mode. The performance of the operation rules based on water value tables was evaluated. The approach was used to assess the performance of alternative development scenarios and infrastructure projects successfully in the case study region.

  15. Analysis of key thresholds leading to upstream dependencies in global transboundary water bodies

    NASA Astrophysics Data System (ADS)

    Munia, Hafsa Ahmed; Guillaume, Joseph; Kummu, Matti; Mirumachi, Naho; Wada, Yoshihide

    2017-04-01

    Transboundary water bodies supply 60% of global fresh water flow and are home to about 1/3 of the world's population; creating hydrological, social and economic interdependencies between countries. Trade-offs between water users are delimited by certain thresholds, that, when crossed, result in changes in system behavior, often related to undesirable impacts. A wide variety of thresholds are potentially related to water availability and scarcity. Scarcity can occur because of the country's own water use, and that is potentially intensified by upstream water use. In general, increased water scarcity escalates the reliance on shared water resources, which increases interdependencies between riparian states. In this paper the upstream dependencies of global transboundary river basins are examined at the scale of sub-basin areas. We aim to assess how upstream water withdrawals cause changes in the scarcity categories, such that crossing thresholds is interpreted in terms of downstream dependency on upstream water availability. The thresholds are defined for different types of water availability on which a sub-basin relies: - reliable local runoff (available even in a dry year), - less reliable local water (available in the wet year), - reliable dry year inflows from possible upstream area, and - less reliable wet year inflows from upstream. Possible upstream withdrawals reduce available water downstream, influencing the latter two water availabilities. Upstream dependencies have then been categorized by comparing a sub-basin's scarcity category across different water availability types. When population (or water consumption) grows, the sub-basin satisfies its needs using less reliable water. Thus, the factors affecting the type of water availability being used are different not only for each type of dependency category, but also possibly for every sub- basin. Our results show that, in the case of stress (impacts from high use of water), in 104 (12%) sub- basins out of 886 sub-basins are dependent on upstream water, while in the case of shortage (impacts from insufficient water availability per person), 79 (9%) sub-basins out of 886 sub-basins dependent on upstream water. Categorization of the upstream dependency of the sub-basins helps to differentiate between areas where i) there is currently no dependency on upstream water, ii) upstream water withdrawals are sufficiently high that they alter the scarcity and dependency status, and iii) which are always dependent on upstream water regardless of upstream water withdrawals. Our dependency assessment is expected to considerably support the studies and discussions of hydro-political power relations and management practices in transboundary basins.

  16. Assessing impacts of dike construction on the flood dynamics of the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Tran, Dung Duc; van Halsema, Gerardo; Hellegers, Petra J. G. J.; Phi Hoang, Long; Quang Tran, Tho; Kummu, Matti; Ludwig, Fulco

    2018-03-01

    Recent flood dynamics of the Mekong Delta have raised concerns about an increased flood risk downstream in the Vietnamese Mekong Delta. Accelerated high dike building on the floodplains of the upper delta to allow triple cropping of rice has been linked to higher river water levels in the downstream city of Can Tho. This paper assesses the hydraulic impacts of upstream dike construction on the flood hazard downstream in the Vietnamese Mekong Delta. We combined the existing one-dimensional (1-D) Mekong Delta hydrodynamic model with a quasi-two-dimensional (2-D) approach. First we calibrated and validated the model using flood data from 2011 and 2013. We then applied the model to explore the downstream water dynamics under various scenarios of high dike construction in An Giang Province and the Long Xuyen Quadrangle. Calculations of water balances allowed us to trace the propagation and distribution of flood volumes over the delta under the different scenarios. Model results indicate that extensive construction of high dikes on the upstream floodplains has had limited effect on peak river water levels downstream in Can Tho. Instead, the model shows that the impacts of dike construction, in terms of peak river water levels, are concentrated and amplified in the upstream reaches of the delta. According to our water balance analysis, river water levels in Can Tho have remained relatively stable, as greater volumes of floodwater have been diverted away from the Long Xuyen Quadrangle than the retention volume lost due to dike construction. Our findings expand on previous work on the impacts of water control infrastructure on flood risk and floodwater regimes across the delta.

  17. Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands.

    PubMed

    Gebbink, Wouter A; van Asseldonk, Laura; van Leeuwen, Stefan P J

    2017-10-03

    The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C 2n H 2n F 2n O 2 , C 2n H 2n+2 F 2n SO 4 or C 2n+1 H 2n F 2n+4 SO 4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C 2n H 2 F 4n SO 3 ) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C 2n H 2n F 2n O 2 homologues.

  18. Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands

    PubMed Central

    2017-01-01

    The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C2nH2nF2nO2, C2nH2n+2F2nSO4 or C2n+1H2nF2n+4SO4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C2nH2F4nSO3) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C2nH2nF2nO2 homologues. PMID:28853567

  19. Fate of antimony and arsenic in contaminated waters at the abandoned Su Suergiu mine (Sardinia, Italy)

    USGS Publications Warehouse

    Cidu, Rosa; Dore, Elisabetta; Biddau, Riccardo; Nordstrom, D. Kirk

    2018-01-01

    We investigated the fate of Sb and As downstream of the abandoned Su Suergiu mine (Sardinia, Italy) and surrounding areas. The mined area is a priority in the Sardinian remediation plan for contaminated sites due to the high concentrations of Sb and As in the mining-related wastes, which may impact the Flumendosa River that supplies water for agriculture and domestic uses. Hydrogeochemical surveys conducted from 2005 to 2015 produced time-series data and downstream profiles of water chemistry at 46 sites. Water was sampled at: springs and streams unaffected by mining; adits and streams in the mine area; drainage from the slag heaps; stream water downstream of the slag drainages; and the Flumendosa River downstream from the confluence of the contaminated waters. At specific sites, water sampling was repeated under different flow conditions, resulting in a total of 99 samples. The water samples were neutral to slightly alkaline. Elevated Sb (up to 30 mg L−1) and As (up to 16 mg L−1) concentrations were observed in water flowing from the slag materials from where the Sb ore was processed. These slag materials were the main Sb and As source at Su Suergiu. A strong base, Na-carbonate, from the foundry wastes, had a major influence on mobilizing Sb and As. Downstream contamination can be explained by considering that: (1) the predominant aqueous species, Sb(OH)6 − and HAsO4 −2, are not favored in sorption processes at the observed pH conditions; (2) precipitation of Sb- and As-bearing solid phases was not observed, which is consistent with modeling results indicating undersaturation; and (3) the main decrease in dissolved Sb and As concentrations was by dilution. Dissolved As concentrations in the Flumendosa River did not generally exceed the EU limit of 10 µg L−1, whereas dissolved Sb in the river downstream of the contamination source always exceeded the EU limit of 5 µg L−1. Recent actions aimed at retaining runoff from the slag heaps are apparently not sufficiently mitigating contamination in the Flumendosa River.

  20. Headwater effects on downstream waters: Legal perspectives, science needs, and assessment approaches

    EPA Science Inventory

    Headwater streams make up at least 53% of total stream length in the US. Although these systems are of interest for their own sake, there has recently been significant focus on how headwater streams contribute to downstream waters. This has resulted in part from recent legal op...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE: HYDRO INTERNATIONAL DOWNSTREAM DEFENDER®

    EPA Science Inventory

    Verification testing of the Hydro International Downstream Defender® was conducted at the Madison Water Utility in Madison, Wisconsin. The system was designed for a drainage basin estimated at 1.9 acres in size, but during intense storm events, the system received water from an a...

  2. Pilot study of natural attenuation of arsenic in well water discharged to the Little River above Lake Thunderbird, Norman, Oklahoma, 2012

    USGS Publications Warehouse

    Andrews, William J.; Masoner, Jason R.; Rendon, Samuel H.; Smith, Kevin A.; Greer, James R.; Chatterton, Logan A.

    2013-01-01

    The City of Norman, Oklahoma, wanted to augment its water supplies to meet the needs of an increasing population. Among the city’s potential water sources are city wells that produce water that exceeds the 10 micrograms per liter primary drinking-water standard for arsenic. The City of Norman was interested in investigating low-cost means of using natural attenuation to remove arsenic from well water and augment the water supply of Lake Thunderbird, the primary water source for the city. The U.S. Geological Survey, in cooperation with the City of Norman, conducted a preliminary investigation (pilot study) to determine if discharge of water from those wells into the Little River over a 12-day period would reduce arsenic concentrations through natural-attenuation processes. Water in the Little River flows into Lake Thunderbird, the principal water source for the city, so the discharged well water would improve the water balance of that reservoir. During this pilot study, 150–250 gallons per minute from each of six city wells were discharged to the Little River over a 12-day period. Water-quality samples were collected from the wells during discharge and from the river before, during, and after well discharges. Streambed-sediment samples were collected at nine sites in the river before and after the well-discharge period. Water discharge from the six wells added 0.3 kilogram per day of arsenic to the river at the nearest downstream streamflow-gaging station. Dissolved arsenic concentration in the Little River at the closest downstream sampling site from the wells increased from about 4 micrograms per liter to as much as 24 micrograms per liter. Base flow in the river increased by about 1.7 cubic feet per second at the nearest downstream streamflow-gaging station. Streamflow in the river was two-thirds of that expected from the amount of water discharged from the wells because of seepage to soils and evapotranspiration of well water along drainage ways to the river. Arsenic concentrations at the nearest downstream streamflow-gaging station were less than arsenic concentrations measured in many of the well-water samples during the well-pumping period. Arsenic concentrations, loads, and yields in the Little River generally decreased downstream from the closest streamflow-gaging station to the wells by 50 percent or more, indicating removal of about 0.25 kilogram or 0.53 pound per day of arsenic during base-flow conditions. Measured river-water arsenic concentrations near the confluence of the Little River with Lake Thunderbird were in compliance with the primary drinking-water standard. Arsenic concentrations measured at four downstream stations in the Little River also were less than established criteria set for protection of aquatic biota. After well discharges to the Little River were stopped, arsenic concentrations, loads, and yields in the river gradually decreased over 14 days to concentrations measured prior to the well-water discharges. Cumulative loads of arsenic discharged at the wells and the closest and farthest downstream streamflow-gaging stations indicated removal of about 2.5 kilograms of arsenic as well-water flowed to and down the river. Arsenic concentrations in streambed-sediment samples collected before and after the well-water discharges were not significantly different. Results of this pilot study indicate that using natural-attenuation processes to remove arsenic from water and supplement city water supplies may be a viable, relatively low-cost method for attenuating arsenic in well water and for augmenting the water supply of Lake Thunderbird.

  3. How do new dams impact downstream countries? - A screening approach to identify the best compromise assets and negotiate their designs

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Harou, Julien

    2015-04-01

    Water use rights are disputed in many transboundary basins. Even when water projects can benefit all, agreeing on cost and benefit sharing can be difficult where stakeholders have conflicting preferences on the designs and use of proposed water infrastructures. This study suggests a combination of many objective optimization and multi-criteria ranking methods to support negotiations regarding designs of new assets. The method allows competing users to assess development options based on their individual perspectives and agree on designs by incorporating coordination strategies into multi-reservoir system designs. We demonstrate a hypothetical negotiation on proposed Blue Nile reservoirs. The result form a set of Pareto-optimal designs i.e., reservoirs, storage capacity and their operating rules, and power trade, cost sharing and/or financing coordination strategies, which maximize benefit to all countries and show which trade-offs are implied by which designs. The approach fulfils decision-maker's desire to understand a) the critical design parameters that affect various objectives and b) how coordination mechanisms would enable them to incur benefits from proposed new dams.

  4. Impact of glaciers retreat on highland Andean wetlands and communities: lessons from the upper Cachi catchment (Ayacucho, Peru)

    NASA Astrophysics Data System (ADS)

    Angulo, Oscar; Biévre Bert, De

    2017-04-01

    The vulnerability of water resources under climate change scenarios in Peru is generally regarded to be connected to a diminished availability of water due to retreating glaciers. However, the impact of glacier retreat goes much beyond a decline of glacial water reserves. This article argues that another important impact is the extreme erosion in areas where glaciers have recently melted, as well as the accumulation of erosion material in highland wetlands located downslope. As a direct consequence of these changes highland Andean communities which depend on these ecosystems are affected in socio-economic terms as they find themselves forced to alter ancestral dynamics and traditional practices of land and water use. This quickly leads to a vicious cycle of risks and threats. In such a context a possibility to adapt to glacial retreat should be to protect areas affected by glacial melt in order to enable a rapid development of protective vegetation cover. In the upper catchment of the Cachi River interesting experiences of protection and water harvesting exist that could be extended to other high vulnerability areas for the benefit of highland populations as well as downstream water users, such as the irrigation system of Cachi and the city of Ayacucho.

  5. GMES and Down-stream Services Following User Requirements: Examples on Regional And Coastal Scale

    NASA Astrophysics Data System (ADS)

    Noehren, I.; Breitbach, G.; Schroeder, F.

    2012-04-01

    MyOcean as part of the Global Monitoring for Environment and Security (GMES) services provides information on the state of the oceans on a regular basis. The products are delivered on a global as well as on a regional scale like EU, covering the physical state of the ocean and primary ecosystem parameters. For local or coastal scales these Core Services very often do not meet the requirements of the potential end-user who needs information on e. g. marine safety, oil spills, marine resources and coastal management. For these local information needs Downstream Services derived from GMES Core Services, e.g. MyOcean products, but also directly from observation infrastructure are necessary. With Cosyna (Coastal Observation System for Northern and Arctic Seas) a national project between MyOcean and downstream services is established. The core of the project is an integrated pre-operational observation system which combines in-situ observations and remote sensing procedures with numerical models to obtain synoptic data sets of the southern North Sea and make basic infrastructure and continuous data available to the scientific community. The network provides intermediate products in terms of quality-assured time series and maps with high temporal and spatial resolution; end-users might produce their own end products. Integrated products cover processed information based on a combination of different observations and models, accompanied by instructions of use and optionally by interpretations. To enhance operational services in coastal areas improved forecasts with coupled models and data assimilation are developed in the EC funded FIELD_AC project (Fluxes, Interactions and Environment at the Land-Ocean Boundary. Downscaling, Assimilation and Coupling). The application area of the German partner is the German Bight. By means of a strong interaction with the Cosyna observational network main emphasis is laid on the user needs (e.g. of national agencies, coastal and harbour authorities, maritime service providers, marine consulting companies, etc) which are and will be addressed in different project user workshops.

  6. Lessons from a transplantation of zebra mussels into a small urban river: An integrated ecotoxicological assessment.

    PubMed

    Bourgeault, A; Gourlay-Francé, C; Vincent-Hubert, F; Palais, F; Geffard, A; Biagianti-Risbourg, S; Pain-Devin, S; Tusseau-Vuillemin, M-H

    2010-10-01

    It is often difficult to evaluate the level of contamination in small urban rivers because pollution is mainly diffuse, with low levels of numerous substances. The use of a coupled approach using both chemical and biological measurements may provide an integrated evaluation of the impact of micro-pollution on the river. Zebra mussels were transplanted along a metal and organic pollution gradient in spring 2008. For two months, mussels and water samples were collected from two sites every two weeks and analyzed for metal and PAH content as well as water physicochemical parameters. Diffusive gradients in thin film (DGT) were also used to assess levels of labile metals. Exposure of mussels to contaminants and potential impact were evaluated using physiological indices and various biomarkers including condition index (CI), defense mechanisms (glutathione-S-transferase: GST), digestive enzymes (amylase and cellulase) and genotoxicity (micronucleus test: MN and comet assay: CA). For most contaminants, the water contamination was significantly higher downstream. Bioaccumulation in zebra mussels was related to water contamination in the framework of the biodynamic model, which allowed us to take into account the biological dilution that was caused by the growth of soft tissue downstream. Thus, metal influxes were on average two times higher downstream than upstream in particular for Zn, Cr, Cu and Cd. Significant differences in condition index were observed (final CI was 0.42 ± 0.03 downstream and 0.31 ± 0.03 upstream) reflecting a better food availability downstream. Moreover a significant decrease of GST activity and digestive enzymes activity in the cristalline style was observed downstream. Interpreting this decrease requires considering not only micro-pollution but also the trophic status related to the water's physicochemistry. The MN test and the CA on gill cells highlighted genotoxicity in mussels transplanted downstream compared to upstream. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.

  7. Spawning chronology, nest site selection and nest success of smallmouth bass during benign streamflow conditions

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.

    2007-01-01

    We documented the nesting chronology, nest site selection and nest success of smallmouth bass Micropterus dolomieu in an upstream (4th order) and downstream (5th order) reach of Baron Fork Creek, Oklahoma. Males started nesting in mid-Apr. when water temperatures increased to 16.9 C upstream, and in late-Apr. when temperatures increased to 16.2 C downstream. Streamflows were low (77% upstream to 82% downstream of mean Apr. streamflow, and 12 and 18% of meanjun. streamflow; 47 and 55 y of record), and decreased throughout the spawning period. Larger males nested first upstream, as has been observed in other populations, but not downstream. Upstream, progeny in 62 of 153 nests developed to swim-up stage. Downstream, progeny in 31 of 73 nests developed to swim-up. Nesting densities upstream (147/km) and downstream (100/km) were both higher than any densities previously reported. Males selected nest sites with intermediate water depths, low water velocity and near cover, behavior that is typical of smallmouth bass. Documented nest failures resulted from human disturbance, angling, and longear sunfish predation. Logistic exposure models showed that water velocity at the nest was negatively related and length of the guarding male was positively related to nest success upstream. Male length and number of degree days were both positively related to nest success downstream. Our results, and those of other studies, suggest that biological factors account for most nest failures during benign (stable, low flow) streamflow conditions, whereas nest failures attributed to substrate mobility or nest abandonment dominate when harsh streamflow conditions (spring floods) coincide with the spawning season.

  8. Mutually beneficial and sustainable management of Ethiopian and Egyptian dams in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Habteyes, Befekadu G.; Hasseen El-bardisy, Harb A. E.; Amer, Saud A.; Schneider, Verne R.; Ward, Frank A.

    2015-10-01

    Ongoing pressures from population growth, recurrent drought, climate, urbanization and industrialization in the Nile Basin raise the importance of finding viable measures to adapt to these stresses. Four tributaries of the Eastern Nile Basin contribute to supplies: the Blue Nile (56%), White Nile-Albert (14%), Atbara (15%) and Sobat (15%). Despite much peer reviewed work addressing conflicts on the Nile, none to date has quantitatively examined opportunities for discovering benefit sharing measures that could protect negative impacts on downstream water users resulting from new upstream water storage developments. The contribution of this paper is to examine the potential for mutually beneficial and sustainable benefit sharing measures from the development and operation of the Grand Ethiopian Renaissance Dam while protecting baseline flows to the downstream countries including flows into the Egyptian High Aswan Dam. An integrated approach is formulated to bring the hydrology, economics and institutions of the region into a unified framework for policy analysis. A dynamic optimization model is developed and applied to identify the opportunities for Pareto Improving measures to operate these two dams for the four Eastern Nile Basin countries: Ethiopia, South Sudan, Sudan, and Egypt. Results indicate a possibility for one country to be better off (Ethiopia) and no country to be worse off from a managed operation of these two storage facilities. Still, despite the optimism of our results, considerable diplomatic negotiation among the four riparians will be required to turn potential gains into actual welfare improvements.

  9. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in much larger urban river channels further downstream. These downstream redox zonations, microbial habitats, and pH characteristics observed in channelized tributaries are very different from non-urban watersheds in the Maryland Coastal Plain, which have pH values less than 7 and do not have the prominent redox zonations and associated microbial habitats. These downstream changes in redox chemistry and pH in urban stream channels have implications for the transport and retention of heavy metals in urban streams.

  10. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    PubMed

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  11. The effects of road crossings on prairie stream habitat and function

    USGS Publications Warehouse

    Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.

    2010-01-01

    Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.

  12. Development and implementation of a custom integrated database with dashboards to assist with hematopathology specimen triage and traffic

    PubMed Central

    Azzato, Elizabeth M.; Morrissette, Jennifer J. D.; Halbiger, Regina D.; Bagg, Adam; Daber, Robert D.

    2014-01-01

    Background: At some institutions, including ours, bone marrow aspirate specimen triage is complex, with hematopathology triage decisions that need to be communicated to downstream ancillary testing laboratories and many specimen aliquot transfers that are handled outside of the laboratory information system (LIS). We developed a custom integrated database with dashboards to facilitate and streamline this workflow. Methods: We developed user-specific dashboards that allow entry of specimen information by technologists in the hematology laboratory, have custom scripting to present relevant information for the hematopathology service and ancillary laboratories and allow communication of triage decisions from the hematopathology service to other laboratories. These dashboards are web-accessible on the local intranet and accessible from behind the hospital firewall on a computer or tablet. Secure user access and group rights ensure that relevant users can edit or access appropriate records. Results: After database and dashboard design, two-stage beta-testing and user education was performed, with the first focusing on technologist specimen entry and the second on downstream users. Commonly encountered issues and user functionality requests were resolved with database and dashboard redesign. Final implementation occurred within 6 months of initial design; users report improved triage efficiency and reduced need for interlaboratory communications. Conclusions: We successfully developed and implemented a custom database with dashboards that facilitates and streamlines our hematopathology bone marrow aspirate triage. This provides an example of a possible solution to specimen communications and traffic that are outside the purview of a standard LIS. PMID:25250187

  13. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.

    PubMed

    Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri

    2016-07-28

    The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.

  14. A conceptual framework for the sustainable management of wastewater in Harare, Zimbabwe.

    PubMed

    Nhapi, I; Gijzen, H J; Siebel, M A

    2003-01-01

    The aim of this study was to formulate an integrated wastewater management model for Harare, Zimbabwe, based on current thinking. This implies that wastewater is treated/disposed of as close to the source of generation as possible. Resource recovery and reuse in a local thriving urban agriculture are integrated into this model. Intervention strategies were considered for controlling water, nitrogen and phosphorus flows to the lake. In the formulation of strategies, Harare was divided into five major operational areas of high-, medium-, and low-density residential areas, and also commercial and industrial areas. Specific options were then considered to suit landuse, development constraints and socio-economic status for each area, within the overall criteria of limiting nutrient inflows into the downstream Lake Chivero. Flexible and differential solutions were developed in relation to built environment, population density, composition of users, ownership, future environmental demands, and technical, environmental, hygienic, social and organisational factors. Options considered include source control by the users (residents, industries, etc.), using various strategies like implementation of toilets with source separation, and natural methods of wastewater treatment. Other possible strategies are invoking better behaviour through fees and information, incentives for cleaner production, and user responsibility through education, legislative changes and stricter controls over industry.

  15. Tritium as tracer of groundwater pollution extension: case study of Andralanitra landfill site, Antananarivo-Madagascar

    NASA Astrophysics Data System (ADS)

    Ramaroson, Voahirana; Rakotomalala, Christian Ulrich; Rajaobelison, Joel; Fareze, Lahimamy Paul; Razafitsalama, Falintsoa A.; Rasolofonirina, Mamiseheno

    2018-05-01

    This study aims to understand the extension of groundwater pollution downstream of a landfill, Andralanitra-Antananarivo-Madagascar. Twenty-one samples, composed of dug well waters, spring waters, river, and lake, were measured in stable isotopes ( δ 2H, δ 18O) and tritium. Results showed that only two dug well waters, collected at the immediate vicinity of the landfill, have high tritium activities (22.82 TU and 10.43 TU), probably of artificial origin. Both upstream and further downstream of the landfill, tritium activities represent natural source, with values varying from 0.17 TU to 1.46 TU upstream and from 0.88 TU to 1.88 TU further downstream. Stable isotope data suggest that recharge occurs through infiltration of slightly evaporated rainfall. Using the radioactive decay equation, the calculated tracer ages related to two recent ground water samples collected down gradient of the landfill lay between [8-15] years and [4-7] years, taking into account the uncertainty of tritium measurements. For the calculation, a value of 2.36 TU was taken as A o. The latter was estimated based on similarity between stable isotope compositions of nearby spring and dug well waters as well as tritium activities of the local precipitation. Calculation of the tritium activities from the contaminated water point having 22.82 TU to further downstream using the calculated tracer ages showed values of one order of magnitude higher than the measured values. The absence of hydrological connection from the contaminated water point to further downstream the landfill would explain the lower tritium activities measured. Groundwater pollution seems to be limited to the closest proximity of the landfill.

  16. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands

    NASA Astrophysics Data System (ADS)

    Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.

    2018-04-01

    Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.

  17. Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence (External Review Draft)

    EPA Science Inventory

    The Environmental Protection Agency – through the independent Scientific Advisory Board (SAB) - is soliciting public comment on a new draft science report titled: Connectivity of Streams and Wetlands to Downstream Waters. A public docket has been opened to receive com...

  18. Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence (Final Report)

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (USEPA) Office of Research and Development has finalized the report Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence. The report reviews more than 1,200 peer-reviewe...

  19. Connectivity and effects of streams and wetlands on downstream waters: A review and synthesis of the scientific evidence

    USDA-ARS?s Scientific Manuscript database

    The purpose of this document is to review and synthesize more than 850 publications from the peer-reviewed literature pertaining to three questions: 1) What are the physical, chemical, and biological connections to and effects of ephemeral, intermittent, and perennial streams on downstream waters? 2...

  20. Documentation of a dissolved-solids model of the Tongue River, southeastern Montana

    USGS Publications Warehouse

    Woods, Paul F.

    1981-01-01

    A model has been developed for assessing potential increases in dissolved solids of the Tongue River as a result of leaching of overburden materials used to backfill pits in surface coal-mining operations. The model allows spatial and temporal simulation of streamflow and dissolved-solids loads and concentrations under user-defined scenarios of surface coal mining and agricultural development. The model routes an input quantity of streamflow and dissolved solids from the upstream end to the downstream end of a stream reach while algebraically accounting for gains and losses of streamflow and dissolved solids within the stream reach. Input data needed to operate the model include the following: simulation number, designation of hydrologic conditions for each simulated month, either user-defined or regression-defined concentrations of dissolved solids input by the Tongue River Reservoir, number of irrigated acres, number of mined acres, dissolved-solids concentration of mine leachates and quantity of other water losses. A listing of the Fortran computer program, definitions of all variables in the model, and an example output permit use of the model by interested persons. (USGS)

  1. Invertebrates as indicators for chemical stress in sewage-influenced stream systems: toxic and endocrine effects in gammarids and reactions at the community level in two tributaries of Lake Constance, Schussen and Argen.

    PubMed

    Peschke, Katharina; Geburzi, Jonas; Köhler, Heinz-R; Wurm, Karl; Triebskorn, Rita

    2014-08-01

    The present study investigates the impact of releases from waste water treatment plants and storm water overflow basins on gammarids and other macrozoobenthos. The study relates to a recent upgrading of a waste water treatment plant (Langwiese) at the Schussen river, an important tributary to Lake Constance. Samples were taken at different sites at the Schussen river upstream and downstream of a storm water overflow basin and the waste water treatment plant Langwiese and, in parallel, at the Argen river, a less polluted reference stream. We assessed the influence of water quality on the distribution of macrozoobenthos and on the health of gammarid populations by a variety of ecotoxicological methods including biomarkers prior to the expansion of the waste water treatment plant. Through histopathological studies, the impact of parasites on host tissue health was evaluated. Analyses of heat shock protein (hsp70) levels allowed us to draw conclusions about the proteotoxicity-related stress status of the organisms. Furthermore, gammarid populations from all sites were investigated in respect to sex ratio, parasitism rate, and fecundity. Macrozoobenthos community integrity was determined by means of the saprobic index and the abundance as well as by the number of taxa. In gammarids, the sex ratio was significantly shifted towards females, fecundity was significantly decreased, and the hsp70 level was significantly increased downstream of the waste water treatment plant Langwiese, compared to the upstream sampling site. Similarly, these effects could be detected downstream of three small storm water overflow basins. In the macrozoobenthos communities, the abundance of taxa, the number of taxa, the number of ephemeroptera, plecoptera, and trichoptera taxa (EPT-taxa), and the number of sensitive taxa decreased downstream of the storm water overflow basin Mariatal as well as downstream of the waste water treatment plant Langwiese. Our study showed, that waste water treatment plants and storm water overflow basins affected macroinvertebrate communities and the health of gammarids. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Contribution of urban runoff in Taipei metropolitan area to dissolved inorganic nitrogen export in the Danshui River, Taiwan.

    PubMed

    Kuo, Nae-Wen; Jien, Shih-Hao; Hong, Nien-Ming; Chen, Yao-Te; Lee, Tsung-Yu

    2017-01-01

    A previous study has demonstrated that Danshui River has almost the highest dissolved inorganic nitrogen (DIN) yield in the world and exports most of the DIN in the form of ammonium unlike the world's large rivers. However, the DIN sources are poorly constrained. In this study, the contributions of major sources in the Taipei metropolitan area to the DIN export in the Danshui River were investigated. It is observed that ammonium is the major DIN species in the downstream reaches, resulting from the ammonium-dominated inputs of the effluents of wastewater treatment plants (WWTP) and rain water pumping stations (RWPS). DIN concentrations in the downstream (urban) reaches are substantially elevated. The upstream tributaries annually discharge ∼2709 t DIN to the downstream reaches. However, the DIN discharge off the downstream reaches rises to ∼17,918 t, resulting from the contribution of RWPS-collected water, i.e., ∼14,632 t, and the effluents of two WWTP, i.e., ∼577 t. RWPS-collected water inherently contains the contribution of atmospheric deposition, ∼2937 t DIN. This finding implies that ∼11,695 t (∼66 % of the downstream output) DIN flux off the Danshui River is from urban runoff and can be attributed to human activities in the Taipei metropolitan area. To improve the water quality in the Danshui River, water quality controls in urban runoff are important.

  3. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    PubMed

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Uptake of Space Technologies - An Educational Programme

    NASA Astrophysics Data System (ADS)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be demonstrated. The results from these workshops and awareness building campaigns will show the end-user 'pull' in the uptake of remote sensing and Earth Observation data to implement successful Local Authority action plans and projects developing innovative solutions to critical Local Authority issues.

  5. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China.

    PubMed

    Lu, Sidan; Sun, Yujiao; Zhao, Xuan; Wang, Lei; Ding, Aizhong; Zhao, Xiaohui

    2016-07-01

    The connection between microbial community structure and spatial variation and pollution in river waters has been widely investigated. However, water and sediments together have rarely been explored. In this study, Illumina high-throughput sequencing was performed to analyze microbes in 24 water and sediment samples from natural to anthropogenic sources and from headstream to downstream areas. These data were used to assess variability in microbial community structure and diversity along in the Fenghe River, China. The relationship between bacterial diversity and environmental parameters was statistically analyzed. An average of 1682 operational taxonomic units was obtained. Microbial diversity increased from the headstream to downstream and tended to be greater in sediment compared with water. The water samples near the headstream endured relatively low Shannon and Chao1 indices. These diversity indices and the number of observed species in the water and sediment samples increase downstream. The parameters also differ in the two river tributaries. Community structures shift based on the extent of nitrogen pollution variation in the sediment and water samples. The four most dominant genera in the water community were Escherichia, Acinetobacter, Comamonadaceae, and Pseudomonas. In the sediments, the most dominant genera were Stramenopiles, Flavobacterium, Pseudomonas, and Comamonadaceae. The number of ammonia-oxidizing archaea in the headstream water slightly differed from that in the sediment but varied considerably in the downstream sediments. Statistical analysis showed that community variation is correlated with changes in ammonia nitrogen, total nitrogen, and nitrate nitrogen. This study identified different microbial community structures in river water and sediments. Overall this study emphasized the need to elucidate spatial variations in bacterial diversity in water and sediments associated with physicochemical gradients and to show the effects of such variation on waterborne microbial community structures.

  6. Water quality of Cisadane River based on watershed segmentation

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  7. Identifying wells downstream from Laguna Dam that yield water that will be replaced by water from the Colorado River, Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    2000-01-01

    This report summarizes a comprehensive study and development of the method documented in Owen-Joyce and others (2000). That report and one for the area upstream from Laguna Dam (Wilson and Owen-Joyce, 1994) document the accounting-surface method to identify wells that yield water that will be replaced by water from the Colorado River. Downstream from Laguna Dam, the Colorado River is the source for nearly all recharge to the river aquifer. The complex surface-water and ground-water system that exists in the area is, in part, the result of more than 100 years of water-resources development. Agriculture is the principal economy and is possible only with irrigation. The construction and operation of canals provides the means to divert and distribute Colorado River water to irrigate agricultural lands on the flood plains and mesas along the Colorado and Gila Rivers, in Imperial and Coachella Valleys, and in the area upstream from Dome along the Gila River. Water is withdrawn from wells for irrigation, dewatering, and domestic use. The area downstream from Laguna Dam borders additional areas of agricultural development in Mexico where Colorado River water also is diverted for irrigation.

  8. Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia)

    NASA Astrophysics Data System (ADS)

    Zahar, Yadh; Ghorbel, Abdelmajid; Albergel, Jean

    2008-04-01

    SummarySince the opening of the Sidi Salem dam on the watercourse of the Medjerda, in 1981, an alarming narrowing of the riverbed in the lower valley has been observed. This geo-morphological change is attributed to different factors ranking from the reduction in the discharge flows, which used to clean out the riverbed to the periodic releases of turbid water undertaken to remove the silt deposition inside the reservoir, which increased the sediment deposition in the downstream channel. Other smaller hydraulic projects are also held responsible for the loss of the water velocity including a series of concrete sills meant to raise water levels, numerous cross bridges and the management of the downstream Laroussia dam regulating the discharge from the Cap Bon canal. The above anthropogenic factors, in conjunction with natural topographical conditions characterized by a generally shallow slope and a very sinuous watercourse, led to an extremely rapid aggradation of the downstream channel-bed. This paper proposes an analysis of this process and argues that the resulting reduction in channel capacity is one of the major causes of the large floods experienced in the country since 1996.

  9. Combining SLBL routine with landslide-generated tsunami model for a quick hazard assessment tool

    NASA Astrophysics Data System (ADS)

    Franz, Martin; Rudaz, Benjamin; Jaboyedoff, Michel; Podladchikov, Yury

    2016-04-01

    Regions with steep topography are potentially subject to landslide-induced tsunami, because of the proximity between lakes, rivers, sea shores and potential instabilities. The concentration of the population and infrastructures on the water body shores and downstream valleys could lead to catastrophic consequences. In order to assess comprehensively this phenomenon together with the induced risks, we have developed a tool which allows the construction of the landslide geometry, and which is able to simulate its propagation, the generation and the propagation of the wave and eventually the spread on the shores or the associated downstream flow. The tool is developed in the Matlab© environment, with a graphical user interface (GUI) to select the parameters in a user-friendly manner. The whole process is done in three steps implying different methods. Firstly, the geometry of the sliding mass is constructed using the Sloping Local Base Level (SLBL) concept. Secondly, the propagation of this volume is performed using a model based on viscous flow equations. Finally, the wave generation and its propagation are simulated using the shallow water equations stabilized by the Lax-Friedrichs scheme. The transition between wet and dry bed is performed by the combination of the two latter sets of equations. The intensity map is based on the criterion of flooding in Switzerland provided by the OFEG and results from the multiplication of the velocity and the depth obtained during the simulation. The tool can be used for hazard assessment in the case of well-known landslides, where the SLBL routine can be constrained and checked for realistic construction of the geometrical model. In less-known cases, various failure plane geometries can be automatically built between given range and thus a multi-scenario approach is used. In any case, less-known parameters such as the landslide velocity, its run-out distance, etc. can also be set to vary within given ranges, leading to multi-scenario assessment. The model computes the evolution of the water depth and velocities trough time in 2.5D. It provides maximum maps, intensity maps, and data from numerical gauge. This tool is developed for quick hazard assessment, thus it is efficient and requires little computational power. Its capacities are demonstrated on case studies.

  10. 5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS TO CLEAR THE SYSTEM ABOVE THE SILT AND DEBRIS AND TO STOP THE FLOW OF WATER INTO THE SYSTEM DOWN LINE. BOX FLUME CONTINUES DOWN LINE TO SEDIMENTATION CHAMBER. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  11. Water resources of the Park City area, Utah, with emphasis on ground water

    USGS Publications Warehouse

    Holmes, Walter F.; Thompson, Kendall R.; Enright, Michael

    1986-01-01

    The Park City area is a rapidly growing residential and recreational area about 30 miles east of Sal t Lake City (fig. 1). The area of study is about 140 square miles in which the principle industries are agriculture, skiing, and other recreational activities. The area once was a major lead- and silver-mining district, but no mines were active in 1984. A resumption in mining activity, however, could take place with an increase in the price of metals.The population of the Park City area is expected to increase rapidly in the near future; and the provision of an adequate water supply for the growing population, while avoiding harmful affects of development, is a major concern for local municipalities, developers, and the Utah Division of Water Rights. In addition, agricultural interests in and below the area are concerned about the effects of increased ground-water withdrawals on streamflow, which is fully appropriated by downstream users. The area also contains the proposed site for the Jordanelle dam, a part of the Bonneville unit of the central Utah Project. The damsite is near an historic mining area; and mining companies are concerned that if mining is resumed, the reservoir may create some additional dewatering problems in the mines.

  12. Modulation of Extreme Flood Levels by Impoundment Significantly Offset by Floodplain Loss Downstream of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Mei, Xuefei; Dai, Zhijun; Darby, Stephen E.; Gao, Shu; Wang, Jie; Jiang, Weiguo

    2018-04-01

    River flooding—the world's most significant natural hazard—is likely to increase under anthropogenic climate change. Most large rivers have been regulated by damming, but the extent to which these impoundments can mitigate extreme flooding remains uncertain. Here the catastrophic 2016 flood on the Changjiang River is first analyzed to assess the effects of both the Changjiang's reservoir cascade and the Three Gorges Dam (TGD), the world's largest hydraulic engineering project on downstream flood discharge and water levels. We show that the Changjiang's reservoir cascade impounded over 30.0 × 103 m3/s of flow at the peak of the flood on 25 July 2016, preventing the occurrence of what would otherwise have been the second largest flood ever recorded in the reach downstream of the TGD. Half of this flood water storage was retained by the TGD alone, meaning that impoundment by the TGD reduced peak water levels at the Datong hydrometric station (on 25 July) by 1.47 m, compared to pre-TGD conditions. However, downstream morphological changes, in particular, extensive erosion of the natural floodplain, offset this reduction in water level by 0.22 m, so that the full beneficial impact of floodwater retention by the TGD was not fully realized. Our results highlight how morphological adjustments downstream of large dams may inhibit their full potential to mitigate extreme flood risk.

  13. Estimated use of water in the United States in 1975

    USGS Publications Warehouse

    Murray, Charles Richard; Reeves, E. Bodette

    1977-01-01

    Estimates of water use in the United States in 1975 indicate that an average of about 420 bgd (billion gallons per day) about 1,900 gallons per capita per day was withdrawn for the four principal off-channel uses which are (1) publicsupply (for domestic, commercial, and industrial uses), (2) rural (domestic and livestock), (3) irrigation, and (4) self-supplied industrial (including thermoelectric power). In 1975, withdrawals for these uses exceeded by 11.7 percent the 370 bgd estimated for 1970. Increases in the various categories of off-channel water use since 1970 were: approximately 12.8 percent for self-supplied industry (mainly in electric-utility thermoelectric plants), 7.9 percent for public supplies, 10.3 percent for rural supplies, and 10.9 percent for irrigation. Industrial water withdrawals included 70 bgd of saline water, a 30 percent increase in 5 years. The fifth principal withdrawal use, hydroelectric power (an in-channel use), amounted to 3,300 bgd, a 5-year increase of 20.7 percent. In computing total withdrawals, recycling within a plant (reuse) is not counted, but withdrawal of the same water by a downstream user (cumulative withdrawals) is counted. The quantity of freshwater consumed that is, water made unavailable for further possible withdrawal because of evaporation, incorporation in crops and manufactured products, and other causes was estimated to average 96 bgd for 1975, an increase of about 10 percent since 1970.

  14. Water quality in the New River from Calexico to the Salton Sea, Imperial County, California

    USGS Publications Warehouse

    Setmire, James G.

    1984-01-01

    The New River enters the United States at Calexico, Calif., after it crosses the international boundary. Water-quality data from routine collection indicated that the New River was degraded by high organic and bacterial content. Intensive sampling for chemical and physical constituents and properties of the river was done May 9-13, 1977, to quantify the chemical composition of the water and to identify water-quality problems. Concentrations of total organic carbon in the New River at Calexico ranged from 80 to 161 milligrams per liter and dissolved organic carbon ranged from 34 to 42 milligrams per liter; the maximum chemical oxygen demand was 510 milligrams per liter. Intensive sampling for chemical and biological characteristics was done in the New River from May 1977 to June 1978 to determine the occurrence of the organic material and its effects on downstream water quality. Dissolved-oxygen concentration was measured along longitudinal profiles of the river from Calexico to the Salton Sea. A dissolved-oxygen sag downstream from the Calexico gage varied seasonally. The sag extended farther downstream and had lower concentrations of dissolved oxygen during the summer months than during the winter months. The sag of zero dissolved-oxygen concentration extended 26 miles in July 1977. In December 1976, the sag extended 20 miles but the minimum dissolved-oxygen concentration was 2.5 milligrams per liter. The greatest diel (24-hour) variation in dissolved-oxygen concentration occurred in the reach from the Calexico gage to Lyons Crossing, 8.8 miles downstream. High concentrations of organic material were detected as far as Highway 80, 19.5 miles downstream from the international boundary. Biological samples analyzed for benthic invertebrates showed that water at the Calexico and Lyons Crossing sites, nearest the international boundary, was of such poor quality that very few bottom-dwelling organisms could survive. Although the water was of poor quality at Keystone Road, 36 miles downstream, it was able to support a benthic community. The April sample had more than 9,150 organisms on a multiplate sampler, 8,770 of which were of one species. Farther downstream at the Westmorland gage, the water quality, as indicated by the number and diversity of organisms, had improved over that at the Keystone site. The Alamo River at its outlet to the Salton Sea--the control site--had the greatest diversity of all the study sites. This diversity, when compared with the diversity at the Westmorland gage, indicated that the effects of the degraded water quality observed at the New River at Calexico are detected as far as 62 miles downstream. Standard bacteria indicator tests indicate that fecal contamination exists in the New River. Counts of fecal coliform bacteria ranged from 180,000 to 2,800,000 colonies per 100 milliliters for the 20-mile reach from Calexico to Highway 80, and fecal streptococcal bacteria ranged from 5,000 to 240,000 colonies per 100 milliliters.

  15. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  16. Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps.

    PubMed

    Leitinger, Georg; Ruggenthaler, Romed; Hammerle, Albin; Lavorel, Sandra; Schirpke, Uta; Clement, Jean-Christophe; Lamarque, Pénélope; Obojes, Nikolaus; Tappeiner, Ulrike

    2015-12-01

    This study analyzes the impact of droughts, compared with average climatic conditions, on the supporting ecosystem service water provision in sub-watersheds in managed alpine grasslands in two climatically different regions of the Alps, Lautaret (French Alps) and Stubai (Austrian Alps). Soil moisture was modelled in the range of 0-0.3 m. At both sites, current patterns showed that the mean seasonal soil moisture was (1) near field capacity for grasslands with low management intensity and (2) below field capacity for grasslands with higher land-use intensity. Soil moisture was significantly reduced by drought at both sites, with lower reductions at the drier Lautaret site. At the sub-watershed scale, soil moisture spatial heterogeneity was reduced by drought. Under drought conditions, the evapotranspiration to precipitation ratios at Stubai was slightly higher than those at Lautaret, indicating a dominant 'water spending' strategy of plant communities. Regarding catchment water balance, deep seepage was reduced by drought at Stubai more strongly than at Lautaret. Hence, the observed 'water spending' strategy at Stubai might have negative consequences for downstream water users. Assessing the water provision service for alpine grasslands provided evidence that, under drought conditions, evapotranspiration was influenced not only by abiotic factors but also by the water-use strategy of established vegetation. These results highlight the importance of 'water-use' strategies in existing plant communities as predictors of the impacts of drought on water provision services and related ecosystem services at both the field and catchment scale.

  17. Ground-water-quality assessment of the Carson River basin, Nevada and California; analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Welch, A.H.; Plume, R.W.; Frick, E.A.; Hughes, J.L.

    1989-01-01

    Data on groundwater quality, hydrogeology, and land and water use for the Carson River basin, Nevada and California were analyzed as part of the U. S. Geological Survey National Water-Quality Assessment program. The basin consists of six hydrographic areas--a mountainous headwaters area and five downstream areas interconnected by the Carson River. Each valley contains one or more basin-fill aquifers. The data on groundwater quality came from several agencies and were screened to verify site location and to avoid analyses of treated water. The screened data are stored in the U. S. Geological Survey National Water Information System data base. Differences in sample-collection and preservation procedures among some of the data-collection agencies restrict use of the data to a descriptive analysis. Drinking water standards were employed as the basis for evaluating reported concentrations. Frequencies with which primary or secondary standards are exceeded increase from upstream parts of the basin to downstream parts. Primary standards commonly exceeded are fluoride in upstream areas and arsenic and fluoride in downstream areas. Secondary standards commonly exceeded are iron and manganese in upstream areas and chloride, dissolved solids, iron, manganese, and sulfate in downstream areas. The poorer-quality groundwater generally is a result of natural geochemical reactions, rather than the introduction of chemicals by man. Limited data indicate, however , that manmade organic compounds are present, mostly at or near urban land. (USGS)

  18. Urban Wastewater Impacts on the Spatial Distribution of Solutes and Microbial Constituents in the Musi River, India

    NASA Astrophysics Data System (ADS)

    Ensink, J.; Scott, C. A.; Cairncross, S.

    2006-05-01

    Wastewater discharge from expanding urban centers deteriorates the quality of receiving waters, a trend that has management and investment implications for cities around the world. This paper presents the results of a 14-month water quality evaluation over a 40-km longitudinal profile downstream of the city of Hyderabad, India (population 7 million) on the Musi River, a tributary to the Krishna River. Upstream to downstream improvements in Musi water quality for microbial constituents (nematode egg, faecal coliform), dissolved oxygen, and nitrate are attributed to natural attenuation processes (dilution, die-off, sedimentation and biological processes) coupled with the effects of in-stream hydraulic infrastructure (weirs and reservoirs). Conversely, upstream to downstream increases in total dissolved solids concentrations are caused by off- stream infrastructure and agricultural water use resulting in crop evapotranspiration and increased solute concentration in the return flow of irrigation diverted upstream in the wastewater system. Future water quality management challenges resulting from rampant urban growth, particularly in developing countries, are discussed.

  19. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    NASA Astrophysics Data System (ADS)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  20. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota.

    PubMed

    Cozzarelli, I M; Skalak, K J; Kent, D B; Engle, M A; Benthem, A; Mumford, A C; Haase, K; Farag, A; Harper, D; Nagel, S C; Iwanowicz, L R; Orem, W H; Akob, D M; Jaeschke, J B; Galloway, J; Kohler, M; Stoliker, D L; Jolly, G D

    2017-02-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4ML (million liters) of wastewater (300g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030mg/L) and bromide (7.8mg/L) downstream from the spill, compared to upstream levels (11mg/L and <0.4mg/L, respectively). Lithium (0.25mg/L), boron (1.75mg/L) and strontium (7.1mg/L) were present downstream at 5-10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects. Published by Elsevier B.V.

  1. An Integrated Decision Support System with Hydrological Processes and Socio-economic Assessments

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2017-04-01

    The debate over the effectiveness of Integrated Water Resources Management (IWRM) in practice has lasted for years. As the complexity and scope of IWRM increases, the difficulties of hydrological modeling is shifting from the model itself into the links with other cognate sciences, to understand the interactions among water, earth, ecosystem and humans. This work presents the design and development of a decision support system (DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use changes. Discharge and glacier geometry changes were simulated with hydrological model WASA. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were integrated as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs into DSS as the models running parallel in the simulation periods. Within DSS, three types of logics were established: equations, conditional statements and fuzzy logics. The programming was realized in C++. The implementation of DSS takes place in the Tarim River Basin. With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. Project SuMaRiO focus on realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. DSS is the main outcome of SuMaRiO. The overall goal of the DSS is to integrate all crucial research results of SuMaRiO, also including stakeholder perspectives, into a model based decision support system, which allows a Sustainability Impact Assessment (SIA) within regional planning. This SIA will take into account the perspectives of all relevant actors in the problem field of land and water management in the Tarim River Basin, to understand ecosystem services (ESS) and integrating them into land and water management. Under scenario assumptions, possible actions and their impacts are estimated in a semi-quantitative way with the help of sustainable indicators, which includes climate indicators, socio-economic Indicators, management Indicators, and ESS Indicators. A user-friendly graphical user interface (GUI) was developed to assist the decision-makers and common users, with Chinese and English versions available at the moment.

  2. Water2Invest: Global facility for calculating investments needed to bridge the climate-induced water gap

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jairus; Buytaert, Wouter; Karssenberg, Derek; Meijer, Karen; van Aalst, Maaike; van Beek, Rens; Wada, Yoshihide; Bierkens, Marc

    2013-04-01

    Decision makers responsible for climate change adaptation investments are confronted with large uncertainties regarding future water availability and water demand, as well as the investment cost required to reduce the water gap. Moreover, scientists have worked hard to increase fundamental knowledge on climate change and its impacts (climate services), while practical use of this knowledge is limited due to a lack of tools for decision support under uncertain long term future scenarios (decision services). The Water2Invest project aims are to (i) assess the joint impact of climate change and socioeconomic change on water scarcity, (ii) integrate impact and potential adaptation in one flow, (iii) prioritize adaptation options to counteract water scarcity on their financial, regional socio-economic and environmental implications, and (iv) deliver all this information in an integrated user-friendly web-based service. Global water availability is computed between 2006 and 2100 using the PCR-GLOBWB water resources model at a 6 minute spatial resolution. Climate change scenarios are based on the fifth Assessment Report (AR5) of the IPCC Coupled Model Intercomparison Project (CMIP5) that defines four CO2 emission scenarios as representative concentration pathways. Water demand is computed for agriculture, industry, domestic, and environmental requirements based on socio-economic scenarios of increase in population and gross domestic product. Using a linear programming algorithm, water is allocated on a monthly basis over the four sectors. Based on these assessments, the user can evaluate various technological and infrastructural adaptation measures to assess the investments needed to bridge the future water gap. Regional environmental and socioeconomic effects of these investments are evaluated, such as environmental flows or downstream effects. A scheme is developed to evaluate the strategies on robustness and flexibility under climate change and scenario uncertainty, and each measure is linked to possibilities for investment and financing mechanisms. The tool can be used by consultants, water authorities, non-governmental and commercial investors alike to test investment strategies, but could also be used by companies as a vehicle for advertisement water saving or crop water productivity technologies that can be evaluated on their effectiveness on the spot. We show initial results based on a preliminary study on the Middle East and North African region.

  3. Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using turbidity as a surrogate) downstream from the pipeline crossings, and (2) provide continuous turbidity data that enable the development of a real-time turbidity-input warning system and assessment of long-term changes in turbidity conditions. Water-quality conditions were assessed using continuous water-quality monitors deployed upstream and downstream from the pipeline crossings in Indian Creek and the unnamed tributary. These paired upstream and downstream monitors were outfitted with turbidity, pH (for Indian Creek only), specific-conductance, and water-temperature sensors. Water-quality data were collected continuously (every 15 minutes) during three phases of the pipeline construction: pre-construction, during construction, and post-construction. Continuous turbidity data were evaluated at various time steps to determine whether the construction of the pipeline crossings had an effect on downstream suspended-sediment conditions in Indian Creek and the unnamed tributary. These continuous turbidity data were analyzed in real time with the aid of a turbidity-input warning system. A warning occurred when turbidity values downstream from the pipeline were 6 Formazin Nephelometric Units or 15 percent (depending on the observed range) greater than turbidity upstream from the pipeline crossing. Statistical analyses also were performed on monthly and phase-of-construction turbidity data to determine if the pipeline crossing served as a long-term source of sediment. Results of this intensive water-quality monitoring effort indicate that values of turbidity in Indian Creek increased significantly between the upstream and downstream water-quality monitors during the construction of the Jewell Ridge pipeline. The magnitude of the significant turbidity increase, however, was small (less than 2 Formazin Nephelometric Units). Patterns in the continuous turbidity data indicate that the actual pipeline crossing of Indian Creek had little influence of downstream water quality; co

  4. [Spatial distribution characteristics of the physical and chemical properties of water in the Kunes River after the supply of snowmelt during spring].

    PubMed

    Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai

    2015-02-01

    Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.

  5. Antibiotic Resistance in Aeromonas Upstream and Downstream of a Water Resource Recovery Facility

    PubMed Central

    Henderson, Samantha K.; Askew, Maegan L.; Risenhoover, Hollie G.; McAndrews, Chrystle R.; Kennedy, S. Dawn; Paine, C. Sue

    2014-01-01

    Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to thirteen antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.01), resistance phenotypes (p < 0.005), and diversity. However, these differences declined over time and were not significant at the end of the study. These results (1) indicate that antibiotic resistance in Aeromonas in stream sediments fluctuates considerably over time and (2) suggest that WRRF effluent does not, when examined over the long term, affect antibiotic resistance in Aeromonas in downstream sediment. PMID:25327024

  6. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics

    USGS Publications Warehouse

    Fahrenfeld, N.L.; Reyes, Hannah Delos; Eramo, Alessia; Akob, Denise M.; Mumford, Adam; Cozzarelli, Isabelle M.

    2017-01-01

    Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18–86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.

  7. Data-Rate Performance and Coverage of the Sub-Band Vectoring for VDSL 35b Profile

    NASA Astrophysics Data System (ADS)

    Giuliano, Romeo; Mazzenga, Franco; Vatalaro, Francesco

    2017-05-01

    Vectoring, used in VDSL2 to counteract FEXT, becomes less effective, or even ineffective, when users belong to different vectoring groups. This situation is common when the Regulator imposes sub-loop unbundling and users of uncoordinated service providers cause alien-FEXT. The sub-band vectoring (SBV) technique introduced here, avoids this situation and retains the vectoring benefits. We show SBV allows achieving up to 150 Mbit/s per user in downstream at 200 m from cabinet for VDSL2 profile-35b, with two concurrent service providers. We also introduce the concept of data-rate coverage representing the users' percentage served at a given data-rate in the area.

  8. Towards Microeconomic Resource Sharing in End System Multicast Networks Based on Walrasian General Equilibrium

    NASA Astrophysics Data System (ADS)

    Rezvani, Mohammad Hossein; Analoui, Morteza

    2010-11-01

    We have designed a competitive economical mechanism for application level multicast in which a number of independent services are provided to the end-users by a number of origin servers. Each offered service can be thought of as a commodity and the origin servers and the users who relay the service to their downstream nodes can thus be thought of as producers of the economy. Also, the end-users can be viewed as consumers of the economy. The proposed mechanism regulates the price of each service in such a way that general equilibrium holds. So, all allocations will be Pareto optimal in the sense that the social welfare of the users is maximized.

  9. Hydrodynamic controls on the downstream elimination of gravel, and implications for fluvial-deltaic stratigraphy: two end-member case studies from the Selenga River, Russia, and the Mississippi River, U.S.A.

    NASA Astrophysics Data System (ADS)

    Nittrouer, J. A.

    2015-12-01

    The downstream termination of gravel is measured for two fluvial-deltaic systems: the Selenga and Mississippi rivers. These end-members vary by an order of magnitude for slope, water and sediment discharge, and delta area. Moreover, the contrast between the tectonic regimes of the receiving basins is stark: the Selenga delta is located along the deep-water margin of Lake Baikal, which is an active half-graben rift basin, while the Mississippi discharges onto a passive margin with little tectonic influence. Nevertheless, the two rivers share a striking sedimentological similarity: near the delta apex, gravel is eliminated from the downstream dispersal system, and so sediment reaching the land-water interface is exclusively sand and mud. Field data for both rivers, including sediment samples and water discharge and flow velocity measurements, are used to validate morphodynamic models that assess the downstream changes in fluid stress and gravel transport. The analyses show that there are two distinct mechanisms that drive gravel deposition and prohibit dispersal throughout the delta. For the Selenga, water partitioning among bifurcating channels produces a non-linear reduction in shear stress and gravel deposition. For the Mississippi, backwater flow arrests the downstream movement of gravel during low and moderate water discharges, and although floods overcome backwater and produce uniform flow to the outlet, the duration of floods is too short to disperse gravel throughout the delta. Given sufficient time, model results indicate that both rivers should approach morphodynamic equilibrium, whereby aggradation due to sediment deposition raises local bed slope and sediment transport capacity, thereby facilitating downstream gravel movement. However, both systems possess unique characteristics that prevent this process from occurring. For the Selenga, tectonically induced movements regularly down drop portions of the delta below base level, forcing renewed delta sedimentation. For the Mississippi, channel filling produces regular avulsions, whereby mainstem channels are abandoned. In both cases, sediment is sequestered in perpetuity, and gravel dispersal within the delta begins anew. This presentation will discuss the stratigraphic implications for these different scenarios.

  10. Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized riverside wetland, China.

    PubMed

    Huang, Xingru; Xiong, Wei; Liu, Wei; Guo, Xiaoyu

    2017-05-01

    In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example, a higher relative abundance of γ-Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally, with an increase of the reclaimed water interference intensity, the rhizosphere bacterial community showed a decrease in taxon richness, evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that, the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement, while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment. Together these data suggest cause and effect between reclaimed water input into the wetland, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of contaminants. Copyright © 2016. Published by Elsevier B.V.

  11. Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan.

    PubMed

    Hsu, Jih-Tay; Chen, Chia-Yang; Young, Chu-Wen; Chao, Wei-Liang; Li, Mao-Hao; Liu, Yung-Hsin; Lin, Chu-Ming; Ying, Chingwen

    2014-07-30

    Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Linking Domain-Specific Models to Describe the Complex Dynamics and Management Options of a Saline Floodplain

    NASA Astrophysics Data System (ADS)

    Woods, J.; Laattoe, T.

    2016-12-01

    Complex hydrological environments present management challenges where surface water-groundwater interactions involve interlinked processes at multiple scales. One example is Australia's River Murray, which flows through a semi-arid landscape with highly saline groundwater. In this region, the floodplain ecology depends on freshwater provided from the main river channel, anabranches, and floodwaters. However, in the past century access to freshwater has been further limited due to river regulation, land clearance, and irrigation. A programme to improve ecosystem health at Pike Floodplain, South Australia, is evaluating management options such as environmental watering and groundwater pumping. Due to the complicated interdependencies between processes moving water and salt within the floodplain, a series of inter-linked models were developed to assist with management decisions. The models differ by hydrological domain, scale, and dimensionality. Together they simulate surface water, the unsaturated zone, and groundwater on regional, floodplain, and local scales. Outputs from regional models provide boundary conditions for floodplain models, which in turn provide inputs for the local scale models. The results are interpreted based on (i) ecohydrological requirements for key species of tree and fish, and (ii) impacts on river salinity for downstream users. When combined, the models provide an integrated and interdiscplinary understanding of the hydrology and management of saline floodplains.

  13. Testing REACH draft technical guidance notes for conducting chemical safety assessments-the experience of a downstream user of a preparation.

    PubMed

    Gade, Anne Lill; Ovrebø, Steinar; Hylland, Ketil

    2008-07-01

    The goal of REACH is the safe use of chemicals. This study examines the efficiency and usefulness of two draft technical guidance notes in the REACH Interim Project 3.2-2 for the development of the chemical safety report and exposure scenarios. A case study was carried out for a paint system for protection of structural steel. The focuses of the study were risk assessment of preparations based on Derived No Effect Level (DNEL) and Predicted No Effect Concentrations (PNEC) and on effective and accurate communication in the supply chain. Exposure scenarios and generic descriptions of uses, risk management measures, and exposure determinants were developed. The study showed that communication formats, software tools, and guidelines for chemical risk assessment need further adjustment to preparations and real-life situations. Web platforms may simplify such communication. The downstream formulator needs basic substance data from the substance manufacturer during the pre-registration phase to develop exposure scenarios for preparations. Default values need to be communicated in the supply chain because these were critical for the derivation of applicable risk management demands. The current guidelines which rely on the available toxicological knowledge are insufficient to advise downstream users on how to develop exposure scenarios for preparations.

  14. Towards a climate impact assessment of the Tarim River, NW China: integrated hydrological modelling using SWIM

    NASA Astrophysics Data System (ADS)

    Wortmann, Michel

    2014-05-01

    The Tarim River is the principle water source of the Xinjiang Uyghur Autonomous Region, NW China and the country's largest endorheic river, terminating in the Taklamakan desert. The vast majority of discharge is generated in the glaciated mountain ranges to the north (Tian Shan), south (Kunlun Shan/Tibetan Plateau) and west (Pamir Mountains) of the Taklamakan desert. The main water user is the intensive irrigation agriculture for mostly cotton and fruit production in linear river oases of the middle and lower reaches as well as a population of 10 Mil. people. Over the past 40 years, an increase in river discharge was reported, assumed to be caused by enhanced glacier melt due to a warming climate. Rapid population growth and economic development have led to a significant expansion of area under irrigation, resulting in water shortages for downstream users and the floodplain vegetation. Water resource planning and management of the Tarim require integrated assessment tools to examine changes under future climate change, land use and irrigation scenarios. The development of such tools, however, is challenged by sparse climate and discharge data as well as available data on water abstractions and diversions. The semi-distributed, process-based hydrological model SWIM (Soil and Water Integrated Model) was implemented for the headwater and middle reaches that generate over 90% of discharge, including the Aksu, Hotan and Yarkant rivers. It includes the representation of snow and glacier melt as well as irrigation abstractions. Once calibrated and validated to river discharge, the model is used to analyse future climate scenarios provided by one physically-based and one statistical regional climate model (RCM). Preliminary results of the model calibration and validation indicate that SWIM is able simulate river discharge adequately, despite poor data conditions. Snow and glacier melt account for the largest share in river discharge. The modelling results will devise sustainable management options for given climate change scenarios with the aim to balance water availability and water use for the basin as a whole and specifically for the riparian ecology.

  15. Environmental water incentive policy and return flows

    NASA Astrophysics Data System (ADS)

    Qureshi, M. E.; Schwabe, K.; Connor, J.; Kirby, M.

    2010-04-01

    With increasing urban, industrial, and agricultural water demand and projected reduced supply under climate change, allocations to the environment are critically low in many arid and semiarid basins. Consequently, many governments are striving to augment environmental flows, often through market-oriented mechanisms that involve compensating irrigated agriculture, the largest water user in most basins, for reducing diversions. A widely documented challenge with policies to recover water for the environment arises because part of the water diversion reduction can form the basis for downstream consumptive water rights or environmental flows. This article gives an empirical comparison of two incentive policies to acquire water for environmental flows for a part of the Murray-Darling Basin (MDB), Australia. One policy consists of paying irrigators and water delivery firms to make capital and management investments that improve on-farm irrigation and water-conveyance; the other policy consists of having the government buy water from irrigators on the active MDB water market. The results show that the first option results in relatively larger return flow reduction, while the second option tends to induce significant irrigated land retirement with relatively large reductions in consumptive use and small reductions in return flow. In cases where irrigation losses result in little useful return flow (e.g., evaporative loss reduction or during drought in some instances), efficiency-improving investments may provide some cost-effective opportunities. Where a large portion of loss forms valuable return flow, it is difficult to make a case for the cost-effectiveness of policies involving payments for investments in irrigation and conveyance system upgrades.

  16. Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an Alpine stream hyporheic zone

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.

    1999-10-01

    The objective of the present paper was to link reach-scale streambed reactive uptake of dissolved organic carbon (DOC) and dissolved oxygen (DO) to subsurface flow paths in an alpine stream (Oberer Seebach (OSB)). The topography adjacent to the stream channel largely determined flow paths, with shallow hillslope groundwater flowing beneath the stream and entering the alluvial groundwater at the opposite bank. As computed from hydrometric data, OSB consistently lost stream water to groundwater with fluxes out of the stream averaging 943 ± 47 and 664 ± 45 L m-2 h-1 at low (Q < 600 L s-1) and high (Q > 600 L s-1) flow, respectively. Hydrometric segregation of streambed fluxes and physicochemical mixing analysis indicated that stream water was the major input component to the streambed with average contributions of 70-80% to the hyporheic zone (i.e., the subsurface zone where shallow groundwater and stream water mix). Surface water was also the major source of DOC with 0.512 ± 0.043 mg C m-2 h-1 to the streambed. The DOC flux from shallow riparian groundwater was lower (0.309 ± 0.071 mg C m-2 h-1) and peaked in autumn with 1.011 mg C m-2 h-1. I computed the relative proportion of downstream discharge through the streambed as the ratio of the downstream length (Ssw) a stream water parcel travels before entering the streambed to the downstream length (Shyp) a streambed water parcel travels before returning to the stream water. The relative streambed DOC retention efficiency, calculated as (input-output)/input of interstitial DOC, correlated with the proportion (Ssw/Shyp) of downstream discharge (r2 = 0.76, p = 0.006). Also, did the streambed metabolism (calculated as DO uptake from mass balance) decrease with low subsurface downstream routing, whereas elevated downstream discharge through the streambed stimulated DO uptake (r2 = 0.69, p = 0.019)? Despite the very short DOC turnover times (˜0.05 days, calculated as mean standing stock/annual input) within the streambed, the latter constitutes a net sink of DOC (˜14 mg C m-2 h-1). Along with high standing stocks of sediment associated particulate organic carbon, these results suggest microbial biofilms as the major retention and storage site of DOC in an alpine stream where large hydrologic exchange controls DOC fluxes.

  17. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    NASA Astrophysics Data System (ADS)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (<100 km2) of the River Thames (southern UK) is described. Temperature, conductivity, turbidity, dissolved oxygen (DO) and ammonium (NH4) were measured at downstream locations where long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (< 8 mg L-1) as a response to pollutant first flushes was particularly apparent in urban streams but this was followed by a rapid recovery. Chronic effects lasting for three to four weeks were only seen downstream of a sewage treatment works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  18. Mercury contamination from mine and natural sources in Harley Gulch, downstream from the Abbott and Turkey Run Mercury Mines, Lake County, California

    NASA Astrophysics Data System (ADS)

    Hothem, R. L.; Rytuba, J. J.; Goldstein, D.; Brussee, B.

    2011-12-01

    The Abbott and Turkey Run Mercury (Hg) mine area in central California has released Hg tailings into the Harley Gulch watershed since 1862. Harley Gulch flows into Cache Creek which is a significant source of Hg into San Francisco Bay Delta. Thermal mine water effluent emanating from the Turkey Run adit flows into the upper part of the watershed. Despite remediation efforts, Hg tailings and enriched sediment remain in the Harley Gulch wetlands and in the creek downstream from the mine area. Water, sediment, and biota have been sampled from below the mine area to 15 km downstream to the confluence with Cache Creek in order to assess the impact of Hg on water quality and biota. Two previously unrecognized natural sources of Hg in the watershed are connate groundwater with elevated levels of Hg, and biogenic sediment composed of phytoplankton that accumulates in the upper part of the watershed during the dry season. The connate groundwater source contains isotopically-heavy Mg-Ca-Cl-CO3-SO4 water that has elevated concentrations of Ba, W, Ti, and Hg. This water first enters Harley Gulch in the central part of the wetland immediately downstream from the mine area and continues to contribute water downstream for a distance of 1.5 km. It is both chemically and isotopically distinct from the thermal mine water effluent from the Turkey Run adit. The biogenic source consists of blooms of phytoplankton that accumulate to a thickness of up to 0.2 m. Phytoplankton have a large bioaccumulation factor of Hg and monomethyl mercury (MMeHg) that results in a high concentrations of Hg and MMeHg (Hg: 5-25 μg/g, MMeHg 5.2 ng/g) in the biogenic sediment. The tan biogenic sediment at the surface consists of living diatoms and below it is a layer of black reduced biogenic sediment consisting of diatom fragments with micron- to submicron-sized FeS, HgS, and barite grains. Sulfate-reducing bacteria reduce sulfate to sulfide in the pore waters of the biogenic sediment that reacts with dissolved Fe to form FeS. Hg released from the diatoms into the pore fluid reacts with sulfide to form micron- to submicron-sized particles of HgS. The decrease in sulfate concentration resulting from sulfate reduction results in precipitation of barite. The resulting biogenic sediment is composed primarily of diatoms with a minor component of CaCO3 and clay and is transported downstream during periods of high flow. Composites of aquatic invertebrates collected from the upper two sites of the Harley Gulch wetland included larval damselflies (Coenagrionidae), adult predaceous diving beetles (Dytiscidae), and larval water scavenger beetles (Hydrophilidae). The percentage of MMeHg was low in all samples, the concentrations of MMeHg (113 - 604 ng/g, wet mass) were moderate, and the total Hg concentrations were extremely high (1,240 - 9,940 ng/g). The concentrations of both MMeHg and Hg were lower at downstream sites in both damselflies and diving beetles compared with the wetlands and the areas where connate groundwater enters the creek in the upper part of the watershed. As with these biological taxa, concentrations of both Hg and MMeHg in water and sediment were lower at the downstream sites.

  19. Septic tank discharges as multi-pollutant hotspots in catchments.

    PubMed

    Richards, Samia; Paterson, Eric; Withers, Paul J A; Stutter, Marc

    2016-01-15

    Small point sources of pollutants such as septic tanks are recognised as significant contributors to streams' pathogen and nutrient loadings, however there is little data in the UK on which to judge the potential risks that septic tank effluents (STEs) pose to water quality and human health. We present the first comprehensive analysis of STE to help assess multi-pollutant characteristics, management-related risk factors and potential tracers that might be used to identify STE sources. Thirty-two septic tank effluents from residential households located in North East of Scotland were sampled along with adjacent stream waters. Biological, physical, chemical and fluorescence characterisation was coupled with information on system age, design, type of tank, tank management and number of users. Biological characterisation revealed that total coliforms and Escherichia coli (E. coli) concentration ranges were: 10(3)-10(8) and 10(3)-10(7)MPN/100 mL, respectively. Physical parameters such as electrical conductivity, turbidity and alkalinity ranged 160-1730 μS/cm, 8-916 NTU and 15-698 mg/L, respectively. Effluent total phosphorus (TP), soluble reactive P (SRP), total nitrogen (TN) and ammonium-N (NH4-N) concentrations ranged 1-32, <1-26, 11-146 and 2-144 mg/L, respectively. Positive correlations were obtained between phosphorus, sodium, potassium, barium, copper and aluminium. Domestic STE may pose pollution risks particularly for NH4-N, dissolved P, SRP, copper, dissolved N, and potassium since enrichment factors were >1651, 213, 176, 63, 14 and 8 times that of stream waters, respectively. Fluorescence characterisation revealed the presence of tryptophan peak in the effluent and downstream waters but not detected upstream from the source. Tank condition, management and number of users had influenced effluent quality that can pose a direct risk to stream waters as multiple points of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quality of water and time of travel in Little Copiah Creek near Crystal Springs, Mississippi

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1981-01-01

    An intensive quality of water study was conducted on Little Copiah Creek in the vicinity of Crystal Springs, Miss., from August 19 to August 21, 1980. The quality of water in Little Copiah Creek improved 7 miles downstream of a source of wastewater inflow. The mean total nitrogen concentration decreased from 17 to 1.1 milligrams per liter and the mean total phosphorus concentrations decreased from 5.8 to 0.39 milligrams per liter. The maximum five-day biochemical oxygen demand decreased from 14 to 1.4 milligrams per liter while the dissolved-oxygen concentration increased from 2.0 to 6.9 milligrams per liter. The maximum fecal coliform and fecal streptococcus densities at the upstream sampling site were 2,200 and 6,700 colonies per 100 milliliter, respectively, and were observed to decrease downstream to 160 and 1,500 colonies per 100 milliliters. The mean stream temperatures decreased downstream only slightly from 26.5 to 25.0 Celsius and the pH of the water ranged from 7.2 to 7.4 units upstream and 6.5 to 7.0 units at the downstream site. The average rate of dye travel through the upstream 2.3 mile reach was 0.08 miles per hour during the study. (USGS)

  1. Effects of aquifer storage and recovery activities on water quality in the Little Arkansas River and Equus Beds Aquifer, south-central Kansas, 2011–14

    USGS Publications Warehouse

    Stone, Mandy L.; Garrett, Jessica D.; Poulton, Barry C.; Ziegler, Andrew C.

    2016-07-18

    The Equus Beds aquifer in south-central Kansas is aprimary water source for the city of Wichita. The Equus Beds aquifer storage and recovery (ASR) project was developed to help the city of Wichita meet increasing current (2016) and future water demands. The Equus Beds ASR project pumps water out of the Little Arkansas River during above-base flow conditions, treats it using drinking-water quality standards as a guideline, and recharges it into the Equus Beds aquifer for later use. Phase II of the Equus Beds ASR project currently (2016) includes a river intake facility and a surface-water treatment facility with a 30 million gallon per day capacity. Water diverted from the Little Arkansas River is delivered to an adjacent presedimentation basin for solids removal. Subsequently, waste from the surface-water treatment facility and the presedimentation basin is returned to the Little Arkansas River through a residuals return line. The U.S. Geological Survey, in cooperation with the city of Wichita, developed and implemented a hydrobiological monitoring program as part of the ASR project to characterize and quantify the effects of aquifer storage and recovery activities on the Little Arkansas River and Equus Beds aquifer water quality.Data were collected from 2 surface-water sites (one upstream and one downstream from the residuals return line), 1 residuals return line site, and 2 groundwater well sites (each having a shallow and deep part): the Little Arkansas River upstream from the ASR facility near Sedgwick, Kansas (upstream surface-water site 375350097262800), about 0.03 mile (mi) upstream from the residuals return line site; the Little Arkansas River near Sedgwick, Kans. (downstream surface-water site 07144100), about 1.68 mi downstream from the residuals return line site; discharge from the Little Arkansas River ASR facility near Sedgwick, Kansas (residuals return line site 375348097262800); 25S 01 W 07BCCC01 SMW–S11 near CW36 (MW–7 shallow groundwater well site 375327097285401); 25S01 W 07BCCC02 DMW–S10 near CW36 (MW–7 deep groundwater well site 375327097285402); 25S 01W 07BCCA01 SMW–S13 near CW36 (MW–8 shallow groundwater well site 375332097284801); and 25S 01W 07BCCA02 DMW–S14 near CW36 (MW–8 deep groundwater well site 375332097284802). The U.S. Geological Survey, in cooperation with the city of Wichita, assessed the effects of the ASR Phase II facility residuals return line discharges on stream quality of the Little Arkansas River by measuring continuous physicochemical properties and collecting discrete water-quality and sediment samples for about 2 years pre- (January 2011 through April 2013) and post-ASR (May 2013 through December 2014) Phase II facility operation upstream and downstream from the ASR Phase II facility. Additionally, habitat variables were quantified and macroinvertebrate and fish communities were sampled upstream and downstream from the ASR Phase II facility during the study period. To assess the effects of aquifer recharge on Equus Beds groundwater quality, continuous physicochemical properties were measured and discrete water-quality samples were collected before and during the onset of Phase II aquifer recharge in two (shallow and deep) groundwater wells.Little Arkansas River streamflow was about 10 times larger after the facility began operating because of greater rainfall. Residuals return line release volumes were a very minimal proportion (0.06 percent) of downstream streamflow volume during the months the ASR facility was operating. Upstream and downstream continuously measured water temperature and dissolved oxygen median differences were smaller post-ASR than pre-ASR. Turbidity generally was smaller at the downstream site throughout the study period and decreased at both sites after the ASR Phase II facility began discharging despite a median residuals return line turbidity that was about an order of magnitude larger than the median turbidity at the downstream site. Upstream and downstream continuously measured turbidity median differences were larger post-ASR than pre-ASR. Median post-ASR continuously measured nitrite plus nitrate and continuously computed total suspended solids and suspended-sediment concentrations were smaller than pre-ASR likely because of higher streamflows and dilution; whereas, median continuously computed dissolved and total organic carbon concentrations were larger likely because of higher streamflows and runoff conditions.None of the discretely measured water-quality constituents (dissolved and suspended solids, primary ions, suspended sediment, nutrients, carbon, trace elements, viral and bacterial indicators, and pesticides) in surface water were significantly different between the upstream and downstream sites after the ASR Phase II facility began discharging; however, pre-ASR calcium, sodium, hardness, manganese, and arsenate concentrations were significantly larger at the upstream site, which indicates that some water-quality conditions at the upstream and downstream sites were more similar post-ASR. Most of the primary constituents that make up dissolved solids decreased at both sites after the ASR Phase II facility began operation. Discretely collected total suspended solids concentrations were similar between the upstream and downstream sites before the facility began operating but were about 27 percent smaller at the downstream site after the facility began operating, despite the total suspended solids concentrations in the residuals return line being 15 times larger than the downstream site.Overall habitat scores were indicative of suboptimal conditions upstream and downstream from the ASR Phase II facility throughout the study period. Substrate fouling and sediment deposition mean scores indicated marginal conditions at the upstream and downstream sites during the study period, demonstrating that sediment deposition was evident pre- and post-ASR and no substantial changes in these habitat characteristics were noted after the ASR Phase II facility began discharging. Macroinvertebrate community composition (evaluated using functional feeding, behavioral, and tolerance metrics) generally was similar between sites during the study period. Fewer macroinvertebrate metrics were significant between the upstream and downstream sites post-ASR (6) than pre-ASR (14), which suggests that macroinvertebate communities were more similar after the ASR facility began discharging. Upstream-downstream comparisons in macroinvertebrate aquatic-life-support metrics had no significant differences for the post-ASR time period and neither site was fully supporting for any of the Kansas Department of Health and Environment aquatic-life-support metrics (Macroinvertebrate Biotic Index; Kansas Biotic Index with tolerances for nutrients and oxygen-demanding substances; Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness; and percentage of EPT species). Overall, using macroinvertebrate aquatic life-support criteria from the Kansas Department of Health and Environment, upstream and downstream sites were classified as partially supporting before and after the onset of ASR facility operations. Fish community trophic status and tolerance groups generally were similar among sites during the study period. Fish community Little Arkansas River Basin Index of Biotic Integrity scores at the upstream and downstream sites were indicative of fair-to-good conditions before the facility began operating and decreased to fair conditions after the facility began operating.Groundwater physicochemical changes concurrent with the beginning of recharge operations at the Sedgwick basin were more pronounced in shallow groundwater. No constituent concentrations in the pre-recharge period in comparison to the post-recharge period increased to concentrations exceeding drinking water regulations; however, nitrate decreased significantly from a pre-recharge exceedance of the U.S. Environmental Protection Agency maximum contaminant level to a post recharge nonexceedance. Shallow groundwater chemical concentrations or rates of detection increased after artificial recharge began for the ions potassium, chloride, and fluoride; phosphorus and organic carbon species; trace elements barium, manganese, nickel, arsenate, arsenic, and boron; agricultural pesticides atrazine, metolachlor, metribuzin, and simazine; organic disinfection byproducts bromodichloromethane and trichloromethane; and gross beta levels. Additionally, water temperature, and pH were larger after recharge began; and total solids and slime-forming bacteria concentrations and densities were smaller. Total solids, nitrate, and selenium significantly decreased; and potassium, chloride, nickel, arsenic, fluoride, phosphorus and carbon species, and gross beta levels significantly increased in shallow groundwater after artificial recharge. Results of biological activity reaction tests indicated that water quality microbiology was different before and after artificial recharge began; at times, these differences may lead to changes in dominant bacterial populations that, in turn, may lead to formation and expansion in populations that may cause bioplugging and other unwanted effects. Calcite, iron (II) hydroxide, hydroxyapatite, and similar minerals, had shifts in saturation indices that generally were from undersaturation toward equilibrium and, in some cases, toward oversaturation. These shifts toward neutral saturation indices might suggest reduced weathering of the minerals present in the Equus Beds aquifer. Chemical weathering in the shallow parts of the aquifer may be accelerated because of the increased water temperatures and the system is more vulnerable to clogged pores and mineral dissolution as the equilibrium state is affected by recharge and withdrawal. When oversaturation is indicated for iron minerals, plugging of aquifer materials may happen.

  2. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream from the mine that varied from <0.02 to 0.22ng/L. Aquatic snails collected downstream from the mine were elevated in Hg indicating significant bioavailability and uptake of Hg by these snails. Results for sediment and water indicated significant methyl-Hg formation in the ecosystem downstream from the Bonanza mine, which is enhanced by the temperate climate, high precipitation in the area, and high organic matter.

  3. Occurrence of emerging contaminants in water and bed material in the Missouri River, North Dakota, 2007

    USGS Publications Warehouse

    Damschen, William C.; Lundgren, Robert F.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Standing Rock Sioux Tribe, conducted a reconnaissance study to determine the occurrence of emerging contaminants in water and bed sediment within the Missouri River upstream and downstream from the cities of Bismarck and Mandan, North Dakota, and upstream from the city of Fort Yates, North Dakota, during September-October 2007. At each site, water samples were collected twice and bed-sediment samples were collected once. Samples were analyzed for more than 200 emerging contaminants grouped into four compound classes - wastewater compounds, human-health pharmaceutical compounds, hormones, and antibiotics. Only sulfamethoxazole, an antibiotic, was present at a concentration higher than minimum detection limits. It was detected in a water sample collected downstream from the cities of Bismarck and Mandan, and in bed-sediment samples collected at the two sites downstream from the cities of Bismarck and Mandan and upstream from Fort Yates. Sulfamethoxazole is an antibiotic commonly used for treating bacterial infections in humans and animals.

  4. Optimal reservoir operation policies using novel nested algorithms

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested optimization algorithm into the state transition that lowers the starting problem dimension and alleviates the curse of dimensionality. The algorithms can solve multi-objective optimization problems, without significantly increasing the complexity and the computational expenses. The algorithms can handle dense and irregular variable discretization, and are coded in Java as prototype applications. The three algorithms were tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system located in the Republic of Macedonia, with eight objectives, including urban water supply, agriculture, ensuring ecological flow, and generation of hydropower. Because the Zletovica hydro-system is relatively complex, the novel algorithms were pushed to their limits, demonstrating their capabilities and limitations. The nSDP and nRL derived/learned the optimal reservoir policy using 45 (1951-1995) years historical data. The nSDP and nRL optimal reservoir policy was tested on 10 (1995-2005) years historical data, and compared with nDP optimal reservoir operation in the same period. The nested algorithms and optimal reservoir operation results are analysed and explained.

  5. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    PubMed

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result. Copyright © 2015. Published by Elsevier B.V.

  6. Water-quality monitoring and process understanding in support of environmental policy and management

    USGS Publications Warehouse

    Peters, N.E.

    2008-01-01

    The quantity and quality of freshwater at any point on the landscape reflect the combined effects of many processes operating along hydrological pathways within a drainage basin/watershed/catchment. Primary drivers for the availability of water are landscape changes and patterns, and the processes affecting the timing, magnitude, and intensity of precipitation, including global climate change. The degradation of air, land, and water in one part of a drainage basin can have negative effects on users downstream; the time and space scales of the effects are determined by the residence time along the various hydrological pathways. Hydrology affects transport, deposition, and recycling of inorganic materials and sediment. These components affect biota and associated ecosystem processes, which rely on sustainable flows throughout a drainage basin. Human activities on all spatial scales affect both water quantity and quality, and some human activities can have a disproportionate effect on an entire drainage basin. Aquatic systems have been continuously modified by agriculture, through land-use change, irrigation and navigation, disposal of urban, mining, and industrial wastes, and engineering modifications to the environment. Interdisciplinary integrated basin studies within the last several decades have provided a more comprehensive understanding of the linkages among air, land, and water resources. This understanding, coupled with environmental monitoring, has evolved a more multidisciplinary integrated approach to resource management, particularly within drainage basins.

  7. Where to locate a tree plantation within a low rainfall catchment to minimise impacts on groundwater resources

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; Webb, J. A.; Jacobsen, G. E.; Chisari, R.; Dresel, P. E.

    2014-08-01

    Despite the fact that there are many studies that consider the impacts of plantation forestry on water resources, and others that explore the spatial heterogeneity of groundwater recharge in dry regions, there is little marriage of the two subjects in forestry management guidelines and legislation. Here we carry out an in-depth analysis of the groundwater and surface water regime in a low rainfall, high evapotranspiration paired catchment study to examine the impact of reforestation, using water table fluctuations and chloride mass balance methods to estimate groundwater recharge. Recharge estimations using the chloride mass balance method were shown to be more likely representative of groundwater recharge regimes prior to the planting of the trees, and most likely prior to widespread land clearance by European settlers. These estimations were complicated by large amounts of recharge occurring as a result of runoff and streamflow in the lower parts of the catchment. Water table fluctuation method estimations of recharge verified that groundwater recharge occurs predominantly in the lowland areas of the study catchment. This leads to the conclusion that spatial variations in recharge are important considerations for locating tree plantations with respect to conserving water resources for downstream users. For dry regions, this means planting trees in the upland parts of the catchments, as recharge is shown to occur predominantly in the lowland areas.

  8. Water-quality assessment of Peruque Creek, St Charles County, Missouri, July 1983 and July 1984

    USGS Publications Warehouse

    Berkas, W.R.

    1987-01-01

    Physical, chemical, and biological data collected along the downstream 24.1-river-mi reach of Peruque Creek, Missouri, on July 18-19, 1983 and July 9-10, 1984, were used to characterize the water quality conditions in the creek. Wastewater discharges into the creek at the Lake St. Louis sewage-disposal ponds and at the O'Fallon wastewater-treatment facility. The effluent from the sewage disposal ponds did not have a substantial effect on downstream water quality but that from the wastewater treatment facility caused the Missouri un-ionized ammonia standard of 0.1 mg/l as nitrogen to be exceeded downstream from the outflow. Discharge from the O'Fallon facility also caused all dissolved-oxygen concentrations measured downstream from the outflow to be less than the Missouri dissolved-oxygen standard of 5.0 mg/L. Attempts were made to calibrate and verify the QUAL-II/SEMCOG version water quality model. The model could not be adequately calibrated or verified, because of the non-uniform hydraulic conditions in Peruque Creek, which is characterized by slow velocities; long, deep pools; and inadequate mixing characteristics; and also the non-uniform quantity and quality of effluent discharged from the O'Fallon wastewater treatment facility. Thus, the assumptions of one-dimensional flow and steady-state conditions necessary for the model were not valid. The attempt to calibrate and verify the model indicated that during low-flow conditions the waste-load assimilative capacity of the downstream 17.9 river miles of Peruque Creek was limited. (USGS)

  9. The Water-Use Implications of a Changing Power Sector

    NASA Astrophysics Data System (ADS)

    Peer, R.; Sanders, K.

    2016-12-01

    Changing policies, declining natural gas prices due to shale production and, growing pressure for cleaner energy sources are causing significant shifts in the fuels and technologies utilized for US electricity generation. These shifts have already impacted the volumes of water required for cooling thermal power plants, imposing consequences for watersheds that have yet to be quantified. This research investigates how these regulatory, economic, and socially-driven changes in the power sector have impacted cooling water usage across the US, which currently represents nearly half of US water withdrawals. This study uses plant-specific fuel consumption, generation, and cooling water data to assess water usage trends in the power sector from 2008 to 2014 across HUC-8 hydrologic units. Over this period, transitions from steam-cycle coal and nuclear units towards combined-cycle natural gas units and renewables, as well as transitions from once-through cooling towards wet recirculating tower and dry cooling systems resulted in large shifts in water usage. Trends towards non-traditional cooling water sources such as recycled water reduced freshwater consumption in some watersheds. Although US cooling water withdrawals and consumption increased from 2008 to 2014 largely due to electricity demand growth, the average water withdrawn and consumed per unit of electricity generated decreased and remained similar in magnitude, respectively. Changes at the watershed scale were not uniform, with some experiencing significant water use reductions and environmental benefits, especially due to coal-fired power plant retirements. Results highlight the importance of evaluating both water withdrawals and consumption at local spatial scales, as these shifts have varying consequences on water availability and quality for downstream users and ecosystems. This analysis underscores the importance of prioritizing local water security in global climate change adaptation and mitigation efforts.

  10. Watershed sustainability: Downstream effects of timber harvest in the Ozarks of Missouri

    USGS Publications Warehouse

    Jacobson, Robert B.

    2004-01-01

    The downstream effects of timber harvest in the Ozarks of Missouri can be evaluated by analogy to other geographic areas and by historical analysis of responses to past land use activities. Based on research from other geographic regions, timber harvest in the Ozarks would be expected to have minor effects on annual water yield and dissolved-phase water quality. The potential exists for haul roads to increase stormflow discharges and sediment yields. Of the possible downstream effects, sediment yield is potentially the most severe and difficult to predict; siting and design of roads are probably the most critical management concerns for minimizing downstream effects. Historical analysis shows that Ozark streams have been destabilized by past land use practices, primarily in the riparian zone. Therefore, present-day timber harvest takes place in a landscape where streams have lowered resilience to disturbance. Predictions of future downstream effects of timber harvest in the Ozarks are complicated by the inherent complexity of cumulative watershed effects and the lack of detailed, long-term instrumental records at appropriate scales.

  11. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  12. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    USGS Publications Warehouse

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    Drainage from abandoned and inactive mines and from naturally mineralized areas in the San Juan Mountains of southern Colorado contributes metals to the upper Animas River near Silverton, Colorado. Tracer-injection studies and associated synoptic sampling were performed along two reaches of the upper Animas River to develop detailed profiles of stream discharge and to locate and quantify sources of metal loading. One tracer-injection study was performed in September 1997 on the Animas River reach from Howardsville to Silverton, and a second study was performed in August 1998 on the stream reach from Eureka to Howardsville. Drainage in the upper Animas River study reaches contributed aluminum, calcium, copper, iron, magnesium, manganese, sulfate, and zinc to the surface-water system in 1997 and 1998. Colloidal aluminum, dissolved copper, and dissolved zinc were attenuated through a braided stream reach downstream from Eureka. Instream dissolved copper concentrations were lower than the State of Colorado acute and chronic toxicity standards downstream from the braided reach to Silverton. Dissolved iron load and concentrations increased downstream from Howardsville and Arrastra Gulch, and colloidal iron remained constant at low concentrations downstream from Howardsville. Instream sulfate concentrations were lower than the U.S. Environmental Protection Agency's secondary drinking-water standard of 250 milligrams per liter throughout the two study reaches. Elevated zinc concentrations are the primary concern for aquatic life in the upper Animas River. In the 1998 Eureka to Howardsville study, instream dissolved zinc load increased downstream from the Forest Queen mine, the Kittimack tailings, and Howardsville. In the 1997 Howardsville to Silverton study, there were four primary areas where zinc load increased. First, was the increase downstream from Howardsville and abandoned mining sites downstream from the Cunningham Gulch confluence, which also was measured during the 1998 study. The second affected reach was downstream from Arrastra Gulch, where the increase in zinc load seems related to a series of right-bank inflows with low pH Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998By Suzanne S. Paschke, Briant A. Kimball, and Robert L. Runkeland elevated dissolved zinc concentrations. A third increase in zinc load occurred 6,100 meters downstream from the 1997 injection site and may have been from ground-water discharge with elevated zinc concentrations based on mass-loading graphs and the lack of visible inflow in the reach. A fourth but lesser dissolved zinc load increase occurred downstream from tailings near the Lackawanna Mill. Results of the tracer-injection studies and the effects of potential remediation were analyzed using the one- dimensional stream-transport computer code OTIS. Based on simulation results, instream zinc concentrations downstream from the Kittimack tailings to upstream from Arrastra Gulch would approach 0.16 milligram per liter (the upper limit of acute toxicity for some sensitive aquatic species) if zinc inflow concentrations were reduced by 75 percent in the stream reaches receiving inflow from the Forest Queen mine, the Kittimack tailings, and downstream from Howardsville. However, simulated zinc concentrations downstream from Arrastra Gulch were higher than approximately 0.30 milligram per liter due to numerous visible inflows and assumed ground-water discharge with elevated zinc concentrations in the lower part of the study reach. Remediation of discrete visible inflows seems a viable approach to reducing zinc inflow loads to the upper Animas River. Remediation downstream from Arrastra Gulch is more complicated because ground-water discharge with elevated zinc concentrations seems to contribute to the instream zinc load.

  13. Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system.

    PubMed

    McEachran, Andrew D; Hedgespeth, Melanie L; Newton, Seth R; McMahen, Rebecca; Strynar, Mark; Shea, Damian; Nichols, Elizabeth Guthrie

    2018-05-01

    Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contaminants of emerging concern (CECs) before release of treated wastewater. To better characterize CECs and potential for increased implementation of FWR systems, FWR systems need to be directly compared to conventional WWTPs. In this study, both a quantitative, targeted analysis and a nontargeted analysis were utilized to better understand how CECs release to waterways from an FWR system compared to a conventional treatment system. Quantitatively, greater concentrations and total mass load of CECs was exhibited downstream of the conventional WWTP compared to the FWR. Average summed concentrations of 33 targeted CECs downstream of the conventional system were ~ 1000 ng/L and downstream of the FWR were ~ 30 ng/L. From a nontargeted chemical standpoint, more tentatively identified chemicals were present, and at a greater relative abundance, downstream of the conventional system as well. Frequently occurring contaminants included phthalates, pharmaceuticals, and industrial chemicals. These data indicate that FWR systems represent a sustainable wastewater treatment alternative and that emerging contaminant release to waterways was lower at a FWR system than a conventional WWTP.

  14. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey.

    PubMed

    Ahmed, A M; Sulaiman, W N

    2001-11-01

    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.

  15. Analysis of dissolved gas and fluid chemistry in mountainous region of Goaping river watershed in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, Kai-Wen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    Annual rainfall in Taiwan is up to 2500 mm, about 2.5 times the average value of the world. However due to high topographic relief of the Central Mountain Range in Taiwan, groundwater storage is critical for water supply. Mountain region of the Goaping river watershed in southern Taiwan is one of the potential areas to develop groundwater recharge model. Therefore the target of this study is to understand sources of groundwater and surface water using dissolved gas and fluid chemistry. Four groundwater and 6 surface water samples were collected from watershed, 5 groundwater and 13 surface water samples were collected from downstream. All samples were analyzed for stable isotopes (hydrogen and oxygen), dissolved gases (including nitrogen, oxygen, argon, methane and carbon dioxide), noble gases (helium and radon) and major ions. Hydrogen and oxygen isotopic ratios of surface water and groundwater samples aligned along meteoric water line. For surface water, dissolved gases are abundant in N2 (>80%) and O2 (>10%); helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air); radon-222 concentration is below the detection limit (<200 Bq/m3); and concentrations of major anions and cations are low (Na+ <20 ppm, Ca2+ < 60 ppm, Cl- <2 ppm). All these features indicate that surface waters are predominately recharged by precipitation. For groundwater, helium isotopic ratios (0.9˜0.23 RA) are lower and radon-222 concentrations (300˜6000 Bq/m3) are much higher than the surface water. Some samples have high amounts of dissolved gases, such as CH4 (>20%) or CO2 (>10%), most likely contributed by biogenic or geogenic sources. On the other hand, few samples that have temperature 5° higher than the average of other samples, show significantly high Na+ (>1000 ppm), Ca2+ (>150 ppm) and Cl- (>80 ppm) concentrations. An interaction between such groundwater and local hot springs is inferred. Watershed and downstream samples differ in dissolved gas species and fluid chemistry for groundwater and surface water. The higher hydrogen and oxygen isotopic ratios for surface water from downstream are most probably caused by evaporation. Low radon-222 concentrations of some groundwater from downstream may represent sources from different aquifers. Therefore, we conclude that surface water from downstream are recharged directly from its watershed, but groundwater are influenced by the local geological environment. Keywords: groundwater, dissolved gas, noble gas, radon in water, 3He/4He

  16. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Skalak, Katherine; Kent, D.B.; Engle, Mark A.; Benthem, Adam J.; Mumford, Adam; Haase, Karl B.; Farag, Aïda M.; Harper, David; Nagel, S. C.; Iwanowicz, Luke R.; Orem, William H.; Akob, Denise M.; Jaeschke, Jeanne B.; Galloway, Joel M.; Kohler, Matthias; Stoliker, Deborah L.; Jolly, Glenn D.

    2017-01-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4 M L (million liters) of wastewater (300 g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030 mg/L) and bromide (7.8 mg/L) downstream from the spill, compared to upstream levels (11 mg/L and < 0.4 mg/L, respectively). Lithium (0.25 mg/L), boron (1.75 mg/L) and strontium (7.1 mg/L) were present downstream at 5–10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1 km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects.

  17. Management and assimilation of diverse, distributed watershed datasets

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Faybishenko, B.; Versteeg, R.; Agarwal, D.; Hubbard, S. S.; Hendrix, V.

    2016-12-01

    The U.S. Department of Energy's (DOE) Watershed Function Scientific Focus Area (SFA) seeks to determine how perturbations to mountainous watersheds (e.g., floods, drought, early snowmelt) impact the downstream delivery of water, nutrients, carbon, and metals over seasonal to decadal timescales. We are building a software platform that enables integration of diverse and disparate field, laboratory, and simulation datasets, of various types including hydrological, geological, meteorological, geophysical, geochemical, ecological and genomic datasets across a range of spatial and temporal scales within the Rifle floodplain and the East River watershed, Colorado. We are using agile data management and assimilation approaches, to enable web-based integration of heterogeneous, multi-scale dataSensor-based observations of water-level, vadose zone and groundwater temperature, water quality, meteorology as well as biogeochemical analyses of soil and groundwater samples have been curated and archived in federated databases. Quality Assurance and Quality Control (QA/QC) are performed on priority datasets needed for on-going scientific analyses, and hydrological and geochemical modeling. Automated QA/QC methods are used to identify and flag issues in the datasets. Data integration is achieved via a brokering service that dynamically integrates data from distributed databases via web services, based on user queries. The integrated results are presented to users in a portal that enables intuitive search, interactive visualization and download of integrated datasets. The concepts, approaches and codes being used are shared across various data science components of various large DOE-funded projects such as the Watershed Function SFA, Next Generation Ecosystem Experiment (NGEE) Tropics, Ameriflux/FLUXNET, and Advanced Simulation Capability for Environmental Management (ASCEM), and together contribute towards DOE's cyberinfrastructure for data management and model-data integration.

  18. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    PubMed

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation of seasonal trends. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  1. Data Evaluation of Actinide Cross Sections: 238Pu, 237Pu, and 236Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guaglioni, S.; Jurgenson, E.; Descalle, M. A.

    This report documents the recent evaluation of the 236Pu, 237Pu, and 238Pu cross section sets. Nuclear data evaluation is the fundamental interface that takes measured nuclear cross section data and turns them into a continuous curve that 1) is consistent with other measurements and nuclear reaction theory/models, and 2) is required by down-stream users. All experiments that generate nuclear data need to include an evaluation step for their data to be broadly useful to the end users.

  2. Fate and forms of Cu in a reservoir ecosystem following copper sulfate treatment (Saint Germain les Belles, France)

    NASA Astrophysics Data System (ADS)

    van Hullebusch, E.; Chatenet, P.; Deluchat, V.; Chazal, P. M.; Froissard, D.; Lens, P. N. L.; Baudu, M.

    2003-05-01

    Copper sulfate (CuSO4) addition to freshwater for phytoplankton control has been practiced for decades, and remains the most effective algicidal treatment for numerous managed water bodies. A reservoir in the centre of France was the site for an investigation of copper distribution in aquatic systems after a copper sulfate treatment Results of copper monitoring showed a rapid conversion of dissolved Cu to particulate forms, with significant accumulation in the sediments/83% of total copper added). Total sediment Cu content increasedfrom approximately 37.7 to 45.4 μg.g^{-1} dry weight after the first treatment. Sequential extraction suggested that a significanl portion of the sediment-borne Cu was associated with the organic fraction which may release Cu to the water column, although significant release would occur only under extreme changes in water chemistry. Based upon measured Cu concentrations, flows at the down-stream water, and known mass applied during treatment, mass balance calculations indicated that approximately 17% of the Cu was exported from the reservoir over a 70 day period following a 196 μg.L^{-l} Cu^{2+} (as CuSO4, 5 H2O) treatment. The largest amount of copper was probably adsorbed on downstream sediment or lost in running water, Copper bioaccumulation by a moss, Fontinalis antipyretica, in the down-stream water showed that it was possible to distinguish between a treated and an untreated area. The impact of copper treatment in the down-stream reservoir could be followed using mosses. The bioaccumulation data further showed that there is a distance effect which could be exploited to determine potential copper impact on receiving water bodies. Thirty days after copper sulfate addition, Fontinalis still indicated copper exposure.

  3. Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97

    USGS Publications Warehouse

    Sarver, K.M.; Steiner, B.C.

    1998-01-01

    Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.

  4. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    NASA Astrophysics Data System (ADS)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  5. Impact of Environmentally Based Chemical Hardness on Uranium Speciation and Toxicity in Six Aquatic Species

    PubMed Central

    Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V

    2015-01-01

    Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO42–) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. PMID:25475484

  6. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.

    PubMed

    Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R

    2018-06-07

    Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological processes in upstream areas and downstream flow and, therefore, protecting GIWs is important for enhanced hydrological resilience to extreme flow conditions in this region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability. © 2015 John Wiley & Sons Ltd.

  8. Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste

    USGS Publications Warehouse

    Hines, M.E.; Horvat, M.; Faganeli, J.; Bonzongo, J.-C.J.; Barkay, T.; Major, E.B.; Scott, K.J.; Bailey, E.A.; Warwick, J.J.; Lyons, W.B.

    2000-01-01

    The Idrija Mine is the second largest Hg mine in the world which operated for 500 years. Mercury (Hg)-laden tailings still line the banks, and the system is a threat to the Idrija River and water bodies downstream including the Soca/Isonzo River and the Gulf of Trieste in the northern Adriatic Sea. A multidisciplinary study was conducted in June 1998 on water samples collected throughout the Idrija and Soca River systems and waters and sediments in the Gulf. Total Hg in the Idrija River increased >20-fold downstream of the mine from 60 ng liter-1 with methyl mercury (MeHg) accounting for ~0.5%. Concentrations increased again downstream and into the estuary with MeHg accounting for nearly 1.5% of the total. While bacteria upstream of the mine did not contain mercury detoxification genes (mer), such genes were detected in bacteria collected downstream. Benthic macroinvertebrate diversity decreased downstream of the mine. Gulf waters near the river mouth contained up to 65 ng liter-1 total Hg with ~0.05 ng liter-1 MeHg. Gulf sediments near the river mouth contained 40 ??g g-1 total Hg with MeHg concentrations of about 3 ng g-1. Hg in sediment pore waters varied between 1 and 8 ng liter-1, with MeHg accounting for up to 85%. Hg methylation and MeHg demethylation were active in Gulf sediments with highest activities near the surface. MeHg was degraded by an oxidative pathway with >97% C released from MeHg as CO2. Hg methylation depth profiles resembled profiles of dissolved MeHg. Hg-laden waters still strongly impact the riverine, estuarine, and marine systems. Macroinvertebrates and bacteria in the Idrija River responded to Hg stress, and high Hg levels persist into the Gulf. Increases in total Hg and MeHg in the estuary demonstrate the remobilization of Hg, presumably as HgS dissolution and recycling. Gulf sediments actively produce MeHg, which enters bottom waters and presumably the marine food chain. (C) 2000 Academic Press.

  9. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    USGS Publications Warehouse

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature.

  10. Wildfire and the future of water supply.

    PubMed

    Bladon, Kevin D; Emelko, Monica B; Silins, Uldis; Stone, Micheal

    2014-08-19

    In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.

  11. Watering the forest for the trees: An emerging priority for managing water in forest landscapes

    USGS Publications Warehouse

    Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.

    2013-01-01

    Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.

  12. Determination of flow losses in the Cape Fear River between B. Everett Jordan Lake and Lillington, North Carolina, 2008-2010

    USGS Publications Warehouse

    Weaver, J. Curtis; McSwain, Kristen Bukowski

    2013-01-01

    During 2008-2010, the U.S. Geological Survey conducted a hydrologic investigation in cooperation with the Triangle J Council of Governments Cape Fear River Flow Study Committee and the North Carolina Division of Water Resources to collect hydrologic data in the Cape Fear River between B. Everett Jordan Lake and Lillington in central North Carolina to help determine if suspected flow losses occur in the reach. Flow loss analyses were completed by summing the daily flow releases at Jordan Lake Dam with the daily discharges at Deep River at Moncure and Buckhorn Creek near Corinth, then subtracting these values from the daily discharges at Cape Fear River at Lillington. Examination of long-term records revealed that during 10,227 days of the 1983-2010 water years, 408 days (4.0 percent) had flow loss when conditions were relatively steady with respect to the previous day's records. The flow loss that occurred on these 40 days ranged from 0.49 to 2,150 cubic feet per second with a median flow loss of 37.2 cubic feet per second. The months with the highest number of days with flow losses were June (16. percent), September (16.9 percent), and October (19.4 percent). A series of synoptic discharge measurements made on six separate days in 2009 provided "snapshots" of overall flow conditions along the study reach. The largest water diversion is just downstream from the confluence of the Haw and Deep Rivers, and discharges substantially decrease in the main stem downstream from the intake point. Downstream from Buckhorn Dam, minimal gain or loss between the dam and Raven Rock State Park was noted. Analyses of discharge measurements and ratings for two streamgages-one at Deep River at Moncure and the other at Cape Fear River at Lillington-were completed to address the accuracy of the relation between stage and discharge at these sites. The ratings analyses did not indicate a particular time during the 1982-2011 water years in which a consistent bias occurred in the computations of discharge records that would indicate false flow losses. A total of 34 measured discharges at a streamgage on the Haw River below B. Everett Jordan Lake near Moncure were compared with the reported hourly flow releases from Jordan Lake Dam. Because 28 of 34 measurements were within plus or minus 10 percent of the hourly flow releases reported by the U.S Army Corps of Engineers, use of the current discharge computation tables for reporting Jordan Lake Dam flow releases is generally supported. A stage gage was operated on the Cape Fear River at Buckhorn Dam near Corinth to collect continuous stage-only records. Throughout the study period, flow over the dam was observed along its length, and flow loss within the study reach is not attributed to river-level fluctuations at the dam. Water-use information and (or) data were obtained for five industrial facilities, a regional power utility, two municipalities, one small hydropower facility on the Deep River, and one quarry operation also adjacent to the Deep River. The largest water users are the regional power producer, a small hydropower operation, and the two municipalities. The total water-use diversions for these facilities range from almost 25.5 to 38.5 cubic feet per second (39.5 to 59.5 million gallons per day) during the winter and summer periods, respectively. This range is equivalent to 69 to 104 percent of the 37 cubic feet per second median flow loss. The Lockville hydropower station is on the Deep River about 1 mile downstream from the streamgage near Moncure. Run-of-river operations at the facility do not appear to affect flow losses in the study reach. The largest water user in the study area is a regional power producer at a coal-fired power-generation plant located immediately adjacent to the Cape Fear River just downstream from the confluence of the Haw an Deep Rivers. Comparisons of daily water withdrawals, sup-plied by the regional power producer, and discharge records at a streamgage on the diversion canal indicated many days when consumption exceeded the producer's estimates for the cooling towers. Uncertainty surrounding reasonable estimates of consumption remained in effect at the end of the study. Data concerning evaporative losses were compiled using two approaches-an analysis of available pan-evaporation data from a National Weather Service cooperative observer station in Chapel Hill, North Carolina; and a compilation of reference open-water evaporation computed by the State Climate Office of North Carolina. The potential flow loss by evaporation from the main stem and the Deep River was estimated to be in the range of 4 to 14 cubic feet per second during May through October, equivalent to 10 to 38 percent of the 37 cubic feet per second median flow loss. Daily water-use diversions and evaporation losses were compared to flow-loss occurrences during the period April 2008 through September 2010. In comparing the surface-water, water-use, and evaporation data compiled for 2008-2010, it is evident that documented water diversions combined with flow losses by open-water evaporation can exceed the net flow gain in the study area and result in flow losses from the reach. Analysis of data from a streamgage downstream from the regional power plant on the diversion canal adjacent to the Cape Fear River provided insight into the occurrence of an apparent flow loss at the streamgage at Lillington. Assessment of the daily discharges and subsequent hydrographs for the canal streamgage indicated at least 24 instances during the study when the flows suddenly changed by magnitudes of 100 to more that 200 cubic feet per second, resulting in a noted time-lag effect on the downstream discharges at the Lillington streamgage, beginning 8 to 16 hours after the sudden flow change. A fiber-optic distributed temperature-sensing survey was conducted on the Cape Fear River at the Raven Rock State Park reach August 12-14, 2009, to determine if the presence of diabase dikes were preferentially directing groundwater discharge. No temperature anomalies of colder water were measured during the survey, which indicated that at the time of the survey that particular reach of the Cape Fear River was a "no-flow" or losing stream. An aerial thermal-infrared survey was conducted on the Haw and Cape Fear Rivers on February 27, 2010, from Jordan Lake Dam to Lillington to qualitatively delineate areas of groundwater discharge on the basis of the contrast between warm groundwater discharge and cold surface-water temperatures. Dis-charge generally was noted as diffuse seepage, but in a few cases springs were detected as inflow at a discrete point of discharge. Two reaches of the Cape Fear River (regional power plant and Bradley Road reaches) were selected for groundwater monitoring with a transect of piezometers installed within the flood plain. Groundwater-level altitudes at these reaches were analyzed for 1 water year (October 1, 2009, to September 30, 2010). Data collected as part of this study represent only a brief period of time and may not represent all conditions and all years; however, the data indicate that, during the dry summer months, the Cape Fear River within the study area is losing an undetermined quantity of water through seepage. Analyses completed during this investigation indicate a study reach with complex flow patterns affected by numerous concurrent factors resulting in flow losses. The causes of flow loss could not be solely attributed to any one factor. Among the factors considered, the occurrences of water diversions and evaporative losses were determined to be sufficient on some days (particularly during the base-flow period) to exceed the net gain in flows between the upstream and downstream ends of the study area. Losses by diversions and evaporation can exceed the median flow loss of 3 cubic feet per second, which indicates that flow loss from the study reach is real. Groundwater data collected during 2009-2010 indicate the possibility of localized flow loss during the summer, particularly in the impounded reach above Buckhorn Dam. However, no indication of unusual patterns was noted that would cause substantial flow loss by groundwater and surface-water interaction at the river bottom.

  13. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program.

    PubMed

    Zheng, Hua; Robinson, Brian E; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C

    2013-10-08

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers' livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China's capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit-cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants.

  14. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program

    PubMed Central

    Zheng, Hua; Robinson, Brian E.; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C.

    2013-01-01

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers’ livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China’s capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit–cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants. PMID:24003160

  15. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    PubMed

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    PubMed

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  17. Studying User Income through Language, Behaviour and Affect in Social Media.

    PubMed

    Preoţiuc-Pietro, Daniel; Volkova, Svitlana; Lampos, Vasileios; Bachrach, Yoram; Aletras, Nikolaos

    2015-01-01

    Automatically inferring user demographics from social media posts is useful for both social science research and a range of downstream applications in marketing and politics. We present the first extensive study where user behaviour on Twitter is used to build a predictive model of income. We apply non-linear methods for regression, i.e. Gaussian Processes, achieving strong correlation between predicted and actual user income. This allows us to shed light on the factors that characterise income on Twitter and analyse their interplay with user emotions and sentiment, perceived psycho-demographics and language use expressed through the topics of their posts. Our analysis uncovers correlations between different feature categories and income, some of which reflect common belief e.g. higher perceived education and intelligence indicates higher earnings, known differences e.g. gender and age differences, however, others show novel findings e.g. higher income users express more fear and anger, whereas lower income users express more of the time emotion and opinions.

  18. Studying User Income through Language, Behaviour and Affect in Social Media

    PubMed Central

    Preoţiuc-Pietro, Daniel; Volkova, Svitlana; Lampos, Vasileios; Bachrach, Yoram; Aletras, Nikolaos

    2015-01-01

    Automatically inferring user demographics from social media posts is useful for both social science research and a range of downstream applications in marketing and politics. We present the first extensive study where user behaviour on Twitter is used to build a predictive model of income. We apply non-linear methods for regression, i.e. Gaussian Processes, achieving strong correlation between predicted and actual user income. This allows us to shed light on the factors that characterise income on Twitter and analyse their interplay with user emotions and sentiment, perceived psycho-demographics and language use expressed through the topics of their posts. Our analysis uncovers correlations between different feature categories and income, some of which reflect common belief e.g. higher perceived education and intelligence indicates higher earnings, known differences e.g. gender and age differences, however, others show novel findings e.g. higher income users express more fear and anger, whereas lower income users express more of the time emotion and opinions. PMID:26394145

  19. Biodegradation of 17β-Estradiol, Estrone and Testosterone in Stream Sediments

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Chapelle, F. H.; Barber, L. B.; McMahon, P. B.; Gray, J. L.; Kolpin, D. W.

    2009-12-01

    The potentials for in situ biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the “A” ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant “A” ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for non-conservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  20. Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1982-01-01

    A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.

  1. Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies.

    PubMed

    Thellmann, Paul; Köhler, Heinz-R; Rößler, Annette; Scheurer, Marco; Schwarz, Simon; Vogel, Hans-Joachim; Triebskorn, Rita

    2015-11-01

    In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.

  2. Quantifying Current and Future Groundwater Storage in Snowmelt Dominated High Elevation Meadows of the Sierra Nevada Mountains, CA

    NASA Astrophysics Data System (ADS)

    Lowry, C.; Ciruzzi, D. M.

    2016-12-01

    In a warming climate, snowmelt dominated mountain systems such as the Sierra Nevada Mountains of California have limited water storage potential. Receding glaciers and recent drought in the Sierra Nevada Mountains has resulted in reduced stream flow, restricting water availability for mountain vegetation. These geologic settings provide limited opportunities for groundwater storage due to a thin soil layer overlying expansive granitic bedrock. Yet high elevation meadows, which have formed in small depressions within the granitic bedrock, represent the only long-term storage reservoirs for water within the region. Through the use of field observations and numerical modeling this research investigates the role of meadow geometry, sediment properties, and topographic gradient to retain snowmelt derived groundwater recharge. These controlling factors affecting groundwater storage dynamics and surface-water outflows are evaluated under both current and dryer climatic conditions. Results show differential changes in seasonal storage of snowmelt and surface-water outflow under varying climate scenarios. The magnitude and timing of water storage and release is highly dependent on bedrock geometry and position within the watershed. Results show decrease of up to 20% in groundwater storage under dryer future climates resulting in a shift from long-term storage to steady release of water from these meadows. Testing of prior assumptions, such as uniform thickness, on meadow groundwater storage are shown to overestimate storage, resulting in higher volumes of water being released to streams earlier than observed in previous simulations. These results have implications for predicting water availability for downstream users as well as providing water for root water uptake of meadow vegetation under both current and future conditions.

  3. Sediment transport and water-quality characteristics and loads, White River, northwestern Colorado, water years 1975-88

    USGS Publications Warehouse

    Tobin, R.L.

    1993-01-01

    Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.

  4. Association of ice and river channel morphology determined using ground-penetrationg radar in the Kuparuk River, Alaska

    USGS Publications Warehouse

    Best, Heather; McNamara, J.P.; Liberty, Lee M.

    2005-01-01

    We collected ground-penetrating radar data at 10 sites along the Kuparuk River and its main tributary, the Toolik River, to detect unfrozen water beneath river ice. We used 250 MHz and 500 MHz antennas to image both the ice-water interface and the river channel in late April 2001, when daily high temperatures were consistently freezing and river ice had attained its maximum seasonal thickness. The presence of water below the river ice appears as a strong, horizontal reflection observed in the radar data and is confirmed by drill hole data. A downstream transition occurs from ice that is frozen to the bed, called bedfast ice, to ice that is floating on unfrozen water, called floating ice. This transition in ice type corresponds to a downstream change in channel size that was detected in previously conducted hydraulic geometry surveys of the Kuparuk River. We propose a conceptual model wherein the downstream transition from bedfast ice to floating ice is responsible for an observed step change in channel size due to enhanced bank erosion in large channels by floating ice.

  5. Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams

    USGS Publications Warehouse

    Haggard, B.E.; Galloway, J.M.; Green, W.R.; Meyer, M.T.

    2006-01-01

    Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN). ?? ASA, CSSA, SSSA.

  6. Assessment of elemental concentrations in streams of the New Lead Belt in southeastern Missouri, 2002-05

    USGS Publications Warehouse

    Brumbaugh, William G.; May, Thomas W.; Besser, John M.; Allert, Ann L.; Schmitt, Christopher J.

    2007-01-01

    Concerns about possible effects of lead-mining activities on the water quality of federally protected streams located in southeastern Missouri prompted a suite of multidisciplinary studies to be conducted by the U.S. Geological Survey. As part of this investigation, a series of biological studies were initiated in 2001 for streams in the current mining region and the prospecting area. In this report, results are examined for trace elements and other selected chemical measurements in sediment, surface water, and sediment interstitial (pore) water sampled between 2002 and 2005 in association with these biological studies. Compared to reference sites, fine sediments collected downstream from mining areas were enriched in metals by factors as large as 75 for cadmium, 62 for cobalt, 171 for nickel, 95 for lead, and 150 for zinc. Greatest metal concentrations in sediments collected in 2002 were from sites downstream from mines on Strother Creek, Courtois Creek, and the West Fork Black River. Sediments from sites on Bee Fork, Logan Creek, and Sweetwater Creek also were noticeably enriched in lead. Sediments in Clearwater Lake, at least 75 kilometers downstream from mining activity, had metal concentrations that were 1.5 to 2.1 times greater than sediments in an area of the lake with no upstream mining activity. Longitudinal sampling along three streams in 2004 indicated that sediment metal concentrations decreased considerably a few kilometers downstream from mining activities; however, in Strother Creek some metals were still enriched by a factor of five or more as far as 13 kilometers downstream from the Buick tailings impoundment. Compared with 2002 samples, metals concentrations were dramatically lower in sediments collected in 2004 at an upper West Fork Black River site, presumably because beneficiation operations at the West Fork mill ceased in 2000. Concentrations of metals and sulfate in sediment interstitial (pore) waters generally tracked closely with metal concentrations in sediments. Metals, including cobalt, nickel, lead, and zinc, were elevated substantially in laboratory-produced pore waters of fine sediments collected near mining operations in 2002 and 2004. Passive diffusion samplers (peepers) buried 4 to 6 centimeters deep in riffle-run stream sediments during 2003 and 2005 had much lower pore-water metal concentrations than the laboratory-produced pore waters of fine sediments collected in 2002 and 2004, but each sampling method produced similar patterns among sites. The combined mean concentration of lead in peeper samples from selected sites located downstream from mining activities for six streams was about 10-fold greater than the mean of the reference sites. In most instances, metals concentrations in surface water and peeper water were not greatly different, indicating considerable exchange between the surface water and pore water at the depths and locations where peepers were situated. Passive sampling probes used to assess metal lability in pore waters of selected samples during 2004 sediment toxicity tests indicated that most of the filterable lead in the laboratory-prepared pore water was relatively non-labile, presumably because lead was complexed by organic matter, or was present as colloidal species. In contrast, large percentages of cobalt and nickel in pore water appeared to be labile. Passive integrative samplers deployed in surface water for up to 3 weeks at three sites in July 2005 confirmed the presence of elevated concentrations of labile metals downstream from mining operations on Strother Creek and, to a lesser extent, Bee Fork. These samplers also indicated a considerable increase in metal loadings occurred for a few days at the Strother Creek site, which coincided with moderate increases in stream discharges in the area.

  7. The effect of sewage effluent on the physico-chemical and biological characteristics of the Sand River, Limpopo, South Africa

    NASA Astrophysics Data System (ADS)

    Seanego, K. G.; Moyo, N. A. G.

    Population growth in urban areas is putting pressure on sewage treatment plants. The improper treatment of sewage entering the aquatic ecosystems causes deterioration of the water quality of the receiving water body. The effect of sewage effluent on the Sand River was assessed. Eight sampling sites were selected, site 1 and 2 were upstream of the sewage treatment plant along the urbanised area of Polokwane, whilst sites 3, 4, 5, 6, 7 and 8 were downstream. The physico-chemical parameters and coliform counts in the water samples were determined. The suitability of the water for irrigation was also determined. Hierarchical average linkage cluster analysis produced two clusters, grouping two sites above the sewage treatment works and six sites downstream of the sewage effluent discharge point. Principal component analysis (PCA) identified total nitrogen, total phosphorus, conductivity and salinity as the major factors contributing to the variability of the Sand River water quality. These factors are strongly associated with the downstream sites. Canonial correspondence analysis (CCA) indicated the macroinvertebrates, Chironomidae, Belastomatidae, Chaoborus and Hirudinea being strongly associated with nitrogen, phosphorus, conductivity and temperature. Escherichia coli levels in the Polokwane wastewater treatment works maturation ponds, could potentially lead to contamination of the Polokwane aquifer. The Sodium Adsorption Ratio was between 1.5 and 3.0 and residual sodium carbonate was below 1.24 Meq/l, indicating that the Sand River water is still suitable for irrigation. The total phosphorus concentrations fluctuated across the different site. Total nitrogen concentrations showed a gradual decrease downstream from the point of discharge. This shows that the river still has a good self-purification capacity.

  8. Featured collection introduction: Connectivity of streams and wetlands to downstream waters

    USGS Publications Warehouse

    Alexander, Laurie C.; Fritz, Ken M.; Schofield, Kate; Autrey, Bradley; DeMeester, Julie; Golden, Heather E.; Goodrich, David C.; Kepner, William G.; Kiperwas, Hadas R.; Lane, Charles R.; LeDuc, Stephen D.; Leibowitz, Scott; McManus, Michael G.; Pollard, Amina I.; Ridley, Caroline E.; Vanderhoof, Melanie; Wigington, Parker J.

    2018-01-01

    Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations.

  9. Purifying fluoride-contaminated water by a novel forward osmosis design with enhanced flux under reduced concentration polarization.

    PubMed

    Pal, Madhubonti; Chakrabortty, Sankha; Pal, Parimal; Linnanen, Lassi

    2015-08-01

    For purifying fluoride-contaminated water, a new forward osmosis scheme in horizontal flat-sheet cross flow module was designed and investigated. Effects of pressure, cross flow rate, draw solution and alignment of membrane module on separation and flux were studied. Concentration polarization and reverse salt diffusion got significantly reduced in the new hydrodynamic regime. This resulted in less membrane fouling, better solute separation and higher pure water flux than in a conventional module. The entire scheme was completed in two stages-an upstream forward osmosis for separating pure water from contaminated water and a downstream nanofiltration operation for continuous recovery and recycle of draw solute. Synchronization of these two stages of operation resulted in a continuous, steady-state process. From a set of commercial membranes, two polyamide composite membranes were screened out for the upstream and downstream filtrations. A 0.3-M NaCl solution was found to be the best one for forward osmosis draw solution. Potable water with less than 1% residual fluoride could be produced at a high flux of 60-62 L m(-2) h(-1) whereas more than 99% draw solute could be recovered and recycled in the downstream nanofiltration stage from where flux was 62-65 L m(-2) h(-1).

  10. EVALUATING THE EFFECTS OF UPSTREAM DISCHARGERS ON DOWNSTREAM WATER SUPPLIES: A SOURCE WATER PROTECTION MODEL

    EPA Science Inventory

    Source water protection is a component of the 1996 Amendments to the Safe Drinking Water Act. Drinking water utilities have adopted widely different philosophies for source water protection. the City of New York, with large upland water reservoirs, is investing millions of doll...

  11. TRITIUM BARRIER MATERIALS AND SEPARATION SYSTEMS FOR THE NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, S; Thad Adams, T

    2008-07-17

    Contamination of downstream hydrogen production plants or other users of high-temperature heat is a concern of the Next Generation Nuclear Plant (NGNP) Project. Due to the high operating temperatures of the NGNP (850-900 C outlet temperature), tritium produced in the nuclear reactor can permeate through heat exchangers to reach the hydrogen production plant, where it can become incorporated into process chemicals or the hydrogen product. The concentration limit for tritium in the hydrogen product has not been established, but it is expected that any future limit on tritium concentration will be no higher than the air and water effluent limitsmore » established by the NRC and the EPA. A literature survey of tritium permeation barriers, capture systems, and mitigation measures is presented and technologies are identified that may reduce the movement of tritium to the downstream plant. Among tritium permeation barriers, oxide layers produced in-situ may provide the most suitable barriers, though it may be possible to use aluminized surfaces also. For tritium capture systems, the use of getters is recommended, and high-temperature hydride forming materials such as Ti, Zr, and Y are suggested. Tritium may also be converted to HTO in order to capture it on molecular sieves or getter materials. Counter-flow of hydrogen may reduce the flux of tritium through heat exchangers. Recommendations for research and development work are provided.« less

  12. Natural attenuation of mining pollutants in the transboundary Save River

    NASA Astrophysics Data System (ADS)

    Meck, M. L.; Masamba, W. R. L.; Atlhopheng, J.; Ringrose, S.

    The objective of the study was to investigate the role played by the natural environment in protecting the transboundary Save River from the impacts of metals derived from phosphate mining at Dorowa. The study is a follow up study from a previous one that noted that there is natural attenuation at Dorowa. Water and sediment samples were collected in the Save River and the streams that drain the Dorowa dumps. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the cations (Na +, K +, Ca 2+, Mg 2+, Cu 2+, Co 2+, Fe 2+, Ni 2+, Zn 2+, Pb 2+, Sn 2+, Mn 2+, Cd 2+) in the samples. Major anions Cl -, SO42- and NO3- were analyzed by standard chromatography whilst CO32- and HCO3- were determined by titration. pH was measured on site. Geochemical modeling of the water composition was conducted with Visual Minteq. The results show that natural attenuation is being achieved through precipitation of solids from the water and subsequent deposition onto the sediments. Six of the metals are almost completely precipitated (Cu 99.99%, Fe 99.39%, Ni 91.24%, Pb 99.87%, Sn 99.99% and Zn 88.66%). However Mn, Co and Cd remain in solution. Thus the natural environment is protecting the Save River which is a transboundary river from the impacts of mining through precipitation of the metals. Users downstream of Dorowa mine are therefore not being affected by mining pollution. This study demonstrates that besides being a legitimate and important user of water, the natural environment can also play a significant role in protecting water quality by attenuating metals naturally. By analyzing costs incurred in several places where alternative methods are employed to remediate metal related pollution the study concludes that natural remediation at Dorowa is saving the nation in environmental costs. Therefore the paper advocates for appreciation of the role that the natural environment plays in protecting ecosystems from the impact of human developments and environmental costs. Subsequently, this calls for recognition of natural environment’s role in water resources management for the sustenance of ecosystems and peoples livelihoods.

  13. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    NASA Astrophysics Data System (ADS)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more widespread phenomena using field data collected over time and verification by the numerical model. With substantial lateral flow salt water may well enter wells above the bottom of the screen.

  14. Toxicity assessment of sediments collected upstream and downstream from the White Dam in Clarke County, Georgia

    USGS Publications Warehouse

    Lasier, Peter J.

    2018-06-06

    The White Dam in Clarke County, Georgia, has been proposed for breaching. Efforts to determine potential risks to downstream biota included assessments of sediment collected in the vicinity of the dam. Sediments collected from sites upstream and downstream from the dam were evaluated for toxicity in 42-day exposures using the freshwater amphipod Hyalella azteca. Endpoints of the study were survival, growth, and reproduction of H. azteca. Results indicated no significant differences between the collected sediments and the water-only treatment used for comparison of the test endpoints. Therefore, based on the laboratory experiments in this study, sediment migration downstream from a breach of the Dam may not pose a toxicity risk to downstream biota.

  15. Effects of river-floodplain exchange on water quality and nutrient export in the dam-impacted Kafue River (Zambia)

    NASA Astrophysics Data System (ADS)

    Zurbrugg, R.; Wamulume, J.; Blank, N.; Nyambe, I.; Wehrli, B.; Senn, D. B.

    2010-12-01

    Biogeochemical processes in river-floodplain ecosystems are strongly influenced by hydrology and, in particular, river-floodplain exchange. In tropical systems, where the hydrology is dominated by distinct dry and rainy seasons, annual flood waters trigger organic matter mineralization within and nutrient export from the dried and rewetted floodplain, and the magnitude of hydrological exchange between a river and its floodplain has the potential to substantially influence nutrient and carbon exports and water quality in the river. In this study we examined the extent and the effects of hydrological river-floodplain exchange in the Kafue River and its floodplain, the Kafue Flats, in Zambia. The Kafue Flats is a 7000 km2 seasonal wetland whose hydrological regime has been impacted by upstream and downstream large dams constructed in the 1970s, leading to changes in the flooding pattern in this high-biodiversity ecosystem. Field campaigns, carried out during flood recession (May 2008, 2009, 2010) and covering a ~400 km river stretch, revealed a steep decline in dissolved oxygen from 6 mg/L to 1 mg/L over a ~20 km stretch of river beginning approximately 200 km downstream from the first dam, with low oxygen persisting for an additional 150 km downstream. To further explore this phenomenon discharge measurements (ADCP) were conducted in May 2009 and May 2010. River discharge decreased from ~600 m3/s at the upstream dam to 100 m3/s midway through the Kafue Flats, and increased to >800 m3/s towards the end of the floodplain (400 km downstream). River cross section data indicate that the dramatic decrease in discharge occured primarily because of variations in channel area and channel carrying capacity, with channel constrictions forcing ~85% of the discharge out of the river channel and into the floodplain. Using specific conductivity and δ18O-H2O as tracers for floodplain water, we estimate that the downstream increases in flow occur through lateral inflows of receding floodplain waters, induced by an expansion of the river channel, and that 80% of the downstream flow came from the floodplain. Model calculations indicate that intense exchange between river and floodplain and the introduction of low-oxygen floodplain water into the river was the primary cause of the low dissolved oxygen levels observed in the river during flood recession in May 2008-2010. This exchange also appears to play an important role in nutrient and carbon export, with the floodplain acting as a net source of phosphate (220 tons/yr), total nitrogen (1300 tons/yr, of which ~90% was organic nitrogen) and total organic carbon (50,000 tons/yr) to downstream systems.

  16. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it is proposed to link SWAT model with an optimization algorithm, whose objective is to identify the optimal cropping pattern that results in maximum biomass production for biofuel generation as well as a minimum guaranteed amount of grain production. The optimal allocation ensures that the downstream water quality in the river is within a desirable limit. The study employed probabilistic information in order to address the uncertainty in model simulations. The residual variance of the model is used to transform the deterministic simulations in to probabilistic information. The proposed framework is illustrated using data pertaining to an agricultural watershed in the USA. The preliminary results of the study are encouraging and suggest that an appropriate combination of Corn, Soyabean, Miscanthus, Switch Grass and Pasture land can be arrived at through the developed framework. The placement of Miscanthus and Switch Grass in the watershed help improve the downstream water quality, while Corn and Soyabean makes it deteriorated. The spatial allocation of these crops therefore certainly plays a major role in the downstream water quality.

  17. Dams and Rivers: A Primer on the Downstream Effects of Dams

    USGS Publications Warehouse

    Collier, Michael; Webb, Robert H.; Schmidt, John C.

    1996-01-01

    The U.S. Geological Survey is charged with monitoring the water and mineral resources of the United States. Beginning in 1889, the Survey established a network of water gaging stations across most of the country's rivers; some also measured sediment content of the water. Consequently, we now have valuable long-term data with which to track water supply, sediment transport, and the occurrence of floods. Many variables affect the flow of water from mountain brook to river delta. Some are short-term perturbations like summer thunderstorms. Others occur over a longer period of time, like the El Ninos that might be separated by a decade or more. We think of these variables as natural occurrences, but humans have exerted some of the most important changes -- water withdrawals for agriculture, inter-basin transfers, and especially the construction of an extensive system of dams. Dams have altered the flow of many of the Nation's rivers to meet societal needs. We expect floods to be contained. Irrigation is possible where deserts once existed. And water is released downstream not according to natural cycles but as dictated by a region's hour-by-hour needs for water or electricity. As a result, river channels below dams have changed dramatically. Depending on annual flow, flood peaks, and a river's sediment load, we might see changes such as sand building up in one channel, vegetation crowding into another, and extensive bank erosion in another. This Circular explores the emerging scientific arena of change in rivers below dams. This science tries first to understand and then anticipate changes to river beds and banks, and to riparian habitats and animal communities. To some degree, these downstream changes can be influenced by specific strategies of dam management. Scientists and resource managers have a duty to assemble this information and present it without bias to the rest of society. Society can then more intelligently choose a balance between the benefits and adverse downstream effects of dams.

  18. Questa baseline and pre-mining ground-water quality investigation. 23. Quantification of mass loading from mined and unmined areas along the Red River, New Mexico

    USGS Publications Warehouse

    Kimball, Briant A.; Nordstrom, D. Kirk; Runkel, Robert L.; Vincent, Kirk R.; Verplanck, Phillip L.

    2006-01-01

    Along the course of the Red River, between the town of Red River, New Mexico, and the U.S. Geological Survey streamflow-gaging station near Questa, New Mexico, there are several catchments that contain hydrothermally altered bedrock. Some of these alteration zones have been mined and others have not, presenting an opportunity to evaluate differences that may exist in the mass loading of metals from mined and unmined sections. Such differences may help to define pre-mining conditions. Spatially detailed chemical sampling at stream and inflow sites occurred during low-flow conditions in 2001 and 2002, and during the synoptic sampling, stream discharge was calculated by tracer dilution. Discharge from most catchments, particularly those with alteration scars, occurred as ground water in large debris fans, which generally traveled downstream in an alluvial aquifer until geomorphic constraints caused it to discharge at several locations along the study reach. Locations of discharge zones were indicated by the occurrence of numerous inflows as seeps and springs. Inflows were classified into four groups, based on differences in chemical character, which ranged from near-neutral water showing no influence of mining or alteration weathering to acidic water with high concentrations of metals and sulfate. Acidic, metal-rich inflows occurred from mined and unmined areas, but the most-acidic inflow water that had the highest concentrations of metals and sulfate only occurred downstream from the mine. Locations of ground-water inflow also corresponded to substantial changes in stream chemistry and mass loading of metals and sulfate. The greatest loading occurred in the Cabin Springs, Thunder Bridge, and Capulin Canyon sections, which all occur downstream from the mine. A distinct chemical character and substantially greater loading in water downstream from the mine suggest that there could be impacts from mining that can be distinguished from the water draining from unmined areas.

  19. Quantification of metal loading to Silver Creek through the Silver Maple Claims area, Park City, Utah, May 2002

    USGS Publications Warehouse

    Kimball, Briant A.; Johnson, Kevin K.; Runkel, Robert L.; Steiger, Judy I.

    2004-01-01

    The Silver Maple Claims area along Silver Creek, near Park City, Utah, is administered by the Bureau of Land Management. To quantify possible sources of elevated zinc concentrations in Silver Creek that exceed water-quality standards, the U.S. Geological Survey conducted a mass-loading study in May 2002 along a 1,400-meter reach of Silver Creek that included the Silver Maple Claims area. Additional samples were collected upstream and downstream from the injection reach to investigate other possible sources of zinc and other metals to the stream. Many metals were investigated in the study, but zinc is of particular concern for water-quality standards. The total loading of zinc along the study reach from Park City to Wanship, Utah, was about 49 kilograms per day. The Silver Maple Claims area contributed about 38 percent of this load. The Silver Creek tailings discharge pipe, which empties just inside the Silver Maple Claims area, contributed more than half the load of the Silver Maple Claims area. Substantial zinc loads also were added to Silver Creek downstream from the Silver Maple Claims area. Ground-water discharge upstream from the waste-water treatment plant contributed 20 percent of the total zinc load, and another 17 percent was contributed near the waste-water treatment plant. By identifying the specific areas where zinc and other metal loads are contributed to Silver Creek, it is possible to assess the needs of a remediation plan. For example, removing the tailings from the Silver Maple Claims area could contribute to lowering the zinc concentration in Silver Creek, but without also addressing the loading from the Silver Creek tailings discharge pipe and the ground-water discharge farther downstream, the zinc concentration could not be lowered enough to meet water-quality standards. Additional existing sources of zinc loading downstream from the Silver Maple Claims area could complicate the process of lowering zinc concentration to meet water-quality standards.

  20. Application of techniques to identify coal-mine and power-generation effects on surface-water quality, San Juan River basin, New Mexico and Colorado

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.

    1987-01-01

    Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)

  1. Trout density and health in a stream with variable water temperatures and trace element concentrations: does a cold-water source attract trout to increased metal exposure?

    USGS Publications Warehouse

    Harper, D.D.; Farag, A.M.; Hogstr, C.; MacConnell, Elizabeth

    2009-01-01

    A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT. USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16??C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16??C) compared to those at an experimental site 10 km downstream (26??C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. ?? 2009 SETAC.

  2. Morphodynamics of Travertine Dam/Waterfall Growth due to the Interaction of Biological Activity, Water Flow and Limestone Emplacement

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Parker, G.

    2012-12-01

    Plitvice Lakes in Croatia are characterized by a step-like train of lakes and waterfalls. The waterfalls are located at the crests of naturally-emplaced dams. The top of each dam grows upward at the rate of a few millimeters per year. It is thought that the upward growth of these dams is caused by the interaction of water flow and biological activity, resulting in the precipitation of dissolved limestone. Dam evolution is initiated by the growth of mosses that favor swift, shallow water. Bacteria that inhabit the roots of the moss excrete solid limestone (travertine) from the water. The limestone fossilizes the moss, and then more moss grows on top of the travertine deposit. In this way, the natural dam can grow over to 10 m high, impounding the water behind it to form a lake. We propose a simple model to explain the formation of natural limestone dams by the interaction between water flow and biologically-mediated travertine deposition. We assume for simplicity that light is the only factor determining the growth of moss, which is then colonized by travertine-emplacing bacteria. We also assume that the water is saturated with dissolved limestone, so that the process is not limited by limestone availability. Photosynthesis, and thus the growth rate of moss are crudely approximated as decreasing linearly with depth. We employ the shallow water equations to describe water flow over the dam. In order to obtain a profile of permanent form for a dam migrating upward and downstream at constant speed, we solve the problem in a moving coordinate system. When water flows over the dam, it is accelerated in the streamwise direction, and the water surface forms a backwater curve. The flow regime changes from Froude-subcritical to Froude-supercritical at a point slightly downstream of the crest of the dam. Farther downstream, the flow attains a threshold velocity beyond which moss is detached. This threshold point defines the downstream end of the active part of the dam. The analysis provides a first-order morphodynamic model of natural dam/waterfall evolution.

  3. Financial tools to induce cooperation in power asymmetrical water systems

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Castelletti, Andrea; Giuliani, Matteo; Characklis, Gregory W.

    2017-04-01

    In multi-purpose water systems, power asymmetry is often responsible of inefficient and inequitable water allocations. Climate Change and anthropogenic pressure are expected to exacerbate such disparities at the expense of already disadvantaged groups. The intervention of a third party, charged with redefining water sharing policies to give greater consideration to equity and social justice, may be desirable. Nevertheless, to be accepted by private actors, this interposition should be coupled with some form of compensation. For a public agency, compensation measures may be burdensome, especially when the allowance is triggered by natural events whose timing and magnitude are subject to uncertainty. In this context, index based insurance contracts may represent a viable alternative option and reduce the cost of achieving socially desirable outcomes. In this study we explore soft measures to achieve global change mitigation by designing a hybrid coordination mechanism composed of i) a direct normative constraint and ii) an indirect financial compensatory tool. The performance of an index-based insurance (i.e. hedging) contract to be used as a compensation tool is evaluated relative to more traditional alternatives. First, the performance of the status quo system, or baseline (BL), is contrasted to an idealized scenario in which a central planner (CP) maximizes global efficiency. Then, the CP management is analyzed in order to identify an efficient water rights redistribution to be legally imposed on the advantaged stakeholders in the BL scenario. Finally, a hedging contract is designed to compensate those stakeholders more negatively affected by the legal constraint. The approach is demonstrated on a multi-purpose water system in Italy, where different decision makers individually manage the same resource. The system is characterized by a manifest power asymmetry: the upstream users, i.e., hydropower companies, are free to release their stored water in time irrespective of the timing of downstream users, i.e., farmers, demands. This situation can lead to financial losses by the farmers, an already disadvantaged group, and, as demonstrated by previous work, lead the global system to underperform. Results suggest that financial hedging tools may offer a reliable and relatively inexpensive alternative to other forms of compensation, and thereby favor more equitable management of multi-purpose water systems characterized by power asymmetry. This finding is especially relevant in times where granting of licenses to use/withdrawal water are often being reviewed with attention to environmental protection and social justice issues.

  4. 75 FR 15403 - Plan Revision for Malheur, Umatilla and Wallowa-Whitman National Forests, Oregon and Washington...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... and sometimes extended drought, climate change, increasing vegetative density, shifts in forest...; moderating floods; and maintaining reliable stream flows for downstream users. 4. To address climate change. The 1990 forest plans do not address climate change. Climate change is expected to [[Page 15405...

  5. Method of Simulating Flow-Through Area of a Pressure Regulator

    NASA Technical Reports Server (NTRS)

    Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)

    2011-01-01

    The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.

  6. Assessment of endocrine-disrupting chemicals attenuation in a coastal plain stream prior to wastewater treatment plant closure

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.

    2014-01-01

    The U.S. Geological Survey is conducting a combined pre/post-closure assessment at a long-term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine-active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine-disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2-km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β-estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater-derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.

  7. Valuing investments in sustainable land management in the Upper Tana River basin, Kenya.

    PubMed

    Vogl, Adrian L; Bryant, Benjamin P; Hunink, Johannes E; Wolny, Stacie; Apse, Colin; Droogers, Peter

    2017-06-15

    We analyze the impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin, Kenya. This work supports implementation of the Upper Tana-Nairobi Water Fund, a public-private partnership to safeguard ecosystem service provision and food security. We apply an integrated modelling framework, building on local knowledge and previous field- and model-based studies, to link biophysical landscape changes at high temporal and spatial resolution to economic benefits for key actors in the basin. The primary contribution of this study is that it a) presents a comprehensive analysis for targeting interventions that takes into account stakeholder preferences, local environmental and socio-economic conditions, b) relies on detailed, process-based, biophysical models to demonstrate the biophysical return on those investments for a practical, decision-driven case, and c) in close collaboration with downstream water users, links those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for agricultural producers in the conservation area. This study highlights the benefits and trade-offs that come with conducting participatory research as part of a stakeholder engagement process: while results are more likely to be decision-relevant within the local context, navigating stakeholder expectations and data limitations present ongoing challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Growing Data User Communities

    NASA Astrophysics Data System (ADS)

    Wiggin, B.

    2017-12-01

    Preserving data is not only a technical challenge. Perhaps the best way to protect data is to use it. Grassroots efforts to make research-quality copies of federal data continue to energize communities of data users who often did not previously recognize themselves as open earth data users. Beyond "data rescue" events, the Data Refuge project researches how federal climate and environmental data are used downstream in a variety of local communities and municipal governments to address everyday issues: public health, municipal safety, and even the preservation of cultural heritage assets. Documenting the diverse uses made of open earth data beyond the earth sciences research community grows the community who, in making use of data, also helps to preserve it.

  9. Microfluidic generation of particle-stabilized water-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Abbasi, Niki; Navi, Maryam; Tsai, Scott

    2017-11-01

    We present a microfluidic platform that generates particle-stabilized water-in-water emulsions, using an aqueous two-phase system (ATPS) of polyethylene glycol (PEG) and Dextran (DEX). DEX droplets are generated passively at a flow focusing junction, in a continuous phase of PEG and carboxylated particles, using weak hydrostatic pressure to drive the flow. As DEX droplets travel inside the microfluidic device, carboxylated particles partition to the interface of the droplets. The number of particles partitioning to the interface of droplets increases as the droplets migrate downstream in the microchannel. As a result, the DEX droplets become stabilized against coalescence. We study the coverage and stability of the DEX droplets further downstream inside a reservoir, by changing the carboxylated particle concentration and the particle size. We anticipate that particle-stabilized water-in-water emulsions may have important biotechnological applications, due to their intrinsic biocompatibility compared to traditional particle-stabilized water-in-oil emulsions, for example for cell encapsulation.

  10. Organic matter dynamics in a karstic watershed: Example from Santa Fe River, Florida, USA

    NASA Astrophysics Data System (ADS)

    Jin, J.; Khadka, M. B.; Martin, J. B.; Zimmerman, A. R.

    2011-12-01

    Organic matter (OM) dynamics in karstic watersheds can involve a range of interactions between organic and inorganic phases of carbon. These interactions include OM remineralization, which will changes its lability, increase dissolved inorganic carbon (DIC) concentrations, reduce pH, and enhance carbonate mineral dissolution. Dissolved organic carbon (DOC) concentrations are elevated in black-water rivers of northern Florida from both allochthonous and autochthonous sources and these rivers flow into and interact with the karstic Floridan Aquifer. One such river, the Santa Fe River, is split into upper confined and lower unconfined watersheds by the Cody Scarp, which represent the erosional edge of a regional confining unit. Water samples were collected from 8 sites across the entire Santa Fe River watershed (SFRW) during 9 sampling trips from December 2009 to May 2011 at flow conditions that ranged from 27 to 39 m3/s, with the highest flow about 45% higher than baseflow. At sites above the Cody Scarp, the river has elevated DOC concentrations, which decrease downstream, while dissolved inorganic carbon (DIC) and δ13C-DIC show opposite trends. At high flow, DOC concentrations progressively decrease downstream from dilution by low-DOC water discharging from the Floridan Aquifer. At low flow, the water chemistry varies little from upstream to downstream, largely because the composition of upstream water becomes similar to that of downstream water. DOC is inversely and linearly correlated with DIC and δ13C-DIC, but the slope of the correlations vary with discharge, with low flow having more negative slopes than high flow. The OM becomes more labile with distance downstream as assessed using two fluorescence indices, biological/autochthonous index (BIX) and humification index (HIX). This increase in lability suggests that DOC is produced in the river, and this production is reflected in a downstream increase in DOC flux regardless of dilution by the influx of low-DOC groundwater. Primary production was 5 to 25 times higher during high and low flow, respectively, in the lower than in the upper SFRW. No decrease in DOC with a concomitant increase in DIC was observed, however, suggesting observations of microbial consumption of OM is masked by primary production and gain of DIC-rich and DOC-poor groundwater. The upper SFRW has lower saturation index (SI; -2.9 and -0.7 for high and low flow, respectively) than the lower SFRW (0.0 and 0.3 for high and low flow, respectively). The downstream shift in SI reflects dissolution of the carbonate minerals and gain of water from the Floridan Aquifer that had equilibrated with carbonate minerals. OM dynamics in the SFRW are closely linked to the allochthonous OM derived from the upper SFRW, as well as primary production in the lower watershed. Both allochthonous and autochthonous OM can be important in abiotic processes such as carbonate mineral dissolution, but flow conditions mediate the magnitudes of the reactions.

  11. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Public concern about nuisance growths of aquatic plants in Fish Creek have been increasing in recent years. To address this concern, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the water quality and biological communities in Fish Creek. Water-quality samples were collected for analyses of physical properties and water chemistry (nutrients, nitrate isotopes, and wastewater chemicals) between March 2007 and October 2008 from seven surface-water sites and three groundwater wells. During this same period, aquatic plant and macroinvertebrate samples were collected and habitat characteristics were measured at the surface-water sites. The main objectives of this study were to (1) evaluate nutrient concentrations (that influence biological indicators of eutrophication) and potential sources of nutrients by using stable isotope analysis and other indicator chemicals (such as caffeine and disinfectants) that could provide evidence of anthropogenic sources, such as wastewater or septic tank contamination in Fish Creek and adjacent groundwater, and (2) characterize the algal, macrophyte, and macroinvertebrate communities and habitat of Fish Creek. Nitrate was the dominant species of dissolved nitrogen present in all samples and was the only bioavailable species detected at concentrations greater than the laboratory reporting level in all surface-water samples. Average concentrations of dissolved nitrate in surface water were largest in samples collected from the two sites with seasonal flow near Teton Village and decreased downstream; the smallest concentration was at downstream site A-Wck. Concentrations of dissolved nitrate in groundwater were consistently greater than concentrations in corresponding surface-water sites during the same sampling event. Orthophosphate was the primary dissolved species of phosphorus present in all surface-water and groundwater samples. The average concentration of dissolved orthophosphate in surface water was largest in samples collected from near Teton Village; samples from all other sites had similar average concentrations. Concentrations of dissolved orthophosphate in groundwater also were typically greater than concentrations in corresponding surface-water sites during the same sampling event. The aquatic plant communities in Fish Creek typically were composed of a mixture of macrophytes, macroalgae, microalgae, and moss. The composition of the aquatic plant community in Fish Creek appeared to shift in the downstream direction in 2007. On average, the proportion of macrophytes ranged from about 1 percent at site A-R1U, the most upstream site, to 54 percent of the plant community at site A-R6D, the farthest downstream site sampled during 2007. The downstream increase in macrophytes was accompanied by a downstream decrease in microalgae. The average proportion of microalgae ranged from 80 percent at site A-R1U to 24 percent at site A-R6D. The proportion of the macroalgae Cladophora in the aquatic plant community was relatively high at sites A-Wck and A-R3D in both 2007 and 2008.

  12. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  13. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA

    USGS Publications Warehouse

    Volkmar, E.C.; Dahlgren, R.A.; Stringfellow, W.T.; Henson, S.S.; Borglin, S.E.; Kendall, C.; Van Nieuwenhuyse, E. E.

    2011-01-01

    To investigate the mechanism for diel (24h) changes commonly observed at fixed sampling locations and how these diel changes relate to downstream transport in hypereutrophic surface waters, we studied a parcel of agricultural drainage water as it traveled for 84h in a concrete-lined channel having no additional water inputs or outputs. Algal fluorescence, dissolved oxygen, temperature, pH, conductivity, and turbidity were measured every 30min. Grab samples were collected every 2h for water quality analyses, including nutrients, suspended sediment, and chlorophyll/pheophytin. Strong diel patterns were observed for dissolved oxygen, pH, and temperature within the parcel of water. In contrast, algal pigments and nitrate did not exhibit diel patterns within the parcel of water, but did exhibit strong diel patterns for samples collected at a fixed sampling location. The diel patterns observed at fixed sampling locations for these constituents can be attributed to algal growth during the day and downstream transport (washout) of algae at night. Algal pigments showed a rapid daytime increase during the first 48h followed by a general decrease for the remainder of the study, possibly due to sedimentation and photobleaching. Algal growth (primarily diatoms) was apparent each day during the study, as measured by increasing dissolved oxygen concentrations, despite low phosphate concentrations (<0.01mgL-1). ?? 2011 Elsevier B.V.

  14. The Brave New World of Real-time GPS for Hazards Mitigation

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.

    2015-12-01

    Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast solutions to thousands of users in real time, earthquake finite-fault and tsunami excitation estimations, and several user interfaces, both stand-alone client and browser-based, that allow interaction with both real-time position streams and their derived products.

  15. The effects of liming an Adirondack lake watershed on downstream water chemistry: Effects of liming on stream chemistry

    USGS Publications Warehouse

    Burns, Douglas A.

    1996-01-01

    Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO3- and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO42- and NO3- concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO42--reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO42- reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 ??eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+, as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+, H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO3-, Ca2+, SO42-, NO3-7, and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO42- concentrations. After CaCO3 treatment, reduction of SO42- was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate. ?? 1996 Kluwer Academic Publishers.

  16. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    NASA Astrophysics Data System (ADS)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  17. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008.

    PubMed

    Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature. Published by Elsevier B.V.

  18. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream in all three tributaries. Tributary reaches with elevated THg in streambed sediment ("Hg hot spots") are near or downstream from historical Hg mines and Hg-enriched ore deposits. Future Hg load and cycling studies are needed to identify practical remediation approaches for decreasing THg and MeHg loads to Lake Berryessa.

  19. Water quality of selected streams in the coal area of southeastern Montana. Water-resources investigations (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapton, J.R.; McKinley, P.W.

    1977-08-01

    This report summarizes and evaluates water-quality data collected at 35 stream sites in the coal region of southeastern Montana. Sarpy Creek, Armells Creek, and Rosebud Creek sometimes have dissolved-solids concentrations that cause water to be marginal for agricultural purposes. At times of rainfall and snowmelt, the runoff water mixes with the base-flow component to improve the overall quality. Water in the Tongue River generally showed a downstream degradation in which some changes were related to the lithology of the aquifers contributing water to streamflow. Water from Pumpkin Creek and Mizpah Creek is used mostly for cattle watering. To some extentmore » water is used for irrigation although the salinity hazard was often high. The chemical quality of the Powder River changed little during flow downstream. High sediment loads of the river acted as transporting agents for many of the plant nutrients and trace-element constituents.« less

  20. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    NASA Astrophysics Data System (ADS)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of the catchment and by sizeable anthropogenic water extractions in the lower parts of the catchment, where on average 60.6% of the available water is diverted for irrigation purposes in the Samarkand and Navoi provinces. The water quality is heavily affected by the unsustainable land use and inadequate/missing water purification techniques. The reduced discharge and the return flow of untreated agricultural drainage water lead to a critical pollution of the river in the lower parts of the catchment. Additional sources of pollutants where identified in the upstream (the Anzob ore mining and processing complex) and downstream (the Navoi special economic area) parts of the catchment. The impact of the different water uses on the availability and the quality of the water resources are discussed in detail and outlook for the expected development during the next decades is given. These results form the basis for future investigations and for the conception of an IWRM plan for the Zarafshan River catchment.

  1. First demonstration and field trial on multi-user UDWDM-PON full duplex PSK-PSK with single monolithic integrated dual-output-DFB-SOA based ONUs.

    PubMed

    Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep

    2016-10-15

    We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.

  2. Guide to Managing Pasture Water: Streamside Buffers

    USDA-ARS?s Scientific Manuscript database

    Properly managed pasture water not only provides high-quality water which promotes healthy and productive livestock, but also contributes to maintaining water quality downstream. Riparian (streamside) areas serve as a transition between upland pastures and waterways. In other words, they link pastur...

  3. Water policy: Science versus political realities

    NASA Astrophysics Data System (ADS)

    Ryan, Mark A.

    2017-11-01

    Debate rages over which water bodies in the US are protected under federal law by the Clean Water Act. Science shows that isolated wetlands and headwater systems provide essential downstream services, but convincing politicians is another matter.

  4. Biodegradation of 17β-estradiol, estrone and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Chapelle, Francis H.; Gray, James L.; Kolpin, Dana W.; McMahon, Peter B.

    2009-01-01

    Biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) was investigated in three wastewater treatment plant (WWTP) affected streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing saturated sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream sediment demonstrated significant mineralization of the “A” ring of E2, E1, and T, with biodegradation of T consistently greater than that of E2 and no systematic difference in E2 and E1 biodegradation. “A” ring mineralization also was observed in downstream sediment, with E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, E2 mineralization in sediment immediately downstream from the WWTP outfalls was more than double that in upstream sediment. E2 mineralization was observed in water, albeit at insufficient rate to prevent substantial downstream transport. The results indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-affected streams.

  5. Connectivity research in Iceland - using scientific tools to establish sustainable water management strategies

    NASA Astrophysics Data System (ADS)

    Finger, David

    2015-04-01

    Since the ninth century when the first settlers arrived in Iceland the island has undergone deforestation and subsequent vegetation degradation and soil erosion. Almost the entire birch forest and woodland, which originally covered ~ 25% of the nation, have been deforested through wood cutting and overgrazing. Consequently, soil erosion seriously affects over 40% of the country. During the last 50 years extensive drainage of wetlands has taken place. Furthermore, about 75% of Iceland electricity production comes from hydropower plants, constructed along the main rivers. Along with seismic and volcanic activities the above mentioned anthropogenic impacts continuously altered the hydro-geomorphic connectivity in many parts of the island. In the framework of ongoing efforts to restore ecosystems and their services in Iceland a thorough understanding of the hydro-geomorphic processes is essential. Field observations and numerical models are crucial tools to adopt appropriate management strategies and help decision makers establish sustainable governance strategies. Sediment transport models have been used in the past to investigate the impacts of hydropower dams on sediment transport in downstream rivers (Finger et al., 2006). Hydropower operations alter the turbidity dynamics in downstream freshwater systems, affecting visibility and light penetration into the water, leading to significant changes in primary production (Finger et al., 2007a). Overall, the interruption of connectivity by physical obstructions can affect the entire food chain, hampering the fishing yields in downstream waters (Finger et al., 2007b). In other locations hydraulic connectivity through retreating glaciers assures water transfer from upstream to downstream areas. The drastically retreat of glaciers can raise concerns of future water availability in remote mountain areas (Finger et al., 2013). Furthermore, the drastic reduction of glacier mass also jeopardizes the water availability for hydropower production (Finger et al., 2012). All these factors reveal the importance of a thorough understanding of hydro-geomorphic connectivity to adopt adequate water management strategies. The presentation will conclude by outlining how the above presented methods can be applied to Icelandic study sites to help water managers and policy makers to adopt resilient based policies regarding the challenges of future climate change impacts. References: Finger, D., M. Schmid, and A. Wuest (2006), Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes, Water Resour. Res., 42(8), doi: 10.1029/2005wr004751. Finger, D., P. Bossard, M. Schmid, L. Jaun, B. Müller, D. Steiner, E. Schaffer, M. Zeh, and A. Wüest (2007a), Effects of alpine hydropower operations on primary production in a downstream lake, Aquatic Sciences, 69(2), 240-256, doi: 10.1007/s00027-007-0873-6. Finger, D., M. Schmid, and A. Wüest (2007b), Comparing effects of oligotrophication and upstream hydropower dams on plankton and productivity in perialpine lakes, Water Resour. Res., 43(12), W12404, doi: 10.1029/2007WR005868. Finger, D., G. Heinrich, A. Gobiet, and A. Bauder (2012), Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century, Water Resour. Res., 48, doi: 10.1029/2011wr010733, W02521. Finger, D., A. Hugentobler, M. Huss, A. Voinesco, H. R. Wernli, D. Fischer, E. Weber, P.-Y. Jeannin, M. Kauzlaric, A. Wirz, T. Vennemann, F. Hüsler, B. Schädler, and R. Weingartner (2013), Identification of glacial melt water runoff in a karstic environment and its implication for present and future water availability, Hydrol. Earth Syst. Sci., 17, 3261-3277, doi: 10.5194/hess-17-3261-2013.

  6. Streamflow gain-loss characteristics of Elkhead Creek downstream from Elkhead Reservoir near Craig, Colorado, 2009

    USGS Publications Warehouse

    Ruddy, Barbara C.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board, the Upper Colorado River Endangered Fish Recovery Program (UCREFRP), Colorado Division of Water Resources, and City of Craig studied the gain-loss characteristics of Elkhead Creek downstream from Elkhead Reservoir to the confluence with the Yampa River during August through October 2009. Earlier qualitative interpretation of streamflow data downstream from the reservoir indicated that there could be a transit loss of nearly 10 percent. This potential loss could be a significant portion of the releases from Elkhead Reservoir requested by UCREFRP during late summer and early fall for improving critical habitat for endangered fish downstream in the Yampa River. Information on the gain-loss characteristics was needed for the effective management of the reservoir releases. In order to determine streamflow gain-loss characteristics for Elkhead Creek, eight measurement sets were made at four strategic instream sites and at one diversion from August to early October 2009. An additional measurement set was made after the study period during low-flow conditions in November 2009. Streamflow measurements were made using an Acoustic Doppler Velocimeter to provide high accuracy and consistency, especially at low flows. During this study, streamflow ranged from about 5 cubic feet per second up to more than 90 cubic feet per second with step increments in between. Measurements were made at least 24 hours after a change in reservoir release (streamflow) during steady-state conditions. The instantaneous streamflow measurements and the streamflow volume comparisons show the reach of Elkhead Creek immediately downstream from Elkhead Reservoir to the streamflow-gaging station 09246500, Elkhead Creek near Craig, CO, is neither a gaining nor losing reach. The instantaneous measurements immediately downstream from the dam and the combined measurements of Norvell ditch plus streamflow-gaging station 09246500 are mostly within the plus or minus 5-percent measurement error of each other. The variability of data is such that sometimes the streamflow is greater upstream than downstream and sometimes the streamflow is greater downstream than upstream. Streamflow volumes were calculated for multiple time periods as determined by a change in release from the reservoir. Streamflow volumes were greater downstream than upstream for all but one time period. The predominance of greater streamflows downstream is due to the difference between the USGS instantaneous measurements and record computation with the Supervisory Control and Data Acquisition (SCADA) record at the dam. Immediately following an increase in streamflow from the reservoir, the downstream volume was smaller than the upstream volume, but this was an artifact of the traveltime between the two sites and possibly small amounts of water entering the streambank. Traveltimes were shorter at higher streamflows and when streamflow was increasing.

  7. 75 FR 22012 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition to List Susan's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... sedimentation associated with intensive livestock grazing can have a profound effect on aquatic... caddisfly's habitat downstream through vegetation removal, erosion, and subsequent downstream sedimentation... vegetation and reducing sedimentation, but may negatively impact water quantity (see ``Dewatering of Spring...

  8. Caspar Creek experimental watersheds: cumulative effects of forest practices on downstream resources

    Treesearch

    Anne M. Rosenthal; Thomas E. Featured: Lisle

    2005-01-01

    Research at Caspar Creek provides information that helps forest managers assess and predict the environmental effects of forest practices and natural disturbances on downstream resources. Monitoring long-term effects and adapting practices can help protect and restore water quality and fish habitat in Northern California.

  9. Modeling a Change in Flowrate through Detention or Additional Pavement on the Receiving Stream : Final Report

    DOT National Transportation Integrated Search

    2017-11-01

    The addition or removal of flow from a stream affects the water surface downstream and possibly upstream. The extent of such effects is generally determined by modeling the receiving stream. Guidance that concisely describes how far up/downstream a h...

  10. Water resources: Research network to track alpine water

    USDA-ARS?s Scientific Manuscript database

    The water cycle in alpine environments worldwide supplies fresh water to vast downstream areas inhabited by more than half of humanity. The International Network for Alpine Research Catchment Hydrology (INARCH) was launched this year by the Global Energy and Water Exchanges project of the World Clim...

  11. 40 CFR 1066.620 - Removed water correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Removed water correction. 1066.620... CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.620 Removed water correction. Correct for removed water if water removal occurs upstream of a concentration measurement and downstream of a flow meter...

  12. [Effect of Seasonal Temperature Increasing on Nitrogen Mineralization in Soil of the Water Level Fluctuating Zone of Three Gorge Tributary During the Dry Period].

    PubMed

    Lin, Jun-jie; Zhang, Shuai; Liu, Dan; Zhou, Bin; Xiao, Xiao-jun; Ma, Hui-yan; Yu, Zhi-guo

    2016-02-15

    To reveal the effect of seasonal temperature increasing on nitrogen mineralization in soil of the water level fluctuating soil zone of three gorge reservoir areas in the Yangtze river tributary during the dry period, surface soils were collected from the water level fluctuating zone of Pengxi river crossing two hydrological sections, i.e., upstream and downstream and three water level altitudes, 155 m (low), 165 m (middle) and 175 m (high). We incubated the soil at 25 degrees C and 35 degrees C to determine the transformation rates of nitrogen in soil of Pengxi river basin during the dry period. The result showed that TN and NO3- -N contents in the soil of upstream section and higher (175 m) altitude of water level were higher than those in downstream and low (165 m) altitude of water level, whereas the pattern for NH4+ -N was different, with higher NH4+ -N contents in downstream and low water level. The inorganic nitrogen was dominated by NO3- -N, which accounted for up to 57.4%-84.7% of inorganic nitrogen. Generally, soil ammoniation, nitration and net N mineralization increased with the rising water level altitude and stream sections (P < 0.05). In summary, nitration and net N mineralization significantly increased with increasing temperature, (P < 0.05), while ammoniation showed no difference (P > 0.05).

  13. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran

    NASA Astrophysics Data System (ADS)

    Najafi, Husain; Massah Bavani, Ali Reza; Wanders, Niko; Wood, Eric; Irannejad, Parviz; Robertson, Andrew

    2017-04-01

    Water resource managers can utilize reliable seasonal forecasts for allocating water between different users within a water year. In the west of Iran where a decline of renewable water resources has been observed, basin-wide water management has been the subject of many inter-provincial conflicts in recent years. The problem is exacerbated when the environmental water requirements is not provided leaving the Hoor-al-Azim marshland in the downstream dry. It has been argued that information on total seasonal rainfall can support the Iranian Ministry of Energy within the water year. This study explores the skill of the North America Multi Model Ensemble for Karkheh River Basin in the of west Iran. NMME seasonal precipitation and temperature forecasts from eight models are evaluated against PERSIANN-CDR and Climate Research Unit (CRU) datasets. Analysis suggests that anomaly correlation for both precipitation and temperature is greater than 0.4 for all individual models. Lead time-dependent seasonal forecasts are improved when a multi-model ensemble is developed for the river basin using stepwise linear regression model. MME R-squared exceeds 0.6 for temperature for almost all initializations suggesting high skill of NMME in Karkheh river basin. The skill of MME for rainfall forecasts is high for 1-month lead time for October, February, March and October initializations. However, for months when the amount of rainfall accounts for a significant proportion of total annual rainfall, the skill of NMME is limited a month in advance. It is proposed that operational regional water companies incorporate NMME seasonal forecasts into water resource planning and management, especially during growing seasons that are essential for agricultural risk management.

  14. Evaluation of water-quality characteristics and sampling design for streams in North Dakota, 1970–2008

    USGS Publications Warehouse

    Galloway, Joel M.; Vecchia, Aldo V.; Vining, Kevin C.; Densmore, Brenda K.; Lundgren, Robert F.

    2012-01-01

    In response to the need to examine the large amount of historic water-quality data comprehensively across North Dakota and evaluate the efficiency of the State-wide sampling programs, a study was done by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission and the North Dakota Department of Health to describe the water-quality data collected for the various programs and determine an efficient State-wide sampling design for monitoring future water-quality conditions. Although data collected for the North Dakota State Water Commission High-Low Sampling Program, the North Dakota Department of Health Ambient Water-Quality Network, and other projects and programs provide valuable information on the quality of water in streams in North Dakota, the objectives vary among the programs, some of the programs overlap spatially and temporally, and the various sampling designs may not be the most efficient or relevant to the objectives of the individual programs as they have changed through time. One objective of a State-wide sampling program was to evaluate ways to describe the spatial variability of water-quality conditions across the State in the most efficient manner. Weighted least-squares regression analysis was used to relate the average absolute difference between paired downstream and upstream concentrations, expressed as a percent of the average downstream concentration, to the average absolute difference in daily flow between the downstream and upstream pairs, expressed as a percent of the average downstream flow. The analysis showed that a reasonable spatial network would consist of including the most downstream sites in large basins first, followed by the next upstream site(s) that roughly bisect the downstream flows at the first sites, followed by the next upstream site(s) that roughly bisect flows for the second sites. Sampling sites to be included in a potential State-wide network were prioritized into 3 design levels: level 1 (highest priority), level 2 (second priority), and level 3 (third priority). Given the spatial distribution and priority designation (levels 1–3) of sites in the potential spatial network, the next consideration was to determine the appropriate temporal sampling frequency to use for monitoring future water-quality conditions. The time-series model used to detect concentration trends for this report also was used to evaluate sampling designs to monitor future water-quality trends. Sampling designs were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three 4-month seasons—March through June, July through October, and November through February. For the 34 level-1 sites, samples would be collected for major ions, trace metals, nutrients, bacteria, and sediment eight times per year, with samples in January, April (2 samples),May, June, July, August, and October. For the 21 level-2 sites, samples would be collected for major ions, trace metals, and nutrients six times per year (January, April, May, June, August, and October), and for the 26 level-3 sites, samples would be collected for these constituents four times per year (April, June, August, and October).

  15. Streamflow losses along the Balcones Fault Zone, Nueces River basin, Texas

    USGS Publications Warehouse

    Land, L.F.; Boning, C.W.; Harmsen, Lynn; Reeves, R.D.

    1983-01-01

    Statistical evaluations of historical daily flow records for the streams that have gaging stations upstream and downstream from the recharge zone provided mathematical relationships that expressed downstream flow in terms of other significant parameters. For each stream, flow entering the recharge zone is most significant in defining downstream flow; for some streams, antecedent flows at the upstream site and ground-water levels are also significantly related to downstream flow. The analyses also determined the discharges required upstream from the recharge zone to sustain flow downstream from that zone. These discharges ranged from 355 cubic feet per second for the combined Frio and Dry Frio Rivers to 33 cubic feet per second for the Nueces River. The entire flows of lesser magnitude are generally lost to recharge to the aquifer.

  16. Long-range effect of cyanide on mercury methylation in a gold mining area in southern Ecuador.

    PubMed

    Guimaraes, Jean Remy Davée; Betancourt, Oscar; Miranda, Marcio Rodrigues; Barriga, Ramiro; Cueva, Edwin; Betancourt, Sebastián

    2011-11-01

    Small-scale gold mining in Portovelo-Zaruma, Southern Equador, performed by mercury amalgamation and cyanidation, yields 9-10 t of gold/annum, resulting in annual releases of around 0.65 t of inorganic mercury and 6000 t of sodium cyanide in the local river system. The release of sediments, cyanide, mercury, and other metals present in the ore such as lead, manganese and arsenic significantly reduces biodiversity downstream the processing plants and enriches metals in bottom sediments and biota. However, methylmercury concentrations in sediments downstream the mining area were recently found to be one order of magnitude lower than upstream or in small tributaries. In this study we investigated cyanide, bacterial activity in water and sediment and mercury methylation potentials in sediments along the Puyango river watershed, measured respectively by in-situ spectrophotometry and incubation with (3)H-leucine and (203)Hg(2+). Free cyanide was undetectable (<1 μg·L(-1)) upstream mining activities, reached 280 μg·L(-1) a few km downstream the processing plants area and was still detectable about 100 km downstream. At stations with detectable free cyanide in unfiltered water, 50% of it was dissolved and 50% associated to suspended particles. Bacterial activity and mercury methylation in sediment showed a similar spatial pattern, inverse to the one found for free cyanide in water, i.e. with significant values in pristine upstream sampling points (respectively 6.4 to 22 μgC·mg wet weight(-1)·h(-1) and 1.2 to 19% of total (203) Hg·gdry weight(-1)·day(-1)) and undetectable downstream the processing plants, returning to upstream values only in the most distant downstream stations. The data suggest that free cyanide oxidation was slower than would be expected from the high water turbulence, resulting in a long-range inhibition of bacterial activity and hence mercury methylation. The important mercury fluxes resultant from mining activities raise concerns about its biomethylation in coastal areas where many mangrove areas have been converted to shrimp farming. Copyright © 2011. Published by Elsevier B.V.

  17. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.

    PubMed

    Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy

    2016-01-15

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters limited the interpretation of historical trends. Published by Elsevier B.V.

  18. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio and power generation and downstream hydrologic alterations in terms of ecological relevant indicators. The results show that the proposed methodology can mitigate hydro-peaking effects on natural variability, while maintains efficient reservoir operation.

  19. Estimating bioaccessibility of trace elements in particles suspended in the Athabasca River using sequential extraction.

    PubMed

    Javed, Muhammad Babar; Shotyk, William

    2018-05-10

    Employing protocols developed for polar snow and ice, water samples were collected upstream, midstream and downstream of open pit bitumen mines and upgraders along the Lower Athabasca River (AR). The purpose was to: i) estimate the bioaccessibility of trace elements associated with particulate matter in the AR using sequential extraction, and ii) determine whether their forms have been measurably impacted by industrial activities. Of the trace metals known to be enriched in bitumen (V, Ni, Mo and Re), a substantial proportion of V (78-93%) and Ni (35-81%) was found in the residual fraction representing stable minerals. In contrast, Mo and Re were partitioned mainly into more reactive forms (water soluble, acid extractable, reducible and oxidisable). Comparing the non-residual fractions in upstream versus downstream sites, only water soluble Re was significantly (P = 0.005) greater downstream of industry. In respect to the potentially toxic chalcophile elements (Cu, Pb and Tl), no measurable change was observed in Cu and Pb distribution in upstream versus downstream sites. Only residual Tl was found at upstream and midstream sites, whereas a significant proportion of Tl was also present in the reducible fraction in downstream sites. Overall, a greater proportion of trace metals in the residual fraction at midstream sites appears to be due to inputs of atmospheric dust, clearly evident in microscopic images: energy dispersive spectroscopy and x-ray diffraction analyses showed that these particles were predominantly silicates, which are assumed to have limited bioaccessibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Does biofilm contribute to diel cycling of Zn in High Ore Creek, Montana?

    USGS Publications Warehouse

    Morris, J.M.; Nimick, D.A.; Farag, A.M.; Meyer, J.S.

    2005-01-01

    Concentrations of metals cycle daily in the water column of some mining-impacted streams in the Rocky Mountains of the western USA. We hypothesized that biofilm in High Ore Creek, Montana, USA, sorbs and releases Zn on a diel cycle, and this uptake-and-release cycle controls the total and dissolved (0.45-??m filtered) Zn concentrations. We collected water samples from three sites (upstream, middle and downstream at 0, 350 and 650 m, respectively) along a 650-m reach of High Ore Creek during a 47-h period in August 2002 and from the upstream and downstream sites during a 24-h period in August 2003; we also collected biofilm samples at these sites. In 2002 and 2003, total and dissolved Zn concentrations did not exhibit a diel cycle at the upstream sampling site, which was ???30 m downstream from a settling pond through which the creek flows. However, total and dissolved Zn concentrations exhibited a diel cycle at the middle and downstream sampling sites, with the highest Zn concentrations occurring at dawn and the lowest Zn concentrations occurring during late afternoon (>2-fold range of concentrations at the downstream site). Based on (1) concentrations of Zn in biofilm at the three sites and (2) results of streamside experiments that demonstrated Zn uptake and release by nai??ve biofilm during the light and dark hours of a photocycle, respectively, we conclude that Zn uptake in photosynthetic biofilms could contribute a large percentage to the cycling of Zn concentrations in the water column in High Ore Creek. ?? Springer 2005.

  1. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and indicators to use in the analytical evaluation. A software template guides users through this process. For demonstration, the RBAF-C template has been applied to address competing irrigation demand-anadromous fish flow requirements in the Lemhi Basin, Idaho, and the increase in municipal and industrial demand in the Upper Bhima River Basin, India, which affects water supply to downstream irrigation command areas. The RBAF-A is for quantitatively evaluating the current conditions of water resources in a river basin and testing potential scenarios with respect to the sustainability criterion. The primary foundation for quantifying water movement is a river basin model. Upon this, the RBAF-A Interface organizes input data, collects output data from each discipline, and reports the HWB. Within the RBAF-A Interface, the EGS-HWB Calculator collects output time series data, processes the data with respect to space and time, and computes the ecologic, economic, and social well-being. The Reporting Tool presents the scenario output as values and trends in well-being. To demonstrate the technology, the RBAF-A was applied to the Lemhi Basin, Idaho. The RBAF supports the IWRM process by providing a structured and transparent means to understand the water related issues, analyses to conduct, and indicators to select in assessing the sustainability of water programs and policies in river basins.

  2. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  3. Headwater Influences on Downstream Water Quality

    PubMed Central

    Oakes, Robert M.

    2007-01-01

    We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality. PMID:17999108

  4. GiA Roots: software for the high throughput analysis of plant root system architecture.

    PubMed

    Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S

    2012-07-26

    Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.

  5. Impact of environmentally based chemical hardness on uranium speciation and toxicity in six aquatic species.

    PubMed

    Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V

    2015-03-01

    Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO4 (2-) ) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. Environ Toxicol Chem 2015;34:562-574. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.

  6. A hybrid monitoring and modelling approach to assess the contribution of sources of glyphosate and AMPA in large river catchments.

    PubMed

    Desmet, N; Touchant, K; Seuntjens, P; Tang, T; Bronders, J

    2016-12-15

    Large river catchments with mixed land use capture pesticides from many sources, and degradable pesticides are converted during downstream transport. Unravelling the contribution of pesticide source and the effect of degradation processes is a challenge in such areas. However, insight and understanding of the sources is important for targeted management, especially when water is abstracted from the river for drinking water production. The river Meuse is such a case. A long-term monitoring data set was applied in a modelling approach for assessing the contribution of waste water treatment plants (WWTPs) and tributaries (sub-basins) to surface water contamination, and to evaluate the effect of decay on the downstream concentrations of glyphosate and AMPA at the point of drinking water abstraction. The results show that WWTPs are important contributors for glyphosate and AMPA in large river catchments with mixed land uses. In the studied area, the river Meuse in the Netherlands, the relative contribution of WWTP effluents is above 29% for glyphosate and around 12% for AMPA. Local industries are found to be potentially big contributors of AMPA. Glyphosate entering the river system is gradually converted to AMPA and other degradation productions, which results in downstream loads that are considerably lower than the sum of all influxes. In summer when the travel time is longer due to lower discharge, the first order decay of glyphosate in the river Meuse is estimated to result in about 50% reduction of the downstream glyphosate concentrations over a river stretch of 250km. The contribution of glyphosate decay to the observed AMPA concentrations ranges between 2% and 10%. Contributions are sensitive to seasonal variations in discharge that influence the concentrations through dilution and degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river.

    PubMed

    Tornés, E; Pérez, M C; Durán, C; Sabater, S

    2014-03-15

    Water hydrology, temperature and transparency, as well as nutrient retention downstream of the reservoirs alter the temporal and spatial distribution patterns of phytoplankton communities in regulated rivers. The seasonal dynamics of phytoplankton communities in the Ebro was analysed in contrasting water flow periods in sections upstream and downstream of three large reservoirs, as well as in an intermediate site. Phytoplankton communities changed in response to seasonal variations in the areas not influenced by the reservoirs, but the phytoplankton distribution downstream of the reservoirs was driven by their particular hydrodynamics. The change in environmental conditions promoted by reservoirs influenced the pattern of replacement between diatoms and green algae of the upstream section. Differences in the phytoplankton community structure, abundance and environmental variables between upstream and downstream sites were maximal during low flow periods. Chlorophytes and dinoflagellates were present during low flow periods upstream of the reservoirs and in the intermediate site. Cocconeis cf. placentula characterized the downstream section, associated to the presence of macrophytes in that section. The present study sheds light on the consequences of river regulation under potential scenarios of climate change, and results could be used to anticipate ecological problems in large regulated rivers under these circumstances. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Small larvae in large rivers: observations on downstream movement of European grayling Thymallus thymallus during early life stages.

    PubMed

    Van Leeuwen, C H A; Dokk, T; Haugen, T O; Kiffney, P M; Museth, J

    2017-06-01

    Behaviour of early life stages of the salmonid European grayling Thymallus thymallus was investigated by assessing the timing of larval downstream movement from spawning areas, the depth at which larvae moved and the distribution of juvenile fish during summer in two large connected river systems in Norway. Trapping of larvae moving downstream and electrofishing surveys revealed that T. thymallus larvae emerging from the spawning gravel moved downstream predominantly during the night, despite light levels sufficient for orientation in the high-latitude study area. Larvae moved in the water mostly at the bottom layer close to the substratum, while drifting debris was caught in all layers of the water column. Few young-of-the-year still resided close to the spawning areas in autumn, suggesting large-scale movement (several km). Together, these observations show that there may be a deliberate, active component to downstream movement of T. thymallus during early life stages. This research signifies the importance of longitudinal connectivity for T. thymallus in Nordic large river systems. Human alterations of flow regimes and the construction of reservoirs for hydropower may not only affect the movement of adult fish, but may already interfere with active movement behaviour of fish during early life stages. © 2017 The Fisheries Society of the British Isles.

  9. Mapping the Carbon Footprint of Nations.

    PubMed

    Kanemoto, Keiichiro; Moran, Daniel; Hertwich, Edgar G

    2016-10-04

    Life cycle thinking asks companies and consumers to take responsibility for emissions along their entire supply chain. As the world economy becomes more complex it is increasingly difficult to connect consumers and other downstream users to the origins of their greenhouse gas (GHG) emissions. Given the important role of subnational entities-cities, states, and companies-in GHG abatement efforts, it would be advantageous to better link downstream users to facilities and regulators who control primary emissions. We present a new spatially explicit carbon footprint method for establishing such connections. We find that for most developed countries the carbon footprint has diluted and spread: for example, since 1970 the U.S. carbon footprint has grown 23% territorially, and 38% in consumption-based terms, but nearly 200% in spatial extent (i.e., the minimum area needed to contain 90% of emissions). The rapidly growing carbon footprints of China and India, however, do not show such a spatial expansion of their consumption footprints in spite of their increasing participation in the world economy. In their case, urbanization concentrates domestic pollution and this offsets the increasing importance of imports.

  10. Results of a preimpoundment water-quality study of Swatara Creek, Pennsylvania

    USGS Publications Warehouse

    Fishel, David K.; Richardson, J.E.

    1986-01-01

    The impoundment will act as a sediment trap and thus reduce the concentrations of total phosphorus, iron, aluminum, lead, copper, and zinc immediately downstream from the impoundment. Large storm discharges and releases from the hypolimnion of the reservoir to attain the winter-pool level may contain low oxygen concentrations and elevated concentrations of iron, aluminum, lead, copper, and zinc. Unless conservation releases from the multi-level release gates are carefully controlled, low dissolved-oxygen levels and high metal concentrations may degrade the downstream water quality and be detrimental to the aquatic community.

  11. Water-level decline in the Apalachicola River, Florida, from 1954 to 2004, and effects on floodplain habitats

    USGS Publications Warehouse

    Light, Helen M.; Vincent, Kirk R.; Darst, Melanie R.; Price, Franklin D.

    2006-01-01

    From 1954 to 2004, water levels declined in the nontidal reach of the Apalachicola River, Florida, as a result of long-term changes in stage-discharge relations. Channel widening and deepening, which occurred throughout much of the river, apparently caused the declines. The period of most rapid channel enlargement began in 1954 and occurred primarily as a gradual erosional process over two to three decades, probably in response to the combined effect of a dam located at the head of the study reach (106 miles upstream from the mouth of the river), river straightening, dredging, and other activities along the river. Widespread recovery has not occurred, but channel conditions in the last decade (1995-2004) have been relatively stable. Future channel changes, if they occur, are expected to be minor. The magnitude and extent of water-level decline attributable to channel changes was determined by comparing pre-dam stage (prior to 1954) and recent stage (1995-2004) in relation to discharge. Long-term stage data for the pre-dam period and recent period from five streamflow gaging stations were related to discharge data from a single gage just downstream from the dam, by using a procedure involving streamflow lag times. The resulting pre-dam and recent stage-discharge relations at the gaging stations were used in combination with low-flow water-surface profile data from the U.S. Army Corps of Engineers to estimate magnitude of water-level decline at closely spaced locations (every 0.1 mile) along the river. The largest water-level declines occurred at the lowest discharges and varied with location along the river. The largest water-level decline, 4.8 feet, which occurred when sediments were scoured from the streambed just downstream from the dam, has been generally known and described previously. This large decline progressively decreased downstream to a magnitude of 1 foot about 40 river miles downstream from the dam, which is the location that probably marks the downstream limit of the influence of the dam on bed scour. Downstream from that location, previously unreported water-level declines progressively increased to 3 feet at a location 68 miles downstream from the dam, probably as a result of various channel modifications conducted in that part of the river. Water-level declines in the river have substantially changed long-term hydrologic conditions in more than 200 miles of off-channel floodplain sloughs, streams, and lakes and in most of the 82,200 acres of floodplain forests in the nontidal reach of the Apalachicola River. Decreases in duration of floodplain inundation at low discharges were large in the upstream-most 10 miles of the river (20-45 percent) and throughout most of the remaining 75 miles of the nontidal reach (10-25 percent). As a consequence of this decreased inundation, the quantity and quality of floodplain habitats for fish, mussels, and other aquatic organisms have declined, and wetland forests of the floodplain are changing in response to drier conditions. Water-level decline caused by channel change is probably the most serious anthropogenic impact that has occurred so far in the Apalachicola River and floodplain. This decline has been exacerbated by long-term reductions in spring and summer flow, especially during drought periods. Although no trends in total annual flow volumes were detected, long-term decreases in discharge for April, May, July, and August were apparent, and water-level declines during drought conditions resulting from decreased discharge in those 4 months were similar in magnitude to the water-level declines caused by channel changes. The observed changes in seasonal discharge are probably caused by a combination of natural climatic changes and anthropogenic activities in the Apalachicola-Chattahoochee-Flint River Basin. Continued research is needed for geomorphic studies to assist in the design of future floodplain restoration efforts and for hydrologic studies to monitor change

  12. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    USGS Publications Warehouse

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  13. An exploratory investigation of polar organic compounds in waters from a lead–zinc mine and mill complex

    USGS Publications Warehouse

    Rostad, Colleen E.; Schmitt, Christopher J.; Schumacher, John G.; Leiker, Thomas J.

    2011-01-01

    Surface water samples were collected in 2006 from a lead mine-mill complex in Missouri to investigate possible organic compounds coming from the milling process. Water samples contained relatively high concentrations of dissolved organic carbon (DOC; greater than 20 mg/l) for surface waters but were colorless, implying a lack of naturally occurring aquatic humic or fulvic acids. Samples were extracted by three different types of solid-phase extraction and analyzed by electrospray ionization/mass spectrometry. Because large amounts of xanthate complexation reagents are used in the milling process, techniques were developed to extract and analyze for sodium isopropyl xanthate and sodium ethyl xanthate. Although these xanthate reagents were not found, trace amounts of the degradates, isopropyl xanthyl thiosulfonate and isopropyl xanthyl sulfonate, were found in most locations sampled, including the tailings pond downstream. Dioctyl sulfosuccinate, a surfactant and process filtering aid, was found at concentrations estimated at 350 μg/l at one mill outlet, but not downstream. Release of these organic compounds downstream from lead-zinc mine and milling areas has not previously been reported. A majority of the DOC remains unidentified.

  14. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  15. User preferences and water use savings owing to washbasin taps retrofit: a case study of the DECivil building of the University of Aveiro.

    PubMed

    Meireles, Inês; Sousa, Vítor; Adeyeye, Kemi; Silva-Afonso, Armando

    2017-04-04

    During the last decades, achieving water efficiency in buildings has increasingly become an important challenge in the scope of sustainability. Water consumption is directly related to individual conduct. Despite the various technological improvements in fixtures and appliances, their performance will be influenced by human preferences and behavior. As a result, the potential for effective water consumption saving is influenced by behavior change as well as water-efficient fixtures and appliances. This work evaluates the impact of user preferences and behavior change on the water-efficient performance of tap aerators in a case study building: the Department of Civil Engineering building of the University of Aveiro, Portugal. Four aerators with different discharge reductions and types were installed in the toilet's washbasins and the user's preferences and behavior change measured through direct and online questionnaires. It was observed that the effective water consumption reduction (15 to 49%) was less than the discharge reduction (30 to 70%), confirming that user factors influence water savings. Water use reductions in the tested range (2.0 to 6.7 l/min) also varied according to gender, with male users using less water than their female counterparts. It was noted that an awareness of sustainability values prevailed amongst the users when confronted with the choice between comfort and water efficiency, although differences were observed in the user preferences regarding the various aerators. When confronted with the information that the lower discharge aerator would contribute to a reduction of about 70% on the water discharge, 25% of the users agreed with its use, even if it resulted in a certain degree of dissatisfaction. In comparison, only 8% of the users completely disagreed with its installation. On average, the water consumption reduction was 46% smaller than the discharge reduction achievable with the aerator alone. This further confirms the user factors inform the degree of water savings that is achievable from water-efficient fittings and fixtures.

  16. Sustainable Water Use System of Artesian Water in Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher than that in non-irrigation season, which indicates that groundwater level is apparently influenced by surface water. Some communities and NPOs working in this area maintain the "kabata" and canal for environment conservation. There are many rules for the local residents when using the water resources. For example, the use of detergents is prohibited for "kabata" users. The residents living upstream also should think of other groundwater users downstream. For this reason, it can be considered that the "kabata" water use method contributed to a symbiosis between ecosystem and human activity The study area case showed that the traditional water use system is useful for forming a sustainable groundwater flowing well use system.

  17. An Integrated Hydrological and Water Management Study of the Entire Nile River System - Lake Victoria to Nile Delta

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Zaitchik, Benjamin; Alo, Clement; Ozdogan, Mutlu; Anderson, Martha; Policelli, Fritz

    2011-01-01

    The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that accurate, frequent, and spatially distributed estimates of the water balance are necessary for effective water management. This creates a challenge for watersheds that are large, include data poor regions, and/or span multiple nations. All of these descriptors apply to the Nile River basin, yet successful management of the Nile is critical for development and political stability in the region. For this reason, improved hydrological data to support cooperative water management in the Nile basin is a priority for USAID, the US State Department, the World Bank and other international organizations. In this project, the U.S. based research team is working with partners at RCMRD, Nile Basin Initiative (NBI), and their member national-level agencies to develop satellite-based land cover maps, satellite-derived evapotranspiration estimates (using the ALEXI algorithm), and NASA's Land Data Assimilation System (LDAS) customized to match identified information needs. The cornerstone applied sciences product of the project is the development of a customized "Nile LDAS" that will produce optimal estimates of hydrological states and fluxes, as vetted against the in situ observations of NBI and RCMRD member organizations and independent satellite-derived hydrological estimates. Nile LDAS will be applied to improve the reliability of emerging Decision Support Systems in applications that include drought monitoring, reservoir management, and irrigation planning. The end-users such as RCMRD, NBI, Ethiopian and Kenya Meteorological and Famine Early Warning System Network (FEWSNet) will be the eventual benefactors of this work. There will be a capacity building process involving the above end-user organizations and transfer the models and the results for these organizations to execute for future use. The team has already initiated this study and the early results of first years' work are shown. The plan is to complete this work by late 2013.

  18. Research on water management system based on Android

    NASA Astrophysics Data System (ADS)

    Li, Dongjiang; Hu, Songlin

    2018-04-01

    With the rapid development of Smart city, Smart water is an important part of Smart city, which is paid more and more attention. It obtains and deals with urban water information through information technology. It can effectively manage urban water supply, The sale of water and other processes. At the same time, due to the popularity of Smartphones, Smartphone applications have covered every aspect of life and become an indispensable part of people's daily life. Through the Smartphone applications, the user can achieve online mobile water purchase, query the water situation, water quality and other basic situation, greatly facilitate the use of the user, for wisdom water construction is of great significance. In this paper, the water management system based on Android is designed and implemented according to the user's needs. It includes intelligent water meter terminal, monitoring center server, Smartphone application and wireless communication network. The user can use the Smartphone at any time and at any place to view the user's water information in real time providing great convenience for users. So its application prospect is very broad as an important part of smart city.

  19. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    PubMed

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly proposed environmental water quality index (EWQI) lead to better trend in the impact of coal and coal seam gas mining activities on surface water quality when compared to the upstream reference water samples. Metal content limits were based on the impact points assigned by the Agency for Toxic Substances and Disease Registry, USA. For environmental and health impact assessment, the approach used in this study can be applied as a model to provide a basis to assess the anthropogenic contribution from the industrial and mining activities on the environment.

  20. 40 CFR 230.11 - Factual determinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...

  1. 40 CFR 230.11 - Factual determinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...

  2. 40 CFR 230.11 - Factual determinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...

  3. Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.

    2013-12-01

    Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail end of high flow periods. These improvements allowed DEP to more effectively manage water quality control and spill mitigation operations immediately after storm events. Later on, post-processed hydrologic forecasts from the National Weather Service (NWS) including the Advanced Hydrologic Prediction Service (AHPS) and the Hydrologic Ensemble Forecast Service (HEFS) were implemented into OST. These forecasts further increased the predictive skill over the initial statistical models as current basin conditions (e.g. soil moisture, snowpack) and meteorological forecasts (with HEFS) are now explicitly represented. With the post-processed HEFS forecasts, DEP may now truly quantify impacts associated with wet weather events on the horizon, rather than relying on statistical representations of current hydrologic trends. This presentation will highlight the benefits of the improved forecasts using examples from actual system operations.

  4. Changes in nutrient ratios and phytoplankton community structure caused by hydropower development in the Maotiao River, China.

    PubMed

    Wang, Fushun; Wang, Baoli; Liu, Cong-Qiang; Liu, Xiaolong; Gao, Yang; Zhang, Jing; Li, Shuang

    2014-06-01

    Reservoirs created for hydropower production have become an important feature impacting a river. Understanding the effects of river impoundment on the downstream environment is critical to decision-making for water resource protection. The changes caused by impoundment are changes in water quality and the resulting effect on the phytoplankton community structure. The impacts caused by a series of reservoirs along a river are still not well understood. In this study, we conducted an investigation of five reservoirs along the Maotiao River, China. We found that a series of impoundments plays a role in decreasing the phytoplankton biomass in downstream reservoirs. Within the studied area, nitrogen is not a limiting factor for phytoplankton growth. The ratio of silicon to phosphorus (Si:P) can become a major factor in the regulation of phytoplankton community structure. The Si:P ratio increased from upstream to downstream reservoirs, causing a concurrent increase in the percentage of Bacillariophyta, particularly during the winter. In addition, our results indicate that the creation of dams eliminates Si limitation downstream.

  5. Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps

    PubMed Central

    Ruggenthaler, Romed; Hammerle, Albin; Lavorel, Sandra; Schirpke, Uta; Clement, Jean‐Christophe; Lamarque, Pénélope; Obojes, Nikolaus; Tappeiner, Ulrike

    2015-01-01

    Abstract This study analyzes the impact of droughts, compared with average climatic conditions, on the supporting ecosystem service water provision in sub‐watersheds in managed alpine grasslands in two climatically different regions of the Alps, Lautaret (French Alps) and Stubai (Austrian Alps). Soil moisture was modelled in the range of 0–0.3 m. At both sites, current patterns showed that the mean seasonal soil moisture was (1) near field capacity for grasslands with low management intensity and (2) below field capacity for grasslands with higher land‐use intensity. Soil moisture was significantly reduced by drought at both sites, with lower reductions at the drier Lautaret site. At the sub‐watershed scale, soil moisture spatial heterogeneity was reduced by drought. Under drought conditions, the evapotranspiration to precipitation ratios at Stubai was slightly higher than those at Lautaret, indicating a dominant ‘water spending’ strategy of plant communities. Regarding catchment water balance, deep seepage was reduced by drought at Stubai more strongly than at Lautaret. Hence, the observed ‘water spending’ strategy at Stubai might have negative consequences for downstream water users. Assessing the water provision service for alpine grasslands provided evidence that, under drought conditions, evapotranspiration was influenced not only by abiotic factors but also by the water‐use strategy of established vegetation. These results highlight the importance of ‘water‐use’ strategies in existing plant communities as predictors of the impacts of drought on water provision services and related ecosystem services at both the field and catchment scale. © 2015 The Authors. Ecohydrology published by John Wiley & Sons, Ltd. PMID:26688705

  6. Bridging the Water Policy and Management Silos: An Opportunity for Leveraged Capacity Building

    NASA Astrophysics Data System (ADS)

    Wegner, D. L.

    2017-12-01

    The global community is challenged by increasing demand and decreasing water supplies. Historically nations have focused on local or regional water development projects that meet specific needs, often without consideration of the impact on downstream transboundary water users or the watershed itself. Often these decisions have been based on small sets of project specific data with little assessment on river basin impacts. In the United States this disjointed approach to water has resulted in 26 federal agencies having roles in water management or regulation, 50 states addressing water rights and compliance, and a multitude of tribal and local entities intersecting the water process. This approach often manifests itself in a convoluted, disjointed and time-consuming approach. The last systematic and comprehensive review of nationwide water policy was the 1973 National Water Commission Report. A need exists for capacity building collaborative and integrative leadership and dialogue. NASA's Western Water Applications Office (WWAO) provides a unique opportunity to leverage water and terrain data with water agencies and policy makers. A supported WWAO can provide bridges between federal and state water agencies; provide consistent integrated hydrologic and terrain based data set acquired from multiple earth orbiting satellites and airborne platforms; provide data sets leveraged with academic and research based entities to develop specific integrative predictive tools; and evaluate hydrology information across multiple boundaries. It is the author's conclusion that the Western Water Applications Office can provide a value-added approach that will help translate transboundary water and earth terrain information to national policy decisions through education, increased efficiency, increased connectivity, improved coordination, and increased communication. To be effective the WWAO should embrace five objectives: (1) be technically and scientifically valid; (2) administratively supported; (3) financially sustainable; (4) politically achievable; and (5) focus on integration of innovative remote sensing and data analysis tools.

  7. Atrazine degradation in a small stream in Iowa

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.

    1993-01-01

    A study was conducted during 1990 through an 11.2-km reach of Roberts Creek in northeastern Iowa to determine the fate of atrazine in a surface water environment Water samples were collected at ~1-month intervals from April through November during stable low to medium flow conditions and analyzed for atrazine and two of its initial biotic degradation products, desethylatrazine and deisopropylatrazine. Samples were collected on the basis of a Lagrangian model of streamflow in order to sample the same parcel of water as it moved downstream. Atrazine concentrations substantially decreased (roughly 25-60%) between water entering and exiting the study reach during four of the seven sampling periods. During these same four sampling periods, the concentrations of the two biotic atrazine degradation products were constant or decreasing downstream, suggesting an abiotic degradation process.

  8. 40 CFR 131.10 - Designation of uses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... QUALITY STANDARDS Establishment of Water Quality Standards § 131.10 Designation of uses. (a) Each State... and the appropriate criteria for those uses, the State shall take into consideration the water quality standards of downstream waters and shall ensure that its water quality standards provide for the attainment...

  9. 40 CFR 131.10 - Designation of uses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... QUALITY STANDARDS Establishment of Water Quality Standards § 131.10 Designation of uses. (a) Each State... and the appropriate criteria for those uses, the State shall take into consideration the water quality standards of downstream waters and shall ensure that its water quality standards provide for the attainment...

  10. Characterization of mercury contamination in the Androscoggin River, Coos County, New Hampshire

    USGS Publications Warehouse

    Chalmers, Ann; Marvin-DiPasquale, Mark C.; Degnan, James R.; Coles, James; Agee, Jennifer L.; Luce, Darryl

    2013-01-01

    Concentrations of total mercury (THg) and MeHg in sediment, pore water, and biota in the Androscoggin River were elevated downstream from the former chloralkali facility compared with those upstream from reference sites. Sequential extraction of surface sediment showed a distinct difference in Hg speciation upstream compared with downstream from the contamination site. An upstream site was dominated by potassium hydroxide-extractable forms (for example, organic-Hg or particle-bound Hg(II)), whereas sites downstream from the point source were dominated by more chemically recalcitrant forms (largely concentrated nitric acid-extractable), indicative of elemental mercury or mercurous chloride. At all sites, only a minor fraction (less than 0.1 percent) of THg existed in chemically labile forms (for example, water extractable or weak acid extractable). All metrics indicated that a greater percentage of mercury at an upstream site was available for Hg(II)-methylation compared with sites downstream from the point source, but the absolute concentration of bioavailable Hg(II) was greater downstream from the point source. In addition, the concentration of tin-reducible inorganic reactive mercury, a surrogate measure of bioavailable Hg(II) generally increased with distance downstream from the point source. Whereas concentrations of mercury species on a sediment-dry-weight basis generally reflected the relative location of the sample to the point source, river-reach integrated mercury-species inventories and MeHg production potential (MPP) rates reflected the amount of fine-grained sediment in a given reach. THg concentrations in biota were significantly higher downstream from the point source compared with upstream reference sites for smallmouth bass, white sucker, crayfish, oligochaetes, bat fur, nestling tree swallow blood and feathers, adult tree swallow blood, and tree swallow eggs. As with tin-reducible inorganic reactive mercury, THg in smallmouth bass also increased with distance downstream from the point source. Toxicity tests and invertebrate community assessments suggested that invertebrates were not impaired at the current (2009 and 2010) levels of mercury contamination downstream from the point source. Concentrations of THg and MeHg in most water and sediment samples from the Androscoggin River were below U.S. Environmental Protection Agency (USEPA), the Canadian Council of Ministers of the Environment, and probable effects level guidelines. Surface-water and sediment samples from the Androscoggin River had similar THg concentrations but lower MeHg concentrations compared with other rivers in the region. Concentrations of THg in fish tissue were all above regional and U.S. Environmental Protection Agency guidelines. Moreover, median THg concentrations in smallmouth bass from the Androscoggin River were significantly higher than those reported in regional surveys of river and streams nationwide and in the Northeastern United States and Canada. The higher concentrations of mercury in smallmouth bass suggest conditions may be more favorable for Hg(II)-methylation and bioaccumulation in the Androscoggin River compared with many other rivers in the United States and Canada.

  11. Environmental effects of the Big Rapids dam remnant removal, Big Rapids, Michigan, 2000-02

    USGS Publications Warehouse

    Healy, Denis F.; Rheaume, Stephen J.; Simpson, J. Alan

    2003-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Big Rapids, investigated the environmental effects of removal of a dam-foundation remnant and downstream cofferdam from the Muskegon River in Big Rapids, Mich. The USGS applied a multidiscipline approach, which determined the water quality, sediment character, and stream habitat before and after dam removal. Continuous water-quality data and discrete water-quality samples were collected, the movement of suspended and bed sediment were measured, changes in stream habitat were assessed, and streambed elevations were surveyed. Analyses of water upstream and downstream from the dam showed that the dam-foundation remnant did not affect water quality. Dissolved-oxygen concentrations downstream from the dam remnant were depressed for a short period (days) during the beginning of the dam removal, in part because of that removal effort. Sediment transport from July 2000 through March 2002 was 13,800 cubic yards more at the downstream site than the upstream site. This increase in sediment represents the remobilized sediment upstream from the dam, bank erosion when the impoundment was lowered, and contributions from small tributaries between the sites. Five habitat reaches were monitored before and after dam-remnant removal. The reaches consisted of a reference reach (A), upstream from the effects of the impoundment; the impoundment (B); and three sites below the impoundment where habitat changes were expected (C, D, and E, in downstream order). Stream-habitat assessment reaches varied in their responses to the dam-remnant removal. Reference reach A was not affected. In impoundment reach B, Great Lakes and Environmental Assessment Section (GLEAS) Procedure 51 ratings went from fair to excellent. For the three downstream reaches, reach C underwent slight habitat degradation, but ratings remained good; reach D underwent slight habitat degradation with ratings changing from excellent to good; and, in an area affected by a 1966 sediment release, reach E habitat rated fair in April 2000 and remained fair in September 2001. The most noticeable habitat change in the three reaches downstream from the dam site was a measurable increase in siltation and embeddedness. Bed-elevation profiles show that bed material upstream from the dam site was remobilized as suspended sediment and bedload, and was redeposited in the reaches below the cofferdam. Deposition was greater in the deep, slow-moving pools than the shallow, fast-moving riffles. For the most part, where deposition took place, deposits were less than 1 foot in thickness. In the year following the removal of the cofferdam, much of the sediment deposited below the dam was moved out of the study reach.

  12. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    USGS Publications Warehouse

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  13. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local response surface are comparatively assessed. Preliminary results show that a range of potentially interesting trade-off policies exist able to better control river bed incision downstream without significantly decreasing hydropower production.

  14. Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA

    USGS Publications Warehouse

    Allert, A.L.; DiStefano, R.J.; Fairchild, J.F.; Schmitt, C.J.; McKee, M.J.; Girondo, J.A.; Brumbaugh, W.G.; May, T.W.

    2013-01-01

    The Big River (BGR) drains much of the Old Lead Belt mining district (OLB) in southeastern Missouri, USA, which was historically among the largest producers of lead–zinc (Pb–Zn) ore in the world. We sampled benthic fish and crayfish in riffle habitats at eight sites in the BGR and conducted 56-day in situ exposures to the woodland crayfish (Orconectes hylas) and golden crayfish (Orconectes luteus) in cages at four sites affected to differing degrees by mining. Densities of fish and crayfish, physical habitat and water quality, and the survival and growth of caged crayfish were examined at sites with no known upstream mining activities (i.e., reference sites) and at sites downstream of mining areas (i.e., mining and downstream sites). Lead, zinc, and cadmium were analyzed in surface and pore water, sediment, detritus, fish, crayfish, and other benthic macro-invertebrates. Metals concentrations in all materials analyzed were greater at mining and downstream sites than at reference sites. Ten species of fish and four species of crayfish were collected. Fish and crayfish densities were significantly greater at reference than mining or downstream sites, and densities were greater at downstream than mining sites. Survival of caged crayfish was significantly lower at mining sites than reference sites; downstream sites were not tested. Chronic toxic-unit scores and sediment probable effects quotients indicated significant risk of toxicity to fish and crayfish, and metals concentrations in crayfish were sufficiently high to represent a risk to wildlife at mining and downstream sites. Collectively, the results provided direct evidence that metals associated with historical mining activities in the OLB continue to affect aquatic life in the BGR.

  15. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels

    USGS Publications Warehouse

    Wipfli, M.S.; Richardson, J.S.; Naiman, R.J.

    2007-01-01

    Headwater streams make up a large proportion of the total length and watershed area of fluvial networks, and are partially characterized by the large volume of organic matter (large wood, detritus, and dissolved organic matter) and invertebrate inputs from the riparian forest, relative to stream size. Much of those inputs are exported to downstream reaches through time where they potentially subsidize river communities. The relative rates, timing, and conversion processes that carry inputs from small streams to downstream reaches are reasonably well quantified. For example, larger particles are converted to smaller particles, which are more easily exported. Also, dissolved organic matter and surface biofilms are converted to larger particles which can be more easily intercepted by consumers. However, the quality of these materials as it affects biological activity downstream is not well known, nor is the extent to which timing permits biological use of those particles. These ecological unknowns need to be resolved. Further, land uses may disrupt and diminish material transport to downstream reaches by removing sources (e.g., forest harvest), by affecting transport and decomposition processes (e.g., flow regulation, irrigation, changes in biotic communities), and by altering mechanisms of storage within headwaters (e.g., channelization). We present conceptual models of energy and nutrient fluxes that outline small stream processes and pathways important to downstream communities, and we identify informational gaps that, if filled, could significantly advance the understanding of linkages between headwater streams and larger rivers. The models, based on empirical evidence and best professional judgment, suggest that navigable waters are significantly influenced by headwater streams through hydrological and ecological connectivities, and land use can dramatically influence these natural connectivities, impacting downstream riverine ecosystems. ?? 2007 American Water Resources Association.

  16. Integrating Green and Blue Water Management Tools for Land and Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Jewitt, G. P. W.

    2009-04-01

    The role of land use and land use change on the hydrological cycle is well known. However, the impacts of large scale land use change are poorly considered in water resources planning, unless they require direct abstraction of water resources and associated development of infrastructure e.g. Irrigation Schemes. However, large scale deforestation for the supply of raw materials, expansion of the areas of plantation forestry, increasing areas under food production and major plans for cultivation of biofuels in many developing countries are likely to result in extensive land use change. Given the spatial extent and temporal longevity of these proposed developments, major impacts on water resources are inevitable. It is imperative that managers and planners consider the consequences for downstream ecosystems and users in such developments. However, many popular tools, such as the vitual water approach, provide only coarse scale "order of magnitude" type estimates with poor consideration of, and limited usefulness, for land use planning. In this paper, a framework for the consideration of the impacts of large scale land use change on water resources at a range of temporal and spatial scales is presented. Drawing on experiences from South Africa, where the establishment of exotic commercial forest plantations is only permitted once a water use license has been granted, the framework adopts the "green water concept" for the identification of potential high impact areas of land use change and provides for integration with traditional "blue water" water resources planning tools for more detailed planning. Appropriate tools, ranging from simple spreadsheet solutions to more sophisticated remote sensing and hydrological models are described, and the application of the framework for consideration of water resources impacts associated with the establishment of large scale tectona grandis, sugar cane and jatropha curcas plantations is illustrated through examples in Mozambique and South Africa. Keywords: Land use change, water resources, green water, blue water, biofuels, developing countries

  17. Integrated modelling to assess long-term water supply capacity of a meso-scale Mediterranean catchment.

    PubMed

    Collet, Lila; Ruelland, Denis; Borrell-Estupina, Valérie; Dezetter, Alain; Servat, Eric

    2013-09-01

    Assessing water supply capacity is crucial to meet stakeholders' needs, notably in the Mediterranean region. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km(2), France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need first to understand the processes controlling the evolution of water resources and demands in the past to latter evaluate future water supply capacity and anticipate the tensions users could be confronted to in the future. A modelling framework is proposed at a 10-day time step to assess whether water resources have been able to meet water demands over the last 50 years. Water supply was evaluated using hydrological modelling and a dam management model. Water demand dynamics were estimated for the domestic and agricultural sectors. A water supply capacity index is computed to assess the extent and the frequency to which water demand has been satisfied at the sub-basin scale. Simulated runoff dynamics were in good agreement with observations over the calibration and validation periods. Domestic water demand has increased considerably since the 1980s and is characterized by a seasonal peak in summer. Agricultural demand has increased in the downstream sub-basins and decreased upstream where irrigated areas have decreased. As a result, although most water demands were satisfied between 1961 and 1980, irrigation requirements in summer have sometimes not been satisfied since the 1980s. This work is the first step toward evaluating possible future changes in water allocation capacity in the catchment, using future climate change, dam management and water use scenarios. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. ReachScan - an Exposure Assessment Model

    EPA Pesticide Factsheets

    ReachScan estimates surface water concentrations downstream from industrial sites to assess impacts on the aquatic environment and potential dose rates for humans exposed via ingestion of drinking water and fish.

  19. The impacts of neutralized acid mine drainage contaminated water on the expression of selected endocrine-linked genes in juvenile Mozambique tilapia Oreochromis mossambicus exposed in vivo.

    PubMed

    Truter, Johannes Christoff; va Wyk, Johannes Hendrik; Oberholster, Paul Johan; Botha, Anna-Maria

    2014-02-01

    Acid mine drainage (AMD) is a global environmental concern due to detrimental impacts on river ecosystems. Little is however known regarding the biological impacts of neutralized AMD on aquatic vertebrates despite excessive discharge into watercourses. The aim of this investigation was to evaluate the endocrine modulatory potential of neutralized AMD, using molecular biomarkers in the teleost fish Oreochromis mossambicus in exposure studies. Surface water was collected from six locations downstream of a high density sludge (HDS) AMD treatment plant and a reference site unimpacted by AMD. The concentrations of 28 elements, including 22 metals, were quantified in the exposure water in order to identify potential links to altered gene expression. Relatively high concentrations of manganese (~ 10mg/l), nickel (~ 0.1mg/l) and cobalt (~ 0.03 mg/l) were detected downstream of the HDS plant. The expression of thyroid receptor-α (trα), trβ, androgen receptor-1 (ar1), ar2, glucocorticoid receptor-1 (gr1), gr2, mineralocorticoid receptor (mr) and aromatase (cyp19a1b) was quantified in juvenile fish after 48 h exposure. Slight but significant changes were observed in the expression of gr1 and mr in fish exposed to water collected directly downstream of the HDS plant, consisting of approximately 95 percent neutralized AMD. The most pronounced alterations in gene expression (i.e. trα, trβ, gr1, gr2, ar1 and mr) was associated with water collected further downstream at a location with no other apparent contamination vectors apart from the neutralized AMD. The altered gene expression associated with the "downstream" locality coincided with higher concentrations of certain metals relative to the locality adjacent to the HDS plant which may indicate a causative link. The current study provides evidence of endocrine disruptive activity associated with neutralized AMD contamination in regard to alterations in the expression of key genes linked to the thyroid, interrenal and gonadal endocrine axes of a teleost fish species. © 2013 Published by Elsevier Inc.

  20. Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining

    NASA Astrophysics Data System (ADS)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David

    2016-01-01

    A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.

  1. Coastal watershed management across an international border in the Tijuana River watershed

    NASA Astrophysics Data System (ADS)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  2. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  3. 2013 Flood Waters "Flush" Pharmaceuticals and other Contaminants of Emerging Concern into the Water and Sediment of the South Platte River, Colorado

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Bradley, P. M.; Paschke, S.; Plumlee, G. S.; Kimbrough, R.

    2016-12-01

    In September 2013, heavy rainfall caused severe flooding in Rocky Mountain National Park (ROMO) and environs extending downstream into the main stem of the South Platte River. In ROMO, flooding damaged infrastructure and local roads. In the tributary canyons, flooding damaged homes, septic systems, and roads. On the plains, flooding damaged several wastewater treatment plants. The occurrence and fate of pharmaceuticals and other contaminants of emerging concern (CECs) in streams during flood conditions is poorly understood. We assessed the occurrence and fate of CECs in this flood by collecting water samples (post-peak flow) from 4 headwaters sites in ROMO, 7 sites on tributaries to the South Platte River, and 6 sites on the main stem of the South Platte; and by collecting flood sediment samples (post-flood depositional) from 14 sites on tributaries and 10 sites on the main stem. Water samples were analysed for 110 pharmaceuticals and 69 wastewater indicators. Sediment samples were analysed for 57 wastewater indicators. Concentrations and numbers of CECs detected in water increased markedly as floodwaters moved downstream and some were not diluted despite the large flow increases in downstream reaches of the affected rivers. For example, in the Cache la Poudre River in ROMO, no pharmaceuticals and 1 wastewater indicator compound (camphor) were detected. At Greeley, the Cache la Poudre was transporting 19 pharmaceuticals [total concentration of 0.69 parts-per-billion (ppb)] and 22 wastewater indicators (total concentration of 2.81 ppb). In the South Platte downstream from Greeley, 24 pharmaceuticals (total concentration of 1.47 ppb) and 24 wastewater indicators (total concentration of 2.35 ppb) were detected. Some CECs such as the combustion products pyrene, fluoranthene, and benzo(a)pyrene were detected only at sub-ppb concentrations in water, but were detected at concentrations in the hundreds of ppb in flood sediment samples.

  4. Effects of urban runoff and wastewater effluent on Wilsons Creek and James River near Springfield, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1980-01-01

    Statistical analysis on water-quality parameters from James River upstream and downstream from the confluence of Wilsons Creek shows a significant difference for all parameters except temperature and dissolved silica at the 0.05 probability level. Regression analysis shows correlation for discharge with dissolved sodium, dissolved chloride, and dissolved potassium, and for specific conductance with dissolved chloride and dissolved sulfate at the station downstream from Wilsons Creek. This is due to the consistent quality of the effluent from the Southwest Wastewater Plant on Wilsons Creek. Water-quality monitor stations upstream and downstream from the wastewater plant indicate that the plant has a degrading effect on dissolved oxygen in Wilsons Creek and James River. The monitors also indicate that rainfall flushes momentarily poor quality water into Wilsons Creek from the urbanized Springfield area. Overall, the runoff is diluting the effluent from the wastewater plant. Rainfall and runoff stations indicate a rapid response of runoff to rainfall due to the high percentage of imperviousness and the filling or paving of sinkholes. (USGS)

  5. An investigation into variable recharge behaviors among eight alluvial observation wells in Pajarito Canyon, Los Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmeer, S. R.

    2010-12-01

    Pajarito Canyon in Los Alamos, New Mexico trends west to east through the Pajarito Plateau from the headwaters in the Jemez Mountains, thirteen miles to the Rio Grande. In summer 2008, Los Alamos National Laboratory installed eight shallow wells, numbered PCAO-5, 6, 7a, 7b1, 7b2, 7c, 8 and 9, in the middle four miles of this canyon. Among these wells, five distinct recharge behaviors have been observed. PCAO-5 demonstrates seasonal recharge in response to annual snowmelt. PCAO-6, while just 400 feet further downstream, is considerably flashier and the well is often dry for months at a time. In PCAO-7a, 7b2 and 7c, another two miles downstream, the water level declined steadily since installation, with no recharge until spring 2010. PCAO-7b1 has not contained water since drilling. Downstream a further two miles, PCAO-8 and PCAO-9 were dry for the majority of 2009 and their hydrographs are more attenuated. This investigation was undertaken to explain the recharge behaviors of the wells, with the goal of improving site selection and design of alluvial wells to provide better representation of the alluvial aquifer. Water level data collected since July 2008 were used to compare the water columns of each well. Well construction diagrams were utilized to construct stratigraphic maps in order to compare well construction and lithology. Results indicate that PCAO-5 consistently contains water due to its location above a flood retention structure (FRS) and the placement of its screened interval immediately above the tuff layer, forcing water to travel through the screened interval. PCAO-6’s flashy, intermittent hydrograph is due to its location downstream of the FRS, and because the bottom of the screened interval rests 2.5 feet above the alluvium-tuff interface, providing a conduit below the screen of the well. The similar behaviors of PCAO-7a, 7b2 and 7c result from their near-identical construction, lithology and location. The general decline of water level until spring 2010 was due to near-drought conditions in 2009. PCAO-7a retained more water more consistently through 2009 because its screened interval rests on the alluvium-tuff interface, whereas PCAO-7b2 and 7c are both screened similarly to PCAO-6. PCAO-7b1, which has not contained water since drilling, has its screened interval within the tuff later, preventing alluvial groundwater from reaching the screen. The attenuated hydrographs of PCAO-8 and 9 are possibly due to their downstream location; in the semi-arid study area, much of the alluvial groundwater sourced in the mountains may already have infiltrated towards the deeper aquifers before reaching the lower portion of the canyon. These results indicate that shallow wells in areas with a lithology similar to the study area should be constructed with a screened interval that rests directly on the alluvium-tuff interface, thereby forcing flow through the screen. Additionally, deep barriers such as the FRS will greatly inhibit consistent flow of alluvial groundwater into shallow wells built immediately downstream of the barrier. Finally, shallow wells in the lower portions of semi-arid canyons may not consistently contain water because source water from the mountains may infiltrate too deep before reaching the wells.

  6. Discontinuities in stream nutrient uptake below lakes in mountain drainage networks

    USGS Publications Warehouse

    Arp, C.D.; Baker, M.A.

    2007-01-01

    In many watersheds, lakes and streams are hydrologically linked in spatial patterns that influence material transport and retention. We hypothesized that lakes affect stream nutrient cycling via modifications to stream hydrogeomorphology, source-waters, and biological communities. We tested this hypothesis in a lake district of the Sawtooth Mountains, Idaho. Uptake of NO3- and PO4-3 was compared among 25 reaches representing the following landscape positions: lake inlets and outlets, reaches >1-km downstream from lakes, and reference reaches with no nearby lakes. We quantified landscape-scale hydrographic and reach-scale hydrogeomorphic, source-water, and biological variables to characterize these landscape positions and analyze relationships to nutrient uptake. Nitrate uptake was undetectable at most lake outlets, whereas PO4-3 uptake was higher at outlets as compared to reference and lake inlet reaches. Patterns in nutrient demand farther downstream were similar to lake outlets with a gradual shift toward reference-reach functionality. Nitrate uptake was most correlated to sediment mobility and channel morphology, whereas PO 4-3 uptake was most correlated to source-water characteristics. The best integrated predictor of these patterns in nutrient demand was % contributing area (the proportion of watershed area not routing through a lake). We estimate that NO3- and PO 4-3 demand returned to 50% of pre-lake conditions within 1-4-km downstream of a small headwater lake and resetting of nutrient demand was slower downstream of a larger lake set lower in a watershed. Full resetting of these nutrient cycling processes was not reached within 20-km downstream, indicating that lakes can alter stream ecosystem functioning at large spatial scales throughout mountain watersheds. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  7. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  8. Shark Spotters: Successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa

    PubMed Central

    Kock, Alison; Waries, Sarah; O’Riain, M. Justin

    2017-01-01

    White sharks (Carcharodon carcharias) are apex predators that play an important role in the structure and stability of marine ecosystems. Despite their ecological importance and protected status, white sharks are still subject to lethal control to reduce the risk of shark bites for recreational water users. The Shark Spotters program, pioneered in Cape Town, South Africa, provides a non-lethal alternative for reducing the risk of human-shark conflict. In this study we assessed the efficacy of the Shark Spotters program in reducing overlap between water users and white sharks at two popular beaches in False Bay, South Africa. We investigated seasonal and diel patterns in water use and shark presence at each beach, and thereafter quantified the impact of different shark warnings from shark spotters on water user abundance. We also assessed the impact of a fatal shark incident on patterns of water use. Our results revealed striking diel and seasonal overlap between white sharks and water users at both beaches. Despite this, there was a low rate of shark-human incidents (0.5/annum) which we attribute partly to the success of the Shark Spotters program. Shark spotters use visual (coloured flags) and auditory (siren) cues to inform water users of risk associated with white shark presence in the surf zone. Our results showed that the highest risk category (denoted by a white flag and accompanying siren) caused a significant reduction in water user abundance; however the secondary risk category (denoted by a red flag with no siren) had no significant effect on water users. A fatal shark incident was shown to negatively impact the number of water users present for at least three months following the incident. Our results indicate that the Shark Spotters program effectively reduces spatial overlap between white sharks and water users when the risk of conflict is highest. PMID:28945806

  9. Shark Spotters: Successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa.

    PubMed

    Engelbrecht, Tamlyn; Kock, Alison; Waries, Sarah; O'Riain, M Justin

    2017-01-01

    White sharks (Carcharodon carcharias) are apex predators that play an important role in the structure and stability of marine ecosystems. Despite their ecological importance and protected status, white sharks are still subject to lethal control to reduce the risk of shark bites for recreational water users. The Shark Spotters program, pioneered in Cape Town, South Africa, provides a non-lethal alternative for reducing the risk of human-shark conflict. In this study we assessed the efficacy of the Shark Spotters program in reducing overlap between water users and white sharks at two popular beaches in False Bay, South Africa. We investigated seasonal and diel patterns in water use and shark presence at each beach, and thereafter quantified the impact of different shark warnings from shark spotters on water user abundance. We also assessed the impact of a fatal shark incident on patterns of water use. Our results revealed striking diel and seasonal overlap between white sharks and water users at both beaches. Despite this, there was a low rate of shark-human incidents (0.5/annum) which we attribute partly to the success of the Shark Spotters program. Shark spotters use visual (coloured flags) and auditory (siren) cues to inform water users of risk associated with white shark presence in the surf zone. Our results showed that the highest risk category (denoted by a white flag and accompanying siren) caused a significant reduction in water user abundance; however the secondary risk category (denoted by a red flag with no siren) had no significant effect on water users. A fatal shark incident was shown to negatively impact the number of water users present for at least three months following the incident. Our results indicate that the Shark Spotters program effectively reduces spatial overlap between white sharks and water users when the risk of conflict is highest.

  10. Integrating operation design into infrastructure planning to foster robustness of planned water systems

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of different operating strategies.

  11. Preliminary study of the water-temperature regime of the North Santiam River downstream from Detroit and Big Cliff dams, Oregon

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    A riverine-temperature model and associated data-collection system were developed to help the Corps of engineers determine cost benefits of selective-withdrawal structures for future use with dams on the Willamette River System. A U.S. Geological Survey Lagrangian reference frame, digital computer model was used to simulate stream temperatures on the North Santiam River downstream of the multipurpose Detroit dam and a reregulating dam (Big Cliff), from river mile 45.6 to 2.9. In simulation, only available air-temperature and windspeed information from a nearby National Weather Service station at Salem, Oregon were used. This preliminary investigation found that the model predicted mean daily temperatures to within 0.4 C standard deviation. Analysis of projected selective-withdrawal scenarios showed that the model has the sensitivity to indicate water-temperature changes 42.7 miles downstream on the North Santiam River. (USGS)

  12. Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis.

    PubMed

    Sabater-Liesa, Laia; Ginebreda, Antoni; Barceló, Damià

    2018-06-18

    The longitudinal structure of the environmental and phytoplankton variables was investigated in the Ebro River (NE Spain), which is heavily affected by water abstraction and regulation. A first exploration indicated that the phytoplankton community did not resist the impact of reservoirs and barely recovered downstream of them. The spatial analysis showed that the responses of the phytoplankton and environmental variables were not uniform. The two set of variables revealed spatial variability discontinuities and river fragmentation upstream and downstream from the reservoirs. Reservoirs caused the replacement of spatially heterogeneous habitats by homogeneous spatially distributed water bodies, these new environmental conditions downstream benefiting the opportunist and cosmopolitan algal taxa. The application of a spatial auto-regression model to algal biomass (chlorophyll-a) permitted to capture the relevance and contribution of extra-local influences in the river ecosystem. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. How far downstream do dams impact streamflow?

    NASA Astrophysics Data System (ADS)

    Troy, T.

    2017-12-01

    Water infrastructure can be a double-edged sword. For example, dams can provide significant flood protection and stable water supplies, but they negatively impact river ecosystems. As the United States enters an era of dam decommissioning instead of dam building, it raises the question of how far downstream dams provide protection against flood peaks and sustaining environmental flows. This study uses USGS streamflow observations, the National Inventory of Dams, and VIC-modeled streamflow as a proxy for naturalized streamflow to evaluate the scale at which dams impact a variety of hydrologic signatures such as flood return period flows, streamflow variability, and low flows. Results over the Delaware River show that the impact of dams quickly dissipates as one moves downstream, but this is due to the basin's characteristics. This analysis is performed over the contiguous United States, quantifying the length scale of impact as a function of dam capacity, position on the river network, and the hydroclimatology.

  14. Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for "source water supply and protection" strategies.

    PubMed

    Emelko, Monica B; Silins, Uldis; Bladon, Kevin D; Stone, Micheal

    2011-01-01

    Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A Hydraulic Nexus between Geographically Isolated Wetlands and Downstream Water Bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2014-12-01

    Geographic isolation does not imply hydrological isolation; indeed, local groundwater exchange between geographically isolated wetlands (GIWs) and surrounding uplands may yield important controls on regional hydrology. Differences in specific yield (Sy) between aquifers and inundated GIWs drive differences in water level responses to atmospheric fluxes, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. When distributed across the landscape, these reversals in local groundwater fluxes are predicted to collectively buffer the surficial aquifer and its regulation of baseflow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we integrated models of daily soil moisture, upland water table, and wetland stage dynamics to simulate hydrology of a low-relief landscape with GIWs. Simulations explored the influences of cumulative wetland area, individual wetland size, climate, and soil texture on water table and baseflow variation. Increasing cumulative wetland area and decreasing individual wetland size reduced water table variation and the frequency of extremely shallow and deep water tables. This buffering effect extended to baseflow deliveries, decreasing the standard deviation of daily baseflow by as much as 50%. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the important role of small GIWs in regulating regional hydrology. Recent U.S. Supreme Court rulings have limited federal protections for GIWs except where a "significant nexus" to a navigable water body is demonstrated. Our results suggest that GIWs regulate downstream baseflow, even where water in GIWs may never physically reach downstream systems, providing a significant "hydraulic" nexus to distant water bodies.

  16. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  17. Dam Removal Provides Fish Passage, Water Quality Benefits

    EPA Pesticide Factsheets

    The Bishopville Pond Dam in Maryland has been replaced with a series of pools, runs and step-like structures, improving water quality downstream and providing access for key fish species to spawn upstream.

  18. DOC and DON Dynamics along the Bagmati Drainage Network in Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Bhatt, M. P.; McDowell, W. H.

    2005-05-01

    We studied organic matter dynamics and inorganic chemistry of the Bagmati River in Kathmandu valley, Nepal, to understand the influence of human and geochemical processes on chemical loads along the drainage system. Population density appears to be the most fundamental control on the chemistry of surface waters within the Bagmati drainage system. DOC concentration increases 10-fold with distance downstream (from 2.38 to 23.95 mg/L) and shows a strong relationship with human population density. The composition of river water (nutrients, Cl) suggests that sewage effluent to the river has a major effect on water quality. Concentrations were highest during summer, and lowest during the winter monsoon season. In contrast to DOC, DON concentration shows surprisingly little variation, and tends to decrease in concentration with distance downstream. Ammonium contributes almost all nitrogen in the total dissolved nitrogen fraction and the concentration of nitrate is negligible, probably due to rapid denitrification within the stream channel under relatively low-oxygen conditions. Decreases in sulfate along the stream channel may also be due to the reduction of sulfate to sulfide due to the heavy organic matter loading. Water quality is unacceptable for any use and the whole ecosystem is severely affected within the urban areas. Based on a comparison of downstream and upstream water quality, it appears that human activities along the Bagmati, principally inputs of human sewage, are largely responsible for the changes in surface water chemistry within Kathmandu valley.

  19. [Avoidance of injuries to migrating fish by hydropower and water intake plants].

    PubMed

    Adam, B

    2004-03-01

    Every year numerous downstream migrating fish are lethally injured by hydro power plants and inlet works. Especially the katadromous Eel (Anguilla anguilla) and anadromous species like Atlantic Salmon (Salmo salar), which have to migrate downstream into the ocean for closing their life cycle, are highly endangered. Due to their specific migratory behavioral pattern, size and morphology conventional protection techniques, like screens do not properly keep them out from getting into the power plant intakes. Despite of the relevance of this problem for ecology and fishing, there are no protection and downstream migration facilities in Europe available, which can efficiently avoid the damage of all species and sizes of downstream migrating fish. Nevertheless according to protect the fish populations it's necessary to use consequently fish protection and downstream migration facilities, i.e. mechanical barrieres or alternative techniques like early warning systems as a prerequisit for a fish-friendly operational management of hydro power plants.

  20. Rivers and reciprocity: perceptions and policy on international watercourses

    NASA Astrophysics Data System (ADS)

    Tian, Fuqiang

    2017-04-01

    The paper analyses geopolitical dimensions of the 1997 United Nations Convention on the Law of the NonNavigational Uses of International Watercourses (UNWC) using quantitative data on transboundary flows and qualitative data on basin State location within a watercourse. The UNWC has had a long and difficult history. A tendency for downstream support for, and upstream ambivalence/opposition to, the UNWC is identified. It appears not widely recognized that adverse effects can be caused by any State on other States, regardless of their upstream or downstream location. Thus downstream States consider that their actions cannot harm upstream States, and upstream States consider that the UNWC provides them with greater obligations than downstream States. Clarification of the UNWC with the principle of reciprocal obligations on all States, both upstream and downstream, will remove any ambiguity, correct misperceptions, have clear policy implications for all States, promote UNWC engagement of upstream States, and contribute to long-term global water security.

  1. A simplified water temperature model for the Colorado River below Glen Canyon Dam

    USGS Publications Warehouse

    Wright, S.A.; Anderson, C.R.; Voichick, N.

    2009-01-01

    Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year-round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first-order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat-exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.58C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam.

  2. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower water availability in the region, were simulated by SWIM and WBalMo respectively. Next to changing climate conditions, also the different mining scenarios have considerable impacts on natural and managed discharges. Using the dynamic approach for cooling water demand, the simulated water demands are lower in winter, but higher in summer compared to the static approach. As a consequence of changes in the seasonal pattern of the cooling water demand of the power plants, lower summer discharges downstream of the thermal power plants are simulated using the dynamical approach. Due to the complex water management system in the region included in the water management model WBalMo, also the simulation of reservoir releases and volumes is impacted by the choice of either the static or the dynamic approach for calculating the cooling water demand of the thermal power plants.

  3. Watershed-scale modeling of streamflow change in incised montane meadows

    USGS Publications Warehouse

    Essaid, Hedeff I.; Hill, Barry R.

    2014-01-01

    Land use practices have caused stream channel incision and water table decline in many montane meadows of the Western United States. Incision changes the magnitude and timing of streamflow in water supply source watersheds, a concern to resource managers and downstream water users. The hydrology of montane meadows under natural and incised conditions was investigated using watershed simulation for a range of hydrologic conditions. The results illustrate the interdependence between: watershed and meadow hydrology; bedrock and meadow aquifers; and surface and groundwater flow through the meadow for the modeled scenarios. During the wet season, stream incision resulted in less overland flow and interflow and more meadow recharge causing a net decrease in streamflow and increase in groundwater storage relative to natural meadow conditions. During the dry season, incision resulted in less meadow evapotranspiration and more groundwater discharge to the stream causing a net increase in streamflow and a decrease in groundwater storage relative to natural meadow conditions. In general, for a given meadow setting, the magnitude of change in summer streamflow and long-term change in watershed groundwater storage due to incision will depend on the combined effect of: reduced evapotranspiration in the eroded meadow; induced groundwater recharge; replenishment of dry season groundwater storage depletion in meadow and bedrock aquifers by precipitation during wet years; and groundwater storage depletion that is not replenished by precipitation during wet years.

  4. Water quality and benthic macroinvertebrate bioassessment of Gallinas Creek, San Miguel County, New Mexico, 1987-90

    USGS Publications Warehouse

    Garn, H.S.; Jacobi, G.Z.

    1996-01-01

    Upper Gallinas Creek in north-central New Mexico serves as the public water supply for the City of Las Vegas. The majority of this 84-square-mile watershed is within national forest lands managed by the U.S. Forest Service. In 1985, the Forest Service planned to conduct timber harvesting in the headwaters of Gallinas Creek. The City of Las Vegas was concerned about possible effects from logging on water quality and on water-supply treatment costs. The U.S. Geological Survey began a cooperative study in 1987 to (1) assess the baseline water-quality characteristics of Gallinas Creek upstream from the Las Vegas water-supply diversion, (2) relate water quality to State water- quality standards, and (3) determine possible causes for spatial differences in quality. During 1987-90, water-quality constituents and aquatic benthic macroinvertebrates were collected and analyzed at five sampling sites in the watershed. Specific conductance, pH, total hardness, total alkalinity, and calcium concentrations increased in a downstream direction, probably in response to differences in geology in the watershed. The water-quality standard for temperature was exceeded at the two most downstream sites probably due to a lack of riparian vegetation and low streamflow conditions. The standards for pH and turbidity were exceeded at all sites except the most upstream one. Concentrations of nitrogen species and phosphorus generally were small at all sites. The maximum total nitrogen concentration of 2.1 milligrams per liter was at the mouth of Porvenir Canyon; only one sample at this site exceeded the water-quality standard for total inorganic nitrogen. At each of the sites, 10 to 15 percent of the samples exceeded the total phosphorus standard of less than 0.1 milligram per liter. Except for aluminum and iron, almost all samples tested for trace elements contained concentrations less than the laboratory detection limit. No trace-element concentrations exceeded the State standard for domestic water supplies. Suspended-sediment concentrations appeared to increase with distance downstream; suspended sediment increased significantly from the uppermost site to the second site near the national forest boundary, most probably caused by runoff from the unpaved forest road adjacent to Gallinas Creek. The aquatic macroinvertebrate assessment indicated that the three upstream sites had good biological conditions and were nonimpaired, whereas the two downstream sites had lowered biological conditions and were slightly impaired. The water- quality and biological assessments provided similar results.

  5. 30 CFR 817.43 - Diversions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintaining water-treatment facilities as otherwise required. (4) A permanent diversion or a stream channel... the permit area and to assure the safety of the public. Diversions shall not be used to divert water... shall be restored in accordance with this part. Before diversions are removed, downstream water...

  6. 30 CFR 816.43 - Diversions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintaining water-treatment facilities as otherwise required. (4) A permanent diversion or a stream channel... the permit area and to assure the safety of the public. Diversions shall not be used to divert water... shall be restored in accordance with this part. Before diversions are removed, downstream water...

  7. Water-quality assessment and wastewater-management alternatives for Dardenne Creek in St Charles County, Missouri

    USGS Publications Warehouse

    Berkas, W.R.; Lodderhose, J.R.

    1985-01-01

    The quality of water in the 15 mile downstream reach of Dardenne Creek in St. Charles County, Missouri, was assessed to determine if it met the Missouri water quality standards. Concentrations of dissolved oxygen and total ammonia failed to meet water quality standards downstream from the Harvester-Dardenne and St. Peters Wastewater-Treatment Plants. The QUAL-II SEMCOG water quality model was calibrated and verified using two independent data sets from Dardenne Creek. Management alternatives using current, design capacity, and future expansion wastewater discharges from the St. Peters Wastewater-Treatment Plant were evaluated. Results of the computer simulation indicate that a nitrification-type advanced-treatment facility installed at the plant would produce a 5-day carbonaceous biochemical oxygen demand of 10 mg/L. An effluent limit of 5.0 mg/L of 5-day carbonaceous biochemical oxygen demand would further improve the water quality of Dardenne Creek; however, an additional treatment process, such as sand filtration, would be needed to meet this criterion. (USGS)

  8. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2003: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2003-01-01

    The variances to the States of Oregon and Washington water-quality standards for total dissolved gas were exceeded at six of the seven monitoring sites. The sites at Camas and Bonneville forebay had the most days exceeding the variance of 115% saturation. The forebay exceedances may have been the result of the cumulative effects of supersaturated water moving downstream through the lower Columbia River. Apparently, the levels of total dissolved gas did not decrease rapidly enough downstream from the dams before reaching the next site. From mid-July to mid-September, water temperatures were usually above 20 degrees Celsius at each of the seven lower Columbia River sites. According to the Oregon water-quality standard, when the temperature of the lower Columbia River exceeds 20 degrees Celsius, no measurable temperature increase resulting from anthropogenic activities is allowed. Transient increases of about 1 degree Celsius were noted at the John Day forebay site, due to localized solar heating.

  9. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.

    PubMed

    Besser, John M; Brumbaugh, William G; Allert, Ann L; Poulton, Barry C; Schmitt, Christopher J; Ingersoll, Christopher G

    2009-02-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  10. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  11. Seasonal Climate Forecasts and Adoption by Agriculture

    NASA Astrophysics Data System (ADS)

    Garbrecht, Jurgen; Meinke, Holger; Sivakumar, Mannava V. K.; Motha, Raymond P.; Salinger, Michael J.

    2005-06-01

    Recent advances in atmospheric and ocean sciences and a better understanding of the global climate have led to skillful climate forecasts at seasonal to interannual timescales, even in midlatitudes. These scientific advances and forecasting capabilities have opened the door to practical applications that benefit society. The benefits include the reduction of weather/climate related risks and vulnerability, increased economic opportunities, enhanced food security, mitigation of adverse climate impacts, protection of environmental quality, and so forth. Agriculture in particular can benefit substantially from accurate long-lead seasonal climate forecasts. Indeed, agricultural production very much depends on weather, climate, and water availability, and unexpected departures from anticipated climate conditions can thwart the best laid management plans. Timely climate forecasts offer means to reduce losses in drought years, increase profitability in good years, deal more effectively with climate variability, and choose from targeted risk-management strategies. In addition to benefiting farmers, forecasts can also help marketing systems and downstream users prepare for anticipated production outcomes and associated consequences.

  12. Bridging the climate-induced water gap in the twenty-first century: adaptation support based on water supply, demand, adaptation and financing.

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jaïrus; Buytaert, Wouter; Karssenberg, Derek; Van Beek, Rens; Wada, Yoshihide; Sutanudjaja, Edwin; Vitolo, Claudia; Schmitz, Oliver; Meijer, Karen; Van Aalst, Maaike; Bierkens, Marc

    2014-05-01

    Water scarcity affects large parts of the world. Over the course of the twenty-first century, water demand is likely to increase due to population growth and associated food production, and increased economic activity, while water supply is projected to decrease in many regions due to climate change. Despite recent studies that analyze the effect of climate change on water scarcity, e.g. using climate projections under representative concentration pathways (RCP) of the fifth assessment report of the IPCC (AR5), decision support for closing the water gap between now and 2100 does not exist at a meaningful scale and with a global coverage. In this study, we aimed (i) to assess the joint impact of climatic and socio-economic change on water scarcity, (ii) to integrate impact and potential adaptation in one workflow, (iii) to prioritize adaptation options to counteract water scarcity based on their financial, regional socio-economic and environmental implications, and (iv) to deliver all this information in an integrated user-friendly web-based service. To enable the combination of global coverage with local relevance, we aggregated all results for 1604 water provinces (food producing units) delineated in this study, which is five times smaller than previous food producing units. Water supply was computed using the PCR-GLOBWB hydrological and water resources model, parameterized at 5 arcminutes for the whole globe, excluding Antarctica and Greenland. We ran PCR-GLOBWB with a daily forcing derived from five different GCM models from the CMIP5 (GFDL-ESM2M, Hadgem2-ES, IPSL-CMA5-LR, MIROC-ESM-CHEM, NorESM1-M) that were bias corrected using observation-based WATCH data between 1960-1999. For each of the models all four RCPs (RCP 2.6, 4.5, 6.0, and 8.5) were run, producing the ensemble of 20 future projections. The blue water supply was aggregated per month and per water province. Industrial, domestic and irrigation water demands were computed for a limited number of realistic combinations of a shared socio-economic pathways (SSPs) and RCPs. Our Water And Climate Adaptation Model (WatCAM) was used to compute the water gap based on reservoir capacity, water supply, and water demand. WatCam is based on the existing ModSim (Labadie, 2010) water allocation model, and facilitated the evaluation of nine technological and infrastructural adaptation measures to assess the investments needed to bridge the future water gap. Regional environmental and socio-economic effects of these investments, such as environmental flows or downstream effects, were evaluated. A scheme was developed to evaluate the strategies on robustness and flexibility under climate change and scenario uncertainty, and each measure was linked to possibilities for investment and financing mechanisms. The WatCAM is available as a web modeling service from www.water2invest.com, and enables user specified adaptation measures and the creation of an ensemble of water gap forecasts.

  13. Common Pool Water Markets and their Role in Facilitating Land Use Change in Drying Climates

    NASA Astrophysics Data System (ADS)

    Teasley, R. L.; Milke, M.; Raffensperger, J. F.; Zargar, M.

    2010-12-01

    Concern is growing worldwide that climate change will lead to drier climates in many regions and in turn diminish water resources. To protect these limited resources, users may need to shift water use to more economically productive areas. However, changing the land use associated with water permits can be quite difficult, because water is not easily traded. Water markets have been well researched as a method for trading water between users, but these markets can often be difficult and costly requiring one-to-one trades between buyers and sellers. In contrast to a one-to-one market, a common pool market can reduce the transaction costs associated with trading water. In this research, a common pool market is applied to an example groundwater system set up in GWM2000 with ten users and various environmental constraints. The users represent three types of the largest groundwater users in the Canterbury region of New Zealand: agricultural, dairy and livestock. The response matrix from GWM2000 is used to develop constraints in the market model along with user bids. Bids are calculated from economic and water use data for Canterbury, New Zealand. Varying spatial distributions of water users by type are evaluated for the effect on the market under drying conditions. These conditions are simulated from climate change scenarios produced by the National Institute of Water and Atmospheric Research in New Zealand. The results demonstrate potential land use changes falls under drying conditions. As water availability falls, the price for additional water increases, particularly near environmental constraints, driving the land and water towards more efficient uses.

  14. 1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. POWER PLANT AND INTAKE GATES ARE IN THE LEFT FOREGROUND, AND THE ATTACHED 'OLD SWITCHING BUILDING' (NOW ABANDONED) IS IN THE RIGHT BACKGROUND, LOOKING NORTHWEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  15. Thermal Habitat Use and Evidence of Seasonal Migration by Rocky Mountain Tailed Frogs, Ascaphus montanus, in Montana

    Treesearch

    Susan B. Adams; Christopher A. Frissell

    2001-01-01

    All life stages of Rocky Mountain Tailed Frogs (Ascaphus montanus) occurred in a reach of Moore Creek. Montana, where water temperatures exceeded those previously reported for Ascaphus in the wild. However, relative density of Ascaphus in the wannest reach, immediately downstream of a lake outlet, was lower than in cooler reaches downstream. Although...

  16. Time-of-travel and dispersion studies, Lehigh River, Francis E. Walter Lake to Easton, Pennsylvania

    USGS Publications Warehouse

    Kauffman, C.D.

    1983-01-01

    Results of time-of-travel and dispersion studies are presented for the 77.0 mile reach of the Lehigh River from Francis E. Walter Lake to Easton, Pennsylvania. Rhodamine WT dye was injected at several points for a variety of several common flow conditions and its downstream travel was monitored at a number of downstream points by means of a fluorometer. Time-of-travel data have been related to stream discharge, distance along the river channel and dispersion. If 2.205 pounds of a conservative water soluble contaminant were accidentally spilled into the Lehigh River at Penn Haven Junction at Black Creek 6.09 miles downstream from Rockport, Pennsylvania, when the discharge at Walnutport, Pennsylvania, was 600 cubic feet per second, the leading edge, peak, and trailing edge of the contaminant would arrive 31.6 miles downstream at the Northhampton, Pennsylvania, water intakes 45, 54, and 66 hours later, respectively. The maximum concentration expected at the intakes would be about 1.450 micrograms per liter. From data and relations presented, time-of-travel and maximum concentration estimates can be made for any two points within the reach. (USGS)

  17. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  18. Nitrate dynamics within the Pajaro River, a nutrient-rich, losing stream

    USGS Publications Warehouse

    Ruehl, C.R.; Fisher, A.T.; Los, Huertos M.; Wankel, Scott D.; Wheat, C.G.; Kendall, C.; Hatch, C.E.; Shennan, C.

    2007-01-01

    The major ion chemistry of water from an 11.42-km reach of the Pajaro River, a losing stream in central coastal California, shows a consistent pattern of higher concentrations during the 2nd (dry) half of the water year. Most solutes are conserved during flow along the reach, but [NO 3-] decreases by ???30% and is accompanied by net loss of channel discharge and extensive surface-subsurface exchange. The corresponding net NO3- uptake length is 37 ?? 13 km (42 ?? 12 km when normalized to the conservative solute Cl-), and the areal NO3- uptake rate is 0.5 ??mol m -2 s-1. The observed reduction in [NO3-] along the reach results from one or more internal sinks, not dilution by ground water, hill-slope water, or other water inputs. Observed reductions in [NO3-] and channel discharge along the experimental reach result in a net loss of 200-400 kg/d of NO3--N, ???50% of the input load. High-resolution (temporal and spatial) sampling indicates that most of the NO3- loss occurs along the lower part of the reach, where there is the greatest seepage loss and surface-subsurface exchange of water. Stable isotopes of NO 3-, total dissolved P concentrations, and streambed chemical profiles suggest that denitrification is the most significant NO 3- sink along the reach. Denitrification efficiency, as expressed through downstream enrichment in 15N-NO3-, varies considerably during the water year. When discharge is greater (typically earlier in the water year), denitrification is least efficient and downstream enrichment in 15N-NO3- is greatest. When discharge is lower, denitrification in the streambed appears to occur with greater efficiency, resulting in lower downstream enrichment in 15N-NO3-. ?? 2007 by The North American Benthological Society.

  19. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    EPA Science Inventory

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  20. Application of a stream-aquifer model to Monument Creek for development of a method to estimate transit losses for reusable water, El Paso County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Arnold, L. Rick

    2006-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 to (1) apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise the existing transit-loss accounting program for Fountain Creek to incorporate new water-management strategies and allow for incorporation of future changes in water-management strategies, and (4) integrate the two accounting programs into a single program with a Web-based user interface. The purpose of this report is to present the results of applying a stream-aquifer model to the Monument Creek study reach.Transit losses were estimated for reusable-water flows in Monument Creek that ranged from 1 to 200 cubic feet per second (ft3/s) and for native streamflows that ranged from 0 to 1,000 ft3/s. Transit losses were estimated for bank-storage, channel-storage, and evaporative losses. The same stream-aquifer model used in the previously completed (1988) Fountain Creek study was used in the Monument Creek study.Sixteen model nodes were established for the Monument Creek study reach, defining 15 subreaches. Channel length, aquifer length, and aquifer width for the subreaches were estimated from available topographic and geologic maps. Thickness of alluvial deposits and saturated thickness were estimated using lithologic and water-level data from about 100 wells and test holes in or near the Monument Creek study reach. Estimated average transmissivities for the subreaches ranged from 2,000 to 12,000 feet squared per day, and a uniform value of 0.20 was used for storage coefficient.Qualitative comparison of recorded and simulated streamflow at the downstream node for the calibration and verification simulations indicated that the two streamflows compared reasonably well. No adjustments were made to the model parameters. Differences between recorded and simulated streamflow volumes for all calibration and verification simulations ranged from about –8.8 to 7.5 percent; the total error for all simulations was about –0.7 percent.The model was used to estimate bank-storage losses for 10 to 15 native streamflows for each reusable-water flow of 1, 3, 5, 7, 10, 15, 20, 30, 40, 50, 100, and 200 ft3/s. Then the 10 to 15 bank-storage loss values were used in least-squares linear regression to estimate a relation between bank-storage loss and native streamflow for each of the 12 reusable-water flow rates. The 12 regression relations then were used to develop “look-up” tables of bank-storage loss for reusable-water flows ranging from 1 to 200 ft3/s (in 1-ft3/s increments). Additional model simulations indicated that (1) when the ratio of downstream native streamflow to upstream native streamflow was less than 1, bank-storage loss generally increased and (2) when the ratio of downstream native streamflow to upstream native streamflow was larger than 1, bank-storage loss generally decreased. These results were used to develop a bank-storage loss adjustment factor based on the ratio of native streamflow at the downstream node to native streamflow at the upstream node. The model also was used to estimate a recovery period, which is the length of time needed for the bank-storage loss to return to the stream. The recovery period was 1 day for six subreaches; 2 days for four subreaches; between 3 and 12 days for four subreaches; and 28 days for one subreach.Channel-storage losses are about 10 percent of the reusable-water flow for most of the subreaches, except for two subreaches, where the channel-storage losses are about 20 percent, and one subreach, where the losses are about 30 percent, owing to the greater channel lengths. Evaporative losses were estimated by the use of monthly pan-evaporation data and the incremental increase in stream width resulting from any reusable-water flows. Monthly pan-evaporation data were converted to a daily rate. The daily rate, when multiplied by the stream-width increase (in feet) that results from reusable-water flow and by the subreach length (in miles) gives the daily evaporative loss in cubic feet per second.

  1. Water-quality modeling of Klamath Straits Drain recirculation, a Klamath River wetland, and 2011 conditions for the Link River to Keno Dam reach of the Klamath River, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Deas, Michael L.; Rounds, Stewart A.

    2014-01-01

    The upper Klamath River and adjacent Lost River are interconnected basins in south-central Oregon and northern California. Both basins have impaired water quality with Total Maximum Daily Loads (TMDLs) in progress or approved. In cooperation with the Bureau of Reclamation, the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc., have conducted modeling and research to inform management of these basins for multiple purposes, including agriculture, endangered species protection, wildlife refuges, and adjacent and downstream water users. A water-quality and hydrodynamic model (CE-QUAL-W2) of the Link River to Keno Dam reach of the Klamath River for 2006–09 is one of the tools used in this work. The model can simulate stage, flow, water velocity, ice cover, water temperature, specific conductance, suspended sediment, nutrients, organic matter in bed sediment and the water column, three algal groups, three macrophyte groups, dissolved oxygen, and pH. This report documents two model scenarios and a test of the existing model applied to year 2011, which had exceptional water quality. The first scenario examined the water-quality effects of recirculating Klamath Straits Drain flows into the Ady Canal, to conserve water and to decrease flows from the Klamath Straits Drain to the Klamath River. The second scenario explicitly incorporated a 2.73×106 m2 (675 acre) off-channel connected wetland into the CE-QUAL-W2 framework, with the wetland operating from May 1 through October 31. The wetland represented a managed treatment feature to decrease organic matter loads and process nutrients. Finally, the summer of 2011 showed substantially higher dissolved-oxygen concentrations in the Link-Keno reach than in other recent years, so the Link-Keno model (originally developed for 2006–09) was run with 2011 data as a test of model parameters and rates and to develop insights regarding the reasons for the improved water-quality conditions.

  2. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    PubMed

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. USING ENERGY AND EMERGY TO COUPLE GEOMORPHOLOGY AND HUMAN INFLUENCES INTO A WATERSHED/LANDSCAPE INDEX AND LINK THE INDEX TO DOWNSTREAM WATER AND HABITAT QUALITY

    EPA Science Inventory

    The Clean Water Act requires identification of all waters whose abiotic and biotic integrity have been compromised or impaired, but it is impossible to assess each water body in the nation. Although landscape studies attempting to find correlations between land use and water con...

  4. A supersonic, three-dimensional code for flow over blunt bodies: User's manual

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.; Mcmillan, O. J.

    1980-01-01

    A computer code is described which may be used to calculate the steady, supersonic, three-dimensional, inviscid flow over blunt bodies. The theoretical and numerical formulation of the problem is given (shock-capturing, downstream marching), including exposition of the boundary and initial conditions. The overall flow logic of the program, its usage, accuracy, and limitations are discussed.

  5. INVESTIGATION OF TRANSFORMATION PRODUCTS FROM THE CHLORINATION OF ESTROGENIC AND ANDROGENIC COMPOUNDS

    EPA Science Inventory

    Drinking water sources are increasingly impacted by upstream anthropogenic activities, including wastewater discharge, concentrated animal feeding operations (CAFOs) and landfill leachate. Androgenic and estrogenic activities have been detected in surface waters downstream from ...

  6. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  7. Management of Urban Stormwater Runoff in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Hogan, Dianna M.

    2008-01-01

    Urban and suburban development is associated with elevated nutrients, sediment, and other pollutants in stormwater runoff, impacting the physical and environmental health of area streams and downstream water bodies such as the Chesapeake Bay. Stormwater management facilities, also known as Best Management Practices (BMPs), are increasingly being used in urban areas to replace functions, such as flood protection and water quality improvement, originally performed by wetlands and riparian areas. Scientists from the U.S. Geological Survey (USGS) have partnered with local, academic, and other Federal agency scientists to better understand the effectiveness of different stormwater management systems with respect to Chesapeake Bay health. Management of stormwater runoff is necessary in urban areas to address flooding and water quality concerns. Improving our understanding of what stormwater management actions may be best suited for different types of developed areas could help protect the environmental health of downstream water bodies that ultimately receive runoff from urban landscapes.

  8. Occurrence of Pharmaceuticals in Calgary's Wastewater and Related Surface Water.

    PubMed

    Chen, M; Cooper, V I; Deng, J; Amatya, P L; Ambrus, D; Dong, S; Stalker, N; Nadeau-Bonilla, C; Patel, J

    2015-05-01

    The influents/effluents from Calgary's water resource recovery facilities and the surface water were analyzed for pharmaceuticals in the present study. The median concentrations in the effluents for the 15 targeted pharmaceuticals were within the range of 0.006 to 3.32 ppb. Although the wastewater treatment facilities were not designed to remove pharmaceuticals, this study indicates that the wastewater treatment processes are effective in removing some of the pharmaceuticals from the aqueous phase. The removal rate estimated can be 99.5% for caffeine, whereas little or no removal was observed for carbamazepine. Biodegradation, chemical degradation, and sorption could be some of the mechanisms responsible for the removal of pharmaceuticals. The drug residues in downstream surface water could be associated with incomplete removal of pharmaceuticals during the treatment process and may lead to concerns in terms of potential impacts on the aquatic ecosystem. However, this study does not indicate any immediate risks to the downstream aquatic environment.

  9. Quantifying human impacts on hydrological drought using a combined modelling approach in a tropical river basin in central Vietnam

    NASA Astrophysics Data System (ADS)

    Firoz, A. B. M.; Nauditt, Alexandra; Fink, Manfred; Ribbe, Lars

    2018-01-01

    Hydrological droughts are one of the most damaging disasters in terms of economic loss in central Vietnam and other regions of South-east Asia, severely affecting agricultural production and drinking water supply. Their increasing frequency and severity can be attributed to extended dry spells and increasing water abstractions for e.g. irrigation and hydropower development to meet the demand of dynamic socioeconomic development. Based on hydro-climatic data for the period from 1980 to 2013 and reservoir operation data, the impacts of recent hydropower development and other alterations of the hydrological network on downstream streamflow and drought risk were assessed for a mesoscale basin of steep topography in central Vietnam, the Vu Gia Thu Bon (VGTB) River basin. The Just Another Modelling System (JAMS)/J2000 was calibrated for the VGTB River basin to simulate reservoir inflow and the naturalized discharge time series for the downstream gauging stations. The HEC-ResSim reservoir operation model simulated reservoir outflow from eight major hydropower stations as well as the reconstructed streamflow for the main river branches Vu Gia and Thu Bon. Drought duration, severity, and frequency were analysed for different timescales for the naturalized and reconstructed streamflow by applying the daily varying threshold method. Efficiency statistics for both models show good results. A strong impact of reservoir operation on downstream discharge at the daily, monthly, seasonal, and annual scales was detected for four discharge stations relevant for downstream water allocation. We found a stronger hydrological drought risk for the Vu Gia river supplying water to the city of Da Nang and large irrigation systems especially in the dry season. We conclude that the calibrated model set-up provides a valuable tool to quantify the different origins of drought to support cross-sectorial water management and planning in a suitable way to be transferred to similar river basins.

  10. Fish assemblages in the Upper Esopus Creek, NY: Current status, variability, and controlling factors

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Keller, Walter T

    2015-01-01

    The Upper Esopus Creek receives water diversions from a neighboring basin through the Shandaken Tunnel (the portal) from the Schoharie Reservoir. Although the portal is closed during floods, mean flows and turbidity of portal waters are generally greater than in Esopus Creek above their confluence. These conditions could potentially affect local fish assemblages, yet such effects have not been assessed in this highly regulated stream. We studied water quality, hydrology, temperature, and fish assemblages at 18 sites in the Upper Esopus Creek during 2009–2011 to characterize the effects of the portal input on resident-fish assemblages and to document the status of the fishery resource. In general, fish-community richness increased by 2–3 species at mainstem sites near the portal, and median density and biomass of fish communities at sites downstream of the portal were significantly lower than they were at sites upstream of the portal. Median densities of Salmo trutta (Brown Trout) and all trout species were significantly lower than at mainstem sites downstream from the portal—25.1 fish/0.1 ha and 148.9 fish/0.1 ha, respectively—than at mainstem sites upstream from the portal—68.8 fish/0.1 ha and 357.7 fish/0.1 ha, respectively—yet median biomass for Brown Trout and all trout did not differ between sites from both reaches. The median density of young-of-year Brown Trout at downstream sites (9.3 fish/0.1 ha) was significantly lower than at upstream sites (33.9 fish/0.1 ha). Waters from the portal appeared to adversely affect the density and biomass of young-of-year Brown Trout, but lower temperatures and increased flows also improved habitat quality for mature trout at downstream sites during summer. These findings, and those from companion studies, indicate that moderately turbid waters from the portal had few if any adverse impacts on trout populations and overall fish communities in the Upper Esopus Creek during this study.

  11. Hydrologic assessment of the Upper Dorr Run Watershed, Hocking County, Ohio, 1998

    USGS Publications Warehouse

    Haefner, R.J.

    1999-01-01

    The Upper Dorr Run Watershed in Hocking County, Ohio, has been mined several times for coal and clay since 1913 and is a significant source of acid mine drainage to the Hocking River. To assess the surface-water hydrology of the site, a topographic map showing the location of springs and other hydrologic features of interest was prepared using aerial photography and field surveying and mapping techniques. Discharge and water-quality measurements at six springs and one stream site were made during field investigations in June 1998. Discharge and water quality observed at a downstream weir on Upper Dorr Run represents the combined discharge from springs plus ground-water inflow. Discharges from springs to surface water were generally small (less than 0.3 cubic foot per second), but one spring constituted 56 percent of the total discharge measured at the downstream weir. The total flow at an intermediate measurement site was less than the combined discharge of the upgradient springs because of evaporation, transpiration, and ground-water flow beneath the stream channel. The total flow at the weir was greater than the combined discharge of all springs, primarily because two potential sources of water were not included in field measurements. The water quality in Upper Dorr Run is strongly affected by acid mine drainage as indicated by pH less than 4, elevated acidity, and elevated concentrations of dissolved sulfate and dissolved iron. Concentrations of chemical constituents in the water were lower at the downstream weir than at the source springs because of residence times in ponds and chemical interactions between the water and the atmosphere. Acidity loads during the sampling period were significantly higher from the Lower Kittanning (No. 5) coal (272 kilograms per day) than from the Upper Kittanning (No. 6) coal (17.7 kilograms per day). Comparison of data obtained in 1998 to data obtained in 1982 showed that quality of water of selected sampling sites had not changed appreciably in 16 years.

  12. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and legionella pneumophila colonization

    EPA Science Inventory

    Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...

  13. 18 CFR 12.24 - Review and updating of plans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... light of any significant changes in upstream or downstream circumstances which might affect water flows... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Review and updating of plans. 12.24 Section 12.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  14. 18 CFR 12.24 - Review and updating of plans.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... light of any significant changes in upstream or downstream circumstances which might affect water flows... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Review and updating of plans. 12.24 Section 12.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  15. 18 CFR 12.24 - Review and updating of plans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... light of any significant changes in upstream or downstream circumstances which might affect water flows... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Review and updating of plans. 12.24 Section 12.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  16. 18 CFR 12.24 - Review and updating of plans.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... light of any significant changes in upstream or downstream circumstances which might affect water flows... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Review and updating of plans. 12.24 Section 12.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  17. 18 CFR 12.24 - Review and updating of plans.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... light of any significant changes in upstream or downstream circumstances which might affect water flows... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Review and updating of plans. 12.24 Section 12.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  18. The Reduction of Partitioned Wind and Water Erosion by Conservation Agriculture

    USDA-ARS?s Scientific Manuscript database

    Soil loss due to wind and water erosion degrades the soil and results in environmental problems downstream and downwind of the source field. Wind and water erosion may both occur to varying extents particularly in semi-arid environments. Soil conservation strategies require information about the p...

  19. Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system

    EPA Science Inventory

    Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contam...

  20. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper, besides the detailed geochemical analyses along downstream sections, we present new evidences of non-equilibrium calcite-water fractionation in lower temperature range (13.3 to 51.3 °C). Our measurements and calculations on natural hot water travertine precipitations at Pamukkale and Egerszalók revealed that the δ 18O travertine is equal with the δ 18O HCO3 at the orifice of the thermal springs, which means that practically there is no oxygen isotope fractionation between these two phases. High rate of CO 2 degassing with rapid precipitation of carbonate could be responsible for this as it was theoretically supposed by O'Neil et al. (1969). Thus, for the determination of the deposition temperature of a fossil travertine deposit we propose to use the water-bicarbonate oxygen isotope equilibrium fractionation instead of the water-travertine fractionation, which can result 8-9 °C difference in the calculated values. Our study is the first detailed empirical proof of O'Neil's hypothesis on a natural carbonate depositing system. The presented observations can be used to identify more precisely the deposition temperature of fossil travertines during paleoclimate studies.

  1. Bidirectional and simultaneous FTTX/Ethernet services using RSOA based remodulation and polarization multiplexing technique

    NASA Astrophysics Data System (ADS)

    Das, Anindya S.; Patra, Ardhendu S.

    2015-08-01

    A bidirectional and simultaneous transmission of Ethernet, FTTX services through single optical carrier wavelength employing polarization multiplexing technique in the transmitter end and the user end. 10 Gbps and 2.5 Gbps datarates are transmitted over 50 km single mode fiber employing POLMUX technique at OLT and ONU to provide Ethernet and FTTX services concurrently to the user. Reflective semiconductor optical amplifier is used to reuse and remodulate the downlink signal to uplink transmission. The upstream and the downstream transmission performances are observed by the bit error rate values and the eye diagrams obtained by the BER analyzer.

  2. A spatial evaluation of global wildfire-water risks to human and natural systems

    Treesearch

    Francois-Nicolas Robinne; Kevin D. Bladon; Carol Miller; Marc-Andre Parisien; Jerome Mathieu; Mike D. Flannigan

    2017-01-01

    The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for...

  3. Gas phase oxidation downstream of a catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Anderson, D. N.

    1979-01-01

    Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.

  4. 40 CFR 35.929-2 - General requirements for all user charge systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the user charges or ad valorem taxes which are attributable to waste water treatment services. (g... than every 2 years the waste water contribution of users and user classes, the total costs of operation... subscribers receiving waste treatment services from the grantee shall adopt user charge systems in accordance...

  5. 40 CFR 35.929-2 - General requirements for all user charge systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the user charges or ad valorem taxes which are attributable to waste water treatment services. (g... than every 2 years the waste water contribution of users and user classes, the total costs of operation... subscribers receiving waste treatment services from the grantee shall adopt user charge systems in accordance...

  6. Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas

    USGS Publications Warehouse

    Lee, C.J.; Rasmussen, T.J.

    2006-01-01

    Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.

  7. Biodegradation of 17β-estradiol, estrone, and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Barber, L.B.; McMahon, P.B.; Gray, J.L.; Kolpin, D.W.

    2009-01-01

    The release of endocrine-disrupting chemicals (EDCs) in wastewater treatment plant (WWTP) effluent poses a significant threat to the ecology of surface water receptors, due to impacts on the hormonal control, sexual development, reproductive success and community structure of the indigenous aquatic organisms and associated wildlife. Among the EDCs commonly observed in WWTP effluent, the natural [e.g., 17??-estradiol (E2) and estrone (E1)] and synthetic [e.g., ethynylestradiol (EE2)] estrogens are particular concerns owing to their high endocrine reactivity in both in vitro and in vivo laboratory models. These reproductive hormones have been identified as the primary cause of estrogenic effects in wastewater effluent, with greater than 95% of the estrogen receptor agonist activity in effluent attributed to this contaminant group. The potentials for in situ biodegradation of 17??-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the "A" ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant "A" ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  8. SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.

    2009-12-01

    Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease downstream. Ecological stoichiometric ratios along the river indicate increases in C/N ratios downstream, but no corresponding trend with C/P ratios. The N/P ratios increased directly below the treatment plant and then decreased gradually downstream. The C/N/P ratios remained level until the last two sampling stations within 20 miles of the Chesapeake Bay, where there is a large increase. Despite large inputs, there may be large variations in sources and ecological stoichiometry along rivers and estuaries, and knowledge of these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.

  9. Analysis of Streamflow Trends, Ground-Water and Surface-Water Interactions, and Water Quality in the Upper Carson River Basin, Nevada and California

    USGS Publications Warehouse

    Maurer, Douglas K.; Paul, Angela P.; Berger, David L.; Mayers, C. Justin

    2008-01-01

    Changes in land and water use and increasing development of water resources in the Carson River basin may affect flow of the river and, in turn, affect downstream water users dependent on sustained river flows to Lahontan Reservoir. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, Churchill County, and the Truckee-Carson Irrigation District, began a study in April 2006 to compile data on changes in land and water use, ground-water levels and pumping, streamflow, and water quality, and to make preliminary analyses of ground-water and surface-water interactions in the Carson River basin upstream of Lahontan Reservoir. The part of the basin upstream of Lahontan Reservoir is called the upper Carson River basin in this report. In 2005, irrigated agricultural land covered about 39,000 acres in Carson Valley, 3,100 acres in Dayton Valley, and 1,200 acres in Churchill Valley. Changes in land use in Carson Valley from the 1970s to 2005 included the development of about 2,700 acres of native phreatophytes, the development of 2,200 acres of irrigated land, 900 acres of land irrigated in the 1970s that appeared fallow in 2005, and the irrigation of about 2,100 acres of new agricultural land. In Dayton and Churchill Valleys, about 1,000 acres of phreatophytes and 900 acres of irrigated land were developed, about 140 acres of phreatophytes were replaced by irrigation, and about 600 acres of land irrigated in the 1970s were not irrigated in 2006. Ground-water pumping in the upper Carson River basin increases during dry years to supplement surface-water irrigation. Total annual pumping exceeded 20,000 acre-ft in the dry year of 1976, exceeded 30,000 acre-ft in the dry years from 1987 to 1992, and increased rapidly during the dry years from 1999 to 2004, and exceeded 50,000 acre-ft in 2004. As many as 67 public supply wells and 46 irrigation wells have been drilled within 0.5 mile of the Carson River. Pumping from these wells has the potential to affect streamflow of the Carson River. It is not certain, however, if all these wells are used currently. Annual streamflow of the Carson River is extremely variable, ranging from a low of about 26,000 acre-ft in 1977 to slightly more than 800,000 acre-ft in 1983 near Fort Churchill. Graphs of the cumulative annual streamflow and differences in the cumulative annual streamflow at Carson River gaging stations upstream and downstream of Carson and Dayton Valleys show an annual decrease in streamflow. The annual decrease in Carson River streamflow averaged about 47,000 acre-ft through Carson Valley, and about 11,000 acre-ft through Dayton Valley for water years 1940-2006. The decrease in streamflow through Carson and Dayton Valleys is a result of evapotranspiration on irrigated lands and losses to ground-water storage, with greater losses in Carson Valley than in Dayton Valley because of the greater area of irrigated land in Carson Valley.

  10. Dam impacts on and restoration of an alluvial river-Rio Grande, New Mexico

    Treesearch

    Gigi Richard; Pierre Julien

    2003-01-01

    The impact of construction of dams and reservoirs on alluvial rivers extends both upstream and downstream of the dam. Downstream of dams, both the water and sediment supplies can be altered leading to adjustments in the river channel geometry and ensuing changes in riparian and aquatic habitats. The wealth of pre and post-regulation data on the Middle Rio Grande, New...

  11. Relation Between Flow and Dissolved Oxygen in the Roanoke River Between Roanoke Rapids and Jamesville, North Carolina, 1998-2005

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Bales, Jerad D.

    2009-01-01

    Understanding the relation between dam release characteristics and downstream water quality in the lower Roanoke River, North Carolina, is important for natural-resource management and ecosystem protection. Data from four raingages, four water-quality monitoring sites, and one streamflow-measurement site were used to identify statistical relations and discernible quantitative or qualitative patterns linking Roanoke River instream dissolved-oxygen (DO) levels to releases at Roanoke Rapids Dam for the period 1998-2005. The time-series DO data, complicated by the occurrence of major hurricanes in the short period of hourly DO data collection at the dam, present a mixed picture of the effects of hydropower peaking (a technique used by hydropower dam operators to produce electricity when consumption is high by passing a large volume of water through the dam turbines, which dramatically increases the volume of flow below the dam) on downstream DO. Other than in 2003 when dissolved-oxygen concentrations in the Roanoke River were likely affected by runoff from Hurricane Isabel rains, there were not consistent, statistically significant differences detected in the annual medians of hourly and(or) daily DO values during peaking versus nonpeaking periods. Along the Roanoke River, downstream of Roanoke Rapids Dam at Oak City, North Carolina, using a 95-percent confidence interval, the median value of the May-November daily mean DO concentrations for each year was lower during peaking periods for 2 years, higher for 2 years, and not significantly different for 4 years. Downstream at Jamesville, North Carolina, also using a 95-percent confidence interval, the median value of the annual May-November daily mean DO concentrations during hydropower peaking was lower for 4 years, higher for 2 years, and not significantly different for 2 years. In summary, the effect of hydropower peaking on downstream DO was inconsistent. Conversely, large precipitation events downstream from the dam resulted in consistent, statistically significant decreases in DO in the mainstem of the Roanoke River at Oak City and Jamesville.

  12. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada.

    PubMed

    de Solla, S R; De Silva, A O; Letcher, R J

    2012-02-01

    Per- and poly-fluorinated compounds (PFCs), which include perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs) and various precursors, are used in a wide variety of industrial, commercial and domestic products. This includes aqueous film forming foam (AFFF), which is used by military and commercial airports as fire suppressants. In a preliminary assessment prior to this study, very high concentrations (>1 ppm wet weight) of the PFSA, perfluorooctane sulfonate (PFOS), were discovered in the plasma of snapping turtles (Chelydra serpentina) collected in 2008 from Lake Niapenco in southern Ontario, Canada. We presently report on a suite of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, several PFC precursors (e.g. perfluorooctane sulfonamide, PFOSA), and a cyclic perfluorinated acid used in aircraft hydraulic fluid, perfluoroethylcyclohexane sulfonate (PFECHS) in surface water from the Welland River and Lake Niapenco, downstream of the John C. Munro International Airport, Hamilton, Ontario, Canada. Amphipods, shrimp, and water were sampled from the Welland River and Lake Niapenco, as well as local references. The same suite of PFCs in turtle plasma from Lake Niapenco was compared to those from other southern Ontario sites. PFOS dominated the sum PFCs in all substrates (e.g., >99% in plasma of turtles downstream the Hamilton Airport, and 72.1 to 94.1% at all other sites). PFOS averaged 2223(±247.1SE) ng/g in turtle plasma from Lake Niapenco, and ranged from 9.0 to 171.4 elsewhere. Mean PFOS in amphipods and in water were 518.1(±83.8)ng/g and 130.3(±43.6) ng/L downstream of the airport, and 19.1(±2.7) ng/g and 6.8(±0.5) ng/L at reference sites, respectively. Concentrations of selected PFCs declined with distance downstream from the airport. Although there was no known spill event or publicly reported use of AFFF associated with a fire event at the Hamilton airport, the airport is a likely major source of PFC contamination in the Welland River. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.

    2017-09-01

    Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.

  14. Effects of high salinity wastewater discharges on unionid mussels in the Allegheny River, Pennsylvania

    USGS Publications Warehouse

    Kathleen Patnode,; Hittle, Elizabeth A.; Robert Anderson,; Lora Zimmerman,; Fulton, John W.

    2015-01-01

    We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the Allegheny River.

  15. Water quality of the Delaware and Raritan Canal, New Jersey, 1998-99

    USGS Publications Warehouse

    Gibs, Jacob; Gray, Bonnie; Rice, Donald E.; Tessler, Steven; Barringer, Thomas H.

    2001-01-01

    The mean and median of continuously monitored turbidity varied along the length of the canal. In the reach between Raven Rock and Lower Ferry Road, the mean and median for continuously monitored turbidity during the study period increased by 7.2 and 6.2 NTU (nephelometric turbidity units), respectively. The mean of continuously monitored turbidity decreased downstream from Lower Ferry Road to Ten Mile Lock. Turbidity could increase locally downstream from influent streams or outfalls, but because the average velocity of water in the canal is low, particles that cause turbidity are not transported appreciable distances. In the reach between Ten Mile Lock and the Route 18 Spillway, the mean and median of the continuously monitored turbidity changed less than 0.5 NTU during the period of record. The small change in turbidity in this reach is not consistent with an average velocity for the reach; the average velocity in this reach was the lowest in all of the reaches studied. The expected decrease in turbidity due to settling of suspended solids is likely offset by turbid water entering the canal from influent streams or discharges from storm drains. Field observation of a sand bar immediately downstream from the confluence of Als Brook and the canal confirmed that the Als Brook drainage basin has contributed stormwatergenerated sediment to the canal that could reach the monitor located at the Route 18 Spillway and the raw water intakes for two drinking-water treatment plants.

  16. Do geographically isolated wetlands influence landscape functions?

    USGS Publications Warehouse

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J.K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  17. Do geographically isolated wetlands influence landscape functions?

    PubMed Central

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie; Basu, Nandita B.; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2016-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs. PMID:26858425

  18. Longitudinal Poisson Regression To Evaluate the Epidemiology of Cryptosporidium, Giardia, and Fecal Indicator Bacteria in Coastal California Wetlands

    PubMed Central

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Conrad, Patricia A.; Oates, Stori C.; Miller, Melissa A.; Hardin, Dane; Byrne, Barbara A.; Dominik, Clare; Melli, Ann; Jessup, David A.

    2012-01-01

    Fecal pathogen contamination of watersheds worldwide is increasingly recognized, and natural wetlands may have an important role in mitigating fecal pathogen pollution flowing downstream. Given that waterborne protozoa, such as Cryptosporidium and Giardia, are transported within surface waters, this study evaluated associations between fecal protozoa and various wetland-specific and environmental risk factors. This study focused on three distinct coastal California wetlands: (i) a tidally influenced slough bordered by urban and agricultural areas, (ii) a seasonal wetland adjacent to a dairy, and (iii) a constructed wetland that receives agricultural runoff. Wetland type, seasonality, rainfall, and various water quality parameters were evaluated using longitudinal Poisson regression to model effects on concentrations of protozoa and indicator bacteria (Escherichia coli and total coliform). Among wetland types, the dairy wetland exhibited the highest protozoal and bacterial concentrations, and despite significant reductions in microbe concentrations, the wetland could still be seen to influence water quality in the downstream tidal wetland. Additionally, recent rainfall events were associated with higher protozoal and bacterial counts in wetland water samples across all wetland types. Notably, detection of E. coli concentrations greater than a 400 most probable number (MPN) per 100 ml was associated with higher Cryptosporidium oocyst and Giardia cyst concentrations. These findings show that natural wetlands draining agricultural and livestock operation runoff into human-utilized waterways should be considered potential sources of pathogens and that wetlands can be instrumental in reducing pathogen loads to downstream waters. PMID:22427504

  19. Shift in the chemical composition of dissolved organic matter in the Congo River network

    NASA Astrophysics Data System (ADS)

    Lambert, Thibault; Bouillon, Steven; Darchambeau, François; Massicotte, Philippe; Borges, Alberto V.

    2016-09-01

    The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC) concentrations and DOM composition (stable carbon isotope ratios, absorption and fluorescence properties) acquired along a 1700 km transect in the middle reach of the Congo River basin. Samples were collected in the mainstem and its tributaries during high-water (HW) and falling-water (FW) periods. DOC concentrations and DOM composition along the mainstem were found to differ between the two periods because of a reduced lateral mixing between the central water masses of the Congo River and DOM-rich waters from tributaries and also likely because of a greater photodegradation during FW as water residence time (WRT) increased. Although the Cuvette Centrale wetland (one of the world's largest flooded forests) continuously releases highly aromatic DOM in streams and rivers of the Congo Basin, the downstream transport of DOM was found to result in an along-stream gradient from aromatic to aliphatic compounds. The characterization of DOM through parallel factor analysis (PARAFAC) suggests that this transition results from (1) the losses of aromatic compounds by photodegradation and (2) the production of aliphatic compounds by biological reworking of terrestrial DOM. Finally, this study highlights the critical importance of the river-floodplain connectivity in tropical rivers in controlling DOM biogeochemistry at a large spatial scale and suggests that the degree of DOM processing during downstream transport is a function of landscape characteristics and WRT.

  20. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2008-11-01

    Thermal waters from the Yangbajing geothermal field, Tibet, contain high concentrations of B, As, and F, up to 119, 5.7 and 19.6 mg/L, respectively. In this paper, the distribution of B, As, and F in the aquatic environment at Yangbajing was surveyed. The results show that most river water samples collected downstream of the Zangbo River have comparatively higher concentrations of B, As, and F (up to 3.82, 0.27 and 1.85 mg/L, respectively), indicating that the wastewater discharge of the geothermal power plant at Yangbajing has resulted in B, As, and F contamination in the river. Although the concentrations of B, As, and F of the Zangbo river waters decline downstream of the wastewater discharge site due to dilution effect and sorption onto bottom sediments, the sample from the conjunction of the Zangbo River and the Yangbajing River has higher contents of B, As, and F as compared with their predicted values obtained using our regression analysis models. The differences between actual and calculated contents of B, As, and F can be attributed to the contribution from upstream of the Yangbajing River. Water quality deterioration of the river has induced health problems among dwellers living in and downstream of Yangbajing. Effective measures, such as decontamination of wastewater and reinjection into the geothermal field, should be taken to protect the environment at Yangbajing.

  1. Incomplete water securitization in coupled hydro-human production sytems

    NASA Astrophysics Data System (ADS)

    van den Boom, B.; Pande, S.

    2012-04-01

    Due to the dynamics, the externalities and the contingencies involved in managing local water resource for production, the water allocation at basin-level is a subtle balance between laws of nature (gravity; flux) and laws of economics (price; productivity). We study this balance by looking at inter-temporal basin-level water resource allocations in which subbasins enjoy a certain degree of autonomy. Each subbasin is represented as an economic agent i, following a gravity ordering with i=1 representing the most upstream area and i=I the downstream boundary. The water allocation is modeled as a decentralized equilibrium in a coupled conceptual hydro-human production system. Agents i=1,2,...,I in the basin produce a composite good according to a technology that requires water as a main input and that is specific to the subbasin. Agent i manages her use Xi and her storage Si, conceptualizing surface and subsurface water, of water with the purpose of maximizing the utility derived from consumption Ci of the composite good, where Ci is a scalar and Xi and Si are vectors which are composed of one element for each time period and for each contingency. A natural way to consume the good would be to absorb the own production. Yet, the agent may have two more option, namely, she might get a social transfer from other agents or she could use an income from trading water securities with her contiguous neighbors. To study these options, we compare water allocations (Ci, Xi, Si) all i=1,2,...,I for three different settings. We look at allocations without water securitization (water autarky equilibrium EA) first. Next, we describe the imaginary case of full securitization (contingent water markets equilibrium ECM) and, in between, we study limited securitization (incomplete water security equilibrium EWS). We show that allocations under contingent water markets ECM are efficient in the sense that, for the prevailing production technologies, no other allocation exists that is at least good as for all the agents and that makes at least one agent better off . On the other hand, allocations under autarky EA will tend to be inefficient, meaning that other allocations may exist that would be preferred by some agents without compromising the interest of the others. By the same token, the in-between case with water securities will generally also fail to achieve full efficiency. Nonetheless, some securitization will always be at least as good as none while it will be better under conditions of water scarcity that are common in dryland area river basins. Hence water allocations under EWS will generally lead to an improvement over those under EA. It should be noted that the fully efficient equilibrium is only imaginary because it requires a separate water security for every agent, for every period and for every contingency that nature might hold. Clearly, because of dimensionality, this amount of securities will be beyond reach. Therefore, water securitization with a limited number of securities remains as the only practical option to deal with the inefficiency of water allocations under autarky. The economic theory of incomplete markets provides a useful framework to study limited water securitization. We apply the theory in the context of our water allocation framework using an institutional setting where downstream agent i may secure water from upstream agent (i-1) through an agreement that pays for (i-1)'s water savings. In this manner we identify (I-1) water securities, one for each pair of contiguous agents. Each security addresses, at the local level, the interaction of flows over time and over contingencies that might occur. Under scarcity conditions prevalent in many river basins, agents will show an interest to supply and demand such securities. In particular, downstream area can often make more productive use of water. Accordingly, in the water autarky equilibrium EA, they would be willing to pay for more water, while, at the same time, upstream users would be prepared to make water savings to the extent that the payment for the security will exceed the value of foregone production losses. Thus, although inevitably incomplete, water securitization could play a significant role in increasing the efficiency of the allocation of water resources at the basin-level. Evidence from river basins in various parts of the world suggests that gains could be sizeable. This paper dwells upon the advantages and challenges of a transdisciplinary approach that blends the laws of nature with those of economics. It aims to identify efficiency gains from water securitization while addressing the institutional difficulties of implementation due to inherent incompleteness in markets that allow trade in such securities.

  2. Upland-wetland connectivity provides a significant nexus between isolated wetlands and downstream water bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2013-12-01

    Recent rulings by the U.S. Supreme Court have limited federal protection over isolated wetlands, requiring documentation of a 'significant nexus' to a navigable water body to ensure federal jurisdiction. Despite geographic isolation, isolated wetlands influence the surficial aquifer dynamics that regulate baseflow to surface water systems. Due to differences in specific yield (Sy) between upland soils and inundated wetlands, responses of the upland water table to atmospheric fluxes (precipitation, P, and evapotranspiration, ET) are amplified relative to wetland water levels, leading to reversals in the hydraulic gradient between the two systems. As such, wetlands act as a water sink during wet cycles (via wetland exfiltration) and a source (via infiltration) during drier times, regulating both the surficial aquifer and its baseflow to downstream systems. To explore the importance of this wetland function at the landscape scale, we integrated models of soil moisture, upland water table, and wetland stage to simulate the hydrology of a low-relief, depressional landscape. We quantified the hydrologic buffering effect of wetlands by calculating the relative change in the standard deviation (SD) of water table elevation between model runs with and without wetlands. Using this model we explored the effects wetland area and spatial distribution over a range of climatic drivers (P and ET) and soil types. Increasing wetland cumulative area and/or density reduced water table variability relative to landscapes without wetlands, supporting the idea that wetlands stabilize regional hydrologic variation, but also increased mean water table depth because of sustained high ET rates in wetlands during dry periods. Maintaining high cumulative wetland area, but with fewer wetlands, markedly reduced the effect of wetland area, highlighting the importance of small, distributed wetlands on water table regulation. Simulating a range of climate scenarios suggested that the capacity of wetlands to buffer water table variation is most pronounced along a 'sweet spot' where P and ET are relatively balanced. High P and low ET yielded consistently high water tables with wetlands acting predominantly as sinks (i.e., little switching behavior), while low P and high ET scenarios limited wetland inundation. On the other hand, when both P and ET were moderate, the SD of the regional water table was reduced by nearly 50% for landscapes with 30% wetland area distributed over ~1 ha watersheds. Additionally, we found these buffering effects to be stronger in coarser soils compared with finer soils. Considering the strong influence of regional water table on downstream surface water systems, loss of isolated wetland area or mitigation of this loss at the expense of wetland density (i.e., large mitigation banks to replace small distributed systems) has the potential to significantly impact downstream water bodies. Isolated wetlands buffer surficial aquifer dynamics by providing water storage capacitance at the landscape scale and ultimately exert hydraulic regulation of regional surface waters through an indirect, but significant nexus.

  3. Assessment of Short Term Flood Operation Strategies Using Numerical Weather Prediction Data in YUVACΙK DAM Reservoir, Turkey

    NASA Astrophysics Data System (ADS)

    Uysal, G.; Yavuz, O.; Sensoy, A.; Sorman, A.; Akgun, T.; Gezgin, T.

    2011-12-01

    Yuvacik Dam Reservoir Basin, located in the Marmara region of Turkey with 248 km2 drainage area, has steep topography, mild and rainy climate thus induces high flood potential with fast flow response, especially to early spring and fall precipitation events. Moreover, the basin provides considerable snowmelt contribution to the streamflow during melt season since the elevation ranges between 80 - 1548 m. The long term strategies are based on supplying annual demand of 142 hm3 water despite a relatively small reservoir capacity of 51 hm3. This situation makes short term release decisions as the challenging task regarding the constrained downstream safe channel capacity especially in times of floods. Providing the demand of 1.5 million populated city of Kocaeli is the highest priority issue in terms of reservoir management but risk optimization is also required due to flood regulation. Although, the spillway capacity is 1560 m3/s, the maximum amount of water to be released is set as 100 m3/s by the regional water authority taking into consideration the downstream channel capacity which passes through industrial region of the city. The reservoir is a controlled one and it is possible to hold back the 15 hm3 additional water by keeping the gates closed. Flood regulation is set to achieve the maximum possible flood attenuation by using the full flood-control zone capacity in the reservoir before making releases in excess of the downstream safe-channel capacity. However, the operators still need to exceed flood regulation zones to take precautions for drought summer periods in order to supply water without any shortage that increases the risk in times of flood. Regarding to this circumstances, a hydrological model integrated reservoir modeling system, is applied to account for the physical behavior of the system. Hence, this reservoir modeling is carried out to analyze both previous decisions and also the future scenarios as a decision support tool for operators. In the first step, a hydrological model with an embedded snow module is used to establish a rainfall-runoff relationship to calculate the inflow into the dam reservoir. The basin is divided into four sub-basins, along with the three elevation zones for each subbasin. Hydro-meteorological data are collected via 11 automated stations in and around the basin and a semi-distributed rainfall-runoff model, HEC-HMS, is calibrated for sub-basins. Then, HEC-ResSim is used to create simulation alternatives of reservoir system according to user defined guide curves and rules based on internal and/or external variables. The decision support modeling scenarios are tested with Numerical Weather Prediction Mesoscale Model 5 (MM5) daily total precipitation and daily average temperature data. Predicted precipitation and temperature data are compared with ground observations to examine the consistency. Predicted inflows computed by HEC-HMS are used as main forcing inputs into HEC-ResSim for the short term operation of reservoir during the flood events.

  4. Assessing BMP Performance Using Microtox Toxicity Analysis

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  5. 7 CFR 624.6 - Program administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., terraces, embankment ponds, diversions, and water conservation systems, except where the recovery measures... conservation impacts, as appropriate; (7) Analysis of effects on downstream water rights; and (8) Other... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE...

  6. 7 CFR 624.6 - Program administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., terraces, embankment ponds, diversions, and water conservation systems, except where the recovery measures... conservation impacts, as appropriate; (7) Analysis of effects on downstream water rights; and (8) Other... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE...

  7. 7 CFR 624.6 - Program administration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., terraces, embankment ponds, diversions, and water conservation systems, except where the recovery measures... conservation impacts, as appropriate; (7) Analysis of effects on downstream water rights; and (8) Other... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE...

  8. Management of hydro-biogeochemical connectivity of geographically isolated wetlands to reduce the risk of eutrophication of Lake Winnipeg

    NASA Astrophysics Data System (ADS)

    Creed, Irena F.; Ameli, Ali

    2017-04-01

    Lake Winnipeg - a transboundary water resource that is the 10th largest freshwater lake in the world - was recently listed as the most threatened lake in the world due to eutrophication. Its watershed has experienced amongst the highest geographically isolated wetland (GIW) drainage rates in the world, leading to increased nutrient loads to remaining wetlands and downstream streams and lakes. GIWs are surrounded by uplands - and thus collect and store water from the surrounding landscape during snowmelt or storm events, and filter nutrients before slowly returning water to the water cycle. When drained, GIWs become connected to downstream flows and nutrients move unimpeded from and through them to downstream waters. Therefore, effective GIW management strategies can reduce nutrient loads to regional surface water bodies in the Lake Winnipeg watershed. But, how do we prioritize wetland protection and restoration efforts? We know that hydrologic connections to GIWs vary in length and timing, and hypothesize that long and slow hydrologic connections to a GIW have higher potential for P retention, while short and fast hydrologic connections to a GIW have lower potential for P retention along the flow path, leading to higher P concentrations within the GIW. We test these hypotheses in a watershed that drains into the North Saskatchewan River and ultimately to Lake Winnipeg. Using a novel model that quantifies the continuum of time and length variations of subsurface-surface hydrological connections to each GIW, we explore the relationship between length and time and time of hydrologic connection to a GIW and nutrients in the GIW. We found that GIWs are not always "isolated" islands - rather, they are connected to other surface waters in diverse ways. GIWs with no modeled surface or subsurface hydrological connections had the lowest nutrient concentrations and algal biomass. Recharge GIWs have lower concentrations of nutrients than discharge wetlands. Discharge GIWs with longer (slower) connections removed more nutrients along flow path to the wetland than discharge GIWs with shorter (faster) connections. Based on our findings, GIWs with long and slow hydrological connections have the highest potential for retaining phosphorus and therefore reducing eutrophication of downstream waters, and therefore should be prioritized in wetland protection and restoration strategies.

  9. Reactive transport modeling of nitrogen in Seine River sediments

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  10. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  11. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett`s initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates atmore » five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream.« less

  12. Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin

    NASA Astrophysics Data System (ADS)

    Jain Figueroa, A.; McLaughlin, D.

    2016-12-01

    The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.

  13. Amazon River carbon dioxide outgassing fuelled by wetlands.

    PubMed

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  14. The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, Sheila F.; Writer, Jeffrey H.; Blaine McCleskey, R.; Martin, Deborah A.

    2015-08-01

    Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h-1. These storms, which typically occur several times each year in July-September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10-156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.

  15. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.

    PubMed

    Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S

    2003-10-01

    The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system.

  16. The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire

    USGS Publications Warehouse

    Murphy, Sheila F.; Writer, Jeffrey H.; McCleskey, R. Blaine; Martin, Deborah A.

    2015-01-01

    Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h−1. These storms, which typically occur several times each year in July–September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10–156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.

  17. iSeq: Web-Based RNA-seq Data Analysis and Visualization.

    PubMed

    Zhang, Chao; Fan, Caoqi; Gan, Jingbo; Zhu, Ping; Kong, Lei; Li, Cheng

    2018-01-01

    Transcriptome sequencing (RNA-seq) is becoming a standard experimental methodology for genome-wide characterization and quantification of transcripts at single base-pair resolution. However, downstream analysis of massive amount of sequencing data can be prohibitively technical for wet-lab researchers. A functionally integrated and user-friendly platform is required to meet this demand. Here, we present iSeq, an R-based Web server, for RNA-seq data analysis and visualization. iSeq is a streamlined Web-based R application under the Shiny framework, featuring a simple user interface and multiple data analysis modules. Users without programming and statistical skills can analyze their RNA-seq data and construct publication-level graphs through a standardized yet customizable analytical pipeline. iSeq is accessible via Web browsers on any operating system at http://iseq.cbi.pku.edu.cn .

  18. Mercury and methylmercury in water and sediment of the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    2001-01-01

    Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.

  19. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Castro-Bolinaga, C. F.; Zavaleta, E. R.; Diplas, P.

    2015-03-01

    This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  20. Relations of surface-water quality to streamflow in the Atlantic Coastal, lower Delaware River, and Delaware Bay basins, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn; Buxton, Debra E.; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 28 surface-water-quality stations within the drainage area of the Atlantic Coastal, lower Delaware River, and Delaware Bay Basins for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall\\'s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) and constant (point sources and ground water) sources, respectively. High- and low-flow trends in concentrations were determined for some constituents at 26 of the 28 water-quality stations. Seasonal effects on the relations of concentration to streamflow are evident for 10 constituents at 14 or more stations. Dissolved oxygen shows seasonal dependency at all stations. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The magnitudes of the load slopes for five constituents increase in the downstream direction along the Great Egg Harbor River, indicating an increased relative importance of storm runoff for these constituents along the river. The magnitudes of the load slopes for 11 constituents decrease in the downstream direction along the Assunpink Creek and for 5 constituents along the Maurice River, indicating a decreased relative importance of storm runoff for these constituents along the rivers.

  1. Hydrologic functioning of the deep Critical Zone and contributions to streamflow in a high elevation catchment: testing of multiple conceptual models

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; Meixner, T.; McIntosh, J. C.; Ferre, T. P. A.; Eastoe, C. J.; Minor, R. L.; Barron-Gafford, G.; Chorover, J.

    2017-12-01

    The composition of natural mountainous waters maintains important control over the water quality available to downstream users. Furthermore, the geochemical constituents of stream water in the mountainous catchments represent the result of the spatial and temporal evolution of critical zone structure and processes. A key problem is that high elevation catchments involve rugged terrain and are subject to extreme climate and landscape gradients; therefore, high density or high spatial resolution hydro-geochemical observations are rare. Despite such difficulties, the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO), Tucson, AZ, generates long-term hydrogeochemical data for understanding not only hydrological processes and their seasonal characters, but also the geochemical impacts of such processes on streamflow chemical composition. Using existing instrumentation and hydrogeochemical observations from the last 9+ years (2009 through 2016 and an initial part of 2017), we employed a multi-tracer approach along with principal component analysis to identify water sources and their seasonal character. We used our results to inform hydrological process understanding (flow paths, residence times, and water sources) for our study site. Our results indicate that soil water is the largest contributor to streamflow, which is ephemeral in nature. Although a 3-dimensional mixing space involving precipitation, soil water, interflow, and deep groundwater end-members could explain most of the streamflow chemistry, geochemical complexity was observed to grow with catchment storage. In terms of processes and their seasonal character, we found soil water and interflow were the primary end-member contributors to streamflow in all seasons. Deep groundwater only contributes to streamflow at high catchment storage conditions, but it provides major ions such as Na, Mg, and Ca that are lacking in other water types. In this way, our results indicate that any future efforts aimed at explaining concentration-discharge behavior of our field site should consider at least three-dimensional mixing space or 4 end-members.

  2. Health risks from large-scale water pollution: trends in Central Asia.

    PubMed

    Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor

    2011-02-01

    Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. The U.S. Geological Survey and City of Atlanta water-quality and water-quantity monitoring network

    USGS Publications Warehouse

    Horowitz, Arthur J.; Hughes, W. Brian

    2006-01-01

    Population growth and urbanization affect the landscape, and the quality and quantity of water in nearby rivers and streams, as well as downstream receiving waters (Ellis, 1999). Typical impacts include: (1) disruption of the hydrologic cycle through increases in the extent of impervious surfaces (e.g., roads, roofs, sidewalks) that increase the velocity and volume of surface-water runoff; (2) increased chemical loads to local and downstream receiving waters from industrial sources, nonpoint-source runoff, leaking sewer systems, and sewer overflows; (3) direct or indirect soil contamination from industrial sources, power-generating facilities, and landfills; and (4) reduction in the quantity and quality of aquatic habitats. The City of Atlanta's monitoring network consists of 21 long-term sites. Eleven of these are 'fully instrumented' to provide real-time data on water temperature, pH, specific conductance, dissolved oxygen, turbidity (intended as a surrogate for suspended sediment concentration), water level (gage height, intended as a surrogate for discharge), and precipitation. Data are transmitted hourly and are available on a public Web site (http://ga.water.usgs.gov/). Two sites only measure water level and rainfall as an aid to stormwater monitoring. The eight remaining sites are used to assess water quality.

  4. Dissolved-solids transport in surface water of the Muddy Creek Basin, Utah

    USGS Publications Warehouse

    Gerner, Steven J.

    2008-01-01

    Muddy Creek is located in the southeastern part of central Utah and is a tributary of the Dirty Devil River, which, in turn, is a tributary of the Colorado River. Dissolved solids transported from the Muddy Creek Basin may be stored in the lower Dirty Devil River Basin, but are eventually discharged to the Colorado River and impact downstream water users. This study used selected dissolved-solids measurements made by various local, State, and Federal agencies from the 1970s through 2006, and additional dissolved-solids data that were collected by the U.S. Geological Survey during April 2004 through November 2006, to compute dissolved-solids loads, determine the distribution of dissolved-solids concentrations, and identify trends in dissolved-solids concentration in surface water of the Muddy Creek Basin. The dissolved-solids concentration values measured in water samples collected from Muddy Creek during April 2004 through October 2006 ranged from 385 milligrams per liter (mg/L) to 5,950 mg/L. The highest dissolved-solids concentration values measured in the study area were in water samples collected at sites in South Salt Wash (27,000 mg/L) and Salt Wash (4,940 to 6,780 mg/L). The mean annual dissolved-solids load in Muddy Creek for the periods October 1976 to September 1980 and October 2005 to September 2006 was smallest at a site near the headwaters (9,670 tons per year [tons/yr]) and largest at a site at the mouth (68,700 tons/yr). For this period, the mean annual yield of dissolved solids from the Muddy Creek Basin was 44 tons per square mile. During October 2005 to September 2006, direct runoff transported as much as 45 percent of the annual dissolved-solids load at the mouth of Muddy Creek. A storm that occurred during October 5?7, 2006 resulted in a peak streamflow at the mouth of Muddy Creek of 7,150 cubic feet per second (ft3/s) and the transport of an estimated 35,000 tons of dissolved solids, which is about 51 percent of the average annual dissolved-solids load at the mouth of Muddy Creek. A significant downward trend in dissolved-solids concentrations from 1973 to 2006 was determined for Muddy Creek at a site just downstream of that portion of the basin containing agricultural land. Dissolved-solids concentrations decreased about 2.1 percent per year; however, the rate of change was a decrease of 1.8 percent per year when dissolved-solids concentrations were adjusted for flow.

  5. Cryptosporidium: Treatment

    MedlinePlus

    ... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...

  6. Cryptosporidium (Crypto)

    MedlinePlus

    ... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...

  7. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  8. Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey.

    PubMed

    Ruhl, Laura; Vengosh, Avner; Dwyer, Gary S; Hsu-Kim, Heileen; Deonarine, Amrika

    2010-12-15

    An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

  9. Water democracies on the Upper Rio Grande, 1598-1998

    Treesearch

    Jose A. Rivera

    1999-01-01

    The acequia irrigation systems of northcentral New Mexico and southern Colorado are the oldest, continuously functioning water management institutions in the United States. For a period of four hundred years, 1598-1998, the acequias have sustained the agropastoral economies of the region while protecting the watershed resources on which downstream water stakeholders...

  10. Technical Roundtables on EPA's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources: Wastewater Treatment and Waste Disposal, November 16, 2012

    EPA Pesticide Factsheets

    This project focuses on the efficacy of treatment processes at POTWs and CWTs, since discharge of treated wastewater to surface waters provides an opportunity for chemicals found in the effluent to be transported to downstream drinking water intakes.

  11. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France).

    PubMed

    Banas, D; Marin, B; Skraber, S; Chopin, E I B; Zanella, A

    2010-02-01

    Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu(diss)) and total Cu (Cu(tot)) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu(tot) concentrations in entering water was 53.6 microg/L whereas it never exceeded 2.4 microg/L in seepage. Cu(tot) concentrations in basin water (>100 microg/L in 24% of the samples) exceeded LC(50) values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu(tot)). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu(diss) variability and could help predicting Cu mobilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Assessing BMP Performance Using Microtox Toxicity Analysis - Rhode Island

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  13. Assessing BMP Performance Using Microtox® Toxicity Analysis

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  14. Characterization and Placement of Wetlands for Integrated Conservation Practice Planning

    EPA Science Inventory

    Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strateg...

  15. Turbine Design to Mitigate Forcing (POSTPRINT)

    DTIC Science & Technology

    2012-09-01

    durability enhancements, sometimes fuel nozzles and turbine nozzle guide vanes are also clocked in an effort to reduce the heat load to downstream...e.g., aero- performance or heat load) or to estimate resonant stresses on the airfoils. So, the development of both time-mean and time-resolved...disturbances. So, great flexibility was built into the current implementation of the convergence-assessment algorithm described above. The user can

  16. Hydropower licensing and evolving climate: climate knowledge to support risk assessment for long-term infrastructure decisions

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Walker, S. H.; Trainor, S. F.; Cherry, J. E.

    2014-12-01

    This presentation focuses on linking climate knowledge to the complicated decision process for hydropower dam licensing, and the affected parties involved in that process. The U.S. Federal Energy Regulatory Commission issues of licenses for nonfederal hydroelectric operations, typically 30-50 year licenses, and longer infrastructure lifespan, a similar time frame as the anticipated risks of changing climate and hydrology. Resources managed by other federal and state agencies such as the NOAA National Marine Fisheries Service may be affected by new or re-licensed projects. The federal Integrated Licensing Process gives the opportunity for affected parties to recommend issues for consultative investigation and possible mitigation, such as impacts to downstream fisheries. New or re-licensed projects have the potential to "pre-adapt" by considering and incorporating risks of climate change into their planned operations as license terms and conditions. Hundreds of hydropower facilities will be up for relicensing in the coming years (over 100 in the western Sierra Nevada alone, and large-scale water projects such as the proposed Lake Powell Pipeline), as well as proposed new dams such as the Susitna project in Alaska. Therefore, there is a need for comprehensive guidance on delivering climate analysis to support understanding of risks of hydropower projects to other affected resources, and decisions on licensing. While each project will have a specific context, many of the questions will be similar. We also will discuss best practices for the use of climate science in water project planning and management, and how creating the best and most appropriate science is also still a developing art. We will discuss the potential reliability of that science for consideration in long term planning, licensing, and mitigation planning for those projects. For science to be "actionable," that science must be understood and accepted by the potential users. This process is a negotiation, with climate scientists needing to understand the concerns of users and respond, and users developing a better understanding of the state of climate science in order to make an informed choice. We will also discuss what is needed to streamline providing that analysis for the many re-licensing decisions expected in the upcoming years.

  17. Simulation of streamflow and water quality in the Leon Creek watershed, Bexar County, Texas, 1997-2004

    USGS Publications Warehouse

    Ockerman, Darwin J.; Roussel, Meghan C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and the San Antonio River Authority, configured, calibrated, and tested a Hydrological Simulation Program ? FORTRAN watershed model for the approximately 238-square-mile Leon Creek watershed in Bexar County, Texas, and used the model to simulate streamflow and water quality (focusing on loads and yields of selected constituents). Streamflow in the model was calibrated and tested with available data from five U.S. Geological Survey streamflow-gaging stations for 1997-2004. Simulated streamflow volumes closely matched measured streamflow volumes at all streamflow-gaging stations. Total simulated streamflow volumes were within 10 percent of measured values. Streamflow volumes are greatly influenced by large storms. Two months that included major floods accounted for about 50 percent of all the streamflow measured at the most downstream gaging station during 1997-2004. Water-quality properties and constituents (water temperature, dissolved oxygen, suspended sediment, dissolved ammonia nitrogen, dissolved nitrate nitrogen, and dissolved and total lead and zinc) in the model were calibrated using available data from 13 sites in and near the Leon Creek watershed for varying periods of record during 1992-2005. Average simulated daily mean water temperature and dissolved oxygen at the most downstream gaging station during 1997-2000 were within 1 percent of average measured daily mean water temperature and dissolved oxygen. Simulated suspended-sediment load at the most downstream gaging station during 2001-04 (excluding July 2002 because of major storms) was 77,700 tons compared with 74,600 tons estimated from a streamflow-load regression relation (coefficient of determination = .869). Simulated concentrations of dissolved ammonia nitrogen and dissolved nitrate nitrogen closely matched measured concentrations after calibration. At the most downstream gaging station, average simulated monthly mean concentrations of dissolved ammonia and nitrate concentrations during 1997-2004 were 0.03 and 0.37 milligram per liter, respectively. For the most downstream station, the measured and simulated concentrations of dissolved and total lead and zinc for stormflows during 1993-97 after calibration do not match particularly closely. For base-flow conditions during 1997-2004 at the most downstream station, the simulated/measured match is better. For example, median simulated concentration of total lead (for 2,041 days) was 0.96 microgram per liter, and median measured concentration (for nine samples) of total lead was 1.0 microgram per liter. To demonstrate an application of the Leon Creek watershed model, streamflow constituent loads and yields for suspended sediment, dissolved nitrate nitrogen, and total lead were simulated at the mouth of Leon Creek (outlet of the watershed) for 1997-2004. The average suspended-sediment load was 51,800 tons per year. The average suspended-sediment yield was 0.34 ton per acre per year. The average load of dissolved nitrate at the outlet of the watershed was 802 tons per year. The corresponding yield was 10.5 pounds per acre per year. The average load of lead at the outlet was 3,900 pounds per year. The average lead yield was 0.026 pound per acre per year. The degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error associated with the Leon Creek model. Major storms contribute most of the streamflow loads for certain constituents. For example, the three largest stormflows contributed about 64 percent of the entire suspended-sediment load at the most downstream station during 1997-2004.

  18. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  19. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    USGS Publications Warehouse

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological phosphorus removal process was not optimized until after the study was completed. Total nitrogen and phosphorus from the wastewater treatment facility contributed a relatively small percentage (14 to 15 percent) to the annual nutrient load in the upper Blue River, but contributed substantially (as much as 75 percent) to monthly loads during seasonal low-flows in winter and summer. During 2007 and 2008, annual discharge from the wastewater treatment facility was about one-half maximum capacity, and estimated potential maximum annual loads were 1.6 to 2.4 times greater than annual loads before capacity upgrades. Even when target nutrient concentrations are met, annual nutrient loads will increase when the wastewater treatment facility is operated at full capacity. Regardless of changes in annual nutrient loads, the reduction of nutrient concentrations in the Blue River Main wastewater effluent will help prevent further degradation of the upper Blue River. The Blue River Main Wastewater Treatment Facility wastewater effluent caused changes in concentrations of several water-quality constituents that may affect biological community structure and function including larger concentrations of bioavailable nutrients (nitrate and orthophosphorus) and smaller turbidities. Streambed-sediment conditions were similar along the upstream-downstream gradient and measured constituents did not exceed probable effect concentrations. Habitat conditions declined along the upstream-downstream gradient, largely because of decreased canopy cover and riparian buffer width and increased riffle-substrate fouling. Algal biomass, primary production, and the abundance of nutrient-tolerant diatoms substantially increased downstream from the wastewater treatment facility. Likewise, the abundance of intolerant macroinvertebrate taxa and Kansas Department of Health and Environment aquatic-life-support scores, derived from macroinvertebrate data, significantly decreased downstream from the wastewater

  20. "Review of the Sustained Yield Plan / Habitat Conservation Plan for the properties of The Pacific Lumber Company, Scotia Pacific Holding Company, and Salmon Creek Corporation"

    Treesearch

    Leslie M. Reid

    1998-01-01

    Downstream impacts to aquatic environments and property generally occur as cumulative watershed impacts, which are usually caused by changes in the transport of woody debris, water, and sediment through a watershed. The downstream cumulative impacts that are likely to accrue from implementation of the Sustained Yield Plan / Habitat Conservation Plan for the properties...

  1. Transient Fluvial Response to Alpine Deglaciation, Mount Rainier, WA: Geomorphic Process Domains and Proglacial Flux Controls on Channel Evolution.

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Montgomery, D.; Kennard, P. M.

    2016-12-01

    Downwasting of all glaciers on the flanks of Mount Rainier, WA, in recent decades has debuttressed Little Ice Age glaciogenic sediments driving proglacial responses to regionally warming climate. Rivers draining the deglaciating edifice are responding to paraglacial sedimentation processes through transient storage of retreat-liberated sediments in aggrading (e.g., >5m) fluvial networks with widening channel corridors (i.e., 50-150%) post-LIA (ca., 1880-1910 locally). We hypothesize that the downstream transmission of proglacial fluxes (i.e., sediment and water) through deglaciating alpine terrain is a two-step geomorphic process. The ice-proximal portion of the proglacial system is dominated by the delivery of high sediment-to-water ratio flows (i.e., hyperconcentrated and debris slurries) and sediment retention by in-channel accumulation (e.g., confined debris fans within channel margins of valley segments) exacerbated by recruitment and accumulation of large wood (e.g., late seral stage conifers), whereas ice-distal fluvial reworking of transient sediment accumulations generates downstream aggradation. Historical Carbon River observations show restricted ice-proximal proglacial aggradation until a mainstem avulsion in 2009 initiated incision into sediment accumulations formed in recent decades, which is translating into aggradation farther down the network. Surficial morphology mapped with GPS, exposed subsurface sedimentology, and preliminary dating of buried trees suggest a transitional geomorphic process zone has persisted along the proglacial Carbon River through recent centuries and prior to the ultimate LIA glaciation. Structure-from-motion DEM differencing through the 2016 water year shows discrete zones of proglacial evolution through channel-spanning bed aggradation forced by interactions between large wood and sediment-rich flows that transition to fluvial process dominance as sediment is transported downstream. Long-term DEM differencing suggests these are persistent geomorphic processes as rivers respond to alpine deglaciation. This process-based study implies downstream river flooding in deglaciating alpine terrain globally is driven by glaciogenic sediment release and downstream channel aggradation irrespective of changes in discharge.

  2. A multitrophic approach to monitoring the effects of metal mining in otherwise pristine and ecologically sensitive rivers in northern Canada.

    PubMed

    Spencer, Paula; Bowman, Michelle F; Dubé, Monique G

    2008-07-01

    It is not known if current chemical and biological monitoring methods are appropriate for assessing the impacts of growing industrial development on ecologically sensitive northern waters. We used a multitrophic level approach to evaluate current monitoring methods and to determine whether metal-mining activities had affected 2 otherwise pristine rivers that flow into the South Nahanni River, Northwest Territories, a World Heritage Site. We compared upstream reference conditions in the rivers to sites downstream and further downstream of mines. The endpoints we evaluated included concentrations of metals in river water, sediments, and liver and flesh of slimy sculpin (Cottus cognatus); benthic algal and macroinvertebrate abundance, richness, diversity, and community composition; and various slimy sculpin measures, our sentinel forage fish species. Elevated concentrations of copper and iron in liver tissue of sculpin from the Flat River were associated with high concentrations of mine-derived iron in river water and copper in sediments that were above national guidelines. In addition, sites downstream of the mine on the Flat River had increased algal abundances and altered benthic macroinvertebrate communities, whereas the sites downstream of the mine on Prairie Creek had increased benthic macroinvertebrate taxa richness and improved sculpin condition. Biological differences in both rivers were consistent with mild enrichment of the rivers downstream of current and historical mining activity. We recommend that monitoring in these northern rivers focus on indicators in epilithon and benthic macroinvertebrate communities due to their responsiveness and as alternatives to lethal fish sampling in habitats with low fish abundance. We also recommend monitoring of metal burdens in periphyton and benthic invertebrates for assessment of exposure to mine effluent and causal association. Although the effects of mining activities on riverine biota currently are limited, our results show that there is potential for effects to occur with proposed growth in mining activities.

  3. Simulation of water level, streamflow, and mass transport for the Cooper and Wando rivers near Charleston, South Carolina, 1992-95

    USGS Publications Warehouse

    Conrads, P.A.; Smith, P.A.

    1996-01-01

    The one-dimensional, unsteady-flow model, BRANCH, and the Branched Lagrangian Transport Model (BLTM) were calibrated and validated for the Cooper and Wando Rivers near Charleston, South Carolina. Data used to calibrate the BRANCH model included water-level data at four locations on the Cooper River and two locations on the Wando River, measured tidal-cycle streamflows at five locations on the Wando River, and simulated tidal-cycle streamflows (using an existing validated BRANCH model of the Cooper River) for four locations on the Cooper River. The BRANCH model was used to generate the necessary hydraulic data used in the BLTM model. The BLTM model was calibrated and validated using time series of salinity concentrations at two locations on the Cooper River and at two locations on the Wando River. Successful calibration and validation of the BRANCH and BLTM models to water levels, stream flows, and salinity were achieved after applying a positive 0.45 foot datum correction to the downstream boundary. The sensitivity of the simulated salinity concentrations to changes in the downstream gage datum, channel geometry, and roughness coefficient in the BRANCH model, and to the dispersion factor in the BLTM model was evaluated. The simulated salinity concentrations were most sensitive to changes in the downstream gage datum. A decrease of 0.5 feet in the downstream gage datum increased the simulated 3-day mean salinity concentration by 107 percent (12.7 to 26.3 parts per thousand). The range of the salinity concentration went from a tidal oscillation with a standard deviation of 3.9 parts per thousand to a nearly constant concentration with a standard deviation of 0.0 parts per thousand. An increase in the downstream gage datum decreased the simulated 3-day mean salinity concentration by 47 percent (12.7 to 6.7 parts per thousand) and decreased the standard deviation from 3.9 to 3.4 parts per thousand.

  4. Anthropogenic phosphorus (P) inputs to a river basin and their impacts on P fluxes along its upstream-downstream continuum

    NASA Astrophysics Data System (ADS)

    Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert

    2017-04-01

    Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.

  5. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water.

    PubMed

    Estahbanati, Shirin; Fahrenfeld, N L

    2016-11-01

    The abundance of microplastic particles in the marine environment is well documented, but less is known about microplastics in the freshwater environment. Wastewater treatment plants (WWTPs) may not effectively remove microplastics allowing for their release to the freshwater environment. To investigate concentration of microplastic in fresh water and the impact of WWTP effluent, samples were collected upstream and downstream of four major municipal WWTPs on the Raritan River, NJ. Microplastics were categorized into three quantitative categories (500-2000 μm, 250-500 μm, 125-250 μm), and one semi-quantitative category (63-125 μm). Then, microplastics were classified as primary (manufactured in small size) or secondary (derived from larger plastics) based on morphology. The concentration of microplastics in the 125-250 and 250-500 μm size categories significantly increased downstream of WWTP. The smaller size classes, often not quantified in microplastic studies, were in high relative abundance across sampling sites. While primary microplastics significantly increased downstream of WWTP, secondary microplastic was the dominant type in the quantitative size categories (66-88%). A moderate correlation between microplastic and distance downstream was observed. These results have implications for understanding the fate and transport of microplastics in the freshwater environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of historical coal mining and drainage from abandoned mines on streamflow and water quality in Bear Creek, Dauphin County, Pennsylvania-March 1999-December 2002

    USGS Publications Warehouse

    Chaplin, Jeffrey J.

    2005-01-01

    More than 100 years of anthracite coal mining has changed surface- and ground-water hydrology and contaminated streams draining the Southern Anthracite Coal Field in east-central Pennsylvania. Bear Creek drains the western prong of the Southern Anthracite Coal Field and is affected by metals in drainage from abandoned mines and streamwater losses. Total Maximum Daily Loads (TMDL) developed for dissolved iron of about 5 lb/d (pounds per day) commonly are exceeded in the reach downstream of mine discharges. Restoration of Bear Creek using aerobic ponds to passively remove iron in abandoned mine drainage is under consideration (2004) by the Dauphin County Conservation District. This report, prepared in cooperation with the Dauphin County Conservation District, evaluates chemical and hydrologic data collected in Bear Creek and its receiving waters prior to implementation of mine-drainage treatment. The data collected represent the type of baseline information needed for documentation of water-quality changes following passive treatment of mine drainage in Pennsylvania and in other similar hydrogeologic settings. Seven surface-water sites on Bear Creek and two mine discharges were monitored for nearly three years to characterize the chemistry and hydrology of the following: (1) Bear Creek upstream of the mine discharges (BC-UMD), (2) water draining from the Lykens-Williamstown Mine Pool at the Lykens Water-Level Tunnel (LWLT) and Lykens Drift (LD) discharges, (3) Bear Creek after mixing with the mine discharges (BC-DMD), and (4) Bear Creek prior to mixing with Wiconisco Creek (BCM). Two sites on Wiconisco Creek, upstream and downstream of Bear Creek (WC-UBC and WC-DBC, respectively), were selected to evaluate changes in streamflow and water quality upon mixing with Bear Creek. During periods of below-normal precipitation, streamwater loss was commonly 100 percent upstream of site BC-UMD (streamflow range = 0 to 9.7 ft3/s (cubic feet per second)) but no loss was detected downstream owing to sustained mine water drainage from the Lykens Water-Level Tunnel (range = 0.41 to 3.7 ft3/s), Lykens Drift (range = 0.40 to 6.1 ft3/s), and diffuse zones of seepage. Collectively, mine water inputs contributed about 84 percent of base flow and 53 percent of stormflow measured in the downstream reach. An option under consideration by the Dauphin County Conservation District for treatment of the discharge from the LWLT requires the source of the discharge to be captured and rerouted downstream, bypassing approximately 1,000 feet of stream channel. Because streamwater loss upstream of the tunnel was commonly 100 percent, rerouting the discharge from the LWLT may extend the reach of Bear Creek that is subject to dryness. Differences in the chemistry of water discharging from the LWLT compared to the LD suggest that the flow path through the Lykens-Williamstown Mine Pool to each mine discharge is unique. The LWLT is marginally alkaline (median net acid neutralizing capacity (ANC) = 9 mg/L (milligrams per liter) as CaCO3; median pH = 5.9), commonly becomes acidic (minimum net ANC = -74 mg/L as CaCO3) at low flow, and may benefit from alkaline amendments prior to passive treatment. Water discharging from the LD provides excess ANC (median net ANC = 123 mg/L as CaCO3; median pH = 6.5) to the downstream reach and is nearly anoxic at its source (median dissolved oxygen = 0.5 mg/L). Low dissolved oxygen water with relatively high ANC and metals concentrations discharging from the LD is characteristic of a deeper flow path and longer residence time within the mine pool than the more acidic, oxygenated water discharging from the LWLT. TMDLs for iron have been developed for dissolved species only. Consequently, distinguishing between dissolved and suspended iron in Bear Creek is important for evaluating water-quality improvement through TMDL attainment. Median total iron concentration increased from 550 mg/L (micrograms per liter) at site BC-UM

  7. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands

    NASA Astrophysics Data System (ADS)

    Kunz, Manuel J.; Wüest, Alfred; Wehrli, Bernhard; Landert, Jan; Senn, David B.

    2011-12-01

    Large dams can have major ecological and biogeochemical impacts on downstream ecosystems such as wetlands and riparian habitats. We examined sediment removal and carbon (C), nitrogen (N), and phosphorus (P) cycling in Itezhi-Tezhi Reservoir (ITT; area = 364 km2, hydraulic residence time = 0.7 yr), which is located directly upstream of a high ecological value floodplain ecosystem (Kafue Flats) in the Zambezi River Basin. Field investigations (sediment cores, sediment traps, water column samples), mass balance estimates, and a numerical biogeochemical reservoir model were combined to estimate N, P, C, and sediment removal, organic C mineralization, primary production, and N fixation. Since dam completion in 1978, 330 × 103 tons (t) of sediment and 16 × 103, 1.5 × 103, 200 t of C, N, and P, respectively, have accumulated annually in ITT sediments. Approximately 50% of N inputs and 60% of P inputs are removed by the reservoir, illustrating its potential in decreasing nutrients to the downstream Kafue Flats floodplain. The biogeochemical model predicted substantial primary production in ITT (˜280 g C m-2 yr-1), and significant N-fixation (˜30% for the total primary production) was required to support primary production due to marginal inputs of inorganic N. Model simulations indicate that future hydropower development in the reservoir, involving the installation of turbines driven by hypolimnetic water, will likely result in the delivery of low-oxygen waters to downstream ecosystems and increased outputs of dissolved inorganic N and P by a factor of ˜4 and ˜2 compared to current dam management, respectively.

  8. Long-term effects of climate and land cover change on freshwater provision in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.

    2015-06-01

    Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974-2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.

  9. Channel Stability and Water Quality of the Alagnak River, Southwestern Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2003-01-01

    The Alagnak River, a National Wild River located in southwestern Alaska, drains an area of 3,600 square kilometers and is used for recreational and subsistence activities, primarily angling, camping, rafting, and hunting by visitors and seasonal residents, and for commercial guiding by several lodges. Increases in visitor use in the 1990s included an increase in the use of high-horsepower motorboats on the river, primarily for angling, and raised concerns regarding human impacts on water quality. Downstream from its confluence with the Nonvianuk River at river kilometer (RK) 93, the Alagnak River is formed in glacial drift and outwash with a single, low bedrock outcrop. Analysis of aerial photography from 1951, 1982, and 2001 shows that the river's multiple channels from RK 57 to 93 have been relatively stable. In contrast, long reaches of multiple channels from RK 35 to 57 changed substantially between 1951 and 1982, creating a new complex of channels. Downstream from RK 35, channel changes in the past 50 years consist largely of minor meander migration. Analysis of water samples collected during this study at RK 21, 46, and 93 and in the Alagnak and Nonvianuk Rivers at the outlets of the lakes that form their source shows that the Alagnak River is a nutrient-poor, calcium-bicarbonate water with low suspended-sediment concentrations. Water chemistry changes little over time or in a downstream direction. Weak patterns over time include high late May/early June concentrations of some nutrients, carbon, and iron. Weak patterns over distance include downstream increases in iron, manganese, and phosphorous. No pervasive human impacts on Alagnak River water chemistry were detected. Local effects that could be diluted within a kilometer downstream of the source were not detectable by this study. Data collected at three continuously recording wake gaging stations at RK 21, 46, and 93 showed that 1999-2000 motorboat use was heaviest in the lower reaches of the river, moderate in the middle reaches, and very light in the upper reaches. Maximum boat use was 137, 40, and 4 wakes per day at RK 21, 46, and 93, respectively. The mean height of the maximum wave generated in each wake was about 0.15 m (meters) at all three gaging stations. Bank erosion monitoring at 14 sites between RK 21 and 93 quantified erosion rates ranging from 0 to 1.1 m/yr (meters per year). Erodibility (based on grain-size analysis) increases in a downstream direction, as do measured erosion rates. Alagnak River banks are noncohesive and erode by grain-by-grain removal of sediment in an alternating pattern of water-driven erosion and gravitydriven erosion. Periodic surveys at bank erosion monitoring sites detected the development of a shallow underwater shelf formed by the action of wind waves and boat wakes at several sites. This shelf contains sediment eroded from the bank and redeposited adjacent to the bank; the shelf reformed as water levels changed but maintained the same wave-generated form throughout much of the season. Measurements of bank erosion processes, particularly the development of a wave-generated shelf, and visual observations suggest that boat wakes increase bank erosion rates, especially at high, exposed banks. Analysis of aerial photography and other assessments of bank erosion processes indicate that this increase in erosion rates has not altered the mechanisms of channel change, which in the past 50 years have included complex, compound channel changes and meander migration.

  10. Cryptosporidium (Crypto) Disease: Diagnosis & Detection

    MedlinePlus

    ... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...

  11. Scaling issues in multi-criteria evaluation of combinations of measures for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg

    2016-05-01

    In integrated river basin management, measures for reaching the environmental objectives can be evaluated at different scales, and according to multiple criteria of different nature (e.g. ecological, economic, social). Decision makers, including responsible authorities and stakeholders, follow different interests regarding criteria and scales. With a bottom up approach, the multi criteria assessment could produce a different outcome than with a top down approach. The first assigns more power to the local community, which is a common principle of IWRM. On the other hand, the development of an overall catchment strategy could potentially make use of synergetic effects of the measures, which fulfils the cost efficiency requirement at the basin scale but compromises local interests. Within a joint research project for the 5500 km2 Werra river basin in central Germany, measures have been planned to reach environmental objectives of the European Water Framework directive (WFD) regarding ecological continuity and nutrient loads. The main criteria for the evaluation of the measures were costs of implementation, reduction of nutrients, ecological benefit and social acceptance. The multi-criteria evaluation of the catchment strategies showed compensation between positive and negative performance of criteria within the catchment, which in the end reduced the discriminative power of the different strategies. Furthermore, benefit criteria are partially computed for the whole basin only. Both ecological continuity and nutrient load show upstream-downstream effects in opposite direction. The principles of "polluter pays" and "overall cost efficiency" can be followed for the reduction of nutrient losses when financial compensations between upstream and downstream users are made, similar to concepts of emission trading.

  12. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of copper. ?? 1985.

  13. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands.

    PubMed

    Puttock, Alan; Graham, Hugh A; Cunliffe, Andrew M; Elliott, Mark; Brazier, Richard E

    2017-01-15

    Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m 3 in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl -1 , average leaving site: 39±37mgl -1 ). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues that are faced in agricultural landscapes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    NASA Astrophysics Data System (ADS)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated that the products from earth observations and the surface water mapping tool could detect dynamic changes of river morphology in the Ayeyarwady River. This information is useful to support navigation and riverbank protection planning and formulating mitigation measures for local communities that are affecting by riverbank erosion.

  15. The Impact of Commercially Treated Oil and Gas Produced Water Discharges on Bromide Concentrations and Modeled Brominated Trihalomethane Disinfection Byproducts at two Downstream Municipal Drinking Water Plants in the Upper Allegheny River, Pennsylvania, USA

    EPA Science Inventory

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species were observed in finished water at several Western Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in br...

  16. Hydrology and water-quality characteristics of Muddy Creek and Wolford Mountain Reservoir near Kremmling, Colorado, 1990 through 2001

    USGS Publications Warehouse

    Stevens, Michael R.; Sprague, Lori A.

    2003-01-01

    A water-quality monitoring program was begun in March 1985 on Muddy Creek in anticipation of the construction of a reservoir water-storage project. Wolford Mountain Reservoir was constructed by the Colorado River Water Conservation District during 1992-94. The reservoir began to be filled in 1995. Water quality generally was good in Muddy Creek and Wolford Mountain Reservoir throughout the period of record (collectively, 1990 through 2001), with low concentrations of nutrients (median total nitrogen less than 0.6 and median total phosphorus less than 0.05 milligrams per liter) and trace elements (median dissolved copper less than 2, median dissolved lead less than 1, and median dissolved zinc less than 20 micrograms per liter). Specific conductance ranged from 99 to 1,720 microsiemens per centimeter. Cation compositions at Muddy Creek sites were mixed calcium-magnesium-sodium. Anion compositions were primarily bicarbonate and sulfate. Suspended-sediment concentrations ranged from less than 50 milligrams per liter during low-flow periods to hundreds of milligrams per liter during snowmelt. Turbidity in prereservoir Muddy Creek generally was measured at less than 10 nephelometric turbidity units during low-flow periods and ranged to more than 360 nephelometric turbidity units during snowmelt. Compared to prereservoir conditions, turbidity in Muddy Creek downstream from the reservoir was substantially reduced because the reservoir acted as a sediment trap. During most years, peak flows were slightly reduced by the reservoir or similar to peaks upstream from the reservoir. The upper first to fifteenth percentiles of flows were decreased by operation of the reservoir compared to prereservoir flows. Generally, the fifteenth to one-hundredth percentiles of flow were increased by operation of the reservoir outflow compared to prereservoir flows. Nutrient transport in the inflow is proportional to the amount of inflow-water discharge in a given year. Some nitrogen was stored in the water column and gain/loss patterns for total nitrogen were somewhat related to reservoir storage. Nitrogen tended to move through the reservoir, whereas phosphorus was mostly trapped within the reservoir in bottom sediments. The reservoir gained phosphorus every year (1996- 2001) and, as a percentage, more phosphorus was retained than nitrogen in years when both were retained in the reservoir due to stronger phosphorus tendencies for adsorption, coprecipitation, and settling. Only small amounts of phosphorus were available in the water column at the outflow, and reservoir water-column storage did not influence phosphorus outflowloading patterns as much as settling further upstream in the reservoir. From 1990 to 2001, upstream from the reservoir, concentrations and values of dissolved solids, turbidity, some major ions, and dissolved iron increased (p-value less than 0.10), and acid-neutralizing capacity decreased. From 1990 to 2001, there were no significant (p-value less than 0.10) trends in nutrient concentrations upstream from the reservoir. From 1990 to 2001, downstream from the reservoir, trends in concentrations and values of dissolved solids, turbidity, major ions, total ammonia plus organic nitrogen, dissolved and total-recoverable iron, and total-recoverable manganese were downward. Upstream and downstream water-quality constituents for the prereservoir (1990 to 1995) period were compared. Concentrations and values of dissolved solids, major ions, turbidity, and manganese were greater (p-value less than 0.10) at the downstream site. From 1995 to 2001 (postconstruction), upstream and downstream water-quality constituents also were compared. Concentrations of specific conductance and major ions increased at the downstream site when compared to the upstream site (p-value less than 0.10), except for acid-neutralizing capacity and silica, which decreased. Turbidity, concentrations of total-recoverable and dissolved manganese, and

  17. Ecological and water quality impairment resulting from the New Idria Mercury Mine and natural sources in the San Carlos and Silver Creek watersheds, central California

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Hothem, R.; Goldstein, D.; Brussee, B.

    2011-12-01

    The New Idria Mercury Mine in central California is the second largest mercury (Hg) deposit in North America and has been proposed as a US EPA Superfund Site based on ecological impairment to the San Carlos and Silver Creek watersheds. Water, sediment, and biota were sampled in San Carlos Creek in the mine area and downstream for 25 km into the watershed termed Silver Creek. Release of acid rock drainage (ARD) and erosion of mine tailings have impacted the watershed during 120 years of mining and since the mine was closed in 1972. The watershed can be divided into three segments based on water and sediment composition, Hg sources and concentrations, and biodiversity of aquatic invertebrates. Creek waters in segment no. 1 above the mine area consist of Mg-Ca-CO3 meteoric water with pH 8.73. Hg concentrations are elevated in both sediment (100μg/g), and in waters (60 ng/L) because of erosion of Hg mine tailings in the upper part of the watershed. Invertebrate biodiversity is the highest of the sites sampled in the watershed, with seven families (six orders) of aquatic invertebrates collected and six other families observed. In the mine area isotopically heavy ARD (pH 2.7) with high levels of Fe(II), SO4, and total Hg (HgT: 76.7 ng/L) enters and mixes with meteoric creek water, constituting from 10-15% of the water in the 10-km long second creek segment downstream from the mine. Oxidation of Fe(II) from ARD results in precipitation of FeOOH which is transported and deposited as an Fe precipitate that has high Hg and MMeHg concentration (Hg: 15.7-79 μg/g, MMeHg: 0.31 - 1.06 ng/g). Concentrations of HgT are uniformly high (1530-2890 ng/L) with particulate Hg predominant. MMeHg ranges from 0.21-0.99 ng/L. In the area just downstream from the ARD source, biodiversity of invertebrates was low, with only one taxa (water striders) available in sufficient numbers and mass (> 1 g)_to be sampled. Biodiversity further downstream was also low, with only up to 2 families present at each site. In the third segment of the watershed, from 10 to 25 km downstream, water chemistry changes due to an input of isotopically heavy connate groundwater with elevated SO4, Cl, CO3, Ba, Ca, Ti, and Hg. HgT concentrations decrease systematically downstream from 680 to 20 ng/L. In the dry season, phytoplankton blooms in this segment of the creek result in accumulation of biogenic sediment up to 0.25 m thick that is composed of diatoms and chemically precipitated CaCO3. The tan surface layer consists of living diatoms. Below it is a black sediment composed of diatom fragments and micron to submicron size grains of FeS, HgS, and barite. Phytoplankton has high Hg and MMeHg bioaccumulation factors which results in high levels of Hg in the biogenic sediment. The expired diatoms release Hg to the pore waters of the sediment that reacts with sulfide generated by sulfate reducing bacteria and is precipitated as HgS. The Hg enriched biogenic sediment (4.5-14.4 μg/g) is a natural source of HgS to the watershed. In this creek segment, biodiversity is variable depending on riparian and in-stream habitat. The number of aquatic invertebrates present in sufficient numbers and mass for collection and analysis ranged from 2 to 7.

  18. Informing Extension Program Development through Audience Segmentation: Targeting High Water Users

    ERIC Educational Resources Information Center

    Huang, Pei-wen; Lamm, Alexa J.; Dukes, Michael D.

    2016-01-01

    Human reliance on water has led to water issues globally. Although extension professionals have made efforts successfully to educate the general public about water conservation to enhance water resource sustainability, difficulty has been found in reaching high water users, defined as residents irrigating excessively to their landscape irrigation…

  19. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.

  20. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    EPA Science Inventory

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of...

  1. Guiding phosphorus stewardship for multiple ecosystem services

    USDA-ARS?s Scientific Manuscript database

    Phosphorus is vital to agricultural production and water quality regulation. While the role of phosphorus in agriculture and water quality has been studied for decades, the benefits of sustainable phosphorus use and management for society due to its downstream impacts on multiple ecosystem services...

  2. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this program can provide substantial benefits for downstream stakeholders while protecting DEP's ability to ensure a reliable water supply for 9 million customers in NYC and the surrounding communities. The one-year nature of the program will allow for DEP and the Decree Parties to evaluate and improve the program in the future. This paper will describe the OST-FFMP program and discuss preliminary observations on its performance based on key NYC and downstream stakeholder performance metrics.

  3. Hydrochemical study of an arsenic-contaminated plain in Guandu, north Taiwan

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Hsiang

    2015-04-01

    Arsenic pollution in Guandu Plain, north Taiwan is a critical issue due to highly developed anthropogenic activities. It was considered that arsenic was carried in by surface water system. Two major rivers, Huanggang Creek and South Huang Greek, flow through Guandu Plain. Both creeks originate from Tatung Volcano Group, which is extensively active in post-volcanic activities. In this study, the hydrochemistry along the two major rivers was studied for tracing the source of arsenic pollution in Guandu Plain. The pH values in the upstream water are in the range from 6 to 8 but dramatically decrease down to 2-4.5 in the downstream area. It can be concluded that the creeks are recharged with very low pH geothermal water. In addition, arsenic shows a different spatial distribution. In Huanggang Creek, arsenic concentration is much higher, about 200 ppb to 500 ppb, in the downstream than in the upstream while arsenic concentration is extremely low, below 1 ppb, in the downstream of South Huang Greek. The geochemical results show that rare earth elements (REEs) are depleted in the upstream both in Huanggang creek and South Huang creek, and the NASC-normalized ratios of heavy to light REE (Lu/La) in the upstream are very close to 1. This demonstrates that the upstream water is geochemically dominated by the interaction between water and sedimentary rock. In the downstream, the NASC-normalized REE pattern shows a quit different type which is depleted in light REEs (much higher Lu/La ratio). It is well known that igneous rock is depleted in light REEs; therefore, arsenic is possibly volcanic origin. In this study, PHREEQC, a thermodynamic modeling program, was also utilized to calculate the saturation index (SI) of hydrous ferric oxide (HFO), which can effectively scavenge arsenic in water. The results demonstrate that SI of HFO is mainly controlled by pH in this study. When pH is greater than 3.5, HFO start to precipitate and remove arsenic from water. Therefore, it is believed that the arsenic pollution in Guandu Plain could result from HFO co-precipitation due to the increase of pH when Huanggang creek and South Huang creek flow through the land.

  4. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport

    USGS Publications Warehouse

    Horvath, T.G.; Lamberti, G.A.

    1999-01-01

    1. Streams flowing from lakes which contain zebra mussels, Dreissena polymorpha, provide apparently suitable habitats for mussel colonization and downstream range expansion, yet most such streams contain few adult mussels. We postulated that mussel veligers experience high mortality during dispersal via downstream transport. They tested this hypothesis in Christiana Creek, a lake-outlet stream in south-western Michigan, U.S.A., in which adult mussel density declined exponentially with distance downstream. 2. A staining technique using neutral red was developed and tested to distinguish quickly live and dead veligers. Live and dead veligers were distinguishable after an exposure of fresh samples to 13.3 mg L-1 of neutral red for 3 h. 3. Neutral red was used to determine the proportion of live veligers in samples taken longitudinally along Christiana Creek. The proportion of live veligers (mean ?? SE) declined from 90 ?? 3% at the lake outlet to 40 ?? 8% 18 km downstream. 4. Veligers appear to be highly susceptible to damage by physical forces (e.g. shear), and therefore, mortality in turbulent streams could be an important mechanism limiting zebra mussel dispersal to downstream reaches. Predictions of zebra mussel spread and population growth should consider lake-stream linkages and high mortality in running waters.

  5. Water temperature effects from simulated changes to dam operations and structures in the Middle and South Santiam Rivers, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.

    2017-05-31

    Green Peter and Foster Dams on the Middle and South Santiam Rivers, Oregon, have altered the annual downstream water temperature profile (cycle). Operation of the dams has resulted in cooler summer releases and warmer autumn releases relative to pre-dam conditions, and that alteration can hinder recovery of various life stages of threatened spring-run Chinook salmon (Oncorhyncus tshawytscha) and winter steelhead (O. mykiss). Lake level management and the use of multiple outlets from varying depths at the dams can enable the maintenance of a temperature regime more closely resembling that in which the fish evolved by releasing warm surface water during summer and cooler, deeper water in the autumn. At Green Peter and Foster Dams, the outlet configuration is such that temperature control is often limited by hydropower production at the dams. Previously calibrated CE-QUAL-W2 water temperature models of Green Peter and Foster Lakes were used to simulate the downstream thermal effects from hypothetical structures and modified operations at the dams. Scenarios with no minimum power production requirements allowed some releases through shallower and deeper outlets (summer and autumn) to achieve better temperature control throughout the year and less year-to-year variability in autumn release temperatures. Scenarios including a hypothetical outlet floating 1 meter below the lake surface resulted in greater ability to release warm water during summer compared to existing structures. Later in Autumn (October 15–December 31), a limited amount of temperature control was realized downstream from Foster Dam by scenarios limited to operational changes with existing structures, resulting in 15-day averages within 1.0 degree Celsius of current operations.

  6. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    PubMed

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  7. Variability in response of lakes to climate change explained by surrounding watersheds

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Bouffard, Damien

    2017-04-01

    The consequences of climate change for inland waters have been shown to vary extensively not only globally, but also on a sub-regional scale [O'Reilly et al., 2015, GRL]. Local factors affecting heating include morphology [Toffolon et al., 2014, LO], irradiance absorption [Williamson et al., 2015, SR], local weather conditions and onset of stratification [Zhong et al., 2016, LO] as well as ice conditions [Austin and Colman, 2007, GRL]. However, inland waters are often a complex web of rivers, streams, lakes and reservoirs. Thereby, to correctly assess and predict future changes in lakes/reservoirs due to climate change, it is important to consider the changes occurring in the surrounding watersheds and how they affect downstream waters. Here we evaluate the impact of climate change on rivers originating in the Swiss Alps (Aare and Rhône) and downstream located perialpine lakes (Lake Biel and Lake Geneva). We use regional predictions for air temperature increase and the subsequently expected shift in river discharge regime under the A1B emission scenario [Bey et al., 2011, CH2011; Federal Office for the Environment FOEN, 2012, CCHydro]. Focus is on predicting the changes in water temperature, particle content, stratification and deep water renewal rate using the 1D SIMSTRAT [Goudsmit et al., 2002, JGR] and Air2Stream [Toffolon and Piccolroaz, 2015, ERL] models. We show that the effect of tributaries on the reaction for downstream lakes to climate change are inversely proportional to the hydraulic residence time of the systems. We furthermore include known changes in anthropogenic thermal emissions, which in Lake Biel correspond to 2 decades of climate induced warming. Our results are put into context with future water utility plans in Lake Biel.

  8. Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture- and shipping-impacted subtropical lake, China.

    PubMed

    Zeng, Qingfei; Jeppesen, Erik; Gu, Xiaohong; Mao, Zhigang; Chen, Huihui

    2018-06-01

    The spatial-temporal distribution of polycyclic aromatic hydrocarbons (PAHs), their source, and potential health risks were determined in overlying water and surface sediments from Chinese Lake Guchenghu, adjacent commercial mitten crab ponds and the connected Wushen Canal to assess the contamination profile of the area. The total PAHs concentrations in sediment and water were 86.7-1790 ng g -1 dry weight (dw) and 184-365 ng L -1 in summer and 184-3140 ng g -1 dw and 410-1160 ng L -1 in winter. Two- and 3-ring PAHs were the predominant compounds in water, while PAHs with 4-6 rings dominated in the sediment at both upstream and downstream sites. PAHs concentrations in water and sediment correlated significantly. Diagnostic ratios and positive matrix factorization (PMF) analyses indicated a strong influence of pyrogenic sources, principally biomass combustion and vehicle emission, on the concentrations of PAHs. The distribution, source identification, and mean effects range median quotients (mERMQ) analyses suggested that the most contaminated area was located downstream and upstream of the Wushen Canal, followed by Lake Guchenghu and a commercial crab pond area. From an ecological point of view, PAHs posed a potential risk to drinking water sources as the concentrations exceeded the guideline value of 0.05 μg L -1 . The risk posed by sediment PAHs appeared to be low except for the downstream sites, which showed a low to medium ecotoxicological risk. The total incremental lifetime cancer risks ranged between 10 -7 and 10 -5 , indicating a potential health risk for the local population when exposed to sediment from the area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline▿†

    PubMed Central

    Park, Hyung Soo; Chatterjee, Indranil; Dong, Xiaoli; Wang, Sheng-Hung; Sensen, Christoph W.; Caffrey, Sean M.; Jack, Thomas R.; Boivin, Joe; Voordouw, Gerrit

    2011-01-01

    Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters. PMID:21856836

  10. Determinants of willingness to pay for improved water supply services in rural Kazakhstan

    NASA Astrophysics Data System (ADS)

    Tussupova, Kamshat

    2017-04-01

    The UN Sustainable development goals declare to provide water, sanitation and hygiene for all. The supply of affordable and safe water is a global priority and there is thus a requirement for a safe drinking water management and management of excreta disposal and wastewater. The current paper assesses the determinants of consumers' willingness to connect and pay (WTP) for the piped water in rural Kazakhstan. The results show that local villagers use water from different sources and at least three quarters of the respondents are willing to connect and use water from the piped water supply. The general defined determinants for WTP should be carefully considered among the different water users. Perceived water quality is a variable that is relevant for all water users. Other variables such as perceived reliability and the time-spent to collect water from the source, in-household treatment of water, and income perception are also significant but differently correlated with the WTP among different water users. Although, piped water is considered to be a safe system if properly managed, still some water users are reluctant to pay for the system and are satisfied with their current water supply and sanitation services. In this case, a proper management for the drinking water and wastewater and safe management of the excreta disposal should be supplied. It is recommended to include local water userś opinion as regard the willingness to connect and pay for the piped water system. The findings are of particular importance for policy-makers, water managers, engineers, and public health specialists.

  11. Social dimensions of vulnerability to glacier-hydrology hazards in Peru and Nepal

    NASA Astrophysics Data System (ADS)

    McDowell, Graham; Carey, Mark; Huggel, Christian; Kargel, Jeffrey S.

    2014-05-01

    Snow and ice hazards affect populations worldwide, and prevention and adaptation plans must devote more attention to the human dimensions of these hazards. Historically, most research on glacier hazards has emphasized glacial lake outburst floods (GLOFs) and rock-ice landslides. This work often focuses on technical approaches or scientific knowledge about these high-magnitude and low-frequency hazards. This study examines a different type of cryospheric hazard, one that is low-magnitude and high-frequency, especially under future climate change projections: the increasingly recognized hydrologic hazards related to runoff variability in downstream communities below shrinking glaciers. By focusing on actual water users in glacier-fed watersheds, the research helps illuminate key vulnerabilities to hydrological change. It demonstrates that people are indeed vulnerable to decreased runoff, but that these vulnerabilities must be analyzed in the context of global change, including socio-economic and political variables, and not just through technical or scientific approaches. The study examines water use for export-oriented agriculture in Peru's billion-dollar Chavimochic Project, which depends on a single canal from the Santa River that could be damaged by a GLOF or avalanche. Or the canal could experience declining water supplies in the future if water use increases, particularly due to international agricultural demands, while water supplies from glacial ice decreases. The study also provides insights from Khumbu, Nepal, where changing hydrological conditions are leading to reduced water access for household uses, declining crop yields, reduced water access for meeting the high water demands of tourists, and reduced hydro-electricity generation capabilities. Although these effects are widespread, there are clear patterns of socially determined vulnerability among the population, with low livelihood diversity an important indicator of increased susceptibility to harm. While focusing on hydrologic variability and vulnerability, this poster's societal orientation has far-reaching implications for the analysis of all cryospheric hazards where vulnerability and resilience are affected by a range of human and environmental forces.

  12. Valuing investments in sustainable land management using an integrated modelling framework to support a watershed conservation scheme in the Upper Tana River, Kenya

    NASA Astrophysics Data System (ADS)

    Hunink, Johannes E.; Bryant, Benjamin P.; Vogl, Adrian; Droogers, Peter

    2015-04-01

    We analyse the multiple impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin (Kenya) to support a watershed conservation scheme (a "water fund"). We apply an integrated modelling framework, building on previous field-based and modelling studies in the basin, and link biophysical outputs to economic benefits for the main actors in the basin. The first step in the modelling workflow is the use of a high-resolution spatial prioritization tool (Resource Investment Optimization System -- RIOS) to allocate the type and location of conservation investments in the different subbasins, subject to budget constraints and stakeholder concerns. We then run the Soil and Water Assessment Tool (SWAT) using the RIOS-identified investment scenarios to produce spatially explicit scenarios that simulate changes in water yield and suspended sediment. Finally, in close collaboration with downstream water users (urban water supply and hydropower) we link those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for upstream farmers in the conservation area. We explore how different budgets and different spatial targeting scenarios influence the return of the investments and the effectiveness of the water fund scheme. This study is novel in that it presents an integrated analysis targeting interventions in a decision context that takes into account local environmental and socio-economic conditions, and then relies on detailed, process-based, biophysical models to demonstrate the economic return on those investments. We conclude that the approach allows for an analysis on different spatial and temporal scales, providing conclusive evidence to stakeholders and decision makers on the contribution and benefits of the land-based investments in this basin. This is serving as foundational work to support the implementation of the Upper Tana-Nairobi Water Fund, a public-private partnership to safeguard ecosystem service provision and food security.

  13. Measuring Subsurface Water Fluxes Using a Heat Pulse Sensor

    NASA Astrophysics Data System (ADS)

    Ochsner, T. E.; Wang, Q.; Horton, R.

    2001-12-01

    Subsurface water flux is an important parameter in studies of runoff, infiltration, groundwater recharge, and subsurface chemical transport. Heat pulse sensors have been proposed as promising tools for measuring subsurface water fluxes. Our heat pulse probe consists of three 4-cm stainless-steel needles embedded in a waterproof epoxy body. The needles contain resistance heaters and thermocouples. The probes are connected to an external datalogger and power supply and then installed in soil. To measure the water flux, a 15-s heat pulse is generated at the middle needle using the power supply and the resistance heater, and the temperature increases at the needles 6-mm upstream and downstream from the heater are recorded using the thermocouples and datalogger. To date, heat pulse methods have required cumbersome mathematical analysis to calculate soil water flux from this measured data. We present a new mathematical analysis showing that a simple relationship exists between water flux and the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the line heat source. The simplicity of this relationship makes heat pulse sensors a more attractive option for measuring subsurface water fluxes.

  14. Implications of Upstream Flow Availability for Watershed Surface Water Supply Across the Conterminous United States

    Treesearch

    Kai Duan; Ge Sun; Peter V. Caldwell; Steven G. McNulty; Yang Zhang

    2018-01-01

    Although it is well established that the availability of upstream flow (AUF) affects downstream water supply, its significance has not been rigorously categorized and quantified at fine resolutions. This study aims to fill this gap by providing a nationwide inventory of AUF and local water resource, and assessing their roles in securing water supply across the 2,099 8-...

  15. Evaluation of tracer tests completed in 1999 and 2000 on the upper Santa Clara River, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Cox, Marisa H.; Mendez, Gregory O.; Kratzer, Charles R.; Reichard, Eric G.

    2003-01-01

    The interaction of surface water and hyporheic water along the Santa Clara River in Los Angeles and Ventura Counties, California, was evaluated by conducting tracer tests and analyzing water-quality data under different flow conditions in October 1999 and May 2000. Tracer and water-quality samples were collected at multiple river and hyporheic sites as well as at the Los Angeles County Sanitation Districts Saugus and Valencia Water Reclamation Plants. These water reclamation plants provide the main source of base flow in the river. Rhodamine WT dye was injected into the river to determine river traveltimes and to indicate when Lagrangian water-quality sampling could be performed at each site. Sodium bromide was injected into the river at a constant rate at the water reclamation plants to evaluate the surface-water and shallow ground-water interactions in the hyporheic zone. In the upper reach of the study area, which extends 2.9 river miles downstream from the Saugus Water Reclamation Plant, traveltime was 3.2 hours during May 2000. In the lower reach, which extends 14.1 river miles downstream from the Valencia Water Reclamation Plant, traveltime was 9.6 hours during October 1999 and 7.1 hours during May 2000. The sodium bromide tracer was detected at both hyporheic locations sampled during October 1999, and at two of the three hyporheic locations sampled during May 2000. On the basis of Rhodamine dye tests, flow curves were constructed from the discharge measurements in the Valencia reach. Flow-curve results indicate net gains in flow throughout most, but not all, of the upper parts of the reach and net losses in flow at the lower part of the reach. Lagrangian water-quality sampling provides information on the changes in chemistry as the water flows downstream from the water reclamation plants. Along both reaches there is an increase in sulfate (40-60 mg/L in the Saugus reach and 160 mg/L in the Valencia reach) and a decrease in chloride (about 45 mg/L in the Saugus reach and about 10 mg/L in the Valencia reach). The increasing sulfate concentrations are consistent with discharge of higher sulfate ground water into the river. Along both reaches there is a trend of decreasing ammonia and slightly increasing nitrate concentrations. This trend is consistent with nitrification. Samples were also analyzed for numerous compounds associated with wastewater, but analysis focused on four indicators. Concentrations of wastewater indicators in the Santa Clara River were low and decreased downstream from the reclamation plants. There is general consistency between the chemical and tracer data collected from the hyporheic and the river-aquifer flow regime within a reach. The water quality at the hyporheic site in a gaining reach of the river resembled that of the local ground water and no wastewater indicators or injected tracers were observed; whereas, the water quality at the hyporheic sites in a losing reach of the river resembled the water quality of the river at the corresponding river site, and injected tracers were observed.

  16. Developing an Integrated Understanding of the Relationship Between Urban Wastewater Flows and Downstream Reuse in Irrigated Agriculture: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Thebo, A.; Nelson, K.; Drechsel, P.; Lambin, E.

    2015-12-01

    Globally, less than ten percent of collected wastewater receives any form of treatment. This untreated wastewater is discharged to surface waters where it is diluted and reused by farmers and municipalities downstream. Without proper safeguards, the use of these waters can present health risks. However, these same waters also provide a reliable and nutrient rich water source for farmers, often in regions where water is already physically or economically scarce. Case studies show the prevalence and diversity of motivations for indirect reuse, but are difficult to interpret in aggregate at the global scale. This study quantifies the global extent and characteristics of the reuse of wastewater in irrigated agriculture through three main components: Quantifying the global extent of urban and peri-urban irrigated and rainfed croplands; Evaluating the contribution of urban wastewater production to available blue water at the catchment scale; Developing an irrigation water quality indicator and classifying irrigated croplands downstream of cities on the basis of this indicator. Each of these components integrates several global scale spatial datasets including MIRCA2000 (irrigated croplands); GDBD (stream channels and catchments); and compilations of water use, sewerage and wastewater treatment data. All analyses were conducted using spatial analysis tools in ArcGIS and Python. This analysis found that 60 percent of all irrigated croplands (130 Mha) were within 20 km of cities. Urban irrigated croplands were found to be farmed with greater cropping intensity (1.48) as compared to non-urban irrigated croplands. Ten percent of the global catchment area is in catchments where domestic wastewater constitutes greater than five percent of available blue water. In contrast, 25 percent of irrigated croplands are located in catchments where domestic wastewater exceeds five percent of available blue water. Particularly in the water scarce regions of North Africa and East Asia, a strong correlation between the volume of urban wastewater production and the area of peri-urban irrigated croplands was found. A better understanding of global reliance on the indirect reuse of untreated wastewater in irrigated agriculture can provide valuable insights for large-scale water allocation planning and risk mitigation efforts.

  17. Governance and decision making in complex socio-hydrological systems

    NASA Astrophysics Data System (ADS)

    Elshorbagy, Amin; Wheater, Howard; Gober, Patricia; Hassanzadeh, Elmira

    2017-04-01

    The transboundary Saskatchewan River, originating in the Canadian Rockies in Alberta, flows through Saskatchewan and Manitoba and discharges its water into Lake Winnipeg. It supports irrigated agriculture, hydropower generation, flood protection, municipal water supplies, mining, recreation, and environmental services across a large area and in multiple administrative jurisdictions. Managing the region's water-based economic activities and environmental services, requires decisions at a variety of scales to incorporate competing values and priorities about water use. Current inter-provincial allocations are based on the 1969 Master Agreement of Water Apportionment whereby upstream Alberta must release one-half of the annual natural flows of the Saskatchewan River to Saskatchewan, which in turn must pass one-half of the residual natural flow to the Province of Manitoba. This analysis uses a hydro-economic simulation model, SWAMP, to examine risk-based tradeoffs in Saskatchewan for various types of water use including, agriculture, energy, and flood protection under various scenarios of water availability. The eco-hydrological effects of the scenarios on the largest inland delta in North America - the Saskatchewan River Delta - are also shown. Results enable decision makers to weigh the costs and benefits of implementing particular sector-based future development strategies. Assuming net provincial benefit as a single monetary indicator of economic value, the effects of various scenarios of environmental and policy changes are quantified Results show that improving irrigation technology and expanding irrigated lands in Alberta will positively affect the province's economic development and have compound effects downstream on hydropower generation, environmental flows and the economies of Saskatchewan and Manitoba. The implementation of similar policies in Saskatchewan will have different downstream impacts because of the large hydro-power capacity downstream in Manitoba. The model highlights the spatial tradeoffs across the three provinces and sectoral trade-offs among the differing water uses. These trade-offs represent challenging dilemmas for water management decisions in a complex system. The study reveals the need for a holistic framework of water resources analysis that can dynamically capture the feedback loops among hydrological, social, and administrative/political analysis units to support public discussion of critical water tradeoffs and a consensual water value framework to guide future development decisions.

  18. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream surface water quality and drinking water utilities given the potential of formation of iodate-DBPs in drinking water. Olmstead, S.M. et al. (2013). Shale gas development impacts on surface water quality in Pennsylvania, PNAS, 110, 4962-4967.

  19. In-Stream Microbial Denitrification Potential at Wastewater Treatment Plant Discharge Sites

    NASA Astrophysics Data System (ADS)

    Hill, N. B.; Rahm, B. G.; Shaw, S. B.; Riha, S. J.

    2014-12-01

    Reactive nitrogen loading from municipal sewage discharge provides point sources of nitrate (NO3-) to rivers and streams. Through microbially-mediated denitrification, NO3- can be converted to dinitrogen (N2) and nitrous oxide (N2O) gases, which are released to the atmosphere. Preliminary observations made throughout summer 2011 near a wastewater treatment plant (WWTP) outfall in the Finger Lakes region of New York indicated that NO3- concentrations downstream of the discharge pipe were lower relative to upstream concentrations. This suggested that nitrate processing was occurring more rapidly and completely than predicted by current models and that point "sources" can in some cases be point "sinks". Molecular assays and stable isotope analyses were combined with laboratory microcosm experiments and water chemistry analyses to better understand the mechanism of nitrate transformation. Nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes were detected in water and sediment samples using qPCR. Denitrifcation genes were present attached to stream sediment, in pipe biofilm, and in WWTP discharge water. A comparison of δ18-O and δ15-N signatures also supported the hypothesis that stream NO3- had been processed biotically. Results from microcosm experiments indicated that the NO3- transformations occur at the sediment-water interface rather than in the water column. In some instances, quantities of denitrification genes were at higher concentrations attached to sediment downstream of the discharge pipe than upstream of the pipe suggesting that the wastewater discharge may be enriching the downstream sediment and could promote in-stream denitrification.

  20. Linking drugs of abuse in wastewater to contamination of surface and drinking water.

    PubMed

    Rodayan, Angela; Afana, Shadi; Segura, Pedro A; Sultana, Tamanna; Metcalfe, Chris D; Yargeau, Viviane

    2016-04-01

    The concentrations of 17 drugs of abuse, including cocaine, several amphetamines, opioid drugs, and 2 metabolites--benzoylecgonine, a metabolite of cocaine, and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrolidine, a metabolite of methadone--were investigated in an urban watershed that is heavily impacted by discharges of municipal wastewater. The artificial sweetener sucralose was also monitored as a persistent tracer of contamination from municipal wastewater. Monitoring was conducted in a municipal wastewater treatment plant (WWTP) and at sites upstream and downstream of the WWTP discharge, as well as in a drinking water treatment plant (DWTP) located 19 km downstream of the WWTP discharge that withdraws raw water from the river. Drug concentrations were monitored with polar organic chemical integrative samplers deployed for 2 wk in the river and in the WWTP and DWTP. Several of the investigated compounds exhibited a decrease in concentration with distance downstream from the wastewater discharge into the river, but there was little attenuation of sucralose, cocaine, benzoylecgonine, morphine, acetylmorphine, acetylcodeine, and oxycodone. Heroin and methadone were not detected at any sample locations. Amphetamine, methamphetamine, 3,4-methylenedioxy-methamphetamine, and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrolidine were not detected in the samples collected at the drinking water intake. Many of the drugs of abuse were not removed effectively in the DWTP, including cocaine, benzoylecgonine, methylenedioxyamphetamine, ephedrine, and several prescription opioids, most probably because the DWTP was operating at or above its rated treatment capacity. These data indicate that there can be transport of drugs of abuse from wastewater sources into drinking water in urban watersheds. © 2015 SETAC.

  1. Characterization of organic composition in snow and surface waters in the Athabasca Oil Sands Region, using ultrahigh resolution Fourier transform mass spectrometry.

    PubMed

    Yi, Y; Birks, S J; Cho, S; Gibson, J J

    2015-06-15

    This study was conducted to characterize the composition of dissolved organic compounds present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) with the goal of identifying whether atmospherically-derived organic compounds present in snow are a significant contributor to the compounds detected in surface waters (i.e., rivers and lakes). We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) to characterize the dissolved organic compound compositions of snow and surface water samples. The organic profiles obtained for the snow samples show compositional differences between samples from near-field sites (<5 km from oil sands activities) and those from more distant locations (i.e., far-field sites). There are also significant compositional differences between samples collected in near-field sites and surface water samples in the AOSR. The composition of dissolved organic compounds at the upstream Athabasca River site (i.e., Athabasca River at Athabasca) is found to be different from samples obtained from downstream sites in the vicinity of oil sands operations (i.e., Athabasca River at Fort McMurray and Athabasca River at Firebag confluence). The upstream Athabasca River sites tended to share some compositional similarities with far-field snow deposition, while the downstream Athabasca River sites are more similar to local lakes and tributaries. This contrast likely indicates the relative role of regional snowmelt contributions to the Athabasca River vs inputs from local catchments in the reach downstream of Fort McMurray. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influence of basin characteristics on the effectiveness and downstream reach of interbasin water transfers: displacing a problem

    Treesearch

    Ryan E Emanuel; John J Buckley; Peter V Caldwell; Steve McNulty; Ge Sun

    2015-01-01

    Interbasin water transfers are globally important water management strategies, yet little is known about their role in the hydrologic cycle at regional and continental scales. Specifically, there is a dearth of centralized information on transfer locations and characteristics, and few analyses place transfers into a relevant hydrological context. We assessed...

  3. Saving water in showers

    NASA Astrophysics Data System (ADS)

    Alkhaddar, R. A.; Phipps, D.; Morgan, R.; Karci, B.; Hordesseux, J.

    2007-07-01

    This project is part of a programme aimed at reducing water consumption. Power showers are water inefficient, but in order to persuade the user to accept a lower water use it will be necessary to sustain the "shower experience" to maintain user satisfaction. Previous work has indicated that users' requirements include temperature stability, adequate water volume and distribution, and skin pressure, all of which are substantially controlled by the showerhead. In the present phase of the project several commercially available domestic showerheads have been examined to determine pressure-volume characteristics, radial spray distributions at different flow rates, direct and indirect measures of "skin pressure" and measurements of vertical temperature profiles. Part of the practical work at LJMU has supported extensive theoretical studies by CFD carried out by staff at Arup (consulting engineers) for the Market Transformation Programme. A future phase will study user satisfaction in their own homes where user satisfaction will be surveyed and linked to the physical performance of the shower.

  4. Correlation analysis of Standardized Precipitation Index (SPI) for the water debit and level of the Cisadane River during El Niño and La Niña years

    NASA Astrophysics Data System (ADS)

    Khoir, A. N.; Rohmah, M.; Nuryadi

    2018-03-01

    Hydrometeorological factor causes most disaster in Indonesia, and two of them are drought and flood. This study aims to correlate Standardized Precipitation Index (SPI) 3-monthly to water debit and water level in the Cisadane River. The monthly rainfall data from Serpong and Pasar Baru rain station from 2009 to 2011 when moderate El Niño and moderate La Niña happened. The correlation analysis between debit and water level to SPI 3-monthly used rain post of Serpong to represent the condition of the upstream area and rain post of Pasar Baru to represent the condition of the downstream area. The results showed that during La Niña year, the rainfall on the upstream area of the Cisadane River influenced the increase and the decrease in water debit and water level. Meanwhile, the rainfall on the downstream area of the river has an opposite effect on the increase and the decrease of debit and water level of the Pasar Baru. On the upstream area, the correlation between rainfall and water debit is 0.8, and the correlation between rainfall and water level is also 0.8. During El Niño year, the correlation was less than 0.5.

  5. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    PubMed

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  6. Modeling water quality effects of structural and operational changes to Scoggins Dam and Henry Hagg Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2006-01-01

    To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...

  7. Orientation and navigation relative to water flow, prey, conspecifics, and predators by the nudibranch mollusc Tritonia diomedea.

    PubMed

    Wyeth, Russell C; Woodward, Owen M; Willows, A O Dennis

    2006-04-01

    Progress in understanding sensory and locomotory systems in Tritonia diomedea has created the potential for the neuroethological study of animal navigation in this species. Our goal is to describe the navigational behaviors to guide further work on how the nervous system integrates information from multiple senses to produce oriented locomotion. Observation of T. diomedea in its habitat has suggested that it uses water flow to navigate relative to prey, predators, and conspecifics. We test these hypotheses in the field by comparing slug orientation in time-lapse videos to flow direction in circumstances with and without prey, predators, or conspecifics upstream. T. diomedea oriented upstream both while crawling and after turning. This trend was strongest before feeding or mating; after feeding or mating, the slugs did not orient significantly to flow. Slugs turned downstream away from an upstream predator but did not react in control situations without an upstream predator. These data support the hypothesis that T. diomedea uses a combination of odors (or some other cue transported downstream) and water flow to navigate relative to prey, predators, and conspecifics. Understanding the context-dependent choice between upstream and downstream crawling in T. diomedea provides an opportunity for further work on the sensory integration underlying navigation behavior.

  8. Increased Hydrologic Connectivity: Consequences of Reduced Water Storage Capacity in the Delmarva Peninsula (U.S.)

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.

    2017-12-01

    Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.

  9. Effect of flow rate and lead/copper pipe sequence on lead release from service lines.

    PubMed

    Cartier, Clément; Arnold, Roger B; Triantafyllidou, Simoni; Prévost, Michèle; Edwards, Marc

    2012-09-01

    A pilot experiment examined lead leaching from four representative configurations of service lines including: (1) 100% lead (Pb), (2) 100% copper (Cu), (3) 50% Pb upstream of 50% Cu, and (4) 50% Pb-downstream of 50% Cu using a range of flow rates. The cumulative mass of lead release indicated that a typical partial replacement configuration (50% lead downstream of copper) did not provide a net reduction in lead when compared to 100% lead pipe (85 mg for 50% Pb-downstream versus 83 mg for 100%-Pb) due to galvanic and deposition corrosion. The partially replaced service line configuration also had a much greater likelihood of producing water with "spikes" of lead particulates at higher flow rates, while tending to produce lower levels of lead at very low flow rates. After the first 214 days the galvanic current between copper and lead was only reduced by 34%, proving that galvanic impacts can be highly persistent even in water with optimized corrosion control by dosing of zinc orthophosphate. Finally, this experiment raises concern about the low flow rates used during some prior home sampling events, which may underestimate exposure to lead during normal water use, especially when galvanic Pb:Cu connections are present. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  11. Connectivity of wetlands to downstream waters: Conceptual framework and review

    EPA Science Inventory

    A river represents the time-integrated combination of all waters contributing to it. Understanding the factors that influence a river’s health and sustainability, as well as its degradation, requires an integrated systems perspective. This considers all the components of the ri...

  12. Characterization and placement of wetlands for integrated watershed conservation practice planning

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strategic location of wetla...

  13. Relations of surface-water quality to streamflow in the Hackensack, Passaic, Elizabeth, and Rahway River basins, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward

    1998-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 19 surface-water-quality stations within the drainage basins of the Hackensack, Passaic, Elizabeth, and Rahway Rivers in New Jersey for water years 1976-93. Surface-waterquality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows.Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes over time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow concentration trends were determined for some constituents at 11 of the 19 waterquality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff.The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values suggest larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. For most of the 18 constituents, load-to-streamflow relations at stations along a river reach remain constant or decrease in a downstream direction. The slopes increase in the downstream direction for some or all of the nutrient species at the Ramapo, lower Passaic, and Rahway Rivers; for dissolved solids, dissolved sodium, and dissolved chloride at the lower Passaic River; and for alkalinity and hardness at the Rahway River.

  14. Solar photolysis of soluble microbial products as precursors of disinfection by-products in surface water.

    PubMed

    Wu, Jie; Ye, Jian; Peng, Huanlong; Wu, Meirou; Shi, Weiwei; Liang, Yongmei; Liu, Wei

    2018-06-01

    In the Pearl River Delta area, the upstream municipal wastewater is commonly discharged into rivers which are a pivotal source of downstream drinking water. Solar irradiation transforms some of the dissolved organic matter discharged from the wastewater, also affecting the formation of disinfection by-products in subsequent drinking water treatment plants. The effect of simulated solar radiation on soluble microbial products extracted from activated sludge was documented in laboratory experiments. Irradiation was found to degrade macromolecules in the effluent, yielding smaller, more reactive intermediate species which reacted with chlorine or chloramine to form higher levels of noxious disinfection by-products. The soluble microbial products were found to be more active in formation of disinfection by-products regard than naturally-occurring organic matter. The results show that solar irradiation induced the formation of more trihalomethane (THMs), chloral hydrate (CH) and trichloronitromethane (TCNM), causing greater health risks for downstream drinking water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Hydrogeochemical effects of a bulkhead in the Dinero mine tunnel, Sugar Loaf mining district, near Leadville, Colorado

    USGS Publications Warehouse

    Walton-Day, Katherine; Mills, Taylor J.

    2015-01-01

    The Dinero mine drainage tunnel is an abandoned, draining mine adit near Leadville, Colorado, that has an adverse effect on downstream water quality and aquatic life. In 2009, a bulkhead was constructed (creating a mine pool and increasing water-table elevations behind the tunnel) to limit drainage from the tunnel and improve downstream water quality. The goal of this study was to document changes to hydrology and water quality resulting from bulkhead emplacement, and to understand post-bulkhead changes in source water and geochemical processes that control mine-tunnel discharge and water quality. Comparison of pre-and post-bulkhead hydrology and water quality indicated that tunnel discharge and zinc and manganese loads decreased by up to 97 percent at the portal of Dinero tunnel and at two downstream sites (LF-537 and LF-580). However, some water-quality problems persisted at LF-537 and LF-580 during high-flow events and years, indicating the effects of the remaining mine waste in the area. In contrast, post-bulkhead water quality degraded at three upstream stream sites and a draining mine tunnel (Nelson tunnel). Water-quality degradation in the streams likely occurred from increased contributions of mine-pool groundwater to the streams. In contrast, water-quality degradation in the Nelson tunnel was likely from flow of mine-pool water along a vein that connects the Nelson tunnel to mine workings behind the Dinero tunnel bulkhead. Principal components analysis, mixing analysis, and inverse geochemical modeling using PHREEQC indicated that mixing and geochemical reactions (carbonate dissolution during acid weathering, precipitation of goethite and birnessite, and sorption of zinc) between three end-member water types generally explain the pre-and post-bulkhead water composition at the Dinero and Nelson tunnels. The three end members were (1) a relatively dilute groundwater having low sulfate and trace element concentrations; (2) mine pool water, and (3) water that flowed from a structure in front of the bulkhead after bulkhead emplacement. Both (2) and (3) had high sulfate and trace element concentrations. These results indicate how analysis of monitoring information can be used to understand hydrogeochemical changes resulting from bulkhead emplacement. This understanding, in turn, can help inform future decisions on the disposition of the remaining mine waste and water-quality problems in the area.

  16. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be discussed.

  17. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  18. Downstream movement of fall Chinook salmon juveniles in the lower Snake River reservoirs during winter and early spring

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Mullins, Frank; Steinhorst, R. Kirk

    2012-01-01

    We conducted a 3-year radiotelemetry study in the lower Snake River to (1) determine whether juvenile fall Chinook salmon Oncorhynchus tshawytscha pass dams during winter, when bypass systems and structures designed to prevent mortality are not operated; (2) determine whether downstream movement rate varies annually, seasonally, and from reservoir to reservoir; and (3) identify some of the factors that contribute to annual, seasonal, and spatial variation in downstream movement rate. Fall Chinook salmon juveniles moved downstream up to 169 km and at a sufficiently fast rate (7.5 km/d) such that large percentages (up to 93%) of the fish passed one or more dams during the winter. Mean downstream movement rate varied annually (9.2–11.3 km/d), increased from winter (7.5 km/d) to spring (16.4 km/d), and increased (from 6.9 to 16.8 km/d) as fish moved downstream from reservoir to reservoir. Fish condition factor at tagging explained some of the annual variation in downstream movement rate, whereas water particle velocity and temperature explained portions of the seasonal variation. An increase in migrational disposition as fish moved downstream helped to explain the spatial variation. The potential cost of winter movement might be reduced survival due to turbine passage at a time when the bypass systems and spillway passage structures are not operated. Efforts to understand and increase passage survival of winter migrants in large impoundments might help to rehabilitate some imperiled anadromous salmonid populations.

  19. Data collection and documentation of flooding downstream of a dam failure in Mississippi

    USGS Publications Warehouse

    Van Wilson, K.; ,

    2005-01-01

    On March 12, 2004, the Big Bay Lake dam failed, releasing water and affecting lives and property downstream in southern Mississippi. The dam is located near Purvis, Mississippi, on Bay Creek, which flows into Lower Little Creek about 1.9 miles downstream from the dam. Lower Little Creek flows into Pearl River about 16.9 miles downstream from the dam. Knowledge of the hydrology and hydraulics of floods caused by dam breaks is essential to the design of dams. A better understanding of the risks associated with possible dam failures may help limit the loss of life and property that often occurs downstream of a dam failure. The USGS recovered flood marks at the one crossing of Bay Creek and eight crossings of Lower Little Creek. Additional flood marks were also flagged at three other bridges crossing tributaries where backwater occurred. Flood marks were recovered throughout the stream reach of about 3/4 to 15 miles downstream of the dam. Flood marks that were flagged will be surveyed so that a flood profile can be documented downstream of the Big Bay Lake dam failure. Peak discharges are also to be estimated where possible. News reports stated that the peak discharge at the dam was about 67,000 cubic feet per second. Preliminary data suggest the peak discharge from the dam failure attenuated to about 13,000 cubic feet per second at Lower Little Creek at State Highway 43, about 15 miles downstream of the dam.

  20. The role of price and enforcement in water allocation: insights from Game Theory

    NASA Astrophysics Data System (ADS)

    Souza Filho, F.; Lall, U.; Porto, R.

    2007-12-01

    As many countries are moving towards water sector reforms, practical issues of how water management institutions can better effect allocation, regulation and enforcement of water rights have emerged. The uncertainty associated with water that is available at a particular diversion point becomes a parameter that is likely to influence the behavior of water users as to their application for water licenses, as well as their willingness to pay for licensed use. The ability of a water agency to reduce this uncertainty through effective water rights enforcement is related to the fiscal ability of the agency to sustain the enforcement effort. In this paper, this interplay across the users and the agency is explored, considering the hydraulic structure or sequence of water use, and parameters that define the users and the agency's economics. The potential for free rider behavior by the users, as well as their proposals for licensed use are derived conditional on this setting. The analyses presented are developed in the framework of the theory of "Law and Economics", with user interactions modeled as a game theoretic enterprise. The state of Ceara, Brazil is used loosely as an example setting, with parameter values for the experiments indexed to be approximately those relevant for current decisions. The potential for using the ideas in participatory decision making is discussed.

Top