World-class materiel flexibility: one plant's victory over materiel-related downtime.
Samelson, Q B
1997-05-01
It is not uncommon for the materiel managers in a manufacturing company to be blamed for downtime and the consequent failure to meet production targets. To avoid downtime, materiel managers need to look at their role in solving materiel-related downtime and to address the problems that cause downtime in the same way they would address other process quality problems.
Evaluation of causes and frequency of medication errors during information technology downtime.
Hanuscak, Tara L; Szeinbach, Sheryl L; Seoane-Vazquez, Enrique; Reichert, Brendan J; McCluskey, Charles F
2009-06-15
The causes and frequency of medication errors occurring during information technology downtime were evaluated. Individuals from a convenience sample of 78 hospitals who were directly responsible for supporting and maintaining clinical information systems (CISs) and automated dispensing systems (ADSs) were surveyed using an online tool between February 2007 and May 2007 to determine if medication errors were reported during periods of system downtime. The errors were classified using the National Coordinating Council for Medication Error Reporting and Prevention severity scoring index. The percentage of respondents reporting downtime was estimated. Of the 78 eligible hospitals, 32 respondents with CIS and ADS responsibilities completed the online survey for a response rate of 41%. For computerized prescriber order entry, patch installations and system upgrades caused an average downtime of 57% over a 12-month period. Lost interface and interface malfunction were reported for centralized and decentralized ADSs, with an average downtime response of 34% and 29%, respectively. The average downtime response was 31% for software malfunctions linked to clinical decision-support systems. Although patient harm did not result from 30 (54%) medication errors, the potential for harm was present for 9 (16%) of these errors. Medication errors occurred during CIS and ADS downtime despite the availability of backup systems and standard protocols to handle periods of system downtime. Efforts should be directed to reduce the frequency and length of down-time in order to minimize medication errors during such downtime.
Implications of electronic health record downtime: an analysis of patient safety event reports.
Larsen, Ethan; Fong, Allan; Wernz, Christian; Ratwani, Raj M
2018-02-01
We sought to understand the types of clinical processes, such as image and medication ordering, that are disrupted during electronic health record (EHR) downtime periods by analyzing the narratives of patient safety event report data. From a database of 80 381 event reports, 76 reports were identified as explicitly describing a safety event associated with an EHR downtime period. These reports were analyzed and categorized based on a developed code book to identify the clinical processes that were impacted by downtime. We also examined whether downtime procedures were in place and followed. The reports were coded into categories related to their reported clinical process: Laboratory, Medication, Imaging, Registration, Patient Handoff, Documentation, History Viewing, Delay of Procedure, and General. A majority of reports (48.7%, n = 37) were associated with lab orders and results, followed by medication ordering and administration (14.5%, n = 11). Incidents commonly involved patient identification and communication of clinical information. A majority of reports (46%, n = 35) indicated that downtime procedures either were not followed or were not in place. Only 27.6% of incidents (n = 21) indicated that downtime procedures were successfully executed. Patient safety report data offer a lens into EHR downtime-related safety hazards. Important areas of risk during EHR downtime periods were patient identification and communication of clinical information; these should be a focus of downtime procedure planning to reduce safety hazards. EHR downtime events pose patient safety hazards, and we highlight critical areas for downtime procedure improvement. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander
2015-01-01
Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.
Becker, Murray; Goldszal, Alberto; Detal, Julie; Gronlund-Jacob, Judith; Epstein, Robert
2015-06-01
The aim of this study was to assess whether the complex radiology IT infrastructures needed for large, geographically diversified, radiology practices are inherently stable with respect to system downtimes, and to characterize the nature of the downtimes to better understand their impact on radiology department workflow. All radiology IT unplanned downtimes over a 12-month period in a hybrid academic-private practice that performs all interpretations in-house (no commercial "nighthawk" services) for approximately 900,000 studies per year, originating at 6 hospitals, 10 outpatient imaging centers, and multiple low-volume off-hours sites, were logged and characterized using 5 downtime metrics: duration, etiology, failure type, extent, and severity. In 12 consecutive months, 117 unplanned downtimes occurred with the following characteristics: duration: median time = 3.5 hours with 34% <1.5 hours and 30% >12 hours; etiology: 87% were due to software malfunctions, and 13% to hardware malfunctions; failure type: 88% were transient component failures, 12% were complete component failures; extent: all sites experienced downtimes, but downtimes were always localized to a subset of sites, and no system-wide downtimes occurred; severity (impact on radiologist workflow): 47% had minimal impact, 50% moderate impact, and 3% severe impact. In the complex radiology IT system that was studied, downtimes were common; they were usually a result of transient software malfunctions; the geographic extent was always localized rather than system wide; and most often, the impacts on radiologist workflow were modest. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Time for Self-Care: Downtime Recovery as a Buffer of Work and Home/Family Time Pressures.
Dugan, Alicia G; Barnes-Farrell, Janet L
2017-04-01
Opportunities for people to recover from stress are insufficient, because demanding and excessive life activities leave little time for recovery. Downtime is a self-care behavior that can occur in any life domain (ie, work, home/family, leisure). Using survey data from a cross-section of 422 U.S. workers, we tested hypotheses regarding downtime as a buffer of the effects of time pressure and whether downtime's benefits were related to the domain in which it was taken, or influenced by perceived time control. In situations of high time pressure, work and home/family downtime were beneficial when time control was high, while relaxing leisure was beneficial when time control was low. Downtime is available whenever people recognize their need for recovery and respond by entering a state of physical relaxation and psychological detachment from stressors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... citations, postdeparture filing citations, AES downtime filing citation, exemption or exclusion legends. The... citations, AES downtime filing citation, exemption or exclusion legends required in § 30.4(e) to the...) Postal exports. The proof of filing citations, postdeparture filing citations, AES downtime filing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... citations, postdeparture filing citations, AES downtime filing citation, exemption or exclusion legends. The... citations, AES downtime filing citation, exemption or exclusion legends required in § 30.4(e) to the...) Postal exports. The proof of filing citations, postdeparture filing citations, AES downtime filing...
Code of Federal Regulations, 2012 CFR
2012-01-01
... citations, postdeparture filing citations, AES downtime filing citation, exemption or exclusion legends. The... citations, AES downtime filing citation, exemption or exclusion legends required in § 30.4(e) to the...) Postal exports. The proof of filing citations, postdeparture filing citations, AES downtime filing...
Code of Federal Regulations, 2014 CFR
2014-01-01
... citations, postdeparture filing citations, AES downtime filing citation, exemption or exclusion legends. The... citations, AES downtime filing citation, exemption or exclusion legends required in § 30.4(e) to the...) Postal exports. The proof of filing citations, postdeparture filing citations, AES downtime filing...
Code of Federal Regulations, 2010 CFR
2010-01-01
... citations, postdeparture filing citations, AES downtime filing citation, exemption or exclusion legends. The... citations, AES downtime filing citation, exemption or exclusion legends required in § 30.4(e) to the...) Postal exports. The proof of filing citations, postdeparture filing citations, AES downtime filing...
Kim, Won Young; Giberson, Tyler A; Uber, Amy; Berg, Katherine; Cocchi, Michael N; Donnino, Michael W
2014-08-01
Previous reports have shown that prolonged duration of resuscitation efforts in out-of-hospital cardiac arrest (OHCA) is associated with poor neurologic outcome. This concept has recently been questioned with advancements in post-cardiac arrest care including the use of therapeutic hypothermia (TH). The aim of this study was to determine the rate of good neurologic outcome based on the duration of resuscitation efforts in OHCA patients treated with TH. This prospective, observational, study was conducted between January 2008 and September 2012. Inclusion criteria consisted of adult non-traumatic OHCA patients who were comatose after return of spontaneous circulation (ROSC) and received TH. The primary endpoint was good neurologic outcome defined as a cerebral performance category score of 1 or 2. Downtime was calculated as the length of time between the patient being recognized as pulseless and ROSC. 105 patients were treated with TH and 19 were excluded due to unknown downtime, leaving 86 patients for analysis. The median downtime was 18.5 (10.0-32.3)min and 33 patients (38.0%) had a good neurologic outcome. When downtime was divided into four groups (≤10min, 11-20min, 21-30min, >30min), good neurologic outcomes were 62.5%, 37%, 25%, and 21.7%, respectively (p=0.02). However, even with downtime >20min, 22.9% had a good neurologic outcome, and this percentage increased to 37.5% in patients with an initial shockable rhythm. Although longer downtime is associated with worse outcome in OHCA patients, we found that comatose patients who have been successfully resuscitated and treated with TH have neurologically intact survival rates of 23% even with downtime >20min. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kim, Won Young; Giberson, Tyler A.; Uber, Amy; Berg, Katherine; Cocchi, Michael N.; Donnino, Michael W.
2014-01-01
Background Previous reports have shown that prolonged duration of resuscitation efforts in out-of-hospital cardiac arrest (OHCA) is associated with poor neurologic outcome. This concept has recently been questioned with advancements in post-cardiac arrest care including the use of therapeutic hypothermia (TH). The aim of this study was to determine the rate of good neurologic outcome based on the duration of resuscitation efforts in OHCA patients treated with TH. Methods This prospective, observational, study was conducted between January 2008 and September 2012. Inclusion criteria consisted of adult non-traumatic OHCA patients who were comatose after return of spontaneous circulation (ROSC) and received TH. The primary endpoint was good neurologic outcome defined as a cerebral performance category score of 1 or 2. Downtime was calculated as the length of time between the patient being recognized as pulseless and ROSC. Results 105 patients were treated with TH and 19 were excluded due to unknown downtime, leaving 86 patients for analysis. The median downtime was 18.5 (10.0–32.3) minutes and 33 patients (38.0%) had a good neurologic outcome. When downtime was divided into four groups (≤10 min, 11-20 min, 21-30 min, > 30 min), good neurologic outcomes were 62.5%, 37%, 25%, and 21.7%, respectively (p=0.02). However, even with downtime >20 minutes, 22.9% had a good neurologic outcome, and this percentage increased to 37.5% in patients with an initial shockable rhythm. Conclusions Although longer downtime is associated with worse outcome in OHCA patients, we found that comatose patients who have been successfully resuscitated and treated with TH have neurologically intact survival rates of 23% even with downtime > 20 minutes. PMID:24746783
40 CFR 60.4385 - How are excess emissions and monitoring downtime defined for SO2?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How are excess emissions and monitoring downtime defined for SO2? 60.4385 Section 60.4385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... downtime defined for SO2? If you choose the option to monitor the sulfur content of the fuel, excess...
2006 Update of Business Downtime Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinrichs, Mr. Doug; Goggin, Mr. Michael
2007-01-01
The objective of this paper is to assess the downtime cost of power outages to businesses in the commercial and industrial sectors, updating and improving upon studies that have already been published on this subject. The goal is to produce a study that, relative to existing studies, (1) applies to a wider set of business types (2) reflects more current downtime costs, (3) accounts for the time duration factor of power outages, and (4) includes data on the costs imposed by real outages in a well-defined market. This study examines power outage costs in 11 commercial subsectors and 5 industrialmore » subsectors, using data on downtime costs that was collected in the 1990's. This study also assesses power outage costs for power outages of 20 minutes, 1 hour, and 4 hours duration. Finally, this study incorporates data on the costs of real power outages for two business subsectors. However, the current limited state of data availability on the topic of downtime costs means there is room to improve upon this study. Useful next steps would be to generate more recent data on downtime costs, data that covers outages shorter than 20 minutes duration and longer than 4 hours duration, and more data that is based on the costs caused by real-world outages. Nevertheless, with the limited data that is currently available, this study is able to generate a clear and detailed picture of the downtime costs that are faced by different types of businesses.« less
Availability of Maintained Systems
1983-03-01
o -4 >1 w Administrative0 and Logistic Time 0 -4W 0 E-44 4q Operating Time ( > .1 Preventive Maintenance | 04 SOperating Time t Ready Time Operatinf...point in time. It excludes ready time, preventive-maintenance downtime, logistic time, and waiting or administrative downtime. It may be expressed as: A...satisfactorily at a given point in time. It excludes logistic tim-3 and waiting or administrative downtime. It includes active preventive and
DUV light source availability improvement via further enhancement of gas management technologies
NASA Astrophysics Data System (ADS)
Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.
2011-04-01
The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.
40 CFR 62.14740 - What must I include in the deviation report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That..., and causes for monitoring downtime incidents (other than downtime associated with zero, span, and...
40 CFR 62.14740 - What must I include in the deviation report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That..., and causes for monitoring downtime incidents (other than downtime associated with zero, span, and...
40 CFR 62.14740 - What must I include in the deviation report?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That..., and causes for monitoring downtime incidents (other than downtime associated with zero, span, and...
40 CFR 62.14740 - What must I include in the deviation report?
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That..., and causes for monitoring downtime incidents (other than downtime associated with zero, span, and...
Gupta, Deepak; Restum, Adnan; McKelvey, George
2018-01-01
An idle body can harbor an idle mind that often brews something appalling in emptiness. Refreshing one's mind during Down-Time (Me-Time) with "harmless" activities is a must whether at home or at the workplace.
40 CFR 60.2780 - What must I include in the deviation report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On... causes for monitoring downtime incidents (other than downtime associated with zero, span, and other...
Sittig, Dean F; Gonzalez, Daniel; Singh, Hardeep
2014-11-01
Reliable health information technology (HIT) in general, and electronic health record systems (EHRs) in particular are essential to a high-performing healthcare system. When the availability of EHRs are disrupted, alternative methods must be used to maintain the continuity of healthcare. We developed a survey to assess institutional practices to handle situations when EHRs were unavailable for use (downtime preparedness). We used literature reviews and expert opinion to develop items that assessed the implementation of potentially useful practices. We administered the survey to U.S.-based healthcare institutions that were members of a professional organization that focused on collaboration and sharing of HIT-related best practices among its members. All members were large integrated health systems. We received responses from 50 of the 59 (84%) member institutions. Nearly all (96%) institutions reported at least one unplanned downtime (of any length) in the last 3 years and 70% had at least one unplanned downtime greater than 8h in the last 3 years. Three institutions reported that one or more patients were injured as a result of either a planned or unplanned downtime. The majority of institutions (70-85%) had implemented a portion of the useful practices we identified, but very few practices were followed by all organizations. Unexpected downtimes related to EHRs appear to be fairly common among institutions in our survey. Most institutions had only partially implemented comprehensive contingency plans to maintain safe and effective healthcare during unexpected EHRs downtimes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Westphal, Anke; Lerm, Stephanie; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke
2016-04-01
The microbial biocenosis in highly saline fluids produced from the cold well of a deep geothermal heat store located in the North German Basin was characterized during regular plant operation and immediately after plant downtime phases. Genetic fingerprinting revealed the dominance of sulfate-reducing bacteria (SRB) and fermentative Halanaerobiaceae during regular plant operation, whereas after shutdown phases, sequences of sulfur-oxidizing bacteria (SOB) were also detected. The detection of SOB indicated oxygen ingress into the well during the downtime phase. High 16S ribosomal RNA (rRNA) and dsrA gene copy numbers at the beginning of the restart process showed an enrichment of bacteria, SRB, and SOB during stagnant conditions consistent with higher concentrations of dissolved organic carbon (DOC), sulfate, and hydrogen sulfide in the produced fluids. The interaction of SRB and SOB during plant downtimes might have enhanced the corrosion processes occurring in the well. It was shown that scale content of fluids was significantly increased after stagnant phases. Moreover, the sulfur isotopic signature of the mineral scales indicated microbial influence on scale formation.
Legionnaires' Disease Bacteria in power plant cooling systems: downtime report. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R.L.; Solomon, J.A.; Christensen, S.W.
1985-04-01
Legionnaires' Disease Bacteria (Legionella) are a normal part of the aquatic community that, when aerosolized, can be pathogenic to man. The downtime study was designed to determine the degree to which Legionella populations are aerosolized during cleaning and maintenance operations in a closed-cycle steam-electric power plant. Both high-volume and impinger air samples were collected prior to and during downtime operations. Emphasis was placed on sampling inside or adjacent to water boxes, condensers, and cooling towers. Control air samples were taken upwind from the plant site. Water and sludge samples were also collected at various locations. In the laboratory, the concentrationsmore » of Groups A, B, and C Legionella were determined using the direct fluorescent antibody method. All positive air samples, and other selected air samples, were injected into guinea pigs to detect infectious Legionella. Legionella could be detected in only 12 of the 126 air samples collected. These were predominantly Group A Legionella (L. pneumophila, serogroups 1 to 6). All 12 positive samples had been collected in the vicinity of water boxes, condensers, detention ponds, and cooling towers during downtime operations where aerosolization of Legionella populations would be expected. None of the air samples yielded infectious Legionella when injected into guinea pigs. Detection of Legionella in air samples taken during downtime was significantly more likely than detection during normal operating conditions (p <0.01). 13 refs., 4 figs., 10 tabs.« less
40 CFR 60.4385 - How are excess emissions and monitoring downtime defined for SO2?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emissions and monitoring downtime are defined as follows: (a) For samples of gaseous fuel and for oil... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How are excess emissions and monitoring... Performance for Stationary Combustion Turbines Reporting § 60.4385 How are excess emissions and monitoring...
40 CFR 60.4385 - How are excess emissions and monitoring downtime defined for SO2?
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions and monitoring downtime are defined as follows: (a) For samples of gaseous fuel and for oil... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How are excess emissions and monitoring... Performance for Stationary Combustion Turbines Reporting § 60.4385 How are excess emissions and monitoring...
40 CFR 60.4385 - How are excess emissions and monitoring downtime defined for SO2?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emissions and monitoring downtime are defined as follows: (a) For samples of gaseous fuel and for oil... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How are excess emissions and monitoring... Performance for Stationary Combustion Turbines Reporting § 60.4385 How are excess emissions and monitoring...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2010 CFR
2010-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
Estimating earthquake-induced failure probability and downtime of critical facilities.
Porter, Keith; Ramer, Kyle
2012-01-01
Fault trees have long been used to estimate failure risk in earthquakes, especially for nuclear power plants (NPPs). One interesting application is that one can assess and manage the probability that two facilities - a primary and backup - would be simultaneously rendered inoperative in a single earthquake. Another is that one can calculate the probabilistic time required to restore a facility to functionality, and the probability that, during any given planning period, the facility would be rendered inoperative for any specified duration. A large new peer-reviewed library of component damageability and repair-time data for the first time enables fault trees to be used to calculate the seismic risk of operational failure and downtime for a wide variety of buildings other than NPPs. With the new library, seismic risk of both the failure probability and probabilistic downtime can be assessed and managed, considering the facility's unique combination of structural and non-structural components, their seismic installation conditions, and the other systems on which the facility relies. An example is offered of real computer data centres operated by a California utility. The fault trees were created and tested in collaboration with utility operators, and the failure probability and downtime results validated in several ways.
NASA Technical Reports Server (NTRS)
Butcher, L.; Jonas, T.; Wood, W.
1982-01-01
The heavy schedule of tracking activities at the Echo Deep Space Station (DSS 12) prevents some time-consuming maintenance tasks from being performed. Careful coordination prior to and during a mandatory task (antenna panel replacement) made it possible to do a large number of unrelated tasks that ordinarily would have to be deferred. The maintenance and operations tasks accomplished during the downtime are described.
Integrated IoT technology in industrial lasers for the improved user experience
NASA Astrophysics Data System (ADS)
Ding, Jianwu; Liu, Jinhui
2018-02-01
The end users' biggest concern for any industrial equipment is the reliability and the service down-time. This is especially true for industrial lasers as they are typically used in fully or semi- automated processes. Here we demonstrate how to use the integrated Internet of Things (IoT) technology in industrial lasers to address the reliability and the service down-time so to improve end users' experience.
Hardwood sawmill downtime costs
Jan Wiedenbeck; Kyle Blackwell
2003-01-01
How time flies when you don't pay attention to it. With hardwood sawmill operating costs ranging from $4 to $25 per operating minute ($95/MBF to $335/MBF) and gross profit margins ranging from $0.10/BF to $0.35/BF, five extra minutes of downtime per day will cost a sawmill that produces an average of 20,000 BF per day (5 MMBF annually) between $21 and $73 per day...
2005-07-01
25 SECTION 5. ON-SITE LABOR COSTS SECTION 6. COMPARISON OF RESULTS TO OPEN FIELD DEMONSTRATION 6.1 SUMMARY OF RESULTS FROM OPEN...included for the purposes of calculating labor costs (section 5) except for downtime due to Demonstration Site issues. Demonstration Site issues, while noted...in the Daily Log, are considered non-chargeable downtime for the purposes of calculating labor costs and are not discussed. Breaks and lunches are
Predictive modeling for corrective maintenance of imaging devices from machine logs.
Patil, Ravindra B; Patil, Meru A; Ravi, Vidya; Naik, Sarif
2017-07-01
In the cost sensitive healthcare industry, an unplanned downtime of diagnostic and therapy imaging devices can be a burden on the financials of both the hospitals as well as the original equipment manufacturers (OEMs). In the current era of connectivity, it is easier to get these devices connected to a standard monitoring station. Once the system is connected, OEMs can monitor the health of these devices remotely and take corrective actions by providing preventive maintenance thereby avoiding major unplanned downtime. In this article, we present an overall methodology of predicting failure of these devices well before customer experiences it. We use data-driven approach based on machine learning to predict failures in turn resulting in reduced machine downtime, improved customer satisfaction and cost savings for the OEMs. One of the use-case of predicting component failure of PHILIPS iXR system is explained in this article.
Algorithm of probabilistic assessment of fully-mechanized longwall downtime
NASA Astrophysics Data System (ADS)
Domrachev, A. N.; Rib, S. V.; Govorukhin, Yu M.; Krivopalov, V. G.
2017-09-01
The problem of increasing the load on a long fully-mechanized longwall has several aspects, one of which is the improvement of efficiency in using available stoping equipment due to the increase in coefficient of the machine operating time of a shearer and other mining machines that form an integral part of the longwall set of equipment. The task of predicting the reliability indicators of stoping equipment is solved by the statistical evaluation of parameters of downtime exponential distribution and failure recovery. It is more difficult to solve the problems of downtime accounting in case of accidents in the face workings and, despite the statistical data on accidents in mine workings, no solution has been found to date. The authors have proposed a variant of probability assessment of workings caving using Poisson distribution and the duration of their restoration using normal distribution. The above results confirm the possibility of implementing the approach proposed by the authors.
Diagnostics of heavy mining equipment during the scheduled preventive maintenance
NASA Astrophysics Data System (ADS)
Drygin, M. Yu; Kuryshkin, N. P.
2018-01-01
Intensification of production, economic globalization and dramatic downgrade of the workers’ professional skills lead to unacceptable technical state of heavy mining equipment. Equipment maintenance outage reaches 84 % of the total downtime, of which emergency maintenance takes up to 36 % of time, that excesses 429 hours per year fr one excavator. It is shown that yearly diagnostics using methods of non-destructive check allows to reduce emergency downtime by 47 %, and 55 % of revealed defects can be eliminated without breaking the technological cycle of the equipment.
Legionnaires' disease bacteria in power plant cooling systems: downtime report. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R.L.; Solomon, J.A.; Christensen, S.W.
1985-11-01
Legionnaires' disease bacteria (Legionella) are a normal part of the aquatic community that, when aerosolized, can be pathogenic to man. The downtime study was designed to determine the degree to which Legionella populations are aerosolized during cleaning and maintenance operations in a closed-cycle steam-electric power plant. Both high-volume and impinger air samples were collected prior to and during downtime operations. Emphasis was placed on sampling inside or adjacent to water boxes, condensers, and cooling towers. Control air samples were taken upwind from the plant site. Water and sludge samples were also collected at various locations. In the laboratory, the concentrationsmore » of Legionella were determined using the direct fluorescent antibody method. All positive air samples, and other selected air samples, were injected into guinea pigs to detect infectious Legionella. Legionella could be detected in only 12 of the 127 air samples collected. These were predominantly L. pneumophila, serogroups 1-6. In contrast to the air samples, most of the water and sludge samples were positive for Legionella, again predominantly L. pneumophila, serogroups 1-6. The highest Legionella concentrations were found in sludge samples associated with condenser tube cleaning. Among the water samples, the highest Legionella concentrations were found in cooling towers, immediately after the tower basins were cleaned and refilled, and in condenser tubes. Two of the three cooling tower water samples collected prior to downtime operations were infectious for guinea pigs. 16 refs., 4 figs., 11 tabs.« less
Workflow continuity--moving beyond business continuity in a multisite 24-7 healthcare organization.
Kolowitz, Brian J; Lauro, Gonzalo Romero; Barkey, Charles; Black, Harry; Light, Karen; Deible, Christopher
2012-12-01
As hospitals move towards providing in-house 24 × 7 services, there is an increasing need for information systems to be available around the clock. This study investigates one organization's need for a workflow continuity solution that provides around the clock availability for information systems that do not provide highly available services. The organization investigated is a large multifacility healthcare organization that consists of 20 hospitals and more than 30 imaging centers. A case analysis approach was used to investigate the organization's efforts. The results show an overall reduction in downtimes where radiologists could not continue their normal workflow on the integrated Picture Archiving and Communications System (PACS) solution by 94 % from 2008 to 2011. The impact of unplanned downtimes was reduced by 72 % while the impact of planned downtimes was reduced by 99.66 % over the same period. Additionally more than 98 h of radiologist impact due to a PACS upgrade in 2008 was entirely eliminated in 2011 utilizing the system created by the workflow continuity approach. Workflow continuity differs from high availability and business continuity in its design process and available services. Workflow continuity only ensures that critical workflows are available when the production system is unavailable due to scheduled or unscheduled downtimes. Workflow continuity works in conjunction with business continuity and highly available system designs. The results of this investigation revealed that this approach can add significant value to organizations because impact on users is minimized if not eliminated entirely.
Clinical experiences with an ASP model backup archive for PACS images
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Cao, Fei; Documet, Luis; Huang, H. K.; Muldoon, Jean
2003-05-01
Last year we presented a Fault-Tolerant Backup Archive using an Application Service Provider (ASP) model for disaster recovery. The purpose of this paper is to update and provide clinical experiences related towards implementing the ASP model archive solution for short-term backup of clinical PACS image data as well as possible applications other than disaster recovery. The ASP backup archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost and with little human intervention. This solution can be used for a variety of scheduled and unscheduled downtimes that occur on the main PACS archive. A backup archive server with hierarchical storage was implemented offsite from the main PACS archive location. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. We have integrated the ASP model backup archive with a clinical PACS at Saint John's Health Center and has been operational for over 6 months. Pitfalls encountered during integration with a live clinical PACS and the impact to clinical workflow will be discussed. In addition, estimations of the cost of establishing such a solution as well as the cost charged to the users will be included. Clinical downtime scenarios, such as a scheduled mandatory downtime and an unscheduled downtime due to a disaster event to the main archive, were simulated and the PACS exams were sent successfully from the offsite ASP storage server back to the hospital PACS in less than 1 day. The ASP backup archive was able to recover PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss was encountered during the recovery. During any clinical downtime scenario, the ASP backup archive server can repopulate a clinical PACS quickly with the majority of studies available for comparison during the interim until the main PACS archive is fully recovered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiCostanzo, D; Ayan, A; Woollard, J
Purpose: To predict potential failures of hardware within the Varian TrueBeam linear accelerator in order to proactively replace parts and decrease machine downtime. Methods: Machine downtime is a problem for all radiation oncology departments and vendors. Most often it is the result of unexpected equipment failure, and increased due to lack of in-house clinical engineering support. Preventative maintenance attempts to assuage downtime, but often is ineffective at preemptively preventing many failure modes such as MLC motor failures, the need to tighten a gantry chain, or the replacement of a jaw motor, among other things. To attempt to alleviate downtime, softwaremore » was developed in house that determines the maximum value of each axis enumerated in the Truebeam trajectory log files. After patient treatments, this data is stored in a SQL database. Microsoft Power BI is used to plot the average maximum error of each day of each machine as a function of time. The results are then correlated with actual faults that occurred at the machine with the help of Varian service engineers. Results: Over the course of six months, 76,312 trajectory logs have been written into the database and plotted in Power BI. Throughout the course of analysis MLC motors have been replaced on three machines due to the early warning of the trajectory log analysis. The service engineers have also been alerted to possible gantry issues on one occasion due to the aforementioned analysis. Conclusion: Analyzing the trajectory log data is a viable and effective early warning system for potential failures of the TrueBeam linear accelerator. With further analysis and tightening of the tolerance values used to determine a possible imminent failure, it should be possible to pinpoint future issues more thoroughly and for more axes of motion.« less
Wind Turbine Failures - Tackling current Problems in Failure Data Analysis
NASA Astrophysics Data System (ADS)
Reder, M. D.; Gonzalez, E.; Melero, J. J.
2016-09-01
The wind industry has been growing significantly over the past decades, resulting in a remarkable increase in installed wind power capacity. Turbine technologies are rapidly evolving in terms of complexity and size, and there is an urgent need for cost effective operation and maintenance (O&M) strategies. Especially unplanned downtime represents one of the main cost drivers of a modern wind farm. Here, reliability and failure prediction models can enable operators to apply preventive O&M strategies rather than corrective actions. In order to develop these models, the failure rates and downtimes of wind turbine (WT) components have to be understood profoundly. This paper is focused on tackling three of the main issues related to WT failure analyses. These are, the non-uniform data treatment, the scarcity of available failure analyses, and the lack of investigation on alternative data sources. For this, a modernised form of an existing WT taxonomy is introduced. Additionally, an extensive analysis of historical failure and downtime data of more than 4300 turbines is presented. Finally, the possibilities to encounter the lack of available failure data by complementing historical databases with Supervisory Control and Data Acquisition (SCADA) alarms are evaluated.
Green, Clive; Taylor, Daniel
2016-12-01
Compound management (CM) is a critical discipline enabling hit discovery through the production of assay-ready compound plates for screening. CM in pharma requires significant investments in manpower, capital equipment, repairs and maintenance, and information technology. These investments are at risk from external factors, for example, new technology rendering existing equipment obsolete and strategic site closures. At AstraZeneca, we faced the challenge of evaluating the number of CM sites required to support hit discovery in response to site closures and pressure on our operating budget. We reasoned that overall equipment effectiveness, a tool used extensively in the manufacturing sector, could determine the equipment capacity and appropriate number of sites. We identified automation downtime as the critical component governing capacity, and a connection between automation downtime and the availability of skilled staff. We demonstrated that sufficient production capacity existed in two sites to meet hit discovery demand without the requirement for an additional investment of $7 million in new facilities. In addition, we developed an automated capacity model that incorporated an extended working-day pattern as a solution for reducing automation downtime. The application of this solution enabled the transition to a single site, with an annual cost saving of $2.1 million. © 2015 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Dymasius, A.; Wangsaputra, R.; Iskandar, B. P.
2016-02-01
A mining company needs high availability of dump trucks used to haul mining materials. As a result, an effective maintenance action is required to keep the dump trucks in a good condition and hence reducing failure and downtime of the dump trucks. To carry out maintenance in-house requires a high intensive maintenance facility and high skilled maintenance specialists. Often, outsourcing maintenance is an economic option for the company. An external agent takes a proactive action with offering some maintenance contract options to the owner. The decision problem for the owner is to decide the best option and for the agent is to determine the optimal price for each option offered. A non-cooperative game-theory is used to formulate the decision problems for the owner and the agent. We consider that failure pattern of each truck follows a non-homogeneous Poisson process (NHPP) and a queueing theory with multiple servers is used to estimate the downtime. As it involves high complexity to model downtime using a queueing theory, then in this paper we use a simulation method. Furthermore, we conduct experiment to seek for the best number of maintenance facilities (servers) which minimises maintenance and penalty costs incurred to the agent.
Calderhead, R Glen; Kim, Won-Serk; Ohshiro, Toshio; Trelles, Mario A; Vasily, David B
2015-12-30
Aggressive, or even minimally aggressive, aesthetic interventions are almost inevitably followed by such events as discomfort, erythema, edema and hematoma formation which could lengthen patient downtime and represent a major problem to the surgeon. Recently, low level light therapy with light-emitting diodes (LED-LLLT) at 830 nm has attracted attention in wound healing indications for its anti-inflammatory effects and control of erythema, edema and bruising. The wavelength of 830 nm offers deep penetration into living biological tissue, including bone. A new-generation of 830 nm LEDs, based on those developed in the NASA Space Medicine Laboratory, has enabled the construction of planar array-based LED-LLLT systems with clinically useful irradiances. Irradiation with 830 nm energy has been shown in vitro and in vivo to increase the action potential of epidermal and dermal cells significantly. The response of the inflammatory stage cells is enhanced both in terms of function and trophic factor release, and fibroblasts demonstrate superior collagenesis and elastinogenesis. A growing body of clinical evidence is showing that applying 830 nm LED-LLLT as soon as possible post-procedure, both invasive and noninvasive, successfully hastens the resolution of sequelae associated with patient downtime in addition to significantly speeding up frank wound healing. This article reviews that evidence, and attempts to show that 830 nm LED-LLLT delivers swift resolution of postoperative sequelae, minimizes downtime and enhances patient satisfaction.
NASA Astrophysics Data System (ADS)
Ardi, S.; Ardyansyah, D.
2018-02-01
In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.
... supplements. Instead, try these tips for getting better game: Make downtime a priority. Studies show that teens ... Meditating or visualizing your success during the next game may improve your performance; sitting quietly and focusing ...
Histologic effects of resurfacing lasers.
Freedman, Joshua R; Greene, Ryan M; Green, Jeremy B
2014-02-01
By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser-tissue interaction allows for a better understanding of the devices and their clinical effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Astrophysics Data System (ADS)
Dhakal, Rajesh P.; Pourali, Atefeh; Tasligedik, Ali Sahin; Yeow, Trevor; Baird, Andrew; MacRae, Gregory; Pampanin, Stefano; Palermo, Alessandro
2016-03-01
This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.
Space transportation architecture: Reliability sensitivities
NASA Technical Reports Server (NTRS)
Williams, A. M.
1992-01-01
A sensitivity analysis is given of the benefits and drawbacks associated with a proposed Earth to orbit vehicle architecture. The architecture represents a fleet of six vehicles (two existing, four proposed) that would be responsible for performing various missions as mandated by NASA and the U.S. Air Force. Each vehicle has a prescribed flight rate per year for a period of 31 years. By exposing this fleet of vehicles to a probabilistic environment where the fleet experiences failures, downtimes, setbacks, etc., the analysis involves determining the resiliency and costs associated with the fleet of specific vehicle/subsystem reliabilities. The resources required were actual observed data on the failures and downtimes associated with existing vehicles, data based on engineering judgement for proposed vehicles, and the development of a sensitivity analysis program.
Maintenance of Automated Library Systems.
ERIC Educational Resources Information Center
Epstein, Susan Baerg
1983-01-01
Discussion of the maintenance of both the software and hardware in an automated library system highlights maintenance by the vendor, contracts and costs, the maintenance log, downtime, and planning for trouble. (EJS)
40 CFR 60.2220 - What must I include in the deviation report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November... downtime associated with zero, span, and other routine calibration checks). (f) Whether each deviation...
40 CFR 60.2220 - What must I include in the deviation report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November... downtime associated with zero, span, and other routine calibration checks). (f) Whether each deviation...
40 CFR 60.2780 - What must I include in the deviation report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and... downtime associated with zero, span, and other routine calibration checks). (f) Whether each deviation...
NASA Astrophysics Data System (ADS)
Kardas, Edyta; Brožova, Silvie; Pustějovská, Pavlína; Jursová, Simona
2017-12-01
In the paper the evaluation of efficiency of the use of machines in the selected production company was presented. The OEE method (Overall Equipment Effectiveness) was used for the analysis. The selected company deals with the production of tapered roller bearings. The analysis of effectiveness was done for 17 automatic grinding lines working in the department of grinding rollers. Low level of efficiency of machines was affected by problems with the availability of machines and devices. The causes of machine downtime on these lines was also analyzed. Three basic causes of downtime were identified: no kanban card, diamonding, no operator. Ways to improve the use of these machines were suggested. The analysis takes into account the actual results from the production process and covers the period of one calendar year.
Kim, Won-Serk; Ohshiro, Toshio; Trelles, Mario A; Vasily, David B
2015-01-01
Background: Aggressive, or even minimally aggressive, aesthetic interventions are almost inevitably followed by such events as discomfort, erythema, edema and hematoma formation which could lengthen patient downtime and represent a major problem to the surgeon. Recently, low level light therapy with light-emitting diodes (LED-LLLT) at 830 nm has attracted attention in wound healing indications for its anti-inflammatory effects and control of erythema, edema and bruising. Rationale: The wavelength of 830 nm offers deep penetration into living biological tissue, including bone. A new-generation of 830 nm LEDs, based on those developed in the NASA Space Medicine Laboratory, has enabled the construction of planar array-based LED-LLLT systems with clinically useful irradiances. Irradiation with 830 nm energy has been shown in vitro and in vivo to increase the action potential of epidermal and dermal cells significantly. The response of the inflammatory stage cells is enhanced both in terms of function and trophic factor release, and fibroblasts demonstrate superior collagenesis and elastinogenesis. Conclusions: A growing body of clinical evidence is showing that applying 830 nm LED-LLLT as soon as possible post-procedure, both invasive and noninvasive, successfully hastens the resolution of sequelae associated with patient downtime in addition to significantly speeding up frank wound healing. This article reviews that evidence, and attempts to show that 830 nm LED-LLLT delivers swift resolution of postoperative sequelae, minimizes downtime and enhances patient satisfaction. PMID:26877592
Maintenance Downtime April 23, 2014
Atmospheric Science Data Center
2014-04-23
Date(s): Wednesday, April 23, 2014 Time: 7:00 am - 5:00 pm EDT Event ... Due to scheduled maintenance Wednesday, April 23, 2014: The Data Pool, MISR order and browse tools, TES and MOPITT Search ...
ERIC Educational Resources Information Center
Herman, Dan
1999-01-01
Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)
40 CFR 60.3053 - What must I include in the deviation report?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004... incidents (other than downtime associated with zero, span, and other routine calibration checks). (f...
40 CFR 60.3053 - What must I include in the deviation report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004... incidents (other than downtime associated with zero, span, and other routine calibration checks). (f...
40 CFR 60.3053 - What must I include in the deviation report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004... incidents (other than downtime associated with zero, span, and other routine calibration checks). (f...
40 CFR 60.2949 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) All documentation produced as a result of the siting...
40 CFR 60.3053 - What must I include in the deviation report?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004... incidents (other than downtime associated with zero, span, and other routine calibration checks). (f...
40 CFR 60.2949 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) All documentation produced as a result of the siting...
40 CFR 60.2949 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) All documentation produced as a result of the siting...
2003-02-04
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians install thermal protection system tiles on Space Shuttle Discovery. Discovery is undergoing its Orbiter Major Modification Period, a regularly scheduled structural inspection and modification downtime, which began in September 2002. .
Maintenance Downtime September 18, 2013
Atmospheric Science Data Center
2013-09-16
Date(s): Wednesday, September 18, 2013 Time: 9:00 - 11:00 am EST Event Impact: Due to scheduled maintenance Wednesday, September 18, 2013: The MISR order and browse tools, Reverb, and AMAPS will be ...
Atmospheric Science Data Center
2013-07-10
... will be unavailable March 5, 2013 8:00 am to 5:00 pm due to database maintenance. Date(s): Tuesday, March 5, 2013 ... will be unavailable March 5, 2013 8:00 am to 5:00 pm due to database maintenance. ...
Hamdi, Naser; Oweis, Rami; Abu Zraiq, Hamzeh; Abu Sammour, Denis
2012-04-01
The effective maintenance management of medical technology influences the quality of care delivered and the profitability of healthcare facilities. Medical equipment maintenance in Jordan lacks an objective prioritization system; consequently, the system is not sensitive to the impact of equipment downtime on patient morbidity and mortality. The current work presents a novel software system (EQUIMEDCOMP) that is designed to achieve valuable improvements in the maintenance management of medical technology. This work-order prioritization model sorts medical maintenance requests by calculating a priority index for each request. Model performance was assessed by utilizing maintenance requests from several Jordanian hospitals. The system proved highly efficient in minimizing equipment downtime based on healthcare delivery capacity, and, consequently, patient outcome. Additionally, a preventive maintenance optimization module and an equipment quality control system are incorporated. The system is, therefore, expected to improve the reliability of medical equipment and significantly improve safety and cost-efficiency.
Is Africa a 'Graveyard' for Linear Accelerators?
Reichenvater, H; Matias, L Dos S
2016-12-01
Linear accelerator downtimes are common and problematic in many African countries and may jeopardise the outcome of affected radiation treatments. The predicted increase in cancer incidence and prevalence on the African continent will require, inter alia, improved response with regard to a reduction in linear accelerator downtimes. Here we discuss the problems associated with the maintenance and repair of linear accelerators and propose alternative solutions relevant for local conditions in African countries. The paper is based on about four decades of experience in capacity building, installing, commissioning, calibrating, servicing and repairing linear accelerators in Africa, where about 40% of the low and middle income countries in the world are geographically located. Linear accelerators can successfully be operated, maintained and repaired in African countries provided proper maintenance and repair plans are put in place and executed. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Enterprise architecture availability analysis using fault trees and stakeholder interviews
NASA Astrophysics Data System (ADS)
Närman, Per; Franke, Ulrik; König, Johan; Buschle, Markus; Ekstedt, Mathias
2014-01-01
The availability of enterprise information systems is a key concern for many organisations. This article describes a method for availability analysis based on Fault Tree Analysis and constructs from the ArchiMate enterprise architecture (EA) language. To test the quality of the method, several case-studies within the banking and electrical utility industries were performed. Input data were collected through stakeholder interviews. The results from the case studies were compared with availability of log data to determine the accuracy of the method's predictions. In the five cases where accurate log data were available, the yearly downtime estimates were within eight hours from the actual downtimes. The cost of performing the analysis was low; no case study required more than 20 man-hours of work, making the method ideal for practitioners with an interest in obtaining rapid availability estimates of their enterprise information systems.
Jasemian, Yousef; Arendt-Nielsen, Lars
2005-01-01
A generic, realtime wireless telemedicine system has been developed that uses the Bluetooth protocol and the general packet radio service for mobile phones. The system was tested on 10 healthy volunteers, by continuous monitoring of their electrocardiograms (ECGs). Under realistic conditions, the system had 96.5% uptime, a data throughput of 3.3 kbit/s, a mean packet error rate of 8.5x10(-3) packet/s and a mean packet loss rate of 8.2x10(-3) packet/s. During 24 h testing, the total average downtime was 66 min and 90% of the periods of downtime were of only 1-3 min duration. Less than 10% of the ECGs were of unacceptable quality. Thus, the generic telemedicine system showed high reliability and performance, and the design may provide a foundation for realtime monitoring in clinical practice, for example in cardiology.
Extended Maintenance Downtime 12/09 - 12/16
Atmospheric Science Data Center
2016-12-05
Date(s): Friday, December 9, 2016 to Friday, December 16, 2016 Time: 12/09 @ 7 am - 12/16 @ 5 pm EDT Event Impact: The ASDC would like to perform a comprehensive and required maintenance from Friday...
Extended Maintenance Downtime 08/12 - 08/19
Atmospheric Science Data Center
2016-08-03
Date(s): Tuesday, August 2, 2016 to Friday, August 19, 2016 Time: 08/12 @ 7 am - 08/19 @ 5 pm EST Event Impact: The ASDC would like to perform a comprehensive and required maintenance from Friday...
Extended Maintenance Downtime 01/19 - 01/26
Atmospheric Science Data Center
2018-01-24
Date(s): Friday, January 19, 2018 to Friday, January 26, 2018 Time: 01/19 @ 7 am - 01/26 @ 5 pm EDT Event Impact: The ASDC would like to perform a comprehensive and required maintenance from Friday...
Effects of Repair on Structural Integrity.
DOT National Transportation Integrated Search
1993-12-01
Commercial aircraft operators are required by FAA regulations to repair damaged aircraft structures. These repairs must be performed in a timely manner to reduce aircraft downtime and loss of revenue. A guiding principle that has been used for many a...
Accelerating Bridge Construction to Reduce Congestion
DOT National Transportation Integrated Search
2011-05-01
The magnitude of the "residual" displacements at the end of an earthquake can affect the amount of time needed to restore a bridge to service. It may be possible to reduce these displacements (and downtimes) by introducing prestressing forces into br...
[Organization of patient intake at private dental institutions].
Miniaev, V A; Vishniakov, N I; Mchedlidze, T Sh; Kuraskua, A A; Stozharov, V V
1998-01-01
Scientifically-based organization of consultations and treatment of patients at dental institutions is proposed, based on the balance between the time spent by patients in the queue and the equipment downtime. The proposed organization will decrease the total duration of treatment.
40 CFR 60.4385 - How are excess emissions and monitoring downtime defined for SO2?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Stationary Combustion Turbines Reporting § 60.4385 How are excess emissions and monitoring... and hour of any sample for which the sulfur content of the fuel being fired in the combustion turbine...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...
Maintenance Downtime August 22, 23, 29, 30, 2014
Atmospheric Science Data Center
2014-08-28
... Friday, August 22, 2014 to Saturday, August 23, 2014 Time: 07:00 pm - 08:00 am EDT Event ... on Friday evening through Saturday morning on Aug. 22-23, and again on Aug. 29-30. Periods of intermittent network outages will occur ...
40 CFR Table 5 to Subpart Ffff of... - Model Rule-Summary of Reporting Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
....3050 and 60.3051. v. If no deviations or malfunctions were reported, a statement that no deviations... 60.3053. v. Dates, times, and causes for monitor downtime incidents; §§ 60.3052 and 60.3053. vi...
40 CFR Table 5 to Subpart Ffff of... - Model Rule-Summary of Reporting Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
....3050 and 60.3051. v. If no deviations or malfunctions were reported, a statement that no deviations... 60.3053. v. Dates, times, and causes for monitor downtime incidents; §§ 60.3052 and 60.3053. vi...
By-pass filters : taking your fleet the extra mile
DOT National Transportation Integrated Search
2000-01-01
There has been an industry-wide push over the last few years to extend oil drain intervals on fleet equipment. This industry demand is an effort to reduce downtime, reduce waste oil generation, and cut maintenance costs. Extended oil drain intervals ...
40 CFR Table 5 to Subpart Ffff of... - Model Rule-Summary of Reporting Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
....3050 and 60.3051. v. If no deviations or malfunctions were reported, a statement that no deviations... 60.3053. v. Dates, times, and causes for monitor downtime incidents; §§ 60.3052 and 60.3053. vi...
40 CFR Table 5 to Subpart Ffff of... - Model Rule-Summary of Reporting Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
....3050 and 60.3051. v. If no deviations or malfunctions were reported, a statement that no deviations... 60.3053. v. Dates, times, and causes for monitor downtime incidents; §§ 60.3052 and 60.3053. vi...
40 CFR Table 5 to Subpart Ffff of... - Model Rule-Summary of Reporting Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
....3050 and 60.3051. v. If no deviations or malfunctions were reported, a statement that no deviations... 60.3053. v. Dates, times, and causes for monitor downtime incidents; §§ 60.3052 and 60.3053. vi...
Maintenance Downtime May 8 - 11, 2015
Atmospheric Science Data Center
2015-05-06
... The ASDC will experience a partial outage to move from old storage to new storage. ANGe ingest will be paused and production processing on ... any inconvenience this may cause. The following data providers will be impacted: AFWA-MESH16 CloudSat FLASH GHRC NCEP ...
Maintenance Downtime June 2-9, 2014
Atmospheric Science Data Center
2014-06-02
... tools will be unavailable: Down June 2nd – 4th: ASDC Subsetters: CALIPSO, CERES, MOPITT, TES CD Rom & Video ... ordered data GEWEX HTML Order Tool Down June 4th: The Data Pool, MISR order and browse tools, Reverb, and AMAPS will ...
Maintenance Downtime October 17 - 23, 2014
Atmospheric Science Data Center
2014-10-23
... Impact: The ASDC will be conducting extended system maintenance Fri 10/17@4pm - Thu 10/23@4pm EDT Please expect: ... and Customization Tool - AMAPS, CALIPSO, CERES, MOPITT, TES and TAD Search and Subset Tools All systems will be ...
Current role of resurfacing lasers.
Hantash, B M; Gladstone, H B
2009-06-01
Resurfacing lasers have been the treatment of choice for diminishing rhytids and tightening skin. The carbon dioxide and erbium lasers have been the gold and silver standards. Despite their effectiveness, these resurfacing lasers have a very high risk profile including scarring, hyperpigmentation and hypopigmentation. Because of these side effects, various practitioners have tried alternative settings for these lasers as well as alternative wavelengths, particularly in the infrared spectrum. These devices have had less downtime, but their effectiveness has been limited to fine wrinkles. As with selective photothemolysis, a major advance in the field has been fractionated resurfacing which incorporates grids of microthermal zones that spares islands of skin. This concept permits less tissue damage and quicker tissue regeneration. Initially, fractionated resurfacing was limited to the nonablative mid-infrared spectrum. These resurfacing lasers is appropriate for those patients with acne scars, uneven skin tone, mild to moderate photodamage, and is somewhat effective for melasma. Importantly, because there is less overall tissue damage and stimulation of melanocytes, these lasers can be used in darker skin types. Downtime is 2-4 days of erythema and scaling. Yet, these nonablative fractionated devices required 5-6 treatments to achieve a moderate effect. Logically, the fractionated resurfacing has now been applied to the CO2 and the Erbium:Yag lasers. These devices can treat deeper wrinkles and tighten skin. Downtime appears to be 5-7 days. The long term effectiveness and the question of whether these fractionated devices will approach the efficacy of the standard resurfacing lasers is still in question. Ultimately either integrated devices which may use fractionated resurfacing, radiofrequency and a sensitizer, or combining different lasers in a single treatment may prove to be the most effective in reducing rhtyides, smoothing the skin topography and tightening the skin envelope.
A three phase optimization method for precopy based VM live migration.
Sharma, Sangeeta; Chawla, Meenu
2016-01-01
Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.
Lee, Dong Hun; Lee, Byung Kook; Song, Kyoung Hwan; Jung, Yong Hun; Park, Jung Soo; Lee, Sung Min; Cho, Yong Soo; Kim, Jin Woong; Jeung, Kyung Woon
2016-08-01
Central diabetes insipidus (CDI) is a marker of severe brain injury. Here we aimed to investigate the prevalence and risk factors of CDI in cardiac arrest survivors treated with targeted temperature management (TTM). This retrospective observational study included consecutive adult cardiac arrest survivors treated with TTM between 2008 and 2014. Central diabetes insipidus was confirmed if all of the following criteria were met: urine volume >50 cc kg(-1) d(-1), serum osmolarity >300 mmol/L, urine osmolarity <300 mmol/L, and serum sodium >145 mEq/L. The primary outcome was the incidence of CDI. Of the 385 included patients, 45 (11.7%) had confirmed central CDI. Univariate analysis showed that younger age, nonwitness of collapse, nonshockable rhythm, a high incidence of asphyxia arrest, longer downtime, and lower initial core temperature were associated with CDI development. Patients with CDI had a higher incidence of poor neurologic outcomes at discharge and higher in-hospital mortality rate (20/45 vs 76/340, P= .001) as well as 180-day mortality (44/45 vs 174/340, P< .001). Multivariate analysis revealed that age (odds ratio [OR], 0.963; 95% confidence interval [CI], 0.942-0.984), shockable rhythm (OR, 0.077; 95% CI, 0.009-0.662), downtime (OR, 1.025; 95% CI, 1.006-1.044), and asphyxia etiology (OR, 6.815; 95% CI, 2.457-18.899) were independently associated with CDI development. Central diabetes insipidus developed in 12% of cardiac arrest survivors treated with TTM, and those with CDI showed poor neurologic outcomes and high mortality rates. Younger age, nonshockable rhythm, long downtime, and asphyxia arrest were significant risk factors for development of CDI. Copyright © 2016 Elsevier Inc. All rights reserved.
Maintenance Downtime Sat. 3/11
Atmospheric Science Data Center
2017-03-09
... The DPO (archive 4,5,6) GPFS filesystem will be taken offline starting at 9am Saturday March 11, 2017 . The Univa Grid ... at 8am Saturday March 11 and the dropbox will remain online for delivery of data only. This Saturday’s work may potentially ...
NASA Technical Reports Server (NTRS)
Barrington, A. E.; Caruso, A. J.
1970-01-01
Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.
Extended Maintenance Downtime 12/14 - 12/18
Atmospheric Science Data Center
2015-12-07
... am - 12/18 @ 5 pm EST Event Impact: File System Maintenance will be performed on a number of the large file systems ... and Customization Tool - AMAPS, CALIPSO, CERES, MOPITT, TES and TAD Search and Subset Tools While some sites and tools may ...
Extended Maintenance Downtime 02/29 - 03/04
Atmospheric Science Data Center
2016-02-22
... @ 8am - 03/04 @ 4pm EST Event Impact: System Maintenance will be performed at the ASDC the week of February 29th ... and Customization Tool - AMAPS, CALIPSO, CERES, MOPITT, TES and TAD Search and Subset Tools While some sites and tools may ...
Friend, Tynan H; Jennings, Samantha J; Levine, Wilton C
2017-02-01
In April 2016, Massachusetts General Hospital (MGH) went live with the Epic electronic health records (EHR) system, replacing a variety of EHRs that previously existed in different departments throughout the hospital. At the time of implementation, the Vocera® Badge Communication System, a wireless hands-free communication device distributed to perioperative team members, had increased perioperative communication flow and efficiency. As a quality improvement effort to better understand communication patterns during an EHR go-live, we monitored our Vocera call volume and user volume before, during and after our go-live. We noticed that call volume and user volume significantly increased during our immediate go-live period and quickly returned to baseline levels. We also noticed that call volume increased during periods of unplanned EHR downtime long after our immediate go-live period. When planning the implementation of a new EHR, leadership must plan for and support this critical communication need at the time of the go-live and must also be aware of these needs during unplanned downtime.
ERIC Educational Resources Information Center
Levinson, Patrick J.
1996-01-01
Discusses how annual boiler maintenance can help cut fuel costs and prevent downtime. Outlines a cleaning program, which includes inspecting the fireside of the boiler, checking the refractory, and checking the waterside. Describes other maintenance measures, such as checking hydraulic fluid levels, and offers tips for analyzing combustion. (RJM)
Developing Crash-Resistant Electronic Services.
ERIC Educational Resources Information Center
Almquist, Arne J.
1997-01-01
Libraries' dependence on computers can lead to frustrations for patrons and staff during downtime caused by computer system failures. Advice for reducing the number of crashes is provided, focusing on improved training for systems staff, better management of library systems, and the development of computer systems using quality components which…
40 CFR 60.2949 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... for downtime associated with zero and span and other routine calibration checks). Identify the... complete test report including calculations and a description of the types of waste burned during the test...
40 CFR 60.2949 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... for downtime associated with zero and span and other routine calibration checks). Identify the... complete test report including calculations and a description of the types of waste burned during the test...
Problematics of different technical maintenance for computers
NASA Technical Reports Server (NTRS)
Dostalek, Z.
1977-01-01
Two modes of operations are used in the technical maintenance of computers: servicing provided by the equipment supplier, and that done by specially trained computer users. The advantages and disadvantages of both modes are discussed. Maintenance downtime is tabulated for two computers serviced by user employees over an eight year period.
ERIC Educational Resources Information Center
O'Hanlon, Charlene; Schaffhauser, Dian
2011-01-01
It's a perfect storm out there, with powerful forces remaking the IT landscape in higher education. On one side, devastating budget cuts are pushing IT departments to identify ever-greater cost savings. On the other, the explosion in mobile devices is pressuring IT to provide anytime, anywhere computing with no downtime. And finally there's…
40 CFR 60.3046 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) Records showing the names of OSWI unit operators who...
40 CFR 60.3046 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) Records showing the names of OSWI unit operators who...
40 CFR 60.3046 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) Records showing the names of OSWI unit operators who...
40 CFR 62.14700 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... a daily basis, keep a log of the quantity of waste burned and the types of waste burned (always...
40 CFR 62.14700 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... a daily basis, keep a log of the quantity of waste burned and the types of waste burned (always...
40 CFR 60.2740 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... daily basis, keep a log of the quantity of waste burned and the types of waste burned (always required...
40 CFR 60.3046 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) Records showing the names of OSWI unit operators who...
40 CFR 60.3046 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model..., malfunctioning, or out of control (except for downtime associated with zero and span and other routine... the types of waste burned during the test. (j) Records showing the names of OSWI unit operators who...
40 CFR 62.14700 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... a daily basis, keep a log of the quantity of waste burned and the types of waste burned (always...
ERIC Educational Resources Information Center
Arasmith, E. E.
The settleometer test is used to indicate the solids-liquid separation (downtime) capability of sludge, most commonly on activated sludge entering the secondary clarifier and aerobic digesters. Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module…
Ammonia and nitrous oxide emissions from broiler houses with downtime windrowed litter
USDA-ARS?s Scientific Manuscript database
An emerging poultry manure management practice is in house windrowing to disinfect the litter. With this practice, growers windrow the litter in broiler houses between flocks, usually for 2 weeks. This results in high litter temperatures that can reduce pathogens in the litter. However, this practi...
Space Transportation System Availability Requirements and Its Influencing Attributes Relationships
NASA Technical Reports Server (NTRS)
Rhodes, Russel E.; Adams, TImothy C.
2008-01-01
It is essential that management and engineering understand the need for an availability requirement for the customer's space transportation system as it enables the meeting of his needs, goal, and objectives. There are three types of availability, e.g., operational availability, achieved availability, or inherent availability. The basic definition of availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. The major difference is the inclusiveness of the functions within the mean downtime and the mean uptime. This paper will address tIe inherent availability which only addresses the mean downtime as that mean time to repair or the time to determine the failed article, remove it, install a replacement article and verify the functionality of the repaired system. The definitions of operational availability include the replacement hardware supply or maintenance delays and other non-design factors in the mean downtime. Also with inherent availability the mean uptime will only consider the mean time between failures (other availability definitions consider this as mean time between maintenance - preventive and corrective maintenance) that requires the repair of the system to be functional. It is also essential that management and engineering understand all influencing attributes relationships to each other and to the resultant inherent availability requirement. This visibility will provide the decision makers with the understanding necessary to place constraints on the design definition for the major drivers that will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system provided the customer. This inherent availability requirement may be driven by the need to use a multiple launch approach to placing humans on the moon or the desire to control the number of spare parts required to support long stays in either orbit or on the surface of the moon or mars. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability, but also provide the capability to bound the variables providing engineering the insight required to control the system's engineering solution. An example of this visibility will be the need to provide integration of similar discipline functions to allow control of the total parts count of the space transportation system. Also the relationship visibility of selecting a reliability requirement will place a constraint on parts count to achieve a given inherent availability requirement or accepting a larger parts count with the resulting higher reliability requirement. This paper will provide an understanding for the relationship of mean repair time (mean downtime) to maintainability, e.g., accessibility for repair, and both mean time between failure, e.g., reliability of hardware and the system inherent availability. Having an understanding of these relationships and resulting requirements before starting the architectural design concept definition will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable increased life cycle cost of the fielded space transportation system.
NASA Astrophysics Data System (ADS)
Bulatov, S. V.
2018-05-01
The article considers the method of short-term combined forecasting, which includes theoretical and experimental estimates of the need for details of units and assemblies, which allows obtaining the optimum number of spare parts necessary for rolling stock operation without downtime in repair areas.
Volunteer Middle Managers: Human Resources That Extend Programmatic Outreach
ERIC Educational Resources Information Center
Cassill, Heather; Culp, Ken, III; Hettmansperger, Jay; Stillwell, Marla; Sublet, Amanda
2012-01-01
Extension professionals must be able to give volunteers programmatic ownership, resources, and the education needed to complete tasks. However, resources such as time and money are limited, especially in economic downtimes, making it even more necessary to look at creative ways to bridge the gap between what programs and services can and should be…
Teacher Leaders: Transforming Schools from the inside. Occasional Paper Series 23
ERIC Educational Resources Information Center
Schmerler, Gil, Ed.; Mhatre, Nayantara; Stacy, Jill; Patrizio, Kami; Winkler, Jessica Endlich; Groves, Jennifer; Rockwood, Kathleen Dickinson; Lin, Clara E.; Hernandez, Lillian; Solorza, Cristian; Hummel, Robin E.
2009-01-01
Teacher leadership is "hard." Many of the reasons are obvious: Teaching is a highly labor-intensive profession to begin with, leaving little downtime for work with other adults. School schedules are notoriously stingy with space for adult collaboration. Teachers are rarely paid to exercise leadership; when they are, they are never paid…
40 CFR 60.2740 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and Reporting § 60.2740... downtime associated with zero and span and other routine calibration checks). Identify the operating... listed in § 60.2660(a). (m) On a daily basis, keep a log of the quantity of waste burned and the types of...
40 CFR 60.2175 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... downtime associated with zero and span and other routine calibration checks). Identify the operating... listed in § 60.2095(a). (n) On a daily basis, keep a log of the quantity of waste burned and the types of...
40 CFR 60.2175 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... downtime associated with zero and span and other routine calibration checks). Identify the operating... listed in § 60.2095(a). (n) On a daily basis, keep a log of the quantity of waste burned and the types of...
40 CFR 60.2175 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... downtime associated with zero and span and other routine calibration checks). Identify the operating... listed in § 60.2095(a). (n) On a daily basis, keep a log of the quantity of waste burned and the types of...
Mineral scale management. Part 1, Case studies
Peter W. Hart; Alan W. Rudie
2006-01-01
Mineral scale increases operating costs, extends downtime, and increases maintenance requirements. This paper presents several successful case studies detailing how mills have eliminated scale. Cases presented include calcium carbonate scale in a white liquor strainer, calcium oxalate scale in the D0 stage of the bleach plant, enzymatic treatment of brown stock to...
Improving linear accelerator service response with a real- time electronic event reporting system.
Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L
2014-09-08
To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.
SU-E-T-173: Clinical Comparison of Treatment Plans and Fallback Plans for Machine Downtime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, W; Cancer Therapy and Research Center, San Antonio, TX; Papanikolaou, P
2015-06-15
Purpose: The purpose of this study was to determine the clinical effectiveness and dosimetric quality of fallback planning in relation to machine downtime. Methods: Plans for a Varian Novalis TX were mimicked, and fallback plans using an Elekta VersaHD machine were generated using a dual arc template. Plans for thirty (n=30) patients of various treatment sites optimized and calculated using RayStation treatment planning system. For each plan, a fall back plan was created and compared to the original plan. A dosimetric evaluation was conducted using the homogeneity index, conformity index, as well as DVH analysis to determine the quality ofmore » the fallback plan on a different treatment machine. Fallback plans were optimized for 60 iterations using the imported dose constraints from the original plan DVH to give fallback plans enough opportunity to achieve the dose objectives. Results: The average conformity index and homogeneity index for the NovalisTX plans were 0.76 and 10.3, respectively, while fallback plan values were 0.73 and 11.4. (Homogeneity =1 and conformity=0 for ideal plan) The values to various organs at risk were lower in the fallback plans as compared to the imported plans across most organs at risk. Isodose difference comparisons between plans were also compared and the average dose difference across all plans was 0.12%. Conclusion: The clinical impact of fallback planning is an important aspect to effective treatment of patients. With the complexity of LINACS increasing every year, an option to continue treating during machine downtime remains an essential tool in streamlined treatment execution. Fallback planning allows the clinic to continue to run efficiently should a treatment machine become offline due to maintenance or repair without degrading the quality of the plan all while reducing strain on members of the radiation oncology team.« less
Agarwal, Shikhar; Gallo, Justin J; Parashar, Akhil; Agarwal, Kanika K; Ellis, Stephen G; Khot, Umesh N; Spooner, Robin; Murat Tuzcu, Emin; Kapadia, Samir R
2016-03-01
Operational inefficiencies are ubiquitous in several healthcare processes. To improve the operational efficiency of our catheterization laboratory (Cath Lab), we implemented a lean six sigma process improvement initiative, starting in June 2010. We aimed to study the impact of lean six sigma implementation on improving the efficiency and the patient throughput in our Cath Lab. All elective and urgent cardiac catheterization procedures including diagnostic coronary angiography, percutaneous coronary interventions, structural interventions and peripheral interventions performed between June 2009 and December 2012 were included in the study. Performance metrics utilized for analysis included turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start and manual sheath-pulls inside the Cath Lab. After implementation of lean six sigma in the Cath Lab, we observed a significant improvement in turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. The percentage of cases with optimal turn-time increased from 43.6% in 2009 to 56.6% in 2012 (p-trend<0.001). Similarly, the percentage of cases with an aggregate on-time start increased from 41.7% in 2009 to 62.8% in 2012 (p-trend<0.001). In addition, the percentage of manual sheath-pulls performed in the Cath Lab decreased from 60.7% in 2009 to 22.7% in 2012 (p-trend<0.001). The current longitudinal study illustrates the impact of successful implementation of a well-known process improvement initiative, lean six sigma, on improving and sustaining efficiency of our Cath Lab operation. After the successful implementation of this continuous quality improvement initiative, there was a significant improvement in the selected performance metrics namely turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2009-01-15
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month formore » the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The first quarter comprises a total of 2,208 hours. The average exceeded their goal this quarter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2009-04-23
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month formore » the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2009, for the fixed sites. The AMF has completed its mission in China but not all of the data can be released to the public at the time of this report. The second quarter comprises a total of 2,160 hours. The average exceeded our goal this quarter.« less
Guidelines for glycol dehydrator design; Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, W.P.; Wood, H.S.
1993-01-01
Better designs and instrumentation improve glycol dehydrator performance. This paper reports on these guidelines which emphasize efficient water removal from natural gas. Water, a common contaminant in natural gas, causes operational problems when it forms hydrates and deposits on solid surfaces. Result: plugged valves, meters, instruments and even pipelines. Simple rules resolve these problems and reduce downtime and maintenance costs.
ERIC Educational Resources Information Center
Chukwuedo, Samson O.; Omofonmwan, Godwin O.
2015-01-01
The increase in the use of laptop computer in Nigeria with their corresponding incessant breakdown calls for the preparation of competent technicians/technologists to carry out such repairs at the downtime of the appliance. This is one of the responsibilities of technology education programmes. This study therefore determined the practical skills…
Code of Federal Regulations, 2010 CFR
2010-01-01
...) shall be detected and the equivalent of a carrier group alarm shall be executed in 2.5 ±0.5 seconds.../federal_register/code_of_federal_regulations/ibr_locations.html. (b) Reliability. (1) Quality control and... designed such that the expected individual line downtime does not exceed 30 minutes per year. This is the...
Hampton at Willamina is #1 : Seneca, Weyerhaeuser mills follow
Henry Spelter
2003-01-01
Approximately 720 sawmills produce most of the softwood lumber in the U.S. The largest 200 of these, ranked mostly according to 2002 production, are displayed in the table on the ensuing pages. Where the actual production statistic was not released, it was estimated by subtracting from capacity any lost volume due to downtime. In a few instances where neither...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... FGD Systems During Downtime as a Function of PSD,'' from Edward E. Reich to G.T. Helms and January 28... in the index, some information is not publicly available, e.g., CBI or other information whose... alternatives. g. Explain your views as clearly as possible, avoiding the use of profanity or personal threats...
Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zappala, D.; Tavner, P.; Crabtree, C.
2013-01-01
Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less
Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya
2007-01-20
It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.
Kaplan, Haim; Kaplan, Lilach
2016-12-01
In the recent years, there is a growth in demand for radiofrequency (RF)-based procedures to improve skin texture, laxity and contour. The new generation of systems allow non-invasive and fractional resurfacing treatments on one platform. The aim of this study was to evaluate the safety and efficacy of a new treatment protocol using a multisource RF, combining 3 different modalities in each patient: [1] non-ablative RF skin tightening, [2] fractional skin resurfacing, and [3] microneedling RF for non-ablative coagulation and collagen remodelling. 14 subjects were enrolled in this study using EndyMed PRO ™ platform. Each patient had 8 non-ablative treatments and 4 fractional treatments (fractional skin resurfacing and Intensif). The global aesthetic score was used to evaluate improvement. All patients had improvement in skin appearance. About 43% had excellent or very good improvement above 50%, 18% had good improvement between 25 and 50%, and the rest 39% had a mild improvement of < 25%. Downtime was minimal and no adverse effect was reported. Our data show significant improvement of skin texture, skin laxity and wrinkle reduction achieved using RF treatment platform.
Healthcare system resiliency: The case for taking disaster plans further - Part 2.
Hiller, Michael; Bone, Eric A; Timmins, Michael L
2015-01-01
For the most part, top management is aware of the costs of healthcare downtime. They recognise that minimising downtime while fulfilling risk management standards, namely, 'duty of care' and 'standard of care', are among the most difficult challenges they face, especially when coupled with the increasing pressure for continued service availability with the frequency of incidents. Through continuous operational availability and greater resiliency demands a new, combined approach has emerged, which necessitates that the disciplines of: (1) enterprise risk management; (2) emergency response planning; (3) business continuity management including IT disaster recovery; (4) crisis communications be addressed with strategies and techniques designed and integrated into a singular, seamless approach. It is no longer feasible to separate these disciplines. By integrating them as the gateway for service continuity, the organisation can enhance its ability to run as a business by helping to identify risks and prepare for change, prioritise work efforts, flag problems and pinpoint important areas that underpin the overarching business continuity processes. The driver of change in staying ahead of the risk curve, and the entry point of a true resiliency strategy, begins with identifying the synergies of the aforementioned disciplines and integrating each of them to jointly contribute to service continuance.
Atmospheric Radiation Measurement program climate research facility operations quarterly report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.; Decision and Information Sciences
2006-09-06
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and monthmore » for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2007-07-26
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and monthmore » for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2007, for the fixed sites only. The AMF has been deployed to Germany and is operational this quarter. The third quarter comprises a total of 2,184 hours. Although the average exceeded our goal this quarter, there were cash flow issues resulting from Continuing Resolution early in the period that did not allow for timely instrument repairs that kept our statistics lower than past quarters at all sites. The low NSA numbers resulted from missing MFRSR data this spring that appears to be recoverable but not available at the Archive at the time of this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2009-07-14
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and monthmore » for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for April 1 - June 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and are not included in the aggregate average with the fixed sites. The AMF statistics for this reporting period were not available at the time of this report. The third quarter comprises a total of 2,184 hours for the fixed sites. The average well exceeded our goal this quarter.« less
The Causes of Logging Truck Delays on Two West Virginia Logging Operations
John E. Baumgras
1978-01-01
Logging truck downtime increases timber harvesting costs. To determine the extent and causes of truck delays, four logging trucks on two separate operations were monitored for a 7-month period by recording speedometers and with tallies of delay causes. The results show the number of truck delays per shift, their duration, and the total delay time per shift for eight...
Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.
Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio
2014-01-01
A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed. PMID:25091891
NASA Technical Reports Server (NTRS)
Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.
1979-01-01
Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.
Worldwide OMEGA and Very Low Frequency (VLF) Transmitter Outages, January to December 1980.
1981-05-01
WORLDWIDE OMEGA AND VERY LOW FREQUENCY IVLF) TRANSMITTER OUTAGE--ETC, MAY 81 L RZONCA ,’,L.ASSI LED FAA-CT-81-26 FAA-RD- B1 -29 UL7 A-I’ l15FDRL AIO...computer for the time period GBR - Rugby , England (16.00 kHz) January to December 1980. (For the purposes of this report, any downtime NA - Cutler, Maine
Annual Systems Engineering Conference (12th). Volume 1
2009-10-29
extended systems have sustainability challenges, e.g.: – Internet applications subject to: overload, environmental disturbance, virus downtime...Sites in MD, DC, VA MHPCC PMRF: Bldg 105 Sites in Hawaii Camp Pendleton: MCTSSA China Lake (2): AV-8B, F/A-18 IBAR Edwards: Ridley Corona : NSWC El...Air Platform Integration 3 Approved for Public Release; Distribution is unlimited. NSWC Carderock West Bethesda, MD NSWC Corona Norco, CA NSWC Crane
Marschollek, Michael; Becker, Marcus; Bauer, Jürgen M; Bente, Petra; Dasenbrock, Lena; Elbers, Katharina; Hein, Andreas; Kolb, Gerald; Künemund, Harald; Lammel-Polchau, Christopher; Meis, Markus; Meyer Zu Schwabedissen, Hubertus; Remmers, Hartmut; Schulze, Mareike; Steen, Enno-Edzard; Thoben, Wilfried; Wang, Ju; Wolf, Klaus-Hendrik; Haux, Reinhold
2014-01-01
Demographic change will lead to a diminishing care workforce faced with rising numbers of older persons in need of care, suggesting meaningful use of health-enabling technologies, and home monitoring in particular, to contribute to supporting both the carers and the persons in need. We present and discuss the GAL-NATARS study design along with first results regarding technical feasibility of long-term home monitoring and acceptance of different sensor modalities. Fourteen geriatric participants with mobility-impairing fractures were recruited in three geriatric clinics. Following inpatient geriatric rehabilitation, their homes were equipped with ambient sensor components for three months. Additionally, a wearable accelerometer was employed. Technical feasibility was assessed by system and component downtimes, technology acceptance by face-to-face interviews. The overall system downtime was 6%, effected by two single events, but not by software failures. Technology acceptance was rated very high by all participants at the end of the monitoring periods, and no interference with their social lives was reported. Home-monitoring technologies were well-accepted by our participants. The information content of the data still needs to be evaluated with regard to clinical outcome parameters as well as the effect on the quality of life before recommending large-scale implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snell, N.S.
1976-09-24
NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less
NASA Astrophysics Data System (ADS)
Chakrabartty, Shantanu; Feng, Tao; Aono, Kenji
2013-04-01
A key challenge in structural health monitoring (SHM) sensors embedded inside civil structures is that elec- tronics need to operate continuously such that mechanical events of interest can be detected and appropriately analyzed. Continuous operation however requires a continuous source of energy which cannot be guaranteed using conventional energy scavenging techniques. The paper describes a hybrid energy scavenging SHM sensor which experiences zero down-time in monitoring mechanical events of interest. At the core of the proposed sensor is an analog floating-gate storage technology that can be precisely programmed at nano-watt and pico- watt power levels. This facilitates self-powered, non-volatile data logging of the mechanical events of interest by scavenging energy directly from the mechanical events itself. Remote retrieval of the stored data is achieved using a commercial off-the-shelf Gen-2 radio-frequency identification (RFID) reader which periodically reads an electronic product code (EPC) that encapsulates the sensor data. The Gen-2 interface also facilitates in simultaneous remote access to multiple sensors and also facilitates in determining the range and orientation of the sensor. The architecture of the sensor is based on a token-ring topology which enables sensor channels to be dynamically added or deleted through software control.
A novel non-invasive radiofrequency dermal heating device for skin tightening of the face and neck.
Nelson, Andrew A; Beynet, David; Lask, Gary P
2015-01-01
Loose, lax skin is a common cosmetic complaint. Previous non-invasive skin tightening devices had modest efficacy and were associated with pain or downtime. New technologies may allow for effective skin tightening with a series of radiofrequency (RF) treatments with no downtime. To evaluate the efficacy and safety of a novel bipolar RF device for skin tightening. Fifteen consecutive female patients were enrolled in the case series; 14 completed the study and were included in the analysis. The device under investigation is a novel, bipolar RF device allowing for achievement and maintenance of optimal dermal temperatures to stimulate collagen remodeling and skin tightening. Patients underwent a series of 4-6 weekly treatments. Three blinded, experienced cosmetic physicians evaluated paired pre-treatment and post-treatment photographs and determined the associated improvement, if any. All patients (14/14) were determined to have a clinical improvement, as the pre-treatment and post-treatment photographs were correctly identified by the evaluators. It was observed that 21% (3/14) of patients had significant improvement, 50% (7/14) had moderate improvement, and 29% (4/14) had mild improvement. No pain, side effects, or adverse events were observed. This novel bipolar RF device represents a safe, effective treatment option for non-invasive skin tightening.
Esmat, Samia M; Elramly, Amany Z; Abdel Halim, Dalia M; Gawdat, Heba I; Taha, Hanaa I
2014-12-01
Xanthelasma palpebrarum (XP) is a common cosmetic concern. Although there is a wide range of therapeutic modalities for XP, there is no general consensus on the optimal treatment for such condition. Compare the efficacy and safety of super pulsed (SP) and fractional CO2 lasers in the treatment of XP. This prospective randomized comparative clinical study included 20 adult patients with bilateral and symmetrical XP lesions. Xanthelasma palpebrarum lesions were randomly assigned to treatment by either single session of ablative SP CO2 laser or 3 to 5 sessions of ablative fractional CO2 laser with monthly intervals. All patients were assessed using digital photography and optical coherence tomography images. Xanthelasma palpebrarum lesions on both sides were successfully removed with significant improvement in size, color, and thickness. Although lesions treated by SP CO2 laser showed significantly better improvement regarding color and thickness of the lesions, downtime and patient satisfaction were significantly better for lesions treated with fractional CO2 laser. Scarring and recurrence were significantly higher in lesions treated by SP CO2 laser. Ablative fractional CO2 laser is an effective and safe therapeutic option for XP with significantly shorter downtime and higher patient satisfaction compared with SP CO2 laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2009-10-15
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and monthmore » for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The fourth quarter comprises a total of 2,208 hours for the fixed and mobile sites. The average of the fixed sites well exceeded our goal this quarter. The AMF data statistic requires explanation. Since the AMF radar data ingest software is being modified, the data are being stored in the DMF for data processing. Hence, the data are not at the Archive; they are anticipated to become available by the next report.« less
Environmentally Preferred Coatings for Steel
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
NASA is responsible for a number of facilities and structures with metallic structural and nonstructural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner.
Alternative to Nitric Acid Passivation
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner. The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.
Protective and control relays as coal-mine power-supply ACS subsystem
NASA Astrophysics Data System (ADS)
Kostin, V. N.; Minakova, T. E.
2017-10-01
The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).
2012-09-01
Maintenance activities, as this will allow new methods and Operational changes to be made if necessary (i.e., more downtime than originally planned or...increased complexity of military hardware, both new systems and their integration with legacy systems, requires a correspondingly increased expertise in...available Little of that added weight involves weapons or armor that actually is becoming lighter as new technologies and composites are utilized (Task
Towards Modernizing the Electrical Grid
2011-05-01
Project is building four t t b t th t illpro o ype ro o s a w someday operate on extraterrestrial surfaces. The project coordinates four NASA ...Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a...Rivers’s PBRT (Proton Beam Radiation Therapy) system zaps tumors with accelerated protons. The treatment must be continuous for 30-40 days; downtime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, DL
2008-09-30
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month formore » the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.« less
1985-04-24
reliability/ downtime/ communication lines/ man-machine interface/ other: 2. A noticeable (to the user) failure happens about and that number has been...improving/ steady/ getting.worse. 3. The number of failures /errors for NOHIMS is acceptable/ somewhat acceptable/ somewhat unacceptable/ unacceptable...somewhat fast/ somewhat slow/ slow. 7. When a NWHIMS failure occurs, it affects the day-to-day provision of medical care because work procedures must
2008-06-01
Nevertheless, the road to success was slowed down by a series of obstacles such as ethnocentrism , national interests above the interests of the EEC...politics, nationalism and ethnocentrism , historical hatred, and conflicts. Nevertheless, in recent years there has been a great effort to enhance the...spares to arrive, time obtaining official approvals, staffing and guidance, etc). The downtime for administration and logistics negatively affects
Experimental calibration procedures for rotating Lorentz-force flowmeters
Hvasta, M. G.; Slighton, N. T.; Kolemen, E.; ...
2017-07-14
Rotating Lorentz-force flowmeters are a novel and useful technology with a range of applications in a variety of different industries. However, calibrating these flowmeters can be challenging, time-consuming, and expensive. In this paper, simple calibration procedures for rotating Lorentz-force flowmeters are presented. These procedures eliminate the need for expensive equipment, numerical modeling, redundant flowmeters, and system down-time. Finally, the calibration processes are explained in a step-by-step manner and compared to experimental results.
Laboratory Information Systems Management and Operations.
Cucoranu, Ioan C
2015-06-01
The main mission of a laboratory information system (LIS) is to manage workflow and deliver accurate results for clinical management. Successful selection and implementation of an anatomic pathology LIS is not complete unless it is complemented by specialized information technology support and maintenance. LIS is required to remain continuously operational with minimal or no downtime and the LIS team has to ensure that all operations are compliant with the mandated rules and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.
Laser Resurfacing: Full Field and Fractional.
Pozner, Jason N; DiBernardo, Barry E
2016-07-01
Laser resurfacing is a very popular procedure worldwide. Full field and fractional lasers are used in many aesthetic practices. There have been significant advances in laser resurfacing in the past few years, which make patient treatments more efficacious and with less downtime. Erbium and carbon dioxide and ablative, nonablative, and hybrid fractional lasers are all extremely effective and popular tools that have a place in plastic surgery and dermatology offices. Copyright © 2016 Elsevier Inc. All rights reserved.
Experimental calibration procedures for rotating Lorentz-force flowmeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hvasta, M. G.; Slighton, N. T.; Kolemen, E.
Rotating Lorentz-force flowmeters are a novel and useful technology with a range of applications in a variety of different industries. However, calibrating these flowmeters can be challenging, time-consuming, and expensive. In this paper, simple calibration procedures for rotating Lorentz-force flowmeters are presented. These procedures eliminate the need for expensive equipment, numerical modeling, redundant flowmeters, and system down-time. Finally, the calibration processes are explained in a step-by-step manner and compared to experimental results.
Portable gas chromatograph mass spectrometer for on-site chemical analyses
Haas, Jeffrey S.; Bushman, John F.; Howard, Douglas E.; Wong, James L.; Eckels, Joel D.
2002-01-01
A portable, lightweight (approximately 25 kg) gas chromatograph mass spectrometer, including the entire vacuum system, can perform qualitative and quantitative analyses of all sample types in the field. The GC/MS has a conveniently configured layout of components for ease of serviceability and maintenance. The GC/MS system can be transported under operating or near-operating conditions (i.e., under vacuum and at elevated temperature) to reduce the downtime before samples can be analyzed on-site.
Construction schedules slack time minimizing
NASA Astrophysics Data System (ADS)
Krzemiński, Michał
2017-07-01
The article presents two copyright models for minimizing downtime working brigades. Models have been developed for construction schedules performed using the method of work uniform. Application of flow shop models is possible and useful for the implementation of large objects, which can be divided into plots. The article also presents a condition describing gives which model should be used, as well as a brief example of optimization schedule. The optimization results confirm the legitimacy of the work on the newly-developed models.
Laser vibrometry for wind turbines inspection
NASA Astrophysics Data System (ADS)
Ebert, R.
2016-04-01
The maintenance and repair of wind energy converters is a significant cost factor. Therefore it is mandatory to minimise the downtime caused by unnoticed faults. A key contributor to the load on the wind turbine installation and to material fatigue is the plant's unavoidable vibration. We report about a development of a new 1.5 μm laser vibrometer system to measure vibrations of rotating blades of wind turbines up to a distance of several hundred meters - based on a very precise imaged tracking system.
NASA Astrophysics Data System (ADS)
Taira, Ricky K.; Chan, Kelby K.; Stewart, Brent K.; Weinberg, Wolfram S.
1991-07-01
Reliability is an increasing concern when moving PACS from the experimental laboratory to the clinical environment. Any system downtime may seriously affect patient care. The authors report on the several classes of errors encountered during the pre-clinical release of the PACS during the past several months and present the solutions implemented to handle them. The reliability issues discussed include: (1) environmental precautions, (2) database backups, (3) monitor routines of critical resources and processes, (4) hardware redundancy (networks, archives), and (5) development of a PACS quality control program.
2013-03-01
inputs can trigger very opposite results in the outputs the plots of the projected total Fleet Downtime are now compared to the projected Maintenance ...actions, it is logical the delay increases the total time (and thus maintenance labor hours) to complete the repairs. The graphs in Figure 31 show the...AFRL-RQ-WP-TR-2013-0221 AIR VEHICLE INTEGRATION AND TECHNOLOGY RESEARCH (AVIATR) Task Order 0003: Condition-Based Maintenance Plus
Survey and Recommendations for the Use of Microcomputers in the Naval Audit Service.
1987-03-01
capital investment * Higher maintenance costs * Longer design-time * Troublesome de-bugging during the start-up period * Serious compounding of downtime...traditional revi.ws have often ailed to see the "total picture." This problem has been turther compounded by the fact thatconventional reviews are freuentlv...328 W11 1M E3 130 II1.5 ".A . m . MICROCOP RESOLUTION TEST CHART NATIOMAl. BURMA OF STANDARDS- 1963-A * .~ .*w -- - ~. -. w- ~ ~ w % W% the auditor
A New Availability-Payment Model for Pricing Performance-Based Logistics Contracts
2014-05-01
Petri net ) is used to capture concurrency and synchronization...properties of the system. Petri Net Available IN 1`A failure indication IN Down Repair Shop IN Down Replace Order IN Replace Order U costs PC (1,2) time...action (expTime(50*w)); INT Repairs AV Replaces AV AV av.req AV DOWNTIME 0 INT 0 INT Manufacturer Quantity Inventory 5 Quantity stock Cost Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, R.F.; Stetkar, J.W.
1985-01-01
The change in availability of the high-pressure coolant injection system (HPCIS) due to a change in pump and valve test interval from monthly to quarterly was analyzed. This analysis started by using the HPCIS base line evaluation produced as part of the Browns Ferry Nuclear Plant (BFN) Probabilistic Risk Assessment (PRA). The base line evaluation showed that the dominant contributors to the unavailability of the HPCI system are hardware failures and the resultant downtime for unscheduled maintenance.
Further Automate Planned Cluster Maintenance to Minimize System Downtime during Maintenance Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springmeyer, R.
This report documents the integration and testing of the automated update process of compute clusters in LC to minimize impact to user productivity. Description: A set of scripts will be written and deployed to further standardize cluster maintenance activities and minimize downtime during planned maintenance windows. Completion Criteria: When the scripts have been deployed and used during planned maintenance windows and a timing comparison is completed between the existing process and the new more automated process, this milestone is complete. This milestone was completed on Aug 23, 2016 on the new CTS1 cluster called Jade when a request to upgrademore » the version of TOSS 3 was initiated while SWL jobs and normal user jobs were running. Jobs that were running when the update to the system began continued to run to completion. New jobs on the cluster started on the new release of TOSS 3. No system administrator action was required. Current update procedures in TOSS 2 begin by killing all users jobs. Then all diskfull nodes are updated, which can take a few hours. Only after the updates are applied are all nodes are rebooted, and then finally put back into service. A system administrator is required for all steps. In terms of human time spent during a cluster OS update, the TOSS 3 automated procedure on Jade took 0 FTE hours. Doing the same update without the Toss Update Tool would have required 4 FTE hours.« less
Intense Pulsed Light (IPL) in Aesthetic Dermatology
NASA Astrophysics Data System (ADS)
Pytras, B.; Drozdowski, P.; Zub, K.
2011-08-01
Introduction. Newer and newer technologies have been widely developed in recent years due to increasing need for aesthetic medicine procedures. Less invasive methods of skin imperfection and time-related lesions removal, IPL (Intense Pulse Light) being one of them, are gaining more and more interest. The shorter the "downtime" for the patient is and the more efficient the procedure results, the more popular the method becomes. Materials and methods_Authors analyse the results of treatment of a 571 patients-group (501 women and 70 men) aged 5-72 years in the period: October 2006-August 2010. IPL™ Quantum (Lumenis Ltd.) device with 560 nm. cut-off filter was used. Results. The results were regarded as: very good, good or satisfying (%):Skin photoaging symptomes 37/40/23, Isolated facial dyschromia 30/55/25, Isolated facial erythema 62/34/4, Lower limbs teleangiectasia 12/36/52, Keratosis solaris on hands 100/-/-. Approximately half of the patients developed transitory erythema and 25%- transitory, mild, circumscribed oedema. Following undesirable effects were noted: skin thermal irritation (6,1% of the patients) and skin hypopigmentation (2% of the patients). Discussion. Results and post-treatment management proposed by authors are similar to those reported by other authors. Conclusions. Treatment results of the 571-patients group prove IPL to be a very efficient method of non-ablative skin rejuvenation. It turned out effective also in lower limbs teleangiectasia treatment. It presents low risk of transitory and mild side effects. Futhermore, with short or no downtime, it is well-tolerated by the patients.
NASA Astrophysics Data System (ADS)
Kwok, Yu Fat
The main objective of this study is to develop a model for the determination of optimum testing interval (OTI) of non-redundant standby plants. This study focuses on the emergency power generators in tall buildings in Hong Kong. The model for the reliability, which is developed, is applicable to any non-duplicated standby plant. In a tall building, the mobilisation of occupants is constrained by its height and the building internal layout. Occupant's safety, amongst other safety considerations, highly depends on the reliability of the fire detection and protection system, which in turn is dependent on the reliability of the emergency power generation plants. A thorough literature survey shows that the practice used in determining OTI in nuclear plants is generally applicable. Historically, the OTI in these plants is determined by balancing the testing downtime and reliability gained from frequent testing. However, testing downtime does not exist in plants like emergency power generator. Subsequently, sophisticated models have taken repairing downtime into consideration. In this study, the algorithms for the determination of OTI, and hence reliability of standby plants, are reconsidered. A new concept is introduced into the subject. A new model is developed for such purposes which embraces more realistic factors found in practice. System aging and the finite life cycle of the standby plant are considered. Somewhat more pragmatic is that the Optimum Overhauling Interval can also be determined from this new model. System unavailability grow with time, but can be reset by test or overhaul. Contrary to fixed testing intervals, OTI is determined whenever system point unavailability exceeds certain level, which depends on the reliability requirement of the standby system. An optimum testing plan for lowering this level to the 'minimum useful unavailability' level (see section 9.1 for more elaboration) can be determined by the new model presented. Cost effectiveness is accounted for by a new parameter 'tau min', the minimum testing interval (MTI). The MTI optimises the total number of tests and the total number of overhauls, when the costs for each are available. The model sets up criteria for test and overhaul and to 'announce' end of system life. The usefulness of the model is validated by a detailed analysis of the operating parameters from 8,500 maintenance records collected for emergency power generation plants in high rise buildings in Hong Kong. (Abstract shortened by UMI.)
Contingency Plan for FGD Systems During Downtime as a Function of PSD
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Challenges in Melt Furnace Tests
NASA Astrophysics Data System (ADS)
Belt, Cynthia
2014-09-01
Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.
Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen
2005-03-01
Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria.
Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen
2005-01-01
Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria. PMID:15746368
Skin resurfacing procedures: new and emerging options
Loesch, Mathew M; Somani, Ally-Khan; Kingsley, Melanie M; Travers, Jeffrey B; Spandau, Dan F
2014-01-01
The demand for skin resurfacing and rejuvenating procedures has progressively increased in the last decade and has sparked several advances within the skin resurfacing field that promote faster healing while minimizing downtime and side effects for patients. Several technological and procedural skin resurfacing developments are being integrated into clinical practices today allowing clinicians to treat a broader range of patients’ skin types and pathologies than in years past, with noteworthy outcomes. This article will discuss some emerging and developing resurfacing therapies and treatments that are present today and soon to be available. PMID:25210469
Skin resurfacing procedures: new and emerging options.
Loesch, Mathew M; Somani, Ally-Khan; Kingsley, Melanie M; Travers, Jeffrey B; Spandau, Dan F
2014-01-01
The demand for skin resurfacing and rejuvenating procedures has progressively increased in the last decade and has sparked several advances within the skin resurfacing field that promote faster healing while minimizing downtime and side effects for patients. Several technological and procedural skin resurfacing developments are being integrated into clinical practices today allowing clinicians to treat a broader range of patients' skin types and pathologies than in years past, with noteworthy outcomes. This article will discuss some emerging and developing resurfacing therapies and treatments that are present today and soon to be available.
Global positioning system recorder and method
Hayes, D.W.; Hofstetter, K.J.; Eakle, R.F. Jr.; Reeves, G.E.
1998-12-22
A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer. 4 figs.
Global positioning system recorder and method government rights
Hayes, David W.; Hofstetter, Kenneth J.; Eakle, Jr., Robert F.; Reeves, George E.
1998-01-01
A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer.
Conditioning of the vacuum system of the TPS storage ring without baking in situ
NASA Astrophysics Data System (ADS)
Chan, C. K.; Chang, C. C.; Shueh, C.; Yang, I. C.; Wu, L. H.; Chen, B. Y.; Cheng, C. M.; Huang, Y. T.; Chuang, J. Y.; Cheng, Y. T.; Hsiao, Y. M.; Sheng, Albert
2017-04-01
To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.
NASA Astrophysics Data System (ADS)
Hicks-Jalali, Shannon; Sica, R. J.; Haefele, Alexander; Martucci, Giovanni
2018-04-01
With only 50% downtime from 2007-2016, the RALMO lidar in Payerne, Switzerland, has one of the largest continuous lidar data sets available. These measurements will be used to produce an extensive lidar water vapour climatology using the Optimal Estimation Method introduced by Sica and Haefele (2016). We will compare our improved technique for external calibration using radiosonde trajectories with the standard external methods, and present the evolution of the lidar constant from 2007 to 2016.
Comparison of four different lasers for acne scars: Resurfacing and fractional lasers.
You, Hi-Jin; Kim, Deok-Woo; Yoon, Eul-Sik; Park, Seung-Ha
2016-04-01
Acne scars are common and cause cosmetic problems. There is a multitude of treatment options for acne scars, including dermabrasion, chemical peeling, and fillers, but the advent of laser technology has greatly improved the treatment of acne scars. Although several laser systems are available, studies comparing their efficacy are limited. This study compares the results of treatments using resurfacing (carbon dioxide, CO2; erbium-doped yttrium aluminum garnet, Er:YAG) versus fractional (nonablative fractional laser, NAFL; ablative fractional laser, AFL) lasers. A retrospective photographic analysis of 58 patients who underwent laser treatment for facial atrophic acne scars was performed. Clinical improvement was assessed by six blinded investigators with a scale graded from 0 to 10. Adverse events were also noted. Mean improvement scores of the CO2, Er:YAG, NAFL, and AFL groups were 6.0, 5.8, 2.2, and 5.2, respectively. The NAFL group showed a significantly lower score than the other groups. The mean number of treatments was significantly greater in the fractional laser groups than in the resurfacing laser groups. The resurfacing laser groups had a prolonged recovery period and high risk of complications. The Er:YAG laser caused less erythema or pigmentation compared to the CO2 laser. Although the CO2 laser, Er:YAG laser, and AFL improved the acne scars, the CO2 laser had a greater downtime. Three consecutive AFL treatments are as effective as a single treatment with resurfacing lasers, with shorter social downtime periods and less adverse effects. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
The composition of intern work while on call.
Fletcher, Kathlyn E; Visotcky, Alexis M; Slagle, Jason M; Tarima, Sergey; Weinger, Matthew B; Schapira, Marilyn M
2012-11-01
The work of house staff is being increasingly scrutinized as duty hours continue to be restricted. To describe the distribution of work performed by internal medicine interns while on call. Prospective time motion study on general internal medicine wards at a VA hospital affiliated with a tertiary care medical center and internal medicine residency program. Internal medicine interns. Trained observers followed interns during a "call" day. The observers continuously recorded the tasks performed by interns, using customized task analysis software. We measured the amount of time spent on each task. We calculated means and standard deviations for the amount of time spent on six categories of tasks: clinical computer work (e.g., writing orders and notes), non-patient communication, direct patient care (work done at the bedside), downtime, transit and teaching/learning. We also calculated means and standard deviations for time spent on specific tasks within each category. We compared the amount of time spent on the top three categories using analysis of variance. The largest proportion of intern time was spent in clinical computer work (40 %). Thirty percent of time was spent on non-patient communication. Only 12 % of intern time was spent at the bedside. Downtime activities, transit and teaching/learning accounted for 11 %, 5 % and 2 % of intern time, respectively. Our results suggest that during on call periods, relatively small amounts of time are spent on direct patient care and teaching/learning activities. As intern duty hours continue to decrease, attention should be directed towards preserving time with patients and increasing time in education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2011-02-01
Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the currentmore » year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2010, for the fixed sites. Because the AMFs operate episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This first quarter comprises a total of 2,208 possible hours for the fixed sites and the AMF1 and 1,464 possible hours for the AMF2. The average of the fixed sites exceeded our goal this quarter. The AMF1 has essentially completed its mission and is shutting down to pack up for its next deployment to India. Although all the raw data from the operational instruments are in the Archive for the AMF2, only the processed data are tabulated. Approximately half of the AMF2 instruments have data that was fully processed, resulting in the 46% of all possible data made available to users through the Archive for this first quarter. Typically, raw data is not made available to users unless specifically requested.« less
Radiofrequency in cosmetic dermatology.
Beasley, Karen L; Weiss, Robert A
2014-01-01
The demand for noninvasive methods of facial and body rejuvenation has experienced exponential growth over the last decade. There is a particular interest in safe and effective ways to decrease skin laxity and smooth irregular body contours and texture without downtime. These noninvasive treatments are being sought after because less time for recovery means less time lost from work and social endeavors. Radiofrequency (RF) treatments are traditionally titrated to be nonablative and are optimal for those wishing to avoid recovery time. Not only is there minimal recovery but also a high level of safety with aesthetic RF treatments. Copyright © 2014 Elsevier Inc. All rights reserved.
Neural manufacturing: a novel concept for processing modeling, monitoring, and control
NASA Astrophysics Data System (ADS)
Fu, Chi Y.; Petrich, Loren; Law, Benjamin
1995-09-01
Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.
A first packet processing subdomain cluster model based on SDN
NASA Astrophysics Data System (ADS)
Chen, Mingyong; Wu, Weimin
2017-08-01
For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.
1988-03-18
Design Confiquration 6 ......... 805 Appendix 9 SCRAPIRONS’s Output For Design Confiquration 7 ......... 90 Appendix 10 SCRAPIRONS’s Output For fesign ...17umb~r of men per contact support crew 2.00e0j _______ TVRO IV test equipment). 293 Name-285) TRC D~own-time in hours per service demanda4 equipment...to service for servicing further _____LUs. 297 14iaeeC28F) T~mE used in concepts GM. GO. and CR which 84.rje1 cal;.for LRU and: mtue ear atGeneral S
A Real-Time Offshore Weather Risk Advisory System
NASA Astrophysics Data System (ADS)
Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan
2015-04-01
Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is a 24 hour window of high resolution/accuracy forecasts leveraging available data-model integration and CAPE prediction. The systems includes dissemination of WRF outputs over the World Wide Web. Components of the system (including WRF computational engine and results dissemination modules) are deployed in to computational cloud. This approach tends to increase system robustness and sustainability. The creation of such a system to share information between the public and private sectors and across territorial boundaries is an important step towards the next generation of governance for climate risk and extreme weather offshore. The system benefits offshore operators by reducing downtime related to accidents and incidents; eliminate unnecessary hiring costs related to waiting on weather; and improve the efficiency and planning of transport and logistics by providing a rolling weather risk advisory.
Lei, Jianbo; Guan, Pengcheng; Gao, Kaihua; Lu, Xueqin; Chen, Yunan; Li, Yuefeng; Meng, Qun; Zhang, Jiajie; Sittig, Dean F; Zheng, Kai
2014-02-01
The healthcare industry has become increasingly dependent on using information technology (IT) to manage its daily operations. Unexpected downtime of health IT systems could therefore wreak havoc and result in catastrophic consequences. Little is known, however, regarding the nature of failures of health IT. To analyze historical health IT outage incidents as a means to better understand health IT vulnerabilities and inform more effective prevention and emergency response strategies. We studied news articles and incident reports publicly available on the internet describing health IT outage events that occurred in China. The data were qualitatively analyzed using a deductive grounded theory approach based on a synthesized IT risk model developed in the domain of information systems. A total of 116 distinct health IT incidents were identified. A majority of them (69.8%) occurred in the morning; over 50% caused disruptions to the patient registration and payment collection functions of the affected healthcare facilities. The outpatient practices in tertiary hospitals seem to be particularly vulnerable to IT failures. Software defects and overcapacity issues, followed by malfunctioning hardware, were among the principal causes. Unexpected health IT downtime occurs more and more often with the widespread adoption of electronic systems in healthcare. Risk identification and risk assessments are essential steps to developing preventive measures. Equally important is institutionalization of contingency plans as our data show that not all failures of health IT can be predicted and thus effectively prevented. The results of this study also suggest significant future work is needed to systematize the reporting of health IT outage incidents in order to promote transparency and accountability. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Optimizing process and equipment efficiency using integrated methods
NASA Astrophysics Data System (ADS)
D'Elia, Michael J.; Alfonso, Ted F.
1996-09-01
The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stathakis, S; Defoor, D; Linden, P
Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. Anmore » in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.« less
Means to improve light source productivity: from proof of concept to field implementation
NASA Astrophysics Data System (ADS)
Rausa, E.; Cacouris, T.; Conley, W.; Jackson, M.; Luo, S.; Murthy, S.; Rechtsteiner, G.; Steiner, K.
2016-03-01
Light source technological performance is key to enabling chipmaker yield and production success. Just as important is ensuring that performance is consistent over time to help maintain as high an uptime as possible on litho-cells (scanner and track combination). While it is common to see average tool uptime of over 99% based on service intervention time, we will show that there are opportunities to improve equipment availability through a multifaceted approach that can deliver favorable results and significantly improve on the actual production efficiency of equipment. The majority of chipmakers are putting light source data generated by tools such as Cymer OnLine (COL), OnPulse Plus, and SmartPulse to good use. These data sets, combined with in-depth knowledge of the equipment, makes it possible to draw powerful conclusions that help increase both chip manufacturing consistency as well as equipment productivity. This discussion will focus on the latter, equipment availability, and how data analysis can help increase equipment availability for Cymer customers. There are several types of opportunities for increasing equipment availability, but in general we can focus on two primary categories: 1) scheduled downtime and 2) unscheduled downtime. For equipment that is under control of a larger entity, as the laser is to the scanner, there are additional categories related to either communication errors or better synchronization of events that can maximize overall litho-cell efficiency. In this article we will focus on general availability without highlighting the specific cause of litho-cell (laser, scanner and track). The goal is to increase equipment available time with a primary focus is on opportunities to minimize errors and variabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terlip, Danny
2016-03-28
Diaphragm compressors have become the primary source of on-site hydrogen compression for hydrogen fueling stations around the world. NREL and PDC have undertaken two studies aimed at improving hydrogen compressor operation and reducing the cost contribution to dispensed fuel. The first study identified the failure mechanisms associated with mechanical compression to reduce the maintenance and down-time. The second study will investigate novel station configurations to maximize hydrogen usage and compressor lifetime. This partnership will allow for the simulation of operations in the field and a thorough analysis of the component failure to improve the reliability of diaphragm compression.
Weather impacts on space operations
NASA Astrophysics Data System (ADS)
Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.
The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.
NASA Astrophysics Data System (ADS)
alhilman, Judi
2017-12-01
In the production line process of the printing office, the reliability of the printing machine plays a very important role, if the machine fail it can disrupt production target so that the company will suffer huge financial loss. One method to calculate the financial loss cause by machine failure is use the Cost of Unreliability(COUR) method. COUR method works based on down time machine and costs associated with unreliability data. Based on the calculation of COUR method, so the sum of cost due to unreliability printing machine during active repair time and downtime is 1003,747.00.
Permanent-File-Validation Utility Computer Program
NASA Technical Reports Server (NTRS)
Derry, Stephen D.
1988-01-01
Errors in files detected and corrected during operation. Permanent File Validation (PFVAL) utility computer program provides CDC CYBER NOS sites with mechanism to verify integrity of permanent file base. Locates and identifies permanent file errors in Mass Storage Table (MST) and Track Reservation Table (TRT), in permanent file catalog entries (PFC's) in permit sectors, and in disk sector linkage. All detected errors written to listing file and system and job day files. Program operates by reading system tables , catalog track, permit sectors, and disk linkage bytes to vaidate expected and actual file linkages. Used extensively to identify and locate errors in permanent files and enable online correction, reducing computer-system downtime.
The "big bang" implementation: not for the faint of heart.
Anderson, Linda K; Stafford, Cynthia J
2002-01-01
Replacing a hospital's obsolete mainframe computer system with a modern integrated clinical and administrative information system presents multiple challenges. When the new system is activated in one weekend, in "big bang" fashion, the challenges are magnified. Careful planning is essential to ensure that all hospital staff are fully prepared for this transition, knowing this conversion will involve system downtime, procedural changes, and the resulting stress that naturally accompanies change. Implementation concerns include staff preparation and training, process changes, continuity of patient care, and technical and administrative support. This article outlines how the University of Missouri Health Care addressed these operational concerns during this dramatic information system conversion.
Impact of oscillations of shafts on machining accuracy using non-stationary machines
NASA Astrophysics Data System (ADS)
Fedorenko, M. A.; Bondarenko, J. A.; Pogonin, A. A.
2018-03-01
The solution of the problem of restoring parts and units of equipment of the large mass and size is possible on the basis of the development of the research base, including the development of models and theoretical relations, revealing complex reasons for causes of damage and equipment failure. This allows one to develop new effective technologies of maintenance and repair, implementation of which ensures the efficiency and durability of the machines. The development of new forms of technical maintenance and repair of equipment, based on a systematic evaluation of its technical condition with the help of modern diagnostic tools can significantly reduce the duration of the downtime.
Managing the cryogenic systems of SCUBA-2 for long term operation
NASA Astrophysics Data System (ADS)
Cookson, Jamie L.; Bintley, Dan
2016-07-01
SCUBA-2 has been operational on JCMT producing excellent science for almost 5 years. We describe the strategy and methods that we have evolved to keep one of the world's first "dry dilution refrigerators" and the other cryogenic systems working effectively at the summit of Mauna Kea, keeping the instrument functioning at peak efficiency for extended periods (over 12 months at a time), with minimum downtime. We discuss new plans to reduce day-to-day operational costs and to add remote management of the gas handling systems, as we look to the future and envisage another ten years of SCUBA-2 science.
NASA Astrophysics Data System (ADS)
2009-07-01
So what is the site about? Like the popular SETI@home program, which uses the downtime of home computers to sift radio-telescope data for evidence of alien life, Foldit draws on the idle hours of several thousand data-crunchers for help in solving scientific puzzles. But there is a twist. For a start, Foldit is all about biophysics. The project's goal is to understand how proteins - the chains of amino acids that drive processes inside living cells - fold themselves into a myriad of different shapes. But the most striking difference is that Foldit's protein-folding operators are actual human beings, and the datasets they are sifting are disguised as an amazingly addictive computer game.
Technical information report: Plasma melter operation, reliability, and maintenance analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, D.W.
1995-03-14
This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.
Identification of mine rescue equipment reduction gears technical condition
NASA Astrophysics Data System (ADS)
Gerike, B. L.; Klishin, V. I.; Kuzin, E. G.
2017-09-01
The article presents the reasons for adopting intelligent service of mine belt conveyer drives concerning evaluation of their technical condition based on the diagnostic techniques instead of regular preventative maintenance. The article reveals the diagnostic results of belt conveyer drive reduction gears condition taking into account the parameters of lubricating oil, vibration and temperature. Usage of a complex approach to evaluate technical conditions allows reliability of the forecast to be improved, which makes it possible not only to prevent accidental breakdowns and eliminate unscheduled downtime, but also to bring sufficient economic benefits through reduction of the term and scope of work during overhauls.
The Pelleve procedure: an effective method for facial wrinkle reduction and skin tightening.
Stampar, Michael
2011-05-01
Devices using radiofrequency (RF) energy and electrical energy to deliver a controlled thermal injury to heat skin have proliferated within the nonablative skin treatment market since the introduction of Thermage in 2002. By delivering continuous monopolar RF energy, rather than pulsed heating, and repeatedly bringing the skin to therapeutic temperatures until maximal contraction is obtained, the Pelleve Procedure can give obvious cosmetic results confluently over all treated areas painlessly and with no downtime. In this article, the technique, mechanism of continuous RF heating, and apparent treatment requirements to produce these results are presented. Some controversies are also addressed. Copyright © 2011 Elsevier Inc. All rights reserved.
Ways of Noninvasive Facial Skin Tightening and Fat Reduction.
Fritz, Klaus; Salavastru, Carmen
2016-06-01
For skin tightening, ablative and nonablative lasers have been used with various parameters full or fractionated. Currently, other energy-based technologies have been developed such as radiofrequency (RF) from mono- to multipolar, microneedling RF, and high-intensity focused ultrasound. They heat up the tissue to a clinical endpoint. Temperatures above 42°C stimulate fibroblasts to produce more collagen and some technologies produce small coagulation points that allow to shrink and to tighten the tissue with less downtime or side effects. Alternative treatments not based on heat can be chemical peels from light to deep and microneedling without RF. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
As the search for oil and gas continues into deeper and deeper waters, semisubmersibles and dynamically positioned vessels are becoming larger and more sophisticated. Efforts to reduce downtime resulting from foul weather are apparent in some new rigs designed to have improved motion characteristics. New offshore drilling rigs described include l) a buoy-shaped semisubmersible, the Big Bouy 6000 from the Trosvik Group of Norway, 2) a dynamically positioned drillship to be operated by the Dutch firm Neddrill, 3) Parker Drilling Co.'s helicopter-transportable platform rig, rated for 20,000 ft, 4) a dynamically positioned semisubmersible developed by French drilling contractor Forex Neptune,more » and 5) a reinforced-concrete semisubmersible, the Condrill concept, developed by Norwegian contractor A/S Hoyer-Ellefsen.« less
NASA Astrophysics Data System (ADS)
Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.
2017-04-01
The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.
Saxena, Amol; Fullem, Brian; Gerdesmeyer, Ludger
Two case reports of high-level athletes with medial tibial stress syndrome (MTSS), 1 an Olympian with an actual stress fracture, are presented. Successful treatment included radial soundwave therapy, pneumatic leg braces, relative rest using an antigravity treadmill, and temporary foot orthoses. Radial soundwave therapy has a high level of evidence for treatment of MTSS. We also present recent evidence of the value of vitamin D assessment. Both patients had a successful outcome with minimal downtime. Finally, a suggested treatment regimen for MTSS is presented. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; ...
2017-02-04
The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less
The SMAT fiber laser for industrial applications
NASA Astrophysics Data System (ADS)
Ding, Jianwu; Liu, Jinghui; Wei, Xi; Xu, Jun
2017-02-01
With the increased adoption of high power fiber laser for various industrial applications, the downtime and the reliability of fiber lasers become more and more important. Here we present our approach toward a more reliable and more intelligent laser source for industrial applications: the SMAT fiber laser with the extensive sensor network and multi-level protection mechanism, the mobile connection and the mobile App, and the Smart Cloud. The proposed framework is the first IoT (Internet of Things) approach integrated in an industrial laser not only prolongs the reliability of an industrial laser but open up enormous potential for value-adding services by gathering and analyzing the Big data from the connected SMAT lasers.
Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells
NASA Technical Reports Server (NTRS)
Prince, J. L.; Lathrop, J. W.
1979-01-01
The results of accelerated stress testing of four different types of silicon terrestrial solar cells are discussed. The accelerated stress tests used included bias-temperature tests, bias-temperature-humidity tests, thermal cycle and thermal shock tests, and power cycle tests. Characterization of the cells was performed before stress testing and at periodic down-times, using electrical measurement, visual inspection, and metal adherence pull tests. Electrical parameters measured included short-circuit current, open circuit voltage, and output power, voltage, and current at the maximum power point. Incorporated in the report are the distributions of the prestress electrical data for all cell types. Data were also obtained on cell series and shunt resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
When the facilities design and construction team at the University of California, San Diego (UCSD) started planning to upgrade and expand their control system, they had several critical goals for the project. They wanted a building automation system (BAS) that could achieve optimum energy savings while maximizing the efficiency of the facilities staff. They needed the new system to link 26 campus buildings--containing a variety of existing systems--to one central location for monitoring and diagnostics. They wanted a single vendor to handle installation, software development, service and support--and they wanted the entire project completed without downtime. At the core ofmore » these technologies is the Metasys{reg_sign} facility management system from Johnson Controls.« less
Endeavour lands atop 747 after downtime at Palmdale, CA
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle Orbiter Endeavour arrives at KSCs Shuttle Landing Facility atop NASAs Boeing 747 Shuttle Carrier Aircraft (SCA) as it returns March 27, 1997 from Palmdale, Calif., after an eight-month Orbiter Maintenance Down Period (OMDP). Nearly 100 modifications were made to Endeavour during that time period, including some that were directly associated with work required to support International Space Station Operations. The most extensive of those was the installation of an external airlock to allow the orbiter to dock with the Station. Other modifications included upgrades to Endeavours power supply system, general purpose computers and thermal protection system, along with the installation of new light-weight commander and pilot seats and other weight-saving modifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.
The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less
Low-Cost Oil Quality Sensor Based on Changes in Complex Permittivity
Pérez, Angel Torres; Hadfield, Mark
2011-01-01
Real time oil quality monitoring techniques help to protect important industry assets, minimize downtime and reduce maintenance costs. The measurement of a lubricant’s complex permittivity is an effective indicator of the oil degradation process and it can be useful in condition based maintenance (CBM) to select the most adequate oil replacement maintenance schedules. A discussion of the working principles of an oil quality sensor based on a marginal oscillator to monitor the losses of the dielectric at high frequencies (>1 MHz) is presented. An electronic design procedure is covered which results in a low cost, effective and ruggedized sensor implementation suitable for use in harsh environments. PMID:22346666
SNS Central Helium Liquefier spare Carbon Bed installation and commissioning
NASA Astrophysics Data System (ADS)
DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.
2017-12-01
The Spallation Neutron Source (SNS) Central Helium Liquefier (CHL) at Oak Ridge National Laboratory (ORNL) has been without major operations downtime since operations were started back in 2006. This system utilizes a vessel filled with activated carbon as the final major component to remove oil vapor from the compressed helium circuit prior to insertion into the system’s cryogenic cold box. The need for a spare carbon bed at SNS due to the variability of carbon media lifetime calculation to adsorption efficiency will be discussed. The fabrication, installation and commissioning of this spare carbon vessel will be presented. The novel plan for connecting the spare carbon vessel piping to the existing infrastructure will be presented.
Bulk ultrasonic NDE of metallic components at high temperature using magnetostrictive transducers
NASA Astrophysics Data System (ADS)
Ashish, Antony Jacob; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Kumar, Anish; Rao, B. Purnachandra; Jayakumar, Tammana
2017-02-01
Online ultrasonic NDE at high-temperature is of much interest to the power, process and automotive industries in view of possible savings in downtime. This paper describes a novel approach to developing ultrasonic transducers capable of high-temperature in-situ operation using the principle of magnetostriction. Preliminary design from previous research by the authors [1] is extended for operation at 1 MHz, and at elevated temperatures by amorphous metallic strips as the magnetostrictive core. Ultrasonic signals in pulse-echo mode are experimentally obtained from the ultrasonic transducer thus developed, in a simulated high-temperature environment of 350 °C for 10 hours. Advantages and challenges for practical deployment of this approach are discussed.
SU-F-T-399: Migration of Treatment Planning Systems Without Beam Data Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolakanahalli, R; Tewatia, D
2016-06-15
Purpose: Data acquisition for commissioning is steered by Treatment Planning System (TPS) requirements which can be cumbersome and time consuming involving significant clinic downtime. The purpose of this abstract is to answer if we could circumvent this by extracting data from existing TPS and speed up the process. Methods: Commissioning beam data was obtained from a clinically commissioned TPS (Pinnacle™) using Matlab™ generated Pinnacle™ executable scripts to commission a secondary 3D dose verification TPS (Eclipse™). Profiles and output factors for commissioning as required by Eclipse™ were computed on a 50 cm{sup 3} water phantom at a dose grid resolution ofmore » 2mm3. Verification doses were computed and compared to clinical TPS dose profiles as per TG-106 guidelines. Standard patient plans from Pinnacle™ including IMRT and VMAT plans were re-computed keeping the same monitor units (in order to perform true comparison) using Eclipse™. Computed dose was exported back to Pinnacle for comparison to original plans. This methodology enables us to alleviate all ambiguities that arise in such studies. Results: Profile analysis using in-house software for 6x, showed that for all field sizes including small MLC generated fields, 100% of infield and penumbra data points of Eclipse™ match Pinnacle™ generated and measured profiles with 2%/2 mm gamma criteria. Excellent agreement was observed in the penumbra regions, with all data points passing DTA criteria for complex C-shaped and S-shaped profiles. Patient plan dose volume histograms (DVHs) and isodose lines agreed well to within a 1.5% for target coverage. Conclusion: Secondary 3D dose checking is of utmost importance with advanced techniques such as IMRT and VMAT. Migration of TPS is possible without compromising accuracy or enduring the cumbersome measurement of commissioning data. Economizing time for commissioning such a verification system or for migration of TPS can add great QA value and minimize downtime.« less
SU-F-T-462: Lessons Learned From a Machine Incident Reporting System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutlief, S; Hoisak, J
Purpose: Linear accelerators must operate with minimal downtime. Machine incident logs are a crucial tool to meet this requirement. They providing a history of service and demonstrate whether a fix is working. This study investigates the information content of a large department linear accelerator incident log. Methods: Our department uses an electronic reporting system to provide immediate information to both key department staff and the field service department. This study examines reports for five linac logs during 2015. The report attributes for analysis include frequency, level of documentation, who solved the problem, and type of fix used. Results: Of themore » reports, 36% were documented as resolved. In another 25% the resolution allowed treatment to proceed although the reported problem recurred within days. In 5% only intermediate troubleshooting was documented. The remainder lacked documentation. In 60% of the reports, radiation therapists resolved the problem, often by clearing the appropriate faults or reinitializing a software or hardware service. 22% were resolved by physics and 10% by field service engineers. The remaining 8% were resolved by IT, Facilities, or resolved spontaneously. Typical fixes, in order of scope, included clearing the fault and moving on, closing and re-opening the patient session or software, cycling power to a sub-unit, recalibrating a device (e.g., optical surface imaging), and calling in Field Service (usually resolving the problem through maintenance or component replacement). Conclusion: The reports with undocumented resolution represent a missed opportunity for learning. Frequency of who resolves a problem scales with the proximity of the person’s role (therapist, physicist, or service engineer), which is inversely related to the permanence of the resolution. Review of lessons learned from machine incident logs can form the basis for guidance to radiation therapists and medical physicists to minimize equipment downtime and ensure safe operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, I.S.; Gaines, A.
1987-11-01
The W.R. Grace Chemical Division plant in Lake Charles, LA had to stop producing catalysts for the oil refining industry whenever a piping system for 98% sulfuric acid developed a leak. Gaskets of a nonasbestos material were being used between the flanges of the steel pipe lined with TFE or polypropylene. The flange bolts were kept tight, but the gaskets usually failed to maintain a leaktight seal with the acid at 60 psi for more than a few weeks or months. The acid lines had to be drained before the faulty gasket could be replaced, and production downtime would rangemore » from one to three hours. In July 1986, the plant decided to try a chemical resistant gasket of Teflon molded and bonded to a core of Shore A 65-66 durometer EPDM rubber in the acid lines. The resilient gasket also has patented double convex rings on both faces for optimum sealing with only one-eighth the bolt tightening torque commonly required with flat-faced gaskets. The low sealing force requirement prolongs the life of the gasket, eliminates plastic cold flow at the flange of lined steel pipe, and avoids stresses that can damage thermoplastic and fiberglass piping systems. The gasket has a temperature range of {minus}4 to 210{degree}F and is available in 1/2 through 12 inch sizes that conform to ANSI B16.1 flange dimensions. Alternative gasket materials are Kynar PVDF-bonded EPDM and EPDM without a fluoropolymer laminate. The Teflon-bonded EPDM gaskets eliminated unscheduled catalyst production downtime due to leakage from the sulfuric acid piping system. The plant maintains an inventory of the low torque gasket, but has never had to replace any that have been in service since July 1986.« less
Development of optical-electronic system for the separation of cullet
NASA Astrophysics Data System (ADS)
Solovey, Alexey A.; Alekhin, Artem A.
2017-06-01
Broken glass being the waste in many fields of production is usually used as a raw material in the production of construction materials. The purity level of collected and processed glass cullet, as a rule, is quite low. Direct usage of these materials without preliminary processing leads to the emergence of defects in the end product or sometimes even to technological downtime. That's why purity control of cullet should be strictly verified. The study shows the method of construction and requirements for an optical-electronic system designed for cullet separation. Moreover, the author proposes a registration channel scheme and shows a scheme of control exposure area. Also the issues of image processing for the implementation of a typical system are examined.
The selection of construction sub-contractors using the fuzzy sets theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzemiński, Michał
The paper presents the algorithm for the selection of sub-contractors. Main area of author’s interest is scheduling flow models. The ranking task aims at execution time as short as possible Brigades downtime should also be as small as possible. These targets are exposed to significant obsolescence. The criteria for selection of subcontractors will not be therefore time and cost, it is assumed that all those criteria be meet by sub-contractors. The decision should be made in regard to factors difficult to measure, to assess which is the perfect application of fuzzy sets theory. The paper will present a set ofmore » evaluation criteria, the part of the knowledge base and a description of the output variable.« less
Bell, Douglas; Gluer, Robert; Murdoch, Dale
2018-03-01
Sudden cardiac arrest is a significant cause of death affecting approximately 25,000 people in Australia annually. We present an out-of-hospital cardiac arrest (OHCA) with prolonged down time and recurrent ventricular arrhythmias treated with extra-corporeal membrane oxygenation. The patient survived to hospital discharge with good neurological outcome. The patient's excellent outcome was a result of immediate good quality CPR, high level premorbid function, reversible cause of arrest and rapid access to an ECMO centre. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan
2014-02-01
Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Astrophysics Data System (ADS)
Biały, Witold
2017-06-01
Failure frequency in the mining process, with a focus on the mining machine, has been presented and illustrated by the example of two coal-mines. Two mining systems have been subjected to analysis: a cutter-loader and a plough system. In order to reduce costs generated by failures, maintenance teams should regularly make sure that the machines are used and operated in a rational and effective way. Such activities will allow downtimes to be reduced, and, in consequence, will increase the effectiveness of a mining plant. The evaluation of mining machines' failure frequency contained in this study has been based on one of the traditional quality management tools - the Pareto chart.
Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Biscans, S.; Warner, J.; Mittleman, R.; Buchanan, C.; Coughlin, M.; Evans, M.; Gabbard, H.; Harms, J.; Lantz, B.; Mukund, N.; Pele, A.; Pezerat, C.; Picart, P.; Radkins, H.; Shaffer, T.
2018-03-01
Advanced gravitational-wave detectors such as the laser interferometer gravitational-wave observatories (LIGO) require an unprecedented level of isolation from the ground. When in operation, they measure motion of less than 10‑19 m. Strong teleseismic events like earthquakes disrupt the proper functioning of the detectors, and result in a loss of data. An earthquake early-warning system, as well as a prediction model, have been developed to understand the impact of earthquakes on LIGO. This paper describes a control strategy to use this early-warning system to reduce the LIGO downtime by ∼30%. It also presents a plan to implement this new earthquake configuration in the LIGO automation system.
Osebor, Isibor
2017-01-01
In an emergency, a prompt response can save the lives of victims. This statement generates an imperative issue in emergency medical services (EMS). Designing a system that brings simplicity in locating emergency scenes is a step towards improving response time. This paper therefore implemented and evaluated the performance of an SMS-based emergency geolocation notification system with emphasis on its SMS delivery time and the system's geolocation and dispatch time. Using the RAS metrics recommended by IEEE for evaluation, the designed system was found to be efficient and effective as its reliability stood within 62.7% to 70.0% while its availability stood at 99% with a downtime of 3.65 days/year. PMID:29065643
Synthetic microbial ecosystems for biotechnology.
Pandhal, Jagroop; Noirel, Josselin
2014-06-01
Most highly controlled and specific applications of microorganisms in biotechnology involve pure cultures. Maintaining single strain cultures is important for industry as contaminants can reduce productivity and lead to longer "down-times" during sterilisation. However, microbes working together provide distinct advantages over pure cultures. They can undertake more metabolically complex tasks, improve efficiency and even expand applications to open systems. By combining rapidly advancing technologies with ecological theory, the use of microbial ecosystems in biotechnology will inevitably increase. This review provides insight into the use of synthetic microbial communities in biotechnology by applying the engineering paradigm of measure, model, manipulate and manufacture, and illustrate the emerging wider potential of the synthetic ecology field. Systems to improve biofuel production using microalgae are also discussed.
SNS Central Helium Liquefier spare Carbon Bed installation and commissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degraff, Brian D.; Howell, Matthew P.; Kim, Sang-Ho
The Spallation Neutron Source (SNS) Central Helium Liquefier (CHL) at Oak Ridge National Laboratory (ORNL) has been without major operations downtime since operations were started back in 2006. This system utilizes a vessel filled with activated carbon as the final major component to remove oil vapor from the compressed helium circuit prior to insertion into the system's cryogenic cold box. The need for a spare carbon bed at SNS due to the variability of carbon media lifetime calculation to adsorption efficiency will be discussed. The fabrication, installation and commissioning of this spare carbon vessel will be presented. The novel planmore » for connecting the spare carbon vessel piping to the existing infrastructure will be presented.« less
Modification to the Langley 8-foot high temperature tunnel for hypersonic propulsion testing
NASA Technical Reports Server (NTRS)
Reubush, D. E.; Puster, R. L.; Kelly, H. N.
1987-01-01
Described are the modifications currently under way to the Langley 8-Foot High Temperature Tunnel to produce a new, unique national resource for testing hypersonic air-breathing propulsion systems. The current tunnel, which has been used for aerothermal loads and structures research since its inception, is being modified with the addition of a LOX system to bring the oxygen content of the test medium up to that of air, the addition of alternate Mach number capability (4 and 5) to augment the current M=7 capability, improvements to the tunnel hardware to reduce maintenance downtime, the addition of a hydrogen system to allow the testing of hydrogen powered engines, and a new data system to increase both the quantity and quality of the data obtained.
An applicational process for dynamic balancing of turbomachinery shafting
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1990-01-01
The NASA Lewis Research Center has developed and implemented a time-efficient methodology for dynamically balancing turbomachinery shafting. This methodology minimizes costly facility downtime by using a balancing arbor (mandrel) that simulates the turbomachinery (rig) shafting. The need for precision dynamic balancing of turbomachinery shafting and for a dynamic balancing methodology is discussed in detail. Additionally, the inherent problems (and their causes and effects) associated with unbalanced turbomachinery shafting as a function of increasing shaft rotational speeds are discussed. Included are the design criteria concerning rotor weight differentials for rotors made of different materials that have similar parameters and shafting. The balancing methodology for applications where rotor replaceability is a requirement is also covered. This report is intended for use as a reference when designing, fabricating, and troubleshooting turbomachinery shafting.
NASA Technical Reports Server (NTRS)
Ratner, R. S.; Shapiro, E. B.; Zeidler, H. M.; Wahlstrom, S. E.; Clark, C. B.; Goldberg, J.
1973-01-01
This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation.
Test drilling in basalts, Lalamilo area, South Kohala District, Hawaii
Teasdale, Warren E.
1980-01-01
Test drilling has determined that a downhole-percussion airhammer can be used effectively to drill basalts in Hawaii. When used in conjunction with a foam-type drilling fluid, the hammer-bit penetration rate was rapid. Continuous drill cuttings from the materials penetrated were obtained throughout the borehole except from extremely fractured or weathered basalt zones where circulation was lost or limited. Cementing of these zones as soon as encountered reduced problems of stuck tools, washouts, and loss of drill-cuttings. Supplies and logistics on the Hawaiian Islands, always a major concern, require that all anticipated drilling supplies, spare rig and tool parts, drilling muds and additives, foam, and miscellaneous hardware be on hand before starting to drill. If not, the resulting rig downtime is costly in both time and money. (USGS)
Mezzana, Paolo; Valeriani, Maurizio; Valeriani, Roberto
2016-11-01
In this study were described the results, by tridimensional imaging evaluation, of the new "Combined Fractional Resurfacing" technique with the first fractional laser that overtakes the limits of traditional ablative, nonablative fractional resurfacing by combining CO 2 ablative and GaAs nonablative lasers. These two wavelengths can work separately or in a mixed modality to give the best treatment choice to all the patients. In this study, it is demonstrated that the simultaneous combination of the CO 2 wavelength (10600 nm) and GaAs wavelength (1540 nm) reduced the downtime, reduced pain during the treatment, and produced better results on fine wrinkles reduction and almost the same results on pigmentation as seen with 3D analysis by Antera (Miravex).
Gearbox Instrumentation for the Investigation of Bearing Axial Cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan A; Lambert, Scott R
Failures in gearbox bearings have been the primary source of reliability issues for wind turbine drivetrains, leading to costly downtime and unplanned maintenance. The most common failure mode is attributed to so-called axial cracks or white-etching cracks, which primarily affect the intermediate and high-speed-stage bearings. The high-speed-shaft and bearing loads and sliding will be measured with a specially instrumented gearbox installed in a 1.5-megawatt turbine at the National Wind Technology Center in an upcoming test campaign. Additional instrumentation will also measure the tribological environment of these bearings, including bearing temperatures, lubricant temperature and water content, air temperature and humidity, andmore » stray electrical current across the bearings. This paper fully describes the instrumentation package and summarizes initial results.« less
NASA Astrophysics Data System (ADS)
Amirat, Yassine; Choqueuse, Vincent; Benbouzid, Mohamed
2013-12-01
Failure detection has always been a demanding task in the electrical machines community; it has become more challenging in wind energy conversion systems because sustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the generator health degeneration, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure detection techniques based on the homopolar component of the generator stator current and attempts to highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind turbine generators for stationary and non-stationary cases.
Prognostics and Health Management of Wind Turbines -- Current Status and Future Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Shuangwen
The global wind industry has seen tremendous growth during the past two decades. However, the industry is challenged by premature component failures, which lead to increased turbine downtime and subsequently, cost of energy for wind power. To mitigate the impacts from these failures, the wind industry has been exploring various areas for improvements ranging from product design, new materials or lubricants, to operation and maintenance (O&M) practices. Condition-based maintenance or prognostics and health management (PHM) has been explored as one enabling technology for improving O&M practices. This chapter provides a brief overview of wind turbine PHM with a focus onmore » operational data mining and condition monitoring of drivetrains. Some future research and development opportunities in wind turbine PHM are also briefly discussed.« less
Won, Kwang Hee; Lee, Ye Jin; Rhee, Do Young; Chang, Sung Eun
2016-10-01
Café-au-lait macules (CALMs) are benign epidermal basilar hyperpigmentations that can be found in an isolated form or in association with neurocutaneous syndromes. Frequency-doubled Q-switched neodymium-doped yttrium aluminum garnet laser (532-nm QSNYL) does not penetrate deeply into the skin and is therefore suitable for epidermal pigmented lesion. Fractional photothermolysis (FP) targets only very small areas of the skin, without injuring adjacent areas of healthy, normal skin. Herein, we report a case of CALMs successfully treated with fractional 532-nm QSNYL. By applying FP to 532-nm QSNYL, we could treat CALMs safely with less downtime as compared to conventional laser treatments and expect more energy delivery for each microscopic hole, thereby allowing higher response rate.
Joint Sandia/NIOSH exercise on aerosol contamination using the BROOM tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, James L., Jr.; .); Melton, Brad
In February of 2005, a joint exercise involving Sandia National Laboratories (SNL) and the National Institute for Occupational Safety and Health (NIOSH) was conducted in Albuquerque, NM. The SNL participants included the team developing the Building Restoration Operations and Optimization Model (BROOM), a software product developed to expedite sampling and data management activities applicable to facility restoration following a biological contamination event. Integrated data-collection, data-management, and visualization software improve the efficiency of cleanup, minimize facility downtime, and provide a transparent basis for reopening. The exercise was held at an SNL facility, the Coronado Club, a now-closed social club for Sandiamore » employees located on Kirtland Air Force Base. Both NIOSH and SNL had specific objectives for the exercise, and all objectives were met.« less
Fraxelated radiofrequency device for acne scars
NASA Astrophysics Data System (ADS)
Rao, Babar K.; Khokher, Sairah
2012-09-01
Acne scars can be improved with various treatments such as topical creams, chemical peels, dermal fillers, microdermabrasion, laser, and radiofrequency devices. Some of these treatments especially lasers and deep chemical peels can have significant side effects such as post inflammatory hyperpigmentation in darker skin types. Fraxelated RF Laser devices have been reported to have lower incidence of side effects in all skin phototypes. Nine patients between ages 18 and 35 of various skin phototypes were selected from a private practice and treated with a RF fraxelated device (E-matrix) for acne scars. Outcomes were measured by physician observation, subjective feedback received by patients, and comparison of before and after photographs. In this small group of patients with various skin phototypes, fraxelated radiofrequency device improved acne scars with minimal side effects and downtime.
Glider kits cut truck ownership costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smiley, C.H.
1983-06-01
A glider kit consists of a new truck without the power train, with the customer supplying the engine, transmission, clutch, driveline and rear axles for mounting in a new frame and cab complete with steering axle, wiring harnesses, exhaust system and cooling system. Glider kits have long been regarded as a cost effective means of replacing accident or fire damaged late model vehicles. The financial advantages, assembly and remanufacturing are discussed. Points out that at a basic cost about one third of a new truck, a glider kit offers lower cost of borrowed capital, tax savings, and elimination of highmore » maintenance and downtime costs. The paper concludes that use of glider kits as an alternative to major repair or reconditioning or outright replacement of coal haulers presents some interesting options.« less
Concepts for 18/30 GHz satellite communication system study. Executive summary
NASA Technical Reports Server (NTRS)
Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.
1979-01-01
An examination of a multiplicity of interconnected parameters ranging from specific technology details to total system economic costs for satellite communication systems at the 18/30 GHz transmission bands are presented. It was determined that K sub A band systems can incur a small communications outage during very heavy rainfall periods and that reducing the outage to zero would lead to prohibitive system costs. On the other hand, the economics of scale, ie, one spacecraft accommodating 2.5 GHz of bandwidth coupled with multiple beam frequency reuse, leads to very low costs for those users who can tolerate the 5 to 50 hours per year of downtime. A multiple frequency band satellite network can provide the ultimate optimized match to the consumer performance/economics demands.
Simulation of Swap-Out Reliability For The Advance Photon Source Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.
2017-06-01
The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice relies on the use of swap-out injection to accommodate the small dynamic acceptance, allow use of unusual insertion devices, and minimize collective effects at high single-bunch charge. This, combined with the short beam lifetime, will make injector reliability even more important than it is for top-up operation. We used historical data for the APS injector complex to obtain probability distributions for injector up-time and down-time durations. Using these distributions, we simulated several years of swap-out operation for the upgraded lattice for several operatingmodes. The results indicate thatmore » obtaining very high availability of beam in the storage ring will require improvements to injector reliability.« less
NASA Astrophysics Data System (ADS)
Staveley, Chris
2014-06-01
With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.
PACS archive upgrade and data migration: clinical experiences
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Documet, Luis; Sarti, Dennis A.; Huang, H. K.; Donnelly, John
2002-05-01
Saint John's Health Center PACS data volumes have increased dramatically since the hospital became filmless in April of 1999. This is due in part of continuous image accumulation, and the integration of a new multi-slice detector CT scanner into PACS. The original PACS archive would not be able to handle the distribution and archiving load and capacity in the near future. Furthermore, there is no secondary copy backup of all the archived PACS image data for disaster recovery purposes. The purpose of this paper is to present a clinical and technical process template to upgrade and expand the PACS archive, migrate existing PACs image data to the new archive, and provide a back-up and disaster recovery function not currently available. Discussion of the technical and clinical pitfalls and challenges involved in this process will be presented as well. The server hardware configuration was upgraded and a secondary backup implemented for disaster recovery. The upgrade includes new software versions, database reconfiguration, and installation of a new tape jukebox to replace the current MOD jukebox. Upon completion, all PACS image data from the original MOD jukebox was migrated to the new tape jukebox and verified. The migration was performed during clinical operation continuously in the background. Once the data migration was completed the MOD jukebox was removed. All newly acquired PACS exams are now archived to the new tape jukebox. All PACs image data residing on the original MOD jukebox have been successfully migrated into the new archive. In addition, a secondary backup of all PACS image data has been implemented for disaster recovery and has been verified using disaster scenario testing. No PACS image data was lost during the entire process and there was very little clinical impact during the entire upgrade and data migration. Some of the pitfalls and challenges during this upgrade process included hardware reconfiguration for the original archive server, clinical downtime involved with the upgrade, and data migration planning to minimize impact on clinical workflow. The impact was minimized with a downtime contingency plan.
A model for preemptive maintenance of medical linear accelerators-predictive maintenance.
Able, Charles M; Baydush, Alan H; Nguyen, Callistus; Gersh, Jacob; Ndlovu, Alois; Rebo, Igor; Booth, Jeremy; Perez, Mario; Sintay, Benjamin; Munley, Michael T
2016-03-10
Unscheduled accelerator downtime can negatively impact the quality of life of patients during their struggle against cancer. Currently digital data accumulated in the accelerator system is not being exploited in a systematic manner to assist in more efficient deployment of service engineering resources. The purpose of this study is to develop an effective process for detecting unexpected deviations in accelerator system operating parameters and/or performance that predicts component failure or system dysfunction and allows maintenance to be performed prior to the actuation of interlocks. The proposed predictive maintenance (PdM) model is as follows: 1) deliver a daily quality assurance (QA) treatment; 2) automatically transfer and interrogate the resulting log files; 3) once baselines are established, subject daily operating and performance values to statistical process control (SPC) analysis; 4) determine if any alarms have been triggered; and 5) alert facility and system service engineers. A robust volumetric modulated arc QA treatment is delivered to establish mean operating values and perform continuous sampling and monitoring using SPC methodology. Chart limits are calculated using a hybrid technique that includes the use of the standard SPC 3σ limits and an empirical factor based on the parameter/system specification. There are 7 accelerators currently under active surveillance. Currently 45 parameters plus each MLC leaf (120) are analyzed using Individual and Moving Range (I/MR) charts. The initial warning and alarm rule is as follows: warning (2 out of 3 consecutive values ≥ 2σ hybrid) and alarm (2 out of 3 consecutive values or 3 out of 5 consecutive values ≥ 3σ hybrid). A customized graphical user interface provides a means to review the SPC charts for each parameter and a visual color code to alert the reviewer of parameter status. Forty-five synthetic errors/changes were introduced to test the effectiveness of our initial chart limits. Forty-three of the forty-five errors (95.6 %) were detected in either the I or MR chart for each of the subsystems monitored. Our PdM model shows promise in providing a means for reducing unscheduled downtime. Long term monitoring will be required to establish the effectiveness of the model.
Intelligent Engine Systems Work Element 1.3: Sub System Health Management
NASA Technical Reports Server (NTRS)
Ashby, Malcolm; Simpson, Jeffrey; Singh, Anant; Ferguson, Emily; Frontera, mark
2005-01-01
The objectives of this program were to develop health monitoring systems and physics-based fault detection models for engine sub-systems including the start, lubrication, and fuel. These models will ultimately be used to provide more effective sub-system fault identification and isolation to reduce engine maintenance costs and engine down-time. Additionally, the bearing sub-system health is addressed in this program through identification of sensing requirements, a review of available technologies and a demonstration of a demonstration of a conceptual monitoring system for a differential roller bearing. This report is divided into four sections; one for each of the subtasks. The start system subtask is documented in section 2.0, the oil system is covered in section 3.0, bearing in section 4.0, and the fuel system is presented in section 5.0.
Influence of forces acting on side of machine on precision machining of large diameter holes
NASA Astrophysics Data System (ADS)
Fedorenko, M. A.; Bondarenko, J. A.; Sanina, T. M.
2018-03-01
One of the most important factors that increase efficiency, durability and reliability of rotating units is precision installation, preventive maintenance work, timely replacing of a failed or worn components and assemblies. These works should be carried out in the operation of the equipment, as the downtime in many cases leads to large financial losses. Stop of one unit of an industrial enterprise can interrupt the technological chain of production, resulting in a possible stop of the entire equipment. Improving the efficiency and optimization of the repair process increases accuracy of installation work when installing equipment, conducting restoration under operating conditions relevant for enterprises of different industries because it eliminates dismantling the equipment, sending it to maintenance, the expectation of equipment return, the new installation with the required quality and accuracy of repair.
Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Betzler, Benjamin R; Ade, Brian J
This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less
Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface
Preissig, Jason; Hamilton, Kristy; Markus, Ramsey
2012-01-01
Numerous laser platforms exist that rejuvenate the skin by resurfacing its upper layers. In varying degrees, these lasers improve the appearance of lentigines and rhytides, eliminate photoaging, soften scarring due to acne and other causes, and treat dyspigmentation. Five major classes of dermatologic lasers are currently in common use: ablative and nonablative lasers in both fractionated and unfractionated forms as well as radiofrequency technologies. The gentler nonablative lasers allow for quicker healing, whereas harsher ablative lasers tend to be more effective. Fractionating either laser distributes the effect, increasing the number of treatments but minimizing downtime and complications. In this review article, the authors seek to inform surgeons about the current laser platforms available, clarify the differences between them, and thereby facilitate the identification of the most appropriate laser for their practice. PMID:23904818
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2010-10-26
Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current yearmore » and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) that the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1-September 30, 2010, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This fourth quarter comprises a total of 2208 possible hours for the fixed and mobile sites. The average of the fixed sites exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has historically had a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning in the second quarter of FY2010, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original instrumentation and new instrumentation made available through the American Recovery and Reinvestment Act of 2009 (ARRA). The Central Facility and 4 extended facilities will remain, but there will be up to 12 new surface characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The transition to the smaller footprint is ongoing through this quarter. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place by the end of calendar year 2011. AMF1 continues its 20-month deployment in Graciosa Island, the Azores, Portugal, that began on May 1, 2009. The AMF will also have additional observational capabilities by the end of 2011. The second ARM Mobile Facility (AMF2) was deployed this quarter to Steamboat Springs, Colorado, in support of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX). The first field deployment of the second ARM Mobile Facility will be used to validate ARM-developed algorithms that convert the remote sensing measurements to cloud properties for liquid and mixed phase clouds. Although AMF2 is being set up this quarter, the official start date of the field campaign is not until November 1, 2010. This quarterly report provides the cumulative numbers of scientific user accounts by site for the period October 1, 2009-September 30, 2010.« less
Nuclear magnetic resonance magnet actively cooled by pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Kirichek, Oleg; Carr, Philip; Johnson, Chris; Atrey, Milind
2005-05-01
High field NMR spectrometers have been an essential tool for biomolecular scientists for many years. They have been instrumental in the pursuit of understanding of the structure, function and dynamics of proteins and other biological molecules. In addition, NMR is increasingly used for small molecule applications such as metabonomics, providing capabilities that aid drug discovery, as well as general organic and inorganic chemistry [M. Pellecchia et al., Nature Reviews Drug Discovery 1, 211 (2002)]. However, access to these systems is restricted due to the requirement to periodically refill them with liquid cryogens. This is both logistically demanding and expensive. A new system combining NMR spectrometry and Pulse Tube Refrigeration (PTR) has been developed and successfully tested. This approach eliminates the dependence on liquid cryogens, reduces spectrometer downtime, and also significantly reduces the size of the system. In the near future this new type of analytical tool may become ubiquitous in biomedical and chemical laboratories.
Oshiyama, Natália F; Bassani, Rosana A; D'Ottaviano, Itala M L; Bassani, José W M
2012-04-01
As technology evolves, the role of medical equipment in the healthcare system, as well as technology management, becomes more important. Although the existence of large databases containing management information is currently common, extracting useful information from them is still difficult. A useful tool for identification of frequently failing equipment, which increases maintenance cost and downtime, would be the classification according to the corrective maintenance data. Nevertheless, establishment of classes may create inconsistencies, since an item may be close to two classes by the same extent. Paraconsistent logic might help solve this problem, as it allows the existence of inconsistent (contradictory) information without trivialization. In this paper, a methodology for medical equipment classification based on the ABC analysis of corrective maintenance data is presented, and complemented with a paraconsistent annotated logic analysis, which may enable the decision maker to take into consideration alerts created by the identification of inconsistencies and indeterminacies in the classification.
A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics
Hu, Jinfei; Tse, Peter W.
2013-01-01
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527
Wood, Wendy; Harris, Shelly; Snider, Melinda; Patchel, Stacy A
2005-01-01
Routine activity situations on an Alzheimer's disease (AD) special care unit were examined with respect to residents' social and physical environmental interactions, time use, and apparent affect. Using a computer-assisted observational tool, observers recorded prevailing activity situations and corresponding behaviors and affects of seven residents every 10 minutes, from 8:00 AM to 8:00 PM, across four days. Although meals/snacks and some activity groups were positively associated with use of physical objects and engagement in activities, residents were predominantly environmentally disengaged, inactive, or without positive affects during the most prevalent activity situations of background media, downtime, and television. Findings suggest that routine activity situations may act as potent environmental influences on the quality of life (QOL) of people with AD and mediate the effectiveness of other environmental interventions undertaken on their behalf.
In-situ ultrasonic inspection of submarine shaft seal housing for corrosion damage
NASA Astrophysics Data System (ADS)
Batra, Narendra K.; Chaskelis, Henry H.; Mignogna, Richard B.
1995-06-01
The interior of the housings of primary and backup shaft seals of 637 class submarines are exposed to sea water during service and become corroded during service. Corrosion damage evaluation requires disassembly of the housing and visual inspection. In this paper, we present quantitative results of in situ nondestructive ultrasonic technique developed for the inspection of the seal housings. Due to vast variations in velocity in the seal material, the velocity was determined at suitable sites not subjected to corrosion and of known thickness from the blueprints. Using this normalized velocity and measured time-of-flight, we determined the thickness of the seal housing at various locations on the circumference. Subsequent mechanical thickness measurements, made when the housings were removed from service, agreed within the predicted uncertainty of 1.5% of ultrasonic measurements. This technique for the assessment of corrosion damage saves time and money, by preventing premature disassembly and downtime for the submarine.
SCADA alarms processing for wind turbine component failure detection
NASA Astrophysics Data System (ADS)
Gonzalez, E.; Reder, M.; Melero, J. J.
2016-09-01
Wind turbine failure and downtime can often compromise the profitability of a wind farm due to their high impact on the operation and maintenance (O&M) costs. Early detection of failures can facilitate the changeover from corrective maintenance towards a predictive approach. This paper presents a cost-effective methodology to combine various alarm analysis techniques, using data from the Supervisory Control and Data Acquisition (SCADA) system, in order to detect component failures. The approach categorises the alarms according to a reviewed taxonomy, turning overwhelming data into valuable information to assess component status. Then, different alarms analysis techniques are applied for two purposes: the evaluation of the SCADA alarm system capability to detect failures, and the investigation of the relation between components faults being followed by failure occurrences in others. Various case studies are presented and discussed. The study highlights the relationship between faulty behaviour in different components and between failures and adverse environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhav Rao Gonvindaraju
1999-10-18
Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less
NASA Astrophysics Data System (ADS)
Li, Yongbo; Yang, Yuantao; Li, Guoyan; Xu, Minqiang; Huang, Wenhu
2017-07-01
Health condition identification of planetary gearboxes is crucial to reduce the downtime and maximize productivity. This paper aims to develop a novel fault diagnosis method based on modified multi-scale symbolic dynamic entropy (MMSDE) and minimum redundancy maximum relevance (mRMR) to identify the different health conditions of planetary gearbox. MMSDE is proposed to quantify the regularity of time series, which can assess the dynamical characteristics over a range of scales. MMSDE has obvious advantages in the detection of dynamical changes and computation efficiency. Then, the mRMR approach is introduced to refine the fault features. Lastly, the obtained new features are fed into the least square support vector machine (LSSVM) to complete the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault types of planetary gearboxes.
Site Monitoring at the U.C. Observatory of Santa Martina
NASA Astrophysics Data System (ADS)
Gatica, C.; Vanzi, L.; Toledo, I.; Lombardi, G.
2011-11-01
This work presents an astroclimatologic analysis of the UC Santa Martina Observatory site. This site is located near Santiago at latitude 33.3°S, longitude 70.5°W and an altitude of 1492 meters above sea level. The analysis was performed using data of temperature, pressure, humidity, and wind collected with a Davis Net Vantage Pro 2 meteo station in a period from December 2007 to January 2011. We estimated average values for the parameters monitored on different time scales and examined daily as well as seasonal variations. We also estimated the downtime due to clouds average with an 37.23% of nights in 2010, humidity, wind over the period examined. The average relative humidity is 49%, wind is predominantly (24% of time) from southsouthwest with an average speed of 0.6 m/s. Finally, we describe Seeing measurements obtained with a DIMM monitor recently installed in the site.
LST and instrument considerations. [modular design
NASA Technical Reports Server (NTRS)
Levin, G. M.
1974-01-01
In order that the LST meet its scientific objectives and also be a National Astronomical Space Facility during the 1980's and 1990's, broad requirements have been levied by the scientific community. These scientific requirements can be directly translated into design requirements and specifications for the scientific instruments. The instrument ensemble design must be consistent with a 15-year operational lifetime. Downtime for major repair/refurbishment or instrument updating must be minimized. The overall efficiency and performance of the instruments should be maximized. Modularization of instruments and instrument subsystems, some degree of on-orbit servicing (both repair and replacement), on-axis location, minimizing the number of reflections within instruments, minimizing polarization effects, and simultaneous operation of the F/24 camera with other instruments, are just a few of the design guidelines and specifications which can and will be met in order that these broader scientific requirements be satisfied.-
An academic medical center's response to widespread computer failure.
Genes, Nicholas; Chary, Michael; Chason, Kevin W
2013-01-01
As hospitals incorporate information technology (IT), their operations become increasingly vulnerable to technological breakdowns and attacks. Proper emergency management and business continuity planning require an approach to identify, mitigate, and work through IT downtime. Hospitals can prepare for these disasters by reviewing case studies. This case study details the disruption of computer operations at Mount Sinai Medical Center (MSMC), an urban academic teaching hospital. The events, and MSMC's response, are narrated and the impact on hospital operations is analyzed. MSMC's disaster management strategy prevented computer failure from compromising patient care, although walkouts and time-to-disposition in the emergency department (ED) notably increased. This incident highlights the importance of disaster preparedness and mitigation. It also demonstrates the value of using operational data to evaluate hospital responses to disasters. Quantifying normal hospital functions, just as with a patient's vital signs, may help quantitatively evaluate and improve disaster management and business continuity planning.
Voltage Based Detection Method for High Impedance Fault in a Distribution System
NASA Astrophysics Data System (ADS)
Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama
2016-09-01
High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.
A relevance vector machine-based approach with application to oil sand pump prognostics.
Hu, Jinfei; Tse, Peter W
2013-09-18
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.
Case study on industrial hazmat response teams.
Stephens, Shelly J
2009-11-01
In 1991, Amway formed an industrial hazardous materials (hazmat) team in order to respond quickly and efficiently to potential chemical spills. The company's goals were, and still are today, to protect employees, the environment and the local community, and to reduce the amount of resulting downtime. In 1991, the hazmat team was very well funded, enabling it to become a discrete department with its own management staff and nearly 100 hazmat volunteers. Due to changes in the business climate, Amway reorganised in 2000/01, and the hazmat team became part of a company that incorporated contract work into its scope. When this reorganisation occurred, the hazmat team was thoroughly re-evaluated. Its response function was maintained, but was systematically reinvented in the most lean way practicable while still meeting corporate goals. This case study represents Amway's hazmat team's journey through the evaluation process and subsequent reorganisation.
Industry 4.0 - How will the nonwoven production of tomorrow look like?
NASA Astrophysics Data System (ADS)
Cloppenburg, F.; Münkel, A.; Gloy, Y.; Gries, T.
2017-10-01
Industry 4.0 stands for the on-going fourth industrial revolution, which uses cyber physical systems. In the textile industry the terms of industry 4.0 are not sufficiently known yet. First developments of industry 4.0 are mainly visible in the weaving industry. The cost structure of the nonwoven industry is unique in the textile industry. High shares of personnel, energy and machine costs are distinctive for nonwoven producers. Therefore the industry 4.0 developments in the nonwoven industry should concentrate on reducing these shares by using the work force efficiently and by increasing the productivity of first-rate quality and therefore decreasing waste production and downtimes. Using the McKinsey digital compass three main working fields are necessary: Self-optimizing nonwoven machines, big data analytics and assistance systems. Concepts for the nonwoven industry are shown, like the “EasyNonwoven” concept, which aims on economically optimizing the machine settings using self-optimization routines.
Protoflight photovoltaic power module system-level tests in the space power facility
NASA Technical Reports Server (NTRS)
Rivera, Juan C.; Kirch, Luke A.
1989-01-01
Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.
Ultracapacitor-Based Uninterrupted Power Supply System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less downtime for applications and labor involved in replacing an ultracapacitor versus batteries. Also, the lengthy lifespan of this design would greatly reduce the disposal problems posed by lead acid, nickel cadmium, lithium, and nickel metal hydride batteries. This innovation is recyclable by nature, which further reduces system costs. The disposal of ultracapacitors is simple, as they are constructed of non-hazardous components. They are also safer than batteries in that they can be easily discharged, and left indefinitely in a safe, discharged state where batteries cannot.
A review on prognostic techniques for non-stationary and non-linear rotating systems
NASA Astrophysics Data System (ADS)
Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph
2015-10-01
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Bad Actors Criticality Assessment for Pipeline system
NASA Astrophysics Data System (ADS)
Nasir, Meseret; Chong, Kit wee; Osman, Sabtuni; Siaw Khur, Wee
2015-04-01
Failure of a pipeline system could bring huge economic loss. In order to mitigate such catastrophic loss, it is required to evaluate and rank the impact of each bad actor of the pipeline system. In this study, bad actors are known as the root causes or any potential factor leading to the system downtime. Fault Tree Analysis (FTA) is used to analyze the probability of occurrence for each bad actor. Bimbaum's Importance and criticality measure (BICM) is also employed to rank the impact of each bad actor on the pipeline system failure. The results demonstrate that internal corrosion; external corrosion and construction damage are critical and highly contribute to the pipeline system failure with 48.0%, 12.4% and 6.0% respectively. Thus, a minor improvement in internal corrosion; external corrosion and construction damage would bring significant changes in the pipeline system performance and reliability. These results could also be useful to develop efficient maintenance strategy by identifying the critical bad actors.
Adaptive seamless designs: selection and prospective testing of hypotheses.
Jennison, Christopher; Turnbull, Bruce W
2007-01-01
There is a current trend towards clinical protocols which involve an initial "selection" phase followed by a hypothesis testing phase. The selection phase may involve a choice between competing treatments or different dose levels of a drug, between different target populations, between different endpoints, or between a superiority and a non-inferiority hypothesis. Clearly there can be benefits in elapsed time and economy in organizational effort if both phases can be designed up front as one experiment, with little downtime between phases. Adaptive designs have been proposed as a way to handle these selection/testing problems. They offer flexibility and allow final inferences to depend on data from both phases, while maintaining control of overall false positive rates. We review and critique the methods, give worked examples and discuss the efficiency of adaptive designs relative to more conventional procedures. Where gains are possible using the adaptive approach, a variety of logistical, operational, data handling and other practical difficulties remain to be overcome if adaptive, seamless designs are to be effectively implemented.
An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems
NASA Astrophysics Data System (ADS)
Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu
2018-04-01
There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.
Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Dodson, R. Ellis, C. Priniski, S. Raftopoulos, D. Stevens, M. Viola
2009-02-04
Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurementbased (ADM) laser trackers,more » as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes.« less
NASA Astrophysics Data System (ADS)
Mansur, A.; Rayendra, R.; Mastur, MI
2016-01-01
Mistakes during working can trigger a decrease in production level that may lead financial loss to the company. The factors that affect the mistakes are called losses, such as breakdown loss, set up/ adjustment loss, idling and minor stoppage loss, reduced speed loss, reduced yield loss, and rework loss. The objective of the research is to accelerate the performance of the JSW 330T machine in PT. YogyaPresisiTehnikatamaIndustri. JSW 330T is a machine that has the highest downtime numbers. The method for measuring the effectiveness is using the Overall Equipment Effectiveness (OEE). The results of the research show that the JWQ 330T has average rate of the effectiveness (OEE) of 52.66%, availability ratioof 73.43%, performance efficiency rate of 83.58% and quality rate of 84.6%. From the six big losses calculation, the factor that affects the most on the low score of OEE is the breakdown loss which is 58.85% with total time loss of 929.65 hours in a year.
Failure Scenarios and Mitigations for the BABAR Superconducting Solenoid
NASA Astrophysics Data System (ADS)
Thompson, EunJoo; Candia, A.; Craddock, W. W.; Racine, M.; Weisend, J. G.
2006-04-01
The cryogenic department at the Stanford Linear Accelerator Center is responsible for the operation, troubleshooting, and upgrade of the 1.5 Tesla superconducting solenoid detector for the BABAR B-factory experiment. Events that disable the detector are rare but significantly impact the availability of the detector for physics research. As a result, a number of systems and procedures have been developed over time to minimize the downtime of the detector, for example improved control systems, improved and automatic backup systems, and spares for all major components. Together they can prevent or mitigate many of the failures experienced by the utilities, mechanical systems, controls and instrumentation. In this paper we describe various failure scenarios, their effect on the detector, and the modifications made to mitigate the effects of the failure. As a result of these modifications the reliability of the detector has increased significantly with only 3 shutdowns of the detector due to cryogenics systems over the last 2 years.
Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.Andreson
2004-10-01
Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs.more » As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.« less
Fernández, Marcela T; Gómez, Adrián R; Santojanni, Américo M; Cancio, Alfredo H; Luna, Daniel R; Benítez, Sonia E
2015-01-01
Electronic Health Record system downtimes may have a great impact on patient care continuity. This paper describes the analysis and actions taken to redesign the Contingency Plan Procedure for the Electronic Health Record System of Hospital Italiano de Buenos Aires. After conducting a thorough analysis of the data gathered at post-contingency meetings, weaknesses were identified in the procedure; thus, strategic actions were recommended to redesign the Contingency Plan to secure an effective communications channel, as well as a formal structure for functions that may support the decision-making process. The main actions were: 1) to incorporate the IT Contingencies Committee (Plan management); 2) to incorporate the Coordinator (general supervision of the procedure); and 3) to redefine the role of the Clinical Informatics Resident, who will be responsible for managing communication between the technical team and Electronic Health Record users. As users need the information for continuity of care, key users evaluated the impact of the new strategy with an adapted survey.
ETARA PC version 3.3 user's guide: Reliability, availability, maintainability simulation model
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Viterna, Larry A.
1991-01-01
A user's manual describing an interactive, menu-driven, personal computer based Monte Carlo reliability, availability, and maintainability simulation program called event time availability reliability (ETARA) is discussed. Given a reliability block diagram representation of a system, ETARA simulates the behavior of the system over a specified period of time using Monte Carlo methods to generate block failure and repair intervals as a function of exponential and/or Weibull distributions. Availability parameters such as equivalent availability, state availability (percentage of time as a particular output state capability), continuous state duration and number of state occurrences can be calculated. Initial spares allotment and spares replenishment on a resupply cycle can be simulated. The number of block failures are tabulated both individually and by block type, as well as total downtime, repair time, and time waiting for spares. Also, maintenance man-hours per year and system reliability, with or without repair, at or above a particular output capability can be calculated over a cumulative period of time or at specific points in time.
Facility Targeting, Protection and Mission Decision Making Using the VISAC Code
NASA Technical Reports Server (NTRS)
Morris, Robert H.; Sulfredge, C. David
2011-01-01
The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.
NASA Astrophysics Data System (ADS)
Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio
2017-11-01
Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prince, J.L.; Lathrop, J.W.
1979-05-01
The results of accelerated stress testing of four different types of silicon terrestrial solar cells are discussed. The accelerated stress tests used included bias-temperature tests, bias-temperature-humidity tests, thermal cycle and thermal shock tests, and power cycle tests. Characterization of the cells was performed before stress testing and at periodic down-times, using electrical measurement, visual inspection, and metal adherence pull tests. Electrical parameters measured included short-circuit current, I/sub sc/, open circuit voltage, V/sub oc/, and output power, voltage, and current at the maximum power point, P/sub m/, V/sub m/, and I/sub m/ respectively. Incorporated in the report are the distributions ofmore » the prestress electrical data for all cell types. Data was also obtained on cell series and shunt resistance. Significant differences in the response to the various stress tests was observed between cell types. On the basis of the experience gained in this research work, a suggested Reliability Qualification Test Schedule was developed.« less
Little, Charles M; McStay, Christopher; Oeth, Justin; Koehler, April; Bookman, Kelly
2018-02-01
The use of after-action reviews (AARs) following major emergency events, such as a disaster, is common and mandated for hospitals and similar organizations. There is a recurrent challenge of identified problems not being resolved and repeated in subsequent events. A process improvement technique called a rapid improvement event (RIE) was used to conduct an AAR following a complete information technology (IT) outage at a large urban hospital. Using RIE methodology to conduct the AAR allowed for the rapid development and implementation of major process improvements to prepare for future IT downtime events. Thus, process improvement methodology, particularly the RIE, is suited for conducting AARs following disasters and holds promise for improving outcomes in emergency management. Little CM , McStay C , Oeth J , Koehler A , Bookman K . Using rapid improvement events for disaster after-action reviews: experience in a hospital information technology outage and response. Prehosp Disaster Med. 2018;33(1):98-100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, D.R.
The Tritium Storage and Delivery System (TSDS) at TFTR was fabricated at Monsanto Mound Lab in the late 1970`s and delivered to PPPL in the early 1980`s. Commissioning progressed slowly and was finally completed in 1992 following a series of Preoperational tests and Integrated Systems tests. Those tests included thorough leak testing of glove boxes and process piping, electrical interlocks and controls, instrumentation calibrations, volume determinations and verification of uranium bed capacity. The system accepted tritium in dilute form in May of 1993 and began serious usage of pure tritium in November 1993. As the throughput of high purity tritiummore » increased, shortcomings of the system became evident and extensive repairs were implemented. System leakage and material compatibility were the primary causes of the problems. To date, the system has received, stored and delivered over 500 kCi of tritium and is performing very well. The dedicated quadrupole mass spectrometer and beta scintillator system has been analyzing tritium bearing and pure gas streams for over 3 years with minimal downtime.« less
NASA Astrophysics Data System (ADS)
Langevin, Dominique; Saint-Jalmes, Arnaud; Marze, Sébastien; Cox, Simon; Hutzler, Stefan; Drenckhan, Wiebke; Weaire, Denis; Caps, Hervé; Vandewalle, Nicolas; Adler, Micheàle; Pitois, Olivier; Rouyer, Florence; Cohen-Addad, Sylvie; Höhler, Reinhard; Ritacco, Hernan
2005-10-01
Foams and foaming pose important questions and problems to the chemical industry. As a material, foam is unusual in being a desired product while also being an unwanted byproduct within industry. Liquid foams are an essential part of gas/liquid contacting processes such as distillation and absorption, but over-production of foam in these processes can lead to downtime and loss of efficiency. Solid polymeric foams, such as polystyrene and polyurethane, find applications as insulation panels in the construction industry. Their combination of low weight and unique elastic/plastic properties make them ideal as packing and cushioning materials. Foams made with proteins are extensively used in the food industry. Despite the fact that foam science is a rapidly maturing field, critical aspects of foam physics and chemistry remain unclear. Several gaps in knowledge were identified to be tackled as the core of this MAP project. In addition, microgravity affords conditions for extending our understanding far beyond the possibilities offered by ground-based investigation. This MAP project addresses the challenges posed by the physics of foams under microgravity.
NASA Technical Reports Server (NTRS)
1977-01-01
Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.
A Solution in Search of Problems
NASA Technical Reports Server (NTRS)
1981-01-01
Ferrofluids offered vast-problem solving potential. Under license for the NASA technology, Dr. Ronald Moskowitz and Dr. Ronald Rosensweig formed Ferrofluids Corporation. First problem they found a solution for was related to the manufacture of semiconductor "chips" for use in electronic systems. They developed a magnetic seal composed of ferrofluid and a magnetic circuit. Magnetic field confines the ferrofluid in the regions between the stationary elements and the rotary shaft of the seal. Result is a series of liquid barriers that totally bar passage of contaminants. Seal is virtually wear-proof and has a lifetime measured in billions of shaft revolutions. It has reduced maintenance, minimizes "downtime" of production equipment, and reduces the cost of expensive materials that had previously been lost through seal failures. Products based on ferrofluid are exclusion seals for computer disc drives and inertia dampers for stepper motors. Uses are performance-improving, failure-reducing coolants for hi-fi loudspeakers. Other applications include analytical instrumentation, medical equipment, industrial processes, silicon crystal growing furnaces, plasma processes, fusion research, visual displays, and automated machine tools.
Electronic Clinical Trial Protocol Distribution via the World-Wide Web
Afrin, Lawrence B.; Kuppuswamy, Valarmathi; Slater, Barbara; Stuart, Robert K.
1997-01-01
Clinical trials today typically are inefficient, paper-based operations. Poor community physician awareness of available trials and difficult referral mechanisms also contribute to poor accrual. The Physicians Research Network (PRN) web was developed for more efficient trial protocol distribution and eligibility inquiries. The Medical University of South Carolina's Hollings Cancer Center trials program and two community oncology practices served as a testbed. In 581 man-hours over 18 months, 147 protocols were loaded into PRN. The trials program eliminated all protocol hardcopies except the masters, reduced photocopier use 59%, and saved 1.0 full-time equivalents (FTE), but 1.0 FTE was needed to manage PRN. There were no known security breaches, downtime, or content-related problems. Therefore, PRN is a paperless, user-preferred, reliable, secure method for distributing protocols and reducing distribution errors and delays because only a single copy of each protocol is maintained. Furthermore, PRN is being extended to serve other aspects of trial operations. PMID:8988471
Using ergonomics to enhance safe production at a surface coal mine--a case study with powder crews.
Torma-Krajewski, Janet; Wiehagen, William; Etcheverry, Ann; Turin, Fred; Unger, Richard
2009-10-01
Job tasks that involve exposure to work-related musculoskeletal disorder (WMSD) risk factors may impact both the risk of injury and production downtime. Common WMSD risks factors associated with mining tasks include forceful exertions, awkward postures, repetitive motion, jolting and jarring, forceful gripping, contact stress, and whole body and segmental vibration. Mining environments that expose workers to temperature/humidity extremes, windy conditions, and slippery and uneven walking surfaces also contribute to injury risk. National Institute for Occupational Safety and Health (NIOSH) researchers worked with powder crew members from the Bridger Coal Company to identify and rank routine work tasks based on perceived exposure to WMSD risk factors. This article presents the process followed to identify tasks that workers believed involved the greatest exposure to risk factors and discusses risk reduction strategies. Specifically, the proposed prill truck design changes addressed cab ingress/egress, loading blast holes, and access to the upper deck of the prill truck.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, P.M.
1996-12-31
In order to maximize the profitability of Longwall mining operations, outbye materials handling systems should be cost effectively engineered to both fully harmonize with cyclical surges in output and to maintain high levels of availability. With the introduction of new Longwall systems into existing mines, the upgrading of outbye haulage to handle peak production from the Longwall panel can prove to be extremely expensive and is often unnecessary. In addition, despite high levels of investment in new equipment, many mines are still failing to achieve planned gains in Longwall productivity due to persistent downtime on outbye haulage routes. This papermore » details the planning, production and engineering considerations necessary to maximize profitability by the introduction of moving car bunker systems to underground haulage layouts. It also examines case studies of recent installations within the North American coal mining industry and charts the significant success being achieved in improving profitability at these mines.« less
Sadick, Neil S; Sato, Masaki; Palmisano, Diana; Frank, Ido; Cohen, Hila; Harth, Yoram
2011-10-01
Acne scars are one of the most difficult disorders to treat in dermatology. The optimal treatment system will provide minimal downtime resurfacing for the epidermis and non-ablative deep volumetric heating for collagen remodeling in the dermis. A novel therapy system (EndyMed Ltd., Cesarea, Israel) uses phase-controlled multi-source radiofrequency (RF) to provide simultaneous one pulse microfractional resurfacing with simultaneous volumetric skin tightening. The study included 26 subjects (Fitzpatrick's skin type 2-5) with moderate to severe wrinkles and 4 subjects with depressed acne scars. Treatment was repeated each month up to a total of three treatment sessions. Patients' photographs were graded according to accepted scales by two uninvolved blinded evaluators. Significant reduction in the depth of wrinkles and acne scars was noted 4 weeks after therapy with further improvement at the 3-month follow-up. Our data show the histological impact and clinical beneficial effects of simultaneous RF fractional microablation and volumetric deep dermal heating for the treatment of wrinkles and acne scars.
Kim, Dong Seong; Park, Jong Sou
2014-01-01
It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732
Undersea fiber optic technology for the offshore community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariano, J.J.
The explosive growth in demand for global communications has been met by a rapid evolution in the undersea fiber-optic technology, which in just a few years has become the predominant method of communication across the world`s oceans and seas. As the scope of applications has become broader, the technology has become more diverse, and now comprises a range of products capable of providing economical, reliable service in any subsea environment, from ocean depths to coastal lagoons. In this paper, the authors discuss how undersea lightwave technology is being applied to meet the communication and production control needs of the offshoremore » oil and gas industry. They discuss the trends and technology developments that are changing the economics of undersea fiber-optic communication networks, as well as synergies in the offshore industry. They consider various applications for the industry and means of enhancing the profitability of platform operations through reduced downtime, reduced operating cost, and enhanced safety. Finally, they discuss extensions to exploratory drilling and land-based operations.« less
Operating Experience and Reliability Improvements on the 5 kW CW Klystron at Jefferson Lab
NASA Astrophysics Data System (ADS)
Nelson, R.; Holben, S.
1997-05-01
With substantial operating hours on the RF system, considerable information on reliability of the 5 kW CW klystrons has been obtained. High early failure rates led to examination of the operating conditions and failure modes. Internal ceramic contamination caused premature failure of gun potting material and ultimate tube demise through arcing or ceramic fracture. A planned course of repotting and reconditioning of approximately 300 klystrons, plus careful attention to operating conditions and periodic analysis of operational data, has substantially reduced the failure rate. It is anticipated that implementation of planned supplemental monitoring systems for the klystrons will allow most catastrophic failures to be avoided. By predicting end of life, tubes can be changed out before they fail, thus minimizing unplanned downtime. Initial tests have also been conducted on this same klystron operated at higher voltages with resultant higher output power. The outcome of these tests will provide information to be considered for future upgrades to the accelerator.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Meyer, Marit E.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary
2015-01-01
The ISS presently recovers oxygen from crew respiration via a Carbon Dioxide Reduction Assembly (CRA) that utilizes the Sabatier chemical process to reduce captured carbon dioxide to methane (CH4) and water. In order to recover more of the hydrogen from the methane and increase oxygen recovery, NASA Marshall Space Flight Center (MSFC) is investigating a technology, plasma pyrolysis, to convert the methane to acetylene. The Plasma Pyrolysis Assembly (or PPA), achieves 90% or greater conversion efficiency, but a small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. In this work, we present the experimental results of an initial characterization of the carbon particulates in the PPA exit gas stream. We also present several potential options to remove these carbon particulates via carbon traps and filters to minimize resupply mass and required downtime for regeneration.
Economic impacts of a California tsunami
Rose, Adam; Wing, Ian Sue; Wei, Dan; Wein, Anne
2016-01-01
The economic consequences of a tsunami scenario for Southern California are estimated using computable general equilibrium analysis. The economy is modeled as a set of interconnected supply chains interacting through markets but with explicit constraints stemming from property damage and business downtime. Economic impacts are measured by the reduction of Gross Domestic Product for Southern California, Rest of California, and U.S. economies. For California, total economic impacts represent the general equilibrium (essentially quantity and price multiplier) effects of lost production in industries upstream and downstream in the supply-chain of sectors that are directly impacted by port cargo disruptions at Port of Los Angeles and Port of Long Beach (POLA/POLB), property damage along the coast, and evacuation of potentially inundated areas. These impacts are estimated to be $2.2 billion from port disruptions, $0.9 billion from property damages, and $2.8 billion from evacuations. Various economic-resilience tactics can potentially reduce the direct and total impacts by 80–85%.
Artificial Intelligence Application in Power Generation Industry: Initial considerations
NASA Astrophysics Data System (ADS)
Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.
2016-03-01
With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.
Residual Stress Measurement and the Effect of Heat Treatment in Cladded Control Rod Drive Specimens
NASA Astrophysics Data System (ADS)
Bowman, Ashley; Kingston, Ed; Katsuyama, Jinya; Udagawa, Makoto; Onizawa, Kunio
This paper presents results of residual stress measurements and modelling within the cladding and J-groove weld of Control Rod Drive (CRD) specimens in the as-welded and Post Weld Heat Treated (PWHT) states. Knowledge of the residual stresses present in CRD nozzles is critical when modelling the fracture mechanics of failures of nuclear power plant components to dictate inspections intervals and optimise plant downtime. The specimens comprised of ferritic steel blocks with 309L stainless steel cladding and a single J-groove weld attaching the 304 stainless steel nozzles. Multiple measurements were made through the thickness of the specimens in order to give biaxial residual stress profiles through all the different fusion boundaries. The results show the effect of PWHT in reducing residual stresses both in the weld and ferritic material. The beneficial use of measurements is highlighted to provide confidence in the modelled results and prevent over conservatism in integrity calculations, costing unnecessary time and money.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, S.M.
1995-01-01
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies inmore » the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical conditions. The other two benchmark critical calculations were the beginning-of-cycle (BOC) startup at both hot, zero-power (HZP) and HFP critical conditions. These latter calculations were used to check for consistency in the calculated results for different burnups and downtimes. The k{sub eff} results were in the range of 1.00014 to 1.00259 with a standard deviation of less than 0.001.« less
Application of a neural network as a potential aid in predicting NTF pump failure
NASA Technical Reports Server (NTRS)
Rogers, James L.; Hill, Jeffrey S.; Lamarsh, William J., II; Bradley, David E.
1993-01-01
The National Transonic Facility has three centrifugal multi-stage pumps to supply liquid nitrogen to the wind tunnel. Pump reliability is critical to facility operation and test capability. A highly desirable goal is to be able to detect a pump rotating component problem as early as possible during normal operation and avoid serious damage to other pump components. If a problem is detected before serious damage occurs, the repair cost and downtime could be reduced significantly. A neural network-based tool was developed for monitoring pump performance and aiding in predicting pump failure. Once trained, neural networks can rapidly process many combinations of input values other than those used for training to approximate previously unknown output values. This neural network was applied to establish relationships among the critical frequencies and aid in predicting failures. Training pairs were developed from frequency scans from typical tunnel operations. After training, various combinations of critical pump frequencies were propagated through the neural network. The approximated output was used to create a contour plot depicting the relationships of the input frequencies to the output pump frequency.
Automating Mid- and Long-Range Scheduling for the NASA Deep Space Network
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Tran, Daniel
2012-01-01
NASA has recently deployed a new mid-range scheduling system for the antennas of the Deep Space Network (DSN), called Service Scheduling Software, or S(sup 3). This system was designed and deployed as a modern web application containing a central scheduling database integrated with a collaborative environment, exploiting the same technologies as social web applications but applied to a space operations context. This is highly relevant to the DSN domain since the network schedule of operations is developed in a peer-to-peer negotiation process among all users of the DSN. These users represent not only NASA's deep space missions, but also international partners and ground-based science and calibration users. The initial implementation of S(sup 3) is complete and the system has been operational since July 2011. This paper describes some key aspects of the S(sup 3) system and on the challenges of modeling complex scheduling requirements and the ongoing extension of S(sup 3) to encompass long-range planning, downtime analysis, and forecasting, as the next step in developing a single integrated DSN scheduling tool suite to cover all time ranges.
DATMAN: A reliability data analysis program using Bayesian updating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, M.; Feltus, M.A.
1996-12-31
Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, whichmore » can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately.« less
Fault discovery protocol for passive optical networks
NASA Astrophysics Data System (ADS)
Hajduczenia, Marek; Fonseca, Daniel; da Silva, Henrique J. A.; Monteiro, Paulo P.
2007-06-01
All existing flavors of passive optical networks (PONs) provide an attractive alternative to legacy copper-based access lines deployed between a central office (CO) of the service provider (SP) and a customer site. One of the most challenging tasks for PON network planners is the reduction of the overall cost of employing protection schemes for the optical fiber plant while maintaining a reasonable level of survivability and reducing the downtime, thus ensuring acceptable levels of quality of service (QoS) for end subscribers. The recently growing volume of Ethernet PONs deployment [Kramer, IEEE 802.3, CFI (2006)], connected with low-cost electronic and optical components used in the optical network unit (ONU) modules, results in the situation where remote detection of faulty/active subscriber modules becomes indispensable for proper operation of an EPON system. The problem of the remote detection of faulty ONUs in the system is addressed where the upstream channel is flooded with the cw transmission from one or more damaged ONUs and standard communication is severed, providing a solution that is applicable in any type of PON network, regardless of the operating protocol, physical structure, and data rate.
The true value and return on investment of business continuity.
Phelps, Regina
2018-01-01
The phrase return on investment (ROI) is commonly heard when groups or organisations attempt to demonstrate the value of a particular activity. 'Is it good for us?', 'Is it worth the investment?' and 'Should we continue to fund the endeavour?' are all valid and important questions. The challenge for business continuity professionals is to address the question, 'What is the ROI of business continuity?' in ways that will be meaningful to the person wielding the budget stick. In the 'olden days', colleagues would point to their business impact analysis, with pie charts and bar graphs showing the cost of business downtime if an event occurred. They would sit back and say, 'See? We provide ROI because we addressed The Bad Thing!'. But is that really the best that continuity professionals can do? This paper peels back the question of ROI and addresses the value proposition of business continuity. The goal is to broaden the conversation, by instead of talking about how much money business continuity efforts will save the company, and instead to focus on the value that business continuity provides every day.
[Examination of safety improvement by failure record analysis that uses reliability engineering].
Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo
2010-08-20
How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety.
Mutiple Czochralski growth of silicon crystals from a single crucible
NASA Technical Reports Server (NTRS)
Lane, R. L.; Kachare, A. H.
1980-01-01
An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.
Thermoplastic film prevents proppant flowback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, P.D.; Weaver, J.D.; Parker, M.A.
1996-02-05
Thermoplastic film added to proppants is effective and economical for preventing proppant flowback after an hydraulic fracturing treatment. Most other methods, such as resin-coated proppant and fiber, for controlling proppant flowback have drawbacks that added to treatment costs by requiring long downtime, costly additives, or frequent equipment replacement. Thermoplastic film does not react chemically with fracturing fluids. After the proppant is placed in the fracture, the film strips intertwine with the proppant grains or at higher temperatures, the strips become adhesive and shrink forming consolidated clusters that hold open the newly created fractures and prevent proppant from flowing back. Themore » low cost of the film means that the strips can be used throughout the fracturing job or in selected stages. The strips are compatible with fracturing fluid chemistry, including breakers and crosslinkers, and can be used in wells with a wide range of bottom hole temperatures. The end result is a well that can be brought back on-line in a short time with little proppant flowback. This paper reviews the cost benefits and performance of these proppants.« less
Mechanical stability of propped hydraulic fractures: A numerical study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgian, M.I.; Cundall, P.A.; Brady, B.H.
1995-03-01
Proppant is sometimes produced along with hydrocarbons in hydraulically fractured petroleum wells. Sometimes 10% to 20% of the proppant is backproduced, which can lead to damaged equipment and downtime. Furthermore, proppant flowback can lead to a substantial loss of fracture conductivity. A numerical study was conducted to help understand what conditions are likely to lead to proppant flowback. In the simulations, the mechanical interaction of a larger number (several thousand) individual proppant grains was modeled with a distinct-element-type code. The numerical simulations show that hydraulic fractures propped with cohesionless, unbonded proppant fail under closure stress at a critical ratio ofmore » mean grain diameter to fracture width. This is consistent with published laboratory studies. The simulations identify the mechanism (arch failure) that triggers the mechanical instability and also show that the primary way that drawdowns (less than {approx} 75 psi/ft) affect proppant flowback is to transport loose proppant grains in front of the stable arch to the wellbore. Drawdowns > 75 psi/ft are sufficient to destabilize the arch and to cause progressive failure of the propped fractures.« less
MS-BWME: A Wireless Real-Time Monitoring System for Brine Well Mining Equipment
Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan
2014-01-01
This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications. PMID:25340455
David, Frank; Tienpont, Bart; Devos, Christophe; Lerch, Oliver; Sandra, Pat
2013-10-25
Laboratories focusing on residue analysis in food are continuously seeking to increase sample throughput by minimizing sample preparation. Generic sample extraction methods such as QuEChERS lack selectivity and consequently extracts are not free from non-volatile material that contaminates the analytical system. Co-extracted matrix constituents interfere with target analytes, even if highly sensitive and selective GC-MS/MS is used. A number of GC approaches are described that can be used to increase laboratory productivity. These techniques include automated inlet liner exchange and column backflushing for preservation of the performance of the analytical system and heart-cutting two-dimensional GC for increasing sensitivity and selectivity. The application of these tools is illustrated by the analysis of pesticides in vegetables and fruits, PCBs in milk powder and coplanar PCBs in fish. It is demonstrated that considerable increase in productivity can be achieved by decreasing instrument down-time, while analytical performance is equal or better compared to conventional trace contaminant analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Distilling the Verification Process for Prognostics Algorithms
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai
2013-01-01
The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.
A Risk Analysis of the Molybdenum-99 Supply Chain Using Bayesian Networks
NASA Astrophysics Data System (ADS)
Liang, Jeffrey Ryan
The production of Molybdenum-99 (99Mo) is critical to the field of nuclear medicine, where it is utilized in roughly 80% of all nuclear imaging procedures. In October of 2016, the National Research Universal (NRU) reactor in Canada, which historically had the highest 99Mo production capability worldwide, ceased routine production and will be permanently shut down in 2018. This loss of capacity has led to widespread concern over the ability of the 99Mo supply chain and to meet demand. There is significant disagreement among analyses from trade groups, governments, and other researchers, predicting everything from no significant impact to major worldwide shortages. Using Bayesian networks, this research focused on modeling the 99Mo supply chain to quantify how a disrupting event, such as the unscheduled downtime of a reactor, will impact the global supply. This not only includes quantifying the probability of a shortage occurring, but also identifying which nodes in the supply chain introduce the most risk to better inform decision makers on where future facilities or other risk mitigation techniques should be applied.
A Capacity Forecast Model for Volatile Data in Maintenance Logistics
NASA Astrophysics Data System (ADS)
Berkholz, Daniel
2009-05-01
Maintenance, repair and overhaul processes (MRO processes) are elaborate and complex. Rising demands on these after sales services require reliable production planning and control methods particularly for maintaining valuable capital goods. Downtimes lead to high costs and an inability to meet delivery due dates results in severe contract penalties. Predicting the required capacities for maintenance orders in advance is often difficult due to unknown part conditions unless the goods are actually inspected. This planning uncertainty results in extensive capital tie-up by rising stock levels within the whole MRO network. The article outlines an approach to planning capacities when maintenance data forecasting is volatile. It focuses on the development of prerequisites for a reliable capacity planning model. This enables a quick response to maintenance orders by employing appropriate measures. The information gained through the model is then systematically applied to forecast both personnel capacities and the demand for spare parts. The improved planning reliability can support MRO service providers in shortening delivery times and reducing stock levels in order to enhance the performance of their maintenance logistics.
Navigation Ground Data System Engineering for the Cassini/Huygens Mission
NASA Technical Reports Server (NTRS)
Beswick, R. M.; Antreasian, P. G.; Gillam, S. D.; Hahn, Y.; Roth, D. C.; Jones, J. B.
2008-01-01
The launch of the Cassini/Huygens mission on October 15, 1997, began a seven year journey across the solar system that culminated in the entry of the spacecraft into Saturnian orbit on June 30, 2004. Cassini/Huygens Spacecraft Navigation is the result of a complex interplay between several teams within the Cassini Project, performed on the Ground Data System. The work of Spacecraft Navigation involves rigorous requirements for accuracy and completeness carried out often under uncompromising critical time pressures. To support the Navigation function, a fault-tolerant, high-reliability/high-availability computational environment was necessary to support data processing. Configuration Management (CM) was integrated with fault tolerant design and security engineering, according to the cornerstone principles of Confidentiality, Integrity, and Availability. Integrated with this approach are security benchmarks and validation to meet strict confidence levels. In addition, similar approaches to CM were applied in consideration of the staffing and training of the system administration team supporting this effort. As a result, the current configuration of this computational environment incorporates a secure, modular system, that provides for almost no downtime during tour operations.
Cohen, Joel L; Weiner, Steven F; Pozner, Jason N; Ibrahimi, Omar A; Vasily, David B; Ross, E Victor; Gabriel, Zena
2016-11-01
In this multi-center pilot study, the safety pro le of high intensity focused radiofrequency (RF) delivered to the dermis was evaluated for safety in the treatment of the aging neck and face. A newly designed insulated microneedle system delivers a signi cant coagulative thermal injury into the dermis while sparing the epidermis from RF injury. Thirty- ve healthy subjects from seven aesthetic practices were evaluated, and data from each were incorporated in this case report. The subjects received a single treatment using settings that delivered the highest RF energies suggested from the new recommended protocols. The depth of thermal delivery was adjusted before each pass and all subjects received a minimum of two to three passes to the treated areas. Before and after photographs along with adverse effects were recorded. This case report demonstrates the ability to deliver significant RF thermal injury to several layers of the dermis with insulated microneedles safely with little injury to the epidermis and minimum downtime. J Drugs Dermatol. 2016;15(11):1308-1312..
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Tatara, J. D.
2005-01-01
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.
Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen
2012-01-01
Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε̄ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε̄ describes the accelerating relationships between the damage development and running time. However, the index ε̄ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε̄ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly. PMID:23112591
Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen
2012-01-01
Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε⁻ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε⁻ describes the accelerating relationships between the damage development and running time. However, the index ε⁻ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε⁻ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly.
Adjuncts to Improve Nasal Reconstruction Results.
Gordon, Shayna Lee; Hurst, Eva A
2017-02-01
The final cosmetic appearance of nasal reconstruction scars is of paramount importance to both the patient and surgeon. Ideal postreconstruction nasal scars are flat and indistinguishable from surrounding skin. Unfortunately, even with meticulous surgical execution, nasal scars can occasionally be suboptimal. Abnormal fibroblast response can lead to hypertrophic nasal scars, and excessive angiogenesis may lead to telangiectasias or an erythematous scar. Imperfect surgical closure or poor postoperative management can lead to surgical outcomes with step-offs, depressions, suture marks, or dyspigmentation. Aesthetically unacceptable nasal scars can cause pruritus, tenderness, pain, sleep disturbance, and anxiety and depression in postsurgical patients. Fortunately, there are several minimally invasive or noninvasive techniques that allow for enhancement and improvement of cosmetic results with minimal risk and associated downtime. This article provides an overview of adjuncts to improve nasal reconstruction with a focus on techniques to be used in the postoperative period. Armed with an understanding of relevant available therapies, skillful surgeons may drastically improve the final cosmesis and outcome of nasal reconstruction scars. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Use of direct washing of chemical dispense nozzle for defect control
NASA Astrophysics Data System (ADS)
Linnane, Michael; Mack, George; Longstaff, Christopher; Winter, Thomas
2006-03-01
Demands for continued defect reduction in 300mm IC manufacturing are driving process engineers to examine all aspects of the chemical apply process for improvement. Historically, the defect contribution from photoresist apply nozzles has been minimized through a carefully controlled process of "dummy dispenses" to keep the photoresist in the tip "fresh" and remove any solidified material, a preventive maintenance regime involving periodic cleaning or replacing of the nozzles, and reliance on a pool of solvent within the nozzle storage block to keep the photoresist from solidifying at the nozzle tip. The industry standard has worked well for the most part but has limitations in terms of cost effectiveness and absolute defect elimination. In this study, we investigate the direct washing of the chemical apply nozzle to reduce defects seen on the coated wafer. Data is presented on how the direct washing of the chemical dispense nozzle can be used to reduce coating related defects, reduce material costs from the reduction of "dummy dispense", and can reduce equipment downtime related to nozzle cleaning or replacement.
Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Bush, Richard
2016-01-01
Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.
Greijmans, Ellen; Luiting-Welkenhuyzen, Hedwig; Luijks, Harriet; Bovenschen, H Jorn
2016-07-01
Although not an accepted standard treatment, the 532-nm continuous wave potassium titanyl phosphate (CW-KTP) laser might be a powerful device to treat xanthelasma palpebrarum (XP). To determine the safety and efficacy of CW-KTP laser treatment for XP. Between January 2013 and January 2015, 30 consecutive patients with XP were treated with a 532-nm CW-KTP laser (spot size: 0.9 mm, power: 5.0 W, fluence: 36-38 J/cm, pulse width: 46 milliseconds, frequency: 2.0 Hz, passes per session: 3). In a retrospective study design, safety and efficacy data were collected and analyzed. Overall, 29/30 (97%) of patients had an excellent cosmetical result. Downtime was 1 week with crusted lesions. Although slight hypopigmentation was common, only 1/30 (3%) patients had hypopigmentation that was more than expected. Recurrences (13/30; 43%) were frequent, so that yearly maintenance therapy was warranted. No major side effects were noticed. Continuous wave KTP laser therapy is safe and highly effective for XP, although regular follow-up treatments are often necessary to maintain the achieved cosmetic results.
NASA Astrophysics Data System (ADS)
Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal
2014-03-01
Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divan, Deepak; Brumsickle, William; Eto, Joseph
2003-04-01
This report describes a new approach for collecting information on power quality and reliability and making it available in the public domain. Making this information readily available in a form that is meaningful to electricity consumers is necessary for enabling more informed private and public decisions regarding electricity reliability. The system dramatically reduces the cost (and expertise) needed for customers to obtain information on the most significant power quality events, called voltage sags and interruptions. The system also offers widespread access to information on power quality collected from multiple sites and the potential for capturing information on the impacts ofmore » power quality problems, together enabling a wide variety of analysis and benchmarking to improve system reliability. Six case studies demonstrate selected functionality and capabilities of the system, including: Linking measured power quality events to process interruption and downtime; Demonstrating the ability to correlate events recorded by multiple monitors to narrow and confirm the causes of power quality events; and Benchmarking power quality and reliability on a firm and regional basis.« less
Application test of a Detection Method for the Enclosed Turbine Runner Chamber
NASA Astrophysics Data System (ADS)
Liu, Yunlong; Shen, Dingjie; Xie, Yi; Yang, Xiangwei; Long, Yi; Li, Wenbo
2017-06-01
At present, for the existing problems of the testing methods for the key hidden metal components of the turbine runner chamber, such as the poor reliability, the inaccurate locating and the larger detection blind spots of the detection device, under the downtime without opening the cover of the hydropower turbine runner chamber, an automatic detection method based on real-time image acquisition and simulation comparison techniques was proposed. By using the permanent magnet wheel, the magnetic crawler which carry the real-time image acquisition device, could complete the crawling work on the inner surface of the enclosed chamber. Then the image acquisition device completed the real-time collection of the scene image of the enclosed chamber. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.
NASA Astrophysics Data System (ADS)
Al-Jader, M. A.; Cullen, J. D.; Shaw, Andy; Al-Shamma'a, A. I.
2011-08-01
Currently there are about 4300 weld points on the average steel vehicle. Errors and problems due to tip damage and wear can cause great losses due to production line downtime. Current industrial monitoring systems check the quality of the nugget after processing 15 cars average once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. In this paper a simulation results using software package, SORPAS, will be presented to determined the sustainability factors in spot welding process including Voltage, Current, Force, Water cooling rates, Material thicknesses and usage. The experimental results of various spot welding processes will be investigated and reported. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. This paper also provides an overview of electrode current selection and its variance over the lifetime of the electrode tip, and describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.
Reliability of Beam Loss Monitors System for the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Guaglio, G.; Dehning, B.; Santoni, C.
2004-11-01
The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.
Mechanical Design of the LHC Standard Half-Cell
NASA Astrophysics Data System (ADS)
Poncet, A.; Brunet, J. C.; Cruikshank, P.; Genet, M.; Parma, V.; Rohmig, P.; Saban, R.; Tavian, L.; Veness, R.; Vlogaert, J.; Williams, L. R.
1997-05-01
The LHC Conceptual Design Report issued on 20th October 1995 (CERN/AC/95-05 (LHC) - nicknamed "Yellow Book") introduced significant changes to some fundamental features of the LHC standard half-cell, composed of one quadrupole, 3 dipoles and a set of corrector magnets. A separate cryogenic distribution line was introduced, which was previously inside the main cryostat. The dipole length has been increased from 10 to 15 m and independent powering of the focusing and defocusing quadrupole magnets was chosen. Individual quench protection diodes were introduced in magnets interconnects and many auxiliary bus bars were added to feed in series the various families of correcting superconducting magnets. The various highly intricate basic systems such as: cryostats and cryogenics feeders, superconducting magnets and their electrical feeding and protection, vacuum beam screen and its cooling, support and alignment devices have been redesigned, taking into account the very tight space available. These space constraints are given by the necessity to have maximum integral bending field strength for maximum LHC energy, and the existing LHC tunnel. Finally, cryogenic and vacuum sectorisation have been introduced to reduce downtimes and facilitate commissioning.
Factors influencing nurses' attitudes towards healthcare information technology.
Huryk, Laurie A
2010-07-01
This literature review examines the current trend in nurses' attitudes toward healthcare information technology (HIT). HIT implementation and expansion are at the core of global efforts to improve healthcare quality and patient safety. As a large portion of the healthcare workforce, nurses' attitudes towards HIT are likely to have a major impact on the electronic health record (EHR) implementation process. A search of PubMed, CINAHL and Medline databases produced 1930 combined hits. Returned articles were scanned for relevancy and applicability. Thirteen articles met all criteria and were subsequently reviewed in their entirety. In accordance with two change theories, if HIT implementation projects are to be successful, nurses must recognize that incorporating EHRs into their daily practice is beneficial to patient outcomes. Overall, the attitudes of nurses toward HIT are positive. Increased computer experience is the main demographic indicator for positive attitudes. The most common detractors are poor system design, system slowdown and system downtime. Nurses are also fearful that the use of technology will dehumanize patient care. Involving nurses in system design is likely to improve post-implementation satisfaction. Creating a positive, supportive atmosphere appears to be instrumental to sustainability.
New Technical Solution for Vertical Shaft Equipping Using Steel Headframe of Multifunction Purpose
NASA Astrophysics Data System (ADS)
Kassikhina, Elena; Pershin, Vladimir; Glazkov, Yurij
2017-11-01
The article reviews a novel approach to the design of steel angle headframe for vertical shafts of coal and ore mines on the basis of rational design solutions. Practice of construction of coal and ore mines provides application of various designs for steel angle headframes which are divided into separate large assembly blocks and constructive elements during assembling operations. Design of these blocks and elements, their weight and dimensions effect the chose of the method of assembling on which economic and technological indicators, as well as duration of down-time, depend on during performance of construction operations in shaft. The technical solution on equipment provision for mine vertical shaft using headframe of multifunctional purpose will allow changing the management construction of vertical shaft. The constructive design of the headgear allows application of the effective method of assembly and thus to provide improvement of the technical and economic indexes, and high calendar time rate of the shaft construction due to reduction of duration of works on equipment provision for the shaft and to refurbishment of the shaft in order to carry out horizontal mining.
NASA Astrophysics Data System (ADS)
Gillet, Gordon; Alvarez, José Luis; Beltrán, Juan; Bourget, Pierre; Castillo, Roberto; Diaz, Álvaro; Haddad, Nicolás; Leiva, Alfredo; Mardones, Pedro; O'Neal, Jared; Ribes, Mauricio; Riquelme, Miguel; Robert, Pascal; Rojas, Chester; Valenzuela, Javier
2010-07-01
This presentation provides interesting miscellaneous information regarding the instrumentation activities at Paranal Observatory. It introduces the suite of 23 instruments and auxiliary systems that are under the responsibility of the Paranal Instrumentation group, information on the type of instruments, their usage and downtime statistics. The data is based on comprehensive data recorded in the Paranal Night Log System and the Paranal Problem Reporting System whose principles are explained as well. The work organization of the 15 team members around the high number of instruments is laid out, which includes: - Maintaining older instruments with obsolete components - Receiving new instruments and supporting their integration and commissioning - Contributing to future instruments in their developing phase. The assignments of the Instrumentation staff to the actual instruments as well as auxiliary equipment (Laser Guide Star Facility, Mask Manufacturing Unit, Cloud Observation Tool) are explained with respect to responsibility and scheduling issues. The essential activities regarding hardware & software are presented, as well as the technical and organizational developments within the group towards its present and future challenges.
Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim
2007-01-01
Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.
Building a maintenance policy through a multi-criterion decision-making model
NASA Astrophysics Data System (ADS)
Faghihinia, Elahe; Mollaverdi, Naser
2012-08-01
A major competitive advantage of production and service systems is establishing a proper maintenance policy. Therefore, maintenance managers should make maintenance decisions that best fit their systems. Multi-criterion decision-making methods can take into account a number of aspects associated with the competitiveness factors of a system. This paper presents a multi-criterion decision-aided maintenance model with three criteria that have more influence on decision making: reliability, maintenance cost, and maintenance downtime. The Bayesian approach has been applied to confront maintenance failure data shortage. Therefore, the model seeks to make the best compromise between these three criteria and establish replacement intervals using Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE II), integrating the Bayesian approach with regard to the preference of the decision maker to the problem. Finally, using a numerical application, the model has been illustrated, and for a visual realization and an illustrative sensitivity analysis, PROMETHEE GAIA (the visual interactive module) has been used. Use of PROMETHEE II and PROMETHEE GAIA has been made with Decision Lab software. A sensitivity analysis has been made to verify the robustness of certain parameters of the model.
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean
2004-04-01
An Application Service Provider (ASP) archive model for disaster recovery for Saint John"s Health Center (SJHC) clinical PACS data has been implemented using a Fault-Tolerant Archive Server at the Image Processing and Informatics Laboratory, Marina del Rey, CA (IPIL) since mid-2002. The purpose of this paper is to provide clinical experiences with the implementation of an ASP model backup archive in conjunction with handheld wireless technologies for a particular disaster recovery scenario, an earthquake, in which the local PACS archive and the hospital are destroyed and the patients are moved from one hospital to another. The three sites involved are: (1) SJHC, the simulated disaster site; (2) IPIL, the ASP backup archive site; and (3) University of California, Los Angeles Medical Center (UCLA), the relocated patient site. An ASP backup archive has been established at IPIL to receive clinical PACS images daily using a T1 line from SJHC for backup and disaster recovery storage. Procedures were established to test the network connectivity and data integrity on a regular basis. In a given disaster scenario where the local PACS archive has been destroyed and the patients need to be moved to a second hospital, a wireless handheld device such as a Personal Digital Assistant (PDA) can be utilized to route images to the second hospital site with a PACS and reviewed by radiologists. To simulate this disaster scenario, a wireless network was implemented within the clinical environment in all three sites: SJHC, IPIL, and UCLA. Upon executing the disaster scenario, the SJHC PACS archive server simulates a downtime disaster event. Using the PDA, the radiologist at UCLA can query the ASP backup archive server at IPIL for PACS images and route them directly to UCLA. Implementation experiences integrating this solution within the three clinical environments as well as the wireless performance are discussed. A clinical downtime disaster scenario was implemented and successfully tested. Radiologists were able to successfully query PACS images utilizing a wireless handheld device from the ASP backup archive at IPIL and route the PACS images directly to a second clinical site at UCLA where they and the patients are located at that time. In a disaster scenario, using a wireless device, radiologists at the disaster health care center can route PACS data from an ASP backup archive server to be reviewed in a live clinical PACS environment at a secondary site. This solution allows Radiologists to use a wireless handheld device to control the image workflow and to review PACS images during a major disaster event where patients must be moved to a secondary site.
Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.L. Rovey
A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strainmore » measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.« less
Ho, C. K.; Pacheco, J. E.
2015-06-05
A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the costmore » of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.« less
Prioritizing equipment for replacement.
Capuano, Mike
2010-01-01
It is suggested that clinical engineers take the lead in formulating evaluation processes to recommend equipment replacement. Their skill, knowledge, and experience, combined with access to equipment databases, make them a logical choice. Based on ideas from Fennigkoh's scheme, elements such as age, vendor support, accumulated maintenance cost, and function/risk were used.6 Other more subjective criteria such as cost benefits and efficacy of newer technology were not used. The element of downtime was also omitted due to the data element not being available. The resulting Periop Master Equipment List and its rationale was presented to the Perioperative Services Program Council. They deemed the criteria to be robust and provided overwhelming acceptance of the list. It was quickly put to use to estimate required capital funding, justify items already thought to need replacement, and identify high-priority ranked items for replacement. Incorporating prioritization criteria into an existing equipment database would be ideal. Some commercially available systems do have the basic elements of this. Maintaining replacement data can be labor-intensive regardless of the method used. There is usually little time to perform the tasks necessary for prioritizing equipment. However, where appropriate, a clinical engineering department might be able to conduct such an exercise as shown in the following case study.
Clearance of yellow tattoo ink with a novel 532-nm picosecond laser.
Alabdulrazzaq, Hamad; Brauer, Jeremy A; Bae, Yoon-Soo; Geronemus, Roy G
2015-04-01
Although technology and tattoo removal methods continue to evolve, yellow pigment clearance continues to be challenging and usually unsuccessful. We describe a case series of six tattoos containing yellow ink, successfully treated with a frequency-doubled Nd:YAG 532-nm picosecond laser. Case series with six subjects participating for the treatment of multicolored tattoos that contain yellow pigment. Treatments performed with a frequency-doubled Nd:YAG 532-nm picosecond laser at 6-8 week intervals. One subject achieved complete clearance of the treated site after one session, and five subjects required 2-4 treatments to achieve over 75% clearance. Minimal downtime was experienced, and no scarring or textural skin changes were observed in any of the treated sites. This is the first case series that demonstrates effective and consistent reduction of yellow tattoo ink using a frequency doubled Nd:YAG 532-nm laser with a picosecond pulse duration. Treatments were well tolerated and subjects had positive outcomes. This is a small observational case series from an ongoing clinical trial, and studies with a larger sample size and comparative group are needed in the future. © 2015 Wiley Periodicals, Inc.
Joshuva, A; Sugumaran, V
2017-03-01
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The distributed agent-based approach in the e-manufacturing environment
NASA Astrophysics Data System (ADS)
Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.
2015-11-01
The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.
Freedom Star tows a barge with an SLWT into Port Canaveral for the first time
NASA Technical Reports Server (NTRS)
1998-01-01
Freedom Star, one of NASA's two solid rocket booster recovery ships, tows a barge containing the third Space Shuttle super lightweight external tank (SLWT) into Port Canaveral. This SLWT will be used to launch the orbiter Discovery on mission STS-95 in October. This first-time towing arrangement, part of a cost savings plan by NASA to prudently manage existing resources, began June 12 from the Michoud Assembly Facility in New Orleans where the Shuttle's external tanks are manufactured. The barge will now be transported up the Banana River to the LC-39 turn basin using a conventional tugboat. Previously, NASA relied on an outside contractor to provide external tank towing services at a cost of about $120,000 per trip. The new plan allows NASA's Space Flight Operations contractor, United Space Alliance (USA), to provide the same service directly to NASA using the recovery ships during their downtime between Shuttle launches. Studies show a potential savings of about $50,000 per trip. The cost of the necessary ship modifications should be paid back by the fourteenth tank delivery. The other recovery ship, Liberty Star, has also undergone deck strengthening enhancements and will soon have the necessary towing winch installed.
NASA Technical Reports Server (NTRS)
1998-01-01
Freedom Star, one of NASA's two solid rocket booster recovery ships, is towing a barge containing the third Space Shuttle Super Lightweight External Tank (SLWT) into Port Canaveral. This SLWT was slated for use to launch the orbiter Discovery on mission STS-95 in October 1998. This first time towing arrangement, part of a cost saving plan by NASA to prudently manage existing resources, began June 12 from the Michoud Assembly Facility in New Orleans where the Shuttle's external tanks were manufactured. The barge was transported up Banana River to the LC-39 turn basin using a conventional tug boat. Previously, NASA relied on an outside contractor to provide external tank towing services at a cost of about $120,000 per trip. The new plan allowed NASA's Space Flight Operations contractor, United Space Alliance (USA), to provide the same service to NASA using the recovery ships during their downtime between Shuttle launches. Studies showed a potential savings of about $50,000 per trip. The cost of the necessary ship modifications would be paid back by the fourteenth tank delivery. The other recovery ship, Liberty Star, also underwent deck strengthening enhancements and had the necessary towing wench installed.
A performance study of unmanned aerial vehicle-based sensor networks under cyber attack
NASA Astrophysics Data System (ADS)
Puchaty, Ethan M.
In UAV-based sensor networks, an emerging area of interest is the performance of these networks under cyber attack. This study seeks to evaluate the performance trade-offs from a System-of-Systems (SoS) perspective between various UAV communications architecture options in the context two missions: tracking ballistic missiles and tracking insurgents. An agent-based discrete event simulation is used to model a sensor communication network consisting of UAVs, military communications satellites, ground relay stations, and a mission control center. Network susceptibility to cyber attack is modeled with probabilistic failures and induced data variability, with performance metrics focusing on information availability, latency, and trustworthiness. Results demonstrated that using UAVs as routers increased network availability with a minimal latency penalty and communications satellite networks were best for long distance operations. Redundancy in the number of links between communication nodes helped mitigate cyber-caused link failures and add robustness in cases of induced data variability by an adversary. However, when failures were not independent, redundancy and UAV routing were detrimental in some cases to network performance. Sensitivity studies indicated that long cyber-caused downtimes and increasing failure dependencies resulted in build-ups of failures and caused significant degradations in network performance.
NASA Astrophysics Data System (ADS)
Alsyouf, Imad
2018-05-01
Reliability and availability of critical systems play an important role in achieving the stated objectives of engineering assets. Preventive replacement time affects the reliability of the components, thus the number of system failures encountered and its downtime expenses. On the other hand, spare parts inventory level is a very critical factor that affects the availability of the system. Usually, the decision maker has many conflicting objectives that should be considered simultaneously for the selection of the optimal maintenance policy. The purpose of this research was to develop a bi-objective model that will be used to determine the preventive replacement time for three maintenance policies (age, block good as new, block bad as old) with consideration of spare parts’ availability. It was suggested to use a weighted comprehensive criterion method with two objectives, i.e. cost and availability. The model was tested with a typical numerical example. The results of the model demonstrated its effectiveness in enabling the decision maker to select the optimal maintenance policy under different scenarios and taking into account preferences with respect to contradicting objectives such as cost and availability.
Method and apparatus for steam mixing a nuclear fueled electricity generation system
Tsiklauri, Georgi V.; Durst, Bruce M.
1996-01-01
A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.
Lasers and laser-like devices: part one.
Stewart, Nicholas; Lim, Adrian C; Lowe, Patricia M; Goodman, Greg
2013-08-01
Lasers have been used in dermatology for nearly 50 years. Through their selective targeting of skin chromophores they have become the preferred treatment for many skin conditions, including vascular malformations, photorejuvenation and acne scars. The technology and design of lasers continue to evolve, allowing greater control of laser parameters and resulting in increased safety and efficacy for patients. Innovations have allowed the range of conditions and the skin types amenable to treatment, in both general and cosmetic dermatology, to expand over the last decade. Integrated skin cooling and laser beam fractionation, for example, have improved safety, patient tolerance and decreased downtime. Furthermore, the availability and affordability of quality devices continues to increase, allowing clinicians not only to access laser therapies more readily but also to develop their personal experience in this field. As a result, most Australian dermatologists now have access to laser therapies, either in their own practice or within referable proximity, and practical knowledge of these technologies is increasingly required and expected by patients. Non-laser energy devices utilising intense pulsed light, plasma, radiofrequency, ultrasound and cryolipolysis contribute to the modern laser practitioners' armamentarium and will also be discussed. © 2013 The Authors. Australasian Journal of Dermatology © 2013 The Australasian College of Dermatologists.
Alternative to Nitric Acid for Passivation of Stainless Steel Alloys
NASA Technical Reports Server (NTRS)
Lewis, Pattie L.; Kolody, Mark; Curran, Jerry
2013-01-01
Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.
NASA Astrophysics Data System (ADS)
Chen, Y.; Ni, Y. Q.; Ye, X. W.; Yang, H. X.; Zhu, S.
2012-04-01
Wind energy utilization as a reliable energy source has become a large industry in the last 20 years. Nowadays, wind turbines can generate megawatts of power and have rotor diameters that are on the order of 100 meters in diameter. One of the key components in a wind turbine is the blade which could be damaged by moisture absorption, fatigue, wind gusts or lighting strikes. The wind turbine blades should be routinely monitored to improve safety, minimize downtime, lower the risk of sudden breakdowns and associated huge maintenance and logistics costs, and provide reliable power generation. In this paper, a real-time wind turbine blade monitoring system using fiber Bragg grating (FBG) sensors with the fiber optic rotary joint (FORJ) is proposed, and applied to monitor the structural responses of a 600 W small scale wind turbine. The feasibility and effectiveness of the FORJ is validated by continuously transmitting the optical signals between the FBG interrogator at the stationary side and the FBG sensors on the rotating part. A comparison study between the measured data from the proposed system and those from an IMote2-based wireless strain measurement system is conducted.
Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment
Lorah, Michelle M.; Walker, Charles; Graves, Duane
2015-01-01
Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.
NASA Astrophysics Data System (ADS)
Martomo, Zenithia Intan; Laksono, Pringgo Widyo
2018-02-01
In improving the productivity of the machine, the management of the decision or maintenance policy must be appropriate. In Spinning II unit at PT Apac Inti Corpora, there are 124 ring frame machines that often have breakdown and cause a high downtime so that the production target is not achieved, so this research was conducted on the ring frame machine. This study aims to measure the value of equipment effectiveness, find the root cause of the problem and provide suggestions for improvement. This research begins with measuring the achievement of overall equipment effectiveness (OEE) value, then identifying the six big losses that occur. The results show that the average value of OEE in the ring frame machine is 79.96%, the effectiveness value is quite low because the standard of OEE value for world class company ideally is 85%. The biggest factor that influences the low value of OEE is performance rate with percentage factor six big losses at reduced speed losses of 17.303% of all time loss. Proposed improvement actions are the application of autonomous maintenance, providing training for operators and maintenance technicians and supervising operators in the workplace.
Operation of the Lectric Leopard. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, I.O.
1981-07-01
The vehicle selected for the demonstration project is a Lectric Leopard built by US Electricar Corporation. The vehicle was unable to fulfill the intentions of the program because of continuous failures in the control system and an inability of the factory to fix them. Our requests to obtain circuit diagrams of the system so that we could make repairs ourselves were turned down, stating that this information was proprietary. The vehicle was demonstrated three times, to a student audience, Public Service Electric and Gas Company Day at Stevens and the Rotary Club of Hoboken; but because of the large amountsmore » of downtime the vehicle only accumulated 900 miles over a one year period. In May 1981 we were informed that in a frontal barrier test, the rear batteries had broken loose delivering a second impact on the driver and dumping several gallons of acid into the occupant compartment. On the advise of DOE the vehicle has not been used since. If Stevens is permitted to keep the vehicle it is our intent to make it the subject of several student senior design projects to make the vehicle safe for use by containerizing the rear batteries.« less
Maintenance Process Strategic Analysis
NASA Astrophysics Data System (ADS)
Jasiulewicz-Kaczmarek, M.; Stachowiak, A.
2016-08-01
The performance and competitiveness of manufacturing companies is dependent on the availability, reliability and productivity of their production facilities. Low productivity, downtime, and poor machine performance is often linked to inadequate plant maintenance, which in turn can lead to reduced production levels, increasing costs, lost market opportunities, and lower profits. These pressures have given firms worldwide the motivation to explore and embrace proactive maintenance strategies over the traditional reactive firefighting methods. The traditional view of maintenance has shifted into one of an overall view that encompasses Overall Equipment Efficiency, Stakeholders Management and Life Cycle assessment. From practical point of view it requires changes in approach to maintenance represented by managers and changes in actions performed within maintenance area. Managers have to understand that maintenance is not only about repairs and conservations of machines and devices, but also actions striving for more efficient resources management and care for safety and health of employees. The purpose of the work is to present strategic analysis based on SWOT analysis to identify the opportunities and strengths of maintenance process, to benefit from them as much as possible, as well as to identify weaknesses and threats, so that they could be eliminated or minimized.
Oil pipeline geohazard monitoring using optical fiber FBG strain sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Salazar-Ferro, Andres; Mendez, Alexis
2016-04-01
Pipelines are naturally vulnerable to operational, environmental and man-made effects such as internal erosion and corrosion; mechanical deformation due to geophysical risks and ground movements; leaks from neglect and vandalism; as well as encroachments from nearby excavations or illegal intrusions. The actual detection and localization of incipient and advanced faults in pipelines is a very difficult, expensive and inexact task. Anything that operators can do to mitigate the effects of these faults will provide increased reliability, reduced downtime and maintenance costs, as well as increased revenues. This talk will review the on-line monitoring of an extensive network of oil pipelines in service in Colombia using optical fiber Bragg grating (FBG) strain sensors for the measurement of strains and bending caused by geohazard risks such as soil movements, landslides, settlements, flooding and seismic activity. The FBG sensors were mounted on the outside of the pipelines at discrete locations where geohazard risk was expected. The system has been in service for the past 3 years with over 1,000 strain sensors mounted. The technique has been reliable and effective in giving advanced warning of accumulated pipeline strains as well as possible ruptures.
Bohnert, Krista; Dorizas, Andrew; Sadick, Neil
2018-02-01
The latest generation of radiofrequency, nanofractional radiofrequency, allows the heat energy to be delivered through the use of pins or needles as electrodes, facilitating increased efficacy and reduced pain, downtime, and side effects. The objective of this prospective pilot clinical study was to evaluate the efficacy of nanofractional radiofrequency in skin resurfacing. Seventeen subjects were enrolled in the study, and each received three nanofractional radiofrequency (160-pin tip) treatments in the facial area at 3-week intervals. Follow-up visits were scheduled at 1 and 2 months after the final treatment. Clinical photography, patient, and investigator assessments were conducted during the treatment visits and follow-up. All subjects completed the study. At the 1- and 2-month follow-up, there was a moderate to significant improvement (2.6 and 3.5, respectively, P = .01) according to the investigator global esthetic improvement scale rating. Most subjects reported that they were satisfied or very satisfied with the outcome and level of comfort. Nanofractional radiofrequency is a safe and effective strategy for improving texture, tone, and skin laxity with high patient satisfaction and tolerable safety profile. © 2017 Wiley Periodicals, Inc.
From EGEE Operations Portal towards EGI Operations Portal
NASA Astrophysics Data System (ADS)
Cordier, Hélène; L'Orphelin, Cyril; Reynaud, Sylvain; Lequeux, Olivier; Loikkanen, Sinikka; Veyre, Pierre
Grid operators in EGEE have been using a dedicated dashboard as their central operational tool, stable and scalable for the last 5 years despite continuous upgrade from specifications by users, monitoring tools or data providers. In EGEE-III, recent regionalisation of operations led the Operations Portal developers to conceive a standalone instance of this tool. We will see how the dashboard reorganization paved the way for the re-engineering of the portal itself. The outcome is an easily deployable package customized with relevant information sources and specific decentralized operational requirements. This package is composed of a generic and scalable data access mechanism, Lavoisier; a renowned php framework for configuration flexibility, Symfony and a MySQL database. VO life cycle and operational information, EGEE broadcast and Downtime notifications are next for the major reorganization until all other key features of the Operations Portal are migrated to the framework. Features specifications will be sketched at the same time to adapt to EGI requirements and to upgrade. Future work on feature regionalisation, on new advanced features or strategy planning will be tracked in EGI- Inspire through the Operations Tools Advisory Group, OTAG, where all users, customers and third parties of the Operations Portal are represented from January 2010.
Online fault diagnostics and testing of area gamma radiation monitor using wireless network
NASA Astrophysics Data System (ADS)
Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.
2017-07-01
Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.
Comparison of numerical results and multicavity purge and rim seal data with extensions to dynamics
NASA Astrophysics Data System (ADS)
Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.
1995-05-01
The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).
Fault-Detection Tool Has Companies 'Mining' Own Business
NASA Technical Reports Server (NTRS)
2005-01-01
A successful launching of NASA's Space Shuttle hinges heavily on the three Space Shuttle Main Engines (SSME) that power the orbiter. These critical components must be monitored in real time, with sensors, and compared against expected behaviors that could scrub a launch or, even worse, cause in- flight hazards. Since 1981, SSME faults have caused 23 scrubbed launches and 29 percent of total Space Shuttle downtime, according to a compilation of analysis reports. The most serious cases typically occur in the last few seconds before ignition; a launch scrub that late in the countdown usually means a period of investigation of a month or more. For example, during the launch attempt of STS-41D in 1984, an anomaly was detected in the number three engine, causing the mission to be scrubbed at T-4 seconds. This not only affected STS-41D, but forced the cancellation of another mission and caused a 2-month flight delay. In 2002, NASA s Kennedy Space Center, the Florida Institute of Technology, and Interface & Control Systems, Inc., worked together to attack this problem by creating a system that could automate the detection of mechanical failures in the SSMEs fuel control valves.
Monitoring and evaluation of wire mesh forming life
NASA Astrophysics Data System (ADS)
Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec
2018-03-01
Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.
Comparison of Numerical Results and Multicavity Purge and Rim Seal Data with Extensions to Dynamics
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.
1995-01-01
The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).
GMT azimuth bogie wheel-rail interface wear study
NASA Astrophysics Data System (ADS)
Teran, Jose; Lindh, Cory; Morgan, Chris; Manuel, Eric; Bigelow, Bruce C.; Burgett, William S.
2016-07-01
Performance of the GMT azimuth drive system is vital for the operation of the telescope and, as such, all components subject to wear at the drive interface merit a high level of scrutiny for achieving a proper balance between capital costs, maintenance costs, and the risk for downtime during planned and unplanned maintenance or replacement procedures. Of particular importance is the interface between the azimuth wheels and rail, as usage frequency is high, the full weight of the enclosure must be transferred through small patches of contact, and replacement of the rail would pose a greater logistical challenge than the replacement of smaller components such as bearings and gearmotors. This study investigates tradeoffs between various wheel-rail and roller-track interfaces, including performance, complexity, and anticipated wear considerations. First, a survey of railway and overhead crane industry literature is performed and general detailing recommendations are made to minimize wear and the risk of rolling contact fatigue. Second, Adams/VI-Rail is used to simulate lifetime wear of four specific configurations under consideration for the GMT azimuth wheel-rail interface; all studied configurations are shown to be viable, and their relative merits are discussed.
Reliability of Beam Loss Monitor Systems for the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Guaglio, G.; Dehning, B.; Santoni, C.
2005-06-01
The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.
The vocal load of Reform Jewish cantors in the USA.
Hapner, Edie; Gilman, Marina
2012-03-01
Jewish cantors comprise a subset of vocal professionals that is not well understood by vocal health professionals. This study aimed to document the vocal demands, vocal training, reported incidence of voice problems, and treatment-seeking behavior of Reform Jewish cantors. The study used a prospective observational design to anonymously query Reform Jewish cantors using a 35-item multiple-choice survey distributed online. Demographic information, medical history, vocal music training, cantorial duties, history of voice problems, and treatment-seeking behavior were addressed. Results indicated that many of the commonly associated risk factors for developing voice disorders were present in this population, including high vocal demands, reduced vocal downtime, allergies, and acid reflux. Greater than 65% of the respondents reported having had a voice problem that interfered with their ability to perform their duties at some time during their careers. Reform Jewish cantors are a population of occupational voice users who may be currently unidentified and underserved by vocal health professionals. The results of the survey suggest that Reform Jewish cantors are occupational voice users and are at high risk for developing voice disorders. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Assembling of Steel Angle Headframe of Multifunctional Purpose
NASA Astrophysics Data System (ADS)
Kassikhina, E. G.; Pershin, V. V.; Volkov, V. M.
2017-10-01
The article reviews new technical solution on equipment provision of vertical shaft utilizing steel headframe of multifunctional purpose. Practice of construction of coal and ore mines provides application of various designs for steel angle headframes which are divided into separate large assembly blocks and constructive elements during assembling operations. Design of these blocks and elements, their weight and dimensions effect the chose of the method of assembling on which economic and technological indicators, as well as duration of down-time, depend on during performance of construction operations in shaft. The technical solution on equipment provision for mine vertical shaft using headframe of multifunctional purpose will allow changing the management construction of vertical shaft. The proposed headframe combines the functions of sinking and operation that eliminates costs for assembling/dissembling of temporary headgear. The constructive design of the headgear allows application of the effective method of assembly and thus to provide improvement of the technical and economic indexes, and high calendar time rate of the shaft construction due to reduction of duration of works on equipment provision for the shaft and to refurbishment of the shaft in order to carry out horizontal mining.
Factors affecting the corrosivity of pulping liquors
NASA Astrophysics Data System (ADS)
Hazlewood, Patrick Evan
Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.
Evaluating Algorithm Performance Metrics Tailored for Prognostics
NASA Technical Reports Server (NTRS)
Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai
2009-01-01
Prognostics has taken a center stage in Condition Based Maintenance (CBM) where it is desired to estimate Remaining Useful Life (RUL) of the system so that remedial measures may be taken in advance to avoid catastrophic events or unwanted downtimes. Validation of such predictions is an important but difficult proposition and a lack of appropriate evaluation methods renders prognostics meaningless. Evaluation methods currently used in the research community are not standardized and in many cases do not sufficiently assess key performance aspects expected out of a prognostics algorithm. In this paper we introduce several new evaluation metrics tailored for prognostics and show that they can effectively evaluate various algorithms as compared to other conventional metrics. Specifically four algorithms namely; Relevance Vector Machine (RVM), Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and Polynomial Regression (PR) are compared. These algorithms vary in complexity and their ability to manage uncertainty around predicted estimates. Results show that the new metrics rank these algorithms in different manner and depending on the requirements and constraints suitable metrics may be chosen. Beyond these results, these metrics offer ideas about how metrics suitable to prognostics may be designed so that the evaluation procedure can be standardized. 1
Automated beam monitoring and diagnosis for CO2 lasers
NASA Astrophysics Data System (ADS)
Mann, Stefan; Boeske, Lars; Kaierle, Stefan; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart
2002-06-01
The usage of a quality management, in combination with a standard certification, is nearly inevitable for today's industrial manufacturing. In laser materials processing, a periodical beam diagnosis is to be executed as a quality-maintaining measure with any change of the workpiece geometry to guarantee an unambiguous allocation of the beam quality factors. Otherwise changes in the beam quality, caused by pollution, aging or defect of the optical components, remain unidentified for a long time, leading to impairments of the treatment quality or even costly down-times. As a solution a diagnosis system is integrated into a laser system. Data sources like measuring instruments, sensors and laser control transmit the diagnosis data to a diagnosis PC. A user-friendly software, based on Fuzzy algorithms, enables the operator to retrace changes in the beam quality to failures of the laser system. All diagnosis data are getting archived in a databank. The access to the archived data through the World Wide Web allows remote diagnoses. With the help of the beam diagnosis system failures can be discovered in advance, and losses of production can be avoided. The gained transparency of the beam characteristic values facilitates the integration of the laser system in the quality management. A prototype installation has been realized and latest results will be demonstrated.
Barrera-Valencia, Camilo; Benito-Devia, Alexis Vladimir; Vélez-Álvarez, Consuelo; Figueroa-Barrera, Mario; Franco-Idárraga, Sandra Milena
Telepsychiatry is defined as the use of information and communication technology (ICT) in providing remote psychiatric services. Telepsychiatry is applied using two types of communication: synchronous (real time) and asynchronous (store and forward). To determine the cost-effectiveness of a synchronous and an asynchronous telepsychiatric model in prison inmate patients with symptoms of depression. A cost-effectiveness study was performed on a population consisting of 157 patients from the Establecimiento Penitenciario y Carcelario de Mediana Seguridad de Manizales, Colombia. The sample was determined by applying Zung self-administered surveys for depression (1965) and the Hamilton Depression Rating Scale (HDRS), the latter being the tool used for the comparison. Initial Hamilton score, arrival time, duration of system downtime, and clinical effectiveness variables had normal distributions (P>.05). There were significant differences (P<.001) between care costs for the different models, showing that the mean cost of the asynchronous model is less than synchronous model, and making the asynchronous model more cost-effective. The asynchronous model is the most cost-effective model of telepsychiatry care for patients with depression admitted to a detention centre, according to the results of clinical effectiveness, cost measurement, and patient satisfaction. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Samantha H.; Chen, Ning; Liu, Shi; Wang, Kefei
2003-09-01
As part of the semiconductor industry "contamination-free manufacturing" effort, significant emphasis has been placed on reducing potential sources of contamination from process equipment and process equipment components. Process tools contain process chambers and components that are exposed to the process environment or process chemistry and in some cases are in direct contact with production wafers. Any contamination from these sources must be controlled or eliminated in order to maintain high process yields, device performance, and device reliability. This paper discusses new nondestructive analytical methods for quantitative measurement of the cleanliness of metal, quartz, polysilicon and ceramic components that are used in process equipment tools. The goal of these new procedures is to measure the effectiveness of cleaning procedures and to verify whether a tool component part is sufficiently clean for installation and subsequent routine use in the manufacturing line. These procedures provide a reliable "qualification method" for tool component certification and also provide a routine quality control method for reliable operation of cleaning facilities. Cost advantages to wafer manufacturing include higher yields due to improved process cleanliness and elimination of yield loss and downtime resulting from the installation of "bad" components in process tools. We also discuss a representative example of wafer contamination having been linked to a specific process tool component.
Modeling and measurement of hydrogen radical densities of in situ plasma-based Sn cleaning source
NASA Astrophysics Data System (ADS)
Elg, Daniel T.; Panici, Gianluca A.; Peck, Jason A.; Srivastava, Shailendra N.; Ruzic, David N.
2017-04-01
Extreme ultraviolet (EUV) lithography sources expel Sn debris. This debris deposits on the collector optic used to focus the EUV light, lowering its reflectivity and EUV throughput to the wafer. Consequently, the collector must be cleaned, causing source downtime. To solve this, a hydrogen plasma source was developed to clean the collector in situ by using the collector as an antenna to create a hydrogen plasma and create H radicals, which etch Sn as SnH4. This technique has been shown to remove Sn from a 300-mm-diameter stainless steel dummy collector. The H radical density is of key importance in Sn etching. The effects of power, pressure, and flow on radical density are explored. A catalytic probe has been used to measure radical density, and a zero-dimensional model is used to provide the fundamental science behind radical creation and predict radical densities. Model predictions and experimental measurements are in good agreement. The trends observed in radical density, contrasted with measured Sn removal rates, show that radical density is not the limiting factor in this etching system; other factors, such as SnH4 redeposition and energetic ion bombardment, must be more fully understood in order to predict removal rates.
Hu, Yue; Tu, Xiaotong; Li, Fucai; Meng, Guang
2018-01-07
Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults.
Alam, Murad; Sadhwani, Divya; Geisler, Amelia; Aslam, Imran; Makin, Inder Raj S; Schlessinger, Daniel I; Disphanurat, Wareeporn; Pongprutthipan, Marisa; Voravutinon, Nataya; Weil, Alexandra; Chen, Brian R; West, Dennis P; Veledar, Emir; Poon, Emily
2018-04-23
Non-invasive fat removal is preferred because of decreased downtime and lower perceived risk. It is important to seek new non-invasive fat removal treatments that are both safe and efficacious. To assess the extent to which carboxytherapy, the insufflation of carbon dioxide gas into subcutaneous fat, results in reduction of fat volume. Randomized, sham-controlled, split-body study. Adults (BMI 22-29) were randomized to receive five weekly infusions of 1000 cc CO 2 to one side of the abdomen, and five sham treatments to the contralateral side. Primary outcome measures were ultrasound measurement of fat layer thickness, as well as total circumference before and after treatment. Sixteen participants completed the study. Ultrasound measurement indicated less fat volume on the sides treated with carboxytherapy one week after the last treatment, (p=0.011), but was not maintained at 28 weeks. Total circumference decreased nominally but not significantly at Week 5 compared to baseline (p=0.0697). Participant body weights did not change over the entire course of the study (p=1.00) LIMITATIONS: Limitations included modest sample size and some sources of error in circumference and fat layer measurements. Carboxytherapy provides a transient decrease in subcutaneous fat that may not persist. Treatment is well-tolerated. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Avolio, G.; Corso Radu, A.; Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.
2012-12-01
The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment is a very complex distributed computing system, composed of more than 20000 applications running on more than 2000 computers. The TDAQ Controls system has to guarantee the smooth and synchronous operations of all the TDAQ components and has to provide the means to minimize the downtime of the system caused by runtime failures. During data taking runs, streams of information messages sent or published by running applications are the main sources of knowledge about correctness of running operations. The huge flow of operational monitoring data produced is constantly monitored by experts in order to detect problems or misbehaviours. Given the scale of the system and the rates of data to be analyzed, the automation of the system functionality in the areas of operational monitoring, system verification, error detection and recovery is a strong requirement. To accomplish its objective, the Controls system includes some high-level components which are based on advanced software technologies, namely the rule-based Expert System and the Complex Event Processing engines. The chosen techniques allow to formalize, store and reuse the knowledge of experts and thus to assist the shifters in the ATLAS control room during the data-taking activities.
Li, Fucai; Meng, Guang
2018-01-01
Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults. PMID:29316668
Qiao, Guixiu; Weiss, Brian A.
2016-01-01
Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172
Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm
NASA Astrophysics Data System (ADS)
Zhang, Ying; Qian, Zheng; Tian, Shuangshu
2016-01-01
The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.
Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine
NASA Astrophysics Data System (ADS)
Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir
2016-09-01
Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.
Human factors involvement in bringing the power of AI to a heterogeneous user population
NASA Technical Reports Server (NTRS)
Czerwinski, Mary; Nguyen, Trung
1994-01-01
The Human Factors involvement in developing COMPAQ QuickSolve, an electronic problem-solving and information system for Compaq's line of networked printers, is described. Empowering customers with expert system technology so they could solve advanced networked printer problems on their own was a major goal in designing this system. This process would minimize customer down-time, reduce the number of phone calls to the Compaq Customer Support Center, improve customer satisfaction, and, most importantly, differentiate Compaq printers in the marketplace by providing the best, and most technologically advanced, customer support. This represents a re-engineering of Compaq's customer support strategy and implementation. In its first generation system, SMART, the objective was to provide expert knowledge to Compaq's help desk operation to more quickly and correctly answer customer questions and problems. QuickSolve is a second generation system in that customer support is put directly in the hands of the consumers. As a result, the design of QuickSolve presented a number of challenging issues. Because the produce would be used by a diverse and heterogeneous set of users, a significant amount of human factors research and analysis was required while designing and implementing the system. Research that shaped the organization and design of the expert system component as well.
Trapping ultracold gases near cryogenic materials with rapid reconfigurability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.
We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracoldmore » gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.« less
Expert system for UNIX system reliability and availability enhancement
NASA Astrophysics Data System (ADS)
Xu, Catherine Q.
1993-02-01
Highly reliable and available systems are critical to the airline industry. However, most off-the-shelf computer operating systems and hardware do not have built-in fault tolerant mechanisms, the UNIX workstation is one example. In this research effort, we have developed a rule-based Expert System (ES) to monitor, command, and control a UNIX workstation system with hot-standby redundancy. The ES on each workstation acts as an on-line system administrator to diagnose, report, correct, and prevent certain types of hardware and software failures. If a primary station is approaching failure, the ES coordinates the switch-over to a hot-standby secondary workstation. The goal is to discover and solve certain fatal problems early enough to prevent complete system failure from occurring and therefore to enhance system reliability and availability. Test results show that the ES can diagnose all targeted faulty scenarios and take desired actions in a consistent manner regardless of the sequence of the faults. The ES can perform designated system administration tasks about ten times faster than an experienced human operator. Compared with a single workstation system, our hot-standby redundancy system downtime is predicted to be reduced by more than 50 percent by using the ES to command and control the system.
Using tablets to support self-regulated learning in a longitudinal integrated clerkship.
Archbold Hufty Alegría, Dylan; Boscardin, Christy; Poncelet, Ann; Mayfield, Chandler; Wamsley, Maria
2014-01-01
Introduction The need to train physicians committed to learning throughout their careers has prompted medical schools to encourage the development and practice of self-regulated learning by students. Longitudinal integrated clerkships (LICs) require students to exercise self-regulated learning skills. As mobile tools, tablets can potentially support self-regulation among LIC students. Methods We provided 15 LIC students with tablet computers with access to the electronic health record (EHR), to track their patient cohort, and a multiplatform online notebook, to support documentation and retrieval of self-identified clinical learning issues. Students received a 1-hour workshop on the relevant features of the tablet and online notebook. Two focus groups with the students were used to evaluate the program, one early and one late in the year and were coded by two raters. Results Students used the tablet to support their self-regulated learning in ways that were unique to their learning styles and increased access to resources and utilization of down-time. Students who used the tablet to self-monitor and target learning demonstrated the utility of tablets as learning tools. Conclusions LICs are environments rich in opportunity for self-regulated learning. Tablets can enhance students' ability to develop and employ self-regulatory skills in a clinical context.
Using tablets to support self-regulated learning in a longitudinal integrated clerkship.
Alegría, Dylan Archbold Hufty; Boscardin, Christy; Poncelet, Ann; Mayfield, Chandler; Wamsley, Maria
2014-01-01
The need to train physicians committed to learning throughout their careers has prompted medical schools to encourage the development and practice of self-regulated learning by students. Longitudinal integrated clerkships (LICs) require students to exercise self-regulated learning skills. As mobile tools, tablets can potentially support self-regulation among LIC students. We provided 15 LIC students with tablet computers with access to the electronic health record (EHR), to track their patient cohort, and a multiplatform online notebook, to support documentation and retrieval of self-identified clinical learning issues. Students received a 1-hour workshop on the relevant features of the tablet and online notebook. Two focus groups with the students were used to evaluate the program, one early and one late in the year and were coded by two raters. Students used the tablet to support their self-regulated learning in ways that were unique to their learning styles and increased access to resources and utilization of down-time. Students who used the tablet to self-monitor and target learning demonstrated the utility of tablets as learning tools. LICs are environments rich in opportunity for self-regulated learning. Tablets can enhance students' ability to develop and employ self-regulatory skills in a clinical context.
Recent progress on monolithic fiber amplifiers for next generation of gravitational wave detectors
NASA Astrophysics Data System (ADS)
Wellmann, Felix; Booker, Phillip; Hochheim, Sven; Theeg, Thomas; de Varona, Omar; Fittkau, Willy; Overmeyer, Ludger; Steinke, Michael; Weßels, Peter; Neumann, Jörg; Kracht, Dietmar
2018-02-01
Single-frequency fiber amplifiers in MOPA configuration operating at 1064 nm (Yb3+) and around 1550 nm (Er3+ or Er3+:Yb3+) are promising candidates to fulfill the challenging requirements of laser sources of the next generation of interferometric gravitational wave detectors (GWDs). Most probably, the next generation of GWDs is going to operate not only at 1064 nm but also at 1550 nm to cover a broader range of frequencies in which gravitational waves are detectable. We developed an engineering fiber amplifier prototype at 1064 nm emitting 215 W of linearly-polarized light in the TEM00 mode. The system consists of three modules: the seed source, the pre-amplifier, and the main amplifier. The modular design ensures reliable long-term operation, decreases system complexity and simplifies repairing and maintenance procedures. It also allows for the future integration of upgraded fiber amplifier systems without excessive downtimes. We also developed and characterized a fiber amplifier prototype at around 1550 nm that emits 100 W of linearly-polarized light in the TEM00 mode. This prototype uses an Er3+:Yb3+ codoped fiber that is pumped off-resonant at 940 nm. The off-resonant pumping scheme improves the Yb3+-to-Er3+ energy transfer and prevents excessive generation of Yb3+-ASE.
Method and apparatus for improving the performance of a steam driven power system by steam mixing
Tsiklauri, Georgi V.; Durst, Bruce M.; Prichard, Andrew W.; Reid, Bruce D.; Burritt, James
1998-01-01
A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.
NASA Astrophysics Data System (ADS)
Funaki, Minoru; Higashino, Shin-Ichiro; Sakanaka, Shinya; Iwata, Naoyoshi; Nakamura, Norihiro; Hirasawa, Naohiko; Obara, Noriaki; Kuwabara, Mikio
2014-12-01
We developed small computer-controlled unmanned aerial vehicles (UAVs, Ant-Plane) using parts and technology designed for model airplanes. These UAVs have a maximum flight range of 300-500 km. We planned aeromagnetic and aerial photographic surveys using the UAVs around Bransfield Basin, Antarctica, beginning from King George Island. However, we were unable to complete these flights due to unsuitable weather conditions and flight restrictions. Successful flights were subsequently conducted from Livingston Island to Deception Island in December 2011. This flight covered 302.4 km in 3:07:08, providing aeromagnetic and aerial photographic data from an altitude of 780 m over an area of 9 × 18 km around the northern region of Deception Island. The resulting magnetic anomaly map of Deception Island displayed higher resolution than the marine anomaly maps published already. The flight to South Bay in Livingston Island successfully captured aerial photographs that could be used for assessment of glacial and sea-ice conditions. It is unclear whether the cost-effectiveness of the airborne survey by UAV is superior to that of manned flight. Nonetheless, Ant-Plane 6-3 proved to be highly cost-effective for the Deception Island flight, considering the long downtime of the airplane in the Antarctic storm zone.
Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)
NASA Technical Reports Server (NTRS)
Arrington, E. Allen
2012-01-01
There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.
Expert System for UNIX System Reliability and Availability Enhancement
NASA Technical Reports Server (NTRS)
Xu, Catherine Q.
1993-01-01
Highly reliable and available systems are critical to the airline industry. However, most off-the-shelf computer operating systems and hardware do not have built-in fault tolerant mechanisms, the UNIX workstation is one example. In this research effort, we have developed a rule-based Expert System (ES) to monitor, command, and control a UNIX workstation system with hot-standby redundancy. The ES on each workstation acts as an on-line system administrator to diagnose, report, correct, and prevent certain types of hardware and software failures. If a primary station is approaching failure, the ES coordinates the switch-over to a hot-standby secondary workstation. The goal is to discover and solve certain fatal problems early enough to prevent complete system failure from occurring and therefore to enhance system reliability and availability. Test results show that the ES can diagnose all targeted faulty scenarios and take desired actions in a consistent manner regardless of the sequence of the faults. The ES can perform designated system administration tasks about ten times faster than an experienced human operator. Compared with a single workstation system, our hot-standby redundancy system downtime is predicted to be reduced by more than 50 percent by using the ES to command and control the system.
Balevi, Ali; Ustuner, Pelin; Özdemir, Mustafa
2017-10-01
Melasma is a distressing condition for both dermatologists and patients. We evaluated the effectiveness of salicylic acid (SA) peel and vitamin C mesotherapy in the treatment of melasma. Fifty female patients were divided into two groups. All patients were treated with 30% SA peel every two weeks for two months. In addition, after SA peeling Group A was intradermally administered 10 vitamin C on the melasma lesion at 1-cm intervals. All patients were followed up for 6 months, during which the recurrence rates were evaluated. Digital photographs of the melasma site were taken and patients' Melasma Area and Severity Index (MASI) scores were assessed. After the treatment, the patients were asked to complete the melasma quality of life questionnaire (MelasQoL) to evaluate their satisfaction with the treatment. All the adverse effects were noted. The MelasQoL and MASI scores of patients in both groups significantly decreased after the treatment. Apart from a burning sensation, no adverse event was observed and all patients tolerated the treatment well. SA peel combined with vitamin C mesotherapy is a safe and effective alternative for the treatment of melasma with no significant side effects and minimal downtime.
Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines
NASA Astrophysics Data System (ADS)
Khazdozian, Helena; Hadimani, Ravi; Jiles, David
2015-03-01
Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.
Reliability Centred Maintenance (RCM) Analysis of Laser Machine in Filling Lithos at PT X
NASA Astrophysics Data System (ADS)
Suryono, M. A. E.; Rosyidi, C. N.
2018-03-01
PT. X used automated machines which work for sixteen hours per day. Therefore, the machines should be maintained to keep the availability of the machines. The aim of this research is to determine maintenance tasks according to the cause of component’s failure using Reliability Centred Maintenance (RCM) and determine the amount of optimal inspection frequency which must be performed to the machine at filling lithos process. In this research, RCM is used as an analysis tool to determine the critical component and find optimal inspection frequencies to maximize machine’s reliability. From the analysis, we found that the critical machine in filling lithos process is laser machine in Line 2. Then we proceed to determine the cause of machine’s failure. Lastube component has the highest Risk Priority Number (RPN) among other components such as power supply, lens, chiller, laser siren, encoder, conveyor, and mirror galvo. Most of the components have operational consequences and the others have hidden failure consequences and safety consequences. Time-directed life-renewal task, failure finding task, and servicing task can be used to overcome these consequences. The results of data analysis show that the inspection must be performed once a month for laser machine in the form of preventive maintenance to lowering the downtime.
Implementation of an agile maintenance mechanic assignment methodology
NASA Astrophysics Data System (ADS)
Jimenez, Jesus A.; Quintana, Rolando
2000-10-01
The objective of this research was to develop a decision support system (DSS) to study the impact of introducing new equipment into a medical apparel plant from a maintenance organizational structure perspective. This system will enable the company to determine if their capacity is sufficient to meet current maintenance challenges. The DSS contains two database sets that describe equipment and maintenance resource profiles. The equipment profile specifies data such as mean time to failures, mean time to repairs, and minimum mechanic skill level required to fix each machine group. Similarly, maintenance-resource profile reports information about the mechanic staff, such as number and type of certifications received, education level, and experience. The DSS will then use this information to minimize machine downtime by assigning the highest skilled mechanics to machines with higher complexity and product value. A modified version of the simplex method, the transportation problem, was used to perform the optimization. The DSS was built using the Visual Basic for Applications (VBA) language contained in the Microsoft Excel environment. A case study was developed from current existing data. The analysis consisted of forty-two machine groups and six mechanic categories with ten skill levels. Results showed that only 56% of the mechanic workforce was utilized. Thus, the company had available resources for meeting future maintenance requirements.
LSST: Cadence Design and Simulation
NASA Astrophysics Data System (ADS)
Cook, Kem H.; Pinto, P. A.; Delgado, F.; Miller, M.; Petry, C.; Saha, A.; Gee, P. A.; Tyson, J. A.; Ivezic, Z.; Jones, L.; LSST Collaboration
2009-01-01
The LSST Project has developed an operations simulator to investigate how best to observe the sky to achieve its multiple science goals. The simulator has a sophisticated model of the telescope and dome to properly constrain potential observing cadences. This model has also proven useful for investigating various engineering issues ranging from sizing of slew motors, to design of cryogen lines to the camera. The simulator is capable of balancing cadence goals from multiple science programs, and attempts to minimize time spent slewing as it carries out these goals. The operations simulator has been used to demonstrate a 'universal' cadence which delivers the science requirements for a deep cosmology survey, a Near Earth Object Survey and good sampling in the time domain. We will present the results of simulating 10 years of LSST operations using realistic seeing distributions, historical weather data, scheduled engineering downtime and current telescope and camera parameters. These simulations demonstrate the capability of the LSST to deliver a 25,000 square degree survey probing the time domain including 20,000 square degrees for a uniform deep, wide, fast survey, while effectively surveying for NEOs over the same area. We will also present our plans for future development of the simulator--better global minimization of slew time and eventual transition to a scheduler for the real LSST.
Using tablets to support self-regulated learning in a longitudinal integrated clerkship
Alegría, Dylan Archbold Hufty; Boscardin, Christy; Poncelet, Ann; Mayfield, Chandler; Wamsley, Maria
2014-01-01
Introduction The need to train physicians committed to learning throughout their careers has prompted medical schools to encourage the development and practice of self-regulated learning by students. Longitudinal integrated clerkships (LICs) require students to exercise self-regulated learning skills. As mobile tools, tablets can potentially support self-regulation among LIC students. Methods We provided 15 LIC students with tablet computers with access to the electronic health record (EHR), to track their patient cohort, and a multiplatform online notebook, to support documentation and retrieval of self-identified clinical learning issues. Students received a 1-hour workshop on the relevant features of the tablet and online notebook. Two focus groups with the students were used to evaluate the program, one early and one late in the year and were coded by two raters. Results Students used the tablet to support their self-regulated learning in ways that were unique to their learning styles and increased access to resources and utilization of down-time. Students who used the tablet to self-monitor and target learning demonstrated the utility of tablets as learning tools. Conclusions LICs are environments rich in opportunity for self-regulated learning. Tablets can enhance students’ ability to develop and employ self-regulatory skills in a clinical context. PMID:24646438
Including operational data in QMRA model: development and impact of model inputs.
Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle
2009-03-01
A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations < DL. The selection of process performance distributions for modelling the performance of treatment (filtration and ozonation) influences the estimated risks significantly. The mean annual risks for conventional treatment are: 1.97E-03 (removal credit adjusted by log parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk).
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
Sohaib, Muhammad; Kim, Cheol-Hong; Kim, Jong-Myon
2017-01-01
Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration signals collected from machine bearings exhibit nonstationary behavior due to variable working conditions and multiple fault severities. In the current work, a two-layered bearing fault diagnosis scheme is proposed for the identification of fault pattern and crack size for a given fault type. A hybrid feature pool is used in combination with sparse stacked autoencoder (SAE)-based deep neural networks (DNNs) to perform effective diagnosis of bearing faults of multiple severities. The hybrid feature pool can extract more discriminating information from the raw vibration signals, to overcome the nonstationary behavior of the signals caused by multiple crack sizes. More discriminating information helps the subsequent classifier to effectively classify data into the respective classes. The results indicate that the proposed scheme provides satisfactory performance in diagnosing bearing defects of multiple severities. Moreover, the results also demonstrate that the proposed model outperforms other state-of-the-art algorithms, i.e., support vector machines (SVMs) and backpropagation neural networks (BPNNs). PMID:29232908
Real-Time Fault Classification for Plasma Processes
Yang, Ryan; Chen, Rongshun
2011-01-01
Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001
Qiao, Guixiu; Weiss, Brian A
2016-01-01
Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.
The Installation of Satellite Modems on SEIS-UK Supported Remote Seismic Deployments
NASA Astrophysics Data System (ADS)
Horleston, A. C.; Brisbourne, A.; Hawthorn, D.
2006-12-01
SEIS-UK, as the UK's NERC funded national seismic equipment facility, is frequently involved in large, often remote, temporary seismic networks (running for up to 2 years). Up till now all these deployments have been managed solely by on-site maintenance but now SEIS-UK is investing in a number of satellite modems. The Michrosat 2400 OEM Modems, provided by Wireless Innovations Ltd, will be integrated within Guralp DCM data-logger units and will be used to provide regular state-of-health reports from remote networks. They will also provide the user the facility to communicate with the deployed systems, apply configuration changes and request system re-boots. This should lead to less instrument down-time and allow for more focussed site visits and thus, hopefully, reduce the cost (and servicing time) of remote installations. The Michrosat Modems are relatively low-powered and draw a maximum current of 2.5A (at 4.4v) for a few microseconds when initialising a call, dropping to bursts of approximately 1A when transmitting. This makes them ideally suited to temporary deployments relying on solar charged battery power. We will present examples of the configuration and typical deployment of the modems and the types of data transmitted.
Space Transportation System Availability Relationships to Life Cycle Cost
NASA Technical Reports Server (NTRS)
Rhodes, Russel E.; Donahue, Benjamin B.; Chen, Timothy T.
2009-01-01
Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that provides the decision makers with the understanding necessary to place constraints on the design definition. This methodology for the major drivers will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system. This methodology will focus on the achievement of an affordable, responsive space transportation system. It is the intent of this paper to not only provide the visibility of the relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability, but also to provide the capability to bound the variables, thus providing the insight required to control the system's engineering solution. An example of this visibility is the need to provide integration of similar discipline functions to allow control of the total parts count of the space transportation system. Also, selecting a reliability requirement will place a constraint on parts count to achieve a given inherent availability requirement, or require accepting a larger parts count with the resulting higher individual part reliability requirements. This paper will provide an understanding of the relationship of mean repair time (mean downtime) to maintainability (accessibility for repair), and both mean time between failure (reliability of hardware) and the system inherent availability.
Proactive life extension of pressure vessels
NASA Astrophysics Data System (ADS)
Mager, Lloyd
1998-03-01
For a company to maintain its competitive edge in today's global market every opportunity to gain an advantage must be exploited. Many companies are strategically focusing on improved utilization of existing equipment as well as regulatory compliance. Abbott Laboratories is no exception. Pharmaceutical companies such as Abbott Laboratories realize that reliability and availability of their production equipment is critical to be successful and competitive. Abbott Laboratories, like many of our competitors, is working to improve safety, minimize downtime and maximize the productivity and efficiency of key production equipment such as the pressure vessels utilized in our processes. The correct strategy in obtaining these objectives is to perform meaningful inspection with prioritization based on hazard analysis and risk. The inspection data gathered in Abbott Laboratories pressure vessel program allows informed decisions leading to improved process control. The results of the program are reduced risks to the corporation and employees when operating pressure retaining equipment. Accurate and meaningful inspection methods become the cornerstone of a program allowing proper preventative maintenance actions to occur. Successful preventative/predictive maintenance programs must utilize meaningful nondestructive evaluation techniques and inspection methods. Nondestructive examination methods require accurate useful tools that allow rapid inspection for the entire pressure vessel. Results from the examination must allow the owner to prove compliance of all applicable regulatory laws and codes. At Abbott Laboratories the use of advanced NDE techniques, primarily B-scan ultrasonics, has provided us with the proper tools allowing us to obtain our objectives. Abbott Laboratories uses B-scan ultrasonics utilizing a pulse echo pitch catch technique to provide essential data on our pressure vessels. Equipment downtime is reduced because the nondestructive examination usually takes place while our vessels are in service. As the inspection takes place we are able to view a real time image of detected discontinuities on a video monitor. The B-scan ultrasonic technique is allowing us to perform fast accurate examinations covering up to 95% of the surface area of each pressure vessel. Receiving data on 95% of a pressure vessel provides us with a lot of useful information. We use this data to determine the condition of each pressure vessel. Once the condition is known the vessels are classed by risk. The risk level is then managed by making decisions related to repair, operating parameters, accepting and monitoring or replacement of the equipment. Inspection schedules are set at maximum intervals and reinspection is minimized for the vessels that are not at risk. The remaining life of each pressure vessel is determined, mechanical integrity is proven and regulatory requirements are met. Abbott Laboratories is taking this proactive approach because we understand that our process equipment is a critical element for successful operation. A run to failure practice would never allow Abbott Laboratories to achieve the corporation's objective of being the world's leading health care company. Nondestructive state of the art technology and the understanding of its capabilities and limitations are key components of a proactive program for life extension of pressure vessels. 26
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Sisterson
2010-01-12
Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and monthmore » for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP locale has historically had a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning this quarter, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original and new instrumentation made available through the American Recovery and Reinvestment Act (ARRA). The central facility and 4 extended facilities will remain, but there will be up to 16 surface new characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place within the next 12 months. The AMF continues its 20-month deployment in Graciosa Island, Azores, Portugal, that started May 1, 2009. The AMF will also have additional observational capabilities within the next 12 months. Users can participate in field experiments at the sites and mobile facility, or they can participate remotely. Therefore, a variety of mechanisms are provided to users to access site information. Users who have immediate (real-time) needs for data access can request a research account on the local site data systems. This access is particularly useful to users for quick decisions in executing time-dependent activities associated with field campaigns at the fixed sites and mobile facility locations. The eight computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the AMF; and the DMF at PNNL. However, users are warned that the data provided at the time of collection have not been fully screened for quality and therefore are not considered to be official ACRF data. Hence, these accounts are considered to be part of the facility activities associated with field campaign activities, and users are tracked. In addition, users who visit sites can connect their computer or instrument to an ACRF site data system network, which requires an on-site device account. Remote (off-site) users can also have remote access to any ACRF instrument or computer system at any ACRF site, which requires an off-site device account. These accounts are also managed and tracked.« less
Vibration Analysis Of Automotive Structures Using Holographic Interferometry
NASA Astrophysics Data System (ADS)
Brown, G. M.; Wales, R. R.
1983-10-01
Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.
Investigation on the subsynchronous pseudo-vibration of rotating machinery
NASA Astrophysics Data System (ADS)
Qu, Lei; Liao, Yuhe; Lin, Jing; Zhao, Ming
2018-06-01
Subsynchronous pseudo-vibration (SPV) of rotating machinery is one of the primary reasons for fault misdiagnosis. SPV has similar signal signatures to those of a real fault, which usually leads to excessive maintenance or even unscheduled shutdown. For this reason, it is essential to investigate the root causes of SPV so as to reduce unnecessary downtime and maintenance cost. Aiming at this issue, a novel signal model for rotor non-contact vibration is built to describe the generating mechanism of one kind of SPV by considering the combined effects of rotor axial motion and detection surface runout on vibration signal. To obtain more discriminative fault features from the vibration signals, the two-dimension holospectrum (2DH) is employed to integrate the phase information from two perpendicularly installed sensors. The characteristics of precession orbit used to describe the lateral motion of a rotor could be fully extracted by 2DH. It is shown that the precession orbit at the fault feature frequency will degenerate into a straight line when SPV occurs, and thus the eccentricity of precession orbit could be considered as a key feature for discriminating SPV from real subsynchronous vibration (RSV). The effectiveness of proposed method was validated on a rotor test rig. By using this method, the SPV problem of a real gearbox in a blast furnace blower set in a steel mill was successfully diagnosed.
Cloud fraction at the ARM SGP site: Reducing uncertainty with self-organizing maps
Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike
2015-02-15
Instrument downtime leads to uncertainty in the monthly and annual record of cloud fraction (CF), making it difficult to perform time series analyses of cloud properties and perform detailed evaluations of model simulations. As cloud occurrence is partially controlled by the large-scale atmospheric environment, this knowledge is used to reduce uncertainties in the instrument record. Synoptic patterns diagnosed from the North American Regional Reanalysis (NARR) during the period 1997–2010 are classified using a competitive neural network known as the self-organizing map (SOM). The classified synoptic states are then compared to the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) instrumentmore » record to determine the expected CF. A number of SOMs are tested to understand how the number of classes and the period of classifications impact the relationship between classified states and CFs. Bootstrapping is utilized to quantify the uncertainty of the instrument record when statistical information from the SOM is included. Although all SOMs significantly reduce the uncertainty of the CF record calculated in Kennedy et al. (Theor Appl Climatol 115:91–105, 2014), SOMs with a large number of classes and separated by month are required to produce the lowest uncertainty and best agreement with the annual cycle of CF. Lastly, this result may be due to a manifestation of seasonally dependent biases in NARR.« less
Advancing the LSST Operations Simulator
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Ridgway, S. T.; Cook, K. H.; Delgado, F.; Chandrasekharan, S.; Petry, C. E.; Operations Simulator Group
2013-01-01
The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions (including weather and seeing), as well as additional scheduled and unscheduled downtime. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history database are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. This poster reports recent work which has focussed on an architectural restructuring of the code that will allow us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator will be used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities, and assist with performance margin investigations of the LSST system.
Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions
NASA Technical Reports Server (NTRS)
Teubert, Christopher; Daigle, Matthew J.
2014-01-01
Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.
Freedom Star tows a barge with an SLWT into Port Canaveral for the first time
NASA Technical Reports Server (NTRS)
1998-01-01
Freedom Star, one of NASA's two solid rocket booster recovery ships, tows a barge containing the third Space Shuttle super lightweight external tank (SLWT) into Port Canaveral. This SLWT will be used to launch the orbiter Discovery on mission STS-95 in October. This first-time towing arrangement, part of a cost savings plan by NASA to prudently manage existing resources, began June 12 from the Michoud Assembly Facility in New Orleans where the Shuttle's external tanks are manufactured. The barge will now be transported up the Banana River to the LC-39 turn basin using a conventional tugboat. Previously, NASA relied on an outside contractor to provide external tank towing services at a cost of about $120,000 per trip. The new plan allows NASA's Space Flight Operations contractor, United Space Alliance (USA), to provide the same service directly to NASA using the recovery ships during their downtime between Shuttle launches. Studies show a potential savings of about $50,000 per trip. The cost of the necessary ship modifications should be paid back by the fourteenth tank delivery. The other recovery ship, Liberty Star, has also undergone deck strengthening enhancements and will soon have the necessary towing winch installed. The other recovery vessel, Liberty Star, has undergone deck strengthening enhancements along with Freedom Star and will soon have the necessary towing winch installed.
Alpha-hydroxyacid chemical peeling agents: case studies and rationale for safe and effective use.
Briden, M Elizabeth
2004-02-01
Chemical peeling is an in-office procedure that involves the application of a chemical agent to the skin to induce controlled destruction or exfoliation of old skin and stimulation of new epidermal growth with more evenly distributed melanin. When peel agents reach the dermal layer, important wound-healing activities occur that cause skin remodeling and skin smoothing, both antiaging benefits. There are a number of key factors in selecting a peeling agent and procedure, and each is discussed. Variables to consider are the peeling agent and its formulation, the concentration of the agent, the patient's skin type, the site to be peeled, the skin preparation procedure prior to and immediately preceding the application of the agent, the application method, the duration of contact, and the patient's medical history and lifestyle. Various types of peels are discussed. Of particular interest are superficial chemical peels, which offer great flexibility over a range of skin types and conditions with minimal to no "downtime." Alpha-hydroxyacid (AHA) peels are superficial and can be combined with other cosmetic procedures in the office to maximize benefits. In addition, AHA peels work well when combined with supportive homecare products including AHAs or polyhydroxy acids (PHAs), topical retinoids, and antiacne/antirosacea treatments. Case studies are presented of patients using AHA peels for the treatment of acne and hyperpigmentation in a variety of skin types, including Asian skin.
NASA Technical Reports Server (NTRS)
Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline
2008-01-01
The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.
Journal Bearing Analysis Suite Released for Planetary Gear System Evaluation
NASA Technical Reports Server (NTRS)
Brewe, David E.; Clark, David A.
2005-01-01
Planetary gear systems are an efficient means of achieving high reduction ratios with minimum space and weight. They are used in helicopter, aerospace, automobile, and many industrial applications. High-speed planetary gear systems will have significant dynamic loading and high heat generation. Hence, they need jet lubrication and associated cooling systems. For units operating in critical applications that necessitate high reliability and long life, that have very large torque loading, and that have downtime costs that are significantly greater than the initial cost, hydrodynamic journal bearings are a must. Computational and analytical tools are needed for sufficiently accurate modeling to facilitate optimal design of these systems. Sufficient physics is needed in the model to facilitate parametric studies of design conditions that enable optimal designs. The first transient journal bearing code to implement the Jacobsson-Floberg-Olsson boundary conditions, using a mass-conserving algorithm devised by Professor Emeritus Harold Elrod of Columbia University, was written by David E. Brewe of the U.S. Army at the NASA Lewis Research Center1 in 1983. Since then, new features and improved modifications have been built into the code by several contributors supported through Army and NASA funding via cooperative agreements with the University of Toledo (Professor Ted Keith, Jr., and Dr. Desikakary Vijayaraghavan) and National Research Council Programs (Dr. Vijayaraghavan). All this was conducted with the close consultation of Professor Elrod and the project management of David Brewe.
Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desmond, M.; Hughes, S.; Paquette, J.
Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation ofmore » model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).« less
Economics of online structural health monitoring of wind turbines: Cost benefit analysis
NASA Astrophysics Data System (ADS)
Van Dam, Jeremy; Bond, Leonard J.
2015-03-01
Operations and maintenance (O&M) costs have an average share over the lifetime of the turbine of approximately 20%-25% of the total levelized cost per kWh of electricity produced. Online structural health monitoring (OSHM) and condition-based maintenance (CBM) of wind turbine blades has the potential to reduce O&M costs and hence reduce the overall cost of wind energy. OSHM and CBM offer the potential to improve turbine blade life cycle management, limit the number of physical inspections, and reduce the potential for missed significant defects. An OSHM system would reduce the need for physical inspections, and have inspections occur only after problem detection takes place. In the economics of wind energy, failures and unplanned outages can cause significant downtime, particularly while waiting for the manufacturing and shipping of major parts. This paper will report a review and assessment of SHM technologies and a cost benefit analysis, which will examine whether the added costs associated with an OSHM system will give an adequate return on the investment. One method in which OSHM reduces costs is, in part, by converting corrective maintenance to preventative maintenance. This paper shows that under both best and worse conditions implementing an OSHM system is cost effective in more than 50% of the trials, which have been performed. Opportunities appear to exist to improve the economic justification for implementing OSHM.
Cryogenics maintenance strategy
NASA Astrophysics Data System (ADS)
Cruzat, Fabiola
2012-09-01
ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.
2005-01-01
Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.
A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems
Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...
2017-05-17
A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less
A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duman, Turgay; Marti, Shilpa; Moonem, M. A.
A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less
Adams, E J; Warrington, A P
2008-04-01
The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.
Complications of Minimally Invasive Cosmetic Procedures: Prevention and Management
Levy, Lauren L; Emer, Jason J
2012-01-01
Over the past decade, facial rejuvenation procedures to circumvent traditional surgery have become increasingly popular. Office-based, minimally invasive procedures can promote a youthful appearance with minimal downtime and low risk of complications. Injectable botulinum toxin (BoNT), soft-tissue fillers, and chemical peels are among the most popular non-invasive rejuvenation procedures, and each has unique applications for improving facial aesthetics. Despite the simplicity and reliability of office-based procedures, complications can occur even with an astute and experienced injector. The goal of any procedure is to perform it properly and safely; thus, early recognition of complications when they do occur is paramount in dictating prevention of long-term sequelae. The most common complications from BoNT and soft-tissue filler injection are bruising, erythema and pain. With chemical peels, it is not uncommon to have erythema, irritation and burning. Fortunately, these side effects are normally transient and have simple remedies. More serious complications include muscle paralysis from BoNT, granuloma formation from soft-tissue filler placement and scarring from chemical peels. Thankfully, these complications are rare and can be avoided with excellent procedure technique, knowledge of facial anatomy, proper patient selection, and appropriate pre- and post-skin care. This article reviews complications of office-based, minimally invasive procedures, with emphasis on prevention and management. Practitioners providing these treatments should be well versed in this subject matter in order to deliver the highest quality care. PMID:23060707
The CloudBoard Research Platform: an interactive whiteboard for corporate users
NASA Astrophysics Data System (ADS)
Barrus, John; Schwartz, Edward L.
2013-03-01
Over one million interactive whiteboards (IWBs) are sold annually worldwide, predominantly for classroom use with few sales for corporate use. Unmet needs for IWB corporate use were investigated and the CloudBoard Research Platform (CBRP) was developed to investigate and test technology for meeting these needs. The CBRP supports audio conferencing with shared remote drawing activity, casual capture of whiteboard activity for long-term storage and retrieval, use of standard formats such as PDF for easy import of documents via the web and email and easy export of documents. Company RFID badges and key fobs provide secure access to documents at the board and automatic logout occurs after a period of inactivity. Users manage their documents with a web browser. Analytics and remote device management is provided for administrators. The IWB hardware consists of off-the-shelf components (a Hitachi UST Projector, SMART Technologies, Inc. IWB hardware, Mac Mini, Polycom speakerphone, etc.) and a custom occupancy sensor. The three back-end servers provide the web interface, document storage, stroke and audio streaming. Ease of use, security, and robustness sufficient for internal adoption was achieved. Five of the 10 boards installed at various Ricoh sites have been in daily or weekly use for the past year and total system downtime was less than an hour in 2012. Since CBRP was installed, 65 registered users, 9 of whom use the system regularly, have created over 2600 documents.
Integrating multiple scientific computing needs via a Private Cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.
2014-06-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
NASA Astrophysics Data System (ADS)
Wiandt, T. J.
2008-06-01
The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.
Improving 130nm node patterning using inverse lithography techniques for an analog process
NASA Astrophysics Data System (ADS)
Duan, Can; Jessen, Scott; Ziger, David; Watanabe, Mizuki; Prins, Steve; Ho, Chi-Chien; Shu, Jing
2018-03-01
Developing a new lithographic process routinely involves usage of lithographic toolsets and much engineering time to perform data analysis. Process transfers between fabs occur quite often. One of the key assumptions made is that lithographic settings are equivalent from one fab to another and that the transfer is fluid. In some cases, that is far from the truth. Differences in tools can change the proximity effect seen in low k1 imaging processes. If you use model based optical proximity correction (MBOPC), then a model built in one fab will not work under the same conditions at another fab. This results in many wafers being patterned to try and match a baseline response. Even if matching is achieved, there is no guarantee that optimal lithographic responses are met. In this paper, we discuss the approach used to transfer and develop new lithographic processes and define MBOPC builds for the new lithographic process in Fab B which was transferred from a similar lithographic process in Fab A. By using PROLITHTM simulations to match OPC models for each level, minimal downtime in wafer processing was observed. Source Mask Optimization (SMO) was also used to optimize lithographic processes using novel inverse lithography techniques (ILT) to simultaneously optimize mask bias, depth of focus (DOF), exposure latitude (EL) and mask error enhancement factor (MEEF) for critical designs for each level.
Diagnostics aid for mass spectrometer trouble-shooting
NASA Astrophysics Data System (ADS)
Filby, E. E.; Rankin, R. A.; Webb, G. W.
The MS Expert system provides problem diagnostics for instruments used in the Mass Spectrometry Laboratory (MSL). The most critical results generated on these mass spectrometers are the uranium concentration and isotopic content data used for process control and materials accountability at the Idaho Chemical Processing Plant. The two purposes of the system are: (1) to minimize instrument downtime and thereby provide the best possible support to the Plant, and (2) to improve long-term data quality. This system combines the knowledge of several experts on mass spectrometry to provide a diagnostic tool, and can make these skills available on a more timely basis. It integrates code written in the Pascal language with a knowledge base entered into a commercial expert system shell. The user performs some preliminary status checks, and then selects from among several broad diagnostic categories. These initial steps provide input to the rule base. The overall analysis provides the user with a set of possible solutions to the observed problems, graded as to their probabilities. Besides the trouble-shooting benefits expected from this system, it will also provide structures diagnostic training for lab personnel. In addition, development of the system knowledge base has already produced a better understanding of instrument behavior. Two key findings are that a good user interface is necessary for full acceptance of the tool, and a development system should include standard programming capabilities as well as the expert system shell.
Coastal dynamics on a soft coastline from serendipitous webcams: KwaZulu-Natal, South Africa
NASA Astrophysics Data System (ADS)
Guastella, Lisa A.; Smith, Alan M.
2014-10-01
Webcams have become popular means of showcasing beach conditions for a wide variety of beach users. However, webcams can also be a useful tool in assessing changes in coastal morphology and coastal processes. This information can be used by managers to assist in planning. A number of fixed-position beach webcams are freely available to the South African public via various tourism, surfing, weather and aviation websites, individual clubs and a cell-phone network provider. The advantages of these public networks are that the information is free and as the webcams are fixed, afford a consistent and comparable view of the beach. The disadvantage is that you are at the mercy of the provider: resolution is generally poor, downtime and communication are out of your control, and you have no influence over the positioning of the webcam or the discontinuity of service. Notwithstanding the above, the existing webcams can still provide valuable information. From the network of beach webcams available in South Africa we analyse imagery from three beach webcams located in the province of KwaZulu-Natal, at Umhlanga, Margate beach and lagoon, and Amanzimtoti beach and lagoon to examine the coastal dynamics. From these case studies we illustrate seasonal beach rotation and lagoon mouth dynamics, specifically why outlets migrate southwards in opposition to regional longshore drift.
Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael
2018-01-01
Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.
2017-01-01
Background: The skin tightening effects induced by non-insulated microneedle radiofrequency have proved long-lasting. Our previous three-dimensional volumetric assessment showed significant facial tightening for up to six months. However, nasal and peri-oral tightening effects lasted longer. The objective of this study was to investigate the distribution of the long-term volumetric reduction in facial area induced by a single fractional non-insulated microneedle radiofrequency treatment. Methods: Fifteen Asian patients underwent full facial skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with a novel fractionated pulse mode. Three-dimensional volumetric assessments were performed at six and 12 months post-treatment. Patients rated their satisfaction using a 5-point scale at each follow up. Results: Objective assessments with superimposed three-dimensional color images showed significant volumetric reduction in the nasal and peri-oral areas at 12 months post-treatment in all patients. Median volumetric reductions at six and 12 months post-treatment were 13.1 and 12.3ml, respectively. All of the patients were satisfied with their results 12 months post-treatment. Side effects were not observed. Conclusions: This single fractional NIMNRF treatment provided long-lasting nasal and peri-oral tightening as shown via 3D volumetric assessment. Moreover, NIMNRF produced minimal complications, downtime, and few side effects. This approach provides safe and effective treatment of skin tightening. PMID:28367261
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Dennis P.; Rice, Thomas M.; Paquette, Joshua
Wind turbine blades pose a unique set of inspection challenges that span from very thick and attentive spar cap structures to porous bond lines, varying core material and a multitude of manufacturing defects of interest. The need for viable, accurate nondestructive inspection (NDI) technology becomes more important as the cost per blade, and lost revenue from downtime, grows. NDI methods must not only be able to contend with the challenges associated with inspecting extremely thick composite laminates and subsurface bond lines, but must also address new inspection requirements stemming from the growing understanding of blade structural aging phenomena. Under itsmore » Blade Reliability Collaborative program, Sandia Labs quantitatively assessed the performance of a wide range of NDI methods that are candidates for wind blade inspections. Custom wind turbine blade test specimens, containing engineered defects, were used to determine critical aspects of NDI performance including sensitivity, accuracy, repeatability, speed of inspection coverage, and ease of equipment deployment. The detection of fabrication defects helps enhance plant reliability and increase blade life while improved inspection of operating blades can result in efficient blade maintenance, facilitate repairs before critical damage levels are reached and minimize turbine downtime. The Sandia Wind Blade Flaw Detection Experiment was completed to evaluate different NDI methods that have demonstrated promise for interrogating wind blades for manufacturing flaws or in-service damage. These tests provided the Probability of Detection information needed to generate industry-wide performance curves that quantify: 1) how well current inspection techniques are able to reliably find flaws in wind turbine blades (industry baseline) and 2) the degree of improvements possible through integrating more advanced NDI techniques and procedures. _____________ S a n d i a N a t i o n a l L a b o r a t o r i e s i s a m u l t i m i s s i o n l a b o r a t o r y m a n a g e d a n d o p e r a t e d b y N a t i o n a l T e c h n o l o g y a n d E n g i n e e r i n g S o l u t i o n s o f S a n d i a , L L C , a w h o l l y o w n e d s u b s i d i a r y o f H o n e y w e l l I n t e r n a t i o n a l , I n c . , f o r t h e U . S . D e p a r t m e n t o f E n e r g y ' s N a t i o n a l N u c l e a r S e c u r i t y A d m i n i s t r a t i o n u n d e r c o n t r a c t D E - N A 0 0 0 3 5 2 5 .« less
Effect of Component Failures on Economics of Distributed Photovoltaic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin, Barry T.
2012-02-02
This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focusedmore » on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.« less
Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps
NASA Astrophysics Data System (ADS)
Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike
2016-04-01
Instrument downtime leads to uncertainty in the monthly and annual record of cloud fraction (CF), making it difficult to perform time series analyses of cloud properties and perform detailed evaluations of model simulations. As cloud occurrence is partially controlled by the large-scale atmospheric environment, this knowledge is used to reduce uncertainties in the instrument record. Synoptic patterns diagnosed from the North American Regional Reanalysis (NARR) during the period 1997-2010 are classified using a competitive neural network known as the self-organizing map (SOM). The classified synoptic states are then compared to the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) instrument record to determine the expected CF. A number of SOMs are tested to understand how the number of classes and the period of classifications impact the relationship between classified states and CFs. Bootstrapping is utilized to quantify the uncertainty of the instrument record when statistical information from the SOM is included. Although all SOMs significantly reduce the uncertainty of the CF record calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014), SOMs with a large number of classes and separated by month are required to produce the lowest uncertainty and best agreement with the annual cycle of CF. This result may be due to a manifestation of seasonally dependent biases in NARR. With use of the SOMs, the average uncertainty in monthly CF is reduced in half from the values calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014).
A 24-hour remote surveillance system for terrestrial wildlife studies
Sykes, P.W.; Ryman, W.E.; Kepler, C.B.; Hardy, J.W.
1995-01-01
The configuration, components, specifications and costs of a state-of-the-art closed-circuit television system with wide application for wildlife research and management are described. The principal system components consist of color CCTV camera with zoom lens, pan/tilt system, infrared illuminator, heavy duty tripod, coaxial cable, coaxitron system, half-duplex equalizing video/control amplifier, timelapse video cassette recorder, color video monitor, VHS video cassettes, portable generator, fuel tank and power cable. This system was developed and used in a study of Mississippi sandhiIl Crane (Grus canadensis pratensis) behaviors during incubation, hatching and fledging. The main advantages of the system are minimal downtime where a complete record of every event, its time of occurrence and duration, are permanently recorded and can be replayed as many times as necessary thereafter to retrieve the data. The system is particularly applicable for studies of behavior and predation, for counting individuals, or recording difficult to observe activities. The system can be run continuously for several weeks by two people, reducing personnel costs. This paper is intended to provide biologists who have litte knowledge of electronics with a system that might be useful to their specific needs. The disadvantages of this system are the initial costs (about $9800 basic, 1990-1991 U.S. dollars) and the time required to playback video cassette tapes for data retrieval, but the playback can be sped up when litte or no activity of interest is taking place. In our study, the positive aspects of the system far outweighed the negative.
Object positioning in storages of robotized workcells using LabVIEW Vision
NASA Astrophysics Data System (ADS)
Hryniewicz, P.; Banaś, W.; Sękala, A.; Gwiazda, A.; Foit, K.; Kost, G.
2015-11-01
During the manufacturing process, each performed task is previously developed and adapted to the conditions and the possibilities of the manufacturing plant. The production process is supervised by a team of specialists because any downtime causes great loss of time and hence financial loss. Sensors used in industry for tracking and supervision various stages of a production process make it much easier to maintain it continuous. One of groups of sensors used in industrial applications are non-contact sensors. This group includes: light barriers, optical sensors, rangefinders, vision systems, and ultrasonic sensors. Through to the rapid development of electronics the vision systems were widespread as the most flexible type of non-contact sensors. These systems consist of cameras, devices for data acquisition, devices for data analysis and specialized software. Vision systems work well as sensors that control the production process itself as well as the sensors that control the product quality level. The LabVIEW program as well as the LabVIEW Vision and LabVIEW Builder represent the application that enables program the informatics system intended to process and product quality control. The paper presents elaborated application for positioning elements in a robotized workcell. Basing on geometric parameters of manipulated object or on the basis of previously developed graphical pattern it is possible to determine the position of particular manipulated elements. This application could work in an automatic mode and in real time cooperating with the robot control system. It allows making the workcell functioning more autonomous.
Capacity and reliability analyses with applications to power quality
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Tu, Fang; Shlapak, Yuri; Kirubarajan, Thiagalingam; Pattipati, Krishna R.; Karanam, Rajaiah
2001-07-01
The deregulation of energy markets, the ongoing advances in communication networks, the proliferation of intelligent metering and protective power devices, and the standardization of software/hardware interfaces are creating a dramatic shift in the way facilities acquire and utilize information about their power usage. The currently available power management systems gather a vast amount of information in the form of power usage, voltages, currents, and their time-dependent waveforms from a variety of devices (for example, circuit breakers, transformers, energy and power quality meters, protective relays, programmable logic controllers, motor control centers). What is lacking is an information processing and decision support infrastructure to harness this voluminous information into usable operational and management knowledge to handle the health of their equipment and power quality, minimize downtime and outages, and to optimize operations to improve productivity. This paper considers the problem of evaluating the capacity and reliability analyses of power systems with very high availability requirements (e.g., systems providing energy to data centers and communication networks with desired availability of up to 0.9999999). The real-time capacity and margin analysis helps operators to plan for additional loads and to schedule repair/replacement activities. The reliability analysis, based on computationally efficient sum of disjoint products, enables analysts to decide the optimum levels of redundancy, aids operators in prioritizing the maintenance options for a given budget and monitoring the system for capacity margin. The resulting analytical and software tool is demonstrated on a sample data center.
Designing for Reliability and Robustness
NASA Technical Reports Server (NTRS)
Svetlik, Randall G.; Moore, Cherice; Williams, Antony
2017-01-01
Long duration spaceflight has a negative effect on the human body, and exercise countermeasures are used on-board the International Space Station (ISS) to minimize bone and muscle loss, combatting these effects. Given the importance of these hardware systems to the health of the crew, this equipment must continue to be readily available. Designing spaceflight exercise hardware to meet high reliability and availability standards has proven to be challenging throughout the time the crewmembers have been living on ISS beginning in 2000. Furthermore, restoring operational capability after a failure is clearly time-critical, but can be problematic given the challenges of troubleshooting the problem from 220 miles away. Several best-practices have been leveraged in seeking to maximize availability of these exercise systems, including designing for robustness, implementing diagnostic instrumentation, relying on user feedback, and providing ample maintenance and sparing. These factors have enhanced the reliability of hardware systems, and therefore have contributed to keeping the crewmembers healthy upon return to Earth. This paper will review the failure history for three spaceflight exercise countermeasure systems identifying lessons learned that can help improve future systems. Specifically, the Treadmill with Vibration Isolation and Stabilization System (TVIS), Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), and the Advanced Resistive Exercise Device (ARED) will be reviewed, analyzed, and conclusions identified so as to provide guidance for improving future exercise hardware designs. These lessons learned, paired with thorough testing, offer a path towards reduced system down-time.
NASA Astrophysics Data System (ADS)
Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.
2015-02-01
The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.
Preventive maintenance system for the photomultiplier detector blocks of PET scanners
Levy, A.V.; Warner, D.
1995-01-24
A system including a method and apparatus for preventive maintenance of PET scanner photomultiplier detector blocks is disclosed. The qualitative comparisons used in the method of the present invention to provide an indication in the form of a display or printout advising the user that the photomultiplier block is stable, intermittently unstable, or drifting unstable, and also advising of the expected date of failure of a photomultiplier block in the PET scanner. The system alerts the user to replace the defective photomultiplier block prior to catastrophic failure in a scheduled preventative maintenance program, thus eliminating expensive and unscheduled downtime of the PET scanner due to photomultiplier failure. The apparatus for carrying out the method of the present invention preferably resides in the host computer controlling a PET scanner. It includes a memory adapted for storing a record of a number of iterative adjustments that are necessary to calibrate the gain of a photomultiplier detector block i at a time t[sub 0], a time t[sub 1] and a time T, where T>t[sub 1]>t[sub 0], which is designated as Histo(i,j(t)). The apparatus also includes a processor configured by a software program or a combination of programmed RAM and ROM devices to perform a number of calculations and operations on these values, and also includes a counter for analyzing each photomultiplier detector block i=1 through I of a PET scanner. 40 figures.
Using the Domain Name System to Thwart Automated Client-Based Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Curtis R; Shue, Craig A
2011-09-01
On the Internet, attackers can compromise systems owned by other people and then use these systems to launch attacks automatically. When attacks such as phishing or SQL injections are successful, they can have negative consequences including server downtime and the loss of sensitive information. Current methods to prevent such attacks are limited in that they are application-specific, or fail to block attackers. Phishing attempts can be stopped with email filters, but if the attacker manages to successfully bypass these filters, then the user must determine if the email is legitimate or not. Unfortunately, they often are unable to do so.more » Since attackers have a low success rate, they attempt to compensate for it in volume. In order to have this high throughput, attackers take shortcuts and break protocols. We use this knowledge to address these issues by implementing a system that can detect malicious activity and use it to block attacks. If the client fails to follow proper procedure, they can be classified as an attacker. Once an attacker has been discovered, they will be isolated and monitored. This can be accomplished using existing software in Ubuntu Linux applications, along with our custom wrapper application. After running the system and seeing its performance on three popular Web browsers Chromium, Firefox and Internet Explorer as well as two popular email clients, Thunderbird and Evolution, we found that not only is this system conceivable, it is effective and has low overhead.« less
Wang, Jiang; Gayatri, Mohit A; Ferguson, Andrew L
2017-05-11
Asphaltenes constitute the heaviest fraction of the aromatic group in crude oil. Aggregation and precipitation of asphaltenes during petroleum processing costs the petroleum industry billions of dollars each year due to downtime and production inefficiencies. Asphaltene aggregation proceeds via a hierarchical self-assembly process that is well-described by the Yen-Mullins model. Nevertheless, the microscopic details of the emergent cluster morphologies and their relative stability under different processing conditions remain poorly understood. We perform coarse-grained molecular dynamics simulations of a prototypical asphaltene molecule to establish a phase diagram mapping the self-assembled morphologies as a function of temperature, pressure, and n-heptane:toluene solvent ratio informing how to control asphaltene aggregation by regulating external processing conditions. We then combine our simulations with graph matching and nonlinear manifold learning to determine low-dimensional free energy surfaces governing asphaltene self-assembly. In doing so, we introduce a variant of diffusion maps designed to handle data sets with large local density variations, and report the first application of many-body diffusion maps to molecular self-assembly to recover a pseudo-1D free energy landscape. Increasing pressure only weakly affects the landscape, serving only to destabilize the largest aggregates. Increasing temperature and toluene solvent fraction stabilizes small cluster sizes and loose bonding arrangements. Although the underlying molecular mechanisms differ, the strikingly similar effect of these variables on the free energy landscape suggests that toluene acts upon asphaltene self-assembly as an effective temperature.
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2015-12-01
Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.
NASA Astrophysics Data System (ADS)
Witantyo; Rindiyah, Anita
2018-03-01
According to data from maintenance planning and control, it was obtained that highest inventory value is non-routine components. Maintenance components are components which procured based on maintenance activities. The problem happens because there is no synchronization between maintenance activities and the components required. Reliability Centered Maintenance method is used to overcome the problem by reevaluating maintenance activities required components. The case chosen is roller mill system because it has the highest unscheduled downtime record. Components required for each maintenance activities will be determined by its failure distribution, so the number of components needed could be predicted. Moreover, those components will be reclassified from routine component to be non-routine component, so the procurement could be carried out regularly. Based on the conducted analysis, failure happens in almost every maintenance task are classified to become scheduled on condition task, scheduled discard task, schedule restoration task and no schedule maintenance. From 87 used components for maintenance activities are evaluated and there 19 components that experience reclassification from non-routine components to routine components. Then the reliability and need of those components were calculated for one-year operation period. Based on this invention, it is suggested to change all of the components in overhaul activity to increase the reliability of roller mill system. Besides, the inventory system should follow maintenance schedule and the number of required components in maintenance activity so the value of procurement will be decreased and the reliability system will increase.
Prens, Sebastiaan P; de Vries, Karin; Neumann, H A Martino; Prens, Errol P
2013-06-01
Actinic keratoses (AK) are premalignant lesions occurring mainly in sun-damaged skin. Current topical treatment options for AK and photo-damaged skin such as liquid nitrogen and electrosurgery are not suitable for field treatment. Otherwise, therapies suitable for field treatment bring along considerable patient discomfort. Non-ablative fractional resurfacing has emerged as a logical treatment option especially for field treatment of AK. To evaluate the clinical efficacy of fractional laser therapy for clearing AK and improving skin quality. To compare patient friendliness of the "fractional" therapy with those reported for other field treatment modalities. Ten patients with Fitzpatrick skin type I to III with multiple AK and extensive sun-damaged skin, received 5-10 sessions with a 4-week interval using a 1550 nm Erbium-Glass Fractionated laser (Sellas, Korea). Four weeks and 24 weeks after the last treatment the clinical results were evaluated by an independent physician. The mean degree of improvement, in terms of reduction in the number of AK and improvement of skin texture, was 54% on a 4 point PGA scale, and persisted for approximately 6 months. The biggest advantage of fractional laser treatment, besides the eradication of AK and a clear rejuvenation effect, is the absence of "downtime". Fractional non-ablative resurfacing induces significant reduction in the number of AK and improves the skin quality. Also all patients preferred fractional laser therapy above other AK treatment modalities.
PET - radiopharmaceutical facilities at Washington University Medical School - an overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dence, C.S.; Welch, M.J.
1994-12-31
The PET program at Washington University has evolved over more than three decades of research and development in the use of positron-emitting isotopes in medicine and biology. In 1962 the installation of the first hospital cyclotron in the USA was accomplished. This first machine was an Allis Chalmers (AC) cyclotron and it was operated until July, 1990. Simultaneously with this cyclotron the authors also ran a Cyclotron Corporation (TCC) CS-15 cyclotron that was purchased in 1977. Both of these cyclotrons were maintained in-house and operated with a relatively small downtime (approximately 3.5%). After the dismantling of the AC machine inmore » 1990, a Japanese Steel Works 16/8 (JSW-16/8) cyclotron was installed in the vault. Whereas the AC cyclotron could only accelerate deuterons (6.2 MeV), the JSW - 16/8 machine can accelerate both protons and deuterons, so all of the radiopharmaceuticals can be produced on either of the two presently owned accelerators. At the end of May 1993, the medical school installed the first clinical Tandem Cascade Accelerator (TCA) a collaboration with Science Research Laboratories (SRL) of Somerville, MA. Preliminary target testing, design and development are presently under way. In 1973, the University installed the first operational PETT device in the country, and at present there is a large basic science and clinical research program involving more than a hundred staff in nuclear medicine, radiation sciences, neurology, neurosurgery, psychiatry, cardiology, pulmonary medicine, oncology, and surgery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logee, T.L.
1983-01-01
This report is the second in a series of performance evaluation reports on the GSA/Federal Youth Center located in Bastrop, Texas. The GSA/Federal Youth Center is a federal correctional institute for youthful, male offenders in Bastrop, Texas. The active solar energy system is equipped with: 21,760 square feet of single-glazed, liquid flat-plate collectors manufactured by Cole Solar Systems. The storage consists of 40,000 gallons of insulated outdoor water tanks. Two 100-horsepower boilers and one 30-horsepower boiler burning natural gas with the capability to use Number 2 diesel fuel make up the auxiliary system. Solar energy is used to supply themore » hot water and space heating loads of the dormitory, offices, cafeteria, and hospital. During the summer, solar energy can also be used to supply some of the cooling load. The solar energy system at this Federal Correctional Institute operated well from October 1982 through April 1983. The solar system provided an estimated 12% or 866 million of the estimated total load of 7600 million Btu. There were 10 days of downtime in April caused by a failure of the collector pump. However, the collector pump high-speed motor had started to fail earlier in November. There were no other unusual solar system maintenance requirements during this period. The system performance during the monitoring period was 39% of the expected annual design performance, based on a proportional number of months.« less
Energy Conservation Study on Darigold Fluid Milk Plant, Issaquah, Washington.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seton, Johnson & Odell, Inc.
This report presents the findings of an energy study done at Darigold dairy products plant in Issaquah, Washington. The study includes all electrical energy using systems at the plant, but does not address specific modifications to process equipment or the gas boilers. The Issaquah Darigold plant receives milk and cream, which are stored in large, insulated silos. These raw products are then processed into butter, cottage cheese, buttermilk, yogurt, sour cream, and powdered milk. This plant produces the majority of the butter used in the state of Washington. The Issaquah plant purchases electricity from Puget Sound Power and Light Company.more » The plant is on Schedule 31, primary metering. The plant provides transformers to step down the voltage to 480, 240, and 120 volts as needed. Based on utility bills for the period from July 1983 through July 1984, the Issaquah Darigold plant consumed 7,134,300 kWh at a total cost of $218,703.78 and 1,600,633 therms at a total cost of $889,687.48. Energy use for this period is shown in Figures 1.1 to 1.5. Demand charges account for approximately 23% of the total electrical bill for this period, while reactive charges account for less than 0.5%. The electrical usage for the plant was divided into process energy uses, as summarized in Figure 1.2. This breakdown is based on a 311-day processing schedule, with Sunday clean-up and holidays composing the 54 days of downtime.« less
Automatic detection of MLC relative position errors for VMAT using the EPID-based picket fence test
NASA Astrophysics Data System (ADS)
Christophides, Damianos; Davies, Alex; Fleckney, Mark
2016-12-01
Multi-leaf collimators (MLCs) ensure the accurate delivery of treatments requiring complex beam fluences like intensity modulated radiotherapy and volumetric modulated arc therapy. The purpose of this work is to automate the detection of MLC relative position errors ⩾0.5 mm using electronic portal imaging device-based picket fence tests and compare the results to the qualitative assessment currently in use. Picket fence tests with and without intentional MLC errors were measured weekly on three Varian linacs. The picket fence images analysed covered a time period ranging between 14-20 months depending on the linac. An algorithm was developed that calculated the MLC error for each leaf-pair present in the picket fence images. The baseline error distributions of each linac were characterised for an initial period of 6 months and compared with the intentional MLC errors using statistical metrics. The distributions of median and one-sample Kolmogorov-Smirnov test p-value exhibited no overlap between baseline and intentional errors and were used retrospectively to automatically detect MLC errors in routine clinical practice. Agreement was found between the MLC errors detected by the automatic method and the fault reports during clinical use, as well as interventions for MLC repair and calibration. In conclusion the method presented provides for full automation of MLC quality assurance, based on individual linac performance characteristics. The use of the automatic method has been shown to provide early warning for MLC errors that resulted in clinical downtime.
Sasaki, Gordon H; Abelev, Natalie; Tevez-Ortiz, Ana
2014-03-01
Cryolipolysis is a contemporary method of reducing fat by controlled extraction of heat from adipocytes. The authors recorded temperature profiles during a single cryolipolysis treatment/recovery cycle (with and without massage) and report on the clinical safety and efficacy of this procedure. In the pilot study group (PSG), the abdomens of 6 patients were treated with cryolipolysis and subdermal temperatures were recorded. In the clinical treatment group (CTG), 112 patients were treated without temperature recordings and results were evaluated through matched comparison of standardized photographs, caliper measurements, ultrasound imaging, and global assessments. Thirty minutes into the cooling phase, subdermal temperatures of patients in the PSG declined precipitously from pretreatment levels and remained low until the end of treatment. During recovery, subdermal temperatures of the only subject who received massage returned faster and to higher levels than the temperatures of subjects who did not receive massage. Patients in the CTG who were available for follow-up measurements at 6 months (n = 85) demonstrated an average fat reduction of 21.5% by caliper measurements; 6 random patients from this group also showed an average of 19.6% fat reduction by ultrasound imaging at 6 months. Global assessments were highest for the abdomen, hip, and brassiere rolls. Minimal side effects were observed, and patients experienced no significant downtime. Noninvasive cryolipolysis results in a predictable and noticeable fat reduction within 6 months and does not cause skin damage. Profiling of subdermal temperatures may provide additional insights for improving clinical effectiveness and safety. 3.
Preventive maintenance system for the photomultiplier detector blocks of pet scanners
Levy, Alejandro V.; Warner, Donald
1995-01-24
A system including a method and apparatus for preventive maintenance of PET scanner photomultiplier detector blocks is disclosed. The quantitive comparisons used in the method of the present invention to provide an indication in the form of a display or printout advising the user that the photomultiplier block is stable, intermittently unstable, or drifting unstable, and also advising of the expected date of failure of a photomultiplier block in the PET scanner. The system alerts the user to replace the defective photomultiplier block prior to catastrophic failure in a scheduled preventative maintenance program, thus eliminating expensive and unscheduled downtime of the PET scanner due to photomultiplier failure. The apparatus for carrying out the method of the present invention preferably resides in the host computer controlling a PET scanner. It includes a memory adapted for storing a record of a number of iterative adjustments that are necessary to calibrate the gain of a photomultiplier detector block i at a time t.sub.0, a time t.sub.1 and a time T, where T>t.sub.1 >t.sub.0, which is designated as Histo(i,j(t)). The apparatus also includes a processor configured by a software program or a combination of programmed RAM and ROM devices to perform a number of calculations and operations on these values, and also includes a counter for analyzing each photomultiplier detector block i=1 through I of a PET scanner.
Min, Seong U K; Choi, Yu Sung; Lee, Dong Hun; Yoon, Mi Young; Suh, Dae Hun
2009-11-01
Nonablative laser is gaining popularity because of the low risk of complications, especially in patients with darker skin. To compare the efficacy and safety of a long-pulse neodymium-doped yttrium aluminium garnet (Nd:YAG) laser and a combined 585/1,064-nm laser for the treatment of acne scars. Nineteen patients with mild to moderate atrophic acne scars received four long-pulse Nd:YAG laser or combined 585/1,064-nm laser treatment sessions at fortnightly intervals. Treatments were administered randomly in a split-face manner. Acne scars showed mild to moderate improvement, with significant Echelle d'évaluation clinique des cicatrices d'acné (ECCA) score reductions, after both treatments. Although intermodality differences were not significant, combined 585/1,064-nm laser was more effective for deep boxcar scars. In patients with combined 585/1,064-nm laser-treated sides that improved more than long-pulse Nd:YAG laser-treated sides, ECCA scores were significantly lower for combined 585/1,064-nm laser treatment. Histologic evaluations revealed significantly greater collagen deposition, although there was no significant difference between the two modalities. Patient satisfaction scores concurred with physicians' evaluations. Both lasers ameliorated acne scarring with minimal downtime. In light of this finding, optimal outcomes might be achieved when laser treatment types are chosen after considering individual scar type and response.
Natural roller bearing fault detection by angular measurement of true instantaneous angular speed
NASA Astrophysics Data System (ADS)
Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.
2010-10-01
The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.
Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steel
NASA Astrophysics Data System (ADS)
Nyamekye, Patricia; Leino, Maija; Piili, Heidi; Salminen, Antti
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to fabricate metal parts out of metal powder. The development of the technology from building prototype parts to functional parts has increased remarkably in 2000s. LAM of metals is promising technology that offers new opportunities to manufacturing and to resource efficiency. However, there is only few published articles about its sustainability. Aim in this study was to create supply chain model of LAM and CNC machining and create a methodology to carry out a life cycle inventory (LCI) data collection for these techniques. The methodology of the study was literature review and scenario modeling. The acquisition of raw material, production phase and transportations were used as basis of comparison. The modelled scenarios were fictitious and created for industries, like aviation and healthcare that often require swift delivery as well as customized parts. The results of this study showed that the use of LAM offers a possibility to reduce downtime in supply chains of spare parts and reduce part inventory more effectively than CNC machining. Also the gap between customers and business is possible to be shortened with LAM thus offering a possibility to reduce emissions due to less transportation. The results also indicated weight reduction possibility with LAM due to optimized part geometry which allow lesser amount of metallic powder to be used in making parts.
NASA Astrophysics Data System (ADS)
Zhukovskiy, Y.; Koteleva, N.
2017-10-01
Analysis of technical and technological conditions for the emergence of emergency situations during the operation of electromechanical equipment of enterprises of the mineral and raw materials complex shows that when developing the basis for ensuring safe operation, it is necessary to take into account not only the technical condition, but also the non-stationary operation of the operating conditions of equipment, and the nonstationarity of operational operating parameters of technological processes. Violations of the operation of individual parts of the machine, not detected in time, can lead to severe accidents at work, as well as to unplanned downtime and loss of profits. That is why, the issues of obtaining and processing Big data obtained during the life cycle of electromechanical equipment, for assessing the current state of the electromechanical equipment used, timely diagnostics of emergency and pre-emergency modes of its operation, estimating the residual resource, as well as prediction the technical state on the basis of machine learning are very important. This article is dedicated to developing the special method of data storing, collection and aggregation for definition of life-cycle resources of electromechanical equipment. This method can be used in working with big data and can allow extracting the knowledge from different data types: the plants’ historical data and the factory historical data. The data of the plants contains the information about electromechanical equipment operation and the data of the factory contains the information about a production of electromechanical equipment.
Support and Maintenance of the International Monitoring System network
NASA Astrophysics Data System (ADS)
Pereira, Jose; Bazarragchaa, Sergelen; Kilgour, Owen; Pretorius, Jacques; Werzi, Robert; Beziat, Guillaume; Hamani, Wacel; Mohammad, Walid; Brely, Natalie
2014-05-01
The Monitoring Facilities Support Section of the Provisional Technical Secretariat (PTS) has as its main task to ensure optimal support and maintenance of an array of 321 monitoring stations and 16 radionuclide laboratories distributed worldwide. Raw seismic, infrasonic, hydroacoustic and radionuclide data from these facilities constitutes the basic product delivered by the International Monitoring System (IMS). In the process of maintaining such a wide array of stations of different technologies, the Support Section contributes to ensuring station mission capability. Mission capable data availability according to the IMS requirements should be at least 98% annually (no more than 7 days down time per year per waveform stations - 14 continuous for radionuclide stations) for continuous data sending stations. In this presentation, we will present our case regarding our intervention at stations to address equipment supportability and maintainability, as these are particularly large activities requiring the removal of a substantial part of the station equipment and installation of new equipment. The objective is always to plan these activities while minimizing downtime and continuing to meet all IMS requirements, including those of data availability mentioned above. We postulate that these objectives are better achieved by planning and making use of preventive maintenance, as opposed to "run-to-failure" with associated corrective maintenance. We use two recently upgraded Infrasound Stations (IS39 Palau and IS52 BIOT) as a case study and establish a comparison between these results and several other stations where corrective maintenance was performed, to demonstrate our hypothesis.
Gerhart, James I; Burns, John W; Bruehl, Stephen; Smith, David A; Post, Kristina M; Porter, Laura S; Schuster, Erik; Buvanendran, Asokumar; Fras, Anne Marie; Keefe, Francis J
2017-11-13
Chronic pain is associated with elevated negative emotions, and resources needed to adaptively regulate these emotions can be depleted during prolonged pain. Studies of links between pain, function, and negative emotions in people with chronic pain, however, have focused almost exclusively on relationships among mean levels of these factors. Indexes that may reflect aspects of emotion regulation have typically not been analyzed. We propose that 1 index of emotion regulation is variability in emotion over time as opposed to average emotion over time. The sample was 105 people with chronic low back pain and 105 of their pain-free spouses. They completed electronic diary measures 5x/d for 14 consecutive days, producing 70 observations per person from which we derived estimates of within-subject variance in negative emotions. Location-scale models were used to simultaneously model predictors of both mean level and variance in patient negative emotions over time. Patients reported significantly more variability in negative emotions compared to their spouses. Patients who reported higher average levels of pain, pain interference, and downtime reported significantly higher levels of variability in negative emotions. Spouse-observed pain and pain behaviors were also associated with greater variability in patients' negative emotions. Test of the inverse associations between negative emotion level and variability in pain and function were significant but weaker in magnitude. These findings support the notion that chronic pain may erode negative emotion regulation resources, to the potential detriment of intra- and inter-personal function.
Does Pneumatic Tube System Transport Contribute to Hemolysis in ED Blood Samples?
Phelan, Michael P.; Reineks, Edmunds Z.; Hustey, Fredric M.; Berriochoa, Jacob P.; Podolsky, Seth R.; Meldon, Stephen; Schold, Jesse D.; Chamberlin, Janelle; Procop, Gary W.
2016-01-01
Introduction Our goal was to determine if the hemolysis among blood samples obtained in an emergency department and then sent to the laboratory in a pneumatic tube system was different from those in samples that were hand-carried. Methods The hemolysis index is measured on all samples submitted for potassium analysis. We queried our hospital laboratory database system (SunQuest®) for potassium results for specimens obtained between January 2014 and July 2014. From facility maintenance records, we identified periods of system downtime, during which specimens were hand-carried to the laboratory. Results During the study period, 15,851 blood specimens were transported via our pneumatic tube system and 92 samples were hand delivered. The proportions of hemolyzed specimens in the two groups were not significantly different (13.6% vs. 13.1% [p=0.90]). Results were consistent when the criterion was limited to gross (3.3% vs 3.3% [p=0.99]) or mild (10.3% vs 9.8% [p=0.88]) hemolysis. The hemolysis rate showed minimal variation during the study period (12.6%–14.6%). Conclusion We found no statistical difference in the percentages of hemolyzed specimens transported by a pneumatic tube system or hand delivered to the laboratory. Certain features of pneumatic tube systems might contribute to hemolysis (e.g., speed, distance, packing material). Since each system is unique in design, we encourage medical facilities to consider whether their method of transport might contribute to hemolysis in samples obtained in the emergency department. PMID:27625719
Does Pneumatic Tube System Transport Contribute to Hemolysis in ED Blood Samples?
Phelan, Michael P; Reineks, Edmunds Z; Hustey, Fredric M; Berriochoa, Jacob P; Podolsky, Seth R; Meldon, Stephen; Schold, Jesse D; Chamberlin, Janelle; Procop, Gary W
2016-09-01
Our goal was to determine if the hemolysis among blood samples obtained in an emergency department and then sent to the laboratory in a pneumatic tube system was different from those in samples that were hand-carried. The hemolysis index is measured on all samples submitted for potassium analysis. We queried our hospital laboratory database system (SunQuest(®)) for potassium results for specimens obtained between January 2014 and July 2014. From facility maintenance records, we identified periods of system downtime, during which specimens were hand-carried to the laboratory. During the study period, 15,851 blood specimens were transported via our pneumatic tube system and 92 samples were hand delivered. The proportions of hemolyzed specimens in the two groups were not significantly different (13.6% vs. 13.1% [p=0.90]). Results were consistent when the criterion was limited to gross (3.3% vs 3.3% [p=0.99]) or mild (10.3% vs 9.8% [p=0.88]) hemolysis. The hemolysis rate showed minimal variation during the study period (12.6%-14.6%). We found no statistical difference in the percentages of hemolyzed specimens transported by a pneumatic tube system or hand delivered to the laboratory. Certain features of pneumatic tube systems might contribute to hemolysis (e.g., speed, distance, packing material). Since each system is unique in design, we encourage medical facilities to consider whether their method of transport might contribute to hemolysis in samples obtained in the emergency department.
NASA Technical Reports Server (NTRS)
Prassinos, Peter G.; Lyver, John W., IV; Bui, Chinh T.
2011-01-01
Risk assessment is used in many industries to identify and manage risks. Initially developed for use on aeronautical and nuclear systems, risk assessment has been applied to transportation, chemical, computer, financial, and security systems among others. It is used to gain an understanding of the weaknesses or vulnerabilities in a system so modification can be made to increase operability, efficiency, and safety and to reduce failure and down-time. Risk assessment results are primary inputs to risk-informed decision making; where risk information including uncertainty is used along with other pertinent information to assist management in the decision-making process. Therefore, to be useful, a risk assessment must be directed at specific objectives. As the world embraces the globalization of trade and manufacturing, understanding the associated risk become important to decision making. Applying risk assessment techniques to a global system of development, manufacturing, and transportation can provide insight into how the system can fail, the likelihood of system failure and the consequences of system failure. The risk assessment can identify those elements that contribute most to risk and identify measures to prevent and mitigate failures, disruptions, and damaging outcomes. In addition, risk associated with public and environment impact can be identified. The risk insights gained can be applied to making decisions concerning suitable development and manufacturing locations, supply chains, and transportation strategies. While risk assessment has been mostly applied to mechanical and electrical systems, the concepts and techniques can be applied across other systems and activities. This paper provides a basic overview of the development of a risk assessment.
Jiao, Wan; Hagler, Gayle S W; Williams, Ronald W; Sharpe, Robert N; Weinstock, Lewis; Rice, Joann
2015-05-19
Continuous, long-term, and time-resolved measurement of outdoor air pollution has been limited by logistical hurdles and resource constraints. Measuring air pollution in more places is desired to address community concerns regarding local air quality impacts related to proximate sources, to provide data in areas lacking regional air monitoring altogether, or to support environmental awareness and education. This study integrated commercially available technologies to create the Village Green Project (VGP), a durable, solar-powered air monitoring park bench that measures real-time ozone, PM2.5, and meteorological parameters. The data are wirelessly transmitted via cellular modem to a server, where automated quality checks take place before data are provided to the public nearly instantaneously. Over 5500 h of data were successfully collected during the first ten months of pilot testing in Durham, North Carolina, with about 13 days (5.5%) of downtime because of low battery power. Additional data loss (4-14% depending on the measurement) was caused by infrequent wireless communication interruptions and instrument maintenance. The 94.5% operational time via solar power was within 1.5% of engineering calculations using historical solar data for the location. The performance of the VGP was evaluated by comparing the data to nearby air monitoring stations operating federal equivalent methods (FEM), which exhibited good agreement with the nearest benchmark FEMs for hourly ozone (r(2) = 0.79) and PM2.5 (r(2) = 0.76).
NASA Astrophysics Data System (ADS)
Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher
2017-04-01
Civil engineering structures such as bridges, buildings, and tunnels continue to be used despite aging and deterioration well past their design life. In 2013, the American Society of Civil Engineers (ASCE) rated the state of the U.S. bridges as mediocre, despite the $12.8 billion USD annually invested. Traditional inspection and monitoring techniques may produce inconsistent results, are labor intensive and too time-consuming to be considered effective for large-scale monitoring. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems possess the capability of extracting full-field strain, displacement, and geometry profiles. Furthermore, as this measurement technique is implemented within an Unmanned Aerial Vehicle (UAV) the capability to expedite the optical-based measurement process is increased as well as the infrastructure downtime being reduced. These resulting integrity maps of the structure of interest can be easily interpreted by trained personal. Within this paper, the feasibility of performing DIC measurements using a pair of cameras installed on a UAV is shown. Performance is validated with in-flight measurements. Also, full-field displacement monitoring, 3D measurement stitching, and 3D point-tracking techniques are employed in conjunction with 3D mapping and data management software. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a highly valuable and effective civil inspection platform.
Radiofrequency facial rejuvenation: evidence-based effect.
el-Domyati, Moetaz; el-Ammawi, Tarek S; Medhat, Walid; Moawad, Osama; Brennan, Donna; Mahoney, My G; Uitto, Jouni
2011-03-01
Multiple therapies involving ablative and nonablative techniques have been developed for rejuvenation of photodamaged skin. Monopolar radiofrequency (RF) is emerging as a gentler, nonablative skin-tightening device that delivers uniform heat to the dermis at a controlled depth. We evaluated the clinical effects and objectively quantified the histologic changes of the nonablative RF device in the treatment of photoaging. Six individuals of Fitzpatrick skin type III to IV and Glogau class I to II wrinkles were subjected to 3 months of treatment (6 sessions at 2-week intervals). Standard photographs and skin biopsy specimens were obtained at baseline, and at 3 and 6 months after the start of treatment. We performed quantitative evaluation of total elastin, collagen types I and III, and newly synthesized collagen using computerized histometric and immunohistochemical techniques. Blinded photographs were independently scored for wrinkle improvement. RF produced noticeable clinical results, with high satisfaction and corresponding facial skin improvement. Compared with the baseline, there was a statistically significant increase in the mean of collagen types I and III, and newly synthesized collagen, while the mean of total elastin was significantly decreased, at the end of treatment and 3 months posttreatment. A limitation of this study is the small number of patients, yet the results show a significant improvement. Although the results may not be as impressive as those obtained by ablative treatments, RF is a promising treatment option for photoaging with fewer side effects and downtime. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. John J. Moore; Dr. Jianliang Lin,
2012-07-31
The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain themore » largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).« less
McKenna, Brian; Furness, Trentham; Oakes, Jane; Brown, Steve
2015-10-01
Police officers as first responders to acute mental health crisis in the community, commonly transport people in mental health crisis to a hospital emergency department. However, emergency departments are not the optimal environments to provide assessment and care to those experiencing mental health crises. In 2012, the Northern Police and Clinician Emergency Response (NPACER) team combining police and mental health clinicians was created to reduce behavioural escalation and provide better outcomes for people with mental health needs through diversion to appropriate mental health and community services. The aim of this study was to describe the perceptions of major stakeholders on the ability of the team to reduce behavioural escalation and improve the service utilization of people in mental health crisis. Responses of a purposive sample of 17 people (carer or consumer advisors, mental health or emergency department staff, and police or ambulance officers) who had knowledge of, or had interfaced with, the NPACER were thematically analyzed after one-to-one semistructured interviews. Themes emerged about the challenge created by a stand-alone police response, with the collaborative strengths of the NPACER (communication, information sharing, and knowledge/skill development) seen as the solution. Themes on improvements in service utilization were revealed at the point of community contact, in police stations, transition through the emergency department, and admission to acute inpatient units. The NPACER enabled emergency department diversion, direct access to inpatient mental health services, reduced police officer 'down-time', improved interagency collaboration and knowledge transfer, and improvements in service utilization and transition. © 2015 Australian College of Mental Health Nurses Inc.
Implementation of an ASP model offsite backup archive for clinical images utilizing Internet 2
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Chao, Sander S.; Documet, Jorge; Lee, Jasper; Lee, Michael; Topic, Ian; Williams, Lanita
2005-04-01
With the development of PACS technology and an increasing demand by medical facilities to become filmless, there is a need for a fast and efficient method of providing data backup for disaster recovery and downtime scenarios. At the Image Processing Informatics Lab (IPI), an ASP Backup Archive was developed using a fault-tolerant server with a T1 connection to serve the PACS at the St. John's Health Center (SJHC) Santa Monica, California. The ASP archive server has been in clinical operation for more than 18 months, and its performance was presented at this SPIE Conference last year. This paper extends the ASP Backup Archive to serve the PACS at the USC Healthcare Consultation Center II (HCC2) utilizing an Internet2 connection. HCC2 is a new outpatient facility that recently opened in April 2004. The Internet2 connectivity between USC's HCC2 and IPI has been established for over one year. There are two novelties of the current ASP model: 1) Use of Internet2 for daily clinical operation, and 2) Modifying the existing backup archive to handle two sites in the ASP model. This paper presents the evaluation of the ASP Backup Archive based on the following two criteria: 1) Reliability and performance of the Internet2 connection between HCC2 and IPI using DICOM image transfer in a clinical environment, and 2) Ability of the ASP Fault-Tolerant backup archive to support two separate clinical PACS sites simultaneously. The performances of using T1 and Internet2 at the two different sites are also compared.
What Are Your Patients Reading Online About Soft-tissue Fillers? An Analysis of Internet Information
Al Youha, Sarah A.; Bull, Courtney E.; Butler, Michael B.; Williams, Jason G.
2016-01-01
Background: Soft-tissue fillers are increasingly being used for noninvasive facial rejuvenation. They generally offer minimal downtime and reliable results. However, significant complications are reported and patients need to be aware of these as part of informed consent. The Internet serves as a vital resource to inform patients of the risks and benefits of this procedure. Methods: Three independent reviewers performed a structured analysis of 65 Websites providing information on soft-tissue fillers. Validated instruments were used to analyze each site across multiple domains, including readability, accessibility, reliability, usability, quality, and accuracy. Associations between the endpoints and Website characteristics were assessed using linear regression and proportional odds modeling. Results: The majority of Websites were physician private practice sites (36.9%) and authored by board-certified plastic surgeons or dermatologists (35.4%) or nonphysicians (27.7%). Sites had a mean Flesch-Kincaid grade level of 11.9 ± 2.6, which is well above the recommended average of 6 to 7 grade level. Physician private practice sites had the lowest scores across all domains with a notable lack of information on complications. Conversely, Websites of professional societies focused in plastic surgery and dermatology, as well as academic centers scored highest overall. Conclusions: As the use of soft-tissue fillers is rising, patients should be guided toward appropriate sources of information such as Websites sponsored by professional societies. Medical professionals should be aware that patients may be accessing poor information online and strive to improve the overall quality of information available on soft-tissue fillers. PMID:27536503
NASA Astrophysics Data System (ADS)
Yosri, M. H.; Muhamad, P.; Ismail, M. A.; Yatim, N. H. M.
2018-01-01
Dust and fiber have been identified among the highest contributor for the defect in automotive painting line with range from 40% to 50% of total defect breakdown. Eventually, those defects will effect on both visual appearance and also the performance of the parts. In addition, the significance of controlling dust in an assembly line is crucial in order to maintain the quality of the product, part performance yield and effect on workers’ health [1]. By considering the principle and technology applied in electronic clean room technology, the ionizer have been introduce to control dust contamination in automotive painting line. The first auto maker industry whom found the effectiveness of the clean room application to reduce the defect and production line downtime was Chrysler [2]. By doing so, it’s allowed the transmission plant to offer 50 000 mile guarantee on the transmission systems. The main objective of this research is to verify the effectiveness of ionizer device in order to reduce the rejection contribute by dust and fiber particle in the automotive painting line. Towards the main objective, a few sub areas will be explored, as a supporting factor to ensure the result gain from this study is solid and constructive. The experiment start by verifying the electrostatic value of the raw material (substrate) before and after the ionizer treatment. From here the correlation of the electrostatic value generated by the raw material that effect to production pass rate can be explored. At the meantime, the performance of the production pass rate after the ionizer treatment which related to the painted surface area can be determined.
Sax, U.; Lipprandt, M.
2016-01-01
Summary Introduction As many medical workflows depend vastly on IT support, great demands are placed on the availability and accuracy of the applications involved. The cases of IT failure through ransomware at the beginning of 2016 are impressive examples of the dependence of clinical processes on IT. Although IT risk management attempts to reduce the risk of IT blackouts, the probability of partial/total data loss, or even worse, data falsification, is not zero. The objective of this paper is to present the state of the art with respect to strategies, processes, and governance to deal with the failure of IT systems. Methods This article is conducted as a narrative review. Results Worst case scenarios are needed, dealing with methods as to how to survive the downtime of clinical systems, for example through alternative workflows. These workflows have to be trained regularly. We categorize the most important types of IT system failure, assess the usefulness of classic counter measures, and state that most risk management approaches fall short on exactly this matter. Conclusion To ensure that continuous, evidence-based improvements to the recommendations for IT emergency concepts are made, it is essential that IT blackouts and IT disasters are reported, analyzed, and critically discussed. This requires changing from a culture of shame and blame to one of error and safety in healthcare IT. This change is finding its way into other disciplines in medicine. In addition, systematically planned and analyzed simulations of IT disaster may assist in IT emergency concept development. PMID:27830241
Sax, Ulrich; Lipprandt, M; Röhrig, R
2016-11-10
As many medical workflows depend vastly on IT support, great demands are placed on the availability and accuracy of the applications involved. The cases of IT failure through ransomware at the beginning of 2016 are impressive examples of the dependence of clinical processes on IT. Although IT risk management attempts to reduce the risk of IT blackouts, the probability of partial/total data loss, or even worse, data falsification, is not zero. The objective of this paper is to present the state of the art with respect to strategies, processes, and governance to deal with the failure of IT systems. This article is conducted as a narrative review. Worst case scenarios are needed, dealing with methods as to how to survive the downtime of clinical systems, for example through alternative workflows. These workflows have to be trained regularly. We categorize the most important types of IT system failure, assess the usefulness of classic counter measures, and state that most risk management approaches fall short on exactly this matter. To ensure that continuous, evidence-based improvements to the recommendations for IT emergency concepts are made, it is essential that IT blackouts and IT disasters are reported, analyzed, and critically discussed. This requires changing from a culture of shame and blame to one of error and safety in healthcare IT. This change is finding its way into other disciplines in medicine. In addition, systematically planned and analyzed simulations of IT disaster may assist in IT emergency concept development.
Horizontal geometrical reaction time model for two-beam nacelle LiDARs
NASA Astrophysics Data System (ADS)
Beuth, Thorsten; Fox, Maik; Stork, Wilhelm
2015-06-01
Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.
NASA Astrophysics Data System (ADS)
Appendini, Christian M.; Hernández-Lasheras, Jaime; Meza-Padilla, Rafael; Kurczyn, Jorge A.
2018-01-01
Anticyclonic cold surges entering the Gulf of Mexico (Nortes) generate ocean waves that disrupt maritime activities. Norte derived waves are less energetic than the devastating waves from tropical cyclones, but more frequent ( 22 events/year) and with larger spatial influence. Despite their importance, few studies characterize Nortes derived waves and assess the effects of climate change on their occurrence. This study presents a method to identify and characterize Nortes with relation to their derived waves in the Gulf of Mexico. We based the identification of Nortes on synoptic measurements of pressure differences between Yucatan and Texas and wind speed at different buoy locations in the Gulf of Mexico. Subsequently, we identified the events in the CFSR reanalysis (present climate) and the CNRM-M5 model for the present climate and the RCP 8.5 scenario. We then forced a wave model to characterize the wave power generated by each event, followed by a principal component analysis and classification by k-means clustering analysis. Five different Nortes types were identified, each one representing a characteristic intensity and area of influence of the Norte driven waves. Finally, we estimated the occurrence of each Norte type for the present and future climates, where the CNRM-M5 results indicate that the high-intensity events will be less frequent in a warming climate, while mild events will become more frequent. The consequences of such changes may provide relief for maritime and coastal operations because of reduced downtimes. This result is particularly relevant for the operational design of coastal and marine facilities.
Assessing Aircraft Supply Air to Recommend Compounds for Timely Warning of Contamination
NASA Astrophysics Data System (ADS)
Fox, Richard B.
Taking aircraft out of service for even one day to correct fume-in-cabin events can cost the industry roughly $630 million per year in lost revenue. The quantitative correlation study investigated quantitative relationships between measured concentrations of contaminants in bleed air and probability of odor detectability. Data were collected from 94 aircraft engine and auxiliary power unit (APU) bleed air tests from an archival data set between 1997 and 2011, and no relationships were found. Pearson correlation was followed by regression analysis for individual contaminants. Significant relationships of concentrations of compounds in bleed air to probability of odor detectability were found (p<0.05), as well as between compound concentration and probability of sensory irritancy detectability. Study results may be useful to establish early warning levels. Predictive trend monitoring, a method to identify potential pending failure modes within a mechanical system, may influence scheduled down-time for maintenance as a planned event, rather than repair after a mechanical failure and thereby reduce operational costs associated with odor-in-cabin events. Twenty compounds (independent variables) were found statistically significant as related to probability of odor detectability (dependent variable 1). Seventeen compounds (independent variables) were found statistically significant as related to probability of sensory irritancy detectability (dependent variable 2). Additional research was recommended to further investigate relationships between concentrations of contaminants and probability of odor detectability or probability of sensory irritancy detectability for all turbine oil brands. Further research on implementation of predictive trend monitoring may be warranted to demonstrate how the monitoring process might be applied to in-flight application.
Rectifying calibration error of Goldmann applanation tonometer is easy!
Choudhari, Nikhil S; Moorthy, Krishna P; Tungikar, Vinod B; Kumar, Mohan; George, Ronnie; Rao, Harsha L; Senthil, Sirisha; Vijaya, Lingam; Garudadri, Chandra Sekhar
2014-11-01
Purpose: Goldmann applanation tonometer (GAT) is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland) were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn't suffice. We followed the South East Asia Glaucoma Interest Group's definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively). Results: Twelve out of 29 (41.3%) GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6%) faulty instruments. Only one (8.3%) faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.
PACS administrators' and radiologists' perspective on the importance of features for PACS selection.
Joshi, Vivek; Narra, Vamsi R; Joshi, Kailash; Lee, Kyootai; Melson, David
2014-08-01
Picture archiving and communication systems (PACS) play a critical role in radiology. This paper presents the criteria important to PACS administrators for selecting a PACS. A set of criteria are identified and organized into an integrative hierarchical framework. Survey responses from 48 administrators are used to identify the relative weights of these criteria through an analytical hierarchy process. The five main dimensions for PACS selection in order of importance are system continuity and functionality, system performance and architecture, user interface for workflow management, user interface for image manipulation, and display quality. Among the subdimensions, the highest weights were assessed for security, backup, and continuity; tools for continuous performance monitoring; support for multispecialty images; and voice recognition/transcription. PACS administrators' preferences were generally in line with that of previously reported results for radiologists. Both groups assigned the highest priority to ensuring business continuity and preventing loss of data through features such as security, backup, downtime prevention, and tools for continuous PACS performance monitoring. PACS administrators' next high priorities were support for multispecialty images, image retrieval speeds from short-term and long-term storage, real-time monitoring, and architectural issues of compatibility and integration with other products. Thus, next to ensuring business continuity, administrators' focus was on issues that impact their ability to deliver services and support. On the other hand, radiologists gave high priorities to voice recognition, transcription, and reporting; structured reporting; and convenience and responsiveness in manipulation of images. Thus, radiologists' focus appears to be on issues that may impact their productivity, effort, and accuracy.
Ebbeling, Laura G; Goralnick, Eric; Bivens, Matthew J; Femino, Meg; Berube, Claire G; Sears, Bryan; Sanchez, Leon D
2016-01-01
Disaster exercises often simulate rare, worst-case scenario events that range from mass casualty incidents to severe weather events. In actuality, situations such as information system downtimes and physical plant failures may affect hospital continuity of operations far more significantly. The objective of this study is to evaluate disaster drills at two academic and one community hospital to compare the frequency of planned drills versus real-world events that led to emergency management command center activation. Emergency management exercise and command center activation data from January 1, 2013 to October 1, 2015 were collected from a database. The activations and drills were categorized according to the nature of the event. Frequency of each type of event was compared to determine if the drills were representative of actual activations. From 2013 to 2015, there were a total of 136 command center activations and 126 drills at the three hospital sites. The most common reasons for command center activations included severe weather (25 percent, n = 34), maintenance failure (19.9 percent, n = 27), and planned mass gathering events (16.9 percent, n = 23). The most frequent drills were process tests (32.5 percent, n = 41), hazardous material-related events (22.2 percent, n = 28), and in-house fires (15.10 percent, n = 19). Further study of the reasons behind why hospitals activate emergency management plans may inform better preparedness drills. There is no clear methodology used among all hospitals to create drills and their descriptions are often vague. There is an opportunity to better design drills to address specific purposes and events.
Non-ablative fractional resurfacing of surgical and post-traumatic scars.
Vasily, David B; Cerino, Mary E; Ziselman, Ethel M; Zeina, S Tannous
2009-11-01
Non-ablative, fractional lasers generate microscopic columns of coagulated tissue through the epidermis and dermis to evoke a wound healing response. In this study, the authors examined the efficacy and safety of the non-ablative 1540 nm erbium:glass fractional laser in the treatment of surgical and post-traumatic scars. Clinical studies were conducted on a range of surgical and post-traumatic scars with a 1540 nm erbium:glass fractional laser varying energy, pulse widths, treatment passes, and number of treatments. A histological study was conducted on a postsurgical scar to follow the time course of healing post-treatment and the impact of the fractional treatment on normalization of scar tissue, as compared to baseline histology of the scar. Histologic findings demonstrated rapid re-epithelialization of the epidermis within 72 hours of treatment. Remodeling of scar tissue with renewal and reorganization of collagen fibers in the dermis was noted two weeks post-treatment. Clinical subjects, with Fitzpatrick skin types II-V, received three to seven treatments with microbeam energies up to 60 mJ/pb and five passes. Relative to baseline, 73% of treated scars improved 50% or more and 43% improved 75% or more. Side effects included mild swelling (95% of subjects), erythema (94%) and purpura (5%), which all resolved within two to three days. Downtime was minimal-to-none for all subjects. These data illustrate the safety and efficacy of the 1540 nm erbium:glass fractional laser in the treatment of surgical and post-traumatic scars. Practitioners can vary energy and microbeam density in order to tailor the treatment to reflect the individual scar characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aytug, Tolga
Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity,more » hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.« less
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing.
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-09-05
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals.
Self-Cleaning Particulate Prefilter Media
NASA Technical Reports Server (NTRS)
Weber, Olivia; Lalwani, San-jiv; Sharma, Anjal
2012-01-01
A long-term space mission requires efficient air revitalization performance to sustain the crew. Prefilter and particulate air filter media are susceptible to rapid fouling that adversely affects their performance and can lead to catastrophic failure of the air revitalization system, which may result in mission failure. For a long-term voyage, it is impractical to carry replacement particulate prefilter and filter modules due to the usual limitations in size, volume, and weight. The only solution to this problem is to reagentlessly regenerate prefilter and filter media in place. A method was developed to modify the particulate prefilter media to allow them to regenerate reagentlessly, and in place, by the application of modest thermocycled transverse or reversed airflows. The innovation may allow NASA to close the breathing air loop more efficiently, thereby sustaining the vision for manned space exploration missions of the future. A novel, self-cleaning coatings technology was developed for air filter media surfaces that allows reagentless in-place regeneration of the surface. The technology grafts thermoresponsive and nonspecific adhesion minimizing polymer nanolayer brush coatings from the prefilter media. These polymer nanolayer brush architectures can be triggered to contract and expand to generate a "pushing-off" force by the simple application of modestly thermocycled (i.e. cycling from ambient cabin temperature to 40 C) air streams. The nonspecific adhesion-minimizing properties of the coatings do not allow the particulate foulants to adhere strongly to the filter media, and thermocycled air streams applied to the media allow easy detachment and in-place regeneration of the media with minimal impact in system downtime or astronaut involvement in overseeing the process.
The downside of downtime: The prevalence and work pacing consequences of idle time at work.
Brodsky, Andrew; Amabile, Teresa M
2018-05-01
Although both media commentary and academic research have focused much attention on the dilemma of employees being too busy, this paper presents evidence of the opposite phenomenon, in which employees do not have enough work to fill their time and are left with hours of meaningless idle time each week. We conducted six studies that examine the prevalence and work pacing consequences of involuntary idle time. In a nationally representative cross-occupational survey (Study 1), we found that idle time occurs frequently across all occupational categories; we estimate that employers in the United States pay roughly $100 billion in wages for time that employees spend idle. Studies 2a-3b experimentally demonstrate that there are also collateral consequences of idle time; when workers expect idle time following a task, their work pace declines and their task completion time increases. This decline reverses the well-documented deadline effect, producing a deadtime effect, whereby workers slow down as a task progresses. Our analyses of work pace patterns provide evidence for a time discounting mechanism: workers discount idle time when it is relatively distant, but act to avoid it increasingly as it becomes more proximate. Finally, Study 4 demonstrates that the expectation of being able to engage in leisure activities during posttask free time (e.g., surfing the Internet) can mitigate the collateral work pace losses due to idle time. Through examination and discussion of the effects of idle time at work, we broaden theory on work pacing. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kalman filter based data fusion for neutral axis tracking in wind turbine towers
NASA Astrophysics Data System (ADS)
Soman, Rohan; Malinowski, Pawel; Ostachowicz, Wieslaw; Paulsen, Uwe S.
2015-03-01
Wind energy is seen as one of the most promising solutions to man's ever increasing demands of a clean source of energy. In particular to reduce the cost of energy (COE) generated, there are efforts to increase the life-time of the wind turbines, to reduce maintenance costs and to ensure high availability. Maintenance costs may be lowered and the high availability and low repair costs ensured through the use of condition monitoring (CM) and structural health monitoring (SHM). SHM allows early detection of damage and allows maintenance planning. Furthermore, it can allow us to avoid unnecessary downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even in the presence of changing ambient conditions. NA is defined as the line or plane in the section of the beam which does not experience any tensile or compressive forces when loaded. The NA is the property of the cross section of the tower and is independent of the applied loads and ambient conditions. Any change in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine.
Generation of Global Geodetic Networks for GGOS
NASA Astrophysics Data System (ADS)
MacMillan, Daniel; Pavlis, Erricos C.; Kuzmicz-Cieslak, Magda; Koenig, Daniel
2016-12-01
We simulated future networks of VLBI+SLR sites to assess their performance. The objective is to build a global network of geographically well distributed, co-located next-generation sites from each of the space geodetic techniques. The network is being designed to meet the GGOS terrestrial reference frame goals of 1 mm in accuracy and 0.1 mm/yr in stability. We simulated the next generation networks that should be available in five years and in ten years to assess the likelihood that these networks will meet the reference frame goals. Simulations were based on the expectation that 17 broadband VLBI stations will be available in five years and 27 stations in ten years. We also consider the improvement resulting from expanding the network by six additional VLBI sites to improve the global distribution of the network. In the simulations, the networks will operate continuously, but we account for station downtime for maintenance or because of bad weather. We ran SLR+VLBI combination TRF solutions, where site ties were used to connect the two networks in the same way as in combination solutions with observed data. The strengths of VLBI and SLR allows them to provide the necessary reference frame accuracy in scale, geocenter, and orientation. With the +10-year extended network operating for ten years, simulations indicate that scale, origin, and orientation accuracies will be at the level of 0.02 ppb, 0.2 mm, and 6 μas. Combining the +5-year and +10-year network realizations will provide better estimates of accuracy and estimates of stability.
Gearbox Reliability Collaborative Phase 3 Gearbox 3 Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan; Wallen, Robb
Many gearboxes in wind turbines do not achieve their expected design life; they do, however, commonly meet or exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the downtime associated with these failures, increases the cost of wind energy. In 2007, the U.S. Department of Energy established the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC). Its goals are to understand the root causes of premature gearbox failures and to improve their reliability. The GRC ismore » examining a hypothesis that the gap between design-estimated and actual wind turbine gearbox reliability is caused by underestimation of loads, inaccurate design tools, the absence of critical elements in the design process, or insufficient testing. This report describes the recently completed tests of GRC Gearbox 3 in the National Wind Technology Center dynamometer and documents any modifications to the original test plan. In this manner, it serves as a guide for interpreting the publicly released data sets with brief analyses to illustrate the data. The primary test objective was to measure the planetary load-sharing characteristics in the same conditions as the original GRC gearbox design. If the measured load-sharing characteristics are close to the design model, the projected improvement in planetary section fatigue life and the efficacy of preloaded TRBs in mitigating the planetary bearing fatigue failure mode will have been demonstrated. Detailed analysis of that test objective will be presented in subsequent publications.« less
NASA Technical Reports Server (NTRS)
Kirby, Kate; Babb, J.; Yoshino, K.
2004-01-01
In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.
Non-invasive subcutaneous fat reduction: a review.
Kennedy, J; Verne, S; Griffith, R; Falto-Aizpurua, L; Nouri, K
2015-09-01
The risks, financial costs and lengthy downtime associated with surgical procedures for fat reduction have led to the development of a number of non-invasive techniques. Non-invasive body contouring now represents the fastest growing area of aesthetic medicine. There are currently four leading non-invasive techniques for reducing localized subcutaneous adipose tissue: low-level laser therapy (LLLT), cryolipolysis, radio frequency (RF) and high-intensity focused ultrasound (HIFU). To review and compare leading techniques and clinical outcomes of non-invasive subcutaneous fat reduction. The terms 'non-invasive', 'low-level laser', 'cryolipolysis', 'ultrasound' and 'radio frequency' were combined with 'lipolysis', 'fat reduction' or 'body contour' during separate searches in the PubMed database. We identified 31 studies (27 prospective clinical studies and four retrospective chart reviews) with a total of 2937 patients that had been treated with LLLT (n = 1114), cryolipolysis (n = 706), HIFU (n = 843) or RF (n = 116) or other techniques (n = 158) for fat reduction or body contouring. A majority of these patients experienced significant and satisfying results without any serious adverse effects. The studies investigating these devices have all varied in treatment regimen, body locations, follow-up times or outcome operationalization. Each technique differs in offered advantages and severity of adverse effects. However, multiple non-invasive devices are safe and effective for circumferential reduction in local fat tissue by 2 cm or more across the abdomen, hips and thighs. Results are consistent and reproducible for each device and none are associated with any serious or permanent adverse effects. © 2015 European Academy of Dermatology and Venereology.
Wide-undermining neck liposuction: tips and tricks for good results.
Innocenti, Alessandro; Andretto Amodeo, Chiara; Ciancio, Francesco
2014-08-01
Neck rejuvenation is one of the most sought after procedures in the restoration of the facial contour. Numerous techniques to improve the aesthetic outcome and reduce downtime have been described. In our experience, wide undermining and local anesthesia are key to obtaining good results in selected patients who want a quick recovery. This article presents our experience with liposuction of the neck and proposes some tips and tricks to master wide-undermining neck liposuction. From January 2005 to September 2012, a total of 118 patients (34 males, 84 females) underwent neck liposuction. Patient selection was based mainly on age and neck-aging features. The procedure was performed with the patients under local anesthesia. A wide rhomboid-shaped skin undermining of the submandibular and neck area was performed and a very thin fat layer was preserved. Dressing was applied for 3 days. Improvement of the neck's contour was observed in all patients. Redefinition of the cervicomandibular angle and skin redraping of the cervical area occurred in all cases. No further touch-ups were needed. Edema and ecchymosis resolved in a few days. No major complications were observed. Our results show that wide-undermining neck liposuction performed under local anesthesia is an effective and safe procedure. Patient selection based on age and anatomical features was fundamental to obtain impressive improvement of neck contour. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Development of an attached microalgal growth system for biofuel production.
Johnson, Michael B; Wen, Zhiyou
2010-01-01
Algal biofuel production has gained a renewed interest in recent years but is still not economically feasible due to several limitations related to algal culture. The objective of this study is to explore a novel attached culture system for growing the alga Chlorella sp. as biodiesel feedstock, with dairy manure wastewater being used as growth medium. Among supporting materials tested for algal attachment, polystyrene foam led to a firm attachment, high biomass yield (25.65 g/m(2), dry basis), and high fatty acid yield (2.31 g/m(2)). The biomass attached on the supporting material surface was harvested by scraping; the residual colonies left on the surface served as inoculum for regrowth. The algae regrowth on the colony-established surface resulted in a higher biomass yield than that from the initial growth on fresh surface due to the downtime saved for initial algal attachment. The 10-day regrowth culture resulted in a high biodiesel production potential with a fatty acid methyl esters yield of 2.59 g/m(2) and a productivity of 0.26 g/m(-2) day(-1). The attached algal culture also removed 61-79% total nitrogen and 62-93% total phosphorus from dairy manure wastewater, depending on different culture conditions. The biomass harvested from the attached growth system (through scraping) had a water content of 93.75%, similar to that harvested from suspended culture system (through centrifugation). Collectively, the attached algal culture system with polystyrene foam as a supporting material demonstrated a good performance in terms of biomass yield, biodiesel production potential, ease to harvest biomass, and physical robustness for reuse.
Carruthers, Jean; Fournier, Nathalie; Kerscher, Martina; Ruiz-Avila, Javier; Trindade de Almeida, Ada R; Kaeuper, Gina
2013-03-01
The new world of safe aesthetic injectables has become increasingly popular with patients. Not only is there less risk than with surgery, but there is also significantly less downtime to interfere with patients' normal work and social schedules. Botulinum toxin (BoNT) type A (BoNTA) is an indispensable tool used in aesthetic medicine, and its broad appeal has made it a hallmark of modern culture. The key to using BoNTA to its best effect is to understand patient-specific factors that will determine the treatment plan and the physician's ability to personalize injection strategies. To present international expert viewpoints and consensus on some of the contemporary best practices in aesthetic BoNTA, so that beginner and advanced injectors may find pearls that provide practical benefits. Expert aesthetic physicians convened to discuss their approaches to treatment with BoNT. The discussions and consensus from this meeting were used to provide an up-to-date review of treatment strategies to improve patient results. Information is presented on patient management and assessment, documentation and consent, aesthetic scales, injection strategies, dilution, dosing, and adverse events. A range of product- and patient-specific factors influence the treatment plan. Truly optimized outcomes are possible only when the treating physician has the requisite knowledge, experience, and vision to use BoNTA as part of a unique solution for each patient's specific needs. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
A novel optical investigation technique for railroad track inspection and assessment
NASA Astrophysics Data System (ADS)
Sabato, Alessandro; Beale, Christopher H.; Niezrecki, Christopher
2017-04-01
Track failures due to cross tie degradation or loss in ballast support may result in a number of problems ranging from simple service interruptions to derailments. Structural Health Monitoring (SHM) of railway track is important for safety reasons and to reduce downtime and maintenance costs. For this reason, novel and cost-effective track inspection technologies for assessing tracks' health are currently insufficient and needed. Advancements achieved in recent years in cameras technology, optical sensors, and image-processing algorithms have made machine vision, Structure from Motion (SfM), and three-dimensional (3D) Digital Image Correlation (DIC) systems extremely appealing techniques for extracting structural deformations and geometry profiles. Therefore, optically based, non-contact measurement techniques may be used for assessing surface defects, rail and tie deflection profiles, and ballast condition. In this study, the design of two camera-based measurement systems is proposed for crossties-ballast condition assessment and track examination purposes. The first one consists of four pairs of cameras installed on the underside of a rail car to detect the induced deformation and displacement on the whole length of the track's cross tie using 3D DIC measurement techniques. The second consists of another set of cameras using SfM techniques for obtaining a 3D rendering of the infrastructure from a series of two-dimensional (2D) images to evaluate the state of the track qualitatively. The feasibility of the proposed optical systems is evaluated through extensive laboratory tests, demonstrating their ability to measure parameters of interest (e.g. crosstie's full-field displacement, vertical deflection, shape, etc.) for assessment and SHM of railroad track.
Mobile mammography: An evaluation of organizational, process, and information systems challenges.
Browder, Casey; Eberth, Jan M; Schooley, Benjamin; Porter, Nancy R
2015-03-01
The purpose of this case study was to evaluate the information systems, personnel, and processes involved in mobile mammography settings, and offer recommendations to improve efficiency and satisfaction among patients and staff. Data includes on-site observations, interviews, and an electronic medical record review of a hospital who offers both mobile and fixed facility mammography services to their community. The optimal expectations for the process of mobile mammography from multiple perspectives were defined as (1) patient receives mammogram the day of their visit, (2) patient has efficient intake process with little wait time, (3) follow-up is completed and timely, (4) site contact and van staff are satisfied with van visit and choose to schedule future visits, and (5) the MMU is able to assess its performance and set goals for improvement. Challenges that prevent the realization of those expectations include a low patient pre-registration rate, difficulty obtaining required physician orders, frequent information system downtime/Internet connectivity issues, ill-defined organizational communication/roles, insufficient site host/patient education, and disparate organizational and information systems. Our recommendations include employing a dedicated mobile mammography team for end-to-end oversight, mitigating for system connectivity issues, allowing for patient self-referrals, integrating scheduling and registration processes, and a focused approach to educating site hosts and respective patients about expectations for the day of the visit. The MMU is an important community resource; we recommend simple process improvements and information flow improvements to further enable the MMU׳s goals. Copyright © 2015 Elsevier Inc. All rights reserved.
Improving the performance of univariate control charts for abnormal detection and classification
NASA Astrophysics Data System (ADS)
Yiakopoulos, Christos; Koutsoudaki, Maria; Gryllias, Konstantinos; Antoniadis, Ioannis
2017-03-01
Bearing failures in rotating machinery can cause machine breakdown and economical loss, if no effective actions are taken on time. Therefore, it is of prime importance to detect accurately the presence of faults, especially at their early stage, to prevent sequent damage and reduce costly downtime. The machinery fault diagnosis follows a roadmap of data acquisition, feature extraction and diagnostic decision making, in which mechanical vibration fault feature extraction is the foundation and the key to obtain an accurate diagnostic result. A challenge in this area is the selection of the most sensitive features for various types of fault, especially when the characteristics of failures are difficult to be extracted. Thus, a plethora of complex data-driven fault diagnosis methods are fed by prominent features, which are extracted and reduced through traditional or modern algorithms. Since most of the available datasets are captured during normal operating conditions, the last decade a number of novelty detection methods, able to work when only normal data are available, have been developed. In this study, a hybrid method combining univariate control charts and a feature extraction scheme is introduced focusing towards an abnormal change detection and classification, under the assumption that measurements under normal operating conditions of the machinery are available. The feature extraction method integrates the morphological operators and the Morlet wavelets. The effectiveness of the proposed methodology is validated on two different experimental cases with bearing faults, demonstrating that the proposed approach can improve the fault detection and classification performance of conventional control charts.
An observational study of emergency department intern activities.
Zhu, Jia Ni; Weiland, Tracey J; Taylor, David M; Dent, Andrew W
2008-05-05
To describe how intern time is spent, and the frequency of activities performed by interns during emergency department (ED) rotations. Prospective observational study of 42 ED interns from three Melbourne city teaching hospitals during 5 months in 2006. Direct observations were made by a single researcher for 390.8 hours, sampling all days of the week and all hours of the day. Proportion of time spent on tasks and number of procedures performed or observed by interns. Direct patient-related tasks accounted for 86.6% of total intern time, including 43.9% spent on liaising and documentation, 17.5% obtaining patient histories, 9.3% on physical examinations, 5.6% on procedures, 4.8% ordering or interpreting investigations, 3.0% on handover and 4.9% on other clinical activities. Intern time spent on non-clinical activities included 4.2% on breaks, 3.7% on downtime, 1.7% on education, and 1.3% on teaching others. Adjusted for an 8-week term, the ED intern would take 253 patient histories, consult more senior ED staff on 683 occasions, perform 237 intravenous cannulations/phlebotomies, 39 arterial punctures, 12 wound repairs and apply 16 plasters. They would perform chest compressions under supervision on seven occasions, observe defibrillation twice and intubation once, but may not see a thoracostomy. The ED exposes interns to a broad range of activities. With the anticipated increase in intern numbers, dilution of the emergency medicine experience may occur, and requirements for supervision may increase. Substitution of ED rotations may deprive interns of a valuable learning experience.