Bomphrey, Richard J; Taylor, Graham K; Lawson, Nicholas J; Thomas, Adrian L.R
2005-01-01
Actuator disc models of insect flight are concerned solely with the rate of momentum transfer to the air that passes through the disc. These simple models assume that an even pressure is applied across the disc, resulting in a uniform downwash distribution. However, a correction factor, k, is often included to correct for the difference in efficiency between the assumed even downwash distribution, and the real downwash distribution. In the absence of any empirical measurements of the downwash distribution behind a real insect, the values of k used in the literature have been necessarily speculative. Direct measurement of this efficiency factor is now possible, and could be used to compare the relative efficiencies of insect flight across the Class. Here, we use Digital Particle Image Velocimetry to measure the instantaneous downwash distribution, mid-downstroke, of a tethered desert locust (Schistocerca gregaria). By integrating the downwash distribution, we are thereby able to provide the first direct empirical measurement of k for an insect. The measured value of k=1.12 corresponds reasonably well with that predicted by previous theoretical studies. PMID:16849240
Near-Source Modeling Updates: Building Downwash & Near-Road
The presentation describes recent research efforts in near-source model development focusing on building downwash and near-road barriers. The building downwash section summarizes a recent wind tunnel study, ongoing computational fluid dynamics simulations and efforts to improve ...
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1959-01-01
Equations for the downwash and sidewash due to supersonic yawed and unswept horseshoe vortices have been utilized in formulating tables and charts to permit a rapid estimation of the flow velocities behind wings performing various steady motions. Tabulations are presented of the downwash and sidewash in the wing vertical plane of symmetry due to a unit-strength yawed horseshoe vortex located at 20 equally spaced spanwise positions along lifting lines of various sweeps. (The bound portion of the yawed vortex is coincident with the lifting line.) Charts are presented for the purpose of estimating the spanwise variations of the flow-field velocities and give longitudinal variations of the downwash and sidewash at a nuMber of vertical and spanwise locations due to a unit-strength unswept horseshoe vortex. Use of the tables and charts to calculate wing downwash or sidewash requires a knowledge of the wing spanwise distribution of circulation. Sample computations for the rolling sidewash and angle-of-attack downwash behind a typical swept wing are presented to demonstrate the use of the tables and charts.
Correction of downwash in wind tunnels of circular and elliptic sections
NASA Technical Reports Server (NTRS)
Lotz, Irmgard
1936-01-01
The downwash velocity distribution behind the wing was determined for the free jet and for the closed tunnel of both circular and elliptic cross sections. The wing was placed at the center of the tunnel. The theory makes it possible to determine the downwash at any point in the jet. The computations were performed for points in the plane determined by the jet axis and the center-of-pressure line of the wing. The downwash proved to be proportional to the wing lift and inversely proportional to the cross-sectional area of the tunnel.
Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM
2013-12-01
UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Stefano Wahono Aerospace...Georgia Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions. RELEASE...UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Executive Summary The Infrared
The calculation of downwash behind supersonic wings with an application to triangular plan forms
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Sluder, Loma; Heaslet, Max A
1950-01-01
A method is developed consistent with the assumptions of small perturbation theory which provides a means of determining the downwash behind a wing in supersonic flow for a known load distribution. The analysis is based upon the use of supersonic doublets which are distributed over the plan form and wake of the wing in a manner determined from the wing loading. The equivalence in subsonic and supersonic flow of the downwash at infinity corresponding to a given load distribution is proved.
1975-11-01
limitations. It must conform to severe weight restrictions in order to attain hover and maneuver capability. It is a sensitive, vibrating platform...simulations had to be performed utilizing assumed data generated with standard momentum theory based on the size of the rotor and gross helicopter weight ...downwash intersects the rocket’s flight path; 8 (C) the weight of the aircraft influences the vertical downwash component almost linearly; and (d) the
Downwash in Vortex Region Behind Rectangular Half-wing at Mach Number 1.91
NASA Technical Reports Server (NTRS)
Cummings, John L; Haefeli, Rudolph C
1950-01-01
Results of an experimental investigation to determine downwash and wake characteristics in region of trailing vortex system behind a rectangular half-wing at Mach number 1.91 are presented. The wing had a 5-percent thick symmetric diamond cross section beveled to a knife edge at the tip. At small angles of attack, downwash angles were in close agreement with predictions of linearized theory based on the assumption of an undistorted vortex sheet. At higher angles of attack, the flow was greatly influenced by the rolling up of the vortex sheet.
Enhancements to AERMOD’s Building Downwash Algorithms based on Wind Tunnel and Embedded-LES Modeling
This presentation presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD’s building pre-processor to better represent elongated buildings in oblique wind...
1959-05-04
Figure 12(a) Effects of Inclining Water. Figure 12(b) Sand. NASA-TN-D-56 An investigation to determine conditions under which downwash from VTOL aircraft will start surface erosion from various types of terrain.
NASA Technical Reports Server (NTRS)
Platt, Robert C
1936-01-01
This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.
Critical review of the building downwash algorithms in AERMOD.
Petersen, Ron L; Guerra, Sergio A; Bova, Anthony S
2017-08-01
The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures. This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality.
Experimental Investigation of Wind-Tunnel Interference on the Downwash Behind an Airfoil
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1937-01-01
The interference of the wind-tunnel boundaries on the downwash behind an airfoil has been experimentally investigated and the results have been compared with the available theoretical results for open-throat wind tunnels. As in previous studies, the simplified theoretical treatment that assumes the test section to be an infinite free jet has been shown to be satisfactory at the lifting line. The experimental results, however, show that this assumption may lead to erroneous conclusions regarding the corrections to be applied to the downwash in the region behind the airfoil where the tail surfaces are normally located. The results of a theory based on the more accurate concept of the open-jet wind tunnel as a finite length of free jet provided with a closed exit passage are in good qualitative agreement with the experimental results.
Rotorcraft Downwash Flow Field Study to Understand the Aerodynamics of Helicopter Brownout
NASA Technical Reports Server (NTRS)
Wadcock, Alan J.; Ewing, Lindsay A.; Solis, Eduardo; Potsdam, Mark; Rajagopalan, Ganesh
2008-01-01
Rotorcraft brownout is caused by the entrainment of dust and sand particles in helicopter downwash, resulting in reduced pilot visibility during low, slow flight and landing. Recently, brownout has become a high-priority problem for military operations because of the risk to both pilot and equipment. Mitigation of this problem has focused on flight controls and landing maneuvers, but current knowledge and experimental data describing the aerodynamic contribution to brownout are limited. This paper focuses on downwash characteristics of a UH-60 Blackhawk as they pertain to particle entrainment and brownout. Results of a full-scale tuft test are presented and used to validate a high-fidelity Navier-Stokes computational fluid dynamics (CFD) calculation. CFD analysis for an EH-101 Merlin helicopter is also presented, and its flow field characteristics are compared with those of the UH-60.
Pilot-in-the-Loop CFD Method Development
2015-02-01
expensive alternatives [1]. ALM represents the blades as a set of segments along with each blade axis and the ADM represents the entire rotor as...fine grid, Δx = 1.00 m Figure 4 – Time-averaged vertical velocity distributions on downwash and rotor disk plane for hybrid and loose coupling...cases with fine and coarse grid refinement levels. Figure 4 shows the time-averaged distributions of vertical velocities on both downwash and rotor disk
NASA Technical Reports Server (NTRS)
Hakkinen, Raimo J; Richardson, A S , Jr
1957-01-01
Sinusoidally oscillating downwash and lift produced on a simple rigid airfoil were measured and compared with calculated values. Statistically stationary random downwash and the corresponding lift on a simple rigid airfoil were also measured and the transfer functions between their power spectra determined. The random experimental values are compared with theoretically approximated values. Limitations of the experimental technique and the need for more extensive experimental data are discussed.
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1979-01-01
Lift interference effects are discussed based on Bland's (1968) integral equation. A mathematical existence theory is utilized for which convergence of the numerical method has been proved for general (square-integrable) downwashes. Airloads are computed using orthogonal airfoil polynomial pairs in conjunction with a collocation method which is numerically equivalent to Galerkin's method and complex least squares. Convergence exhibits exponentially decreasing error with the number n of collocation points for smooth downwashes, whereas errors are proportional to 1/n for discontinuous downwashes. The latter can be reduced to 1/n to the m+1 power with mth-order Richardson extrapolation (by using m = 2, hundredfold error reductions were obtained with only a 13% increase of computer time). Numerical results are presented showing acoustic resonance, as well as the effect of Mach number, ventilation, height-to-chord ratio, and mode shape on wind-tunnel interference. Excellent agreement with experiment is obtained in steady flow, and good agreement is obtained for unsteady flow.
Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight
NASA Technical Reports Server (NTRS)
Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.
1982-01-01
A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.
Modeling of Longitudinal Unsteady Aerodynamics of a Wing-Tail Combination
NASA Technical Reports Server (NTRS)
Klein, Vladislav
1999-01-01
Aerodynamic equations for the longitudinal motion of an aircraft with a horizontal tail were developed. In this development emphasis was given on obtaining model structure suitable for model identification from experimental data. The resulting aerodynamic models included unsteady effects in the form of linear indicial functions. These functions represented responses in the lift on the wing and tail alone, and interference between those two lifting surfaces. The effect of the wing on the tail was formulated for two different expressions concerning the downwash angle at the tail. The first expression used the Cowley-Glauert approximation known-as "lag-in-downwash," the second took into account growth of the wing circulation and delay in the development of the lift on the tail. Both approaches were demonstrated in two examples using the geometry of a fighter aircraft and a large transport. It was shown that the differences in the two downwash formulations would increase for an aircraft with long tail arm performing low-speed, rapid maneuvers.
Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling
NASA Astrophysics Data System (ADS)
Monbureau, E. M.; Heist, D. K.; Perry, S. G.; Brouwer, L. H.; Foroutan, H.; Tang, W.
2018-04-01
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this study is to improve AERMOD's ability to accurately model important and complex building downwash scenarios by incorporating knowledge gained from a recently completed series of wind tunnel studies and complementary large eddy simulations of flow and dispersion around simple structures for a variety of building dimensions, stack locations, stack heights, and wind angles. This study presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD's building pre-processor to better represent elongated buildings in oblique winds. These modifications are demonstrated to improve the ability of AERMOD to model observed ground-level concentrations in the vicinity of a building for the variety of conditions examined in the wind tunnel and numerical studies.
Downwash and Wake Behind Plain and Flapped Airfoils
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S; Bullivant, W Kenneth
1939-01-01
Extensive experimental measurements have been made of the downwash angles and the wake characteristics behind airfoils with and without flaps and the data have been analyzed and correlated with the theory. A detailed study was made of the errors involved in applying lifting-line theory, such as the effects of a finite wing chord, the rolling-up of the trailing vortex sheet, and the wake. The downwash angles, as computed from the theoretical span load distribution by means of the Biot-Savart equation, were found to be in satisfactory agreement with the experimental results. The rolling-up of the trailing vortex sheet may be neglected, but the vertical displacement of the vortex sheet requires consideration. By the use of a theoretical treatment indicated by Prandtl, it has been possible to generalize the available experimental results so the predictions can be made of the important wake parameters in terms of the distance behind the airfoil trailing edge and the profile-drag coefficient. The method of application of the theory to design and the satisfactory agreement between predicted and experimental results when applied to an airplane are demonstrated.
Design charts for predicting downwash angles and wake characteristics behind plain and flapped wings
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1939-01-01
Equations and design charts are given for predicting the downwash angles and the wake characteristics for power-off conditions behind plain and flapped wings of the types used in modern design practice. The downwash charts cover the cases of elliptical wings and wings of taper ratios 1, 2, 3, and 5, with aspect ratios of 6, 9, and 12, having flaps covering 0, 40, 70, and 100 percent of the span. Curves of the span load distributions for all these cases are included. Data on the lift and the drag of flapped airfoil sections and curves for finding the contribution of the flap to the total wing lift for different types of flap and for the entire range of flap spans are also included. The wake width and the distribution of dynamic pressure across the wake are given in terms of the profile-drag coefficient and the distance behind the wing. A method of estimating the wake position is also given. The equations and charts are based on theory that has been shown in a previous report to be in agreement with experiment.
NASA Technical Reports Server (NTRS)
Jorgensen, Leland H; Perkins, Edward W
1958-01-01
For a body consisting of a fineness-ratio-3 ogival nose tangent to a cylindrical afterbody 7.3 diameters long, pitot-pressure distributions in the flow field, pressure distributions over the body, and downwash distributions along a line through the vortex centers have been measured for angles of attack to 20 degrees. The Reynolds numbers, based on body diameter, were 0.15 x 10 to the 6th power and 0.44 x 10 to the 6th power. Comparisons of computed and measured vortex paths and downwash distributions are made. (author)
Quantification of helicopter rotor downwash effects on electro-optical defensive aids suites
NASA Astrophysics Data System (ADS)
Seiffer, Dirk P.; Eisele, Christian; Henriksson, Markus; Sjöqvist, Lars; Möller, Sebastian; Togna, Fabio; Velluet, Marie-Thérèse
2015-10-01
The performance of electro-optical platform protection systems can be degraded significantly by the propagation environment around the platform. This includes aero-optical effects and zones of severe turbulence generated by engine exhausts. For helicopters rotor tip vortices and engine exhaust gases that are pressed down by the rotor airflow form the so called downwash phenomena. The downwash is a source for perturbations. A wide range of spatial and temporal fluctuations in the refractive index of air can occur. The perturbations from the turbulent flow cause detrimental effects on energy delivery, angle of arrival fluctuations, jam-code transmission, tracking accuracy and imaging performance in general. Therefore the effects may especially have a severe impact on the performance of laser-based protection systems like directed infrared countermeasures (DIRCM). The chain from passive missile detection and warning to obtaining an optical break-lock by the use of an active laser system will be influenced. To anticipate the installed performance of an electro-optical defensive aids suite (DAS) for helicopter platforms it is necessary to develop models for the prediction of the perturbations. Modelled results have to be validated against experimental findings. However, the data available in open literature on the effects of rotor downwash from helicopters on optical propagation is very limited. To collect necessary data and to obtain a first impression about the magnitude of occurring effects the European defence agency group (EDA) on "airborne platform effects on lasers and warning sensors (ALWS)" decided to design and perform a field trial on the premises of the Italian Air Force Flight Test Center in Pratica di Mare, Italy. ALWS is a technical arrangement under the Europa MoU among France, Germany, Italy, Sweden and the United Kingdom.
Wind tunnel investigation of helicopter rotor wake effects on three helicopter fuselage models
NASA Technical Reports Server (NTRS)
Wilson, J. C.; Mineck, R. E.
1974-01-01
The effects of rotor downwash on helicopter fuselage aerodynamic characteristics were investigated. A rotor model for generating the downwash was mounted close to each of three fuselage models. The main report presents the force and moment data in both graphical and tabular form and the pressure data in graphical form. This supplement presents the pressure data in tabular form. Each run or parameter sweep is identified by a unique run number. The data points in each run are identified by a point number. The pressure data can be matched to the force data by matching the run and point number.
NASA Technical Reports Server (NTRS)
Desmarais, R. N.; Rowe, W. S.
1984-01-01
For the design of active controls to stabilize flight vehicles, which requires the use of unsteady aerodynamics that are valid for arbitrary complex frequencies, algorithms are derived for evaluating the nonelementary part of the kernel of the integral equation that relates unsteady pressure to downwash. This part of the kernel is separated into an infinite limit integral that is evaluated using Bessel and Struve functions and into a finite limit integral that is expanded in series and integrated termwise in closed form. The developed series expansions gave reliable answers for all complex reduced frequencies and executed faster than exponential approximations for many pressure stations.
Effect of Propeller Slipstream on Wing and Tail
NASA Technical Reports Server (NTRS)
Stuper, J
1938-01-01
The results of wind tunnel tests for the determination of the effect of a jet on the lift and downwash of a wing are presented in this report. In the first part, a jet without rotation and with constant velocity distribution is considered - the jet being produced by a specially designed fan. Three-component, pressure distribution, and downwash measurements were made and the results compared with existing theory. The effect of a propeller slipstream was investigated in the second part. In the two cases the jet axis coincided with the undisturbed wind direction. In the third part the effect of the inclination of the propeller axis to the wing chord was considered, the results being obtained for a model wing with running propeller.
NASA Technical Reports Server (NTRS)
Watkins, Charles E; Berman, Julian H
1956-01-01
This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.
NASA Technical Reports Server (NTRS)
Adamson, David; Boatright, William B
1957-01-01
An investigation of the nature of the flow field behind a rectangular wing of circular arc cross section has been conducted in the Langley 9-inch supersonic tunnel. Pitot- and static-pressure surveys covering a region of flow behind the wing have been made together with detailed pitot surveys throughout the region of the wake. In addition, the flow direction has been measured by means of a weathercocking vane. Theoretical calculations have been made to obtain the variation of both downwash and sidewash with angle of attack by using the superposition method of Lagerstrom, Graham, and Grosslight. In addition, the effect of wing thickness on the sidewash with the wing at 0 degree angle of attack has been evaluated.
NASA Astrophysics Data System (ADS)
Schau, Kyle A.
This thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Karman model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical derivations are provided. This method is then tested against three highly complex flow fields: wake turbulence inside wind farms, helicopter downwash, and helicopter downwash coupled with turbulence shed from a ship superstructure. These applications demonstrate that this method is remarkably robust, that the developed autospectral models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in wind engineering.
Tip vortices in the actuator line model
NASA Astrophysics Data System (ADS)
Martinez, Luis; Meneveau, Charles
2017-11-01
The actuator line model (ALM) is a widely used tool to represent the wind turbine blades in computational fluid dynamics without the need to resolve the full geometry of the blades. The ALM can be optimized to represent the `correct' aerodynamics of the blades by choosing an appropriate smearing length scale ɛ. This appropriate length scale creates a tip vortex which induces a downwash near the tip of the blade. A theoretical frame-work is used to establish a solution to the induced velocity created by a tip vortex as a function of the smearing length scale ɛ. A correction is presented which allows the use of a non-optimal smearing length scale but still provides the downwash which would be induced using the optimal length scale. Thanks to the National Science Foundation (NSF) who provided financial support for this research via Grants IGERT 0801471, IIA-1243482 (the WINDINSPIRE project) and ECCS-1230788.
NASA Technical Reports Server (NTRS)
Silverstein, Abe; White, James A
1937-01-01
The theory of wind tunnel boundary influence on the downwash from a wing has been extended to provide more complete corrections for application to airplane test data. The first section of the report gives the corrections of the lifting line for wing positions above or below the tunnel center line; the second section shows the manner in which the induced boundary influence changes with distance aft of the lifting line. Values of the boundary corrections are given for off-center positions of the wing in circular, square, 2:1 rectangular, and 2:1 elliptical tunnels. Aft of the wing the corrections are presented for only the square and the 2:1 rectangular tunnels, but it is believed that these may be applied to jets of circular and 2:1 elliptical cross sections. In all cases results are included for both open and closed tunnels.
Research on unsteady transonic flow theory
NASA Technical Reports Server (NTRS)
Revell, J. D.
1973-01-01
A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.
Near Source Modeling: Building Downwash and Roadside Barriers
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this s...
Onboard Flow Sensing For Downwash Detection and Avoidance On Small Quadrotor Helicopters
2015-01-01
onboard computers, one for flight stabilization and a Linux computer for sensor integration and control calculations . The Linux computer runs Robot...Hirokawa, D. Kubo , S. Suzuki, J. Meguro, and T. Suzuki. Small uav for immediate hazard map generation. In AIAA Infotech@Aerospace Conf, May 2007. 8F
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. This presentation ...
Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this stu...
Assessment of Human Performance in a Simulated Rotorcraft Downwash Environment
2007-05-01
Plaga Biosciences and Protection Division Biomechanics Branch May 2007 Final Report for December 2004 to August 2005... Biomechanics Branch Wright-Patterson AFB OH 45433-7947 Approved for public release; distribution is unlimited NOTICE AND SIGNATURE PAGE...Human Effectiveness Directorate Biosciences & Protection Division Biomechanics Branch Wright-Patterson AFB OH 45433-7947 11. SPONSOR/MONITOR’S
ERIC Educational Resources Information Center
Edge, Ron
2007-01-01
We've all seen (in movies, newscasts, or perhaps in person) the violent effect of the downwash that occurs when a helicopter hovers over the ground. Leaves, grass, and debris are dramatically blown about. We've also sat in front of circulating room fans and felt a large draft, whereas there seems to be very little air movement behind the fan. The…
Canard-wing lift interference related to maneuvering aircraft at subsonic speeds
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Mckinney, L. W.
1973-01-01
An investigation was conducted at Mach numbers of 0.7 and 0.9 to determine the lift interference effect of canard location on wing planforms typical of maneuvering fighter configurations. The canard had an exposed area of 16.0 percent of the wing reference area and was located in the plane of the wing or in a position 18.5 percent of the wing mean geometric chord above the wing plane. In addition, the canard could be located at two longitudinal stations. Two different wing planforms were tested: one with a leading-edge sweep angle of 60 deg and the other with a leading-edge sweep angle of 44 deg. The results indicated that although downwash from the canard reduced the wing lift at angles of attack up to approximately 16 deg, the total lift was substantially greater with the canard on than with the canard off. At angles of attack above 16 deg, the canard delayed the wing stall. Changing canard deflection had essentially no effect on the total lift, since the additional lift generated by the canard deflection was lost on the wing due to an increased downwash at the wing from the canard.
NASA Technical Reports Server (NTRS)
Carros, R. J.; Boissevain, A. G.; Aoyagi, K.
1975-01-01
Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.
Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent
NASA Astrophysics Data System (ADS)
Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza
2017-11-01
All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).
Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
1995-01-01
A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.
NASA Technical Reports Server (NTRS)
Mineck, R. E.
1977-01-01
Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.
Theory of an airfoil equipped with a jet flap under low-speed flight conditions
NASA Technical Reports Server (NTRS)
Addessio, F. L.; Skifstad, J. G.
1975-01-01
A theory is developed, for the inviscid, incompressible flow past a thin airfoil equipped with a thin, part-span jet flap, by treating the induced flowfields of the jet and the wing separately and by obtaining the fully coupled solution in an iterative manner. Spanwise variation of the jet vortex strength is assumed to be elliptical in the analysis. Since the method considers the vorticity associated with the jet to be positioned on the computed locus of the jet, the downwash aft of the wing is evaluated as well as forces and moments on the wing. A lifting-surface theory is incorporated for the aerodynamics of the wing. Computational results are presented for a rectangular wing at momentum coefficients above 2.0 and compared with existing linear theories and experimental data. Good agreement is found for small angles of attack, jet-deflection angles, and jet-momentum coefficients where the linear theories and experimental data are applicable. Downwash data at a point in the vicinity of a control surface, the load distribution on the airfoil, and the jet, and the jet location are also presented for representative flight conditons.
Comparison of Fixed-Stabilizer, Adjustable-Stabilizer and All-Moveable Horizontal Tails
1945-10-01
the thrust axis and wind direction at Infinity, degrees; primed to indicate that a is corrected for ground interference effects 5 angular ...deflection of control surface, degrees i+- maximum angular deflection of stabilizer measured with reference to thrust axis, degrees hnax...5e maximum negative angular deflection of elevator, degrees E downwash angle at teil, degrees; primed to indicate that e Is
Muijres, Florian T; Bowlin, Melissa S; Johansson, L Christoffer; Hedenström, Anders
2012-02-07
Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1988-01-01
The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.
The Use of Commercial Remote Sensing Systems in Predicting Helicopter Brownout Conditions
2009-09-01
REFERENCES Anthoni, J. F. (2000). Soil Erosion and Conservation – Part 2. Retrieved 15 August 2009, from http://www.seafriends.org.nz/ enviro / soil ... soils susceptible to helicopter brownout. Helicopter brownout occurs when downwash disturbs the dust and sand beneath the aircraft during takeoff...destruction, as well as personnel injury or death. The likelihood of helicopter brownout is related to soil moisture content, particle size distribution, and
On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.
Tip Vortices of Isolated Wings and Helicopter Rotor Blades.
1987-12-01
root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in
NASA Astrophysics Data System (ADS)
Richardson, Nigel
Mineral magnetic measurements of recent ombrotrophic peat have been used to reconstruct particulate pollution history. This requires that the magnetic record is not seriously distorted by post-depositional dissolution, authigenic growth, diagenetic change, or downwash of the magnetic minerals. Fine-resolution pollen analysis supports the view that at each site magnetic changes between profiles are synchronous. It thus strengthens the chronological and palaeoenvironmental value of the magnetic record.
A Guide to USAF Helicopter Instrument Flight Procedures
1985-04-01
being a helicopter pilot is so different from being an airplane pilot, and why, in general, airplance pilots are open, clear-eyed, bouyant extroverts...downwash created by a helicopter’s rotors have two basic effects on flight procedures. Rotor wash causes erroneous indications on aircraft pi tot...effects create additional problems close to the ground. And finally, a helicopter’s slow speed creates the need for a closer look at bank angles and
Modeling Peat Ages Using 7Be Data to Account for Downwash of 210Pb
NASA Astrophysics Data System (ADS)
Manies, K.; Fuller, C.; Jones, M.
2016-12-01
In order to determine the amount of peat, and thus carbon, which has accumulated since the last thaw event, we are interested in dating the surface layers of boreal thermokarst bogs. However, there can often be a mismatch by several decades between dates obtained using 210Pb, 14C, or 137Cs. We found that 210Pb-based dates were almost always younger than 14C-based dates. One of the limitations often cited regarding the use of 210Pb dating for peatlands is the potential for this radionuclide to be transported down the soil profile, biasing the mean accumulation rate (MAR) towards higher values which, in turn, results in younger ages at a specific horizon. 7Be, which has similar depositional behaviors as 210Pb but a much shorter half-life (53.22 days), can be used to help determine if there is movement of 210Pb through surface layers and the depths to which 210Pb-bearing particles are transported (over the mean life of 7Be). These data can then be used in new models, such as the Linked Radionuclide aCcumulation model (LRC; Landis et al., 2016, http://dx.doi.org/10.1016/ j.gca.2016.02.2013), which account for 210Pb downwash when calculating soil horizon ages. To this end, we measured 7Be within a bog four times over the growing season. 7Be was found to 4 cm in May, reached its maximum depth of penetration in July (7 cm), and then receded again to 4 cm. The maximum integrated 7Be activity was also found in July. This pattern is similar to other studies which found 7Be deposition decreased over the rainy season. Next, we will calculate peat ages with models that include downwash of 210Pb, the depths of which will be based on the penetration depth of 7Be. These ages will be compared to 210Pb ages obtained with both the Constant Rate of Supply (CRS) and Constant Flux - Constant Sedimentation (CF:CS) models and to 137Cs- and 14C-derived ages. We anticipate that dates based on models that include some transport of 210Pb into the soil profile will provide more accurate peat formation dates and allow for more accurate carbon accumulation rates.
Derivation of aerodynamic kernel functions
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Ventres, C. S.
1973-01-01
The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.
Implementation and validation of a wake model for low-speed forward flight
NASA Technical Reports Server (NTRS)
Komerath, Narayanan M.; Schreiber, Olivier A.
1987-01-01
The computer implementation and calculations of the induced velocities produced by a wake model consisting of a trailing vortex system defined from a prescribed time averaged downwash distribution are detailed. Induced velocities are computed by approximating each spiral turn by a pair of large straight vortex segments positioned at critical points relative to where the induced velocity is required. A remainder term for the rest of the spiral is added. This approach results in decreased computation time compared to classical models where each spiral turn is broken down in small straight vortex segments. The model includes features such a harmonic variation of circulation, downwash outside of the blade and/or outside the tip path plane, blade bound vorticity induced velocity with harmonic variation of circulation and time averaging. The influence of various options and parameters on the results are investigated and results are compared to experimental field measurements with which, a resonable agreement is obtained. The capabilities of the model as well as its extension possibilities are studied. The performance of the model in predicting the recently-acquired NASA Langley Inflow data base for a four-bladed rotor is compared to that of the Scully Free Wake code, a well-established program which requires much greater computational resources. It is found that the two codes predict the experimental data with essentially the same accuracy, and show the same trends.
NASA Technical Reports Server (NTRS)
Watkins, Charles E.; Woolston, Donald S.; Cunningham, Herbert J.
1959-01-01
Details are given of a numerical solution of the integral equation which relates oscillatory or steady lift and downwash distributions in subsonic flow. The procedure has been programmed for the IBM 704 electronic data processing machine and yields the pressure distribution and some of its integrated properties for a given Mach number and frequency and for several modes of oscillation in from 3 to 4 minutes, results of several applications are presented.
Applicability of Building Downwash in PSD Permit Analyses
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Small Business Innovations (Helicopters)
NASA Technical Reports Server (NTRS)
1992-01-01
The amount of engine power required for a helicopter to hover is an important, but difficult, consideration in helicopter design. The EHPIC program model produces converged, freely distorted wake geometries that generate accurate analysis of wake-induced downwash, allowing good predictions of rotor thrust and power requirements. Continuum Dynamics, Inc., the Small Business Innovation Research (SBIR) company that developed EHPIC, also produces RotorCRAFT, a program for analysis of aerodynamic loading of helicopter blades in forward flight. Both helicopter codes have been licensed to commercial manufacturers.
Vortical structures and development of laminar flow over convergent-divergent riblets
NASA Astrophysics Data System (ADS)
Xu, Fang; Zhong, Shan; Zhang, Shanying
2018-05-01
In this work, the development of a laminar boundary layer over a rectangular convergent-divergent riblet section with a finite streamwise length is studied experimentally using dye visualization and particle image velocimetry in a water flume. The flow topology over this highly directional spanwise roughness is established from this study. It is shown that convergent-divergent riblets generate a spanwise flow above the riblets from the diverging line toward the adjacent converging line. This consequently leads to the formation of a weak recirculating secondary flow in cross-stream planes across the boundary layer that creates a downwash motion over the diverging line and an upwash motion over the converging line. It is found that the fluid inside the riblet valley follows a helicoidal path and it also interacts with the crossflow boundary layer hence playing a key role in determining the structure of the secondary flow across the boundary layer. The impact of riblet wavelength on vortical structures is also revealed for the first time. A larger riblet wavelength is seen to produce a stronger upwash/downwash and hence a more intense secondary flow as well as a stronger deceleration effect on the crossflow. Furthermore, the streamwise development of the flow over the riblet section can be divided into a developing stage followed by a developed stage. In the developing stage, the magnitude of induced streamwise velocity and vorticity over the converging line continues to increase, whereas in the developed stage the values of these parameters remain essentially unchanged.
Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
Aono, Hikaru; Liang, Fuyou; Liu, Hao
2008-01-01
We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.
1989-06-01
coefficients vortex circulation, symbols used in vorticity plots representing circulation values derived from different vortex core models injection...derived from different vortex core models dimensionless core size parameter: t wice the a verage core radius divided by t h e i n jection hole...Wall Heating, xjd=109.2, m=0.5, Single Injection Hole Vortex w, Temp. Difference Range (.5- 2.5) degree s 91. Local Temperature Distribution
Technology needs for high-speed rotorcraft, volume 1
NASA Technical Reports Server (NTRS)
Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.
1991-01-01
High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.
Fog dispersion. [charged particle technique
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1980-01-01
The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor
Nabawy, Mostafa R. A.; Crowther, William J.
2014-01-01
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length. PMID:24522785
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor.
Nabawy, Mostafa R A; Crowther, William J
2014-04-06
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length.
NASA Technical Reports Server (NTRS)
Neely, Robert H.; Griner, Roland F.
1959-01-01
Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25.
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.
Portugal, Steven J; Hubel, Tatjana Y; Fritz, Johannes; Heese, Stefanie; Trobe, Daniela; Voelkl, Bernhard; Hailes, Stephen; Wilson, Alan M; Usherwood, James R
2014-01-16
Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird--in a streamwise position--there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Hammond, Dana P.; Nielsen, Eric J.; Pirzadeh, S. Z.; Rumsey, Christopher L.
2010-01-01
FUN3D Navier-Stokes solutions were computed for the 4th AIAA Drag Prediction Workshop grid convergence study, downwash study, and Reynolds number study on a set of node-based mixed-element grids. All of the baseline tetrahedral grids were generated with the VGRID (developmental) advancing-layer and advancing-front grid generation software package following the gridding guidelines developed for the workshop. With maximum grid sizes exceeding 100 million nodes, the grid convergence study was particularly challenging for the node-based unstructured grid generators and flow solvers. At the time of the workshop, the super-fine grid with 105 million nodes and 600 million elements was the largest grid known to have been generated using VGRID. FUN3D Version 11.0 has a completely new pre- and post-processing paradigm that has been incorporated directly into the solver and functions entirely in a parallel, distributed memory environment. This feature allowed for practical pre-processing and solution times on the largest unstructured-grid size requested for the workshop. For the constant-lift grid convergence case, the convergence of total drag is approximately second-order on the finest three grids. The variation in total drag between the finest two grids is only 2 counts. At the finest grid levels, only small variations in wing and tail pressure distributions are seen with grid refinement. Similarly, a small wing side-of-body separation also shows little variation at the finest grid levels. Overall, the FUN3D results compare well with the structured-grid code CFL3D. The FUN3D downwash study and Reynolds number study results compare well with the range of results shown in the workshop presentations.
Development and Validation of a UAV Based System for Air Pollution Measurements
Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe
2016-01-01
Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection. PMID:28009820
Development and Validation of a UAV Based System for Air Pollution Measurements.
Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe
2016-12-21
Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO₂, CO, NO₂ and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.
NASA Technical Reports Server (NTRS)
Weil, Joseph; Sleeman, William C , Jr
1949-01-01
The effects of propeller operation on the static longitudinal stability of single-engine tractor monoplanes are analyzed, and a simple method is presented for computing power-on pitching-moment curves for flap-retracted flight conditions. The methods evolved are based on the results of powered-model wind-tunnel investigations of 28 model configurations. Correlation curves are presented from which the effects of power on the downwash over the tail and the stabilizer effectiveness can be rapidly predicted. The procedures developed enable prediction of power-on longitudinal stability characteristics that are generally in very good agreement with experiment.
Studies of the Speed Stability of a Tandem Helicopter in Forward Flight
NASA Technical Reports Server (NTRS)
Tapscott, Robert J; Amer, Kenneth B
1956-01-01
Flight-test measurements, related analytical studies, and corresponding pilots' opinions of the speed stability of tandem-rotor helicopter are presented. An undesirable instability, evidenced by rearward stick motion with increasing forward speed at constant power, is indicated to be caused by variations with speed of the front-rotor downwash at the rear rotor. An analytical expression for predicting changes in speed stability caused by changes in rotor geometry is derived and constants for use with the analytical expression are presented in chart form. Means for improving stability with speed are studied both analytically and experimentally. The test results also give some information as to the flow conditions at the rear rotor.
Reciprocity relations in aerodynamics
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Spreiter, John R
1953-01-01
Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.
Investigation of Full-Scale Split Trailing-Edge Wing Flaps with Various Chords and Hinge Locations
NASA Technical Reports Server (NTRS)
Wallace, Rudolf
1936-01-01
This report gives the results of an investigation conducted in the NACA full-scale wind tunnel on a small parasol monoplane equipped with three different split trailing-edge wing flaps. The object of the investigation was to determine and correlate data on the characteristics of the airplane and flaps as affected by variation in flap chord, flap deflection, and flap location along the wing chord. The results give the lift, the drag, and the pitching moment characteristics of the airplane, and the flap forces and moments, the pressure distribution over the flaps and wing at one section, and the downwash characteristics of the flap and wing combinations.
A Study of Airline Passenger Susceptibility to Atmospheric Turbulence Hazard
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2000-01-01
A simple, generic, simulation math model of a commercial airliner has been developed to study the susceptibility of unrestrained passengers to large, discrete gust encounters. The math model simulates the longitudinal motion to vertical gusts and includes (1) motion of an unrestrained passenger in the rear cabin, (2) fuselage flexibility, (3) the lag in the downwash from the wing to the tail, and (4) unsteady lift effects. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths of a simulated mountain rotor. A comparison of the model-predicted responses to data from three accidents indicates that the accelerations in actual accidents are sometimes much larger than the simulated gust encounters.
NASA Technical Reports Server (NTRS)
Desmarais, R. N.
1982-01-01
The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.
NASA Technical Reports Server (NTRS)
Sherman, Albert
1939-01-01
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment to the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angel and as losses in the tail. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for a complete combination.
The flow dynamics behind a flexible finite cylinder as a flexible agitator
NASA Astrophysics Data System (ADS)
Yong, T. H.; Chan, H. B.; Dol, S. S.; Wee, S. K.; Kumar, P.
2017-06-01
This paper investigates the flow dynamics behind a flexible finite cylinder in a single-phase flow using a water tunnel. The cylinder was individually submerged in water at ReD = 4000, 6000 and 8000. The cylinder investigated has a AR = 10 and 16 and is made of EVA in order to achieve the lower stiffness for flexibility. A same AR of its aluminium rigid cylinder was investigated to serve as a benchmark to the flow dynamics behind a flexible cylinder. The results the downwash that hinders the transportation of vortices to the downstream was diminished. As a direct consequence of this phenomenon, the turbulence production has seen significant improvement for flexible finite cylinder.
Measurements in discrete hole film cooling behavior with periodic freestream unsteadiness
NASA Astrophysics Data System (ADS)
Fan, Danyang; Borup, Daniel D.; Elkins, Christopher J.; Eaton, John K.
2018-03-01
Magnetic resonance imaging (MRI) techniques were used to investigate a discrete, 30°-inclined round jet in crossflow subjected to periodic freestream unsteadiness. The freestream perturbations were generated by an oscillating airfoil upstream of the jet. The experiment operated at a Strouhal number of 0.014, channel Reynolds number of 25,000, hole Reynolds number of 2900, and jet blowing ratio of unity. 3D phase locked velocity measurements were obtained over the entire channel using magnetic resonance velocimetry (MRV). 3D time-averaged temperature measurements were acquired using magnetic resonance thermometry (MRT), along with phase-locked temperature measurements in the 2D centerplane of the channel and jet. The freestream flow just upstream of the jet was characterized by streamwise velocities ranging from 0.88 U_ {bulk} to 1.23 U_ {bulk} and wall-normal velocities from -0.11 U_ {bulk} to 0.02 U_ {bulk}. Flow inside the hole was observed to be insensitive to the freestream fluctuations, as velocities and temperatures in the hole remained largely unchanged throughout the cycle. Outside the hole, changes to the streamwise velocity produced an oscillating jet blowing ratio that led to the lengthening and shortening of the counter-rotating vortex pair (CVP) as well as a varying degree of coolant separation from the film cooled wall. During one portion of the cycle, downwashing freestream flow (i.e., flow with negative wall-normal velocities) promoted strong re-attachment and lateral spreading of the jet. Mean, spanwise-averaged film cooling effectiveness values were compared to those of an earlier experiment with a steady freestream and identical geometry, Reynolds number, and blowing ratio. Film cooling performance in the near-hole region was higher with steady freestream flow. However, at downstream locations, the downward transport of coolant by the periodic downwashing flow led to a higher mean surface effectiveness than in the steady case.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B
NASA Technical Reports Server (NTRS)
Frederick, Michael; Ratnayake, Nalin
2011-01-01
The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
NASA Technical Reports Server (NTRS)
Kielb, R. (Editor); Crawley, E. (Editor); Simonis, J. C. (Editor)
1987-01-01
The present conference on bladed disk assemblies discusses aerodynamic indicial reponse and stability derivatives for a rotor annulus, an analysis of aerodynamically forced turbomachine vibration, the effect of downwash on the nonsteady forces in a turbomachine stage, the vibration of turbomachine blades with root flexibility effects, mistuned bladed disk assembly vibrations, and the model-generation and modal analysis of flexible bladed disk assemblies. Also discussed are the vibration characteristics of a mistuned bladed disk, free and forced vibrations associated with localization phenomena in mistuned assemblies with cyclic symmetry, steam turbine cyclic symmetry through constraint equations, and the interpretation of experimental and theoretical results predicting vibrating turbocharger blade mode shapes.
NASA Technical Reports Server (NTRS)
Joppa, R. G.
1973-01-01
A problem associated with the wind tunnel testing of very slow flying aircraft is the correction of observed pitching moments to free air conditions. The most significant effects of such corrections are to be found at moderate downwash angles typical of the landing approach. The wind tunnel walls induce interference velocities at the tail different from those induced at the wing, and these induced velocities also alter the trajectory of the trailing vortex system. The relocated vortex system induces different velocities at the tail from those experienced in free air. The effect of the relocated vortex and the walls is to cause important changes in the measured pitching moments in the wind tunnel.
NASA Technical Reports Server (NTRS)
Sherman, Albert
1939-01-01
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment of the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angle and as losses in the tail effectiveness and varies with the geometry of the combination. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for complete combination.
Flow structure of vortex-wing interaction
NASA Astrophysics Data System (ADS)
McKenna, Christopher K.
Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.
NASA Technical Reports Server (NTRS)
Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.
1976-01-01
Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakumar, B J; Chavez - Alarcon, Ramiro; Shu, Fangjun
The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in themore » wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.« less
NASA Astrophysics Data System (ADS)
Poussou, Stephane B.; Plesniak, Michael W.
2012-09-01
The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.
NASA Technical Reports Server (NTRS)
Munk, Max; Cario, Gunther
1923-01-01
The data for the calculation of the air forces acting on the elevators, obtained from previous model experiments are not immediately applicable in practice, as the angle at which the control surfaces meet the air stream is, in general, still unknown. The air stream, when it reaches the elevator has already been deflected by the wings and although the velocity imparted to the air current by the wings is of negligible amount compared with the speed of flight, the air behind the wings has been deflected downwards, so that the elevators work in an airstream which is inclined in a downward direction. The angle at which the air stream meets the elevator surface is, therefore, different from, and, with the usual arrangement of elevators, less than the angle made by the elevator surfaces with the line of flight.
Full-Scale Wind-Tunnel Tests of a PCA-2 Autogiro Rotor
NASA Technical Reports Server (NTRS)
Wheatley, John B; Hood, Manley J
1935-01-01
This report presents the results of force tests on and air-flow surveys near PCA-2 autogiro rotor in the NACA full-scale wind tunnel. The force tests were made at three pitch settings and several rotor speeds; the effect of fairing protuberances on the rotor blade was determined. Induced downwash and yaw angles were determined at low tip-speed ratios in a plane 1 1/2 feet above the path of the blade tips. The results show that the maximum l/d of the rotor cannot be appreciably increased by increasing the blade pitch angle above about 4.5 degrees at the blade tip; that the protuberances on the blades cause more than 5 percent of the total rotor drag; and that the rotor center-of-pressure travel is very small.
Minimization theory of induced drag subject to constraint conditions
NASA Technical Reports Server (NTRS)
Deyoung, J.
1979-01-01
Exact analytical solutions in terms of induced drag influence coefficients can be attained which define the spanwise loading with minimized induced drag, subject to specified constraint conditions, for any nonplanar wing shape or number of lift plus wing bending moment about a given wing span station. Example applications of the theory are made to a biplane, a wing in ground effect, a cruciform wing, a V-wing, a planar-wing winglet, and linked wingtips in formation flying. For minimal induced drag, the spanwise loading, relative to elliptic, is outboard for the biplane and is inboard for the wing in ground effect and for the planar-wing winglet. A spinoff of the triplane solution provides mathematically exact equations for downwash and sidewash about a planar vorticity sheet having an arbitrary loading distribution.
Interaction of a trailing vortex with an oscillating wing
NASA Astrophysics Data System (ADS)
McKenna, C.; Fishman, G.; Rockwell, D.
2018-01-01
A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.
Analytic study of the conditions required for longitudinal stability of dual-wing aircraft
Andrews, Stephen Arthur; Perez, Ruben E.
2017-05-11
Recent studies of new, fuel-efficient transport aircraft have considered designs, which make use of two principal lifting surfaces to provide the required lift as well as trim and static stability. Such designs include open tandem-wings as well as closed joined and box-wings. As a group, these aircraft can be termed dual-wing designs. Our study developed a new analytic model, which takes into account the downwash from the two main wings and is sensitive to three important design variables: the relative areas of each wing, the streamwise separation of the wings, and the center of gravity position. This model was usedmore » to better understand trends in the dual-wing geometry on the stability, maneuverability, and lift-to-drag ratio of the aircraft. Dual-wing aircraft have been shown to have reduced the induced drag compared to the conventional designs. In addition, further drag reductions can be realized as the horizontal tail can be removed if the dual-wings have sufficient streamwise stagger to provide the moments necessary for trim and longitudinal stability. As both wings in a dual-wing system carry a significant fraction of the total lift, trends in such designs that led to longitudinal stability can differ from those of the conventional aircraft and have not been the subject of detailed investigation. Results from the analytic model showed that the longitudinal stability required either a reduction of the fore wing area or shifting the center of gravity forward from the midpoint of both wings' aerodynamic centers. Additionally, for wing configurations of approximately equal fore and aft wing areas, increasing the separation between the two wings decreased the stability of the aircraft. The source of this unusual behavior was the asymmetric distribution of downwash upstream and downstream of the wing. These relationships between dual-wing geometry and stability will provide initial guidance on the conceptual design of dual-wing aircraft and aid in the understanding of the results of more complex studies of such designs, furthering the development of future transport aircraft.« less
Ground effect on the aerodynamics of three-dimensional hovering wings.
Lu, H; Lua, K B; Lee, Y J; Lim, T T; Yeo, K S
2016-10-25
This paper reports the results of combined experimental and numerical studies on the ground effect on a pair of three-dimensional (3D) hovering wings. Parameters investigated include hovering kinematics, wing shapes, and Reynolds numbers (Re). The results are consistent with the observation by another study (Gao and Lu, 2008 Phys. Fluids, 20 087101) which shows that the cycle-averaged aerodynamic forces generated by two-dimensional (2D) wings in close proximity to the ground can be broadly categorized into three regimes with respect to the ground clearance; force enhancement, force reduction, and force recovery. However, the ground effect on a 3D wing is not as significant as that on a 2D flapping wing reported in (Lu et al 2014 Exp. Fluids, 55 1787); this could be attributed to a weaker wake capture effect on 3D wings. Also, unlike a 2D wing, the leading edge vortex (LEV) remains attached on a 3D wing regardless of ground clearance. For all the wing kinematics considered, the three above-mentioned regimes are closely correlated to a non-monotonic trend in the strength of downwash due to the restriction of root and tip vortex formation, and a positional shift of wake vortices. The root vortices in interaction with the ground induce an up-wash in-between the two wings, causing a strong 'fountain effect' (Maeda and Liu, 2013 J. Biomech. Sci. Eng., 8 344) that may increase the body lift of insects. The present study further shows that changes in wing planform have insignificant influence on the overall trend of ground effect except for a parallel shift in force magnitude, which is caused mainly by the difference in aspect ratio and leading edge pivot point. On the two Reynolds numbers investigated, the results for the low Re case of 100 do not deviate significantly from those of a higher Re = 5000 except for the difference in force magnitudes, since low Reynolds number generates lower downwash, weaker LEV, and lower rotational circulation. Additionally, lower Re leads to a weaker fountain effect.
Analytic study of the conditions required for longitudinal stability of dual-wing aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Stephen Arthur; Perez, Ruben E.
Recent studies of new, fuel-efficient transport aircraft have considered designs, which make use of two principal lifting surfaces to provide the required lift as well as trim and static stability. Such designs include open tandem-wings as well as closed joined and box-wings. As a group, these aircraft can be termed dual-wing designs. Our study developed a new analytic model, which takes into account the downwash from the two main wings and is sensitive to three important design variables: the relative areas of each wing, the streamwise separation of the wings, and the center of gravity position. This model was usedmore » to better understand trends in the dual-wing geometry on the stability, maneuverability, and lift-to-drag ratio of the aircraft. Dual-wing aircraft have been shown to have reduced the induced drag compared to the conventional designs. In addition, further drag reductions can be realized as the horizontal tail can be removed if the dual-wings have sufficient streamwise stagger to provide the moments necessary for trim and longitudinal stability. As both wings in a dual-wing system carry a significant fraction of the total lift, trends in such designs that led to longitudinal stability can differ from those of the conventional aircraft and have not been the subject of detailed investigation. Results from the analytic model showed that the longitudinal stability required either a reduction of the fore wing area or shifting the center of gravity forward from the midpoint of both wings' aerodynamic centers. Additionally, for wing configurations of approximately equal fore and aft wing areas, increasing the separation between the two wings decreased the stability of the aircraft. The source of this unusual behavior was the asymmetric distribution of downwash upstream and downstream of the wing. These relationships between dual-wing geometry and stability will provide initial guidance on the conceptual design of dual-wing aircraft and aid in the understanding of the results of more complex studies of such designs, furthering the development of future transport aircraft.« less
Lifting-surface theory for calculating the loading induced on a wing by a flap
NASA Technical Reports Server (NTRS)
Johnson, W. A.
1972-01-01
A method is described for using lifting-surface theory to obtain the pressure distribution on a wing with a trailing-edge flap or control surface. The loading has a logarithmic singularity at the flap edges, which may be determined directly by the method of matched asymptotic expansions. Expressions are given for the singular flap loading for various flap hinge line and side edge geometries, both for steady and unsteady flap deflection. The regular part of the flap loading must be obtained by inverting the lifting-surface-theory integral equation relating the pressure and the downwash on the wing: procedures are described to accomplish this for a general wing and flap geometry. The method is applied to several example wings, and the results are compared with experimental data. Theory and test correlate well.
Enhancing the hydrodynamic performance of a tapered swept-back wing through leading-edge tubercles
NASA Astrophysics Data System (ADS)
Wei, Zhaoyu; Lian, Lian; Zhong, Yisen
2018-06-01
The hydrodynamic benefit of implementing leading-edge (LE) tubercles on wings at very low Reynolds numbers ( Res) has not been thoroughly elucidated to date, though their benefits at relatively higher Res are well-studied. Through wind tunnel testing at Re = 5.5 × 104, we found that the LE tubercles increase the lift at all pitch angles tested and slightly reduce the drag at a pitch angle of 4° < α < 10°, which finally results in a significant hydrodynamic performance enhancement at lower pitch angles. Flow visualization reveals that the hydrodynamic performance enhancement is due to the favourable attached flows downstream of the tubercle peaks. The attached flows are believed to be closely related to the downwash and momentum exchange within the boundary layers, which originate from surface and streamwise-aligned counter-rotating vortex pairs (CVPs).
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Bhat, M. K.
1992-01-01
A low speed wind tunnel evaluation was conducted of passive and active techniques proposed as a means to impede the interaction of forebody chine and delta wing vortices, when such interaction leads to undesirable aerodynamic characteristics particularly in the post stall regime. The passive method was based on physically disconnecting the chine/wing junction; the active technique employed deflection of inboard leading edge flaps. In either case, the intent was to forcibly shed the chine vortices before they encountered the downwash of wing vortices. Flow visualizations, wing pressures, and six component force/moment measurements confirmed the benefits of forced vortex de-coupling at post stall angles of attack and in sideslip, viz., alleviation of post stall zero beta asymmetry, lateral instability and twin tail buffet, with insignificant loss of maximum lift.
NASA Technical Reports Server (NTRS)
Ahmadi, A. R.
1981-01-01
A low frequency unsteady lifting-line theory is developed for a harmonically oscillating wing of large aspect ratio. The wing is assumed to be chordwise rigid but completely flexible in the span direction. The theory is developed by use of the method of matched asymptotic expansions which reduces the problem from a singular integral equation to quadrature. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. The influence of reduced frequency, aspect ratio, planform shape, and mode of oscillation on wing aerodynamics is demonstrated through numerical examples. Compared with lifting-surface theory, computation time is reduced significantly. Using the present theory, the energetic quantities associated with the propulsive performance of a finite wing oscillating in combined pitch and heave are obtained in closed form. Numerical examples are presented for an elliptic wing.
NASA Technical Reports Server (NTRS)
Kuhn, Richard E.
1986-01-01
The current understanding of the effects of ground proximity on V/STOL and STOL aircraft is reviewd. Areas covered include (1) single jet suckdown in hover, (2) fountain effects on multijet configurations, (3) STOL ground effects including the effect of the ground vortex flow field, (4) downwash at the tail, and (5) hot gas ingestion in both hover and STOL operation. The equipment needed for large scale testing to extend the state of the art is reviewed and developments in three areas are recommended as follows: (1) improve methods for simulating the engine exhaust and inlet flows; (2) develop a model support system that can simulate realistic rates of climb and descent as well as steady height operation; and (3) develop a blowing BLC ground board as an alternative to a moving belt ground board to properly simulate the flow on the ground.
Data Driven, Force Based Interaction for Quadrotors
NASA Astrophysics Data System (ADS)
McKinnon, Christopher D.
Quadrotors are small and agile, and are becoming more capable for their compact size. They are expected perform a wide variety of tasks including inspection, physical interaction, and formation flight. In all of these tasks, the quadrotors can come into close proximity with infrastructure or other quadrotors, and may experience significant external forces and torques. Reacting properly in each case is essential to completing the task safely and effectively. In this thesis, we develop an algorithm, based on the Unscented Kalman Filter, to estimate such forces and torques without making assumptions about the source of the forces and torques. We then show in experiment how the proposed estimation algorithm can be used in conjunction with controls and machine learning to choose the appropriate actions in a wide variety of tasks including detecting downwash, tracking the wind induced by a fan, and detecting proximity to the wall.
NASA Technical Reports Server (NTRS)
Alford, William J , Jr
1957-01-01
The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.
NASA Technical Reports Server (NTRS)
Badavi, F. F.
1989-01-01
Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.
NASA Technical Reports Server (NTRS)
Jones, R. T.
1950-01-01
The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.
Toward the Experimental Characterization of an Unmanned Air System Flow Field
NASA Astrophysics Data System (ADS)
Velarde, John-Michael; Connors, Jacob; Glauser, Mark
2017-11-01
The velocity flow field around a small unmanned air system (sUAS) is investigated in a series of experiments at Syracuse University. Experiments are conducted in the 2'x2' sub-sonic wind tunnel at Syracuse University and the Indoor Flow Lab. The goal of these experiments is to gain a better understanding of the rich, turbulent flow field that a sUAS creates. Comparison to large, multi-rotor manned vehicles is done to gain a better understanding of the flow physics that could be occurring with the sUAS. Regions of investigation include the downwash, above the vehicle, and far downstream. Characterization of the flow is performed using hotwire anemometry. Investigation of several locations around the sUAS show that dominant frequencies exist within the flow field. Analysis of the flow field using power spectral density will be presented as well as looking at which parameters have an effect on these dominant frequencies.
NASA Technical Reports Server (NTRS)
Chen, L. T.
1975-01-01
A general method for analyzing aerodynamic flows around complex configurations is presented. By applying the Green function method, a linear integral equation relating the unknown, small perturbation potential on the surface of the body, to the known downwash is obtained. The surfaces of the aircraft, wake and diaphragm (if necessary) are divided into small quadrilateral elements which are approximated with hyperboloidal surfaces. The potential and its normal derivative are assumed to be constant within each element. This yields a set of linear algebraic equations and the coefficients are evaluated analytically. By using Gaussian elimination method, equations are solved for the potentials at the centroids of elements. The pressure coefficient is evaluated by the finite different method; the lift and moment coefficients are evaluated by numerical integration. Numerical results are presented, and applications to flutter are also included.
Aerodynamic characteristics of a propulsive wing-canard concept at STOL speeds
NASA Technical Reports Server (NTRS)
Stewart, V. R.
1985-01-01
A full span model of a wing/canard concept representing a fighter configuration has been tested at STOL conditions in the NASA Langley 4 x 7 meter tunnel. The results of this test are presented, and comparisons are made to previous data of the same configuration tested as a semispan model. The potential of the propulsive wing/canard to develop very high lift coefficients was investigated with several nozzle spans (nozzle aspect ratios). Although longitudinal trim was not accomplished with the blowing distributions and configurations tested, the propulsive wing/canard appears to offer an approach to managing the large negative pitching moments associated with trailing edge flap blowing. Also presented are data showing the effects of large flap deflections and relative wing/canard positions. Presented in the appendix to the report are limited lateral-directional and ground effects data, as well as wing downwash measurements.
Navier-Stokes flowfield computation of wing/rotor interaction for a tilt rotor aircraft in hover
NASA Technical Reports Server (NTRS)
Fejtek, Ian G.
1993-01-01
The download on the wing produced by the rotor-induced downwash of a tilt rotor aircraft in hover is of major concern because of its severe impact on payload-carrying capability. A method has been developed to help gain a better understanding of the fundamental fluid dynamics that causes this download, and to help find ways to reduce it. In particular, the method is employed in this work to analyze the effect of a tangential leading edge circulation-control jet on download reduction. Because of the complexities associated with modeling the complete configuration, this work focuses specifically on the wing/rotor interaction of a tilt rotor aircraft in hover. The three-dimensional, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The rotor is modeled as an actuator disk which imparts both a radical and an azimuthal distribution of pressure rise and swirl to the flowfield. A momentum theory blade element analysis of the rotor is incorporated into the Navier-Stokes solution method. Solution blanking at interior points of the mesh has been shown here to be an effective technique in introducing the effects of the rotor and tangential leading edge jet. Results are presented both for a rotor alone and for wing/rotor interaction. The overall mean characteristics of the rotor flowfield are computed including the flow acceleration through the rotor disk, the axial and swirl velocities in the rotor downwash, and the slipstream contraction. Many of the complex tilt rotor flow features are captured including the highly three-dimensional flow over the wing, the recirculation fountain at the plane of symmetry, wing leading and trailing edge separation, and the large region of separated flow beneath the wing. Mean wing surface pressures compare fairly well with available experimental data, but the time-averaged download/thrust ratio is 20-30 percent higher than the measured value. The discrepancy is due to a combination of factors that are discussed. Leading edge tangential blowing, of constant strength along the wing span, is shown to be effective in reducing download. The jet serves primarily to reduce the pressure on the wing upper surface. The computation clearly shows that, because of the three-dimensionality of the flowfield, optimum blowing would involve a spanwise variation in blowing strength.
NASA Astrophysics Data System (ADS)
Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan
2010-08-01
The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.
NASA Technical Reports Server (NTRS)
Martinez, R.; Cole, J. E., III; Martini, K.; Westagard, A.
1987-01-01
Reported calculations of structure-borne cabin noise for a small twin engine aircraft powered by tractor propellers rely on the following three-stage methodological breakup of the problem: (1) the unsteady-aerodynamic prediction of wing lift harmonics caused by the whipping action of the vortex system trailed from each propeller; (2) the associated wing/fuselage structural response; (3) the cabin noise field for the computed wall vibration. The first part--the estimate of airloads--skirts a full-fledged aeroelastic situation by assuming the wing to be fixed in space while cancelling the downwash field of the cutting vortices. The model is based on an approximate high-frequency lifting-surface theory justified by the blade rate and flight Mach number of application. Its results drive a finite-element representation of the wing accounting for upper and lower skin surfaces, spars, ribs, and the presence of fuel. The fuselage, modeled as a frame-stiffened cylindrical shell, is bolted to the wing.
Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.
2012-01-01
Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. (See CASI ID 20120009374 for Supplemental CD-ROM.)
Calculations of the flow past bluff bodies, including tilt-rotor wing sections at alpha = 90 deg
NASA Technical Reports Server (NTRS)
Raghavan, V.; Mccroskey, W. J.; Baeder, J. D.; Van Dalsem, W. R.
1990-01-01
An attempt was made to model in two dimensions the effects of rotor downwash on the wing of the tilt-rotor aircraft and to compute the drag force on airfoils at - 90 deg angle of attack, using a well-established Navier-Stokes code. However, neither laminar nor turbulent calculations agreed well with drag and base-pressure measurements at high Reynolds numbers. Therefore, further efforts were concentrated on bluff-body flows past various shapes at low Reynolds numbers, where a strong vortex shedding is observed. Good results were obtained for a circular cylinder, but the calculated drag of a slender ellipse at right angles to the freestream was significantly higher than experimental values reported in the literature for flat plates. Similar anomalous results were obtained on the tilt-rotor airfoils, although the qualitative effects of flap deflection agreed with the wind tunnel data. The ensemble of results suggest that there may be fundamental differences in the vortical wakes of circular cylinders and noncircular bluff bodies.
Computational investigation of cicada aerodynamics in forward flight.
Wan, Hui; Dong, Haibo; Gai, Kuo
2015-01-06
Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward.
Computational investigation of cicada aerodynamics in forward flight
Wan, Hui; Dong, Haibo; Gai, Kuo
2015-01-01
Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward. PMID:25551136
Research on Modeling of Propeller in a Turboprop Engine
NASA Astrophysics Data System (ADS)
Huang, Jiaqin; Huang, Xianghua; Zhang, Tianhong
2015-05-01
In the simulation of engine-propeller integrated control system for a turboprop aircraft, a real-time propeller model with high-accuracy is required. A study is conducted to compare the real-time and precision performance of propeller models based on strip theory and lifting surface theory. The emphasis in modeling by strip theory is focused on three points as follows: First, FLUENT is adopted to calculate the lift and drag coefficients of the propeller. Next, a method to calculate the induced velocity which occurs in the ground rig test is presented. Finally, an approximate method is proposed to obtain the downwash angle of the propeller when the conventional algorithm has no solution. An advanced approximation of the velocities induced by helical horseshoe vortices is applied in the model based on lifting surface theory. This approximate method will reduce computing time and remain good accuracy. Comparison between the two modeling techniques shows that the model based on strip theory which owns more advantage on both real-time and high-accuracy can meet the requirement.
Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.
2012-01-01
Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.
An unsteady aerodynamic formulation for efficient rotor tonal noise prediction
NASA Astrophysics Data System (ADS)
Gennaretti, M.; Testa, C.; Bernardini, G.
2013-12-01
An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.
Analysis and modification of theory for impact of seaplanes on water
NASA Technical Reports Server (NTRS)
Mayo, Wilbur L
1945-01-01
An analysis of available theory on seaplane impact and a proposed modification thereto are presented. In previous methods the overall momentum of the float and virtual mass has been assumed to remain constant during the impact but the present analysis shows that this assumption is rigorously correct only when the resultant velocity of the float is normal to the keel. The proposed modification chiefly involves consideration of the fact that forward velocity of the seaplane float causes momentum to be passed into the hydrodynamic downwash (an action that is the entire consideration in the case of the planing float) and consideration of the fact that, for an impact with trim, the rate of penetration is determined not only by the velocity component normal to the keel but also by the velocity component parallel to the keel, which tends to reduce the penetration. Experimental data for planing, oblique impact, and vertical drop are used to show that the accuracy of the proposed theory is good.
A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1990-01-01
A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.
A study of canard-wing interference using experimental pressure data at transonic speeds
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Washburn, K. E.
1979-01-01
The canard had an exposed area of 28.0 percent of the wing reference area and was located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. The canard leading edge sweep was 51.7 deg and the wing leading-edge sweep was 60 deg. The results indicated that the direct canard downwash effects on the wing loading are limited to the forward half of the wing directly behind the canard. The wing leading-edge vortex is located farther forward for the wing in the presence of the canard than for the wing-alone configuration. The wake, from the canard located below the wing chord plane, physically interacts with the wing inboard surface and produces a substantial loss of wing lift. For the Mach number 0.70 case, the presence of the wing increased the loading on the canard for the higher angles of attack. However, at Mach numbers of 0.95 and 1.20, the presence of the wing had the unexpected result of unloading the canard.
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Yoo, Y. S.
1976-01-01
Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.
RANS study of flow Characteristics Over flight deck of Simplified frigate Ship
NASA Astrophysics Data System (ADS)
Shukla, Shrish; Singh, Sidh Nath; Srinivasan, Balaji
2014-11-01
The combined operation of a ship and helicopter is ubiquitous in every naval organization. The operation of ship with the landing and takeoff of a helicopter over sea results in very complex flow phenomena due to presence of ship air wakes, strong velocity gradients and widely varying turbulence length scales. This complexity of flow is increased with the addition of helicopter downwash during landing and takeoff. The resultant flow is therefore very complicated and accurate prediction represents a computational challenge. We present Reynolds-averaged-Navier-Stokes (RANS) of turbulent flow over a simple frigate ship to gain insight into the flow phenomena over a flight deck. Flow conditions analysis is carried out numerically over the generic simplified frigate ship. Profiles of mean velocity across longitudinal and transverse plane have been analyzed along the ship. Further, we propose some design modifications in order to reduce pilot load and increase the ship helicopter operation limit (SHOL). Computational results for these modified designs are also presented and their efficacy in reducing the turbulence levels and recirculation zone in the ship air wakes is discussed. Graduate student.
NASA Technical Reports Server (NTRS)
Shindo, S.; Joppa, R. G.
1980-01-01
As a means to achieve a minimum interference correction wind tunnel, a partially actively controlled test section was experimentally examined. A jet flapped wing with 0.91 m (36 in) span and R = 4.05 was used as a model to create moderately high lift coefficients. The partially controlled test section was simulated using an insert, a rectangular box 0.96 x 1.44 m (3.14 x 4.71 ft) open on both ends in the direction of the tunnel air flow, placed in the University of Washington Aeronautical Laboratories (UWAL) 2.44 x 3.66 m (8 x 12 ft) wind tunnel. A tail located three chords behind the wing was used to measure the downwash at the tail region. The experimental data indicates that, within the range of momentum coefficient examined, it appears to be unnecessary to actively control all four sides of the test section walls in order to achieve the near interference free flow field environment in a small wind tunnel. The remaining wall interference can be satisfactorily corrected by the vortex lattice method.
NASA Technical Reports Server (NTRS)
Bartlett, G. R.
1985-01-01
An investigation has been conducted in the Langley 16 Foot Transonic Tunnel to determine propfan installation and slipstream interference effects on an unswept supercritical wing. This data can be used for verification of existing and developing theoretical codes as well as giving an understanding of the flow interactions associated with propeller/nacelle/wing integration. The investigation was conducted over a Mach number range of 0.5 to 0.8 and at angles of attack from 0 deg to 3 deg. The propeller was powered by an air turbine simulator and the exhaust from the air turbine was used to simulate the exhaust from the propfan nacelle. Reynolds number based on wing chord varied from 3 to 4 million. Results indicate that the propfan causes an increase in the wing lift coefficient. It was found that most of the propeller induced swirl is recovered by the wing. The propeller slipstream also causes a large favorable leading edge suction peak on the upwash side and a smaller unfavorable decrease on the downwash side.
Turbulence Hazard Metric Based on Peak Accelerations for Jetliner Passengers
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2005-01-01
Calculations are made of the approximate hazard due to peak normal accelerations of an airplane flying through a simulated vertical wind field associated with a convective frontal system. The calculations are based on a hazard metric developed from a systematic application of a generic math model to 1-cosine discrete gusts of various amplitudes and gust lengths. The math model simulates the three degree-of- freedom longitudinal rigid body motion to vertical gusts and includes (1) fuselage flexibility, (2) the lag in the downwash from the wing to the tail, (3) gradual lift effects, (4) a simplified autopilot, and (5) motion of an unrestrained passenger in the rear cabin. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths. The airplane response contours are used to develop an approximate hazard metric of peak normal accelerations as a function of gust amplitude and gust length. The hazard metric is then applied to a two-dimensional simulated vertical wind field of a convective frontal system. The variations of the hazard metric with gust length and airplane heading are demonstrated.
NASA Technical Reports Server (NTRS)
Purser, Paul E.; Spear, Margaret F.
1947-01-01
A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.
Predictions of wing and pylon forces caused by propeller installation
NASA Technical Reports Server (NTRS)
Martinez, Rudolph
1987-01-01
Replacement of current turbojets by high-efficiency unducted propfans could have the unfortunate side effect of increasing cabin noise, essentially because unsteady-aerodynamic mechanisms are likely to be introduced whereby some of the energy saved may be lost again, to the production of propeller noise and to wing/pylon vibrations coupling to the cabin as a sounding board. The present study estimates theoretically associated harmonic aerodynamic forces for two candidate configurations: a pusher propeller which chops through the mean wake of the pylon supporting it, and in the process generates a blade-rate force driving the structure, and a tractor wing-mounted propeller, whose trailing rotating wake induces an unsteady downwash field generating unsteady wing airloads. Reported predictions of such propfan aerodynamic sources of structure-borne sound, or vibration, could be the basis for devising means for their mechanical isolation, and thus for the effective interruption of the structural noise path into the cabin. Both mechanisms are analyzed taking advantage of the high subsonic Mach number and high reduced frequency of the interaction between the impinging flow and the affected aerodynamic element.
A Flight Study of the Conversion Maneuver of a Tilt-Duct VTOL Aircraft
NASA Technical Reports Server (NTRS)
Tapscott, Robert J.; Kelley, Henry L.
1960-01-01
Flight records are presented from an early flight test of a wing-tip mounted tilting-ducted-fan, vertical-take-off and landing (VTOL) aircraft configuration. Time histories of the aircraft motions, control positions, and duct pitching-moment variation are presented to illustrate the characteristics of the aircraft in hovering, in conversion from hovering to forward flight, and in conversion from forward flight to hovering. The results indicate that during essentially continuous slow level- flight conversions, this aircraft experiences excessive longitudinal trim changes. Studies have shown that the large trim changes are caused primarily by the variation of aerodynamic moments acting on the duct units. Action of the duct-induced downwash on the horizontal stabilizer during the conversion also contributes to the longitudinal trim variations. Time histories of hovering and slow vertical descent in the final stages of landing in calm air show angular motions of the aircraft as great as +/- 10 deg. about all axes. Stick and pedal displacements required to control the aircraft during the landing maneuver were on the order of 50 to 60 percent of the total travel available.
NASA Technical Reports Server (NTRS)
Alford, William J., Jr.
1956-01-01
The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The results indicated that significant chordwise flow gradients existed beneath both swept and unswept wings at zero lift and throughout the lift range. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.
Acoustic Characterization of a Multi-Rotor Unmanned Aircraft
NASA Astrophysics Data System (ADS)
Feight, Jordan; Gaeta, Richard; Jacob, Jamey
2017-11-01
In this study, the noise produced by a small multi-rotor rotary wing aircraft, or drone, is measured and characterized. The aircraft is tested in different configurations and environments to investigate specific parameters and how they affect the acoustic signature of the system. The parameters include rotor RPM, the number of rotors, distance and angle of microphone array from the noise source, and the ambient environment. The testing environments include an anechoic chamber for an idealized setting and both indoor and outdoor settings to represent real world conditions. PIV measurements are conducted to link the downwash and vortical flow structures from the rotors with the noise generation. The significant factors that arise from this study are the operational state of the aircraft and the microphone location (or the directivity of the noise source). The directivity in the rotor plane was shown to be omni-directional, regardless of the varying parameters. The tonal noise dominates the low to mid frequencies while the broadband noise dominates the higher frequencies. The fundamental characteristics of the acoustic signature appear to be invariant to the number of rotors. Flight maneuvers of the aircraft also significantly impact the tonal content in the acoustic signature.
Barton, Catherine A; Zarzecki, Charles J; Russell, Mark H
2010-04-01
This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility.
Wind-Tunnel Results of the B-52B with the X-43A Stack
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Sim, Alexander G.; Rhode, Matthew; Johnson, Kevin D., Sr.
2007-01-01
A low-speed wind-tunnel test was performed with a 3%-scale model of a booster rocket mated to an X-43A research vehicle, a combination referred to as the Hyper-X launch vehicle. The test was conducted both in freestream air and in the presence of a partial model of the B-52B airplane. The objectives of the test were to obtain force and moment data to generate structural loads affecting the pylon of the B-52B airplane and to determine the aerodynamic influence of the B-52B on the Hyper-X launch vehicle for evaluating launch separation characteristics. The windtunnel test was conducted at a low-speed wind tunnel in Hampton, Virginia. All moments and forces reported are based either on the aerodynamic influence of the B-52B airplane or are for the Hyper-X launch vehicle in freestream air. Overall, the test showed that the B-52B airplane imparts a strong downwash onto the Hyper-X launch vehicle, reducing the net lift of the Hyper-X launch vehicle. Pitching and rolling moments are also imparted onto the booster and are a strong function of the launch-drop angle of attack.
Charge control experiments on a CH-53E helicopter in a dusty environment
NASA Technical Reports Server (NTRS)
Moore, C. B.; Jones, J. J.; Hunyady, S. J.
1991-01-01
Charge control tests were carried out on a ground based, Marine Corps helicopter to determine if control of the electric fields acting on the engine exhaust gases could be used to reduce the electrification of the helicopter when it operated in a dusty atmosphere. The test aircraft was flown to a dusty, unpaved area and was then isolated electrically from the earth. When the helicopter engines were operated at ground idle with the rotor locked, the isolated aircraft charged positively, as had been observed previously. However, when the rotor brake was released and the turning rotor created a downdraft that raised dust clouds, the aircraft always became charged more positively, to potentials ranging form +30 to +45 kV. The dust clouds raised by the rotor downwash invariably carried negative space charges with concentrations of up to -100 nC/cu m and caused surface electric fields with strengths of up to 10 kV/m immediately down wind of the aircraft. The natural charging of the helicopter operating in these dust clouds was successfully opposed by control of the electric fields acting on the hot, electrically conductive exhaust gases. The control was achieved by placing electrostatic shield around the exhausts.
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
NASA Astrophysics Data System (ADS)
Perry, Anna-Kristina; Pavia, Giancarlo; Passmore, Martin
2016-11-01
As vehicle manufacturers work to reduce energy consumption of all types of vehicles, external vehicle aerodynamics has become increasingly important. Whilst production vehicle shape optimisation methods are well developed, the need to make further advances requires deeper understanding of the highly three-dimensional flow around bluff bodies. In this paper, the wake flow of a generic bluff body, the Windsor body, based on a square-back car geometry, was investigated by means of balance measurements, surface pressure measurements and 2D particle image velocimetry planes. Changes in the wake topology are triggered by the application of short tapers (4 % of the model length) to the top and bottom edges of the base, representing a shape optimisation that is realistic for many modern production vehicles. The base drag is calculated and correlated with the aerodynamic drag data. The results not only show the effectiveness of such small devices in modifying the time average topology of the wake but also shed some light on the effects produced by different levels of upwash and downwash on the bi-stable nature of the wake itself.
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.; Dompka, R. V.
1987-01-01
The AH-1G NASTRAN finite element model (FEM) is described and the correlations with measured data that were conducted to verify the model are summarized. Comparisons of the AH-1G NASTRAN FEM calculations with measured data include the following: (1) fuselage and tailboom static load deflection (stiffness) testing, (2) airframe ground vibration testing (0-30 H<), (3) airframe flight vibration testing (main rotor, 2,4, and 6/rev), and (4) tailboom effective skin static testing. A description of the modeling rationale and techniques used to develop the NASTRAN FEM is presented in conjunction with all previous correlation work. In general, the correlations show good agreement between analysis and test in stiffness and vibration response through 15 to 20 Hz. For higher frequencies (equal to or greater than 4/rev (21.6 Hz)), the vibration responses generally did not agree well. Also, the lateral (2/rev (10.8 Hz)) flight vibration responses were much lower in the FEM than test, indicating that there is a significant excitation source other than at the main rotor hub that is affecting the lateral vibrations, such as downwash impingement on the vertical tail.
The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.
2004-01-01
An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps
NASA Technical Reports Server (NTRS)
Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.
2010-01-01
Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Swanson, Stephen Mark
1990-01-01
The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.
Investigation of Vortical Flow Patterns in the Near Field of a Dynamic Low-Aspect-Ratio Cylinder
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Amitay, Michael
2016-11-01
The flowfield and associated flow structures of a low-aspect-ratio cylindrical pin were investigated experimentally in the near-field as the pin underwent wall-normal periodic oscillations. Under dynamic conditions, the pin is driven at the natural wake shedding frequency with an amplitude of 33% of its mean height. Additionally, a static pin was also tested at various mean heights of 0.5, 1.0, and 1.5 times the local boundary layer thickness to explore the effect of the mean height on the flowfield. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along streamwise planes for several spanwise locations under static and dynamic conditions. The study focuses on the incoming boundary layer as it interacts with the pin, as well as two main vortical formations: the arch-type vortex and the horseshoe vortex. Under dynamic conditions, the upstream boundary layer is thinner, relative to the baseline, and the downwash in the wake increases, resulting in a reduced wake deficit. These results indicate enhanced strength of the aforementioned vortical flow patterns under dynamic conditions. The flow structures in the near-field of the static/dynamic cylinder will be discussed in further detail. Supported by The Boeing Company.
NASA Astrophysics Data System (ADS)
Velluet, Marie-Thérèse
2017-10-01
In the framework of a European collaborative research project called ALWS (Airborne platform effects on lasers and Warning Sensors), the effects of platform-related turbulence on MAWS (missile approach warning systems) and DIRCM (directed infrared countermeasures) performance are investigated. Field trials have been conducted to study the turbulence effects around a hovering helicopter and behind a turboprop aircraft on the ground, with engines running. The time dependence of the power in the bucket and the amplitude of the angle of arrival have been characterized during the trial. Temporal spectra of these two parameters present an asymptotic behavior typical of optical beams propagating through developed turbulence (Kolmogorov). Based on the formalism developed in the case of propagation through atmospheric turbulence, we have first estimated turbulence strength and wind velocity inside plume for different flight conditions. We have then proposed an approach to simulate times series of these two quantities in the same conditions. These simulated time series have been compared with the recorded data to assess their validity domain. This model will be integrated in a simulator to estimate the impact of the turbulence induced by the platform and calculate the system performance. In this model dedicated to plume and downwash effects, aero-optical effects are not taken into account.
In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.
Johansson, L Christoffer; Maeda, Masateru; Henningsson, Per; Hedenström, Anders
2018-01-01
How aerodynamic power required for animal flight varies with flight speed determines optimal speeds during foraging and migratory flight. Despite its relevance, aerodynamic power provides an elusive quantity to measure directly in animal flight. Here, we determine the aerodynamic power from wake velocity fields, measured using tomographical particle image velocimetry, of pied flycatchers flying freely in a wind tunnel. We find a shallow U-shaped power curve, which is flatter than expected by theory. Based on how the birds vary body angle with speed, we speculate that the shallow curve results from increased body drag coefficient and body frontal area at lower flight speeds. Including modulation of body drag in the model results in a more reasonable fit with data than the traditional model. From the wake structure, we also find a single starting vortex generated from the two wings during the downstroke across flight speeds (1-9 m s -1 ). This is accomplished by the arm wings interacting at the beginning of the downstroke, generating a unified starting vortex above the body of the bird. We interpret this as a mechanism resulting in a rather uniform downwash and low induced power, which can help explain the higher aerodynamic performance in birds compared with bats. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Qi, Dewei; Liu, Yingming; Shyy, Wei; Aono, Hikaru
2010-09-01
The lattice Boltzmann flexible particle method (LBFPM) is used to simulate fluid-structure interaction and motion of a flexible wing in a three-dimensional space. In the method, a beam with rectangular cross section has been discretized into a chain of rigid segments. The segments are connected through ball and socket joints at their ends and may be bent and twisted. Deformation of flexible structure is treated with a linear elasticity model through bending and twisting. It is demonstrated that the flexible particle method (FPM) can approximate the nonlinear Euler-Bernoulli beam equation without resorting to a nonlinear elasticity model. Simulations of plunge and pitch of flexible wing at Reynolds number Re=136 are conducted in hovering condition by using the LBFPM. It is found that both lift and drag forces increase first, then decrease dramatically as the bending rigidity in spanwise direction decreases and that the lift and drag forces are sensitive to rigidity in a certain range. It is shown that the downwash flows induced by wing tip and trailing vortices in wake area are larger for a flexible wing than for a rigid wing, lead to a smaller effective angle of attack, and result in a larger lift force.
A generalized genetic framework for the development of sinkholes and Karst in Florida, U.S.A.
NASA Astrophysics Data System (ADS)
Beck, Barry F.
1986-03-01
Karst topography in Florida is developed on the Tertiary limestones of the Floridan aquifer Post-depositional diagenesis and solution have made these limestones highly permeable, T=ca. 50,000 m2/d. Zones of megaporosity have formed at unconformities, and dissolution has enlarged joints and fractures Erosion of the overlying clastic Miocene Hawthorn group strata on one flank of a structural arch has exposed the limestone The elevated edge of the Hawthorn cover forms the Cody scarp Ubiquitous solution pipes have previously formed at joint intersections and are now filled Downwashing of the fill deeper into solution cavities in the limestone and subsidence of the overlying unconsolidated sediments causes surface collapse a subsidence doline or sinkhole This process may penetrate up to 60 m of the semi-consolidated Hawthorn cover, as occurred when the Winter Park sinkhole developed Dense clusters of solution pipes may have formed cenotes which are now found on the exposed limestone terrain Groundwater moves laterally as diffuse flow except where input or outflow is concentrated. At sinking streams, vertical shafts, and springs, karst caves have formed, but only the major sinking streams form through-flowing conduit systems Shaft recharge dissipates diffusely. Spring discharge is concentrated from diffuse flow In both cases, conduits taper and merge into a zone of megaporosity
Design optimization of high-speed proprotor aircraft
NASA Technical Reports Server (NTRS)
Schleicher, David R.; Phillips, James D.; Carbajal, Kevin B.
1993-01-01
NASA's high-speed rotorcraft (HSRC) studies have the objective of investigating technology for vehicles that have both low downwash velocities and forward flight speed capability of up to 450 knots. This paper investigates a tilt rotor, a tilt wing, and a folding tilt rotor designed for a civil transport mission. Baseline aircraft models using current technology are developed for each configuration using a vertical/short takeoff and landing (V/STOL) aircraft design synthesis computer program to generate converged vehicle designs. Sensitivity studies and numerical optimization are used to illustrate each configuration's key design tradeoffs and constraints. Minimization of the gross takeoff weight is used as the optimization objective function. Several advanced technologies are chosen, and their relative impact on future configurational development is discussed. Finally, the impact of maximum cruise speed on vehicle figures of merit (gross weight, productivity, and direct operating cost) is analyzed. The three most important conclusions from the study are payload ratios for these aircraft will be commensurate with current fixed-wing commuter aircraft; future tilt rotors and tilt wings will be significantly lighter, more productive, and cheaper than competing folding tilt rotors; and the most promising technologies are an advanced-technology proprotor for both tilt rotor and tilt wing and advanced structural materials for the folding tilt rotor.
Numerical simulation of helicopter engine plume in forward flight
NASA Technical Reports Server (NTRS)
Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.
1994-01-01
Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.
A new methodology for free wake analysis using curved vortex elements
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.
1987-01-01
A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.
NASA Astrophysics Data System (ADS)
Godfrey, B.; Majdalani, J.
2014-11-01
This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.
Wind Tunnel Results of the B-52B with the X-43A Stack
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Sim, Alexander G.; Rhode, Matthew; Johnson, Kevin D.
2006-01-01
A low-speed wind-tunnel test was performed with a three-percent-scale model of a booster rocket mated to an X-43A research vehicle, a combination referred to as the Hyper-X launch vehicle. The test was conducted both in free-stream air and in the presence of a partial model of the B-52B airplane. The objectives of the test were to obtain force and moment data to generate structural loads affecting the pylon of the B-52B airplane and to determine the aerodynamic influence of the B-52B airplane on the Hyper-X launch vehicle to evaluate launch separation characteristics. The wind-tunnel test was conducted at a low-speed wind tunnel in Hampton, Virginia. All moments and forces reported are based either on the aerodynamic influence of the B-52B airplane or are for the Hyper-X launch vehicle in free-stream air. Overall, the test showed that the B-52B airplane imparts a strong downwash onto the Hyper-X launch vehicle, reducing the net lift of the Hyper-X launch vehicle. Also, pitching and rolling moments are imparted onto the booster and are a strong function of the launch-drop angle of attack.
NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency
NASA Astrophysics Data System (ADS)
Poole-Kober, Evelyn M.; Viebrock, Herbert J.
1991-07-01
During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1995-01-01
Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.
The Vortex Lattice Method for the Rotor-Vortex Interaction Problem
NASA Technical Reports Server (NTRS)
Padakannaya, R.
1974-01-01
The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.
Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.
Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang
2017-03-03
In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.
Flow field in the wake of a bluff body driven through a steady recirculating flow
NASA Astrophysics Data System (ADS)
Poussou, Stephane B.; Plesniak, Michael W.
2015-02-01
The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, , and width, , such that the aspect ratio, AR = H/ D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, , such that . Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.
Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel
NASA Astrophysics Data System (ADS)
Dai, Yijun; Huang, Weixi; Xu, Chunxiao
2016-11-01
Fully developed turbulent channel flow with spanwise rotation has been studied by direct numerical simulation at Rem = 2800, 7000 and 20000 with rotation number 0 <= Rom <= 0.5. The width of the computational box is adjusted for each case to contain two pairs of Taylor-Görtler (TG) vortices. Under a low rotation rate, the turbulent vortical structures are strongly affected by the TG vortices. A conditional average method is employed to investigate the effects. In the upwash region where the fluid is pumped away from the pressure wall by the TG vortices, turbulence is enhanced, while the reverse is the case in the downwash region. Through budget analysis of the transport equation of vorticity fluctuation, it is revealed that the stretching along the wall-normal direction caused by the TG vortices plays an important role in initiating the difference of turbulence intensity between the two regions, which is further augmented by the Coriolis force in the streamwise direction. The effects of TG vortices is weakened at higher Reynolds number. Meanwhile, the shear stress on the suction wall is observed to fluctuate in a quasi-periodic manner at Rem = 7000 and Rom = 0.3, which is induced by the TG vortices. The work is supported by National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).
NASA Technical Reports Server (NTRS)
Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.
1989-01-01
Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.
NASA Astrophysics Data System (ADS)
Bai, H. L.; Kevin, Hutchins, N.; Monty, J. P.
2018-05-01
Turbulence modifications over a rough wall with spanwise-varying roughness are investigated at a moderate Reynolds number Reτ ≈ 2000 (or Reθ ≈ 6400), using particle image velocimetry (PIV) and hotwire anemometry. The rough wall is comprised of spanwise-alternating longitudinal sandpaper strips of two different roughness heights. The ratio of high- and low-roughness heights is 8, and the ratio of high- and low-roughness strip width is 0.5. PIV measurements are conducted in a wall-parallel plane located in the logarithmic region, while hotwire measurements are made throughout the entire boundary layer in a cross-stream plane. In a time-average sense, large-scale counter-rotating roll-modes are observed in the cross-stream plane over the rough wall, with downwash and upwash common-flows displayed over the high- and low-roughness strips, respectively. Meanwhile, elevated and reduced streamwise velocities occur over the high- and low-roughness strips, respectively. Significant modifications in the distributions of mean vorticities and Reynolds stresses are observed, exhibiting features of spatial preference. Furthermore, spatial correlations and conditional average analyses are performed to examine the alterations of turbulence structures over the rough wall, revealing that the time-invariant structures observed are resultant from the time-average process of instantaneous turbulent events that occur mostly and preferentially in space.
Size effects on insect hovering aerodynamics: an integrated computational study.
Liu, H; Aono, H
2009-03-01
Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.
Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System
Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang
2017-01-01
In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815
NASA Technical Reports Server (NTRS)
Spahr, J. R.
1954-01-01
The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing-tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift-interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance between the wing trailing vortex wake and the tail surfaces and thus was a function of angle of attack, angle of roll, and wing-tail interdigitation. Although the configuration at zero roll with the wing and tail in line exhibited the least center-of-pressure travel, the configuration with the wing and tail interdigitated had the least change in wing-tail interference over the angle-of-attack range. The lift effectiveness of the variable-incidence wing was reduced by more than 70 percent as a result of an increase in the combined angle of attack and wing incidence from 0 deg to 40 deg. The wing-tail interference (effective downwash at the tail) due to wing deflection was nearly zero as a result of a region of negative vorticity shed from the inboard portion of the wing. The lift characteristics of the configuration and its components were satisfactorily predicted by the calculated results, but the pitching moments at large angles of attack were not because of the influence of factors for which no adequate theory is available, such as the variation of the crossflow drag coefficient along the body and the effect of the wing downwash field on the afterbody loading.
NASA Astrophysics Data System (ADS)
Miccoli, M.; Usai, A.; Tafuto, A.; Albertoni, A.; Togna, F.
2016-10-01
The propagation environment around airborne platforms may significantly degrade the performance of Electro-Optical (EO) self-protection systems installed onboard. To ensure the sufficient level of protection, it is necessary to understand that are the best sensors/effectors installation positions to guarantee that the aeromechanical turbulence, generated by the engine exhausts and the rotor downwash, does not interfere with the imaging systems normal operations. Since the radiation-propagation-in-turbulence is a hardly predictable process, it was proposed a high-level approach in which, instead of studying the medium under turbulence, the turbulence effects on the imaging systems processing are assessed by means of an equivalent statistical model representation, allowing a definition of a Turbulence index to classify different level of turbulence intensities. Hence, a general measurement methodology for the degradation of the imaging systems performance in turbulence conditions was developed. The analysis of the performance degradation started by evaluating the effects of turbulences with a given index on the image processing chain (i.e., thresholding, blob analysis). The processing in turbulence (PIT) index is then derived by combining the effects of the given turbulence on the different image processing primitive functions. By evaluating the corresponding PIT index for a sufficient number of testing directions, it is possible to map the performance degradation around the aircraft installation for a generic imaging system, and to identify the best installation position for sensors/effectors composing the EO self-protection suite.
Three-dimensional vortex wake structure of flapping wings in hovering flight.
Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan
2014-02-06
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
Wind tunnel test of a variable-diameter tiltrotor (VDTR) model
NASA Technical Reports Server (NTRS)
Matuska, David; Dale, Allen; Lorber, Peter
1994-01-01
This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.
Helicopter synthetic vision based DVE processing for all phases of flight
NASA Astrophysics Data System (ADS)
O'Brien, Patrick; Baughman, David C.; Wallace, H. Bruce
2013-05-01
Helicopters experience nearly 10 times the accident rate of fixed wing platforms, due largely to the nature of their mission, frequently requiring operations in close proximity to terrain and obstacles. Degraded visual environments (DVE), including brownout or whiteout conditions generated by rotor downwash, result in loss of situational awareness during the most critical phase of flight, and contribute significantly to this accident rate. Considerable research into sensor and system solutions to address DVE has been conducted in recent years; however, the promise of a Synthetic Vision Avionics Backbone (SVAB) extends far beyond DVE, enabling improved situational awareness and mission effectiveness during all phases of flight and in all visibility conditions. The SVAB fuses sensor information with high resolution terrain databases and renders it in synthetic vision format for display to the crew. Honeywell was awarded the DARPA MFRF Technical Area 2 contract in 2011 to develop an SVAB1. This work includes creation of a common sensor interface, development of SVAB hardware and software, and flight demonstration on a Black Hawk helicopter. A "sensor agnostic" SVAB allows platform and mission diversity with efficient upgrade path, even while research continues into new and improved sensors for use in DVE conditions. Through careful integration of multiple sources of information such as sensors, terrain and obstacle databases, mission planning information, and aircraft state information, operations in all conditions and phases of flight can be enhanced. This paper describes the SVAB and its functionality resulting from the DARPA contract as well as Honeywell RD investment.
NASA Technical Reports Server (NTRS)
Hewes, Donald E.
1950-01-01
At the request of the Air Materiel Command, an investigation was made in the Langley free-flight tunnel to determine the longitudinal stability and control characteristics of models coupled together in a tandem configuration for aerial refueling similar to one proposed by the Douglas Aircraft Company, Inc. Static force tests were made with 1/20-scale models of the B-29 and F-80 airplanes to determine the effects of rigidly coupling the airplanes together. The Douglas configuration differs from the rigid configuration tested in that it provides for some freedom in pitch and vertical displacement. The force tests showed that, for the bomber alone, the aerodynamic center was 0.21 mean aerodynamic chord behind the center of gravity (stable) but that for the tandem configuration with rigid coupling the aerodynamic center was 0.28 mean aerodynamic chord forward of the center of gravity of the combination (unstable). This reduction in stability was caused by the downwash of the bomber on the fighter. The pitching moment produced by elevator deflection of the bomber was reduced approximately 50 percent by addition of the fighter. Some recent flight tests made in the free-flight tunnel on models in a similar tandem configuration indicated that, with a hinged coupling permitting freedom in pitch, the stability of the combination was better than that obtained with a rigid coupling and was about the same as that for the bomber alone.
NASA Astrophysics Data System (ADS)
Edge, Ron
2007-09-01
We've all seen (in movies, newscasts, or perhaps in person) the violent effect of the downwash that occurs when a helicopter hovers over the ground. Leaves, grass, and debris are dramatically blown about. We've also sat in front of circulating room fans and felt a large draft, whereas there seems to be very little air movement behind the fan. The cause of this is a delightful manifestation of Bernoulli's principle. The fan blades, or helicopter rotor blades, produce a pressure differential as air passes through them—let us say p1 before and p2 after, as shown in Fig. 1, with p2 greater than p1. If p0 is the ambient pressure, Bernoulli's equation gives p0=p1 +(1/2)ρv12, where v1 is the velocity of the air entering the fan. Continuity requires that v2 leaving the fan must equal v1 entering the fan for an incompressible fluid, approximately true here (Av1 = Av2, where A is the area swept out by the blades, the "rotor disk area"). However, some distance below the rotor (or in front of the fan) the velocity is vd (vdowndraft in the figure) and the pressure again p0, so Bernoulli gives us p2 + (1/2)ρv22 = (p1 + Δp) + (1/2) ρv12 = [p1 + (p2 - p1)] +(1/2) ρv12 = p2 + (1/2)ρv12 = p0 + (1/2) ρvd2.
A CFD-informed quasi-steady model of flapping wing aerodynamics.
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J
2015-11-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.
NASA Astrophysics Data System (ADS)
Doner, William D.
1989-12-01
Interactions of wall jets and vortices embedded in turbulent layers commonly occur near gas turbine blades and endwalls where film cooling is employed. These interactions frequently result in undesirable heat transfer effects at blade and endwall surfaces. In this thesis, a crossed hot-wire probe is used to measure the turbulence structure resulting from this type of interaction. The vortex is generated using a half delta-wing vortex generator mounted 12 deg with respect to a 10 m/s mean velocity flow over a flat plate. A single injection hole, 0.95 cm in diameter, inclined 30 deg to the horizontal, is positioned 59.3 cm downstream of the vortex generator. The vortex generator is positioned so that vortex upwash and downwash could be located over the injection hole. Streamwise development of the turbulent boundary layer was investigated for the following cases: (1) boundary layer with jet only (m = 1.5), and (2) boundary layer with vortex only. Measurement of interaction between the boundary layer, vortex upwash, and the wall jet was made at one station with various blowing ratios. At low blowing ratios (m = 0.5 and 1.5) the vortex dominates the flow. Significant alterations to the turbulent structure are seen in the Reynolds stress components, vorticity distributions and mean velocities. At higher blowing ratios (m = 2.5 and 3.5) the jet dominates the flow, the vortex is blown away from the wall, and its turbulence effects are dispersed over a larger area.
A CFD-informed quasi-steady model of flapping wing aerodynamics
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.
2016-01-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891
NASA Technical Reports Server (NTRS)
Klemin, Alexander; Warner, Edward P; Denkinger, George M
1918-01-01
Part 1 gives details of models tested and methods of testing of the Eiffel 36 wing alone and the JN2 aircraft. Characteristics and performance curves for standard JN are included. Part 2 presents a statistical analysis of the following: lift and drag contributed by body and chassis tested without wings; lift and drag contributed by tail, tested without wings; the effect on lift and drift of interference between the wings of a biplane combination; lift and drag contributed by the addition of body, chassis, and tail to a biplane combination; total parasite resistance; effect of varying size of tail, keeping angle of setting constant; effect of varying length of body and size of tail at the same time, keeping constant moment of tail surface about the center of gravity; forces on the tail and the effects of downwash; effect of size and setting of tail on statical longitudinal stability effects of length of body on stability; the effects of the various elements of an airplane on longitudinal stability and the placing of the force vectors. Part 3 presents the fundamental principals of dynamical stability; computations of resistance derivatives; solution of the stability equation; dynamical stability of the Curtiss JN2; tabulation of resistance derivatives; discussion of the resistance derivatives; formation and solution of stability equations; physical conceptions of the resistance derivatives; elements contributing to damping and an investigation of low speed conditions. Part 4 includes a summary of the results of the statistical investigation and a summary of the results for dynamic stability.
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach
Nakata, Toshiyuki; Liu, Hao
2012-01-01
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896
NASA Technical Reports Server (NTRS)
Michal, David H.
1950-01-01
An investigation of the static and dynamic longitudinal stability characteristics of 1/3.7 scale rocket-powered model of the Bell MX-776A has been made for a Mach number range from 0.8 to 1.6. Two models were tested with all control surfaces at 0 degree deflection and centers of gravity located 1/4 and 1/2 body diameters, respectively, ahead of the equivalent design location. Both models were stable about the trim conditions but did not trim at 0 degree angle of attack because of slight constructional asymmetries. The results indicated that the variation of lift and pitching moment was not linear with angle of attack. Both lift-curve slope and pitching-moment-curve slope were of the smallest magnitude near 0 degree angle of attack. In general, an increase in angle of attack was accompanied by a rearward movement of the aerodynamic center as the rear wing moved out of the downwash from the forward surfaces. This characteristic was more pronounced in the transonic region. The dynamic stability in the form of total damping factor varied with normal-force coefficient but was greatest for both models at a Mach number of approximately 1.25. The damping factor was greater at the lower trim normal-force coefficients except at a Mach number of 1.0. At that speed the damping factor was of about the same magnitude for both models. The drag coefficient increased with trim normal-force coefficient and was largest in the transonic region.
A study of helicopter stability and control including blade dynamics
NASA Technical Reports Server (NTRS)
Zhao, Xin; Curtiss, H. C., Jr.
1988-01-01
A linearized model of rotorcraft dynamics has been developed through the use of symbolic automatic equation generating techniques. The dynamic model has been formulated in a unique way such that it can be used to analyze a variety of rotor/body coupling problems including a rotor mounted on a flexible shaft with a number of modes as well as free-flight stability and control characteristics. Direct comparison of the time response to longitudinal, lateral and directional control inputs at various trim conditions shows that the linear model yields good to very good correlation with flight test. In particular it is shown that a dynamic inflow model is essential to obtain good time response correlation, especially for the hover trim condition. It also is shown that the main rotor wake interaction with the tail rotor and fixed tail surfaces is a significant contributor to the response at translational flight trim conditions. A relatively simple model for the downwash and sidewash at the tail surfaces based on flat vortex wake theory is shown to produce good agreement. Then, the influence of rotor flap and lag dynamics on automatic control systems feedback gain limitations is investigated with the model. It is shown that the blade dynamics, especially lagging dynamics, can severly limit the useable values of the feedback gain for simple feedback control and that multivariable optimal control theory is a powerful tool to design high gain augmentation control system. The frequency-shaped optimal control design can offer much better flight dynamic characteristics and a stable margin for the feedback system without need to model the lagging dynamics.
NASA Astrophysics Data System (ADS)
Poussou, Stephane B.
The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.
Influence of backflow on skin friction in turbulent pipe flow
NASA Astrophysics Data System (ADS)
Jalalabadi, Razieh; Sung, Hyung Jin
2018-06-01
A direct numerical simulation of a turbulent pipe flow (Reτ = 544) is used to investigate the influence of the backflow on the vortical structures that contribute to the local skin friction. The backflow is a rare event with a probability density function (PDF) of less than 10-3. The backflow is found to extend up to y+ ≈ 4 and is induced by the presence of a vortex in the buffer layer. The flow statistics are conditionally sampled under the condition of a negative streamwise velocity (u < 0) at y+ = 3. The conditionally averaged u <0 reaches its maximum at y+ ≈ 27. The intensified conditionally averaged velocity fluctuations contribute to vertical and spanwise momentum transport around the backflow. The ensemble averaged + and + reveal layered structures in the Q2 and Q4 events. A strong Q4 event appears above the backflow, flanked by two regions of Q2. The strong downwash of the flow along with the spanwise vortex induces the backflow. The upwash at upstream and downstream of the backflow enhances the movement of the low-speed flow in the streamwise and spanwise directions. The velocity-vorticity correlation reveals that the main contributions to Cf are the vorticity advection and vorticity stretching. The main contribution to the conditionally averaged Cf is the wall-normal gradient of the mean spanwise vorticity at the wall. The spanwise vorticity is positive above the backflow flanked by two regions of negative spanwise vorticity. The conditional PDF of the backflow under negative ul+ at y+ = 100 is more frequent than that under positive ul+.
Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances
NASA Astrophysics Data System (ADS)
Cai, Chang; Zuo, Zhigang; Maeda, Takao; Kamada, Yasunari; Li, Qing'an; Shimamoto, Kensei; Liu, Shuhong
2017-11-01
Recently leading-edge protuberances have attracted great attention as a passive method for separation control. In this paper, the effect of multiple leading-edge protuberances on the performance of a two-dimensional airfoil is investigated through experimental measurement of aerodynamic forces, surface tuft visualization, and numerical simulation. In contrast to the sharp stall of the baseline airfoil with large hysteresis effect during AOA (angle of attack) increasing and decreasing, the stall process of the modified airfoil with leading-edge protuberances is gentle and stable. Flow visualization revealed that the flow past each protuberance is periodic and symmetric at small AOAs. Streamwise vortices are generated on the shoulders of the protuberance, leading to a larger separation around the valley sections and a longer attachment along the peak sections. When some critical AOA is exceeded, aperiodic and asymmetric flow patterns occur on the protuberances at different spanwise positions, with leading-edge separation on some of the valley sections and non-stalled condition elsewhere. A combined mechanism, involving both the compartmentalization effect of the slender momentum-enhanced attached flows on the protuberance peaks and the downwash effect of the local stalled region with low circulation, is proposed to explain the generation of the aperiodic flow patterns. The influence of the number of protuberances is also investigated, which shows similar aperiodic flow patterns. The distance between the neighboring local stalled valley sections is found to be in the range of 4-7 times the protuberance wavelength. According to the proposed mechanism, it is speculated that the distance between the neighboring local stalled valley sections is inclined to increase with a smaller protuberance amplitude or at a larger AOA.
NASA Astrophysics Data System (ADS)
Gentry, D.; Whinnery, J. T.; Ly, V. T.; Travers, S. V.; Sagaga, J.; Dahlgren, R. P.
2017-12-01
Microorganisms play a major role in our biosphere due to their ability to alter water, carbon and other geochemical cycles. Fog and low-level cloud water can play a major role in dispersing and supporting such microbial diversity. An ideal region to gather these microorganisms for characterization is the central coast of California, where dense fog is common. Fog captured from an unmanned aerial vehicle (UAV) at different altitudes will be analyzed to better understand the nature of microorganisms in the lower atmosphere and their potential geochemical impacts. The capture design consists of a square-meter hydrophobic mesh that hangs from a carbon fiber rod attached to a UAV. The DJI M600, a hexacopter, will be utilized as the transport for the payload, the passive impactor collection unit (PICU). The M600 will hover in a fog bank at altitudes between 10 and 100 m collecting water samples via the PICU. A computational flow dynamics (CFD) model will optimize the PICU's size, shape and placement for maximum capture efficiency and to avoid contamination from the UAV downwash. On board, there will also be an altitude, temperature and barometric pressure sensor whose output is logged to an SD card. A scale model of the PICU has been tested with several different types of hydrophobic meshes in a fog chamber at 90-95% humidity; polypropylene was found to capture the fog droplets most efficiently at a rate of .0042 g/cm2/hour. If the amount collected is proportional to the area of mesh, the estimated amount of water collected under optimal fog and flight conditions by the impactor is 21.3 g. If successful, this work will help identify the organisms living in the lower atmosphere as well as their potential geochemical impacts.
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL<0.7 . For CL>0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.
Impacts of South East Biomass Burning on local air quality in South China Sea
NASA Astrophysics Data System (ADS)
Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi
2016-04-01
Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.
Helicopter collision avoidance and brown-out recovery with HELLAS
NASA Astrophysics Data System (ADS)
Seidel, Christian; Schwartz, Ingo; Kielhorn, Peter
2008-10-01
EADS Germany is the world market leader in commercial and military Helicopter Laser Radar (HELLAS) Obstacle Warning Systems. The HELLAS-Warning System has been introduced into the market in 2000, is in service at German Federal Police and Royal Thai Air Force. HELLAS was also successfully evaluated by the Foreign Comparative Test Program (FCT) of the U.S. Army and other governmental agencies. Currently the successor system for military applications, HELLAS-Awareness, is in qualification phase. It will have extended sensor performance, enhanced real-time data processing capabilities and advanced human machine interface (HMI) features. Flight tests on NH90 helicopter have been successfully performed. Helicopter series integration is scheduled to begin from 2009. We will give an outline of the new sensor unit concerning detection technology and helicopter integration aspects. The system provides a widespread field of view with additional dynamic line of sight steering and a large detection range in combination with a high frame rate. We will show the HMI representations. This HELLAS system is the basis for a 3 dimensional see-and-remember-system for brown-out recovery. When landing in sandy or dusty areas the downwash of the helicopter rotor causes clouds of visually-restrictive material that can completely obstruct the pilot's outside reference, resulting in a complete loss of situational awareness and spatial orientation of the pilot which can end up in total loss of aircraft control and dangerous accidents. The brown-out recovery system presented here creates an augmented enhanced synthetic vision of the landing area with the surrounding which is based on HELLAS range image data as well as altimeter and inertial reference information.
NASA Astrophysics Data System (ADS)
Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing
2018-04-01
Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.
In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.
Wake-Vortex Hazards During Cruise
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)
1998-01-01
Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.
NASA Astrophysics Data System (ADS)
Oruc, Ilker
This thesis presents the development of computationally efficient coupling of Navier-Stokes CFD with a helicopter flight dynamics model, with the ultimate goal of real-time simulation of fully coupled aerodynamic interactions between rotor flow and the surrounding terrain. A particular focus of the research is on coupled airwake effects in the helicopter / ship dynamic interface. A computationally efficient coupling interface was developed between the helicopter flight dynamics model, GENHEL-PSU and the Navier-Stokes solvers, CRUNCH/CRAFT-CFD using both FORTRAN and C/C++ programming languages. In order to achieve real-time execution speeds, the main rotor was modeled with a simplified actuator disk using unsteady momentum sources, instead of resolving the full blade geometry in the CFD. All the airframe components, including the fuselage are represented by single aerodynamic control points in the CFD calculations. The rotor downwash influence on the fuselage and empennage are calculated by using the CFD predicted local flow velocities at these aerodynamic control points defined on the helicopter airframe. In the coupled simulations, the flight dynamics model is free to move within a computational domain, where the main rotor forces are translated into source terms in the momentum equations of the Navier-Stokes equations. Simultaneously, the CFD calculates induced velocities those are fed back to the simulation and affect the aerodynamic loads in the flight dynamics. The CFD solver models the inflow, ground effect, and interactional aerodynamics in the flight dynamics simulation, and these calculations can be coupled with solution of the external flow (e.g. ship airwake effects). The developed framework was utilized for various investigations of hovering, forward flight and helicopter/terrain interaction simulations including standard ground effect, partial ground effect, sloped terrain, and acceleration in ground effect; and results compared with different flight and experimental data. In near ground cases, the fully-coupled flight dynamics and CFD simulations predicted roll oscillations due to interactions of the rotor downwash, ground plane, and the feedback controller, which are not predicted by the conventional simulation models. Fully coupled simulations of a helicopter accelerating near ground predicted flow formations similar to the recirculation and ground vortex flow regimes observed in experiments. The predictions of hover power reductions due to ground effect compared well to a recent experimental data and the results showed 22% power reduction for a hover flight z/R=0.55 above ground level. Fully coupled simulations performed for a helicopter hovering over and approaching to a ship flight deck and results compared with the standalone GENHEL-PSU simulations without ship airwake and one-way coupled simulations. The fully-coupled simulations showed higher pilot workload compared to the other two cases. In order to increase the execution speeds of the CFD calculations, several improvements were made on the CFD solver. First, the initial coupling approach File I/O was replaced with a more efficient method called Multiple Program Multiple Data MPI framework, where the two executables communicate with each other by MPI calls. Next, the unstructured solver (CRUNCH CFD), which is 2nd-order accurate in space, was replaced with the faster running structured solver (CRAFT CFD) that is 5th-order accurate in space. Other improvements including a more efficient k-d tree search algorithm and the bounding of the source term search space within a small region of the grid surrounding the rotor were made on the CFD solver. The final improvement was to parallelize the search task with the CFD solver tasks within the solver. To quantify the speed-up of the improvements to the coupling interface described above, a study was performed to demonstrate the speedup achieved from each of the interface improvements. The improvements made on the CFD solver showed more than 40 times speedup from the baseline file I/O and unstructured solver CRUNCH CFD. Using a structured CFD solver with 5th-order spacial accuracy provided the largest reductions in execution times. Disregarding the solver numeric, the total speedup of all of the interface improvements including the MPMD rotor point exchange, k-d tree search algorithm, bounded search space, and paralleled search task, was approximately 231%, more than a factor of 2. All these improvements provided the necessary speedup for approach real-time CFD. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Drexler, J. Z.; Fuller, C.
2017-12-01
137Cesium is an anthropogenic radionuclide whose maximum fallout occurred in 1963/4 at the height of above-ground nuclear weapons testing. The presence of this fallout peak in core profiles has been used widely to estimate vertical accretion and carbon accumulation rates in wetlands. 137Cs dating has long been applied with little attention to uncertainty of peak position or measurement error. Initially, this caused few problems as activities were high and peaks were generally clear; however recently the clarity of peaks has deteriorated, raising questions of method efficacy. We quantified uncertainty in 137Cs dating in 52 wetland sediment/peat cores collected from 2005 - 2015 in Maine, California, Virginia, North Carolina, South Carolina, and Washington and compared the position of each peak to the date obtained with 210Pb. We found that the two dating methods matched within 5 years for only 20% of cores with a distinct 137Cs peak. We attribute this to a decline in 137Cs efficacy for three main reasons: (1) mobility of 137Cs resulting from diffusion independent of sediments, downwashing, and/or physical/biotic perturbation, (2) on-going decay of the original 137Cs in situ (half-life = 30.17 years), which manifests in lower signal to noise ratios, and (3) 137Cs inputs from watershed/tidal sources, which have confounded the 137Cs pattern in sediments. Such reduced efficacy is of concern because carbon accumulation rates determined with 137Cs are used for informing national-scale carbon assessments and for determining the carbon storage potential of wetlands restored as offsets for the carbon market. We conclude that 137Cs dating alone has sufficient uncertainty that it should be disallowed for carbon accounting and that any use of 137Cs should be accompanied by an uncertainty analysis of peak position. Our results suggest that soon the common practice of using 137Cs to corroborate 210Pb dating will likely be obsolete in much of North America.
Airborne platform effects on lasers and warning sensors
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Eisele, Christian; Seiffer, Dirk; Sjöqvist, Lars; Togna, Fabio; Velluet, Marie-Thérèse
2017-10-01
Airborne platform effects on lasers and warning sensors (ALWS) has been a European collaborative research project to investigate the effects of platform-related turbulence on optical countermeasure systems, especially missile approach warning systems (MAWS) and directed infrared countermeasures (DIRCM). Field trials have been carried out to study the turbulence effects around a hovering helicopter and behind a turboprop aircraft with engines running on the ground. In addition different methods for modelling the effects have been investigated. In the helicopter trials significant beam wander, scintillations and beam broadening were experienced by narrow divergence laser beams when passing through the down-wash of the hot engine exhaust gases. The measured effects considerably exceed the effects of atmospheric turbulence. Extraction of turbulence parameters for modelling of DIRCM-relevant scenarios show that in most cases the reduction of jamming power and distortion of jamming waveform can be expected to be small. The reduction of effects of turbulence is mainly related to the larger beam divergence and shorter Rayleigh length of DIRCM lasers compared to the experimental probe beams. Measurements using the turboprop platform confirm that tolerable effects on laser beam properties are found when the laser beam passes through the exhaust 15 m behind the outlet where the exhaust gases are starting to cool down. Modelling efforts have shown that time-resolved computational fluid dynamics (CFD) calculations can be used to study properties of beam propagation in engine exhaust-related turbulence. Because of computational cost and the problem of validating the CFD results the use for system performance simulations is however difficult. The hot exhaust gases emitted from aircraft engines create extreme optical turbulence in a local region. The effects on countermeasure system performance depend both on the system parameters and on the threat characteristics. With present-day DIRCM systems, the effects of even severe turbulence are often tolerable.
NASA Astrophysics Data System (ADS)
Zhou, Xiaochi; Aurell, Johanna; Mitchell, William; Tabor, Dennis; Gullett, Brian
2017-04-01
Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and time-integrated sampler system for use on mobile applications such as vehicles, tethered balloons (aerostats) and unmanned aerial vehicles (UAVs) to determine emission factors. The system is particularly applicable to open area sources, such as forest fires, due to its light weight (3.5 kg), compact size (6.75 L), and internal power supply. The sensor system, termed ;Kolibri;, consists of sensors measuring CO2 and CO, and samplers for particulate matter (PM) and volatile organic compounds (VOCs). The Kolibri is controlled by a microcontroller which can record and transfer data in real time through a radio module. Selection of the sensors was based on laboratory testing for accuracy, response delay and recovery, cross-sensitivity, and precision. The Kolibri was compared against rack-mounted continuous emissions monitoring system (CEMs) and another mobile sampling instrument (the ;Flyer;) that has been used in over ten open area pollutant sampling events. Our results showed that the time series of CO, CO2, and PM2.5 concentrations measured by the Kolibri agreed well with those from the CEMs and the Flyer, with a laboratory-tested percentage error of 4.9%, 3%, and 5.8%, respectively. The VOC emission factors obtained using the Kolibri were consistent with existing literature values that relate concentration to modified combustion efficiency. The potential effect of rotor downwash on particle sampling was investigated in an indoor laboratory and the preliminary results suggested that its influence is minimal. Field application of the Kolibri sampling open detonation plumes indicated that the CO and CO2 sensors responded dynamically and their concentrations co-varied with emission transients. The Kolibri system can be applied to various challenging open area scenarios such as fires, lagoons, flares, and landfills.
NASA Astrophysics Data System (ADS)
Contini, Daniele; Robins, Alan
A study of the mixing phase of two identical buoyant plumes emitted from adjacent sources into a neutral cross-flow is presented. Results were obtained in a water towing-tank by using both quantitative plume visualisations and point concentration detection with a colorimeter system. Plume trajectories and cross-sectional distributions of concentration were obtained for different flow directions, φ, with respect to the source axis and for two stack separations. Particular attention has been given to the influence of φ on plume trajectories during the mixing phase and to the changes in the shape of the plume cores, induced during the mixing, that influence the rate of entrainment of ambient fluid. The results show that the additional rise, E, of the combined plume decreases almost linearly with sin( φ) when φ is increased, and vanishes when φ is around 20-30°; thereafter, E becomes negative, due to the presence of a form of "induced downwash" effect. The rise reduction is a consequence of the complex and protracted mixing of two vortices of opposite vorticity that creates strong asymmetry in the concentration distribution within the plume core, resulting in an accumulation of plume material at the bottom of the combined plume and a consequent decrease of the height of the centre of mass of the combined plume. There is clear evidence that the asymmetry slowly diminishes during plume development, so that at large distance from the mixing zone the concentration distribution becomes similar to that of a single plume with a characteristic double-vortex structure, though this develops with a deficit in plume rise. Results also show that the average dilution over a cross-section of the plume increases with φ and, when φ reaches 90°, becomes approximately equal to that in a single plume, even though the actual tracer distribution is quite different, particularly at short distances from the sources.
Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Napolillo, Zachary G.
The desire and demand to fly farther and faster has progressively integrated the concept of optimization with airfoil design, resulting in increasingly complex numerical tools pursuing efficiency often at diminishing returns; while the costs and difficulty associated with fabrication increases with design complexity. Such efficiencies may often be necessary due to the power density limitations of certain aircraft such as small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs). This research, however, focuses on reducing the complexity of airfoils for applications where aerodynamic performance is less important than the efficiency of manufacturing; in this case a Hybrid Projectile. By employing faceted sections to approximate traditional contoured wing sections it may be possible to expedite manufacturing and reduce costs. We applied this method to the development of a low Reynolds number, disposable Hybrid Projectile requiring a 4.5:1 glide ratio, resulting in a series of airfoils which are geometric approximations to highly contoured cross-sections called ShopFoils. This series of airfoils both numerically and experimentally perform within a 10% margin of the SD6060 airfoil at low Re. Additionally, flow visualization has been conducted to qualitatively determine what mechanisms, if any, are responsible for the similarity in performance between the faceted ShopFoil sections and the SD6060. The data obtained by these experiments did not conclusively reveal how the faceted surfaces may influence low Re flow but did indicate that the ShopFoil s did not maintain flow attachment at higher angles of attack than the SD6060. Two reasons are provided for the unexpected performance of the ShopFoil: one is related to downwash effects, which are suspected of placing the outer portion of the span at an effective angle of attack where the ShopFoils outperform the SD6060; the other is the influence of the tip vortex on separation near the wing tips, which possibly provides a 'comparative advantage' to the ShopFoil because it has more to gain from a reduction in its pressure drag component.
NASA Astrophysics Data System (ADS)
Vets, Robert
An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant to the class of fixed wing, Tier-1, Unmanned Aerial Vehicles (UAV).
Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji
1999-07-01
Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less
Detrending with Empirical Mode Decomposition (DEMD): Theory, Evaluation, and Application
NASA Astrophysics Data System (ADS)
Bolch, Michael Adam
Land-surface heterogeneity (LSH) at different scales has significant influence on atmospheric boundary layer (ABL) buoyant and shear turbulence generation and transfers of water, carbon and heat. The extent of proliferation of this influence into larger-scale circulations and atmospheric structures is a topic continually investigated in experimental and numerical studies, in many cases with the hopes of improving land-atmosphere parameterizations for modeling purposes. The blending height is a potential metric for the vertical propagation of LSH effects into the ABL, and has been the subject of study for several decades. Proper assessment of the efficacy of blending height theory invites the combination of observations throughout ABLs above different LSH scales with model simulations of the observed ABL and LSH conditions. The central goal of this project is to develop an apt and thoroughly scrutinized method for procuring ABL observations that are accurately detrended and justifiably relevant for such a study, referred to here as Detrending with Empirical Mode Decomposition (DEMD). The Duke University helicopter observation platform (HOP) provides ABL data [wind (u, v, and w), temperature ( T), moisture (q), and carbon dioxide (CO 2)] at a wide range of altitudes, especially in the lower ABL, where LSH effects are most prominent, and where other aircraft-based platforms cannot fly. Also, lower airspeeds translate to higher resolution of the scalars and fluxes needed to evaluate blending height theory. To confirm noninterference of the main rotor downwash with the HOP sensors, and also to identify optimal airspeeds, analytical, numerical, and observational studies are presented. Analytical analysis clears the main rotor downwash from the HOP nose at airspeeds above 10 m s-1. Numerical models find an acceptable range from 20-40 m s-1, due to a growing compressed air preceding the HOP nose. The first observational study finds no impact of different HOP airspeeds on measurements from ˜18 m s -1 to ˜55 m s-1 over a stable marine boundary layer (MBL). Another set of observations studies HOP and tower data, using the Duke University Mobile Micrometeorological Station (MMS) over an MBL, and concludes that HOP sensible heat (SH), latent heat (LE), and carbon dioxide (F CO2) fluxes align well with MMS findings. The HOP sensors provide ABL data at 40 Hz, as well as a real-time display of theta for in-flight ABL height estimation. Sensor calibration and alignment procedures indicate usable ABL measurements. HOP data are especially susceptible to the spurious influence of platform motion on ABL data, largely due to the low-altitude and low-airspeed capabilities of the HOP. For example, HOP altitude motion in the presence of a lapse rate can cause spurious T fluctuations. Empirical mode decomposition (EMD) can separate HOP data into a set of adaptive and unique intrinsic mode functions (IMFs), often with physical meaning. DEMD aims to correct for spurious contributions to HOP data, while merging EMD with a correlation analysis to adjust data without eliminating relevant ABL dynamics. To evaluate DEMD efficacy, two-dimensional synthetic T fields with simulated turbulence over a prescribed lapse rate are sampled with altitude fluctuations similar to HOP flights, and with a wide range of T perturbation and sampling path parameter variations. DEMD recovers the prescribed lapse rate within 1% on average for the 552 test cases passing the filtering criteria. The method is further evaluated via application to vertical cross sections taken from the Ocean-Land-Atmosphere Model (OLAM) large-eddy simulation (LES) results, where DEMD shows improved accuracy of SH recovery. DEMD is applied to three low-altitude HOP flight legs flown on 19 June 2007 during the Cloud and Land Surface Interaction Campaign (CLASIC), both as an example of practical application and to compare DEMD to the initially proposed method (Holder et al. 2011, hereafter H11). H11 dictates the elimination of correlated IMFs, along with other subtle differences from DEMD, which also eliminates any ABL motions embedded in those IMFs. As suspected, the H11 method produces marked reductions of variances and turbulence kinetic energy (TKE) and substantial deviations in SH, LE, and FCO2 compared to DEMD. DEMD detrends without unnecessary elimination. DEMD is vital for ensuring accurate scalars and fluxes from HOP data, and a strategy for future research is presented that integrates properly detrended observations from the CLASIC HOP dataset with OLAM simulations to explore LSH effects on ABL processes and evaluate blending height theory.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.
Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol
2016-12-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force.
A UAV-Based Fog Collector Design for Fine-Scale Aerobiological Sampling
NASA Technical Reports Server (NTRS)
Gentry, Diana; Guarro, Marcello; Demachkie, Isabella Siham; Stumfall, Isabel; Dahlgren, Robert P.
2017-01-01
Airborne microbes are found throughout the troposphere and into the stratosphere. Knowing how the activity of airborne microorganisms can alter water, carbon, and other geochemical cycles is vital to a full understanding of local and global ecosystems. Just as on the land or in the ocean, atmospheric regions vary in habitability; the underlying geochemical, climatic, and ecological dynamics must be characterized at different scales to be effectively modeled. Most aerobiological studies have focused on a high level: 'How high are airborne microbes found?' and 'How far can they travel?' Most fog and cloud water studies collect from stationary ground stations (point) or along flight transects (1D). To complement and provide context for this data, we have designed a UAV-based modified fog and cloud water collector to retrieve 4D-resolved samples for biological and chemical analysis.Our design uses a passive impacting collector hanging from a rigid rod suspended between two multi-rotor UAVs. The suspension design reduces the effect of turbulence and potential for contamination from the UAV downwash. The UAVs are currently modeled in a leader-follower configuration, taking advantage of recent advances in modular UAVs, UAV swarming, and flight planning.The collector itself is a hydrophobic mesh. Materials including Tyvek, PTFE, nylon, and polypropylene monofilament fabricated via laser cutting, CNC knife, or 3D printing were characterized for droplet collection efficiency using a benchtop atomizer and particle counter. Because the meshes can be easily and inexpensively fabricated, a set can be pre-sterilized and brought to the field for 'hot swapping' to decrease cross-contamination between flight sessions or use as negative controls.An onboard sensor and logging system records the time and location of each sample; when combined with flight tracking data, the samples can be resolved into a 4D volumetric map of the fog bank. Collected samples can be returned to the lab for a variety of analyses. Based on a review of existing flight studies, we have identified ion chromatography, metagenomic sequencing, cell staining and quantification, and ATP quantification as high-priority assays for implementation. Support for specific toxicology assays, such as methylmercury quantification, is also planned.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle
Phan, Hoang Vu; Au, Thi Kim Loan
2016-01-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force. PMID:28083112
NASA Astrophysics Data System (ADS)
Kunz, M.; Lavric, J. V.; Grant, R. H.; Gerbig, C.; Heimann, M.; Flatt, J. E.; Zeeman, M. J.; Wolf, B.
2016-12-01
The exchange of carbon between biosphere and atmosphere is a topic of high interest, particularly because the magnitude of biospheric climate feedback is uncertain. Soil chambers and eddy covariance systems, the traditional tools for the measurement of exchange fluxes, are subject to inherent limitations: chambers cover only small areas of typically less than on square meter, and eddy covariance is not applicable under very low wind conditions. Complementary methods can help to deal with these limitations and provide more confidence in up-scaling. During the ScaleX 2016 campaign an ecosystem was studied with a combination of multiple measurement approaches, including soil chambers, an eddy covariance station, a weather station, quasi-continuous CO2 measurements on a 10 m tower, multiple UAS with different sensors and remote sensing of temperature, humidity and wind profiles. The campaign took place at Fendt in Southern Germany on a flat valley floor covered by grass. We deployed COCAP, a compact carbon dioxide analyser for airborne platforms developed at the Max Planck Institute for Biogeochemistry in Jena, on a commercial multicopter (DJI S1000). COCAP measures carbon dioxide dry air mole fraction to an accuracy of 2 ppm as well as ambient pressure, temperature and relative humidity. At a total mass of 1 kg it contains a GPS receiver, on-board data logging capabilities and a radio transmitter which allows for real-time data visualisation on a ground station computer. In consecutive vertical profile measurements at night-time, reaching up to a maximum height of 150 m, we see a strong build-up of CO2 close to the ground which we attribute to exchange fluxes from the surface into the atmosphere that are trapped below a nocturnal inversion. We estimate these fluxes from the change in observed column amount of CO2 over time and compare our results to other methods. Challenges in the measurement and data analysis as well as the influence of wind, rotor downwash and valley drainage flows are discussed.
A UAV-Based Fog Collector Design for Fine-Scale Aerobiological Sampling
NASA Astrophysics Data System (ADS)
Gentry, D.; Guarro, M.; Demachkie, I. S.; Stumfall, I.; Dahlgren, R. P.
2016-12-01
Airborne microbes are found throughout the troposphere and into the stratosphere. Knowing how the activity of airborne microorganisms can alter water, carbon, and other geochemical cycles is vital to a full understanding of local and global ecosystems. Just as on the land or in the ocean, atmospheric regions vary in habitability; the underlying geochemical, climatic, and ecological dynamics must be characterized at different scales to be effectively modeled. Most aerobiological studies have focused on a high level: 'How high are airborne microbes found?' and 'How far can they travel?' Most fog and cloud water studies collect from stationary ground stations (point) or along flight transects (1D). To complement and provide context for this data, we have designed a UAV-based modified fog and cloud water collector to retrieve 4D-resolved samples for biological and chemical analysis. Our design uses a passive impacting collector hanging from a rigid rod suspended between two multi-rotor UAVs. The suspension design reduces the effect of turbulence and potential for contamination from the UAV downwash. The UAVs are currently modeled in a leader-follower configuration, taking advantage of recent advances in modular UAVs, UAV swarming, and flight planning. The collector itself is a hydrophobic mesh. Materials including Tyvek, PTFE, nylon, and polypropylene monofilament fabricated via laser cutting, CNC knife, or 3D printing were characterized for droplet collection efficiency using a benchtop atomizer and particle counter. Because the meshes can be easily and inexpensively fabricated, a set can be pre-sterilized and brought to the field for 'hot swapping' to decrease cross-contamination between flight sessions or use as negative controls. An onboard sensor and logging system records the time and location of each sample; when combined with flight tracking data, the samples can be resolved into a 4D volumetric map of the fog bank. Collected samples can be returned to the lab for a variety of analyses. Based on a review of existing flight studies, we have identified ion chromatography, metagenomic sequencing, cell staining and quantification, and ATP quantification as high-priority assays for implementation. Support for specific toxicology assays, such as methylmercury quantification, is also planned.
Flows in films and over flippers
NASA Astrophysics Data System (ADS)
van Nierop, Ernst Adriaan
Three topics in fluid mechanics are dealt with in this dissertation, namely (i) reactive spreading and recoil of oil on water, (ii) free film formation theory and experiment, and (iii) how humpback whale flippers delay stall. Reactive spreading of an oil droplet on water is described in Chapter 1. Small amounts of acid and base were added to the oil and water respectively, such that a surfactant was produced at the interface between the oil and the water, greatly enhancing spreading rates. After the oil drop spreads out to some maximum radius, the drop recoils on a timescale that is indicative of a diffusive process redistributing the surfactant over the entire volume of water. In Chapter 2, the theory of soap film formation by withdrawal from a bath of soapy liquid is reviewed, and the assumptions supporting Frankel's law are challenged. Stress balances that describe film evolution in either extensional or shear flow are rigorously derived and we find that the strength of surface stress terms pick the resulting flow type. With this background in mind, we describe in Chapter 3 how films were made using aqueous solutions of poly(ethylene oxide) or PEO with and without surfactant. The initial thickness of these films agrees well with existing data in the literature for overlapping ranges of the capillary number Ca. For larger Ca numbers, we observe that (i) the addition of SDS results in thinner films, (ii) films can be made that are thicker than the wire thickness, and (iii) films swell in thickness when the withdrawal process stops. Some potential mechanisms are described to explain the novel swelling phenomenon. Finally, in Chapter 4, we model the bumpy flipper of a humpback whale as a perturbed elliptic wing with Joukowski profiles of varying chord length, and combine this with lifting line theory as well as experimental stall characteristics of smooth wings. This model shows that the perturbations rearrange the downwash distribution on the wing, smoothing the transition to stall. Bump amplitude dominates the smoothing, while the wavelength of the bumps plays only a small role.
Tiltrotor noise reduction through flight trajectory management and aircraft configuration control
NASA Astrophysics Data System (ADS)
Gervais, Marc
A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise approaches that take into account the first-order effects of deceleration on the acoustics were systematically designed and compared to a baseline approach profile. The low-noise approaches yielded substantial noise reduction benefits on a hemisphere surrounding the aircraft and on a ground plane below the aircraft's trajectory.
Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics
NASA Technical Reports Server (NTRS)
Eugene, L. Tu
1996-01-01
The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.
Flow Control in a Compact Inlet
NASA Astrophysics Data System (ADS)
Vaccaro, John C.
2011-12-01
An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by secondary flow structures. Unlike the baseline, these secondary flow structures produced downwash along the centerline. The formation of such structures was caused by the core flow stagnating on the lower surface near the aerodynamic interface plane. Using the two-dimensional steady jet resulted in an increase in the spanwise flow within the inlet and a reduction in the energy content of the 350 Hz shedding frequency. Unsteady forcing did not show much improvement over steady forcing for this configuration. A spanwise varying control jet and a hybrid Coanda jet / vortex generator jets were tested to reduce the three-dimensionality of the flow field. It was found that anytime the flow control method suppressed separation along the centerline, counter-rotating vortices existed in the lower corners of the aerodynamic interface plane.
NASA Astrophysics Data System (ADS)
Ali, Md. Nesar; Alam, Mahbubul
2017-06-01
A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases, and the induced drag increases, reducing overall efficiency. To complement the high aspect ratio wing case, a slender wing model is formulated so that the lift and drag can be estimated for this limiting case as well. We analyze the stability performance of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing by using experimental method and simulation software. The experimental method includes fabrication of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing which making material is Gamahr wood. Testing this model wing in wind tunnel test and after getting expected data we also compared this value with analyzing software data for furthermore experiment.
NASA Astrophysics Data System (ADS)
Memon, Muhammad Omar
Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance between the lift induced drag (wingtip vortices) and parasite drag (free shear layer) can have a significant impact. Particle Image Velocimetry (PIV) experiments were performed at a) a water tunnel at ILR Aachen, Germany, and b) at the University of Dayton Low Speed Wind Tunnel in the near wake of an AR 6 wing with a Clark-Y airfoil to investigate the characteristics of the wingtip vortex and free shear layer at angles of attack in the vicinity of maximum aerodynamic efficiency for the wing. The data was taken 1.5 and 3 chord lengths downstream of the wing at varying free-stream velocities. A unique exergy-based technique was introduced to quantify distinct changes in the wingtip vortex axial core flow. The existence of wingtip vortex axial core flow transformation from wake-like (velocity less-than the freestream) to jet-like (velocity greater-than the freestream) behavior in the vicinity of the maximum (L/D) angles was observed. The exergy-based technique was able to identify the change in the out of plane profile and corresponding changes in the L/D performance. The resulting velocity components in and around the free shear layer in the wing wake showed counter flow in the cross-flow plane presumably corresponding to behavior associated with the flow over the upper and lower surfaces of the wing. Even though the velocity magnitudes in the free shear layer in cross-flow plane are a small fraction of the freestream velocity ( 10%), significant directional flow was observed. An indication of the possibility of the transfer of momentum (from inboard to outboard of the wing) was identified through spanwise flow corresponding to the upper and lower surfaces through the free shear layer in the wake. A transition from minimal cross flow in the free shear layer to a well-established shear flow in the spanwise direction occurs in the vicinity of maximum lift-to-drag ratio (max L/D) angle of attack. A distinctive balance between the lift induced drag and parasite drag was identified. Improved understanding of this relationship could be extended not only to improve aircraft performance through the reduction of lift induced drag, but also to air vehicle performance in off-design cruise conditions.
The effects of micro-vortex generators on normal shock wave/boundary layer interactions
NASA Astrophysics Data System (ADS)
Herges, Thomas G.
Shock wave/boundary-layer interactions (SWBLIs) are complex flow phenomena that are important in the design and performance of internal supersonic and transonic flow fields such as engine inlets. This investigation was undertaken to study the effects of passive flow control devices on normal shock wave/boundary layer interactions in an effort to gain insight into the physics that govern these complex interactions. The work concentrates on analyzing the effects of vortex generators (VGs) as a flow control method by contributing a greater understanding of the flowfield generated by these devices and characterizing their effects on the SWBLI. The vortex generators are utilized with the goal of improving boundary layer health (i.e., reducing/increasing the boundary-layer incompressible shape factor/skin friction coefficient) through a SWBLI, increasing pressure recovery, and reducing flow distortion at the aerodynamic interface plane while adding minimal drag to the system. The investigation encompasses experiments in both small-scale and large-scale inlet testing, allowing multiple test beds for improving the characterization and understanding of vortex generators. Small-scale facility experiments implemented instantaneous schlieren photography, surface oil-flow visualization, pressure-sensitive paint, and particle image velocimetry to characterize the effects of an array of microramps on a normal shock wave/boundary-layer interaction. These diagnostics measured the time-averaged and instantaneous flow organization in the vicinity of the microramps and SWBLI. The results reveal that a microramp produces a complex vortex structure in its wake with two primary counter-rotating vortices surrounded by a train of Kelvin- Helmholtz (K-H) vortices. A streamwise velocity deficit is observed in the region of the primary vortices in addition to an induced upwash/downwash which persists through the normal shock with reduced strength. The microramp flow control also increased the spanwise-averaged skin-friction coefficient and reduced the spanwise-averaged incompressible shape factor, thereby improving the health of the boundary layer. The velocity in the near-wall region appears to be the best indicator of microramp effectiveness at controlling SWBLIs. Continued analysis of additional micro-vortex generator designs in the small-scale facility revealed reduced separation within a subsonic diffuser downstream of the normal shock wave/boundary layer interaction. The resulting attached flow within the diffuser from the micro-vortex generator control devices reduces shock wave position and pressure RMS fluctuations within the diffuser along with increased pressure recovery through the shock and at the entrance of the diffuser. The largest effect was observed by the micro-vortex generators that produce the strongest streamwise vortices. High-speed pressure measurements also indicated that the vortex generators shift the energy of the pressure fluctuations to higher frequencies. Implementation of micro-vortex generators into a large-scale, supersonic, axisymmetric, relaxed-compression inlet have been investigated with the use of a unique and novel flow-visualization measurement system designed and successfully used for the analysis of both upstream micro-VGs (MVGs) and downstream VGs utilizing surface oil-flow visualization and pressure-sensitive paint measurements. The inlet centerbody and downstream diffuser vortex-generator regions were imaged during wind-tunnel testing internally through the inlet cowl with the diagnostic system attached to the cowl. Surface-flow visualization revealed separated regions along the inlet centerbody for large mass-flow rates without vortex generators. Upstream vortex generators did reduce separation in the subsonic diffuser, and a unique perspective of the flowfield produced by the downstream vortex generators was obtained. In addition, pressure distributions on the inlet centerbody and vortex generators were measured with pressure-sensitive paint. At low mass-flow ratios the onset of buzz occurs in the large-scale low-boom inlet. Inlet buzz and how it is affected by vortex generators was characterized using shock tracking through high-speed schlieren imaging and pressure fluctuation measurements. The analysis revealed a dominant low frequency oscillation at 21.0 Hz for the single-stream inlet, corresponding with the duration of one buzz cycle. Pressure oscillations prior to the onset of buzz were not detected, leaving the location where the shock wave triggers large separation on the compression spike as the best indicator for the onset of buzz. The driving mechanism for a buzz cycle has been confirmed as the rate of depressurization and repressurization of the inlet as the buzz cycle fluctuates between an effectively unstarted (blocked) inlet and supercritical operation (choked flow), respectively. High-frequency shock position oscillations/pulsations (spike buzz) were also observed throughout portions of the inlet buzz cycle. The primary effect of the VGs was to trigger buzz at a higher mass-flow ratio.