Science.gov

Sample records for downwash flow field

  1. Rotorcraft Downwash Flow Field Study to Understand the Aerodynamics of Helicopter Brownout

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.; Ewing, Lindsay A.; Solis, Eduardo; Potsdam, Mark; Rajagopalan, Ganesh

    2008-01-01

    Rotorcraft brownout is caused by the entrainment of dust and sand particles in helicopter downwash, resulting in reduced pilot visibility during low, slow flight and landing. Recently, brownout has become a high-priority problem for military operations because of the risk to both pilot and equipment. Mitigation of this problem has focused on flight controls and landing maneuvers, but current knowledge and experimental data describing the aerodynamic contribution to brownout are limited. This paper focuses on downwash characteristics of a UH-60 Blackhawk as they pertain to particle entrainment and brownout. Results of a full-scale tuft test are presented and used to validate a high-fidelity Navier-Stokes computational fluid dynamics (CFD) calculation. CFD analysis for an EH-101 Merlin helicopter is also presented, and its flow field characteristics are compared with those of the UH-60.

  2. Rotorcraft Downwash Flow Field Study to Understand the Aerodynamics of Helicopter Brownout

    DTIC Science & Technology

    2008-10-01

    ground) are presented in Figures 11 through 15. These results were obtained using the code OVERFLOW 2 [14, 15] with the Spalart - Allmaras ...validate a high-fidelity Navier-Stokes computational fluid dynamics (CFD) calculation. CFD analysis for an EH-101 Merlin helicopter is also presented, and...its flow field characteristics are compared with those of the UH-60. Notation 1 CT = thrust coefficient IGE = in ground effect OGE = out of

  3. On the Kernel function of the integral equation relating lift and downwash distributions of oscillating wings in supersonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Berman, Julian H

    1956-01-01

    This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.

  4. Line-vortex theory for calculation of supersonic downwash

    NASA Technical Reports Server (NTRS)

    Mirels, Harold; Haefeli, Rudolph C

    1950-01-01

    The perturbation field induced by a line vortex in a supersonic stream and the downwash behind a supersonic lifting surface are examined to establish approximate methods for determining the downwash behind supersonic wings. Lifting-lines methods are presented for calculating supersonic downwash. A bent lifting-line method is proposed for computing the downwash field behind swept wings. When applied to triangular wings with subsonic leading edges, this method gives results that, in general, are in good agreement with the exact linearized solution. An unbent lifting-line method (horseshoe-vortex system) is proposed for unswept wings. This method is applied to determine downwash behind rectangular wings with aspect ratios of 2 and 4. Excellent agreement with exact linearized theory is obtained for both aspect ratios by placing the lifting line at the 1/2-chord point. The use of lifting-lines therefore appears promising for obtaining estimates of the downwash behind supersonic wings.

  5. Flow Field Around a Hovering Rotor

    NASA Technical Reports Server (NTRS)

    Tung, C.; Low, S.

    1997-01-01

    A lifting surface hover code developed by the Analytical Method Inc. (AMI) was used to compute the average and unsteady velocity flow field of an isolated rotor without ground effect. The predicted velocity field compares well with experimental data obtained by hot-wire anemometry and by Laser Doppler Velocimetry. A subroutine 'DOWNWASH' was written to predict the velocity field at any given point in the wake for a given blade position.

  6. Critical review of the building downwash algorithms in AERMOD.

    PubMed

    Petersen, Ron L; Guerra, Sergio A; Bova, Anthony S

    2017-08-01

    The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures. This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality.

  7. Tables for the Rapid Estimation of Downwash and Sidewash Behind Wings Performing Various Motions at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1959-01-01

    Equations for the downwash and sidewash due to supersonic yawed and unswept horseshoe vortices have been utilized in formulating tables and charts to permit a rapid estimation of the flow velocities behind wings performing various steady motions. Tabulations are presented of the downwash and sidewash in the wing vertical plane of symmetry due to a unit-strength yawed horseshoe vortex located at 20 equally spaced spanwise positions along lifting lines of various sweeps. (The bound portion of the yawed vortex is coincident with the lifting line.) Charts are presented for the purpose of estimating the spanwise variations of the flow-field velocities and give longitudinal variations of the downwash and sidewash at a nuMber of vertical and spanwise locations due to a unit-strength unswept horseshoe vortex. Use of the tables and charts to calculate wing downwash or sidewash requires a knowledge of the wing spanwise distribution of circulation. Sample computations for the rolling sidewash and angle-of-attack downwash behind a typical swept wing are presented to demonstrate the use of the tables and charts.

  8. On the Kernel function of the integral equation relating the lift and downwash distributions of oscillating finite wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Runyan, Harry L; Woolston, Donald S

    1955-01-01

    This report treats the Kernel function of an integral equation that relates a known prescribed downwash distribution to an unknown lift distribution for a harmonically oscillating finite wing in compressible subsonic flow. The Kernel function is reduced to a form that can be accurately evaluated by separating the Kernel function into two parts: a part in which the singularities are isolated and analytically expressed and a nonsingular part which may be tabulated. The form of the Kernel function for the sonic case (Mach number 1) is treated separately. In addition, results for the special cases of Mach number of 0 (incompressible case) and frequency of 0 (steady case) are given. The derivation of the integral equation which involves this Kernel function is reproduced as an appendix. Another appendix gives the reduction of the form of the Kernel function obtained herein for the three-dimensional case to a known result of Possio for two-dimensional flow. A third appendix contains some remarks on the evaluation of the Kernel function, and a fourth appendix presents an alternate form of expression for the Kernel function.

  9. Flight measured downwash of QSRA

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Riddle, Dennis W.; Stevens, Victor C.

    1988-01-01

    Several reports have been written on the performance of the Quiet Short-Haul Research Aircraft, which shows the advantages of upper-surface blowing or the propulsive-lift wing as it applies to lift, maneuverability, and short takeoff and landing. This high lift generation at low speeds results in substantial downwash, especially in the low-aft fuselage tail position. The high T-tail of the Quiet Short-Haul Research Aircracft minimizes the undesirable downwash effects from the propulsive-lift wing. Queries from Department of Defense agencies and industry for quantitative values prompted a series of flight-measured downwash tests at the high T-tail and the low aft fuselage position. The results are presented in a summarized format, showing downwash, Delta epsilon/Delta a, for both locations. As would be expected, downwash increases for increased power and USB flap settings. The downwash is greater in the low aft-fuselage position as compared to the high T-tail area.

  10. On the flow field around a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Bergeles, G.; Athanassiadis, N.

    A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.

  11. On the Kernel Function of the Integral Equation Relating the Lift and Downwash Distributions of Oscillating Finite Wings in Subsonic Flow

    DTIC Science & Technology

    1955-01-01

    Chairman JoSEPH P . ADAMS, LL.B., ViceChairman, Civil Aeronautics Board. DONALD L. Pui-r, Lieutenant General, United States Air Force, ALLEN V. ASrN, Ps...unknown lift distribution I reference length M Mach number, V/c p pressure P r=y-,•-z2 Sketch I. S region of zy-plane.occupied by wing t time The z,y,z...K(zo,yo)--K(z--, y-,q) is the kernel function ÷ acceleration potential and physically represents the contribution to downwash at p fluid density a

  12. The calculation of downwash behind supersonic wings with an application to triangular plan forms

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Sluder, Loma; Heaslet, Max A

    1950-01-01

    A method is developed consistent with the assumptions of small perturbation theory which provides a means of determining the downwash behind a wing in supersonic flow for a known load distribution. The analysis is based upon the use of supersonic doublets which are distributed over the plan form and wake of the wing in a manner determined from the wing loading. The equivalence in subsonic and supersonic flow of the downwash at infinity corresponding to a given load distribution is proved.

  13. Downwash-velocity potential method for oscillating surfaces.

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Yoo, Y. S.

    1973-01-01

    The application of the downwash-velocity potential method to the case of oscillating surfaces is developed, and calculated forces are given on rectangular airfoils of aspect ratio two rotating about midchord in subsonic flows. These are compared with other results published in the literature for reduced frequencies up to nine-tenths, and for Mach numbers up to nine-tenths. The concept of 'aerodynamic elements' is presented, the computed results representing three possible types of rectangular element.

  14. Quantification of helicopter rotor downwash effects on electro-optical defensive aids suites

    NASA Astrophysics Data System (ADS)

    Seiffer, Dirk P.; Eisele, Christian; Henriksson, Markus; Sjöqvist, Lars; Möller, Sebastian; Togna, Fabio; Velluet, Marie-Thérèse

    2015-10-01

    The performance of electro-optical platform protection systems can be degraded significantly by the propagation environment around the platform. This includes aero-optical effects and zones of severe turbulence generated by engine exhausts. For helicopters rotor tip vortices and engine exhaust gases that are pressed down by the rotor airflow form the so called downwash phenomena. The downwash is a source for perturbations. A wide range of spatial and temporal fluctuations in the refractive index of air can occur. The perturbations from the turbulent flow cause detrimental effects on energy delivery, angle of arrival fluctuations, jam-code transmission, tracking accuracy and imaging performance in general. Therefore the effects may especially have a severe impact on the performance of laser-based protection systems like directed infrared countermeasures (DIRCM). The chain from passive missile detection and warning to obtaining an optical break-lock by the use of an active laser system will be influenced. To anticipate the installed performance of an electro-optical defensive aids suite (DAS) for helicopter platforms it is necessary to develop models for the prediction of the perturbations. Modelled results have to be validated against experimental findings. However, the data available in open literature on the effects of rotor downwash from helicopters on optical propagation is very limited. To collect necessary data and to obtain a first impression about the magnitude of occurring effects the European defence agency group (EDA) on "airborne platform effects on lasers and warning sensors (ALWS)" decided to design and perform a field trial on the premises of the Italian Air Force Flight Test Center in Pratica di Mare, Italy. ALWS is a technical arrangement under the Europa MoU among France, Germany, Italy, Sweden and the United Kingdom.

  15. Flight measured downwash of the QSRA

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Riddle, Dennis W.; Stevens, Victor C.

    1988-01-01

    Several reports have been written on the performance of the Quiet Short-Haul Research Aircraft, which shows the advantages of upper-surface blowing or the propulsive-lift wing as it applies to lift, maneuverability, and short takeoff and landing. This high lift generation at low speeds results in substantial downwash, especially in the low-aft fuselage tail position. The high T-tail of the Quiet Short-Haul Research Aircraft minimizes the undesirable downwash effects from the propulsive-lift wing. Queries from Department of Defense agencies and industry for quantitative values prompted a series of flight-measured downwash tests at the high T-tail and the low aft fuselage position. The results are presented in a summarized format, showing downwash, Delta epsilon/Delta a, for both locations. As would be expected, downwash increases for increased power and USB flap settings. The downwash is greater in the low aft-fuselage position as compared to the high T-tail area.

  16. Near-Source Modeling Updates: Building Downwash & Near-Road

    EPA Science Inventory

    The presentation describes recent research efforts in near-source model development focusing on building downwash and near-road barriers. The building downwash section summarizes a recent wind tunnel study, ongoing computational fluid dynamics simulations and efforts to improve ...

  17. Near-Source Modeling Updates: Building Downwash & Near-Road

    EPA Science Inventory

    The presentation describes recent research efforts in near-source model development focusing on building downwash and near-road barriers. The building downwash section summarizes a recent wind tunnel study, ongoing computational fluid dynamics simulations and efforts to improve ...

  18. Analysis of helicopter downwash/frigate airwake interaction using statistically designed experiments

    NASA Astrophysics Data System (ADS)

    Nacakli, Yavuz

    A research program to investigate helicopter downwash/frigate airwake interaction has been initiated using a statistically robust experimental program featuring Design of Experiments. Engineering analysis of the helicopter/frigate interface is complicated by the fact that two flowfields become inherently coupled as separation distance decreases. The final objective of this work is to develop experimental methods to determine when computer simulations need to include the effects of a coupled flowfield versus using a simplified representation by superposing the velocity fields of the individual flowfields. The work presented was performed in the Old Dominion University Low Speed Wind Tunnel using a simplified 1/50 scale frigate waterline model and traverse mounted powered rotor with thrust measurement. Particle Image Velocimetry (PIV) velocity surveys were used with rotor thrust coefficient measurements at locations of identified interaction to help understand the underlying flow physics. Initially, PIV surveys of the frigate model landing deck in isolation and the rotor in isolation were performed to provide a baseline flow understanding. Next a designed experiment was devised yielding a response model for thrust coefficient as a function of vertical and longitudinal distance from the hangar door (base of the step), both with and without the rotor. This first experiment showed that thrust coefficient could be measured with enough precision to identify changes due to location using an advance ratio of 0.075 (Vinfinity = 5.14 m/s and o = 5000 rpm). A second designed experiment determined the practical spatial resolution for mapping the thrust coefficient response along the frigate's longitudinal center plane. Finally, a third designed experiment directly compared rotor thrust measurements between airwake and no-airwake cases and successfully identified regions that differed with statistical significance. Lastly, a qualitative comparison study was performed to

  19. Investigation of Downwash, Sidewash, and Mach Number Distribution Behind a Rectangular Wing at a Mach Number of 2.41

    NASA Technical Reports Server (NTRS)

    Adamson, David; Boatright, William B

    1957-01-01

    An investigation of the nature of the flow field behind a rectangular wing of circular arc cross section has been conducted in the Langley 9-inch supersonic tunnel. Pitot- and static-pressure surveys covering a region of flow behind the wing have been made together with detailed pitot surveys throughout the region of the wake. In addition, the flow direction has been measured by means of a weathercocking vane. Theoretical calculations have been made to obtain the variation of both downwash and sidewash with angle of attack by using the superposition method of Lagerstrom, Graham, and Grosslight. In addition, the effect of wing thickness on the sidewash with the wing at 0 degree angle of attack has been evaluated.

  20. Equivariant mean field flow

    NASA Astrophysics Data System (ADS)

    Castéras, Jean-baptiste

    2013-12-01

    We consider a gradient flow associated to the mean field equation on (M,g), a compact Riemannian surface without boundary. We prove that this flow exists for all time. Moreover, letting G be a group of isometry acting on (M,g), we obtain the convergence of the flow to a solution of the mean field equation under suitable hypothesis on the orbits of points of M under the action of G.

  1. Kamoamoa Flow Field Animation

    NASA Image and Video Library

    2012-02-06

    This frame from an animation, which depicts the growth of the Kamoamoa Flow Field, Kilauea Volcano, Hawaii, was generated from a sequence of ten multispectral images acquired between September 3 and 17, 1995.

  2. Field-Flow Fractionation.

    ERIC Educational Resources Information Center

    Caldwell, Karin D.

    1988-01-01

    Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)

  3. Downwash in the plane of symmetry of an elliptically loaded wing

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.

    1985-01-01

    A closed-form solution for the downwash in the plane of symmetry of an elliptically loaded line is given. This theoretical result is derived from Prandtl's lifting-line theory and assumes that: (1) a three-dimensional wing can be replaced by a straight lifting line, (2) this line is elliptically loaded, and (3) the trailing wake is a flat-sheet which does not roll up. The first assumption is reasonable for distances greater than about 1 chord from the wing aerodynamic center. The second assumption is satisfied by any combination of wing twist, spanwise camber variation, or planform that approximates elliptic loading. The third assumption is justified only for high-aspect-ratio wings at low lift coefficients and downstream distances less than about 1 span from the aerodynamic center. It is shown, however, that assuming the wake to be fully rolled up gives downwash values reasonably close to those of the flat-sheet solution derived in this paper. The wing can therefore be modeled as a single horseshoe vortex with the same lift and total circulation as the equivalent ellipticity loaded line, and the predicted downwash will be a close approximation independent of aspect ratio and lift coefficient. The flat-sheet equation and the fully rolled up wake equation are both one-line formulas that predict the upwash field in front of the wing, as well as the downwash field behind it. These formulas are useful for preliminary estimates of the complex aerodynamic interaction between two wings (i.e., canard, tandem wing, and conventional aircraft) including the effects of gap and stagger.

  4. Three-Dimensional Numerical Simulation of Plume Downwash with a k- Turbulence Model.

    NASA Astrophysics Data System (ADS)

    Guenther, Alex; Lamb, Brian; Stock, David

    1990-07-01

    Plume downwash at a large oil-gathering facility in the Prudhoe Bay, Alaska oil-field reservation was simulated in a series of numerical experiments. The purpose of this study was to investigate the potential of the numerical model as a means of assessing the impact of pollutants emitted from buoyant sources influenced by complex aerodynamic wakes. The model is a three-dimensional, Cartesian coordinate, finite difference code that solves the nonhydrostatic, time-averaged equations for the conservation of momentum and energy. The code uses a modified form of the standard first-order, two-equation (k-) engineering turbulence closure model.Wind tunnel and field investigations of dispersion at this arctic industrial complex indicate that dispersion is significantly influenced by building-generated airflow disturbances. We have used the numerical model to simulate directly the mean features of the flow field and dispersion from a buoyant source at an industrial site. The flow features varied depending on the size, number, and orientation of the buildings. A recirculation cavity was present in all model simulations and varied from 0.8 HB to 2 HB (building height). This agrees closely with results of wind tunnel studies. The model simulates a velocity defect of 0.6, a factor of 3.4 increase (relative to the approach flow) in turbulent kinetic energy (k), a factor of 5 increase in dissipation of k(), and a 45% increase in turbulent viscosity at a downwind distance of 2 HB from the building. At a downwind distance of 5 HB, the plume rise of the simulated thermal plume decreased by 70% compared to the no-building case while the vertical and horizontal widths of the plume increased by 45% and 30%, respectively. These results generally reproduce the plume downwash and dispersion observed in wind tunnel and field investigations.

  5. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D.; Vogel, J. M.

    1973-01-01

    Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.

  6. Theoretical and Experimental Investigation of the Subsonic-Flow Fields Beneath Swept and Unswept Wings with Tables or Vortex-induced Velocities

    NASA Technical Reports Server (NTRS)

    Alford, William J , Jr

    1957-01-01

    The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.

  7. Ground vortex flow field investigation

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  8. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  9. Integrated flow field (IFF) structure

    NASA Technical Reports Server (NTRS)

    Pien, Shyhing M. (Inventor); Warshay, Marvin (Inventor)

    2012-01-01

    The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.

  10. Maximum Ground-Level Concentrations with Downwash-Analysis.

    PubMed

    Bowman, W Alan

    2000-03-01

    Equations derived previously for critical downwind distance x , wind speed u , and plume rise z , the values that produce maximum ground-level concentrations (MGLC) Xc under downwash conditions, have been solved. Tables of %c, xc, uc, and zc, and graphs of the relationships among uc and zc for a range of stack heights hs, and building heights hb, are presented. Results for two types of sources- a turbine and a reciprocating engine-are discussed. Some comparisons are made to the U.S. Environmental Protection Agency's (EPA) SCREEN3 model.

  11. Maximum ground-level concentrations with downwash--analysis.

    PubMed

    Bowman, W A

    2000-03-01

    Equations derived previously for critical downwind distance xc' wind speed uc' and plume rise zc' the values that produce maximum ground-level concentrations (MGLC) chi c under downwash conditions, have been solved. Tables of chi c' xc' uc' and zc' and graphs of the relationships among uc and zc, for a range of stack heights hs' and building heights hb' are presented. Results for two types of sources--a turbine and a reciprocating engine--are discussed. Some comparisons are made to the U.S. Environmental Protection Agency's (EPA) SCREEN3 model.

  12. Development and evaluation of the PRIME plume rise and building downwash model.

    PubMed

    Schulman, L L; Strimaitis, D G; Scire, J S

    2000-03-01

    A new Gaussian dispersion model, the Plume Rise Model Enhancements (PRIME), has been developed for plume rise and building downwash. PRIME considers the position of the stack relative to the building, streamline deflection near the building, and vertical wind speed shear and velocity deficit effects on plume rise. Within the wake created by a sharp-edged, rectangular building, PRIME explicitly calculates fields of turbulence intensity, wind speed, and streamline slope, which gradually decay to ambient values downwind of the building. The plume trajectory within these modified fields is estimated using a numerical plume rise model. A probability density function and an eddy diffusivity scheme are used for dispersion in the wake. A cavity module calculates the fraction of plume mass captured by and recirculated within the near wake. The captured plume is re-emitted to the far wake as a volume source and added to the uncaptured primary plume contribution to obtain the far wake concentrations. The modeling procedures currently recommended by the U.S. Environmental Protection Agency (EPA), using SCREEN and the Industrial Source Complex model (ISC), do not include these features. PRIME also avoids the discontinuities resulting from the different downwash modules within the current models and the reported overpredictions during light-wind speed, stable conditions. PRIME is intended for use in regulatory models. It was evaluated using data from a power plant measurement program, a tracer field study for a combustion turbine, and several wind-tunnel studies. PRIME performed as well as or better than ISC/SCREEN for nearly all of the comparisons.

  13. Downwash measurements behind wings with detached float

    NASA Technical Reports Server (NTRS)

    Petersohn, E

    1931-01-01

    This investigation, which was made in the small wind tunnel having a diameter of 1.2 m (3.94 feet), embraced three wing models, behind which, at various angles of attack between 0 and 60 degrees, the static pressure and the total pressure along vertical lines (perpendicular to the direction of the undisturbed wind and to the wing span) were measured. The location of these vertical lines are indicated in Figure 1. Moreover, the wing polars were determined by the customary three-component measurements. For testing the pressure field, a Pitot tube and a static probe, both of 2 mm (0.08 in.) in diameter, were mounted 40 mm (1.57 in.) apart on the end of a shaft 1 m (39.37 in.) long.

  14. Downwash and Wake Behind Plain and Flapped Airfoils

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S; Bullivant, W Kenneth

    1939-01-01

    Extensive experimental measurements have been made of the downwash angles and the wake characteristics behind airfoils with and without flaps and the data have been analyzed and correlated with the theory. A detailed study was made of the errors involved in applying lifting-line theory, such as the effects of a finite wing chord, the rolling-up of the trailing vortex sheet, and the wake. The downwash angles, as computed from the theoretical span load distribution by means of the Biot-Savart equation, were found to be in satisfactory agreement with the experimental results. The rolling-up of the trailing vortex sheet may be neglected, but the vertical displacement of the vortex sheet requires consideration. By the use of a theoretical treatment indicated by Prandtl, it has been possible to generalize the available experimental results so the predictions can be made of the important wake parameters in terms of the distance behind the airfoil trailing edge and the profile-drag coefficient. The method of application of the theory to design and the satisfactory agreement between predicted and experimental results when applied to an airplane are demonstrated.

  15. The effects of canard-wing flow-field interactions on longitudinal stability, effective dihedral and potential deep-stall trim

    NASA Technical Reports Server (NTRS)

    Muchmore, C. B., Jr.

    1988-01-01

    The literature available on high aspect ratio canard configurations shows them to have some unique stability characteristics. Using a generic canard-wing model, the effects of canard-wing flow-field interactions on stability were investigated in the NASA Langley Twelve-Foot Low-Speed Wind Tunnel. Results for the attached flow regime indicate linear interactions shift the neutral point of a canard configuration forward, but the effect of a canard on a wing can change significantly when the flow over the surface begins to separate, even several degrees below stall. The asymmetry of the canard downwash in a sideslip condition can result in an increment in effective dihedral roughly proportional to canard lift coefficient. At very high angles of attack the presence of a wing can cause an incremental normal force on a canard, contributing to the possibility of a deep-stall trim point. This effect is greater for a high canard and less for a low one.

  16. Flow-Field Measurement of a Hybrid Wing Body Model with Blown Flaps

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cal H.

    2008-01-01

    In this paper we describe flow-field measurements obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flow-field results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  17. Particle and flow field holography

    NASA Astrophysics Data System (ADS)

    Trolinger, J. D.

    1985-01-01

    The current status of particle field and flow field holography is examined, and the methods based on the principles of either class of imagery are described. Special consideration is given to the automated data reduction technology. Current applications of flow diagnostics, which can provide thousands of holograms during a one-day experiment, include NASA applications in wind tunnel holography, in a Laser Doppler Velocimeter, in holographic movies, and in an optical device for recording crystal growth at zero gravity, to be used in the Space Lab 3 shuttle mission scheduled for May 1985. Military applications of the flow diagnostics include the use of holographic tomography for visualizing flow fields around airborne structures, in wind tunnels, and in the analyses of rocket exhausts and gun ranges. The information provided by the particle sizing holography, concerning the size, shape, number, and velocity of particles and the records of the particle break-up phenomenon, can be used in various military field oriented and airborne applications and in meteorology and environment protection science.

  18. Field of Flow About a Jet and Effect of Jets on Stability of Jet-Propelled Airplanes

    NASA Technical Reports Server (NTRS)

    Ribner, Herbert S.

    1946-01-01

    A theoretical investigation was conducted on jet-induced flow deviation. Analysis is given of flow inclination induced outside cold and hot jets and jet deflection caused by angle of attack. Applications to computation of effects of jet on longitudinal stability and trim are explained. Effect of jet temperature on flow inclination was found small when thrust coefficient is used as criterion for similitude. The average jet-induced downwash over tail plane was obtained geometrically.

  19. Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria

    PubMed Central

    Bomphrey, Richard J; Taylor, Graham K; Lawson, Nicholas J; Thomas, Adrian L.R

    2005-01-01

    Actuator disc models of insect flight are concerned solely with the rate of momentum transfer to the air that passes through the disc. These simple models assume that an even pressure is applied across the disc, resulting in a uniform downwash distribution. However, a correction factor, k, is often included to correct for the difference in efficiency between the assumed even downwash distribution, and the real downwash distribution. In the absence of any empirical measurements of the downwash distribution behind a real insect, the values of k used in the literature have been necessarily speculative. Direct measurement of this efficiency factor is now possible, and could be used to compare the relative efficiencies of insect flight across the Class. Here, we use Digital Particle Image Velocimetry to measure the instantaneous downwash distribution, mid-downstroke, of a tethered desert locust (Schistocerca gregaria). By integrating the downwash distribution, we are thereby able to provide the first direct empirical measurement of k for an insect. The measured value of k=1.12 corresponds reasonably well with that predicted by previous theoretical studies. PMID:16849240

  20. Supersonic reacting internal flow fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1989-01-01

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  1. Investigation of Vortical Flow Patterns in the Near Field of a Dynamic Low-Aspect-Ratio Cylinder

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Amitay, Michael

    2016-11-01

    The flowfield and associated flow structures of a low-aspect-ratio cylindrical pin were investigated experimentally in the near-field as the pin underwent wall-normal periodic oscillations. Under dynamic conditions, the pin is driven at the natural wake shedding frequency with an amplitude of 33% of its mean height. Additionally, a static pin was also tested at various mean heights of 0.5, 1.0, and 1.5 times the local boundary layer thickness to explore the effect of the mean height on the flowfield. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along streamwise planes for several spanwise locations under static and dynamic conditions. The study focuses on the incoming boundary layer as it interacts with the pin, as well as two main vortical formations: the arch-type vortex and the horseshoe vortex. Under dynamic conditions, the upstream boundary layer is thinner, relative to the baseline, and the downwash in the wake increases, resulting in a reduced wake deficit. These results indicate enhanced strength of the aforementioned vortical flow patterns under dynamic conditions. The flow structures in the near-field of the static/dynamic cylinder will be discussed in further detail. Supported by The Boeing Company.

  2. Visualizing vector field topology in fluid flows

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  3. Flow Field Classification Using Critical Point Matching

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Williams, Sheila; Hahsler, Michael; Olinick, Eli V.

    2016-11-01

    Classification of flow fields according to topological similarities can help reveal features of the flow generation and evolution for bluff body flows, and characterize different swimming maneuvers in aquatic locomotion, to name a few. Rigorous classification can be challenging, however, especially when complex flows are distorted by measurement uncertainties or variable flow generating conditions. The present work uses critical points of the velocity field to characterize the global flow topology. Flow fields are compared by finding a best match of critical points in two flow fields based on topological and location characteristics of the critical points together with general point set distance measures. The similarity between the flow fields is quantified based on the matched critical points. Applying clustering algorithms to a set of flow fields with quantified similarity can then be used to group flows with similar characteristics. This approach has been applied to generic 2D flow fields constructed using potential flow results and is able to correctly identify similar flow fields even after large distortions (up to 20% of the vortex separation) have been applied to the flows. Support of NSF Grant Nos. 1115139 and 1557698, and the Lyle School of Engineering is gratefully acknowledged.

  4. Motion field and optical flow: Qualitative properties

    NASA Astrophysics Data System (ADS)

    Verri, Alessandro; Poggio, Tomaso

    1986-12-01

    The optical flow, a 2-D field that can be associated with the variation of the image brightness pattern, and the 2-D motion field, the projection on the image plane of the 3-D velocity field of a moving scene, are in general different, unless very special conditions are satisfied. The optical flow, therefore, is ill suited for computing structure from motion, and for reconstructing the 3-D velocity field, problems that require an accurate estimate of the 2-D motion field. A different use of the optical flow is suggested. Stable field and the 3-D structure of the scene, and they can usually be obtained from the optical flow. The smoothed optical flow and 2-D motion field, interpreted as vector fields tangent to flows of planar dynamical systems, may have the same qualitative properties from the point of view of the theory of structural stability of dynamical systems.

  5. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  6. Influence of flow velocity on flow field's optical tomography diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Yun-yun; Yu, Yang; Zhong, Xia; Zhang, Ying-ying

    2017-01-01

    The effect of flow velocity is usually neglected when optical computerized tomography (OCT) methods are chosen to measure the temperature distribution of the flow fields up to now. In this paper, two sets of experiment are supplied to verify the effect of flow velocity on flow field's moiré tomography. Specifically speaking, the temperature results with the assumption that it is an isobaric process (omit the effect of flow velocity) in the measured flame flow fields, manifest that the isobaric supposition is not suitable for all the flames. And then, a condition, which can be adopted to judge that when the effect of flow velocity on its temperature reconstruction can not be neglected any more, is proposed. This study would provide some reference to the temperature diagnosis by the optical methods which are based on the measurement of the refractive index.

  7. Knowledge-based flow field zoning

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation flow field zoning in two dimensions is an important step towards easing the three-dimensional grid generation bottleneck in computational fluid dynamics. A knowledge based approach works well, but certain aspects of flow field zoning make the use of such an approach challenging. A knowledge based flow field zoner, called EZGrid, was implemented and tested on representative two-dimensional aerodynamic configurations. Results are shown which illustrate the way in which EZGrid incorporates the effects of physics, shape description, position, and user bias in a flow field zoning.

  8. Io: Heat flow from dark volcanic fields

    NASA Astrophysics Data System (ADS)

    Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.

    2009-11-01

    Dark flow fields on the jovian satellite Io are evidence of current or recent volcanic activity. We have examined the darkest volcanic fields and quantified their thermal emission in order to assess their contribution to Io's total heat flow. Loki Patera, the largest single source of heat flow on Io, is a convenient point of reference. We find that dark volcanic fields are more common in the hemisphere opposite Loki Patera and this large scale concentration is manifested as a maximum in the longitudinal distribution (near ˜200 °W), consistent with USGS global geologic mapping results. In spite of their relatively cool temperatures, dark volcanic fields contribute almost as much to Io's heat flow as Loki Patera itself because of their larger areal extent. As a group, dark volcanic fields provide an asymmetric component of ˜5% of Io's global heat flow or ˜5 × 10 12 W.

  9. Lattice-based flow field modeling.

    PubMed

    Wei, Xiaoming; Zhao, Ye; Fan, Zhe; Li, Wei; Qiu, Feng; Yoakum-Stover, Suzanne; Kaufman, Arie E

    2004-01-01

    We present an approach for simulating the natural dynamics that emerge from the interaction between a flow field and immersed objects. We model the flow field using the Lattice Boltzmann Model (LBM) with boundary conditions appropriate for moving objects and accelerate the computation on commodity graphics hardware (GPU) to achieve real-time performance. The boundary conditions mediate the exchange of momentum between the flow field and the moving objects resulting in forces exerted by the flow on the objects as well as the back-coupling on the flow. We demonstrate our approach using soap bubbles and a feather. The soap bubbles illustrate Fresnel reflection, reveal the dynamics of the unseen flow field in which they travel, and display spherical harmonics in their undulations. Our simulation allows the user to directly interact with the flow field to influence the dynamics in real time. The free feather flutters and gyrates in response to lift and drag forces created by its motion relative to the flow. Vortices are created as the free feather falls in an otherwise quiescent flow.

  10. SRMAFTE facility checkout model flow field analysis

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The Solid Rocket Motor Air Flow Equipment (SRMAFTE) facility was constructed for the purpose of evaluating the internal propellant, insulation, and nozzle configurations of solid propellant rocket motor designs. This makes the characterization of the facility internal flow field very important in assuring that no facility induced flow field features exist which would corrupt the model related measurements. In order to verify the design and operation of the facility, a three-dimensional computational flow field analysis was performed on the facility checkout model setup. The checkout model measurement data, one-dimensional and three-dimensional estimates were compared, and the design and proper operation of the facility was verified. The proper operation of the metering nozzles, adapter chamber transition, model nozzle, and diffuser were verified. The one-dimensional and three-dimensional flow field estimates along with the available measurement data are compared.

  11. Evolving Dynamics of the Supergranular Flow Field

    NASA Astrophysics Data System (ADS)

    De Rosa, M. L.; Lisle, J. P.; Toomre, J.

    2000-05-01

    We study several large (45-degree square) fields of supergranules for as long as they remain visible on the solar disk (about 6 days) to characterize the dynamics of the supergranular flow field and its interaction with surrounding photospheric magnetic field elements. These flow fields are determined by applying correlation tracking methods to time series of mesogranules seen in full-disk SOI-MDI velocity images. We have shown previously that mesogranules observed in this way are systematically advected by the larger scale supergranular flow field in which they are embedded. Applying correlation tracking methods to such time series yields the positions of the supergranular outflows quite well, even for locations close to disk center. These long-duration datasets contain several instances where individual supergranules are recognizable for time scales as long as 50 hours, though most cells persist for about 25 hours that is often quoted as a supergranular lifetime. Many supergranule merging and splitting events are observed, as well as other evolving flow patterns such as lanes of converging and diverging fluid. By comparing the flow fields with the corresponding images of magnetic fields, we confirm the result that small-scale photospheric magnetic field elements are quickly advected to the intercellular lanes to form a network between the supergranular outflows. In addition, we characterize the influence of larger-scale regions of magnetic flux, such as active regions, on the flow fields. Furthermore, we have measured even larger-scale flows by following the motions of the supergranules, but these flow fields contain a high noise component and are somewhat difficult to interpret. This research was supported by NASA through grants NAG 5-8133 and NAG 5-7996, and by NSF through grant ATM-9731676.

  12. Field Flows of Dark Energy

    SciTech Connect

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  13. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Vogel, J. M.

    1972-01-01

    The solutions to the equations of motion for inviscid fluid flow around a pointed elliptic cone at incidence are presented. The numerical method used, MacCormack's second order preferential predictor-corrector finite difference approximation, is applied to the fluid flow equations derived in conservation-law form. The entropy boundary condition, hitherto unused for elliptic cone problems, is investigated and compared to reflection boundary condition solutions. The stagnation streamline movement of the inclined elliptic cone is noted and surface pressure coefficients are plotted. Also presented are solutions for an elliptic cone and a circular cone at zero incidence and a circular cone at a small angle of attack. Comparisons are made between these present solutions and previously published theory.

  14. Decorrelation Times of Photospheric Fields and Flows

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-01-01

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.

  15. Io: Heat Flow from Dark Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Matson, D. L.; Davies, A. G.; Johnson, T. V.

    2008-03-01

    We focus on the heat flow contribution from dark volcanic fields on Io. These are concentrated in the anti-Loki hemisphere. We use the areas and estimated effective temperatures of dark flucti to derive their total power.

  16. Prediction of Downwash and Dynamic Pressure at the Tail from Free-flight Measurements

    NASA Technical Reports Server (NTRS)

    Eujen, E

    1942-01-01

    The present measurements form a continuation of earlier flight tests published in a previous report for predicting the downwash at the tail of an airplane. The method makes use of the tail itself as integrating contact surface to the extent that, beginning from the measurement of the self-alignment of the elevator, the mean downwash angle and dynamic pressure at the tail are determined. The instrumental accuracy is considerably improved if the elevator is completely separate from the controls during the tests, because the effect of friction on the self-alignment of the elevator is then reduced to a minimum and a finer elevator weight balance is rendered possible. The structural design of the push-rod uncoupling mechanism is also described.

  17. Experimental Investigation of Wind-Tunnel Interference on the Downwash Behind an Airfoil

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S

    1937-01-01

    The interference of the wind-tunnel boundaries on the downwash behind an airfoil has been experimentally investigated and the results have been compared with the available theoretical results for open-throat wind tunnels. As in previous studies, the simplified theoretical treatment that assumes the test section to be an infinite free jet has been shown to be satisfactory at the lifting line. The experimental results, however, show that this assumption may lead to erroneous conclusions regarding the corrections to be applied to the downwash in the region behind the airfoil where the tail surfaces are normally located. The results of a theory based on the more accurate concept of the open-jet wind tunnel as a finite length of free jet provided with a closed exit passage are in good qualitative agreement with the experimental results.

  18. Flow field visualization about external axial corners

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1978-01-01

    An experimental investigation was conducted to visualize the flow field about external axial corners. The investigation was initiated to provide answers to questions about the inviscid flow pattern for continuing numerical investigations. Symmetrical and asymmetrical corner models were tested at a Reynolds number per meter of 60,700,000. Oil-flow and vapor-screen photographs were taken for both models at angle of attack and yaw. The paper presents the results of the investigation in the form of oil-flow photographs and the surrounding shock wave location obtained from the vapor screens.

  19. Flow-synchronous field motion refrigeration

    DOEpatents

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  20. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  1. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  2. Flow Fields Over Unsteady Three Dimensional Dunes

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Reesink, A.; Parsons, D. R.; Ashworth, P. J.; Best, J.

    2013-12-01

    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows, over a range of both spatial and temporal scales. This is primarily through adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and the increase in flow resistance. A series of experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239μm) mobile bed was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a Large Eddy Simulation (LES) model, which provided a three dimensional time dependent prediction of flow over the four static beds. The numerical predicted flow is analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE). The results show that superimposed bed forms can cause changes in the nature of the classical separated flow region in particularly the number of locations where vortices are shed and the point of flow reattachment, which may be important for

  3. Images constructed from computed flow fields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    A method for constructing interferograms, schlieren, and shadowgraphs from ideal- and real-gas, two- and three-dimensional computed flow fields is described. The computational grids can be structured or unstructured, and multiple grids are an option. The constructed images are compared to experimental images for several types of flow, including a ramp, a blunt-body, a nozzle, and a reacting flow. The constructed images simulate the features observed in the experimental images. They are sensitive to errors in the flow-field solutions and can be used to identify solution errors. In addition, techniques for obtaining phase shifts from experimental finite-fringe interferograms and for removing experimentally induced phase-shift errors are discussed. Both the constructed images and calculated phase shifts can be used for validation of computational fluid dynamics (CFD) codes.

  4. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, G. S.; Mo, J. D.

    1991-01-01

    A Navier-Stokes code was developed for low thrust viscous nozzle flow field prediction. An implicit finite volume in an arbitrary curvilinear coordinate system lower-upper (LU) scheme is used to solve the governing Navier-Stokes equations and species transportation equations. Sample calculations of carbon dioxide nozzle flow are presented to verify the validity and efficiency of this code. The computer results are in reasonable agreement with the experimental data.

  5. Improved visualization of flow field measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1991-01-01

    A capability was developed that makes it possible to apply to measured flow field data the visualization tools developed to display numerical solutions for computational fluid dynamic problems. The measurement monitor surface (MMS) procedure was applied to the analysis of flow field measurements within a low aspect ratio transonic axial flow fan rotor obtained with 2-D laser anemometry. The procedure generates input for the visualization tools developed to display numerical solutions for computational fluid dynamics problems. The relative Mach number contour plots obtained by this method resemble the conventional contour plots obtained by more traditional methods. The results show that the MMS procedure can be used to generate input for the multidimensional processing and analysis tools developed for data from numerical flow field simulations. They show that an experimenter can apply the MMS procedure to his data and then use an interactive graphics program to display scalar quantities like the Mach number by profiles, carpet plots, contour lines, and surfaces using various colors. Also, flow directionality can be shown by display of vector fields and particle traces.

  6. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  7. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  8. Digital enhancement of flow field images

    NASA Technical Reports Server (NTRS)

    Kudlinski, Robert A.; Park, Stephen K.

    1988-01-01

    Most photographs of experimentally generated fluid flow fields have inherently poor photographic quality, specifically low contrast. Thus, there is a need to establish a process for quickly and accurately enhancing these photographs to provide improved versions for physical interpretation, analysis, and publication. A sequence of digital image processing techniques which have been demonstrated to effectively enhance such photographs is described.

  9. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  10. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer generated graphical representation. The fields obtained with a radically scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate, and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters to 3/16 to 1-1/2 inches I.D. (4.76 to 38.1 mm). The N2 mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  11. Numerical simulation of scramjet inlet flow fields

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1986-01-01

    A computer program was developed to analyze supersonic combustion ramjet (scramjet) inlet flow fields. The program solves the three-dimensional Euler or Reynolds averaged Navier-Stokes equations in full conservation form by either the fully explicit or explicit-implicit, predictor-corrector method of MacCormack. Turbulence is modeled by an algebraic eddy-viscosity model. The analysis allows inclusion of end effects which can significantly affect the inlet flow field. Detailed laminar and turbulent flow results are presented for a symmetric-wedge corner, and comparisons are made with the available experimental results to allow assessment of the program. Results are then presented for two inlet configurations for which experimental results exist at the NASA Langley Research Center.

  12. Solid rocket motor aft field joint flow field analysis

    NASA Technical Reports Server (NTRS)

    Sabnis, Jayant S.; Gibeling, Edward J.; Mcdonald, Henry

    1987-01-01

    An efficient Navier-Stokes analysis was successfully applied to simulate the complex flow field in the vicinity of a slot in a solid rocket motor with segment joints. The capability of the computer code to resolve the flow near solid surfaces without using a wall function assumption was demonstrated. In view of the complex nature of the flow field in the vicinity of the slot, this approach is considered essential. The results obtained from these calculations provide valuable design information, which would otherwise be extremely difficult to obtain. The results of the axisymmetric calculations indicate the presence of a region of reversed axial flow at the aft-edge of the slot and show the over-pressure in the slot to be only about 10 psi. The results of the asymmetric calculations indicate that a pressure asymmetry more than two diameters downstream of the slot has no noticeable effect on the flow field in the slot. They also indicate that the circumferential pressure differential caused in the slot due to failure of a 15 deg section of the castable inhibitor will be approximately 1 psi.

  13. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  14. A method for computing the kernel of the downwash integral equation for arbitrary complex frequencies

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Rowe, W. S.

    1984-01-01

    For the design of active controls to stabilize flight vehicles, which requires the use of unsteady aerodynamics that are valid for arbitrary complex frequencies, algorithms are derived for evaluating the nonelementary part of the kernel of the integral equation that relates unsteady pressure to downwash. This part of the kernel is separated into an infinite limit integral that is evaluated using Bessel and Struve functions and into a finite limit integral that is expanded in series and integrated termwise in closed form. The developed series expansions gave reliable answers for all complex reduced frequencies and executed faster than exponential approximations for many pressure stations.

  15. Lift, drag and flow-field measurements around a small ornithopter

    SciTech Connect

    Balakumar, B J; Chavez - Alarcon, Ramiro; Shu, Fangjun

    2011-01-12

    The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in the wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.

  16. The Flow Field Inside Ventricle Assist Device

    NASA Astrophysics Data System (ADS)

    Einav, Shmuel; Rosenfeld, Moshe; Avrahami, Idit

    2000-11-01

    The evaluation of innovative ventricle assist devices (VAD), is of major importance. A New Left Heart Assist Device, with an improved energy converter unit, has been investigated both numerically and experimentally. For this purpose, an experimental Continuous Digital Particle Imagining Velocimetry (CDPIV) is combined with a computational fluid dynamics (CFD) analysis. These tools complement each other to result into a comprehensive description of the complex 3D, viscous and time-dependent flow field inside the artificial ventricle. A 3D numerical model was constructed to simulate the VAD pump and a time-depended CFD analysis with moving walls was performed to predict the flow behaviour in the VAD during the cardiac cycle. A commercial finite element package was used to solve the Navier-Stokes equations (FIDAP, Fluent Inc., Evanston). In the experimental analysis, an optically clear elastic model of the VAD was placed inside a 2D CDPIV system. The CDPIV system is capable of sampling 15 velocity vector fields per second based on image-pairs intervals lower than 0.5 millisecond. Continuous sequences of experimental images, followed by their calculated velocity transient fields, are given as animated presentation of the distensible VAD. These results are used for validating the CFD simulations. Once validated, the CFD results provide a detailed 3D and time dependent description of the flow field, allowing the identification of stagnation or high shear stress regions.

  17. Flow field of flexible flapping wings

    NASA Astrophysics Data System (ADS)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  18. Flow Field of a Human Cough

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jean

    2005-11-01

    Cough generated infectious aerosols are of interest while developing strategies for the mitigation of disease risks ranging from the common cold to SARS. In this work, the velocity field of human cough was measured using particle image velocimetry (PIV). The project subjects (total 29) coughed into an enclosure seeded with stage fog for most measurements. Cough flow speed profiles, average widths of the cough jet, waveform, and maximum cough speeds were measured. Maximum cough speeds ranged from 1.5 m/s to 28.8 m/s. No correlation was found for maximum cough flow speeds to height or gender. The slow growth of the width of the cough flow suggests that a cough may penetrate farther into a room than a steady jet of similar volume. The velocity profile was found to scale with the square root of downstream distance.

  19. Flow-Field Surveys for Rectangular Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts.

  20. Field Emission Microplasma Actuated Microchannel Flow

    NASA Astrophysics Data System (ADS)

    Tholeti, Siva Sashank; Shivkumar, Gayathri; Alexeenko, Alina

    2015-11-01

    Flow actuation by dielectric barrier discharges (DBD) involve no moving parts and provide high power density for flow enhancement, heating and mixing applications in microthrusters, micropumps and microcombustors. Conventional micro-DBDs require voltages ~ kV for flow enhancement of a few m/s for 500 μm high channel. However for gaps <10 microns, field emission lowers the breakdown voltage following modified Paschen curve. We consider a micropump concept that takes advantage of the field emission from a micro-DBD with dielectric thickness of 3 μm and a peak voltage of -325 V at 10 MHz. At 760 Torr, for electrode thickness of 1 μm, Knudsen number with respect to the e-nitrogen collisions is 0.1. So, kinetic approach of particle-in-cell method with Monte Carlo collisions is applied in nitrogen at 300 K to resolve electron (ne) and ion (ni) number densities. Body force, fb = eE(ni-ne) , where, e is electron charge and E is electric field. The major source of heating from plasma is Joule heating, J.E, where J is current density. At 760 Torr, for fb,avg = 1 mN/cubic mm and J.E = 8 W/cubic mm, micro-DBD induced a flow with a velocity of 4.1 m/s for a 64 mW/m power input for a channel height of 500 μm. The PIC/MCC plasma simulations are coupled to a CFD solver for analysis of the resulting flow actuation in microchannels at various Reynolds numbers. This work was supported by NSF ECCS Grant No. 1202095.

  1. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  2. Unsteady Flow Field in a Multistage Axial Flow Compressor

    NASA Technical Reports Server (NTRS)

    Suryavamshi, N.; Lakshminarayana, B.; Prato, J.

    1997-01-01

    The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this

  3. Simulating unsaturated flow fields based on saturationmeasurements

    SciTech Connect

    Kitterod, Nils-Otto; Finsterle, Stefan

    2003-12-15

    Large amounts of de-icing chemicals are applied at the airport of Oslo, Norway. These chemicals pose a potential hazard to the groundwater because the airport is located on a delta deposit over an unconfined aquifer. Under normal flow conditions, most of the chemicals degrade in the vadose zone, but during periods of intensive infiltration, the residence time of contaminants in the unsaturated zone may be too short for sufficient degradation. To assess the potential for groundwater contamination and to design remedial actions, it is essential to quantify flow velocities in the vadose zone. The main purpose of this study is to evaluate theoretical possibilities of using measurements of liquid saturation in combination with inverse modeling for the estimation of unsaturated flow velocities. The main stratigraphic units and their geometry were identified from ground penetrating radar (GPR) measurements and borehole logs. These observations are included as a priori information in the inverse modeling. The liquid saturation measurements reveal the smaller-scale heterogeneities within each stratigraphic unit. The relatively low sensitivity of flow velocities to the observable saturation limits the direct inference of hydraulic parameters. However, even an approximate estimate of flow velocities is valuable as long as the estimate is qualified by an uncertainty measure. A method referred to as simulation by Empirical Orthogonal Functions (EOF) was adapted for uncertainty propagation analyses. The EOF method is conditional in the sense that statistical moments are reproduced independent of second-order stationarity. This implies that unlikely parameter combinations are discarded from the uncertainty propagation analysis. Simple forward simulations performed with the most likely parameter set are qualitatively consistent with the apparent fast flow of contaminants from an accidental spill. A field tracer test performed close to the airport will be used as an independent

  4. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  5. Mean-flow measurements of the flow field diffusing bend

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.

    1982-01-01

    Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.

  6. Flow field simulation for a corncob incinerator

    SciTech Connect

    Wu, C.H.

    1999-02-01

    This article utilizes the standard k-{epsilon} turbulent model to simulate a corncob incinerator using the PISO algorithm with computational fluid dynamics (CFD). The flow patterns of the incinerator equipped with secondary air inlets are predicted and compared for the various geometrical layouts. It is demonstrated that a wider recirculation zone can be found while the inclined angles of inlets increased, so a longer residence time and higher combustion efficiency will be expected. The longer distance between primary and secondary inlets will facilitate the formation of recirculation zone in this bigger space. The more the number of the secondary air inlets, the less the resident air in the top recirculation zone near the exit of the furnace. By using the CFD technique, the flow field of the incinerator can be understood more precisely, and it can serve as an excellent design tool. Furthermore, the computational program can be composed with FORTRAN and set up on a PC, and can easily be analyzed to get the flow field of the corncob incinerator.

  7. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    NASA Technical Reports Server (NTRS)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  8. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  9. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  10. Inviscid Flow Field Effects: Experimental results

    NASA Astrophysics Data System (ADS)

    Otten, L. J., III; Gilbert, K. G.

    1980-04-01

    The aero-optical distortions due to invisid flow effects over airborne laser turrets is investigated. Optical path differences across laser turret apertures are estimated from two data sources. The first is a theoretical study of main flow effects for a spherical turret assembly for a Mach number (M) of 0.6. The second source is an actual wind tunnel density field measurement on a 0.3 scale laser turret/fairing assembly, with M = 0.75. A range of azimuthal angles from 0 to 90 deg was considered, while the elevation angle was always 0 deg (i.e., in the plane of the flow). The calculated optical path differences for these two markedly different geometries are of the same order. Scaling of results to sea level conditions and an aperture diameter of 50 cm indicated up to 0.0007 cm of phase variation across the aperture for certain forward look angles and a focal length of F = -11.1 km. These values are second order for a 10.6 micron system.

  11. A vortex panel method for calculating aircraft downwash on parachute trajectories

    SciTech Connect

    Fullerton, T.L.; Strickland, J.H.; Sundberg, W.D.

    1991-01-01

    This paper presents a discussion of a methodology of the paneled-wing method for calculating aircraft-induced wake velocities. This discussion will include a description of how an aircraft and its wake are represented by finite length vortex filaments, how the strength and location of these filaments are determined based upon aircraft characteristics and trajectory data, and how the induced velocity values are determined once the location and strength of the vortex filaments are known. Examples will be presented showing comparisons between induced velocity values calculated using both the paneled-wing method and Strickland's lifting line method. Comparison is also made between calculated results from the paneled-wing method and wind tunnel data collected in the wake of a scale model aircraft. Additional examples will show the effect of including aircraft downwash calculations in a trajectory analysis for a parachute-retarded store delivered via aircraft. 3 refs., 12 figs.

  12. Fluctuating pressures in flow fields of jets

    NASA Technical Reports Server (NTRS)

    Schroeder, J. C.; Haviland, J. K.

    1976-01-01

    The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.

  13. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  14. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  15. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, Goang-Shin

    1987-01-01

    An existing Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated by the interactive grid generator codes TBGG and GENIE. All computations were made on the NASA/MSFC CRAY X-MP computer. Comparisons were made between the computations and MSFC in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreements exist between the computations and measurements for different stagnation pressures of 29.4, 14.7, and 7.4 psia, at stagnation temperature of 1060 R. However, agreements did not match precisely near the nozzle exit. Several reasons for the lack of agreement are possible. The computational code assumes a constant gas gamma, whereas the gamma i.e. the specific heat ratio for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. The computations also assumes adiabatic and no-slip walls. Both assumptions may not be correct. Finally, it is possible that condensation occurs during the nozzle expansion at the low stagnation pressure. The next phase of the work will incorporate variable gamma and slip wall boundary conditions in the computational code and develop a more accurate computer code.

  16. Low thrust viscous nozzle flow fields prediction

    NASA Astrophysics Data System (ADS)

    Liaw, Goang-Shin

    1987-12-01

    An existing Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated by the interactive grid generator codes TBGG and GENIE. All computations were made on the NASA/MSFC CRAY X-MP computer. Comparisons were made between the computations and MSFC in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreements exist between the computations and measurements for different stagnation pressures of 29.4, 14.7, and 7.4 psia, at stagnation temperature of 1060 R. However, agreements did not match precisely near the nozzle exit. Several reasons for the lack of agreement are possible. The computational code assumes a constant gas gamma, whereas the gamma i.e. the specific heat ratio for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. The computations also assumes adiabatic and no-slip walls. Both assumptions may not be correct. Finally, it is possible that condensation occurs during the nozzle expansion at the low stagnation pressure. The next phase of the work will incorporate variable gamma and slip wall boundary conditions in the computational code and develop a more accurate computer code.

  17. Microgravity Geyser and Flow Field Prediction

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.

    2006-01-01

    Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.

  18. Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Mattox, T.N.; Heliker, C.; Kauahikaua, J.; Hon, K.

    1993-01-01

    The 1990 Kalapana flow field is a complex patchwork of tube-fed pahoehoe flows erupted from the Kupaianaha vent at a low effusion rate (approximately 3.5 m3/s). These flows accumulated over an 11-month period on the coastal plain of Kilauea Volcano, where the pre-eruption slope angle was less than 2??. the composite field thickened by the addition of new flows to its surface, as well as by inflation of these flows and flows emplaced earlier. Two major flow types were identified during the development of the flow field: large primary flows and smaller breakouts that extruded from inflated primary flows. Primary flows advanced more quickly and covered new land at a much higher rate than breakouts. The cumulative area covered by breakouts exceeded that of primary flows, although breakouts frequently covered areas already buried by recent flows. Lava tubes established within primary flows were longer-lived than those formed within breakouts and were often reoccupied by lava after a brief hiatus in supply; tubes within breakouts were never reoccupied once the supply was interrupted. During intervals of steady supply from the vent, the daily areal coverage by lava in Kalapana was constant, whereas the forward advance of the flows was sporadic. This implies that planimetric area, rather than flow length, provides the best indicator of effusion rate for pahoehoe flow fields that form on lowangle slopes. ?? 1993 Springer-Verlag.

  19. Lava flow superposition: the reactivation of flow units in compound flow fields

    NASA Astrophysics Data System (ADS)

    Applegarth, Jane; Pinkerton, Harry; James, Mike; Calvari, Sonia

    2010-05-01

    Long-lived basaltic eruptions often produce compound `a`ā lava flow fields that are constructed of many juxtaposed and superposed flow units. We have examined the processes that result from superposition when the underlying flows are sufficiently young to have immature crusts and deformable cores. It has previously been recognised that the time elapsed between the emplacement of two units determines the fate of the underlying flow[1], because it controls the rheological contrast between the units. If the time interval is long, the underlying flow is able to cool, degas and develop a rigid crust, so that it shows no significant response to loading, and the two units are easily discernable stratigraphically. If the interval is short, the underlying flow has little time to cool, so the two units may merge and cool as a single unit, forming a ‘multiple' flow[1]. In this case, the individual units are more difficult to distinguish post-eruption. The effects of superposition in intermediate cases, when underlying flows have immature roofs, are less well understood, and have received relatively little attention in the literature, possibly due to the scarcity of observations. However, the lateral and vertical coalescence of lava tubes has been described on Mt. Etna, Sicily[2], suggesting that earlier tubes can be reactivated and lengthened as a result of superposition. Through our recent analysis of images taken by INGV Catania during the 2001 eruption of Mt. Etna (Sicily), we have observed that the emplacement of new surface flows can reactivate underlying units by squeezing the still-hot flow core away from the site of loading. We have identified three different styles of reactivation that took place during that eruption, which depend on the time interval separating the emplacement of the two flows, and hence the rheological contrast between them. For relatively long time intervals (> 2 days), hence high rheological contrasts, superposition can cause an overpressure

  20. A Study of Coaxial Rotor Performance and Flow Field Characteristics

    DTIC Science & Technology

    2016-01-22

    A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field...The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields...velocity (ft/sec) Z vertical distance between rotors (ft) αS pitch angle (deg), negative pitch down κint coaxial rotor induced power interference

  1. Supersonic Flow Control by Magnetic Field

    DTIC Science & Technology

    2005-12-01

    control over supersonic flows in supersonic intakes . Experimental and numerical investigations focuses on the basic aspects of MHD interaction taking into...transport, shock-waves dynamics, boundary layers on the intake walls, massive flow separation within the scram-jet flow pass. Recent results of...that a global change of intake flow structure might be achieved with local ( in time and space ) MHD impact. Other aspect is supposed to be

  2. Numerical computations of Orbiter flow fields and heating rates

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Li, C. P.; Houston, C. K.; Chiu, P.; Olmedo, L.

    1976-01-01

    Numerical computations of flow fields around an analytical description of the Space Shuttle Orbiter windward surface, including the root of the wing leading edge, are presented to illustrate the sensitivity of these calculations to several flow field modeling assumptions. Results of parametric flow field and boundary layer computations using the axisymmetric analogue concept to obtain three-dimensional heating rates, in conjunction with exact three-dimensional inviscid floe field solutions and two-dimensional boundary layer analysis - show the sensitivity of boundary layer edge conditions and heating rates to considerations of the inviscid flow field entropy layer, equilibrium air versus chemically and vibrationally frozen flow, and nonsimilar terms in the boundary layer computations. A cursory comparison between flow field predictions obtained from these methods and current Orbiter design methods has established a benchmark for selecting and adjusting these and future design methodologies.

  3. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers

    PubMed Central

    Muijres, Florian T.; Bowlin, Melissa S.; Johansson, L. Christoffer; Hedenström, Anders

    2012-01-01

    Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a ‘feathered upstroke’ during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called ‘normal hovering’ as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body–tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as

  4. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.

    PubMed

    Muijres, Florian T; Bowlin, Melissa S; Johansson, L Christoffer; Hedenström, Anders

    2012-02-07

    Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive

  5. Modeling Peat Ages Using 7Be Data to Account for Downwash of 210Pb

    NASA Astrophysics Data System (ADS)

    Manies, K.; Fuller, C.; Jones, M.

    2016-12-01

    In order to determine the amount of peat, and thus carbon, which has accumulated since the last thaw event, we are interested in dating the surface layers of boreal thermokarst bogs. However, there can often be a mismatch by several decades between dates obtained using 210Pb, 14C, or 137Cs. We found that 210Pb-based dates were almost always younger than 14C-based dates. One of the limitations often cited regarding the use of 210Pb dating for peatlands is the potential for this radionuclide to be transported down the soil profile, biasing the mean accumulation rate (MAR) towards higher values which, in turn, results in younger ages at a specific horizon. 7Be, which has similar depositional behaviors as 210Pb but a much shorter half-life (53.22 days), can be used to help determine if there is movement of 210Pb through surface layers and the depths to which 210Pb-bearing particles are transported (over the mean life of 7Be). These data can then be used in new models, such as the Linked Radionuclide aCcumulation model (LRC; Landis et al., 2016, http://dx.doi.org/10.1016/ j.gca.2016.02.2013), which account for 210Pb downwash when calculating soil horizon ages. To this end, we measured 7Be within a bog four times over the growing season. 7Be was found to 4 cm in May, reached its maximum depth of penetration in July (7 cm), and then receded again to 4 cm. The maximum integrated 7Be activity was also found in July. This pattern is similar to other studies which found 7Be deposition decreased over the rainy season. Next, we will calculate peat ages with models that include downwash of 210Pb, the depths of which will be based on the penetration depth of 7Be. These ages will be compared to 210Pb ages obtained with both the Constant Rate of Supply (CRS) and Constant Flux - Constant Sedimentation (CF:CS) models and to 137Cs- and 14C-derived ages. We anticipate that dates based on models that include some transport of 210Pb into the soil profile will provide more accurate peat

  6. Onboard Flow Sensing For Downwash Detection and Avoidance On Small Quadrotor Helicopters

    DTIC Science & Technology

    2015-01-01

    filter is implemented. (The air data system is built around a Freescale Semiconductor MK20DX256VLH7 ARM Cortex M4 microprocessor running 13bit ADC at...onboard computers, one for flight stabilization and a Linux computer for sensor integration and control calculations. The Linux computer runs Robot...five separate initial conditions. Fig. 6 shows the results of the flight test for all of the runs . Fig. 6(a) shows the trajectory of two quadrotors

  7. The role of magnetic fields in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Soker, Noam; Sarazin, Craig L.

    1990-01-01

    An investigation is made of the dynamical effects of the intracluster magnetic field, whose radial inflow and shear can produce a dramatic increase in the field's strength while rendering it more radial, with cooling flows. It is found that field reconnection is the most likely dominant-loss mechanism, so that buoyancy effects are probably not important. Attention is given to the effect of the magnetic field on thermal instabilities. The most important observable effect of the magnetic field in cooling flows will probably be very strong Faraday rotation of the polarization of radio sources within or behind the cooling flow.

  8. Impact of Tropospheric Downwash on Hong Kong Air Quality during Southeast Biomass Burning

    NASA Astrophysics Data System (ADS)

    Fat Lam, Yun; Yeung, Irene W. M.; He, Wenlin; Louie, Peter

    2017-04-01

    Biomass burning is recognized as an important source of air pollution, which not only affects local air quality, but also air quality at distant places. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) and its contribution to local air pollution in Hong Kong. Biomass burning events in the spring from 2012 to 2014 were first identified by using GFED (Global Fire Emission Data) fire emissions with HYSPLIT (Hybrid Single Particle Lagrangian-Integrated Trajectory) backward trajectory dispersion modeling analysis. Cross comparison between event and non-event days was performed using local air quality observation (e.g., nss-K+, PM2.5/PM10 ratio) to ensure the presence of biomass burning signatures. After that, regional air quality model, WRF-CMAQ (Weather Research and Forecasting (WRF) and Community Multi-scale Air) with 4 nested domains (i.e., 27, 9, 3 and 1 km) were applied to evaluate the contribution of biomass burning during the downwash events on local air pollution. The results provide us a better understanding on how long-range transport of SEA biomass burning affects local air quality in South China.

  9. Wind tunnel study of wake downwash behind A 6% scale model B1-B aircraft

    SciTech Connect

    Strickland, J.H.; Tadios, E.L.; Powers, D.A.

    1990-05-01

    Parachute system performance issues such a turnover and wake recontact may be strongly influenced by velocities induced by the wake of the delivering aircraft, especially if the aircraft is maneuvering at the time of parachute deployment. The effect of the aircraft on the parachute system is a function of the aircraft size, weight, and flight path. In order to provide experimental data for validation of a computer code to predict aircraft wake velocities, a test was conducted in the NASA 14 {times} 22 ft wind tunnel using a 5.78% model of the B-1B strategic bomber. The model was strut mounted through the top of its fuselage by a mechanism which was capable of pitching the model at moderate rates. In this series of tests, the aircraft was pitched at 10{degree}/sec from a cruise angle of attack of 5.3{degree} to an angle of attack of 11{degree} in order to simulate a 2.2g pullup. Data were also taken for the subsequent pitch down sequence back to the cruise angle of attack. Instantaneous streamwise and vertical velocities were measured in the wake at a number of points using a hot wire anemometer. These data have been reduced to the form of downwash coefficients which are a function of the aircraft angle of attack time-history. Unsteady effects are accounted for by use of a wake convection lag-time correlation. 12 refs., 59 figs., 4 tabs.

  10. Reconstruction of velocity fields in electromagnetic flow tomography

    PubMed Central

    Lehtikangas, Ossi; Karhunen, Kimmo

    2016-01-01

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185961

  11. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  12. Experimental results for a hypersonic nozzle/afterbody flow field

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.

    1995-01-01

    This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.

  13. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  14. Flow field design development using the segmented cell approach

    SciTech Connect

    Bender, G.; Ramsey, J. C.

    2002-01-01

    We report on fuel cell flow-field development employing two-dimensional computational fluid dynamics (2-D CFD). Simulation of the flow distribution of a parallel channel flow-field, with a simple one-channel manifold, predicted inhomogeneous performance distribution within the cell. Further modeling, focusing on modification of the inlet and outlet flow fields, was used to predict a more homogeneous flow distribution in the flow-field. Attempts were made to verify the theoretical predictions experimentally by application of the segmented cell system. Measurements of the current distribution and CO transient response supported the 2-D CFD predictions. However, the margin of error between predicted and experimental results was considered insufficient to be of practical use. Future work will involve the evaluation of 3-D CFD to achieve the appropriate level of accuracy.

  15. Internal corner flow fields. [calculations for super/hypersonic inlets

    NASA Technical Reports Server (NTRS)

    Marconi, F.

    1979-01-01

    A computational procedure has been developed to predict the inviscid super/hypersonic flow field of conical internal corners. The prediction of internal corner flow fields can be important in the design of supersonic 'box' type inlets. The computational procedure utilizes a second order finite difference marching technique to asymptote to the conical corner flow solution of Euler's equations. These flow fields are dominated by complex shock interactions. All discontinuities, shocks and slip surfaces are fitted with the appropriate jump conditions. The 'triple' points (the interaction of two shocks and a slip surface) are also computed exactly. Computed results are compared with experimental data and the computational results of other investigators. In addition, the sensitivity of these flow fields to a number of geometric parameters is studied, and the impact of these flows on inlet performance is assessed.

  16. Use of computer graphics for visualization of flow fields

    NASA Technical Reports Server (NTRS)

    Watson, Val; Buning, Pieter; Choi, Diana; Bancroft, Gordon; Merritt, Fergus; Rogers, Stuart

    1987-01-01

    A high-performance graphics workstation has been combined with software developed for flow-field visualization to yield a highly effective tool for analysis of fluid-flow dynamics. After the flow fields are obtained from experimental measurements or computer simulations, the workstation permits one to interactively view the dynamics of the flow fields; e.g., the viewer can zoom into a region or rotate his viewing position about the region to study it in more detail. Several techniques for visualization of flow fields with this workstation are described in this paper and illustrated with a videotape available from the authors. The computer hardware and software required to create effective flow visualization displays are discussed. Additional software and hardware required to create videotapes or 16mm movies are also described. Limitations imposed by current workstation performance is addressed and future workstation performance is forecast.

  17. Field theoretical approach for bio-membrane coupled with flow field

    NASA Astrophysics Data System (ADS)

    Oya, Y.; Kawakatsu, T.

    2013-02-01

    Shape deformation of bio-membranes in flow field is well known phenomenon in biological systems, for example red blood cell in blood vessel. To simulate such deformation with use of field theoretical approach, we derived the dynamical equation of phase field for shape of membrane and coupled the equation with Navier-Stokes equation for flow field. In 2-dimensional simulations, we found that a bio-membrane in a Poiseuille flow takes a parachute shape similar to the red blood cells.

  18. Field methods for measuring concentrated flow erosion

    NASA Astrophysics Data System (ADS)

    Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.

    2012-04-01

    techniques (3D) for measuring erosion from concentrated flow (pole, laser profilemeter, photo-reconstruction and terrestrial LiDAR) The comparison between two- and three-dimensional methods has showed the superiority of the 3D techniques for obtaining accurate cross sectional data. The results from commonly-used 2D methods can be subject to systematic errors in areal cross section that exceed magnitudes of 10 % on average. In particular, the pole simplified method has showed a clear tendency to understimate areas. Laser profilemeter results show that further research on calibrating optical devices for a variety of soil conditions must be carried out to improve its performance. For volume estimations, photo-reconstruction results provided an excellent approximation to terrestrial laser data and demonstrate that this new remote sensing technique has a promising application field in soil erosion studies. 2D approaches involved important errors even over short measurement distances. However, as well as accuracy, the cost and time requirements of a technique must be considered.

  19. Background field method in the gradient flow

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi

    2015-10-01

    In perturbative consideration of the Yang-Mills gradient flow, it is useful to introduce a gauge non-covariant term (“gauge-fixing term”) to the flow equation that gives rise to a Gaussian damping factor also for gauge degrees of freedom. In the present paper, we consider a modified form of the gauge-fixing term that manifestly preserves covariance under the background gauge transformation. It is shown that our gauge-fixing term does not affect gauge-invariant quantities as does the conventional gauge-fixing term. The formulation thus allows a background gauge covariant perturbative expansion of the flow equation that provides, in particular, a very efficient computational method of expansion coefficients in the small flow time expansion. The formulation can be generalized to systems containing fermions.

  20. Experimental Study of Impinging Jets Flow-Fields

    DTIC Science & Technology

    2016-07-27

    the jet plumes and outwash flow . Lift plate surface pressure measurements have also been made. The unsteady flow , known to have significant large...contributed to the identification and measurement of the major features of the flow -field generated by the two parallel impinging model jets. These...and outwash flow . 3 Laser Doppler Velocimeter Measurements Highlights of the LDV measurements are presented in the next two figures

  1. Field Detection of Chemical Assimilation in A Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.

  2. Time resolved Schlieren imaging of DBD actuator flow fields

    NASA Astrophysics Data System (ADS)

    Nourgostar, Cyrus; Oksuz, Lutfi; Hershkowitz, Noah

    2009-10-01

    Schlieren imaging methods measure the first derivative of density in the direction of a knife-edge spatial filter. It has been used extensively in aerodynamic research to visualize the structure of flow fields. With a single barrier planer dielectric barrier discharge (DBD) actuator, Schlieren images clearly show the absence of significant vertical air flow normal to the surface, and no more than few millimeters thick induced boundary layer flow. A gated intensified CCD camera along with a Schlieren system can not only visualize the flow field induced by the actuator, but also temporarily resolve the images of the flow and plasma field. Our time resolved images with triangular applied voltage waveforms indicate that several separate discharge regimes occur during positive and negative going half cycles of single and double barrier DBD actuators. Time resolved Schlieren imaging of both single and double barrier DBDs with different applied waveforms, discharge parameters and electrode geometries reveal important information on the induced flow structure.

  3. Flow Field Measurement of Mixing Driven by Buoyancy

    NASA Technical Reports Server (NTRS)

    Batur, C.; Zhong, H.

    2003-01-01

    Mixing driven by buoyancy-induced flows inside a cavity consists of stretching and folding of an interface. Measurement of the flow field using particle imaging velocimetry shows that during stretching the flow field has a single elliptic point, thus dominated by a single vortex. However, global bifurcation that results in folding introduces a hyperbolic point whereby the flow field degenerates to multiple vortex interactions. The short-lived coherent structure observed during mixing which results in the Rayleigh- Taylor morphology is attributed to vortex interactions. The mixing characteristics of non-homogeneous fluids driven by buoyancy are important towards understanding transport phenomenon in a microgravity environment. Mixing consists of stretching and folding of an interface due to a flow field whose intensity depends on the body force. For miscible liquids, the characteristic of the flow field determines whether mass transport is governed by diffusion or bulk stirring which induces mixing. For technologically important processes, transport of mass is governed by the coupling of the body force to scalar gradients such as concentration and or temperature' 2 3 . In order to lend insight into these classes of problems we consider a model experimental system to study mixing driven by buoyancy-induced flows. The characteristics of mixing is addressed from detail measurements of the flow field using particle imaging velocimetry (PIV), and its corresponding interface dynamics using image processing techniques.

  4. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  5. Flow damping due to stochastization of the magnetic field

    PubMed Central

    Ida, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, T.; Suzuki, C.; Yokoyama, M.; Shimizu, A.; Nagaoka, K.; Inagaki, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Evans, T.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kamiya, K.; Kasahara, H.; Kawamura, G.; Kato, D.; Kobayashi, M.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohdach, S.; Ohno, N.; Osakabe, M.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Sudo, S.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; Ii, T.; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.

    2015-01-01

    The driving and damping mechanism of plasma flow is an important issue because flow shear has a significant impact on turbulence in a plasma, which determines the transport in the magnetized plasma. Here we report clear evidence of the flow damping due to stochastization of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from a nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 in the large helical device. This flow damping and resulting profile flattening are much stronger than expected from the Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that the flow damping is due to the change in the non-diffusive term of momentum transport. PMID:25569268

  6. A color video display technique for flow field surveys

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Tsao, C. P.

    1982-01-01

    Color video display techniques for flow field surveys are presented. The following techniques were examined: traverse device, used for flow field surveys above and behind finite wing models; flow chart of data reduction for color video display technique; location of spanwise survey stations above and behind wing; hot wire data at first three survey stations on fully stalled wing; hot wire data at last three stations behind fully stalled wing; hot wire and pitch probe data; magnitude of velocity, yaw angle, pitch angle, and cross flow direction from 5 tube survey at X/C = 2.70 behind fully stalled wing.

  7. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.

    PubMed

    Portugal, Steven J; Hubel, Tatjana Y; Fritz, Johannes; Heese, Stefanie; Trobe, Daniela; Voelkl, Bernhard; Hailes, Stephen; Wilson, Alan M; Usherwood, James R

    2014-01-16

    Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird--in a streamwise position--there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.

  8. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  9. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  10. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  11. Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity: an experimental test.

    PubMed

    Hansson, Sophia V; Tolu, Julie; Bindler, Richard

    2015-02-15

    Accumulation records of pollutant metals in peat have been frequently used to reconstruct past atmospheric deposition rates. While there is good support for peat as a record of relative changes in metal deposition over time, questions remain whether peat archives represent a quantitative or a qualitative record. Several processes can potentially influence the quantitative record of which downwashing is particularly pertinent as it would have a direct influence on how and where atmospherically deposited metals are accumulated in peat. The aim of our study was two-fold: first, to compare and contrast the retention of dissolved Pb, Cu, Zn and Ni in peat cores; and second, to test the influence of different precipitation intensities on the potential downwashing of metals. We applied four 'rainfall' treatments to 13 peat cores over a 3-week period, including both daily (2 or 5.3 mm day(-1)) and event-based additions (37 mm day(-1), added over 1h or over a 10h rain event). Two main trends were apparent: 1) there was a difference in retention of the added dissolved metals in the surface layer (0-2 cm): 21-85% for Pb, 18-63% for Cu, 10-25% for Zn and 10-20% for Ni. 2) For all metals and both peat types (sphagnum lawn and fen), the addition treatments resulted in different downwashing depths, i.e., as the precipitation-addition increased so did the depth at which added metals could be detected. Although the largest fraction of Pb and Cu was retained in the surface layer and the remainder effectively immobilized in the upper peat (≤ 10 cm), there was a smearing effect on the overall retention, where precipitation intensity exerts an influence on the vertical distribution of added trace metals. These results indicate that the relative position of a deposition signal in peat records would be preserved, but it would be quantitatively attenuated.

  12. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    supersonic causing a dramatic decrease in inmtx (see Fig 4). analysis, the frequency was predicted for six experi- Sepration will not occur at the spike...conditions at the solid wall have been discussed by the author [7]. The important fact is, that the flow close to the surface is strongly affected by the...without any solid theoretical foundation. It is there- fore of fundamental and practical importance to establish a basic theory of this damping

  13. Computational Methods for Complex Flow Fields.

    DTIC Science & Technology

    1986-06-28

    James J. Riley Joel H . Ferziger "Turbulent Flow Simulation - Future Needs" Micha Wolfshtein " Numerical Calculation of the Reynolds Stress and Turbulent...July 1983. Also in RECENT ADVANCES IN NUMERICAL METHODS IN FLUIDS, Vol. 3, Editor W.G. Habashi, Pineridge Press. 2. Usab, W.J., "Embedded Mesh Solutions...ridiaconal matrices applicable to approximane factorization methods . E:xlicit algcrit-s are also easier to adapz to multiProcessor arcr.itectures as the

  14. Interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng; Zheng, Xin-qian; Hou, An-ping; Lu, Ya-jun

    2005-12-01

    Unsteady separated flow is one of research frontiers in current aerodynamic. Great accomplishments have been acquired; however, most studies are on single body in a stream, such as studies on unsteady separated flows over airfoils. There are typical cases in the nature and engineering applications, in which several interacting bodies with relative motions are within the same flow field. These interacting unsteady separated flow fields not only are closely related to the phenomena of noise and flutter induced by flows, but also have strong influences on aerodynamic performances. With axial flow compressors as background, the present paper carried out studies on 'interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field'. Experiment investigations carried out in the stationary annular cascade wind tunnel and the single-stage low-speed axial flow compressor experimental facility as well as relevant CFD simulations demonstrate that under properly organized interactions between all unsteady components, the time-space structure of unsteady separated flow field can be remarkably improved and the time-averaged aerodynamic performances be significantly enhanced accordingly. The maximum reduction of the loss coefficient reached 27.4% and 76.5% in the stationary annular cascade wind tunnel and the CFD simulation for single-stage axial flow compressor, respectively.

  15. Synthetic Jet Flow Field Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome

    2004-01-01

    An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.

  16. Investigation of Spherical-Wave-Initiated Flow Fields Around Bodies

    NASA Technical Reports Server (NTRS)

    McFarland, Donald R.

    1959-01-01

    Measurements of the velocity flow fields and vortex movements have been made about various simple blunt models undergoing spherical blast waves with a positive overpressure of 4 pounds per square inch. A bullet-optical method was used to determine flow velocities and is applied to velocity fields in which the gradients are largely normal to the free-stream direction. The velocity flow fields are shown at various flow times following passage of the blast front for different models. Vortex movements with time are compared for square-bar models of various aspect ratios. Corner sharpness had no discernible effect on the overall disturbed velocity fields or vortex movements for the square-box models used.

  17. Unsteady fluid dynamic model for propeller induced flow fields

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Ashby, Dale L.; Yon, Steven

    1991-01-01

    A potential flow based three-dimensional panel method was modified to treat time dependent flow conditions in which the body's geometry may vary with time. The main objective of this effort was the study of a flow field due to a propeller rotating relative to a nonrotating body which is otherwise moving at a constant forward speed. Calculated surface pressure, thrust and torque coefficient data for a four-bladed marine propeller/body compared favorably with previously published experimental results.

  18. Unsteady fluid dynamic model for propeller induced flow fields

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Ashby, Dale L.; Yon, Steven

    1991-01-01

    A potential flow based three-dimensional panel method was modified to treat time dependent flow conditions in which the body's geometry may vary with time. The main objective of this effort was the study of a flow field due to a propeller rotating relative to a nonrotating body which is otherwise moving at a constant forward speed. Calculated surface pressure, thrust and torque coefficient data for a four-bladed marine propeller/body compared favorably with previously published experimental results.

  19. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells

    PubMed Central

    Song, Jisun L.; Au, Kelly H.; Huynh, Kimberly T.

    2013-01-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. We demonstrate the capabilities of the flow cells by quantifying flow patterns before and after growth of Pseudomonas aeruginosa biofilms through particle imaging velocimetry, and by evaluating concentration gradients within the double-inlet microfluidic flow cell. Biofilm growth substantially increased flow complexity by diverting flow around biomass, creating high- and low-velocity regions and surface friction. Under a glucose gradient in the double-inlet flow cell, P. aeruginosa biofilms grew in proportion to the local glucose concentration, producing distinct spatial patterns in biofilm biomass relative to the imposed glucose gradient. When biofilms were subjected to a ciprofloxacin gradient, spatial patterns of fractions of dead cells were also in proportion to the local antibiotic concentration. These results demonstrate that the microfluidic flow cells are suitable for quantifying flow complexities resulting from flow-biofilm interactions and investigating spatial patterns of biofilm growth under chemical gradients. These novel microfluidic flow cells will facilitate biofilm research that requires flow control and in situ imaging, particularly investigations of biofilm-environment interactions. PMID:24038055

  20. Flow field studies using holographic interferometry at Langley

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Helms, V. T.; Gooderum, P. B.

    1982-09-01

    Some of the uses of holographic interferometry at Langley Research Center both for flow visualization and for density field determinations are described and tests in cryogenic flows at the Langley 0.3-Meter Transonic Cryogenic Tunnel are discussed. Experimental and theoretical fringe shift data are compared.

  1. Particle and flow field holography: A critical survey

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1987-01-01

    A brief background is provided for the fields of particle and flow visualization holography. A summary of methods currently in use is given, followed by a discussion of more recent and unique applications. The problem of data reduction is discussed. A state of the art summary is then provided with a prognosis of the future of the field. Particle and flow visualization holography are characterized as powerful tools currently in wide use and with significant untapped potential.

  2. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    DTIC Science & Technology

    2008-03-01

    John William Strutt , the third Baron of Rayleigh , or more commonly known as Lord Rayleigh , was the first to offer a correct explanation of the...FILTERED RAYLEIGH SCATTERING MEASUREMENTS IN A BUOYANT FLOW FIELD         THESIS       Steven Michael Meents, Captain, USAF...AFIT/GAE/ENY/08-M22 FILTERED RAYLEIGH SCATTERING MEASUREMENTS IN A BUOYANT FLOW FIELD THESIS Presented to the Faculty Department of Aeronautics

  3. Lava Flow Fields on Earth and Mars: Scales of Comparison

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.; Bulmer, M. H.; Warner, N. H.

    2001-12-01

    Because an active lava flow has yet to be observed on Mars, and available data on surface composition is of limited scope (e.g., the SNC meteorites, or data collected by Sojourner) or resolution (e.g., the Mars Global Surveyor Thermal Emissions Spectrometer [MGS TES]), Martian eruption and emplacement parameters must be inferred from the resulting volcanic morphologies. A unique set of lava flow lobes to the southwest of Arsia Mons (and possibly genetically associated with that volcano) were initially identified using high-resolution ( ~50 m/pixel) Viking Orbiter (VO) images. These flows are characterized by a ridged surface texture, similar to that observed on folded evolved lava flows (e.g., andesites, dacites and rhyolites) on Earth, and relatively thick ( ~40 to 80 m) flow margins. Additional data collected by the Mars Orbiter Camera (MOC) and the Mars Orbiter Laser Altimeter (MOLA) reveal that these ridged flows are much more widespread than indicated by the VO images. MGS and VO datasets allow us to identify the location of these ridged flows, measure flow thickness and the wavelengths and amplitudes of the surface undulations. A large lava flow field ( ~67.5 km2) surrounding Sabancaya volcano, Peru, displays similar surface textures and flow thicknesses, and we have been investigating these andesitic to trachyandesitic lavas as potential analogs to the Martian flows. Using high-resolution GPS surveys-collected both along-flow and across-flow, we can quantify the surface topography of these flows with +/-1 cm horizontal and +/-2 cm vertical resolution. This resolution is approximately one order of magnitude better than will be obtained using global MOLA coverage of Mars. Quantitative comparison of the Sabancaya lava flows with those adjacent to Arsia Mons, combined with results from analytical and numerical modeling, suggest that the Sabancaya lavas are fundamentally different from the Martian flows. We therefore suggest that the Martian flows are either not

  4. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  5. Flow field characteristics of an ornithopter

    NASA Astrophysics Data System (ADS)

    Juarez, Alfredo; Allen, James

    2007-11-01

    This paper details phase locked PIV measurements from a model Ornithopther flying in a wind tunnel at representative flight conditions. Testing over a range of Strouhal numbers, 0.1-0.3, shows that the unsteady wake is composed of coherent vortical structures that resemble vortex rings. A single ring is formed in the wake of each wing during one wing beat. Momentum balance from velocity field measurements are used to estimate the lift and drag of the ornithopter.

  6. Flow Field Evolution of a Decaying Sunspot

    NASA Astrophysics Data System (ADS)

    Deng, Na; Choudhary, Debi Prasad; Tritschler, Alexandra; Denker, Carsten; Liu, Chang; Wang, Haimin

    2007-12-01

    We study the evolution of the flows and horizontal proper motions in and around a decaying follower sunspot based on time sequences of two-dimensional spectroscopic observations in the visible and white-light imaging data obtained over 6 days from 2005 June 7 to 12. During this time period the sunspot decayed gradually to a pore. The spectroscopic observations were obtained with the Fabry-Pérot-based Visible-Light Imaging Magnetograph (VIM) in conjunction with the high-order adaptive optics (AO) system operated at the 65 cm vacuum reflector of the Big Bear Solar Observatory (BBSO). We apply local correlation tracking (LCT) to the speckle-reconstructed time sequences of white-light images around 600 nm to infer horizontal proper motions, while the Doppler shifts of the scanned Fe I line at 630.15 nm are used to calculate line-of-sight (LOS) velocities with subarcsecond resolution. We find that the dividing line between radial inward and outward proper motions in the inner and outer penumbra, respectively, survives the decay phase. In particular the moat flow is still detectable after the penumbra disappeared. Based on our observations, three major processes removed flux from the sunspot: (1) fragmentation of the umbra, (2) flux cancelation of moving magnetic features (MMFs; of the same polarity as the sunspot) that encounter the leading opposite polarity network and plages areas, and (3) flux transport by MMFs (of the same polarity as the sunspot) to the surrounding network and plage regions that have the same polarity as the sunspot.

  7. Block Implicit Computation of Flow Field in Solid Rocket Ramjets

    NASA Astrophysics Data System (ADS)

    Ma, Zhibo; Zhu, Jianshi

    To compute the flow field in solid rocket ramjet (SRR) in which the chamber has a complex boundary, a block implicit algorithm (BIA) had been developed. The boundary conditions of three-dimensional steady-state Navier-Stokes (NS) equations were treated by modifying the discrete equations and the grids were generated through an algebraic way. These methods have been put into practice and proved to be valid and efficient in the computation of flow field in the chamber. The technique developed here applies to similar problems in porous medium flows. Keywords: rocket ramjet, numerical simulation, block implicit algorithm

  8. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields

    NASA Astrophysics Data System (ADS)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  9. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields

    NASA Astrophysics Data System (ADS)

    Javed, Afroz; Chakraborty, Debasis

    2017-10-01

    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  10. Observation of airplane flow fields by natural condensation effects

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.; Rumsey, Christopher L.

    1988-01-01

    In-flight condensation patterns can illustrate a variety of airplane flow fields, such as attached and separated flows, vortex flows, and expansion and shock waves. These patterns are a unique source of flow visualization that has not been utilized previously. Condensation patterns at full-scale Reynolds number can provide useful information for researchers experimenting in subscale tunnels. It is also shown that computed values of relative humidity in the local flow field provide an inexpensive way to analyze the qualitative features of the condensation pattern, although a more complete theoretical modeling is necessary to obtain details of the condensation process. Furthermore, the analysis revealed that relative humidity is more sensitive to changes in local static temperature than to changes in pressure.

  11. The structure of the vorticity field in homogeneous turbulent flows

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moin, Parviz

    1987-01-01

    The structures of the vorticity fields in several homogeneous irrotational straining flows and a homogeneous turbulent shear flow were examined using a database generated by direct numerical simulation of the unsteady Navier-Stokes equations. In all cases, strong evidence was found for the presence of coherent vortical structures. The initially isotropic vorticity fields were rapidly affected by imposed mean strain and the rotational component of mean shear and developed accordingly. In the homogeneous turbulent shear-flow cases, the roll-up of mean vorticity into characteristic hairpin vortices was clearly observed, supporting the view that hairpin vortices are an important vortical structure in all turbulent shear flows; the absence of mean shear in the homogeneous irrotational straining flows precludes the presence of hairpin-like vortices.

  12. Vapor Bubbles in Flow and Acoustic Fields

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Hao, Yue

    2001-01-01

    The paper presents an order-of-magnitude analysis of the physical processes occurring during the pulsations of a vapor bubble subject to a sound field and shows several numerical examples relating to vapor bubbles in water with and without a translational velocity relative to the liquid. Finally, the growth and collapse of a bubble in a small tube under the action of a heat pulse is considered and it is pointed out that, in suitable conditions, a potentially useful pumping effect without mechanical moving parts can be achieved.

  13. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  14. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  15. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  16. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  17. Observations of Cloud Top Entrainment Instability Induced by Aircraft Wake Downwash

    NASA Astrophysics Data System (ADS)

    Walcek, C. J.

    2012-12-01

    Aircraft produce considerable turbulence and generate 20-80 m/s downward velocity impulses immediately below the airframe and wings. This downward-propagating air produces turbulent vortices that descend 100-300 meters before dissipating. If an aircraft flies very close to the tops of stratiform clouds, it can induce mixing between cloudy air and clear air pushed into the cloud from above cloud top. Here we present photographs and evidence that aircraft flying close to the tops of stable stratiform clouds can trigger the release of cloud-top entrainment instability (CTEI). Negatively-buoyant air can be produced as warm air forced into a cloud from above cloud top mixes with colder cloudy air, inducing evaporation and further cooling below the cloud temperature, thus initiating turbulent downdrafts that can propagate the CTEI mechanism that ultimately dissipates and evaporates the top several hundred meters near cloud top. Photographs taken from observation chase planes flying 1-2 km above another aircraft flying very close to cloud top show 50-100 m wide swaths cleared within 3-4 seconds after fly-over, and growth rates of 2-3 m/s lateral to the flight track are observed. Ultimately "canal cloud" or "hole punch" features 2-3 km wide are generated in 20-30 minutes following the flyover from this mechanism. Here the mechanism of aircraft downwash is reviewed, CTEI is described, and evidence of the importance of evaporation and entrainment is provided from unpublished results from the late 1940s-era "project CIRRUS" and more recent images of hole-punch and canal-clouds. Since the propagation of this turbulent process occurs in turbulent filaments of mixtures of clear and cloudy air, modeling this process will require resolutions of less than several meters, yet require simulation domains several 1000s of meters wide. Similarly, measurements of dissipated cloud regions induced by aircraft would require resolutions of several meters or 10s of Hz to unambiguously

  18. Field-flow fractionation of chromosomes

    SciTech Connect

    Giddings, J.C.

    1991-09-01

    The work done on this project is divided into two principal areas. The first involves the application of sedimentation/steric FFF to metaphase chromosomes in an attempt to fractionate the chromosomes according to their size. The preparation of chromosomes from a number of organisms was attempted; procedures were finally worked out in collaboration with Los Alamos National Laboratory for the preparation of metaphase chromosomes from Chinese hamster cells. After extensive experimental work was done to identify suitable operating conditions, the partial fractionation of the Chinese hamster chromosomes was achieved. In the second component of the project, flow FFF was applied to the separation of DNA fragments. Figures are provided that show considerable success in the separation of plasmid digests and in the separation of single from double stranded DNA under 10{sup 4} base pairs. Preliminary work was done on DNA fragments having a size greater than 10{sup 4} base pairs. This work has served to establish the inversion point for DNA.

  19. Convective Flow Induced by Localized Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    An axisymmetric traveling magnetic field induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to offset natural convection. For long vertical cylinders, non-uniform and localized in the propagating direction, magnetic fields are required for this purpose. Here we investigate a particular form of this field, namely that induced by a set of a few electric current coils. An order of magnitude reduction of buoyancy convection is theoretically demonstrated for a vertical Bridgman crystal growth configuration.

  20. Paper-based flow fractionation system for preconcentration and field-flow fractionation.

    NASA Astrophysics Data System (ADS)

    Hong, Seokbin; Kwak, Rhokyun; Kim, Wonjung

    2015-11-01

    We present a novel paper-based flow fractionation system for preconcentration and field-flow fractionation. The paper fluidic system consisting of a straight channel connected with expansion regions can generate a fluid flow with a constant flow rate for 10 min without any external pumping devices. The flow bifurcates with a fraction ratio of up to 30 depending on the control parameters of the channel geometry. Utilizing this simple paper-based bifurcation system, we developed a continuous-flow preconcentrator and a field-flow fractionator on a paper platform. Our experimental results show that the continuous-flow preconcentrator can produce a 33-fold enrichment of the ion concentration and that the flow fractionation system successfully separates the charged dyes. Our study suggests simple, cheap ways to construct preconcentration and field-flow fractionation systems for paper-based microfluidic diagnostic devices. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (NRF-2015R1A2A2A04006181).

  1. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  2. Turbulence modelling of flow fields in thrust chambers

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.

  3. Turbulence modelling of flow fields in thrust chambers

    NASA Astrophysics Data System (ADS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-02-01

    Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.

  4. Analysis of a solar collector field water flow network

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  5. Laboratory observation of magnetic field growth driven by shear flow

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Dorf, L.; Sun, X.; Feng, Y.; Sears, J.; Weber, T.

    2014-04-01

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow vi, magnetic field B, current density J, and plasma pressure. The electron flow ve can be inferred, allowing the evaluation of the Hall J ×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×ve×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δBz. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  6. Laboratory observation of magnetic field growth driven by shear flow

    SciTech Connect

    Intrator, T. P. Feng, Y.; Sears, J.; Weber, T.; Dorf, L.; Sun, X.

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  7. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  8. Selecting MODFLOW cell sizes for accurate flow fields.

    PubMed

    Haitjema, H; Kelson, V; de Lange, W

    2001-01-01

    Contaminant transport models often use a velocity field derived from a MODFLOW flow field. Consequently, the accuracy of MODFLOW in representing a ground water flow field determines in part the accuracy of the transport predictions, particularly when advective transport is dominant. We compared MODFLOW ground water flow rates and MODPATH particle traces (advective transport) for a variety of conceptual models and different grid spacings to exact or approximate analytic solutions. All of our numerical experiments concerned flow in a single confined or semiconfined aquifer. While MODFLOW appeared robust in terms of both local and global water balance, we found that ground water flow rates, particle traces, and associated ground water travel times are accurate only when sufficiently small cells are used. For instance, a minimum of four or five cells are required to accurately model total ground water inflow in tributaries or other narrow surface water bodies that end inside the model domain. Also, about 50 cells are needed to represent zones of differing transmissivities or an incorrect flow field and (locally) inaccurate ground water travel times may result. Finally, to adequately represent leakage through aquitards or through the bottom of surface water bodies it was found that the maximum allowable cell dimensions should not exceed a characteristic leakage length lambda, which is defined as the square root of the aquifer transmissivity times the resistance of the aquitard or stream bottom. In some cases a cell size of one-tenth of lambda is necessary to obtain accurate results.

  9. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  10. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  11. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  12. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part II: Transient and Modulated Flow Behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Fautrelle, Yves; Etay, Jacqueline; Na, Xianzhao; Baltaretu, Florin

    2016-12-01

    The present study considers the transient and modulated flow behaviors of liquid metal driven by a helical permanent magnetic field. The transient process, in which the fluid at rest experiences an increase in the angular velocity, is observed both in secondary and global axial flow with duration time less than 1 second. The flow fields are measured quantitatively to reveal the evolution of the transient flow, and the transient process is due to the variation of the electromagnetic force. Besides, the modulated flow behaviors of global axial flow, which is significantly different from that of secondary flow, is expected to avoid flow-induced macrosegregation in solidification process if the modulated time is suitable because its direction reversed periodically with the modulated helical stirrer. In addition, an optimal modulation frequency, under which the magnetic field could efficiently stir the solute at the solidification front, exists both in secondary and global axial flow (0.1 Hz and 0.625 Hz, respectively). Future investigations will focus on additional metallic alloy solidification experiments.

  13. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  14. The mantle flow field beneath western North America.

    PubMed

    Silver, P G; Holt, W E

    2002-02-08

    Although motions at the surface of tectonic plates are well determined, the accompanying horizontal mantle flow is not. We have combined observations of surface deformation and upper mantle seismic anisotropy to estimate this flow field for western North America. We find that the mantle velocity is 5.5 +/- 1.5 centimeters per year due east in a hot spot reference frame, nearly opposite to the direction of North American plate motion (west-southwest). The flow is only weakly coupled to the motion of the surface plate, producing a small drag force. This flow field is probably due to heterogeneity in mantle density associated with the former Farallon oceanic plate beneath North America.

  15. Patterns in the sky: Natural visualization of aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.

    1994-01-01

    The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.

  16. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  17. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  18. Propulsion efficiency and imposed flow fields of a copepod jump.

    PubMed

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  19. Magnetic field generation from shear flow in flux ropes

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.

    2012-10-01

    In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.

  20. Heat-flow mapping at the Geysers Geothermal Field

    SciTech Connect

    Thomas, R.P.

    1986-10-31

    Pertinent data were compiled for 187 temperature-gradient holes in the vicinity of The Geysers Geothermal field. Terrain-correction techniques were applied to most of the temperature-gradient data, and a temperature-gradient map was constructed. Cutting samples from 16, deep, production wells were analyzed for thermal conductivity. From these samples, the mean thermal conductivities were determined for serpentinized ultramafic rock, greenstone, and graywacke. Then, a heat flow map was made. The temperature-gradient and heat-flow maps show that The Geysers Geothermal field is part of a very large, northwesterly-trending, thermal anomaly; the commercially productive portion of the field may be 100 km/sup 2/ in area. The rate that heat energy flows through the surface by thermal conduction is estimated at 1.79 x 10/sup 9/MJ per year. The net heat energy loss from commercial production for 1983 is estimated at 180.14 x 10/sup 9/MJ.

  1. Neutron tomography of axisymmetric flow fields in porous media

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Deinert, M. R.

    2013-04-01

    A significant problem in the study of fluid transport in porous media is the ability to visualize the structure of the flow field when moisture contents vary rapidly in space and time. Here we present a method for determining the radial and vertical saturation profiles within axisymmetric preferential flow fields using neutron radiography. Flow fields such as these are surprisingly common in nature and determining the three-dimensional structure of their wetting front region has proven difficult. In this work, the moisture profiles are determined using a simple algorithm for algebraic computed tomography, which gives the three-dimensional structure of the moisture profile with a temporal resolution that is limited only by the desired noise level. The algorithm presented can be translated to radiography done using X-rays or light and is applicable to any rotationally symmetric object.

  2. Acoustic tomographic imaging of temperature and flow fields in air

    NASA Astrophysics Data System (ADS)

    Barth, Manuela; Raabe, Armin

    2011-03-01

    Acoustic travel-time tomography is a remote sensing technique that uses the dependence of sound speed in air on temperature and wind speed along the sound propagation path. Travel-time measurements of acoustic signals between several sound sources and receivers travelling along different paths through a measuring area give information on the spatial distribution of temperature and flow fields within the area. After a separation of the two influences, distributions of temperature and flow can be reconstructed using inverse algorithms. As a remote sensing method, one advantage of acoustic travel-time tomography is its ability to measure temperature and flow field quantities without disturbing the area under investigation due to insertion of sensors. Furthermore, the two quantities—temperature and flow velocity—can be recorded simultaneously with this measurement method. In this paper, an acoustic tomographic measurement system is introduced which is capable of resolving three-dimensional distributions of temperature and flow fields in air within a certain volume (1.3 m × 1.0 m × 1.2 m) using 16 acoustic transmitter-receiver pairs. First, algorithms for the 3D reconstruction of distributions from line-integrated measurements are presented. Moreover, a measuring apparatus is introduced which is suited for educational purposes, for demonstration of the method as well as for indoor investigations. Example measurements within a low-speed wind tunnel with different incident flow situations (e.g. behind bluff bodies) using this system are shown. Visualizations of the flow illustrate the plausibility of the tomographically reconstructed flow structures. Furthermore, alternative individual measurement methods for temperature and flow speed provide comparable results.

  3. Flow field measurements in the cell culture unit.

    PubMed

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-10-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  4. Flow field measurements in the cell culture unit

    NASA Technical Reports Server (NTRS)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  5. Flow field measurements in the cell culture unit

    NASA Technical Reports Server (NTRS)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  6. Three dimensional flow field inside the passage of a low speed axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Pouagare, M.; Murthy, K. N. S.; Lakshminarayana, B.

    1982-01-01

    Measurements of the subsonic flow in the rotor passage of a single stage axial flow compressor were made to study the nature of the flow field and to verify the existing numerical codes. The velocity and pressure fields were measured across the entire rotor passage at six axial locations and at five radial locations. A five-hole probe, rotating with the rotor, was used to measure the three components of velocity, the static and the total pressure. The experimental results are compared with the predictions from Katsanis and McNally's computer program. The agreement between the two is good for most of the cases.

  7. Turbulence, flow and transport: hints from reversed field pinch

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2006-04-01

    The interplay between sheared E × B flows and turbulence has been experimentally investigated in the edge region of the Extrap-T2R reversed field pinch experiment. Electrostatic fluctuations are found to rule the momentum balance equation representing the main driving term for sheared flows which counterbalances anomalous viscous damping. The driving role of electrostatic fluctuations is proved by the spatial structure of the Reynolds stress and by the time behaviour of the mean energy production term which supports the existence of an energy exchange from the small scales of turbulence to the larger scales of the mean flow.

  8. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  9. Turbulence in Flowing Soap Films: Velocity, Vorticity, and Thickness Fields

    SciTech Connect

    Rivera, M.; Vorobieff, P.; Ecke, R.E.

    1998-08-01

    We report experimental measurements of the velocity, vorticity, and thickness fields of turbulent flowing soap films using a modified particle-image velocimetry technique. These data yield the turbulent energy and enstrophy of the two-dimensional flows with microscale Reynolds numbers of about 100 and demonstrate the effects of compressibility arising from variations in film thickness. Despite the compressibility of the flow, real-space correlations of velocity, vorticity, and enstrophy flux are consistent with theoretical predictions for two-dimensional turbulence. {copyright} {ital 1998} {ital The American Physical Society }

  10. Effective contaminant detection networks in uncertain groundwater flow fields.

    PubMed

    Hudak, P F

    2001-01-01

    A mass transport simulation model tested seven contaminant detection-monitoring networks under a 40 degrees range of groundwater flow directions. Each monitoring network contained five wells located 40 m from a rectangular landfill. The 40-m distance (lag) was measured in different directions, depending upon the strategy used to design a particular monitoring network. Lagging the wells parallel to the central flow path was more effective than alternative design strategies. Other strategies allowed higher percentages of leaks to migrate between monitoring wells. Results of this study suggest that centrally lagged groundwater monitoring networks perform most effectively in uncertain groundwater-flow fields.

  11. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis.

    PubMed

    Wu, Jen-Kuei; Chen, Peng-Chun; Lin, Yu-Nan; Wang, Chia-Woei; Pan, Li-Chern; Tseng, Fan-Gang

    2017-03-13

    In this paper, we propose a microfluidic device capable of generating a retarding flow field for the sorting and separation of human motile sperm in a high-throughput manner. The proposed sorting/separation process begins with a rapid flow field in a straight-flow zone to carry sperm into a sorting zone to maintain the sperm's mobility. The sorting zone consists of a diffuser-type sperm sorter to differentiate sperm with different motilities based on the flowing upstream nature of human sperm in a retarding flow field. The dead sperm will then be separated from the live ones by passing through a dumbbell flow field to the outlet for disposal. The proposed flowing upstream sperm sorter (FUSS) is designed to imitate the selection mechanism found in the female body when sperm swim into the uterus. The experimental results demonstrate the utility of this device with regard to throughput (approximately 200 000 sperm per minute and a maximum of 200 million cells per mL), efficiency (90% of selected sperm are mobile), and the ability to select sperm with high motility (∼20% of sperm with a velocity exceeding 120 μm s(-1)). The proposed device is suitable for intrauterine insemination as well as in vitro fertilization thanks to the highly efficient sorting process not interfering with the natural function and energy resource of human sperm.

  12. Re-thinking the record: Short-term downwash of Be-7 and Pb-210 in a Swedish peat bog

    NASA Astrophysics Data System (ADS)

    Hansson, Sophia; Kaste, James; Olid, Carolina; Bindler, Richard

    2013-04-01

    The past decade has seen a rapid increase in interest in the biogeochemical record preserved in peat, particularly as it relates to carbon dynamics and environmental changes. However, we still lack a complete understanding of the basic biogeochemical processes and their effect on trace element distributions. Are peat archives an absolute or relative record? What temporal resolution is realistic to interpret by using peat cores? By analyzing atmospherically deposited 210Pb, 137Cs, 241Am and 7Be as well as the trace metals Pb and Hg, in triplicate peat cores from an ombrotrophic Swedish bog we addressed two fundamental issues; the question of representativity of single cores and the incorporation of atmospheric signals in the peat. Both of these issues are of great importance and need to be considered when using peat cores as natural archives. By specifically including the short-lived tracer 7Be (T½ 53.4 days) we tested the hypothesis that downwashing of atmospherically-supplied elements may occur in well aerated peat. Our 210Pb activities all showed a non-monotonic decrease with depth suggesting some downward transport of 210Pb by percolating rainwater. Further to this, the activities of 7Be were detected to 20, 18 and 8 cm depth and there was a lack of any clear peaks in 241Am activities, which together indicate a smearing of the radionuclides to or at the water table. We conclude that this is compelling evidence for a rapid downwash of atmospherically supplied elements in peat, which extends down to the height of water table. By comparing our records to biomonitoring- and direct deposition data we were able to quantify the implications of this downwash on estimates of peat mass accumulation rates and metal (Pb and Hg) deposition. It is clear that under specific conditions the usage of a conventional CRS-dating model can lead to severe overestimations of peat mass accumulation as well as inaccurate estimations of past deposition. However, by applying a new

  13. Laboratory Observation Of Magnetic Field Growth Driven By Shear Flow

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sun, X.; Dorf, L.; Sears, J.; Weber, T.; Lapenta, G.

    2012-12-01

    We have measured in the laboratory profiles of magnetic flux ropes, that include ion flow, magnetic field, current density, and plasma pressure. These data allow a complete screw pinch equilibrium with guide magnetic field to be reconstructed, and the electron flows to be inferred. We use this information to evaluate the Hall JxB term in a two fluid magnetohydrodynamic Ohms Law. The difference between ion and electron flows allows us to show experimentally and theoretically that the sheared electron flows can account for the generation of magnetic field. For example we show a measured quadrupole out of plane magnetic field B_z structure that occurs even in the absence of magnetic reconnection. This out of plane quadrupole pattern has historically been used as a signature of magnetic reconnection, especially with small to vanishing guide field. Recent theoretical analyses have pointed out that this presumption need not be true. *Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic

  14. A novel approach to improve operation and performance in flow field-flow fractionation.

    PubMed

    Johann, Christoph; Elsenberg, Stephan; Roesch, Ulrich; Rambaldi, Diana C; Zattoni, Andrea; Reschiglian, Pierluigi

    2011-07-08

    A new system design and setup are proposed for the combined use of asymmetrical flow field-flow fractionation (AF4) and hollow-fiber flow field-flow fractionation (HF5) within the same instrumentation. To this purpose, three innovations are presented: (a) a new flow control scheme where focusing flow rates are measured in real time allowing to adjust the flow rate ratio as desired; (b) a new HF5 channel design consisting of two sets of ferrule, gasket and cap nut used to mount the fiber inside a tube. This design provides a mechanism for effective and straightforward sealing of the fiber; (c) a new AF4 channel design with only two fluid connections on the upper plate. Only one pump is needed to deliver the necessary flow rates. In the focusing/relaxation step the two parts of the focusing flow and a bypass flow flushing the detectors are created with two splits of the flow from the pump. In the elution mode the cross-flow is measured and controlled with a flow controller device. This leads to reduced pressure pulsations in the channel and improves signal to noise ratio in the detectors. Experimental results of the separation of bovine serum albumin (BSA) and of a mix of four proteins demonstrate a significant improvement in the HF5 separation performance, in terms of efficiency, resolution, and run-to-run reproducibility compared to what has been reported in the literature. Separation performance in HF5 mode is shown to be comparable to the performance in AF4 mode using a channel with two connections in the upper plate.

  15. Penn State axial flow turbine facility: Performance and nozzle flow field

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zaccaria, M.; Itoh, S.

    1991-01-01

    The objective is to gain a thorough understanding of the flow field in a turbine stage including three-dimensional inviscid and viscid effects, unsteady flow field, rotor-stator interaction effects, unsteady blade pressures, shear stress, and velocity field in rotor passages. The performance of the turbine facility at the design condition is measured and compared with the design distribution. The data on the nozzle vane static pressure and wake characteristics are presented and interpreted. The wakes are found to be highly three-dimensional, with substantial radial inward velocity at most spanwise locations.

  16. Computational Analysis of Flow Field Inside Coral Colony

    NASA Astrophysics Data System (ADS)

    Hossain, Md Monir; Staples, Anne

    2015-11-01

    Development of the flow field inside coral colonies is a key issue for understanding coral natural uptake, photosynthesis and wave dissipation capabilities. But most of the computations and experiments conducted earlier, measured the flow outside the coral reef canopies. Experimental studies are also constrained due to the limitation of measurement techniques and limited environmental conditions. Numerical simulations can be an answer to overcome these shortcomings. In this work, a detailed, three-dimensional simulation of flow around a single coral colony was developed to examine the interaction between coral geometry and hydrodynamics. To simplify grid generation and minimize computational cost, Immersed Boundary method (IBM) was implemented. The computation of IBM involves identification of the interface between the solid body and the fluid, establishment of the grid/interface relation and identification of the forcing points on the grid and distribution of the forcing function on the corresponding points. LES was chosen as the framework to capture the turbulent flow field without requiring extensive modeling. The results presented will give insight into internal coral colony flow fields and the interaction between coral and surrounding ocean hydrodynamics.

  17. Rapid Numerical Simulation of Viscous Axisymmetric Flow Fields

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.; Chima, Rodrick V.

    1995-01-01

    A two-dimensional Navier-Stokes code has been developed for rapid numerical simulation of axisymmetric flow fields, including flow fields with an azimuthal velocity component. The azimuthal-invariant Navier-Stokes equations in a cylindrical coordinate system are mapped to a general body-fitted coordinate system, with the streamwise viscous terms then neglected by applying the thin-layer approximation. Turbulence effects are modeled using an algebraic model, typically the Baldwin-Lomax turbulence model, although a modified Cebeci-Smith model can also be used. The equations are discretized using central finite differences and solved using a multistage Runge-Kutta algorithm with a spatially varying time step and implicit residual smoothing. Results are presented for calculations of supersonic flow over a waisted body-of-revolution, transonic flow through a normal shock wave in a straight circular duct of constant cross sectional area, swirling supersonic (inviscid) flow through a strong shock in a straight radial duct, and swirling subsonic flow in an annular-to-circular diffuser duct. Comparisons between computed and experimental results are in fair to good agreement, demonstrating that the viscous code can be a useful tool for practical engineering design and analysis work.

  18. DEM simulation of granular flows in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  19. Computational analysis of hypersonic airbreathing aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Dwoyer, Douglas L.; Kumar, Ajay

    1987-01-01

    The general problem of calculating the flow fields associated with hypersonic airbreathing aircraft is presented. Unique aspects of hypersonic aircraft aerodynamics are introduced and their demands on computational fluid dynamics are outlined. Example calculations associated with inlet/forebody integration and hypersonic nozzle design are presented to illustrate the nature of the problems considered.

  20. Analytical solutions for flow fields near continuous wall reactive barriers

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk

    2008-05-01

    Permeable reactive barriers (PRBs) are widely applied for in-situ remediation of contaminant plumes transported by groundwater. Besides the goal of a sufficient contaminant remediation inside the reactive cell (residence time) the width of plume intercepted by a PRB is of critical concern. A 2-dimensional analytical approach is applied to determine the flow fields towards rectangular PRBs of the continuous wall (CW) configuration with and without impermeable side walls (but yet no funnel). The approach is based on the conformal mapping technique and assumes a homogeneous aquifer with a uniform ambient flow field. The hydraulic conductivity of the reactive material is furthermore assumed to exceed the conductivity of the aquifer by at least one order of magnitude as to neglect the hydraulic gradient across the reactor. The flow fields are analyzed regarding the widths and shapes of the respective capture zones as functions of the dimensions (aspect ratio) of the reactive cell and the ambient groundwater flow direction. Presented are an improved characterization of the advantages of impermeable side walls, a convenient approach to improved hydraulic design (including basic cost-optimization) and new concepts for monitoring CW PRBs. Water level data from a CW PRB at the Seneca Army Depot site, NY, are used for field demonstration.

  1. Electrohydrodynamic flow caused by field-enhanced dissociation solely

    NASA Astrophysics Data System (ADS)

    Vasilkov, S. A.; Chirkov, V. A.; Stishkov, Yu. K.

    2017-06-01

    Electrohydrodynamic (EHD) flows emerge in dielectric liquids under the action of the Coulomb force and underlie energy-efficient techniques for heat and mass transfer. The key issue in the phenomena is the way how the net charge is created. One of the most promising, yet poorly studied charge formation mechanisms is the field-enhanced dissociation (or the Wien effect). So the paper studies an EHD flow caused solely by the effect by virtue of both experiment and computer simulation. To preclude the competing mechanism of charge formation—the injection—a new EHD system of a special design was examined. Its main feature is the use of solid insulation to create the region of the strong electric field far from the electrode metal surfaces. The experimental study used the particle image velocimetry technique to observe velocity distributions, whereas the computations were based on the complete set of electrohydrodynamic equations employing the commercial software package COMSOL Multiphysics. Spatial distributions of key quantities (including the ion concentrations, the total space charge density, and the velocity) and the acting forces were obtained in the computer simulation and were analyzed. The experimental flow structure was observed for a number of voltages up to 30 kV. The comparison of the numerical and experimental results yielded a good quantitative agreement for strong electric fields though some overshoot was observed for weak ones. The results allow concluding on the applicability of the Onsager theory of the field-enhanced dissociation in the context of EHD flows.

  2. An Examination of the Resonant Acoustic Mixers Flow Field

    DTIC Science & Technology

    2013-12-01

    research. The most profound assumption that we make is that LESLIE3D is multiphase physics code designed for compressible fluid flows . At face value, this...AFRL-RW-EG-TR-2013-108 AN EXAMINATION OF THE RESONANT ACOUSTIC MIXER’S FLOW FIELD Douglas V. Nance AFRL/RWWC 101 W. Eglin Blvd...Simulation…………………………………………………………9 3.0 Results…………………………………………………………………………………….12 3.1 Flow Field Structure During the Mixing Process…………………………………13 3.2

  3. Adaptive flow-field measurements using digital holography

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen W.; Koukourakis, Nektarios; Fregin, Bob; König, Jörg; Büttner, Lars

    2017-02-01

    Variations of the optical detection path-length in image correlation based flow-field measurements result in strong errors in position allocation and thus lead to a strong enhancement of the measurement uncertainty of the velocity. In this contribution we use digital holography to measure the wavefront distortion induced by fluctuating phase boundary, employing spatially extended guide stars. The measured phase information is used to correct the influence of the phase boundary in the detection path employing a spatial light modulator. We analyze the potential of guide stars that are reflected by the phase boundary, i.e. the Fresnel reflex, and transmitted. Our results show, that the usage of wavefront shaping enables to strongly reduce the measurement uncertainty and to strongly improve the quality of image correlation based flow-field measurements. The approaches presented here are not limited to application in flow measurement, but could be useful for a variety of applications.

  4. Flue gas discharge from cooling towers. Wind tunnel investigation of building downwash effects on ground-level concentrations

    NASA Astrophysics Data System (ADS)

    Schatzmann, M.; Lohmeyer, A.; Ortner, G.

    German power plants are required to meet new emission standards which limit the maximum sulfur dioxide (SOs) concentration in flue gas discharges to 400 mg m -3. To achieve this level of reduction in SO 2 concentration, wet scrubbing is necessary for large plants using lignite or hard coal. Wet scrubbing results in a significant reduction in the flue gas temperature leading to low effective stack heights. Instead of using stack gas reheating to achieve the plume rise necessary to satisfy local environmental standards, it was proposed to discharge the scrubbed flue gas from the existing natural-draft cooling towers (NDCT). This method should be effective in reducing local ground-level concentrations since NDCT-plumes are typically very buoyant (densimetric Froude number below 1 ) and normally reach considerable heights of rise. Only under strong wind conditions does the situation reverse itself. For such strong winds, the NDCT-plume is subject to tower and building downwash with the possibility of unacceptably high ground-level concentrations. For a 2700 MW e lignite-fired power plant near Cologne, a wind tunnel study was carried out to investigate the effects of tower and building downwash effects on the ground-level concentrations of SO 2 produced by discharging the scrubbed flue gas from the natural-draft cooling towers. Also, a comparison was made between the ground-level concentrations produced by the cooling tower discharge method and those produced by a traditional stack. It was found that for low and intermediate wind speeds, the groundlevel concentrations are lower for the case of the cooling tower discharge. Only for strong winds, which occur only very rarely at most German sites, did the conventional stack discharge appear to be superior.

  5. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    SciTech Connect

    Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.

    2016-05-15

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.

  6. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.

    2016-05-01

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.

  7. On the flow field about an electrophoretic particle

    NASA Astrophysics Data System (ADS)

    Orsini, Gabriele; Tricoli, Vincenzo

    2012-10-01

    The flow field about an electrophoretic body is theoretically investigated by analytical methods. An effective boundary condition for the electric potential at particle surface is derived. This condition, which generalizes the one obtained by Levich [Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1962), Chap. 9, p. 475], captures the effect of (convective and electromigratory) surface current in the Debye layer and is valid as far as it is legitimate to neglect ion-concentration gradient in the bulk liquid. Conditions for negligible concentration gradients are also presented and discussed. The effect of surface current determines a deviation from Morrison's "classical" theory, which predicts irrotational flow-field for any particle shape with electrophoretic velocity given by the well-known Smoluchowski formula and always directed along the applied electric field. It is shown here that in the presence of the above effect the irrotationality of the flow field is not preserved if the particle surface has non-uniform curvature. However, irrotational flow-field still subsists for a sphere and a cylinder and is analytically determined in terms of a new non-dimensional parameter, referred to as the electrophoretic number. The case of spheroidal objects is also examined in detail. In this case the flow field, though not strictly irrotational, is shown to be nearly approximated by an irrotational flow-field, which is also determined over wide ranges of electrophoretic number and spheroid aspect ratio. The quality of this approximation is expressed as a relative error on the Helmholtz-Smoluchowski condition and numerically evaluated both in longitudinal and transverse configuration. The limiting cases of spheroid degenerating into a needle and a disk are also addressed. In all above cases the respective mobilities deviate from Smoluchowski's formula and depend on the electrophoretic number. An important effect of surface ion-transport in the double layer is

  8. Mean-field dynamo action in renovating shearing flows.

    PubMed

    Kolekar, Sanved; Subramanian, Kandaswamy; Sridhar, S

    2012-08-01

    We study mean-field dynamo action in renovating flows with finite and nonzero correlation time (τ) in the presence of shear. Previous results obtained when shear was absent are generalized to the case with shear. The question of whether the mean magnetic field can grow in the presence of shear and nonhelical turbulence, as seen in numerical simulations, is examined. We show in a general manner that, if the motions are strictly nonhelical, then such mean-field dynamo action is not possible. This result is not limited to low (fluid or magnetic) Reynolds numbers nor does it use any closure approximation; it only assumes that the flow renovates itself after each time interval τ. Specifying to a particular form of the renovating flow with helicity, we recover the standard dispersion relation of the α(2)Ω dynamo, in the small τ or large wavelength limit. Thus mean fields grow even in the presence of rapidly growing fluctuations, surprisingly, in a manner predicted by the standard quasilinear closure, even though such a closure is not strictly justified. Our work also suggests the possibility of obtaining mean-field dynamo growth in the presence of helicity fluctuations, although having a coherent helicity will be more efficient.

  9. Drop Breakup in Fixed Bed Flows as Model Stochastic Flow Fields

    NASA Technical Reports Server (NTRS)

    Shaqfeh, Eric S. G.; Mosler, Alisa B.; Patel, Prateek

    1999-01-01

    We examine drop breakup in a class of stochastic flow fields as a model for the flow through fixed fiber beds and to elucidate the general mechanisms whereby drops breakup in disordered, Lagrangian unsteady flows. Our study consists of two parallel streams of investigation. First, large scale numerical simulations of drop breakup in a class of anisotropic Gaussian fields will be presented. These fields are generated spectrally and have been shown in a previous publication to be exact representations of the flow in a dilute disordered bed of fibers if close interactions between the fibers and the drops are dynamically unimportant. In these simulations the drop shape is represented by second and third order small deformation theories which have been shown to be excellent for the prediction of drop breakup in steady strong flows. We show via these simulations that the mechanisms of drop breakup in these flows are quite different than in steady flows. The predominant mechanism of breakup appears to be very short lived twist breakups. Moreover, the occurrence of breakup events is poorly predicted by either the strength of the local flow in which the drop finds itself at breakup, or the degree of deformation that the drop achieves prior to breakup. It is suggested that a correlation function of both is necessary to be predictive of breakup events. In the second part of our research experiments are presented where the drop deformation and breakup in PDMS/polyisobutylene emulsions is considered. We consider very dilute emulsions such that coalescence is unimportant. The flows considered are simple shear and the flow through fixed fiber beds. Turbidity, small angle light scattering, dichroism and microscopy are used to interrogate the drop deformation process in both flows. It is demonstrated that breakup at very low capillary numbers occurs in both flows but larger drop deformation occurs in the fixed bed flow. Moreover, it is witnessed that breakup in the bed occurs

  10. Mantle flow field in the southern Ryukyu subduction system

    NASA Astrophysics Data System (ADS)

    Lin, S.; Kuo, B.

    2012-12-01

    The Okinawa trough in the Ryukyu subduction system is the only active back arc basin formed within a continental lithosphere. Recent shear-wave splitting measurements show variable fast directions along the trough suggesting complex three-dimensional flow field in the mantle wedge. In this study we use numerical subduction models to explore the effects of plate thickness variations caused by non-uniform lithospheric stretching on the dynamics in the southern Ryukyu subduction system. We calculate orientations of infinite strain axes as a proxy for olivine lattice preferred orientations and orientations of seismic anisotropy. Our models demonstrate that flow patterns may vary significantly with depth near the plate edge as a result of the along-arc variations in lithospheric thickness. The model results show that the toroidal circulation around the lateral slab edge predominates at greater depths. The thick neighboring lithosphere acts as an effective barrier of the lateral mass exchanges in the shallow portion of the mantle wedge. The wedge material is drawn in horizontally toward the plate edge from the central region of the subduction zone induced by pressure gradients, opposite to the inwards lateral flow at greater depths. Model predictions for the lattice preferred orientations of olivine aggregates agree reasonably well with the observed shear-wave splitting patterns. The results suggest that the depth-varying flow field near the subduction zone edge and the westward flow components in the shallow portion of the mantle wedge may contribute to complex patterns of seismic anisotropy and arc isotopic systematics.

  11. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.

    PubMed

    Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D

    2017-04-01

    Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.

  12. Navier-Stokes Flow Field Analysis of Compressible Flow in a Pressure Relief Valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat K.

    1993-01-01

    The present study was motivated to analyze the complex flow field involving gaseous oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined with the pilot valve to regulate the actuation pressure of the main valve system. During a high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body before and after accident. It was understood that the subject RV has never been operated at 5500 psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics (CFD) analysis is carried out to investigate the side load across the piston sleeve and the erosion patterns resulting from flow distribution around piston/nozzle interface.

  13. Laboratory Observation of Magnetic Field Growth Driven by Shear Flow

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Dorf, L.; Sun, X.; Sears, J.; Weber, T.; Feng, Y.

    2013-04-01

    We have measured in the laboratory profiles of magnetic flux ropes, that include ion flow, magnetic field, current density, and plasma pressure. The electron flows v_e can therefore be inferred, and we use this information to evaluate the Hall J × B term in a two fluid magnetohydrodynamic Ohm’s Law. Mutually attracted and compressed flux ropes break the cylindrical symmetry. This simple and coherent example of shear flow supports magnetic field growth corresponding to non vanishing curl × v_e × B. In the absence of magnetic reconnection we measure and predict a quadrupole out of plane magnetic field δBz, even though this has historically been invoked to be the signature of Hall magnetic reconnection. This provides a natural and general mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence. *Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic

  14. Time-to-passage judgments in nonconstant optical flow fields.

    PubMed

    Kaiser, M K; Hecht, H

    1995-08-01

    The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy (1993) have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TTP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTPs with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll.

  15. Path planning in uncertain flow fields using ensemble method

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.

    2016-10-01

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  16. Time-to-Passage Judgments in Nonconstant Optical Flow Fields

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Hecht, Heiko

    1995-01-01

    The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related to TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TIP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTP with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll.

  17. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique.

  18. Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes

    NASA Technical Reports Server (NTRS)

    Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.

    1997-01-01

    The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.

  19. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  20. Flow field around a sphere colliding against a wall.

    NASA Astrophysics Data System (ADS)

    Zenit, R.; Hunt, M. L.

    1998-11-01

    This study investigates the flow field and the fluid agitation generated by particle collisions. The motion of a particle towards a wall, or towards another particle, will result in a collision if the Reynolds number of the flow is large. As the particle approaches the wall, the fluid in the gap between the particle and the wall will be displaced. When the particle touches the wall and rebounds, the direction of the flow will reverse. This process produces a considerable agitation in the fluid phase. To study this process an immersed pendulum experiment was built to produce controlled collisions of particles. A fine string is attached to a particle, which is positioned at rest from some initial angle. Once released, the particle accelerates towards a wall, or to another suspended particle, resulting in a collision. The fluid is seeded with neutrally buoyant micro-spheres, which illuminated by a laser sheet serve as flow tracers. The motion of the particles and tracers is recorded using a high speed digital camera. The images are digitally processed to calculate displacements and velocities for different times before and after the collision. Flow fields are obtained for different impact velocities, particle diameters and solid-fluid density ratios, as well as for particle-wall and particle-particle collisions. Preliminary results show that for the flow conditions tested, the rebound of the particle is dependent on the shape of the wake behind the particle at the moment of collision, and not only on the flow in the gap between the particle and the wall. The amount of collision-generated agitation appears to increase with impact velocity and density ratio.

  1. A Study of Hybrid Computing Techniques for Transonic Flow Fields.

    DTIC Science & Technology

    1980-02-01

    e (2.8) ax rr x r ar r r where, with e = div q, 8uav 8u T = z L. -+xe T rTr- + Moc ax Kr rx ax 8r (Z.9) T = + T + e rr = r + r Supersonic Far Field...Since only the flow downstream of a sonic nozzle is really needed for testing purposes, the numerical computations should not be very difficult. In this... Nozzle Throat, J. Fluid Mech., 69 (1975), 97-108. (3)Richey, 0. K. and Adamson, T. C., Jr., Analysis of Unsteady Transonic Channel Flow with Shock Waves

  2. Large perturbation flow field analysis and simulation for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.

    1984-01-01

    An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.

  3. Interaction of multiple supersonic jets with a transonic flow field

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Manela, J.

    1983-01-01

    The influence of multiple high pressure, supersonic, radial or tangential jets, that are injected from the circumference of the base plane of an axisymmetric body, on its longitudinal aerodynamic coefficients in transonic flow is studied experimentally. The interaction of the jets with the body flow field increases the pressures on the forebody, thus altering its lift and static stability characteristics. It is shown that, within the range of parameters studied. This interaction has a stabilizing effect on the body. The contribution to lift and stability is significant at small angles of attack and decreases nonlinearly at higher angles when the crossflow mechanism becomes dominant.

  4. Flow Web: a graph based user interface for 3D flow field exploration

    NASA Astrophysics Data System (ADS)

    Xu, Lijie; Shen, Han-Wei

    2010-01-01

    While there have been intensive efforts in developing better 3D flow visualization techniques, little attention has been paid to the design of better user interfaces and more effective data exploration work flow. In this paper, we propose a novel graph-based user interface called Flow Web to enable more systematic explorations of 3D flow data. The Flow Web is a node-link graph that is constructed to highlight the essential flow structures where a node represents a region in the field and a link connects two nodes if there exist particles traveling between the regions. The direction of an edge implies the flow path, and the weight of an edge indicates the number of particles traveling through the connected nodes. Hierarchical flow webs are created by splitting or merging nodes and edges to allow for easy understanding of the underlying flow structures. To draw the Flow Web, we adopt force based graph drawing algorithms to minimize edge crossings, and use a hierarchical layout to facilitate the study of flow patterns step by step. The Flow Web also supports user queries to the properties of nodes and links. Examples of the queries for node properties include the degrees, complexity, and some associated physical attributes such as velocity magnitude. Queries for edges include weights, flow path lengths, existence of circles and so on. It is also possible to combine multiple queries using operators such as and , or, not. The FlowWeb supports several types of user interactions. For instance, the user can select nodes from the subgraph returned by a query and inspect the nodes with more details at different levels of detail. There are multiple advantages of using the graph-based user interface. One is that the user can identify regions of interest much more easily since, unlike inspecting 3D regions, there is very little occlusion. It is also much more convenient for the user to query statistical information about the nodes and links at different levels of detail. With

  5. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    PubMed

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  6. Laser velocimetry in turbulent flow fields - Particle response

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Rudoff, R.; Houser, M. J.

    1987-01-01

    Measurements of the particle response in a decelerating flow and a highly turbulent two-phase flow were obtained. Simultaneous measurements of the particle size and velocity served to quantify the particle response to the prevailing flow field. In the case of a flow incident upon a cylinder, the particle lag for a range of size classes was recorded. Results were also obtained in the flow generated by an atomizer operating on the leeward side of a flat disk bluff body in a coflowing air stream. Measurements of the mean axial, mean radial, and rms velocities and angles of trajectories were obtained for representative particle size classes. The air velocity and turbulence intensity were inferred from the seed particles on the order of one micrometer in diameter. Particles 9 micrometers and larger showed significant differences with respect to the gas phase mean velocity and turbulence intensity even at low velocities. In two-phase flows, reliable measurements of the continuous phase velocity and turbulence parameters requires the simultaneous measurement of particle size as a means for rejecting readings from large particles from the velocity pdf's.

  7. Research on unsteady transonic flow theory

    NASA Technical Reports Server (NTRS)

    Revell, J. D.

    1973-01-01

    A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.

  8. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  9. Elevator mode convection in flows with strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zikanov, Oleg

    2015-04-01

    Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  10. Numerical computation of space shuttle orbiter flow field

    NASA Technical Reports Server (NTRS)

    Tannehill, John C.

    1988-01-01

    A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.

  11. Flow-Field Surveys for Rectangular Nozzles. Supplement

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts. This supplement contains data files, charts and source code.

  12. Turbulent flow field predictions in sharply curved turn around ducts

    NASA Technical Reports Server (NTRS)

    Santi, L. M.

    1986-01-01

    In this investigation, two-dimensional turbulent flow of incompressible Newtonian fluids in sharply curved 180 deg turn around ducts is studied. Results of an approximate numerical flow field analysis utilizing an orthogonal, body-fitted, curvilinear coordinate system are compared to results based on a traditional cylindrical reference frame. Qualitative indication of general streamfield characteristics as well as quantitative benchmarks for the planning of future experimentation are provided. In addition, preliminary results of an augmented kappa-epsilon turbulence model analysis, which explicitly accounts for the effects of streamline curvature and pressure strain in internal turbulent flows, are presented. Specific model difficulties are discussed and comparisons with standard kappa-esilon model predictions are included.

  13. Flow-Field Surveys for Rectangular Nozzles. Supplement

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts. This supplement contains data files, charts and source code.

  14. Reactive transport in stratified flow fields with idealized heterogeneity

    NASA Astrophysics Data System (ADS)

    Carleton, James N.; Montas, Hubert J.

    2009-06-01

    A two-dimensional equation governing the steady state spatial concentration distribution of a reactive constituent within a heterogeneous advective-dispersive flow field is solved analytically. The solution which is developed for the case of a single point source can be generalized to represent analogous situations with any number of separate point sources. A limiting case of special interest has a line source of constant concentration spanning the domain's upstream boundary. The work has relevance for improving understanding of reactive transport within various kinds of advection-dominated natural or engineered environments including rivers and streams, and bioreactors such as treatment wetlands. Simulations are used to examine quantitatively the impact that transverse dispersion (deviations from purely stochastic-convective flow) can have on mean concentration decline in the direction of flow. Results support the contention that transverse mixing serves to enhance the overall rate of reaction in such systems.

  15. Elevator mode convection in flows with strong magnetic fields

    SciTech Connect

    Liu, Li; Zikanov, Oleg

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  16. Longitudinal Dispersivity in a Radial Diverging Flow Field

    NASA Astrophysics Data System (ADS)

    Seaman, J. C.; Wilson, M.; Bertsch, P. M.; Aburime, S. A.

    2005-12-01

    Hydrodynamic dispersion is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive data sets exist for evaluating the impact of travel distance and site heterogeneity on solute dispersion under non-uniform flow conditions. In addition, anionic tracers are often used to estimate physical transport parameters based on an erroneous assumption of conservative (i.e., non-reactive) behavior. Therefore, a series of field experiments using tritiated water and several other commonly used hydrologic tracers (Br, Cl, FBAs) were conducted in the water-table aquifer on the U.S. Department of Energy's Savannah River Site (Aiken, SC) to evaluate solute transport processes in a diverging radial flow field. For each experiment, tracer-free groundwater was injected for approximately 24 hours at a fixed rate of 56.7 L/min (15 gpm) to establish a forced radial gradient prior to the introduction of a tracer pulse. After the tracer pulse, the forced gradient was maintained throughout the experiment using non-labeled groundwater. Tracer migration was monitored using a set of six sampling wells radially spaced at approximate distances of 1.5, 3, and 4.5 meters from a central injection well. Each sampling well was further divided into three discrete sampling depths that were monitored continuously throughout the course of the tracer experiment. At various time intervals, discrete groundwater samples were collected from all 18 sampling ports for tritium analysis. Longitudinal dispersivity for tritium breakthrough at each sampling location was estimated using analytical approximations of the convection dispersion equation (CDE) for radial flow assuming an instantaneous Dirac pulse and a pulse of known duration. The results were also compared to dispersivity values derived from fitting the tracer data to analytical solutions derived from assuming uniform flow conditions. Tremendous variation in dispersivity values and tracer arrival

  17. A high-performance flow-field structured iron-chromium redox flow battery

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; An, L.; Wei, L.; Zhao, T. S.

    2016-08-01

    Unlike conventional iron-chromium redox flow batteries (ICRFBs) with a flow-through cell structure, in this work a high-performance ICRFB featuring a flow-field cell structure is developed. It is found that the present flow-field structured ICRFB reaches an energy efficiency of 76.3% with a current density of 120 mA cm-2 at 25 °C. The energy efficiency can be as high as 79.6% with an elevated current density of 200 mA cm-2 at 65 °C, a record performance of the ICRFB in the existing literature. In addition, it is demonstrated that the energy efficiency of the battery is stable during the cycle test, and that the capacity decay rate of the battery is 0.6% per cycle. More excitingly, the high performance of the flow-field structured battery significantly lowers the capital cost at 137.6 kWh-1, which is 28.2% lower than that of the conventional ICRFB for 8-h energy storage.

  18. Potential field cellular automata model for pedestrian flow.

    PubMed

    Zhang, Peng; Jian, Xiao-Xia; Wong, S C; Choi, Keechoo

    2012-02-01

    This paper proposes a cellular automata model of pedestrian flow that defines a cost potential field, which takes into account the costs of travel time and discomfort, for a pedestrian to move to an empty neighboring cell. The formulation is based on a reconstruction of the density distribution and the underlying physics, including the rule for resolving conflicts, which is comparable to that in the floor field cellular automaton model. However, we assume that each pedestrian is familiar with the surroundings, thereby minimizing his or her instantaneous cost. This, in turn, helps reduce the randomness in selecting a target cell, which improves the existing cellular automata modelings, together with the computational efficiency. In the presence of two pedestrian groups, which are distinguished by their destinations, the cost distribution for each group is magnified due to the strong interaction between the two groups. As a typical phenomenon, the formation of lanes in the counter flow is reproduced.

  19. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  20. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  1. Earth's field NMR flow meter: preliminary quantitative measurements.

    PubMed

    Fridjonsson, Einar O; Stanwix, Paul L; Johns, Michael L

    2014-08-01

    In this paper we demonstrate the use of Earth's field NMR (EF NMR) combined with a pre-polarising permanent magnet for measuring fast fluid velocities. This time of flight measurement protocol has a considerable history in the literature; here we demonstrate that it is quantitative when employing the Earth's magnetic field for signal detection. NMR signal intensities are measured as a function of flow rate (0-1m/s) and separation distance between the permanent magnet and the EF NMR signal detection. These data are quantitatively described by a flow model, ultimately featuring no free parameters, that accounts for NMR signal modulation due to residence time inside the pre-polarising magnet, between the pre-polarising magnet and the detection RF coil and inside the detection coil respectively. The methodology is subsequently demonstrated with a metallic pipe in the pre-polarising region.

  2. Unsteady Simulation of a Landing-Gear Flow Field

    NASA Technical Reports Server (NTRS)

    Li, Fei; Khorrami, Mehdi R.; Malik, Mujeeb R.

    2002-01-01

    This paper presents results of an unsteady Reynolds-averaged Navier-Stokes simulation of a landing-gear flow field. The geometry of the four-wheel landing gear assembly consists of several of the fine details including the oleo-strut, two diagonal struts, a door, yokes/pin and a flat-plate simulating the wing surface. The computational results, obtained by using 13.3 million grid points, are presented with an emphasis on the characteristics of the unsteadiness ensuing from different parts of the landing-gear assembly, including vortex shedding patterns and frequencies of dominant oscillations. The results show that the presence of the diagonal struts and the door significantly influence the flow field. Owing to the induced asymmetry, vortices are shed only from one of the rear wheels and not the other. Present computations also capture streamwise vortices originating from the upstream corners of the door.

  3. The laser measurement technology of combustion flow field

    NASA Astrophysics Data System (ADS)

    Wang, Mingdong; Wang, Guangyu; Qu, Dongsheng

    2014-07-01

    The parameters of combustion flow field such as temperature, velocity, pressure and mole-fraction are of significant value in engineering application. The laser spectroscopy technology which has the non-contact and non- interference properties has become the most important method and it has more advantages than conventionally contacting measurement. Planar laser induced fluorescence (PLIF/LIF) is provided with high sensibility and resolution. Filtered Rayleigh scattering (FRS) is a good measurement method for complex flow field .Tunable diode laser absorption spectroscopy (TDLAS) is prosperity on development and application. This article introduced the theoretical foundation, technical principle, system structure, merits and shortages. It is helpful for researchers to know about the latest development tendency and do the related research.

  4. Mixing, chemical reaction and flow field development in ducted rockets

    SciTech Connect

    Vanka, S.P.; Craig, R.R.; Stull, F.D.

    1984-09-01

    Calculations have been made of the three-dimensional mixing, chemical reaction, and flow field development in a typical ducted rocket configuration. The governing partial differential equations are numerically solved by an iterative finite-difference solution procedure. The physical models include the k approx. epsilon turbulence model, one-step reaction, and mixing controlled chemical reaction rate. Radiation is neglected. The mean flow structure, fuel dispersal patterns, and temperature field are presented in detail for a base configuration with 0.058 m (2 in.) dome height, 45/sup 0/ side arm inclination, and with gaseous ethylene injected from the dome plate at an eccentric location. In addition, the influences of the geometrical parameters such as dome height, inclination of the side arms, and location of the fuel injector are studied.

  5. Numerical simulation study on the flow field of porous hydrofoil

    NASA Astrophysics Data System (ADS)

    Yu, F. R.; Zhang, L. X.

    2012-11-01

    Because cavitation and cavitation erosion will caused significant impact to the security and stability of hydro turbine, so changing geometric structure to reduce the risk of cavitation is considered. Punching many holes on the hydrofoil is adopted. By using RNG κ - ɛ turbulence model and SIMPLEC algorithm, the flow field around hydrofoil and porous hydrofoil are simulated based computational fluid dynamics(CFD). The numerical simulation result-velocity and pressure field of hydrofoil with different geometry are compared and analysed. This study introduces geometry optimization ideas to researchers for improving cavitation phenomenon in water turbine.

  6. Stochastic field modeling of cavitating flows in OpenFOAM

    NASA Astrophysics Data System (ADS)

    Ranft, Michael; Class, Andreas G.

    2013-11-01

    In analysis is presented for a fluidic diode with low/high pressure drop in forward/reverse flow direction. Accurate description of cavitation is needed due to the dominant effect of vapor bubbles on sound speed. The stochastic field method developed in represents the statistics of growing cavitation bubbles by a set of stochastic fields of vapor fraction which evolve according to the Rayleigh-Plesset equation and local instantaneous LES flow conditions. Cavitation may originate from nucleation sites in the core of turbulent vortices. In this work a RANS model is used instead of LES. Local turbulent pressure fluctuations are recovered based on kinetic energy k of turbulence and its Dissipation ɛ. In the Rayleigh-Plesset equation these fluctuations are represented by a Wiener process which is superimposed on the mean pressure. Usually a set of stochastic fields is introduced for each stochastic variable. Here two independent Wiener processes, both acting on the vapor-fraction stochastic fields, drive the evolution of vapor bubble growth, so that a single set of stochastic fields can be maintained. The proposed methodology is implemented in OpenFOAM and applied to verification cases including the fluidic diode. Funded by ANPS.

  7. Flow field and near and far sound field of a subsonic jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1986-01-01

    Flow and sound field data are presented for a 2.54 cm diameter air jet at a Mach number of 0.50 and a Reynolds number of 300,000. Distributions of mean velocity, turbulence intensities, Reynolds stress, spectral components of turbulence as well as of the near field pressure, together with essential characteristics of the far field sound are reported. This detailed set of data for one particular flow, erstwhile unavailable in the literature, is expected to help promoote and calibrate subsonic jet noise theories. 'Source locations' in terms of the turbulence maxima, coupling between the entrainment dynamics and the near pressure field, the sound radiation paths, and the balance in mass, momentum and sound energy fluxes are discussed. The results suggest that the large scale coherent structures of the jet govern the 'source locations' by controlling the turbulence and also strongly influence the near field pressure fluctuations.

  8. Flow field and near and far sound field of a subsonic jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1986-01-01

    Flow and sound field data are presented for a 2.54 cm diameter air jet at a Mach number of 0.50 and a Reynolds number of 300,000. Distributions of mean velocity, turbulence intensities, Reynolds stress, spectral components of turbulence as well as of the near field pressure, together with essential characteristics of the far field sound are reported. This detailed set of data for one particular flow, erstwhile unavailable in the literature, is expected to help promoote and calibrate subsonic jet noise theories. 'Source locations' in terms of the turbulence maxima, coupling between the entrainment dynamics and the near pressure field, the sound radiation paths, and the balance in mass, momentum and sound energy fluxes are discussed. The results suggest that the large scale coherent structures of the jet govern the 'source locations' by controlling the turbulence and also strongly influence the near field pressure fluctuations.

  9. Laser Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field

    DTIC Science & Technology

    1991-06-01

    Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field By M.S.Chandrasekharal Navy-NASA Joint Institute of Aeronautics and Fluid Mechanics ...tunnel of the Fluid Mechanics Laboratory(FML) angle information. The other could be used for the at NASA Ames Research Center (ARC). It is one of...were on throat is always kept choked so that no disturbances a different traverse mechanism , but this was driven as can propagate upstream into the

  10. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  11. Development of flow/steric field-flow fractionation as a routine process control method

    SciTech Connect

    Barman, B.N.

    1988-08-30

    Researchers studied the feasibility of using the Flow/Steric Field-Flow Fractionation (Flow/StFFF) method for the characterization of particulate materials with diameters in the 1-100 micrometers range. Studies on the optimization of the method for the separation and characterization of different size particulate samples, as well as on the role of the crossflow field and channel flowrate on the separation and resolution, were performed with a number of spherical polystyrene divinylbenzene latex standards and included in the report. Applicability of the method as a fast and reliable practical tool for industrial process control, particularly for grinding operations, was examined by analyzing a number of samples obtained by grinding. Examples of materials considered include coal, limestone and glass.

  12. Flow fields in soap films: Relating viscosity and film thickness

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Weeks, Eric R.

    2009-08-01

    We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.

  13. Determining 3D flow fields via multi-camera light field imaging.

    PubMed

    Truscott, Tadd T; Belden, Jesse; Nielson, Joseph R; Daily, David J; Thomson, Scott L

    2013-03-06

    In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture (1). Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet.

  14. Flow field around Vorticella: Mixing with a reciprocal stroke

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel E.; Roper, Marcus; Stone, Howard A.

    2008-11-01

    Vorticella is a stalked protozoan. It has an extremely fast biological spring, whose contraction is among the fastest biological motions relative to size. Though the Vorticella body is typically only 30 μm across, the contracting spring accelerates it up to speeds of centimeters per second. Vorticella live in an aqueous environment attached to a solid substrate and use their spring to retract their body towards the substrate. The function of the rapid retraction is not known. Many hypothesize that it stirs the surrounding liquid and exposes the Vorticella to fresh nutrients. We evaluate this hypothesis by modeling the Vorticella as a sphere moving normal to a wall, with a stroke that moves towards the wall at high Reynolds number, and away from the wall at low Reynolds number. We approximate the flow during contraction as potential flow, while the flow during re-extension is considered Stokes flow. The analytical results are compared to the flow field obtained with a finite element (Comsol Multiphysics) simulation of the full Navier-Stokes equations.

  15. Quantitative three-dimensional holographic interferometry for flow field analysis

    NASA Astrophysics Data System (ADS)

    Holden, C. M. E.; Parker, S. C. J.; Bryanston-Cross, P. J.

    Holographic interferometry offers the potential for quantitative, wholefield analysis of three-dimensional compressible flows. The technique is non-intrusive, does not require the introduction of seeding particles, and records the entire flow information within the pulse duration of a Q-switched ruby laser (~30ns). At present, however, holographic interferometry is mainly used qualitatively due to the practical restrictions of data recording, acquisition and processing. To address the potential of holographic flow analysis a prototype multi-channel interferometer has been designed and preliminary wind tunnel results have been obtained. The proposed configuration uses specular illumination which, unlike comparable diffuse systems, does not suffer from fringe localisation and speckle noise. Beam collimation and steering through the flow field is achieved in a single operation by the use of holographic optical elements (HOEs). The resulting design is compact, light efficient, has aberration compensation, and the recorded data are conducive to both tomographic analysis and direct comparison to computational fluid dynamics (CFD) predictions. Holograms have been recorded of simple two-dimensional and axisymmetric compressible flows, to compare the accuracy of holographic density measurements with data from conventional pressure sensors and CFD codes. Data extraction from the holograms, and the elimination of rigid body motion, was achieved using digital Fourier transform fringe analysis. The introduction of phase errors by image processing has been investigated by analysing simulated fringe patterns generated from a combination of experimental amplitude information and computer generated phase data.

  16. Mathematical modeling of flow field in ceramic candle filter

    NASA Astrophysics Data System (ADS)

    Seo, Taewon; Kim, Heuy-Dong; Choi, Joo-Hong; Chung, Jae Hwa

    1998-06-01

    Integrated gasification combined cycle (IGCC) is one of the candidates to achieve stringent environmental regulation among the clean coal technologies. Advancing the technology of the hot gas cleanup systems is the most critical component in the development of the IGCC. Thus the aim of this study is to understand the flow field in the ceramic filter and the influence of ceramic filter in removal of the particles contained in the hot gas flow. The numerical model based on the Reynolds stress turbulence model with the Darcy’s law in the porous region is adopted. It is found that the effect of the porosity in the flowfield is negligibly small while the effect of the filter length is significant. It is also found as the permeability decreases, the reattachment point due to the flow separation moves upstream. This is because the fluid is sucked into the filter region due to the pressure drop before the flow separation occurs. The particle follows well with the fluid stream and the particle is directly sucked into the filter due to the pressure drop even in the flow separation region.

  17. Flow field investigation in a bulb turbine diffuser

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.

    2017-04-01

    An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. The flow has been investigated in the transition part of the diffuser using two LDV measurement sections. The transition part is a diffuser section that transforms from a circular to a rectangular section. The two measurement sections are at the inlet and outlet of the diffuser transition part. The turbine has been operated at three operating points, which are representative of different flow patterns at the diffuser exit at overload. In addition to the average velocity field, the analysis is conducted based on a backflow occurrence function and on the swirl level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.

  18. Metrology of confined flows using wide field nanoparticle velocimetry

    PubMed Central

    Ranchon, Hubert; Picot, Vincent; Bancaud, Aurélien

    2015-01-01

    The manipulation of fluids in micro/nanofabricated systems opens new avenues to engineer the transport of matter at the molecular level. Yet the number of methods for the in situ characterization of fluid flows in shallow channels is limited. Here we establish a simple method called nanoparticle velocimetry distribution analysis (NVDA) that relies on wide field microscopy to measure the flow rate and channel height based on the fitting of particle velocity distributions along and across the flow direction. NVDA is validated by simulations, showing errors in velocity and height determination of less than 1% and 8% respectively, as well as with experiments, in which we monitor the behavior of 200 nm nanoparticles conveyed in channels of ~1.8 μm in height. We then show the relevance of this assay for the characterization of flows in bulging channels, and prove its suitability to characterize the concentration of particles across the channel height in the context of visco-elastic focusing. Our method for rapid and quantitative flow characterization has therefore a broad spectrum of applications in micro/nanofluidics, and a strong potential for the optimization of Lab-on-Chips modules in which engineering of confined transport is necessary. PMID:25974654

  19. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    USGS Publications Warehouse

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  20. Penetration of conductive plasma flows across a magnetic field

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher Ryan

    2008-02-01

    Plasma interacts with magnetic fields in a variety of natural and laboratory settings. While a magnetic field "traps" isolated charged particles, plasma penetration across magnetic field is observed in many situations where a plasma-magnetic interface exists. For example, in the realm of pulsed power technology, this behavior is important for magnetically insulated transmission lines and for plasma opening switches. In the realm of astrophysics, the nature of the interaction between the solar wind plasma and the Earth's magnetic field affects the reliability of telecommunication devices and satellites. Experiments were performed at the Nevada Terawatt Facility to investigate how a conductive plasma penetrates an externally applied magnetic field. In experiment, a plasma flow was produced by laser ablation. This plasma was observed to penetrate an externally applied magnetic field produced by a 0.6 MA pulsed power generator. In experiment, the duration of the laser pulse was changed by three orders of magnitude, from ns (GW pulse power) to ps (TW) . This resulted in a significant variation of the plasma parameters, which in turn led to the actuation of different magnetic field penetration mechanisms.

  1. Coupling Linearized Far-Field Boundary Conditions with Nonlinear Near-Field Solutions in Transonic Flow

    DTIC Science & Technology

    1988-02-29

    Plate and a NACA 64A010 Airfoil Section . 31 3. Spatial Variations of Velocity Potentials on a Flat Plate and MBB-A3 Airfoil Section ........ 32 4...39 14. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack w ith M = 0.80...44 22. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack 23. W ith M = 0.78

  2. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    SciTech Connect

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  3. Modeling field scale unsaturated flow and transport processes

    SciTech Connect

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data.

  4. Prediction of light aircraft horizontal tail onset flows: A review and analysis

    NASA Technical Reports Server (NTRS)

    Summey, D. C.; Smetana, F. O.

    1977-01-01

    The theoretical basis of the two computer programs (WASH and WAKE) are developed. WASH calculates the location of wake-sheet streamlines behind the wing, and upwash and downwash angles ahead of and behind the wing, respectively. WAKE computes two-dimensional velocity profiles along the wake streamlines given the upper and lower surface velocity profiles at the wing trailing edge. Comparisons with experiment indicate good agreement for wake location, downwash angles, and two-dimensional velocity profiles at low to moderate angles of attack. The adaptation of the results of the two programs to predict the total onset flow at the tail is discussed.

  5. Holocene Flows of the Cima Volcanic Field, Mojave Desert, Part 2: Flow Rheology from Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Robertson, T.; Whittington, A. G.; Soldati, A.; Sehlke, A.; Beem, J. R.; Gomez, F. G.

    2014-12-01

    Lava flow morphology is often utilized as an indicator of rheological behavior during flow emplacement. Rheological behavior can be characterized by the viscosity and yield strength of lava, which in turn are dependent on physical and chemical properties including crystallinity, vesicularity, and bulk composition. We are studying the rheology of a basaltic lava flow from a monogenetic Holocene cinder cone in the Cima lava field (Mojave Desert, California). The flow is roughly 2.5 km long and up to 700m wide, with a well-developed central channel along much of its length. Samples were collected along seven different traverses across the flow, along with real-time kinematic (RTK) GPS profiles to allow levee heights and slopes to be measured. Surface textures change from pahoehoe ropes near the vent to predominantly jagged `a`a blocks over the majority of the flow, including all levees and the toe. Chemically the lava shows little variation, plotting on the trachybasalt-basanite boundary on the total alkali-silica diagram. Mineralogically the lava is dominated by plagioclase, clinopyroxene and olivine phenocrysts, with abundant flow-aligned plagioclase microcrystals. The total crystal fraction is ~50% near the vent, with higher percentages in the distal portion of the flow. Vesicularity varies between ~10 and more than ~60%. Levees are ~10-15m high with slopes typically ~25-35˚, suggesting a yield strength at final emplacement of ~150,000 Pa. The effective emplacement temperature and yield strength of lava samples will be determined using the parallel-plate technique. We will test the hypothesis that these physical and rheological properties of the lava during final emplacement correlate with spatial patterns in flow morphology, such as average slope and levee width, which have been determined using remote sensing observations (Beem et al. 2014).

  6. An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine

    NASA Technical Reports Server (NTRS)

    Zaccaria, M.; Lakshminarayana, B.

    1997-01-01

    Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.

  7. Computational and Experimental Flow Field Analyses of Separate Flow Chevron Nozzles and Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Thomas, Russell H.; AbdolHamid, Khaled S.; Elmiligui, Alaa A.

    2003-01-01

    A computational and experimental flow field analyses of separate flow chevron nozzles is presented. The goal of this study is to identify important flow physics and modeling issues required to provide highly accurate flow field data which will later serve as input to the Jet3D acoustic prediction code. Four configurations are considered: a baseline round nozzle with and without a pylon, and a chevron core nozzle with and without a pylon. The flow is simulated by solving the asymptotically steady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, up-wind, flux-difference splitting finite volume scheme and standard two-equation kappa-epsilon turbulence model with a linear stress representation and the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. The current CFD results are seen to be in excellent agreement with Jet Noise Lab data and show great improvement over previous computations which did not compensate for enhanced mixing due to high temperature gradients.

  8. The 3D Flow Field Around an Embedded Planet

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin

    2015-10-01

    3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.

  9. Doppler Global Velocimetry Measurements for Supersonic Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2005-01-01

    The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:

  10. Inclination of magnetic fields and flows in sunspot penumbrae

    NASA Astrophysics Data System (ADS)

    Langhans, K.; Scharmer, G. B.; Kiselman, D.; Löfdahl, M. G.; Berger, T. E.

    2005-06-01

    An observational study of the inclination of magnetic fields and flows in sunspot penumbrae at a spatial resolution of 0.2 arcsec is presented. The analysis is based on longitudinal magnetograms and Dopplergrams obtained with the Swedish 1-m Solar Telescope on La Palma using the Lockheed Solar Optical Universal Polarimeter birefringent filter. Data from two sunspots observed at several heliocentric angles between 12 ° and 39 ° were analyzed. We find that the magnetic field at the level of the formation of the Fe i-line wing (630.25 nm) is in the form of coherent structures that extend radially over nearly the entire penumbra giving the impression of vertical sheet-like structures. The inclination of the field varies up to 45 ° over azimuthal distances close to the resolution limit of the magnetograms. Dark penumbral cores, and their extensions into the outer penumbra, are prominent features associated with the more horizontal component of the magnetic field. The inclination of this dark penumbral component - designated B - increases outwards from approximately 40 ° in the inner penumbra such that the field lines are nearly horizontal or even return to the solar surface already in the middle penumbra. The bright component of filaments - designated A - is associated with the more vertical component of the magnetic field and has an inclination with respect to the normal of about 35 ° in the inner penumbra, increasing to about 60 ° towards the outer boundary. The magnetogram signal is lower in the dark component B regions than in the bright component A regions of the penumbral filaments. The measured rapid azimuthal variation of the magnetogram signal is interpreted as being caused by combined fluctuations of inclination and magnetic field strength. The Dopplergrams show that the velocity field associated with penumbral component B is roughly aligned with the magnetic field while component A flows are more horizontal than the magnetic field. The observations give

  11. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  12. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    PubMed

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  13. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  14. Meeting in Florida: Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions

    EPA Science Inventory

    The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...

  15. Meeting in Florida: Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions

    EPA Science Inventory

    The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...

  16. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  17. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  18. Horizontal flow fields observed in Hinode G-band images. II. Flow fields in the final stages of sunspot decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Balthasar, H.; Deng, N.; Liu, C.; Shimizu, T.; Wang, H.; Denker, C.

    2012-02-01

    Context. Generation and dissipation of magnetic fields is a fundamental physical process on the Sun. In comparison to flux emergence and the initial stages of sunspot formation, the demise of sunspots still lacks a comprehensive description. Aims: The evolution of sunspots is most commonly discussed in terms of their intensity and magnetic field. Here, we present additional information about the three-dimensional flow field in the vicinity of sunspots towards the end of their existence. Methods: We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca ii H images, whereas line-of-sight velocities were extracted from VTT echelle Hα λ656.28 nm spectra and Fe i λ630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms, in addition to the high-resolution observations for the entire disk passage of the active region. Results: We perform a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observe moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also detect a superpenumbral structure around this pore. We find that MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevents the establishment of similar well ordered flow patterns, which could be discerned around a tiny pore of merely 2 Mm diameter. After the disappearance of the sunspots/pores, a coherent patch of abnormal

  19. An analysis of the flow field in the region of the ASRM field joints

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  20. Field flow fractionation techniques to explore the "nano-world".

    PubMed

    Contado, Catia

    2017-04-01

    Field flow fractionation (FFF) techniques are used to successfully characterize several nanomaterials by sizing nano-entities and producing information about the aggregation/agglomeration state of nanoparticles. By coupling FFF techniques to specific detectors, researchers can determine particle-size distributions (PSDs), expressed as mass-based or number-based PSDs. This review considers FFF applications in the food, biomedical, and environmental sectors, mostly drawn from the past 4 y. It thus underlines the prominent role of asymmetrical flow FFF within the FFF family. By concisely comparing FFF techniques with other techniques suitable for sizing nano-objects, the advantages and the disadvantages of these instruments become clear. A consideration of select recent publications illustrates the state of the art of some lesser-known FFF techniques and innovative instrumental set-ups.

  1. Microscal Thermal Flow Field Fractionation of DNA by Size

    NASA Astrophysics Data System (ADS)

    Pearce, Jennifer; Alfahani, Faihan

    2015-11-01

    We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on the separation of DNA by length using thermal flow field fractionation in a microfluidic device. A temperature gradient in combination with fluid flow allows us to separate long and short strands of DNA. Shorter DNA fragments have higher Soret coefficients and therefore migrate more strongly in the temperature gradient than long strands. They are therefore closer to the channel walls and have a lower mean velocity than longer strands. The retention time in the channel for longer DNA chains is significantly shorter than for small chains. This technique has the advantage that long strands can be processed quickly, unlike traditional agarose gel techniques which require longer times for longer fragments.

  2. SUPERSONIC AND HYPERSONIC INTERFERENCE FLOW FIELDS AND HEATING

    NASA Technical Reports Server (NTRS)

    Morris, D. J.

    1994-01-01

    Small areas of high heat transfer and pressure can occur on a vehicle surface due to the influence of an impinging shock on the local flow. A method was needed to determine peak pressure and heating of these areas. This package is a system of computer programs designed to calculate two-dimensional shock interference patterns for six types of interference flows. Results also include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point. The six types of interference flow patterns considered are: 1) Type I interference patterns, occurring when two weak shocks of opposite families, BS (bow shock) and IS (impingment shock), intersect when the flow upstream of the impingement point is supersonic, or in the case of a blunt body, takes place well below the sonic point. 2) Type II interference pattern occurs when two shocks of opposite families (bow shock and impinging shock) intersect. Both shocks are weak as in type I, but are of such strength that in order to turn the flow, a Mach reflection must exist in the center of the flow field with an embedded subsonic region occurring between the intersection points (A & B) and the accompanying shear layers. Type II interference occurs on a blunt body when the impinging shock intersects the bow shock near the sonic point. 3) Type III shock interference pattern occurs when a weak impinging shock intersects a strong detached bow shock. On a blunt body the shock intersection occurs near or above the lower sonic point. 4) Type IV interference can occur when the impinging shock intersects a strong bow shock ahead of a subsonic flow region. On a blunt body this shock intersection is located between the lower sonic point and just above the body axis. The impinging shock causes a displacement of the bow shock and the formation of a supersonic jet that is embedded in the subsonic region. A jet bow shock is produced when the jet impinges

  3. Three-Dimensional Flow Fields and Bedform Migration in a Field-Scale Meandering Channel

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Palmsten, M. L.; Calantoni, J.; Khosronejad, A.; Sotiropoulos, F.

    2012-12-01

    The St. Anthony Falls Laboratory Outdoor StreamLab (OSL) at the University of Minnesota was constructed in 2008 as field-scale sand bed meandering stream channel within a vegetated floodplain. This state-of-the-art facility provides the unique opportunity to investigate physical, chemical, and biological stream and floodplain processes in a controlled outdoor environment with laboratory-quality measurement capabilities. The research presented here summarizes results from several experiments conducted in the OSL examining the effect of three-dimensional (3-D) flow fields on sediment transport and bedform development. Specifically, we examined bedform dimensions and flow fields in two scenarios 1) in the vicinity immobile rock structures, and 2) on the quasi-equilibrium bar that formed on the inner bank of a meander. A combination of methods were used for each study to determine the rate of scour hole formation, quasi-equilibrium bed elevation and variation in bed elevation, and bedform size and spacing. Bed topography data were collected at 1 cm resolution under live-bed conditions using a downward looking sonar probe attached to a mobile data acquisition (DAQ) cart. At each DAQ station, repeat scans were collected giving insight into the 3-dimensionality of bedforms in a meandering channel with and without rock structures. Supplementary data were collected at transects under two flow and sediment conditions (280 L/s and 6 kg/min and 199 L/s and 4 kg/min, for water and sediment, respectively) using an acoustic Doppler velocimeter (ADV) and a profiling ADV to measure 3-D flow fields and concurrent velocity and bed elevation data. These data were used in conjunction with data from optical remote sensing of bedform migration in the OSL to provide a validation dataset for a high-resolution 3-D hydro-morphodynamic model that is being used to simulate flow and sediment transport processes in meandering channels with embedded rock structures (Khosronejad et al. Adv. in

  4. Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM

    DTIC Science & Technology

    2013-12-01

    flow of non-Newtonian fluids in a single rotating frame pisoFoam Transient solver for incompressible flow based on PISO algorithm Compressible Flow...velocity p a reference static pressure based on the freestream condition C a coefficient in the k turbulence models HD equivalent hydraulic...distributor1. Furthermore, at Reference 1 DSTO developed in- house a separate VBM code, as an add-on to ANSYS Fluent based on Reference 2. Since early 2010

  5. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  6. Magnetic Field Generation and Particle Energization in Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Boettcher, Markus; Smith, Ian

    2012-10-01

    We present Particle-in-Cell simulation results of magnetic field generation by relativistic shear flows in collisionless electron-ion (e-ion) and electron-positron (e+e-) plasmas. In the e+e- case, small current filaments are first generated at the shear interface due to streaming instabilities of the interpenetrating particles from boundary perturbations. Such current filaments create transverse magnetic fields which coalesce into larger and larger flux tubes with alternating polarity, eventually forming ordered flux ropes across the entire shear boundary layer. Particles are accelerated across field lines to form power-law tails by semi-coherent electric fields sustained by oblique Langmuir waves. In the e-ion case, a single laminar slab of transverse flux rope is formed at the shear boundary, sustained by thin current sheets on both sides due to different drift velocities of electrons and ions. The magnetic field has a single polarity for the entire boundary layer. Electrons are heated to a fraction of the ion energy, but there is no evidence of power-law tail forming in this case.

  7. Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones

    NASA Technical Reports Server (NTRS)

    Tsinganos, K.; Low, B. C.

    1989-01-01

    A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.

  8. Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones

    NASA Technical Reports Server (NTRS)

    Tsinganos, K.; Low, B. C.

    1989-01-01

    A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.

  9. Aspects of flow visualization and density field monitoring of stratified flows

    NASA Astrophysics Data System (ADS)

    Davies, Peter A.

    Stratified flows which have considerable and wide-range engineering relevance, particularly in the areas of offshore and coastal engineering, and air and water modeling are reviewed. Particular attention is given to internal waves and solitons in estuaries, shallow seas, fjords, and the deep oceans; pollutant dispersion in the atmosphere and coastal waters; energy storage and management systems; ventilation and fire safety; saline intrusion; rotating machinery; velocity measurements based on nonintrusive techniques; density field data; velocity measurements based on intrusive techniques; and density field monitoring.

  10. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  11. Field-flow fractionation: addressing the nano challenge.

    PubMed

    Williams, S Kim Ratanathanawongs; Runyon, J Ray; Ashames, Akram A

    2011-02-01

    Field-flow fractionation is coming of age as a family of analytical methods for separating and characterizing macromolecules, nanoparticles, and particulates. The capabilities and versatility of these techniques are discussed in light of the challenges that are being addressed in analyzing nanometer-sized sample components and the insights gained through their use in applications ranging from materials science to biology. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).

  12. Real gas flow fields about three dimensional configurations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Lombard, C. K.; Davy, W. C.

    1983-01-01

    Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.

  13. Evaluation of the intranasal flow field through computational fluid dynamics.

    PubMed

    Hildebrandt, Thomas; Goubergrits, Leonid; Heppt, Werner Johannes; Bessler, Stephan; Zachow, Stefan

    2013-04-01

    A reliable and comprehensive assessment of nasal breathing is problematic and still a common issue in rhinosurgery. Impairments of nasal breathing need an objective approach. In this regard, currently rhinomanometry is the only standard diagnostic tool available but has various limitations. However, in the last decade, computational fluid dynamics (CFD) has become a promising method in facing the challenge of qualifying nasal breathing. This article presents use of CFD with a symptom-free subject and a symptomatic patient. Thereby, certain flow field features and changes before and after surgery were investigated. Moreover, the study outlines suggestions for concrete rhinologic CFD applications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Real gas flow fields about three dimensional configurations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Lombard, C. K.; Davy, W. C.

    1983-01-01

    Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.

  15. Field-flow fractionation of nucleic acids and proteins under large-scale gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.

    2007-05-01

    For the purpose of developing techniques for separating biological macromolecules, the present study reports a magnetic chromatography system employing high performance liquid chromatography and superconducting magnets of 14 and 5T. We observed chromatograms of catalase and albumin, which were eluded from columns that were exposed to magnetic fields of up to 14T with a maximum gradient of 90T/m. Without the magnetic fields, the chromatograms of the macromolecules showed a clear peak, while the chromatograms changed to have separated peaks for the same molecules after exposure to gradient magnetic fields. When the chromatocolumn was placed so the magnetic forces were opposite to the direction of flow, the albumin molecules separated into two groups. In addition, the chromatograms of catalase exposed to the magnetic fields indicated that the retention times of the two kinds of magnetically separated catalase were relatively changed if the column-field configuration was changed. Probably, the balance of paramagnetism in the heme and diamagnetism in the protein controlled the transport velocity under the influence of the gradient magnetic fields. In addition, the transport velocity of DNA molecules in the flow with a high gradient magnetic field was observed using a time-resolved spectrophotometric system.

  16. Effects of interaction between plasma-flow fields and electrostatic fields in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.

    2007-04-01

    Interaction between plasma-flow fields and electrostatic fields is considered as the most appropriate method for describing the characteristic properties of a dusty plasma. This method makes it possible to treat the openness of the dusty plasma systems and to describe the processes of self-organization and change in interaction between dust particles that are caused by the presence of plasma flows, in particular, to describe attraction between the dust particles at large distances, as well as the pairing of identically charged particles and the formation of complicated dusty structures including dusty plasma crystals. Interaction between the plasma-flow fields and electrostatic fields was previously taken into account only when considering particular problems but was not considered as the general characteristic property of the dusty plasma. It is emphasized that the model taking into account the plasma-flow fields and their interaction with the electrostatic fields is the only model that allows simultaneous explanation of all basic parameters characterizing the condensation of the dusty plasma to plasma crystals (coupling constant Γ, interparticle distance r min, and melting temperature T d) obtained in observations. Attraction between the dust particles at large distances leads to instability similar to gravitational instability, which was erroneously disregarded in previous descriptions of the dust sound. The corresponding critical size is similar to the Jeans radius. As a result of such attraction, dusty systems are structured, and such structuring is similar to known gravitational structuring and can explain the observation of dusty structures in most laboratory experiments on the dusty plasma.

  17. Simultaneous 3D Strain and Flow Fields Measurement of a Model Artery under Unsteady Flows

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Sheng, Jian

    2011-11-01

    Fluid-Structure Interaction imposes challenges in both aero-elasticity and biomedical studies. A simultaneous solid deformation and fluid flow measurement technique based on digital in-line holographic particle tracking velocimetry (PTV) has been developed. It allows us to measure concurrently 3D strain field of a deforming structure and the unsteady flow near it. To facilitate the measurement, both wall and flow are seeded with tracer particles distinguished by size. The motion of these tracers provides the 3D deformation of the wall and the 3D velocity distribution of the flow separately. A fully index matched facility including transparent artery and NaI solution is constructed to enable observations near the wall or through the complex geometry. An arterial model with the inner diameter of 9.5 mm and the thickness of 0.9 mm is manufactured from the cross-linked transparent PDMS at the mixing ratio of 1:10 and doped with mono-dispersed 19 μm polystyrene particles. A cinematic holographic PTV system is used to trace the 3D particle motion in the model and flow simultaneously. Preliminary study is performed within a sample volume of 15 × 15 × 75 mm with the spatial resolution of 7.4 μm in lateral and 10 μm in depth. Uncertainty and accuracy analysis will be reported. NSF Grant No: CBET-0844647.

  18. Magnetic Field Suppression of Flow in Semiconductor Melt

    NASA Technical Reports Server (NTRS)

    Fedoseyev, A. I.; Kansa, E. J.; Marin, C.; Volz, M. P.; Ostrogorsky, A. G.

    2000-01-01

    One of the most promising approaches for the reduction of convection during the crystal growth of conductive melts (semiconductor crystals) is the application of magnetic fields. Current technology allows the experimentation with very intense static fields (up to 80 KGauss) for which nearly convection free results are expected from simple scaling analysis in stabilized systems (vertical Bridgman method with axial magnetic field). However, controversial experimental results were obtained. The computational methods are, therefore, a fundamental tool in the understanding of the phenomena accounting during the solidification of semiconductor materials. Moreover, effects like the bending of the isomagnetic lines, different aspect ratios and misalignments between the direction of the gravity and magnetic field vectors can not be analyzed with analytical methods. The earliest numerical results showed controversial conclusions and are not able to explain the experimental results. Although the generated flows are extremely low, the computational task is a complicated because of the thin boundary layers. That is one of the reasons for the discrepancy in the results that numerical studies reported. Modeling of these magnetically damped crystal growth experiments requires advanced numerical methods. We used, for comparison, three different approaches to obtain the solution of the problem of thermal convection flows: (1) Spectral method in spectral superelement implementation, (2) Finite element method with regularization for boundary layers, (3) Multiquadric method, a novel method with global radial basis functions, that is proven to have exponential convergence. The results obtained by these three methods are presented for a wide region of Rayleigh and Hartman numbers. Comparison and discussion of accuracy, efficiency, reliability and agreement with experimental results will be presented as well.

  19. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Gillies, D. C.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  20. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Volz, M. P.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  1. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Gillies, D. C.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  2. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Volz, M. P.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  3. Flow field predictions for a slab delta wing at incidence

    NASA Technical Reports Server (NTRS)

    Conti, R. J.; Thomas, P. D.; Chou, Y. S.

    1972-01-01

    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.

  4. Graphene field-effect transistor application for flow sensing

    NASA Astrophysics Data System (ADS)

    Łuszczek, Maciej; Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek

    Microflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall flow sensor performance. In this work we propose graphene field-effect transistor (GFET) to be used as microflow sensor. Temperature distribution in graphene channel was simulated and the analysis of heat convection was performed to establish the relation between the fluidic flow velocity and the temperature gradient. It was shown that the negative temperature coefficient (NTC) of graphene could enable the self-protection of the device and should minimize sensing error from currentinduced heating. It was also argued that the planar design of the GFET sensor makes it suitable for the real application due to supposed mechanical stability of such a construction.

  5. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  6. Field measurements of boundary-layer flows in ventilated rooms

    SciTech Connect

    Zhang, J.S.; Shaw, C.Y.; MacDonald, R.A.; Nguyen-Thi, L.C.; Kerr, G.

    1995-12-31

    Profiles of air velocity and turbulent kinetic energy near the surfaces of walls, ceilings, floors, and furnishings were measured under field conditions for four space layouts of an office building: a partitioned office room, a single office room, a small conference room, and a computer room. Three types of flows near the surfaces were identified based on the measured data: (1) near-stagnant flow that had mean velocities and turbulent kinetic energies of less than 0.05 {+-} 0.025 m/s (10 {+-} 5 fpm) and 0.001 {+-} 0.001 (m/s){sup 2} (38.75 {+-} 38.75 (fpm){sup 2}), respectively; (2) weak turbulence flow that had mean velocities and turbulent kinetic energies from 0.05 {+-} 0.025 to 0.25 {+-} 0.05 m/s (10 {+-} 5 to 50 {+-} 10 fpm) and from 0.001 {+-} 0.001 to 0.01 {+-} 0.002 (m/s){sup 2} (38.75 {+-} 38.75 to 387.5 {+-} 77.5 [fpm]{sup 2}), respectively. The results are useful for establishing realistic airflow conditions in testing and modeling contaminant emission from building materials and indoor furnishings.

  7. Coating microchannels to improve Field-Flow Fractionation

    NASA Astrophysics Data System (ADS)

    Shendruk, Tyler N.; Slater, Gary W.

    2011-03-01

    We propose a selective-steric-mode Field-Flow Fractionation (ssFFF) technique for size separation of particles. Grafting a dense polymer brush onto the accumulation wall of a microchannel adds two novel effects to FFF: the particles must pay an entropic cost to enter the brush and the brush has a hydrodynamic thickness that shifts the no-slip condition. For small particles, the brush acts as a low-velocity region, leading to chromatographic-like retention. We present an analytical retention theory for small but finite-sized particles in a microchannel with a dense Alexander brush coating that possesses a well-defined hydrodynamic thickness. This theory is compared to a numerical solution for the retention ratio given by a flow approximated by the Brinkman equation and particle-brush interaction that is both osmotic and compressional. Large performance improvements are predicted in several regimes. Multi-Particle Collision simulations of the system assess the impact of factors neglected by the theory such as the dynamics of particle impingement on the brush subject to a flow.

  8. Fast wave power flow along SOL field lines in NSTX

    NASA Astrophysics Data System (ADS)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  9. Control of Flowing Liquid Films by Electrostatic Fields in Space

    NASA Technical Reports Server (NTRS)

    Griffing, E. M.; Bankoff, S. G.; Schluter, R. A.; Miksis, M. J.

    1999-01-01

    The interaction of a spacially varying electric field and a flowing thin liquid film is investigated experimentally for the design of a proposed light weight space radiator. Electrodes are utilized to create a negative pressure at the bottom of a fluid film and suppress leaks if a micrometeorite punctures the radiator surface. Experimental pressure profiles under a vertical falling film, which passes under a finite electrode, show that fields of sufficient strength can be used safely in such a device. Leak stopping experiments demonstrate that leaks can be stopped with an electric field in earth gravity. A new type of electrohydrodynamic instability causes waves in the fluid film to develop into 3D cones and touch the electrode at a critical voltage. Methods previously used to calculate critical voltages for non moving films are shown to be inappropriate for this situation. The instability determines a maximum field which may be utilized in design, so the possible dependence of critical voltage on electrode length, height above the film, and fluid Reynolds number is discussed.

  10. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part II. Experimental evaluation.

    PubMed

    Magnusson, Emma; Håkansson, Andreas; Janiak, John; Bergenståhl, Björn; Nilsson, Lars

    2012-08-31

    In this study we investigate the effect of programmed cross-flows on the error in the hydrodynamic radii (r(h)) determination with asymmetrical flow field-flow fractionation (AsFlFFF). Three different standard polystyrene particles (nominal radii of 30 and 40 and 50 nm) are fractionated with exponentially and linearly decaying cross-flows with different decay rates. Hydrodynamic radii are calculated according to retention theory including steric effects. Rapid decay is expected to give rise to systematic deviations in r(h) determination. The error in r(h) was found to be small when decay rates with half-lives longer than 6 min were used, whereas steeper decays could give rise to errors as high as 16% of the particle size. The error is often explained in terms of secondary relaxation. However, comparisons show that experimental errors are significantly larger than what would be expected due to secondary relaxation, suggesting that other factors also have to be considered in order to fully understand deviations for rapidly decaying cross-flow.

  11. Sudden Flow Changes Not Related to Field Errors

    NASA Astrophysics Data System (ADS)

    Hansen, A. K.; Chapman, J. T.; den Hartog, D. J.; Hegna, C. C.; Prager, S. C.; Sarff, J. S.

    1997-11-01

    It has heretofore been assumed that, in the Madison Symmetric Torus RFP, the slowing down of core-resonant tearing modes during a sawtooth crash is caused by external field errors(Den Hartog et. al., Phys. Plasmas 2) 2281, June 1995. New evidence suggests other torques are responsible. In plasmas which have been electrostatically biased to produce reversed toroidal rotation, the rotation speed increases at a crash, i.e. the usual trend is preserved. This is contrary to a torque exerted by a field error, which should always decrease the speed of the mode velocities. Examples of torques possibly responsible for the flow changes during the crash are internal electromagnetic torques between the modes and a fluctuation-driven torque acting on the plasma flow. These torques may also provide an explanation for the observed bifurcation^2 between reacceleration and permanent locking of the modes at an individual crash. We have observed that the mode deceleration occurs earlier for sawteeth in which permanent locking occurs than those where there is reacceleration; also, the core mode amplitudes increase earlier in the sawtooth cycle which immediately precedes locking.

  12. Microscopic and continuum descriptions of Janus motor fluid flow fields.

    PubMed

    Reigh, Shang Yik; Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2016-11-13

    Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  13. TAS: A Transonic Aircraft/Store flow field prediction code

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1983-01-01

    A numerical procedure has been developed that has the capability to predict the transonic flow field around an aircraft with an arbitrarily located, separated store. The TAS code, the product of a joint General Dynamics/NASA ARC/AFWAL research and development program, will serve as the basis for a comprehensive predictive method for aircraft with arbitrary store loadings. This report described the numerical procedures employed to simulate the flow field around a configuration of this type. The validity of TAS code predictions is established by comparison with existing experimental data. In addition, future areas of development of the code are outlined. A brief description of code utilization is also given in the Appendix. The aircraft/store configuration is simulated using a mesh embedding approach. The computational domain is discretized by three meshes: (1) a planform-oriented wing/body fine mesh, (2) a cylindrical store mesh, and (3) a global Cartesian crude mesh. This embedded mesh scheme enables simulation of stores with fins of arbitrary angular orientation.

  14. Microscopic and continuum descriptions of Janus motor fluid flow fields

    NASA Astrophysics Data System (ADS)

    Reigh, Shang Yik; Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2016-11-01

    Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  15. Modeling local flotation frequency in a turbulent flow field.

    PubMed

    Kostoglou, Margaritis; Karapantsios, Thodoris D; Matis, Kostas A

    2006-09-25

    Despite the significance of turbulent fluid motion for enhancing the flotation rate in several industrial processes, there is no unified approach to the modeling of the flotation rate in a turbulent flow field. Appropriate modeling of the local flotation (bubble-particle attachment) rate is the basic constituent for global modeling and prediction of flotation equipment efficiency. Existing approaches for the local flotation rate are limited to specific set of conditions like high or low turbulence. In addition, the combined effects of buoyant bubble rise and/or particle gravity settling are usually ignored. The situation is even vaguer for the computation of collision and attachment efficiencies which are usually computed using the gravity induced velocities although the dominant mode of flotation is the turbulent one. The scope of this work is clear: the development of a general expression for the flotation rate in a turbulent flow field which will cover in a unified and consistent way all possible sets of the problem parameters. This is achieved by using concepts from statistical approach to homogeneous turbulence and gas kinetic theory.

  16. Unsteady-flow-field predictions for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1991-01-01

    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.

  17. Instantaneous velocity field imaging instrument for supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Legner, H. H.; Mcmanus, K. R.; Mulhall, P. A.; Parker, T. E.; Sonnenfroh, D. M.

    1993-01-01

    The technical tasks conducted to develop and demonstrate a new gas velocity measurement technique for high enthalpy reacting flows is described. The technique is based on Doppler-shifted Planar Laser-induced Fluorescence (PLIF) imaging of the OH radical. The imaging approach permits, in principle, single-shot measurements of the 2-D distribution of a single velocity component in the measurement plane, and is thus a technique of choice for applications in high enthalpy transient flow facilities. In contrast to previous work in this area, the present program demonstrated an approach which modified the diagnostic technique to function under the constraints of practical flow conditions of engineering interest, rather than vice-versa. In order to accomplish the experimental demonstrations, the state-of-the-art in PLIF diagnostic techniques was advanced in several ways. Each of these tasks is described in detail and is intended to serve as a reference in supporting the transition of this new capability to the fielded PLIF instruments now installed at several national test facilities. Among the new results of general interest in LlF-based flow diagnostics, a detailed set of the first measurements of the collisional broadening and shifting behavior of OH (1,0) band transitions in H7-air combustion environments is included. Such measurements are critical in the design of a successful strategy for PLIF velocity imaging; they also relate to accurate concentration and temperature measurements, particularly in compressible flow regimes. Furthermore, the results shed new light on the fundamental relationship between broadening and energy transfer collisions in OH A(sup 2)Sigma(+)v(sup ') = 1. The first single-pulse, spectrally-resolved measurements of the output of common pulsed dye lasers were also produced during the course of this effort. As with the OH broadening measurements, these data are a significant aspect of a successful velocity imaging strategy, and also have

  18. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  19. Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations

    NASA Technical Reports Server (NTRS)

    Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.

    1992-01-01

    Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.

  20. Several examples where turbulence models fail in inlet flow field analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1993-01-01

    Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.

  1. Seismology of Oscillating Flux Tube with Twisted Magnetic Field and Plasma Flow

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2017-08-01

    Transverse oscillations of a thin coronal loop in a zero-beta plasma in the presence of a twisted magnetic field and flow are investigated. The dispersion relation is obtained in the limit of weak twist. The twisted magnetic field modifies the phase difference and asymmetry of standing kink oscillations caused by the flow. Using data from observations the kink speed and flow speed have been determined. The presence of the twisted magnetic field can cause underestimation or overestimation of the flow speed in coronal loops depending on the direction of the flow and twisted magnetic field, but a twisted magnetic field has little effect on the estimated value of the kink speed.

  2. Several examples where turbulence models fail in inlet flow field analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Bernhard H.

    Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.

  3. Monitoring the growth of polyoxomolybdate nanoparticles in suspension by flow field-flow fractionation.

    PubMed

    Chen, Bailin; Jiang, Huijian; Zhu, Yan; Cammers, Arthur; Selegue, John P

    2005-03-30

    We follow the evolution of polyoxomolybdate nanoparticles in suspensions derived from the keplerate (NH4)42[MoVI72MoV60O372(CH3CO2)30(H2O)72].ca..300H2O.ca..10CH3CO2NH4 ({Mo132}) by flow field-flow fractionation (FlFFF) to monitor the particle-size distribution in situ, atomic force and high-resolution transmission electron microscopy (AFM, SEM, and HRTEM) to confirm particle sizes, inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the Mo content of the FlFFF-separated fractions, and UV/visible spectroscopy to confirm the identity of the species in suspension. We observe the formation of 3-75-nm polyoxomolybdate particles in suspension and the dynamic growth of {Mo132} crystals.

  4. Hollow-Fiber Flow Field-Flow Fractionation for Mass Spectrometry: From Proteins to Whole Bacteria

    NASA Astrophysics Data System (ADS)

    Reschiglian, Pierluigi; Zattoni, Andrea; Rambaldi, Diana Cristina; Roda, Aldo; Hee Moon, Myeong

    Mass spectrometry (MS) provides analyte identification over a wide molar-mass range. However, particularly in the case of complex matrices, this ability is often enhanced by the use of pre-MS separation steps. A separation, prototype technique for the "gentle" fractionation of large/ultralarge analytes, from proteins to whole cells, is here described to reduce complexity and maintain native characteristics of the sample before MS analysis. It is based on flow field-flow fractionation, and it employs a micro-volume fractionation channel made of a ca. 20 cm hollow-fiber membrane of sub-millimeter section. The key advantages of this technique lie in the low volume and low-cost of the channel, which makes it suitable to a disposable usage. Fractionation performance and instrumental simplicity make it an interesting methodology for in-batch or on-line pre-MS treatment of such samples.

  5. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge

    PubMed Central

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Mello, Andrew J.

    2015-01-01

    Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the down-scaled platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency. PMID:26258119

  6. Measurements of surface-pressure and wake-flow fluctuations in the flow field of a whitcomb supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Roos, F. W.; Riddle, D. W.

    1977-01-01

    Measurements of surface pressure and wake flow fluctuations were made as part of a transonic wind tunnel investigation into the nature of a supercritical airfoil flow field. Emphasis was on a range of high subsonic Mach numbers and moderate lift coefficients corresponding to the development of drag divergence and buffeting. Fluctuation data were analyzed statistically for intensity, frequency content, and spatial coherence. Variations in these parameters were correlated with changes in the mean airfoil flow field.

  7. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  8. An accurate method for evaluating the kernel of the integral equation relating lift to downwash in unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1982-01-01

    The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.

  9. An optical flow-based method for velocity field of fluid flow estimation

    NASA Astrophysics Data System (ADS)

    Głomb, Grzegorz; Świrniak, Grzegorz; Mroczka, Janusz

    2017-06-01

    The aim of this paper is to present a method for estimating flow-velocity vector fields using the Lucas-Kanade algorithm. The optical flow measurements are based on the Particle Image Velocimetry (PIV) technique, which is commonly used in fluid mechanics laboratories in both research institutes and industry. Common approaches for an optical characterization of velocity fields base on computation of partial derivatives of the image intensity using finite differences. Nevertheless, the accuracy of velocity field computations is low due to the fact that an exact estimation of spatial derivatives is very difficult in presence of rapid intensity changes in the PIV images, caused by particles having small diameters. The method discussed in this paper solves this problem by interpolating the PIV images using Gaussian radial basis functions. This provides a significant improvement in the accuracy of the velocity estimation but, more importantly, allows for the evaluation of the derivatives in intermediate points between pixels. Numerical analysis proves that the method is able to estimate even a separate vector for each particle with a 5× 5 px2 window, whereas a classical correlation-based method needs at least 4 particle images. With the use of a specialized multi-step hybrid approach to data analysis the method improves the estimation of the particle displacement far above 1 px.

  10. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames

    SciTech Connect

    Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo

    2007-04-15

    Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally

  11. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    secondary flow structures. Unlike the baseline, these secondary flow structures produced downwash along the centerline. The formation of such structures was caused by the core flow stagnating on the lower surface near the aerodynamic interface plane. Using the two-dimensional steady jet resulted in an increase in the spanwise flow within the inlet and a reduction in the energy content of the 350 Hz shedding frequency. Unsteady forcing did not show much improvement over steady forcing for this configuration. A spanwise varying control jet and a hybrid Coanda jet / vortex generator jets were tested to reduce the three-dimensionality of the flow field. It was found that anytime the flow control method suppressed separation along the centerline, counter-rotating vortices existed in the lower corners of the aerodynamic interface plane.

  12. A conservative approach for flow field calculations on multiple grids

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flow fields about complex configurations, it is very difficult to construct body-fitted coordinate systems. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach and its applications are investigated in this study. The method follows the conservative approach and provides conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-state Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Some steady state solutions of the Euler equations are presented and discussed.

  13. Sedimentation field flow fractionation monitoring of bimodal wheat starch amylolysis.

    PubMed

    Salesse, C; Battu, S; Begaud-Grimaud, G; Cledat, D; Cook-Moreau, J; Cardot, P J P

    2006-10-06

    Enzymatic starch granule hydrolysis is one of the most important reactions in many industrial processes. In this study, we investigated the capacity of sedimentation field flow fractionation (SdFFF) to monitor the amylolysis of a bimodal starch population: native wheat starch. Results demonstrated a correlation between fractogram changes and enzymatic hydrolysis. Furthermore, SdFFF was used to sort sub-populations which enhanced the study of granule size distribution changes occurring during amylolysis. These results show the interest in coupling SdFFF with particle size measurement methods to study complex starch size/density modifications associated to hydrolysis. These results suggested different applications such as the association of SdFFF with structural investigations to better understand the specific mechanisms of amylolysis or starch granule structure.

  14. Asymmetric flow field flow fractionation with light scattering detection - an orthogonal sensitivity analysis.

    PubMed

    Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S

    2016-11-18

    Asymmetric flow field flow fractionation (AF(4)) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF(4) primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2((5-1)) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF(4) instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2((5-2)) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF(4) instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis.

  15. Constraints on RG flow for four dimensional quantum field theories

    NASA Astrophysics Data System (ADS)

    Jack, I.; Osborn, H.

    2014-06-01

    The response of four dimensional quantum field theories to a Weyl rescaling of the metric in the presence of local couplings and which involve a, the coefficient of the Euler density in the energy momentum tensor trace on curved space, is reconsidered. Previous consistency conditions for the anomalous terms, which implicitly define a metric G on the space of couplings and give rise to gradient flow like equations for a, are derived taking into account the role of lower dimension operators. The results for infinitesimal Weyl rescaling are integrated to finite rescalings e2σ to a form which involves running couplings gσ and which interpolates between IR and UV fixed points. The results are also restricted to flat space where they give rise to broken conformal Ward identities. Expressions for the three loop Yukawa β-functions for a general scalar/fermion theory are obtained and the three loop contribution to the metric G for this theory is also calculated. These results are used to check the gradient flow equations to higher order than previously. It is shown that these are only valid when β→B, a modified β-function, and that the equations provide strong constraints on the detailed form of the three loop Yukawa β-function. N=1 supersymmetric Wess-Zumino theories are also considered as a special case. It is shown that the metric for the complex couplings in such theories may be restricted to a hermitian form.

  16. Application of strand meshes to complex aerodynamic flow fields

    NASA Astrophysics Data System (ADS)

    Katz, Aaron; Wissink, Andrew M.; Sankaran, Venkateswaran; Meakin, Robert L.; Chan, William M.

    2011-07-01

    We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using "strands" is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.

  17. Gravitational field-flow fractionation of human hemopoietic stem cells.

    PubMed

    Roda, Barbara; Reschiglian, Pierluigi; Alviano, Francesco; Lanzoni, Giacomo; Bagnara, Gian Paolo; Ricci, Francesca; Buzzi, Marina; Tazzari, Pier Luigi; Pagliaro, Pasqualepaolo; Michelini, Elisa; Roda, Aldo

    2009-12-25

    New cell sorting methodologies, which are simple, fast, non-invasive, and able to isolate homogeneous cell populations, are needed for applications ranging from gene expression analysis to cell-based therapy. In particular, in the forefront of stem cell isolation, progenitor cells have to be separated under mild experimental conditions from complex heterogeneous mixtures prepared from human tissues. Most of the methodologies now employed make use of immunological markers. However, it is widely acknowledged that specific markers for pluripotent stem cells are not as yet available, and cell labelling may interfere with the differentiation process. This work presents for the first time gravitational field-flow fractionation (GrFFF), as a tool for tag-less, direct selection of human hematopoietic stem and progenitor cells from cell samples obtained by peripheral blood aphaeresis. These cells are responsible to repopulate the hemopoietic system and they are used in transplantation therapies. Blood aphaeresis sample were injected into a GrFFF system and collected fractions were characterized by flow cytometry for CD34 and CD45 expression, and then tested for viability and multi-differentiation potential. The developed GrFFF method allowed obtaining high enrichment levels of viable, multi-potent hematopoietic stem cells in specific fraction and it showed to fulfil major requirements of analytical performance, such as selectivity and reproducibility of the fractionation process and high sample recovery.

  18. Human lymphocyte sorting by gravitational field-flow fractionation.

    PubMed

    Roda, Barbara; Reschiglian, Pierluigi; Zattoni, Andrea; Tazzari, Pier Luigi; Buzzi, Marina; Ricci, Francesca; Bontadini, Andrea

    2008-09-01

    Interest in biological studies on various cell types for many biomedical applications, from research to patient treatments, is constantly increasing. The ability to discriminate (sort) and/or quantify distinct subpopulations of cells has become increasingly important. For instance, not only detection but also the highest depletion of neoplastic cells from normal cells is an important requisite in the autologous transplantation of lymphocytes for blood cancer treatments. In this work, gravitational field-flow fractionation (GrFFF) is shown to be effective for sorting a heterogeneous mixture of human, living lymphocytes constituted of neoplastic B cells from a Burkitt lymphoma cell line and healthy T and B lymphocytes from blood samples. GrFFF does not require the use of fluorescent immunotags for sorting cells, and the sorted cells can be collected for their further characterization. Flow cytometry was used to assess the viability of the cells collected, and to evaluate the cell fractionation achieved. A low amount of neoplastic B lymphocytes (less than 2%) was found in a specific fraction obtained by GrFFF. The high depletion from neoplastic cells (more than 98%) was confirmed by a clonogenicity test.

  19. Numerical simulation of supersonic and hypersonic inlet flow fields

    NASA Technical Reports Server (NTRS)

    Mcrae, D. Scott; Kontinos, Dean A.

    1995-01-01

    This report summarizes the research performed by North Carolina State University and NASA Ames Research Center under Cooperative Agreement NCA2-719, 'Numerical Simulation of Supersonic and Hypersonic Inlet Flow Fields". Four distinct rotated upwind schemes were developed and investigated to determine accuracy and practicality. The scheme found to have the best combination of attributes, including reduction to grid alignment with no rotation, was the cell centered non-orthogonal (CCNO) scheme. In 2D, the CCNO scheme improved rotation when flux interpolation was extended to second order. In 3D, improvements were less dramatic in all cases, with second order flux interpolation showing the least improvement over grid aligned upwinding. The reduction in improvement is attributed to uncertainty in determining optimum rotation angle and difficulty in performing accurate and efficient interpolation of the angle in 3D. The CCNO rotational technique will prove very useful for increasing accuracy when second order interpolation is not appropriate and will materially improve inlet flow solutions.

  20. A Field Study of Particle Orientations in Shear Flows

    NASA Astrophysics Data System (ADS)

    Nayak, A. R.; Twardowski, M.; Sullivan, J. M.; McFarland, M.; Stockley, N.; Nardelli, S.

    2016-02-01

    Oceanic waters are populated by a myriad of particles of various shapes and sizes which play a critical role in the propagation and scattering of light. Ocean optics theory and models (e.g., radiative transfer) inherently assume that the particles are randomly oriented in the water column. Increasingly, this critical assumption has been challenged by a handful of recent theoretical and experimental studies. Thus, it is imperative to thoroughly assess the prevalence of any non-random particle orientation by characterizing the biophysical interactions through in situ measurements in natural, undisturbed oceanic flows. To achieve this objective, a suite of optical and acoustic instruments were concurrently deployed during field measurements recently conducted at East Sound, WA. The platform consisted of the following instrumentation: (i) a submersible holographic microscopy system (HOLOCAM) capable of acquiring video images at 15 Hz, while maintaining adequate resolution to characterize particles ranging in size over three orders of magnitude, i.e. 1 micron to 5 mm; (ii) an acoustic Doppler velocimeter and a high resolution Doppler profiler to provide simultaneous measurements of the turbulence and shear in the water column, and (iii) an optical package consisting of several instruments at different orientations measuring polarized and unpolarized volume scattering functions and path attenuation. Over a span of 10 days, nearly 40 runs, each spanning 10-15 minutes were obtained by slowly profiling the platform with a free fall velocity of 4-10 cm/s through the water column under varying environmental conditions. In this presentation, we explore whether the local small scale flow structure plays an important role in preferentially orienting the particle field.

  1. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  2. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  3. Biomat flow: fluorescent dye field experiments, pore-scale modeling of flow and transport properties, and field-scale flow models

    NASA Astrophysics Data System (ADS)

    Gerke, K.; Sidle, R. C.; Mallants, D.; Vasilyev, R.; Karsanina, M.; Skvortsova, E. B.; Korost, D. V.

    2013-12-01

    Recent studies highlight the important role that the upper litter layer in forest soils (biomat) plays in hillslope and catchment runoff generation. This biomat layer is a very loose material with high porosity and organic content. Direct sampling is usually problematic due to limited layer thickness. Conventional laboratory measurements can mobilize solids or even cause structure failure of the sample thus making measurements unreliable. It is also difficult to assess local variation in soil properties and transition zones using these methods; thus, they may not be applicable to biomat studies. However, if the physics of flow through this layer needs to be quantified and incorporated into a model, a detailed study of hydraulic properties is necessary. Herein we show the significance of biomat flow by staining experiments in the field, study its structure and transition to mineral soil layer using X-ray micro-tomography, assess hydraulic properties and structure differences using a pore-scale modeling approach, and, finally, use conventional variably-saturated flow modeling based on Richards equation to simulate flow in the hillslope. Using staining tracers we show that biomat flow in forested hillslopes can extend long distances (lateral displacement was about 1.2 times larger than for subsurface lateral flow) before infiltration occurs into deeper layers. The three-dimensional structure of an undisturbed sample (4 x 3 x 2.5 cm) of both biomat and deeper consolidated soil was obtained using an X-ray micro-tomography device with a resolution of 15 um. Local hydraulic properties (e.g., permeability and water retention curve) for numerous layers (e.g., transition zones, biomat, mineral soil) were calculated using Stokes flow FDM solution and pore-network modeling. Anisotropy, structure differences, and property fluctuations of different layers were quantified using local porosity analysis and correlation functions. Current results support the hypothesis that small

  4. Biomat flow: fluorescent dye field experiments, pore-scale modeling of flow and transport properties, and field-scale flow models

    NASA Astrophysics Data System (ADS)

    Gerke, K.; Sidle, R. C.; Mallants, D.; Vasilyev, R.; Karsanina, M.; Skvortsova, E. B.; Korost, D. V.

    2011-12-01

    Recent studies highlight the important role that the upper litter layer in forest soils (biomat) plays in hillslope and catchment runoff generation. This biomat layer is a very loose material with high porosity and organic content. Direct sampling is usually problematic due to limited layer thickness. Conventional laboratory measurements can mobilize solids or even cause structure failure of the sample thus making measurements unreliable. It is also difficult to assess local variation in soil properties and transition zones using these methods; thus, they may not be applicable to biomat studies. However, if the physics of flow through this layer needs to be quantified and incorporated into a model, a detailed study of hydraulic properties is necessary. Herein we show the significance of biomat flow by staining experiments in the field, study its structure and transition to mineral soil layer using X-ray micro-tomography, assess hydraulic properties and structure differences using a pore-scale modeling approach, and, finally, use conventional variably-saturated flow modeling based on Richards equation to simulate flow in the hillslope. Using staining tracers we show that biomat flow in forested hillslopes can extend long distances (lateral displacement was about 1.2 times larger than for subsurface lateral flow) before infiltration occurs into deeper layers. The three-dimensional structure of an undisturbed sample (4 x 3 x 2.5 cm) of both biomat and deeper consolidated soil was obtained using an X-ray micro-tomography device with a resolution of 15 um. Local hydraulic properties (e.g., permeability and water retention curve) for numerous layers (e.g., transition zones, biomat, mineral soil) were calculated using Stokes flow FDM solution and pore-network modeling. Anisotropy, structure differences, and property fluctuations of different layers were quantified using local porosity analysis and correlation functions. Current results support the hypothesis that small

  5. A new flow field and its two-dimension model for polymer electrolyte membrane fuel cells (PEMFCs)

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaochun; Ouyang, Wenze; Liu, Changpeng; Lu, Tianhong; Xing, Wei; An, Lijia

    A new flow field was designed to search flow fields fitting polymer electrolyte membrane fuel cells (PEMFCs) better due its extensible. There are many independent inlets and outlets in the new flow field. The new flow field we named NINO can extend to be more general when pressures at the inlet and outlet vary and some usual flow fields will be obtained. A new mathematical model whose view angle is obverse is used to describe the flow field.

  6. Magnetic field flow phenomena in a falling particle receiver

    NASA Astrophysics Data System (ADS)

    Armijo, Kenneth M.; Ho, Clifford; Anderson, Ryan; Christian, Joshua; Babiniec, Sean; Ortega, Jesus

    2016-05-01

    Concentrating solar power (CSP) falling particle receivers are being pursued as a desired means for utilizing low-cost, high-absorptance particulate materials that can withstand high concentration ratios (˜1000 suns), operating temperatures above 700 °C, and inherent storage capabilities which can be used to reduce to levelized cost of electricity (LCOE)1. Although previous falling particle receiver designs have proven outlet temperatures above 800 °C, and thermal efficiencies between 80-90%, performance challenges still exist to operate at higher concentration ratios above 1000 suns and greater solar absorptance levels. To increase absorptance, these receivers will require enhanced particle residence time within a concentrated beam of sunlight. Direct absorption solid particle receivers that can enhance this residence time will have the potential to achieve heat-transfer media temperatures2 over 1000 °C. However, depending on particle size and external forces (e.g., external wind and flow due to convective heat losses), optimized particle flow can be severely affected, which can reduce receiver efficiency. To reduce particle flow destabilization and increase particle residence time on the receiver an imposed magnetic field is proposed based on a collimated design for two different methodologies. These include systems with ferromagnetic and charged particle materials. The approaches will be analytically evaluated based on magnetic field strength, geometry, and particle parameters, such as magnetic moment. A model is developed using the computational fluid dynamics (CFD) code ANSYS FLUENT to analyze these approaches for a ˜2 MWth falling particle receiver at Sandia National Laboratories5,6. Here, assessment will be made with respect to ferromagnetic particles such as iron-oxides, as well as charged particles. These materials will be parametrically assessed (e.g., type, size, dipole moment and geometry) over a range of magnetic permeability, μ values. Modeling

  7. Kinematics and flow fields in 3D around swimming lamprey using light field PIV

    NASA Astrophysics Data System (ADS)

    Lehn, Andrea M.; Techet, Alexandra H.

    2016-11-01

    The fully time-resolved 3D kinematics and flow field velocities around freely swimming sea lamprey are derived using 3D light field imaging PIV. Lighthill's Elongated Body Theory (EBT) predicts that swimmers with anguilliform kinematics likened to lamprey, and similarly eels, will exhibit relatively poor propulsive efficiency. However, previous experimental studies of eel locomotion utilizing 2D PIV suggest disagreement with EBT estimates of wake properties; although, the thrust force generated by such swimmers has yet to be fully resolved using 3D measurements. A light field imaging array of multiple high-speed cameras is used to perform 3D synthetic aperture PIV around ammocoete sea lamprey (Petromyzon marinus). Fluid mechanics equations are used to determine thrust force generation, leading experimental studies closer to underpinning the physical mechanisms that enable aquatic locomotion of long, slender undulatory swimmers.

  8. Flow field description of the Space Shuttle Vernier reaction control system exhaust plumes

    NASA Technical Reports Server (NTRS)

    Cerimele, Mary P.; Alred, John W.

    1987-01-01

    The flow field for the Vernier Reaction Control System (VRCS) jets of the Space Shuttle Orbiter has been calculated from the nozzle throat to the far-field region. The calculations involved the use of recently improved rocket engine nozzle/plume codes. The flow field is discussed, and a brief overview of the calculation techniques is presented. In addition, a proposed on-orbit plume measurement experiment, designed to improve future estimations of the Vernier flow field, is addressed.

  9. Different elution modes and field programming in gravitational field-flow fractionation. Effect of channel angle.

    PubMed

    Park, Mi Ri; Kang, Da Young; Chmelik, Josef; Kang, Namgoo; Kim, Jin Seog; Lee, Seungho

    2008-10-31

    Gravitational field-flow fractionation (GrFFF) has been shown to be useful for separation and characterization of various types of micrometer-sized particles. It has been recognized however that GrFFF is less versatile than other members of FFF because the external field (Earth's gravity) in GrFFF is relatively weak and is not tunable (constant), which makes the force acting on the particles constant. A few approaches have been suggested to control the force acting on particles in GrFFF. They include (1) changing the angle between the Earth's gravitational field and the longitudinal axis of the channel, and (2) the use of carrier liquid having different densities. In the hyperlayer mode of GrFFF, the hydrodynamic lift force (HLF) also act on particles. The existence of HLF allows other means of changing the force acting on the particles in GrFFF. They include (1) the flow rate programming, or (2) the use of channels having non-constant cross-section. In this study, with polystyrene latex beads used as model particles, the channel angle was varied to study its effect on elution parameters (such as selectivity, band broadening and resolution) in the steric or in the hyperlayer mode of GrFFF. In addition, the effects of the channel thickness and the flow rate on the elution parameters were also investigated. It was found that, in the steric mode, the resolution decreases as the flow rate increases due to increased zone broadening despite of the increase in the selectivity. At a constant volumetric flow rate, both the zone broadening and the selectivity increase as the channel thickness increases, resulting in the net increase in the resolution. It was also found that the retention time decreases as the channel angle increases in both up- and down-flow positions. The zone broadening tends to increase almost linearly with the channel angle, while no particular trends were found in selectivity. As a result, the resolution decreases as the channel angle increases.

  10. Flow field-flow fractionation and multiangle light scattering for ultrahigh molecular weight sodium hyaluronate characterization.

    PubMed

    Moon, Myeong Hee

    2010-11-01

    This review describes the utility of flow field-flow fractionation coupled with multiangle light scattering and differential refractive index (FlFFF-MALS-DRI) detection methods for the separation of ultrahigh molecular weight sodium hyaluronate (NaHA) materials and for the characterization of molecular weight distribution as well as structural determination. The sodium salt of hyaluronic acid (HA), NaHA, is a water-soluble polysaccharide with a broad range of molecular weights (10(5) -10(8) ) found in various naturally occurring fluids and tissues. Basic principles of FlFFF-MALS using field programming for the separation of the degraded products of NaHA prepared by treating raw materials with depolymerization or degradation processes such as membrane filtration, enzymatic degradation, ultrasonic degradation, alkaline reaction, irradiation by γ-rays, and thermal treatment for the development of pharmaceutical applications are introduced. Changes in molecular weight distribution and conformation of NaHA materials due to external stimuli are also discussed. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.

    PubMed

    Aono, Hikaru; Liang, Fuyou; Liu, Hao

    2008-01-01

    We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.

  12. Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces

    PubMed Central

    Li, Guo-Shi; Tricoche, Xavier; Weiskopf, Daniel; Hansen, Charles

    2009-01-01

    We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the visualization of flows defined over curved surfaces. In this scheme, the surface and its associated flow are segmented into overlapping patches, which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection Convolution (UFAC), or dye advection. It also prevents visual artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into hardware accelerated flow visualization techniques for interactive performance. PMID:18599918

  13. Magnetic Field Generation and Zonal Flows in the Gas Giants

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  14. Introducing dielectrophoresis as a new force field for field-flow fractionation.

    PubMed Central

    Huang, Y; Wang, X B; Becker, F F; Gascoyne, P R

    1997-01-01

    We present the principle of cell characterization and separation by dielectrophoretic field-flow fractionation and show preliminary experimental results. The operational device takes the form of a thin chamber in which the bottom wall supports an array of microelectrodes. By applying appropriate AC voltage signals to these electrodes, dielectrophoretic forces are generated to levitate cells suspended in the chamber and to affect their equilibrium heights. A laminar flow profile is established in the chamber so that fluid flows faster with increasing distance from the chamber walls. A cell carried in the flow stream will attain an equilibrium height, and a corresponding velocity, based on the balance of dielectrophoretic, gravitational, and hydrodynamic lift forces it experiences. We describe a theoretical model for this system and show that the cell velocity is a function of the mean fluid velocity, the voltage and frequency of the signals applied to the electrodes, and, most significantly, the cell dielectric properties. The validity of the model is demonstrated with human leukemia (HL-60) cells subjected to a parallel electrode array, and application of the device to separating HL-60 cells from peripheral blood mononuclear cells is shown. PMID:9251828

  15. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.

    PubMed

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-11

    Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP.

  16. Program to stimulate graduate training in the field of aeroacoustics. [cross correlation of flow fields of a jet-blown flap with far fields

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1975-01-01

    An experiment is reported to cross correlate the output of hot film probes located at various points in the flow field of a jet-blown flap with the output of microphones in the acoustic far field. Fluid dynamic measurements of the flow fields of the test configuration are reported.

  17. Field_flow Fractionation For The Characterisation of Natural Colloids

    NASA Astrophysics Data System (ADS)

    von der Kammer, F.; Saal, C.; Baborowski, M.

    The investigation of colloid contribution to transport processes requires a detailed analysis of the actually and potentially mobile colloidal phases present in a certain system of interest. In general all important parameters can not be determined with a single method. Field Flow Fractionation (FFF) is considered as a powerful technique regarding the analysis of colloid molecular weight or size-distributions. FFF can be labelled as a hydrodynamic chromatography that provides a fractionation of an usu- ally aqueous colloid dispersion due to the selective retention of particles/colloids in a ribbon shaped channel. The retention ratios of particles are depending on particle volume, density or diffusion coefficient, depending on the type of channel and method used. In contrast to methods like size exclusion chromatography, the absence of a sta- tionary phase enables FFF to cover a particle size range of theoretically five orders of magnitude (0.001 to 100 µm) and provides the analysis even of fragile aggregates. FFF equipped with modern detection systems like on-line (or quasi-on-line) static or dynamic light scattering detectors provide an internal verification of the fractionation itself and methods to retrieve the particles mean shape factor from the combination of different fractionation/detection methods are in development. Moreover, regarding the light scattering techniques, FFF provides close to monodisperse sample slices, enabling the scattering techniques to work at optimal conditions even with broad dis- tributed samples. ICP-detectors provide main and trace element distributions over par- ticle size. The presentation will give a critical overview of the application of advanced FFF methods on natural colloidal samples, covering Flow-FFF, Sedimentation-FFF and hyphenated methods using static and dynamic light scattering, UV-VIS and fluo- rescence detection as well as ICP-MS couplings.

  18. Experiments and modeling of dilution jet flow fields

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1986-01-01

    Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio.

  19. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  20. Study on performance and flow field of an undershot cross-flow water turbine comprising different number of blades

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi

    2017-10-01

    Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.

  1. Large-volume lava flow fields on Venus: Dimensions and morphology

    NASA Technical Reports Server (NTRS)

    Lancaster, M. G.; Guest, J. E.; Roberts, K. M.; Head, James W., III

    1992-01-01

    Of all the volcanic features identified in Magellan images, by far the most extensive and really important are lava flow fields. Neglecting the widespread lava plains themselves, practically every C1-MIDR produced so far contains several or many discrete lava flow fields. These range in size from a few hundred square kilometers in area (like those fields associated with small volcanic edifices for example), through all sizes up to several hundred thousand square kilometers in extent (such as many rift related fields). Most of these are related to small, intermediate, or large-scale volcanic edifices, coronae, arachnoids, calderas, fields of small shields, and rift zones. An initial survey of 40 well-defined flow fields with areas greater than 50,000 sq km (an arbitrary bound) has been undertaken. Following Columbia River Basalt terminology, these have been termed great flow fields. This represents a working set of flow fields, chosen to cover a variety of morphologies, sources, locations, and characteristics. The initial survey is intended to highlight representative flow fields, and does not represent a statistical set. For each flow field, the location, total area, flow length, flow widths, estimated flow thicknesses, estimated volumes, topographic slope, altitude, backscatter, emissivity, morphology, and source has been noted. The flow fields range from about 50,000 sq km to over 2,500,000 sq km in area, with most being several hundred square kilometers in extent. Flow lengths measure between 140 and 2840 km, with the majority of flows being several hundred kilometers long. A few basic morphological types have been identified.

  2. MAST solution of advection problems in irrotational flow fields

    NASA Astrophysics Data System (ADS)

    Aricò, Costanza; Tucciarelli, Tullio

    2007-03-01

    A new numerical-analytical Eulerian procedure is proposed for the solution of convection-dominated problems in the case of existing scalar potential of the flow field. The methodology is based on the conservation inside each computational elements of the 0th and 1st order effective spatial moments of the advected variable. This leads to a set of small ODE systems solved sequentially, one element after the other over all the computational domain, according to a MArching in Space and Time technique. The proposed procedure shows the following advantages: (1) it guarantees the local and global mass balance; (2) it is unconditionally stable with respect to the Courant number, (3) the solution in each cell needs information only from the upstream cells and does not require wider and wider stencils as in most of the recently proposed higher-order methods; (4) it provides a monotone solution. Several 1D and 2D numerical test have been performed and results have been compared with analytical solutions, as well as with results provided by other recent numerical methods.

  3. Flow field topology of submerged jets with fractal generated turbulence

    NASA Astrophysics Data System (ADS)

    Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2015-11-01

    Fractal grids (FGs) have been recently an object of numerous investigations due to the interesting capability of generating turbulence at multiple scales, thus paving the way to tune mixing and scalar transport. The flow field topology of a turbulent air jet equipped with a square FG is investigated by means of planar and volumetric particle image velocimetry. The comparison with the well-known features of a round jet without turbulence generators is also presented. The Reynolds number based on the nozzle exit section diameter for all the experiments is set to about 15 000. It is demonstrated that the presence of the grid enhances the entrainment rate and, as a consequence, the scalar transfer of the jet. Moreover, due to the effect of the jet external shear layer on the wake shed by the grid bars, the turbulence production region past the grid is significantly shortened with respect to the documented behavior of fractal grids in free-shear conditions. The organization of the large coherent structures in the FG case is also analyzed and discussed. Differently from the well-known generation of toroidal vortices due to the growth of azimuthal disturbances within the jet shear layer, the fractal grid introduces cross-wise disturbs which produce streamwise vortices; these structures, although characterized by a lower energy content, have a deeper streamwise penetration than the ring vortices, thus enhancing the entrainment process.

  4. Autophagic subpopulation sorting by sedimentation field-flow fractionation.

    PubMed

    Naves, Thomas; Battu, Serge; Jauberteau, Marie-Odile; Cardot, Philippe J P; Ratinaud, Marie-Hélène; Verdier, Mireille

    2012-10-16

    The development of hypoxic areas often takes place in solid tumors and leads cells to undergo adaptive signalization like autophagy. This process is responsible for misfolded or aggregated proteins and nonfunctional organelle recycling, allowing cells to maintain their energetic status. However, it could constitute a double-edged pathway leading to both survival and cell death. So, in response to stress such as hypoxia, autophagic and apoptotic cells are often mixed. To specifically study and characterize autophagic cells and the process, we needed to develop a method able to (1) isolate autophagic subpopulation and (2) respect apoptotic and autophagic status. Sedimentation field-flow fractionation (SdFFF) was first used to monitor physical parameter changes due to the hypoxia mimetic CoCl(2) in the p53 mutated SKNBE2(c) human neuroblastoma cell line. Second, we showed that "hyperlayer" elution is able to prepare autophagic enriched populations, fraction (F3), overexpressing autophagic markers (i.e., LC3-II accumulation and punctiform organization of autophagosomes as well as cathepsin B overactivity). Conversely, the first eluted fraction exhibited apoptotic markers (caspase-3 activity and Bax increased expression). For the first time, SdFFF was employed as an analytical tool in order to discriminate apoptotic and autophagic cells, thus providing an enriched autophagic fraction consecutively to a hypoxic stress.

  5. Near-Field Heat Flow Between Two Quantum Oscillators

    NASA Astrophysics Data System (ADS)

    Barton, Gabriel

    2016-12-01

    We calculate the exact steady-state heat flow P between two Ohmically damped quantum oscillators 1 and 2, with natural frequency ω 0, interacting through their near-field dipole-dipole potential V. To keep them at nominally constant temperatures T1, T2 respectively, they have to be coupled to thermostats functioning in a way one must specify explicitly unless one assumes local thermal equilibrium, which would, inadequately as a rule, restrict the calculation to leading order in V. Here the thermostats are modelled as stretched strings, one end attached to the oscillator, and the other to an infinitely distant device ensuring that the string carries thermal noise appropriate to T1 or T2 in addition to whatever motion is enforced by the oscillator. Aiming at insight rather than numerics, we focus mainly on simple approximations by powers of T1 and T2 for weak damping in the essentially quantum low-temperature regime where kBT_{1,2}≪ ω 0. From P it is easy to find the heat flux between two insulating Drude-modelled half-spaces.

  6. Experiments of Flow Field Influenced by Vegetation Distribution on Floodplain

    NASA Astrophysics Data System (ADS)

    Li, Jin-Fu; Wang, Shun-Chang; Chen, Su-Chin

    2015-04-01

    The vegetation on floodplain can block river flow, raise flood level, and scour riverbed downstream the vegetation region. However, it can also protect the dike, reduce flood velocity, and increase the stability of channel. This experiment analyzed the relationship between vegetation distribution and flow field. We designed three vegetation arrangement pattern of unilateral vegetation, unilateral interval vegetation and no vegetation, respectively. The unilateral vegetation was defined as a 4.9 m length and 0.5 m width with vegetative area in one side of the experiment flume. The unilateral interval vegetation was defined as the same dimension of vegetative area but inserted 2 gaps with 1 m interval, and the vegetative area was separated into 3 blocks. The model of a single plant was assembled with stem and frond. The stem was a woody cylinder with 10 cm height and 2.2 cm in diameter. The other part was plastic frond with 10 cm in height. The flume was 20 m length, 1 m width and 0.7 m height with 2 kinds of bed slopes in 0.001 and 0.002, and 3 different discharges in 0.2 m3/s, 0.145 m3/s and 0.0855 m3/s. The velocity was measured by 2-D electromagnetic velocimeter (ACM2-R2). In addition, water depth was measured by Vernier calipers. The velocity distribution showed that the current were divided into two parts. In the part of inside vegetation area, water level uplifted when flow entering the vegetation area, and it declined until the current leaving vegetation area. Compared with the current in the other half part of flume, the magnitudes of uplift were about 50% in both case of unilateral vegetation and unilateral interval vegetation. Downstream the vegetation area edge, the water level dropped immediately and violently. The water depth was shallower than that in the other half non-vegetation part, and the decline magnitude were 48% and 39% in cases of unilateral vegetation and unilateral interval vegetation, respectively. To explain this phenomenon, we measured

  7. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation.

    PubMed

    Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M

    2015-01-01

    The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation.

  8. Apparatus and method for using radar to evaluate wind flow fields for wind energy applications

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2017-02-21

    The present invention provides an apparatus and method for obtaining data to determine one or more characteristics of a wind flow field using one or more radars. Data is collected from the one or more radars, and analyzed to determine the one or more characteristics of the wind flow field. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.

  9. Sound propagation through a real jet flow field with scattering due to interaction with turbulence

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Liu, C. H.; Ting, L.; Gunzburger, M.

    1974-01-01

    The sound propagation through a nonuniform turbulent jet flow field is studied by means of a system of linearized equations governing the acoustic variables. These equations depend on the fluctuating flow-field variables which are prescribed by experimental results. It is shown that the redistribution of the acoustic energy in the far field depends on space-time correlation of the turbulent velocities and on the mean flow variables and their gradients.

  10. Flow Field Analysis of Micromixer Powered by Ciliary Motion of Vorticella

    NASA Astrophysics Data System (ADS)

    Hayasaka, Yo; Nagai, Moeto; Matsumoto, Nobuyoshi; Kawashima, Takahiro; Shibata, Takayuki

    We demonstrate the observation of a flow field generated by ciliary motion of Vorticella in a microfluidic chamber. We applied the property that Vorticella vibrates its cilia and create a flow field to a micromixer. The stability and mixing performance of Vorticella were measured by PIV (Particle Image Velocimetry). One cell of Vorticella mixed the half area of the microchamber. We revealed that the flow field of a single cell in a chamber was more stable than that of multiple cells.

  11. Studies and Vorticity Effects by the Euler Equations with Emphasis on Supersonic Flow Fields.

    DTIC Science & Technology

    1983-10-01

    to see if the Euler equations will predict the fi loads in highly vortical flow fields for cruciform missiles . Body-alone and wing ...flow fields for cruciform missiles . Body-alone and wing -body flow :* fields were measured in the Bumblebee Program at a position where a tail might be...application of a supersonic marching Euler code to complete configurations , such as a wing -body- tail combination, further investigation

  12. Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase.

    PubMed

    John, C; Herz, T; Boos, J; Langer, K; Hempel, G

    2016-01-01

    Monomethoxypolyethylene glycol L-asparaginase (PEG-ASNASE) is the PEGylated version of the enzyme L-asparaginase (ASNASE). Both are used for remission induction in acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The treatment control is generally carried out by performing activity assays, though methods to determine the actual enzyme rather than its activity are rare. Using asymmetrical flow field-flow fractionation (AF4) offered the chance to develop a method capable of simultaneously measuring PEG-ASNASE and PEG. A method validation was performed in accordance with FDA guidelines for PEG-ASNASE from non-biological solutions. The method unfolded a linearity of 15-750 U/mL with coefficients of correlation of r(2)>0.99. The coefficients of variation (CV) for within-run and between-run variability were 1.18-10.15% and 2.43-8.73%, respectively. Furthermore, the method was used to perform stability tests of the product Oncaspar® (PEG-ASNASE) and estimation of the molecular weight by multi-angle light scattering (MALS) of stressed samples to correlate them with the corresponding activity. The findings indicate that Oncaspar® stock solution should not be stored any longer than 24 h at room temperature and cannot be frozen in pure aqueous media. The validated method might be useful for the pharmaceutical industry and its quality control of PEG-ASNASE production.

  13. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.

    PubMed

    Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee

    2015-06-16

    Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states.

  14. Analysis of plant ribosomes with asymmetric flow field-flow fractionation.

    PubMed

    Pitkänen, Leena; Tuomainen, Päivi; Eskelin, Katri

    2014-02-01

    Ribosome profiling is a technique used to separate ribosomal subunits, 80S ribosomes (monosomes), and polyribosomes (polysomes) from other RNA-protein complexes. It is traditionally performed in sucrose gradients. In this study, we used asymmetric flow field-flow fractionation (AsFlFFF) to characterize ribosome profiles of Nicotiana benthamiana plants. With the optimized running conditions, we were able to separate free molecules from ribosomal subunits and intact ribosomes. We used various chemical and enzymatic treatments to validate the positions of subunits, monosomes, and polysomes in the AsFlFFF fractograms. We also characterized the protein and RNA content of AsFlFFF fractions by gel electrophoresis and western blotting. The reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ribosomes remained bound to messenger RNAs (mRNAs) during the analysis. Therefore, we conclude that AsFlFFF can be used for ribosome profiling to study the mRNAs that are being translated. It can also be used to study the protein composition of ribosomes that are active in translation at that particular moment.

  15. Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation.

    PubMed

    Schachermeyer, Samantha; Ashby, Jonathan; Kwon, Minjung; Zhong, Wenwan

    2012-11-16

    Flow field flow fractionation (F4) is an invaluable separation tool for large analytes, including nanoparticles and biomolecule complexes. However, sample loss due to analyte-channel membrane interaction limits extensive usage of F4 at present, which could be strongly affected by the carrier fluid composition. This work studied the impacts of carrier fluid (CF) composition on nanoparticle (NP) recovery in F4, with focus on high ionic strength conditions. Successful analysis of NPs in a biomolecules-friendly environment could expand the applicability of F4 to the developing field of nanobiotechnology. Recovery of the unfunctionalized polystyrene NPs of 199, 102, and 45 nm in CFs with various pH (6.2, 7.4 and 8.2), increasing ionic strength (0-0.1M), and different types of co- and counter-ions, were investigated. Additionally, elution of the 85 nm carboxylate NPs and two proteins, human serum albumin (HSA) and immunoglobulin (IgG), at high ionic strengths (0-0.15M) was investigated. Our results suggested that (1) electrostatic repulsion between the negatively charged NPs and the regenerated cellulose membrane was the main force to avoid particle adsorption on the membrane; (2) larger particles experienced higher attractive force and thus were influenced more by variation in CF composition; and (3) buffers containing weak anions or NPs with weak anion as the surface functional groups provided higher tolerance to the increase in ionic strength, owing to more anions being trapped inside the NP porous structure. Protein adsorption onto the membrane was also briefly investigated in salted CFs, using HSA and IgG. We believe our findings could help to identify the basic carrier fluid composition for higher sample recovery in F4 analysis of nanoparticles in a protein-friendly environment, which will be useful for applying F4 in bioassays and in nanotoxicology studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Determining Aqueous Fullerene Particle Size Distributions by Asymmetric Flow Field-Flow Fractionation (AF4) without Surfactants

    EPA Science Inventory

    To determine the behavior of nanoparticles in environmental systems, methods must be developed to measure nanoparticle size. Asymmetric Flow Field Flow Fractionation (AF4) is an aqueous compatible size separation technique which is able to separate particles from 1 nm to 10 µm in...

  17. Determining Aqueous Fullerene Particle Size Distributions by Asymmetric Flow Field-Flow Fractionation (AF4) without Surfactants

    EPA Science Inventory

    To determine the behavior of nanoparticles in environmental systems, methods must be developed to measure nanoparticle size. Asymmetric Flow Field Flow Fractionation (AF4) is an aqueous compatible size separation technique which is able to separate particles from 1 nm to 10 µm in...

  18. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.

    PubMed

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Kuo, Chin-Guo; Lee, Kuang-Ying

    2014-10-01

    The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%.

  19. Bumblebee program, aerodynamic data. Part 2: Flow fields at Mach number 2.0. [supersonic missiles

    NASA Technical Reports Server (NTRS)

    Barnes, G. A.; Cronvich, L. L.

    1979-01-01

    Available flow field data which can be used in validating theoretical procedures for computing flow fields around supersonic missiles are presented. Tabulated test data are given which define the flow field around a conical-nosed cylindrical body in a crossflow plane corresponding to a likely tail location. The data were obtained at a Mach number of 2.0 for an angle of attack of 0 to 23 degrees. The data define the flow field for cases both with and without a forward wing present.

  20. Delaunay Tessellation Field Estimator analysis of the PSCz local Universe: density field and cosmic flow

    NASA Astrophysics Data System (ADS)

    Romano-Díaz, Emilio; van de Weygaert, Rien

    2007-11-01

    We apply the Delaunay Tessellation Field Estimator (DTFE) to reconstruct and analyse the matter distribution and cosmic velocity flows in the local Universe on the basis of the PSCz galaxy survey. The prime objective of this study is the production of optimal resolution 3D maps of the volume-weighted velocity and density fields throughout the nearby universe, the basis for a detailed study of the structure and dynamics of the cosmic web at each level probed by underlying galaxy sample. Fully volume-covering 3D maps of the density and (volume-weighted) velocity fields in the cosmic vicinity, out to a distance of 150h-1Mpc, are presented. Based on the Voronoi and Delaunay tessellation defined by the spatial galaxy sample, DTFE involves the estimate of density values on the basis of the volume of the related Delaunay tetrahedra and the subsequent use of the Delaunay tessellation as natural multidimensional (linear) interpolation grid for the corresponding density and velocity fields throughout the sample volume. The linearized model of the spatial galaxy distribution and the corresponding peculiar velocities of the PSCz galaxy sample, produced by Branchini et al., forms the input sample for the DTFE study. The DTFE maps reproduce the high-density supercluster regions in optimal detail, both their internal structure as well as their elongated or flattened shape. The corresponding velocity flows trace the bulk and shear flows marking the region extending from the Pisces-Perseus supercluster, via the Local Superclusters, towards the Hydra-Centaurus and the Shapley concentration. The most outstanding and unique feature of the DTFE maps is the sharply defined radial outflow regions in and around underdense voids, marking the dynamical importance of voids in the local Universe. The maximum expansion rate of voids defines a sharp cut-off in the DTFE velocity divergence probability distribution function. We found that on the basis of this cut-off DTFE manages to consistently

  1. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach.

    PubMed

    Håkansson, Andreas; Magnusson, Emma; Bergenståhl, Björn; Nilsson, Lars

    2012-08-31

    Direct determination of hydrodynamic radius from retention time is an advantage of the field-flow fractionation techniques. However, this is not always completely straight forward since non-idealities exist and assumptions have been made in deriving the retention equations. In this study we investigate the effect on accuracy from two factors: (1) level of sophistication of the equations used to determine channel height from a calibration experiment and (2) the influence of secondary relaxation on the accuracy of hydrodynamic radius determination. A new improved technique for estimating the channel height from calibration experiments is suggested. It is concluded that severe systematic error can arise if the most common channel height equations are used and an alternative more rigorous approach is described. For secondary relaxation it is concluded that this effect increases with the cross-flow decay rate. The secondary relaxation effect is quantified for different conditions. This is part one of two. In the second part the determination of hydrodynamic radius are evaluated experimentally under similar conditions.

  2. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    SciTech Connect

    Takezaki, Taichi Takahashi, Kazumasa; Sasaki, Toru Harada, Nob.; Kikuchi, Takashi

    2016-06-15

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  3. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    PubMed

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.

  4. Field and Lava Flow Experiment Analysis of Vesicle Deformation as a Means of Determining Ancient Flow Direction

    NASA Astrophysics Data System (ADS)

    McColl, B.; Teasdale, R.

    2006-12-01

    The goal of this work is to test whether flow direction of ancient lavas can be determined from orientations of preserved vesicles. We have attempted to correlate field observations with lab experiments as a means of understanding the development of deformed vesicles. This work focuses on vesicles deformed parallel to the lava flow direction. On a fieldtrip, we observed deformed vesicles in basaltic lava flows at cinder cones in the Coso Volcanic Field. Other basalt flows with similarly deformed vesicles are also documented in the Lovejoy Basalt (Chico, CA) and in flows at Lava Beds National Monument, Medicine Lake Volcanic Field. We believe that the vesicles were deformed during lava flow emplacement and cooling. Analog flow experiments used materials with Newtonian behavior (honey, syrup) but Bingham fluid behavior is more similar to natural lavas so gelatin was also attempted. Experiments started with the analog fluids on a horizontal surface. Air was then injected into the fluids with a hypodermic needle and then the surface was inclined to approximately 4-5 degrees. The deformation of the bubbles in the analog fluids was recorded with digital photos taken from above the flows. In some cases, bubbles rose to the surface of the flow and were not deformed parallel to the flow direction. In other cases, bubbles were deformed and we recorded a bulbous end and elongate tail parallel to the flow direction. In all cases the bulbous end of deformed vesicles are directed down stream and a tail stretches behind. Honey best preserved vesicle deformation. Bubbles in syrup rose to the surface too quickly to document (even when syrup was chilled). Air injected into gelatin caused shear, releasing the air without forming bubbles. Future work will address analog material issues by using wax or polyethylene glycol (PEG). These materials are likely to better represent rheologies of basalt lavas during flow emplacement.

  5. Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.

    PubMed

    Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D

    2017-06-01

    Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.

  6. Particle characterization in centrifugal fields. Comparison between ultracentrifugation and sedimentation field-flow fractionation.

    PubMed

    Li, J M; Caldwell, K D; Mächtle, W

    1990-09-26

    A ten-component mixture of polystyrene latex particles in the 67-1220 nm size range was subjected to analysis by analytical ultracentrifugation (AUC) and sedimentation field-flow fractionation (SdFFF) using programmed and constant fields. The AUC analysis of the mixture yielded diameter values in good agreement with data determined on the separate components; the relative amounts of each component in the mixture were likewise closely reproducing the sample's known composition. Diameters determined by SdFFF, either in a constant- or programmed-field mode, were in good agreement with the AUC for particles smaller than about 500 nm. For the sample's larger components, however, particularly the programmed mode showed diameter values smaller than expected. In addition, field programming resulted in incomplete recoveries of the larger particles, leading to more or less distorted mass distributions for the complex sample. The observed discrepancies, which are thought to result from events at the analytical wall in the FFF channel, suggested a protocol for accurate sizing, as opposed to fingerprinting, of samples with broad size distribution. By tracking sizes and amounts of the different components at different but constant field strengths, and retaining as analytically valid only those data recorded in a retention range from five to about thirty column volumes, it was possible to determine sizes and amounts in good agreement with known parameters for the sample. Unlike the AUC procedure, SdFFF produces fractions of a high degree of uniformity, which lend themselves to a secondary analysis, e.g. by electron microscopy, as shown in the study.

  7. Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO₃ colloids for photoelectrochemical uses.

    PubMed

    Contado, Catia; Argazzi, Roberto

    2011-07-08

    WO₃ colloidal suspensions obtained through a simple sol-gel procedure were subjected to a controlled temperature aging process whose time evolution in terms of particle mass and size distribution was followed by sedimentation field flow fractionation (SdFFF) and flow field flow fractionation (FlFFF). The experiments performed at a temperature of 60 °C showed that in a few hours the initially transparent sol of WO₃ particles, whose size was less than 25 nm, undergoes a progressive size increase allowing nanoparticles to reach a maximum equivalent spherical size of about 130 nm after 5 h. The observed shift in particle size distribution maxima (SdFFF), the broadening of the curves (FlFFF) and the SEM-TEM observations suggest a mixed mechanism of growth-aggregation of initial nanocrystals to form larger particles. The photoelectrochemical properties of thin WO₃ films obtained from the aged suspensions at regular intervals, were tested in a biased photoelectrocatalytic cell with 1M H₂SO₄ under solar simulated irradiation. The current-voltage polarization curves recorded in the potential range 0-1.8 V (vs. SCE) showed a diminution of the maximum photocurrent from 3.7 mA cm⁻² to 2.8 mA cm⁻² with aging times of 1h and 5h, respectively. This loss of performance was mainly attributed to the reduction of the electroactive surface area of the sintered particles as suggested by the satisfactory linear correlation between the integrated photocurrent and the cyclic voltammetry cathodic wave area of the W(VI)→W(V) process measured in the dark.

  8. Decoding complex flow-field patterns in visual working memory.

    PubMed

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition

    NASA Astrophysics Data System (ADS)

    Yu, Kwonkyu; Kim, Seojun; Kim, Dongsu

    2015-10-01

    Flow velocity estimation in actual rivers using image processing technique has been highlighted for hydrometric communities in the last decades, and this technique is called Large Scale Particle Image Velocimetry (LSPIV). Although LSPIV has been successfully tested in many flow conditions, it has addressed several limitations estimating mean flow field because of difficult flow conditions such as rotating, lack of light and seeds, and noisy flow conditions. Recently, an alternative technique named STIV to use spatio-temporal images based on successively recorded images has been introduced to overcome the limitations of LSPIV. The STIV was successfully applied to obtain one-dimensional flow component in the river for estimating streamflow discharge, where the main flow direction is known. Using the 5th order of central difference scheme, the STIV directly calculated the mean angle of slopes which appeared as strips in the spatio-temporal images and has been proved to be more reliable and efficient for the discharge estimation as compared with the conventional LSPIV. However, yet it has not been sufficiently qualified to derive two-dimensional flow field in the complex flow, such as rotating or locally unsteady flow conditions. We deemed that it was because the strips in the given spatio-temporal images from not properly oriented for main flow direction are not narrow enough or clearly visible, thus the direct estimating strip slope could give erroneous results. Thereby, the STIV has been mainly applied for obtaining one-dimensional flow component. In this regard, we proposed an alternative algorithm to estimate the mean slope angle for enhancing the capability of the STIV, which used correlation coefficient between odd and even image splits from the given spatio-temporal image. This method was named CASTI (Correlation Analysis of Spatio-Temporal Image). This paper described the step-by-step procedure of the CASTI and validated its capability for estimating two

  10. Numerical calculation of flow fields about rectangular wings of finite thickness in supersonic flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1973-01-01

    The calculation of the outer inviscid flow about a rectangular wing moving at supersonic speeds is reported. The inviscid equations of motion governing the flow generated by the wing form a set of hyperbolic differential equations. The flow field about the rectangular wing is separated into three regions consisting of the forebody, the afterbody, and the wing wake. Solutions for the forebody are obtained using conical flow techniques while the afterbody and the wing wake regions are treated as initial value problems. The numerical solutions are compared in the two dimensional regions with known exact solutions.

  11. Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.

  12. Probing and quantifying DNA-protein interactions with asymmetrical flow field-flow fractionation.

    PubMed

    Ashby, Jonathan; Schachermeyer, Samantha; Duan, Yaokai; Jimenez, Luis A; Zhong, Wenwan

    2014-09-05

    Tools capable of measuring binding affinities as well as amenable to downstream sequencing analysis are needed for study of DNA-protein interaction, particularly in discovery of new DNA sequences with affinity to diverse targets. Asymmetrical flow field-flow fractionation (AF4) is an open-channel separation technique that eliminates interference from column packing to the non-covalently bound complex and could potentially be applied for study of macromolecular interaction. The recovery and elution behaviors of the poly(dA)n strand and aptamers in AF4 were investigated. Good recovery of ssDNAs was achieved by judicious selection of the channel membrane with consideration of the membrane pore diameter and the radius of gyration (Rg) of the ssDNA, which was obtained with the aid of a Molecular Dynamics tool. The Rg values were also used to assess the folding situation of aptamers based on their migration times in AF4. The interactions between two ssDNA aptamers and their respective protein components were investigated. Using AF4, near-baseline resolution between the free and protein-bound aptamer fractions could be obtained. With this information, dissociation constants of ∼16nM and ∼57nM were obtained for an IgE aptamer and a streptavidin aptamer, respectively. In addition, free and protein-bound IgE aptamer was extracted from the AF4 eluate and amplified, illustrating the potential of AF4 in screening ssDNAs with high affinity to targets. Our results demonstrate that AF4 is an effective tool holding several advantages over the existing techniques and should be useful for study of diverse macromolecular interaction systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.

    PubMed

    Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo

    2010-05-18

    The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.

  14. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.

    PubMed

    Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J

    2015-05-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Numerical Analysis of the Turbine 99 Draft Tube Flow Field Provoked by Redesigned Inlet Velocity Profiles.

    NASA Astrophysics Data System (ADS)

    Galván, S.; Reggio, M.; Guibault, F.; Castro, L.

    2014-03-01

    In recent years, several investigations on hydraulic turbine draft tube performance have shown that the hydrodynamic flow field at the runner outlet determines the diffuser efficiency affecting the overall performance of the turbine. This flow field, for which the principal characteristics are the flow rate and the inlet swirling flow intensity, is mostly developed on turbines designed for low head (high specific velocity) and operated away from their best efficiency point. To identify factors of the flow field responsible for loosing draft- tube efficiency, the correlations between the flow pattern along the diffuser and both swirl intensity and flow rate have been examined. An analytical representation of inlet flow field has been manipulated by a Multi Island Genetic Algorithm through the automatic coupling of multidisciplinary commercial software systems in order to obtain redesigned inlet velocity profiles. This loop allowed determining the profile for which the minimum energy loss factor was reached. With different flow field patterns obtained during the optimization process it was possible to undertake a qualitative and quantitative analysis which has helped to understand how to suppress or at least mitigate undesirable draft tube flow characteristics. The direct correlation between the runner blade design and the kinematics of the swirl at the draft tube inlet should suppose the perfect coupling at the runner-draft tube interface without compromising the overall flow stability of the machine.

  16. Application of full field optical studies for pulsatile flow in a carotid artery phantom

    PubMed Central

    Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.

    2015-01-01

    A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652

  17. Development of improved Gaussian dispersion models for cases of downwash past wide buildings using three- dimensional fluid modeling

    NASA Astrophysics Data System (ADS)

    Flowe, Anita Coulter

    1997-08-01

    The objectives of this work were to show that a well- tested three dimensional turbulent kinetic energy/dissipation (k-ɛ) computational model, FLUENT, can be used to model the fluid flow fields and the dispersion effects in the flow fields generated by a variety of building shapes, and to use the data sets to develop parameterizations useful to air quality modeling needs. Once the appropriateness of the computational model was proven through comparisons with experimental results, and data generated for several ratios of building width to building heights, the flow field was examined to determine the length of the recirculation cavity as a function of the ratio of building width to building height both in front of and in the rear of the building. The dimensions of the recirculation cavity in the front of the building have previously not been included in regulatory models, so both the height and length of this front recirculation cavity was parameterized as a function of the ratio of building width to building height. The maximum downdraft was also parameterized as a function of the building width to building height ratio. The dispersive effects were then examined to determine useful parameters. The average concentration in the recirculation cavity was calculated and modeled as a function of ratio of the building width to building height. Finally, because Gaussian models are generally used for regulatory modeling of dispersion effects, the dispersive field was analyzed to find improved dispersion coefficients to use in Gaussian models. The vertical and horizontal dispersion coefficients were computed as a function of distance from the dispersive source for each of the ratios of building width to building height, and then these functions were made a function of the ratio of building width to building height. These new dispersion coefficients, which were a function of both the distance from the stack and the ratio of building width to building height, were then used

  18. Synchrotron microimaging technique for measuring the velocity fields of real blood flows

    SciTech Connect

    Lee, Sang-Joon; Kim, Guk Bae

    2005-03-15

    Angiography and Doppler methods used for diagnosing vascular diseases give information on the shape of blood vessels and pointwise blood speed but do not provide detailed information on the flow fields inside the blood vessels. In this study, we developed a method for visualizing blood flow by using coherent synchrotron x rays. This method, which does not require the addition of any contrast agent or tracer particles, visualizes the flow pattern of blood by enhancing the diffraction and interference characteristics of the blood cells. This was achieved by optimizing the sample- (blood) to-detector (charge-coupled device camera) distance and the sample thickness. The proposed method was used to extract quantitative velocity field information from blood flowing inside an opaque microchannel by applying a two-frame particle image velocimetry algorithm to enhanced x-ray images of the blood flow. The measured velocity field data showed a flow structure typical of flow in a macrochannel.

  19. Spatial variation of the magnetic field inside laminar flows of a perfect conductive fluid

    NASA Astrophysics Data System (ADS)

    Duka, Bejo; Boçi, Sonila

    2017-01-01

    The steady state of a perfect conductive fluid in laminar flow resulting from the ‘Hall effect’ is studied. Using the Maxwell equations, the spatial variation of the magnetic field in the steady state is calculated for three cases of different fluid flow geometries: flow between two infinite parallel planes, flow between two coaxial infinite-long cylinders and flow between two concentric spheres. According to our calculation of the three cases, the spatial variation of the magnetic field depends on the flow velocity. The magnetic field is strengthened in layers where the velocity is greater, but this dependency is negligible for non relativistic flows. Our approach in this study provides an example of how to receive interesting results using only basic knowledge of physics and mathematics.

  20. ITG modes in the presence of inhomogeneous field-aligned flow

    NASA Astrophysics Data System (ADS)

    Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.

    2010-02-01

    In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.

  1. Comparision of numerical simulation and flow field visualisation using heating foil

    NASA Astrophysics Data System (ADS)

    Matejka, Milan; Hyhlik, Tomas

    2012-04-01

    Paper deals with comparison of numerical and experimental solution of the flow field of hump. Synthetic jet actuators were used to influence flow field of the hump. Visualization using heating foil was done and compared with data from numerical simulation. The hump is located in closed measurement area of Eiffel type wind tunnel. Commercial code Fluent was used to perform numerical solution.

  2. Determination of space shuttle flow field by the three-dimensional method of characteristics

    NASA Technical Reports Server (NTRS)

    Chu, C.; Powers, S. A.

    1972-01-01

    The newly improved three-dimensional method of characteristics program has been applied successfully to the calculation of flow fields over a variety of bodies including slab delta wings and shuttle orbiters. Flow fields over fuselage shapes for Mach numbers as low as 1.5 have been calculated. Some typical results are presented.

  3. The Determination of Downwash

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1921-01-01

    It is obvious that, in accordance with Newton's second law, the lift on an aerofoil must be equal to the vertical momentum communicated per second to the air mass affected. Consequently a lifting aerofoil in flight is trailed by a wash which has a definite inclination corresponding to the factors producing the lift. It is thought that sufficient data, theoretical and experimental, are now available for a complete determination of this wash with respect to the variation of its angle of inclination to the originating aerofoil and with respect to the law which governs its decay in space.

  4. Turbulent Flow Field Measurements of Separate Flow Round and Chevron Nozzles with Pylon Interaction Using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.

    2004-01-01

    Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.

  5. Interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Reno, Charles; Eiseman, Peter R.

    1988-01-01

    The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids of turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.

  6. Investigation of the flow field surrounding circular-arc boattail nozzles at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.; Putnam, L. E.

    1980-01-01

    The effects of jet exhaust on the subsonic flow field surrounding boattail nozzles with attached and separated boundary layers were investigated. Measurements of local Mach numbers and flow angles were made at free-stream Mach numbers of 0.60 and 0.80 at an angle of attack of 0 deg. Jet exhaust flow was simulated with a solid cylindrical sting and with high pressure air at jet-nozzle total pressure ratios of 2.9 and 5.0. Results show strong effects of the jet-wave structure on the external flow field. The predicted local Mach numbers and flow angles for attached-flow nozzles with solid jet simulators obtained by using subsonic inviscid/viscous-flow theory are in good agreement with experimental data. Prediction of nozzle surface pressure distributions which include jet-entrainment effects also agree with experimental data for attached-flow nozzles with high pressure air jets.

  7. Investigation of bifurcation structure flow field for bipolar plates in PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Gong, Shi-Chao; Xiao, Yong

    2013-02-01

    Uniform flow field in fuel cells is important to the performance. Even distribution of reactant gases over the electrode surfaces is a key to the good performance of fuel cells since this enables them to operate as close as possible to maximum capability and electrochemical reactions. In this paper, the bifurcation principle can be used to design the flow field structure for bipolar plate in proton exchange membrane fuel cells (PEMFC). It is demonstrated by numerical simulation that branch flow field structure can provide substantially flow-field distribution, current density and heat transfer when compared to the traditional structure. Then a kind of excellent flow field structure for bipolar plate in PEMFC can be achieved.

  8. The effect of swirling number on the flow field of downshot flame furnace

    SciTech Connect

    Zhijun, Z.; Zili, Z.; Xiang, Z.; Xinyu, C.; Junhu, Z.; Zhengyu, H.; Jianzhong, L.; Kefa, C.

    2000-07-01

    The cold model test is adopted to study the flow field of downshot flame furnace with swirling burners in this paper. The flow field is measured with tri-hole probe. The ribbon method and fireworks tracer technology are adopted to find out the flow field distribution qualitatively. The results show that the momentum ratio of arch air and side-wall air is not the most important factor which determines the flow field when swirling burners are adopted. The effect of swirling number of arch air on the flow field is notable, and the jet will decline like normal swirling jet. Under general swirling number, the momentum ratio of arch air and side-wall air should be large enough.

  9. Experimental Study on Flow Field behind Backward-Facing Step Using Detonation-Driven Shock Tunnel

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hwan; Obara, Tetsuro; Ohyagi, Shigeharu; Yoshikawa, Masato

    As a research to develop a SCRAM-jet engine is actively conducted, a necessity to produce a high-enthalpy flow in a laboratory is increasing. In order to develop the SCRAM-jet engine, stabilized combustion in a supersonic flow-field should be attained, in which a duration time of flow is extremely short. Therefore, a mixing process of breathed air and fuel, which is injected into supersonic flow-fields is one of the most important problem. Since, the flow inside SCRAM-jet engine has high-enthalpy, an experimental facility is required to produce such high-enthalpy flow-field. In this study, a detonation-driven shock tunnel was built and was used to produce high-enthalpy flow. At first, a performance of this facility was investigated in order to obtain a Tayloring condition. Furthermore, SCRAM-jet combustor model equipped backward-facing step was installed at test section and flow-fields were visualized using color-schlieren technique. The fuel was injected perpendicular to the flow of Mach number three behind step. The height of backward-facing step and injection pressure were changed to investigate effects of the step on a mixing characteristic between air and fuel. The schlieren photograph and pressure histories show that the fuel was ignited behind step and the height of step is important factor to ignite a fuel in a supersonic flow-field.

  10. Direct measurement of the flow field around swimming microorganisms

    NASA Astrophysics Data System (ADS)

    Polin, Marco; Drescher, Knut; Goldstein, Raymond E.; Michel, Nicolas; Tuval, Idan

    2010-11-01

    Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute (˜0.3%) density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a "puller" stresslet, and can be described by a simple three-Stokeslet model.

  11. Direct Measurement of the Flow Field around Swimming Microorganisms

    NASA Astrophysics Data System (ADS)

    Drescher, Knut; Goldstein, Raymond E.; Michel, Nicolas; Polin, Marco; Tuval, Idan

    2010-10-01

    Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute (˜0.3%) density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a puller stresslet, and can be described by a simple three-Stokeslet model.

  12. In situ visualization study of CO 2 gas bubble behavior in DMFC anode flow fields

    NASA Astrophysics Data System (ADS)

    Yang, H.; Zhao, T. S.; Ye, Q.

    This paper reports on a visual study of the CO 2 bubble behavior in the anode flow field of an in-house fabricated transparent Direct Methanol Fuel Cell (DMFC), which consisted of a membrane electrode assembly (MEA) with an active area of 4.0 × 4.0 cm 2, two bipolar plates with a single serpentine channel, and a transparent enclosure. The study reveals that at low current densities, small discrete bubbles appeared in the anode flow field. At moderate current densities, a number of gas slugs formed, in addition to small discrete bubbles. And at high current densities, the flow field was predominated by rather long gas slugs. The experiments also indicate that the cell orientation had a significant effect on the cell performance, especially at low methanol flow rates; for the present flow field design the best cell performance could be achieved when the cell was orientated vertically. It has been shown that higher methanol solution flow rates reduced the average length and the number of gas slugs in the flow field, but led to an increased methanol crossover. In particular, the effect of methanol solution flow rates on the cell performance became more pronounced at low temperatures. The effect of temperature on the bubble behavior and the cell performance was also examined. Furthermore, for the present flow field consisting of a single serpentine channel, the channel-blocking phenomenon caused by CO 2 gas slugs was never encountered under all the test conditions in this work.

  13. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  14. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  15. Flow Field Effects on Nucleation in a Reacting Mixture Layer.

    DTIC Science & Technology

    1984-11-01

    chemically reacting flows has been analysed by Fendell (1965) who considered the effect of the straining motion in a stagnation point flow on ignition...stagnation point diffusion flame ( Fendell , 1965, Linan, 1974). In the present study the effect of the strain rate or velocity gradient on nucleation kinetics...Symposium (International) on Corn- bustion, 799-810, Academic Press. Fendell , F. E. (1965). Ignition and extinction in combustion of initially unmixed

  16. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  17. Transport of Magnetic Field by a Turbulent Flow of Liquid Sodium

    SciTech Connect

    Volk, R.; Odier, Ph.; Pinton, J.-F.; Ravelet, F.; Monchaux, R.; Chiffaudel, A.; Daviaud, F.; Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F.

    2006-08-18

    We study the effect of a turbulent flow of liquid sodium generated in the von Karman geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.

  18. Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium

    SciTech Connect

    Monchaux, R.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Gasquet, C.; Marie, L.; Ravelet, F.; Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F.; Bourgoin, M.; Moulin, M.; Odier, Ph.; Pinton, J.-F.; Volk, R.

    2007-01-26

    We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R{sub m}{approx}30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.

  19. Intermittent magnetic field excitation by a turbulent flow of liquid sodium.

    PubMed

    Nornberg, M D; Spence, E J; Kendrick, R D; Jacobson, C M; Forest, C B

    2006-07-28

    The magnetic field measured in the Madison dynamo experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest-growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.

  20. Simulation and analysis on the flow field of the low temperature mini-type cold store

    NASA Astrophysics Data System (ADS)

    Hao, X. H.; Ju, Y. L.

    2011-07-01

    The understanding of the flow field inside the cold store is very important to food storage at low temperatures. In this paper, the CFD simulation on the flow field for low temperature cold store with air forced supply mode is presented. The turbulence flow of three-dimensional steady incompressible viscous fluid is analyzed using finite volume method and standard K-ɛ two-equation. The temperature and velocity fields of this cold store are simulated, analyzed and compared. The simulation results show that the velocity and temperature fields are evidently influenced by the cross section from the ground, and the optimal cross section is also given in this paper.

  1. Fan Noise Source Diagnostic Test: LDV Measured Flow Field Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary C.; Krupar, Martin J.; Hughes, Christopher E.; Woodward, Richard P.

    2003-01-01

    Results are presented of an experiment conducted to investigate potential sources of noise in the flow developed by two 22-in. diameter turbofan models. The R4 and M5 rotors that were tested were designed to operate at nominal take-off speeds of 12,657 and 14,064 RPMC, respectively. Both fans were tested with a common set of swept stators installed downstream of the rotors. Detailed measurements of the flows generated by the two were made using a laser Doppler velocimeter system. The wake flows generated by the two rotors are illustrated through a series of contour plots. These show that the two wake flows are quite different, especially in the tip region. These data are used to explain some of the differences in the rotor/stator interaction noise generated by the two fan stages. In addition to these wake data, measurements were also made in the R4 rotor blade passages. These results illustrate the tip flow development within the blade passages, its migration downstream, and (at high rotor speeds) its merging with the blade wake of the adjacent (following) blade. Data also depict the variation of this tip flow with tip clearance. Data obtained within the rotor blade passages at high rotational speeds illustrate the variation of the mean shock position across the different blade passages.

  2. Morphological complexities and hazards during the emplacement of channel-fed `a`ā lava flow fields: A study of the 2001 lower flow field on Etna

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Pinkerton, H.; James, M. R.; Calvari, S.

    2010-08-01

    Long-lived basaltic eruptions often produce structurally complex, compound `a`ā flow fields. Here we reconstruct the development of a compound flow field emplaced during the 2001 eruption of Mt. Etna (Italy). Following an initial phase of cooling-limited advance, the reactivation of stationary flows by superposition of new units caused significant channel drainage. Later, blockages in the channel and effusion rate variations resulted in breaching events that produced two new major flow branches. We also examined small-scale, late-stage ‘squeeze-up’ extrusions that were widespread in the flow field. We classified these as ‘flows’, ‘tumuli’ or ‘spines’ on the basis of their morphology, which depended on the rheology, extrusion rate and cooling history of the lava. Squeeze-up flows were produced when the lava was fluid enough to drain away from the source bocca, but fragmented to produce blade-like features that differed markedly from `a`ā clinker. As activity waned, increased cooling and degassing led to lava arriving at boccas with a higher yield strength. In many cases this was unable to flow after extrusion, and laterally extensive, near-vertical sheets of lava developed. These are considered to be exogenous forms of tumuli. In the highest yield strength cases, near-solid lava was extruded from the flow core as a result of ramping, forming spines. The morphology and location of the squeeze-ups provides insight into the flow rheology at the time of their formation. Because they represent the final stages of activity of the flow, they may also help to refine estimates of the most advanced rheological states in which lava can be considered to flow. Our observations suggest that real-time monitoring of compound flow field evolution may allow complex processes such as channel breaching and bocca formation to be forecast. In addition, documenting the occurrence and morphology of squeeze-ups may allow us to determine whether there is any risk of a

  3. Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2009-01-01

    The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.

  4. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  5. An experimental study on the effects of tip clearance on flow field and losses in an axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zhang, J.; Murthy, K. N. S.

    1987-01-01

    Detailed measurement of the flow field in the tip region of a compressor rotor was carried out using a Laser Doppler Velocimeter (LDV) and a Kiel probe at two different tip clearance heights. At both clearance sizes, the relative stagnation pressure and the axial and tangential components of relative velocities were measured upstream, inside the passage and downstream of the rotor, up to about 20 percent of the blade span from the annulus wall. The velocities, outlet angles, losses, momentum thickness, and force defect thickness are compared for the two clearances. A detailed interpretation of the effect of tip clearance on the flow field is given. There are substantial differences in flow field, on momentum thickness, and performance as the clearance is varied. The losses increase linearly within the passage and their values increase in direct proportion to tip clearance height. No discernable vortex (discrete) is observed downstream of the rotor.

  6. An experimental study on the effects of tip clearance on flow field and losses in an axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zhang, J.; Murthy, K. N. S.

    1987-01-01

    Detailed measurement of the flow field in the tip region of a compressor rotor was carried out using a Laser Doppler Velocimeter (LDV) and a Kiel probe at two different tip clearance heights. At both clearance sizes, the relative stagnation pressure and the axial and tangential components of relative velocities were measured upstream, inside the passage and downstream of the rotor, up to about 20 percent of the blade span from the annulus wall. The velocities, outlet angles, losses, momentum thickness, and force defect thickness are compared for the two clearances. A detailed interpretation of the effect of tip clearance on the flow field is given. There are substantial differences in flow field, on momentum thickness, and performance as the clearance is varied. The losses increase linearly within the passage and their values increase in direct proportion to tip clearance height. No discernable vortex (discrete) is observed downstream of the rotor.

  7. Laser velocimeter measurements of two-bladed helicopter rotor flow fields

    NASA Technical Reports Server (NTRS)

    Biggers, J. C.; Lee, A.; Orloff, K. L.; Lemmer, O. J.

    1977-01-01

    Data from a wind tunnel investigation of the flow fields around helicopter rotors were presented. A two component laser velocimeter was used to measure the velocity fields of two 2.1 m diameter rotors. A minicomputer-based online data system is described which monitored, reduced, and plotted the results. Tip vortices constitute the primary disturbances in the flow field, but present theories do not predict vortex positions and velocity distributions with sufficient accuracy.

  8. Quasi-steady current sheet structures with field-aligned flow

    NASA Technical Reports Server (NTRS)

    Birn, J.

    1992-01-01

    The paper discusses the characteristics of quasi-steady plasma and field structures with field-aligned flow. Explicit solutions are developed for modeling the compressible flow around a plasmoid in the distant magnetotail. The expected and observed plasmoid signatures are found. Field signatures outside the plasmoid are typically those of encounters of traveling compression region: a north-south signature of Bz accompanied by an enhancement of Bx.

  9. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part II: programmed operation.

    PubMed

    Williams, P Stephen

    2017-01-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.

  10. Computational flow field in energy efficient engine (EEE)

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-11-01

    In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.

  11. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  12. Analytical study on the influence of nonequilibrium ionization for current flow pattern and flow field of MPD arcjets

    NASA Astrophysics Data System (ADS)

    Kimura, Itsuro; Shoji, Tsunetake

    1990-07-01

    The effect of non-equilibrium ionization on a one-dimensional supersonic self-field MPD flow, which starts from the point of Mach number 1, is analyzed taking ionization and recombination rate-equations and electron energy equation into consideration. It was observed generally that for given inlet boundary conditions and a total discharge current, the solution exists in a limited region of propellant flow rate and the required electrode becomes longer for lower propellant flow rate, as in the cases of frozen or thermal-equilibrium flow. Based on the calculated results with argon or hydrogen propellant, it was shown that a remarkable deviation from ionization equilibrium appears in the course of plasma acceleration, when the propellant flow rate is near the lower limit, and that for molecular species hydrogen, current concentration on the inlet part, observed in the case of argon, is removed by the influence of dissociation process.

  13. Flow-driven cell migration under external electric fields

    PubMed Central

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  14. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  15. Investigations of flow field perturbations induced on slotted transonic-tunnel walls

    NASA Technical Reports Server (NTRS)

    Wu, J. M.; Collins, F. G.

    1984-01-01

    The free-stream interference caused by the flow through the slotted walls of the test sections of transonic wind tunnels has continuously a problem in transonic tunnel testing. The adaptive-wall transonic tunnel is designed to actively control the near-wall boundary conditions by sucking or blowing through the wall. In order to make the adaptive-wall concept work, parameters for computational boundary conditions must be known. These parameters must be measured with sufficient accuracy to allow numerical convergence of the flow field computations and must be measured in an inviscid region away from the model that is placed inside the wind tunnel. The near-wall flow field was mapped in detail using a five-port cone probe that was traversed in a plane transverse to the free-stream flow. The initial experiments were made using a single slot and recent measurements used multiple slots, all with the tunnel empty. The projection of the flow field velocity vectors on the transverse plane revealed the presence of a vortex-like flow with vorticity in the free stream. The current research involves the measurement of the flow field above a multislotted system with segmented plenums behind it, in which the flow is controlled through several plenums simultaneously. This system would be used to control a three-dimensional flow field.

  16. Wind-tunnel interference with particular reference to off-center positions of the wing and to the downwash at the tail

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; White, James A

    1937-01-01

    The theory of wind tunnel boundary influence on the downwash from a wing has been extended to provide more complete corrections for application to airplane test data. The first section of the report gives the corrections of the lifting line for wing positions above or below the tunnel center line; the second section shows the manner in which the induced boundary influence changes with distance aft of the lifting line. Values of the boundary corrections are given for off-center positions of the wing in circular, square, 2:1 rectangular, and 2:1 elliptical tunnels. Aft of the wing the corrections are presented for only the square and the 2:1 rectangular tunnels, but it is believed that these may be applied to jets of circular and 2:1 elliptical cross sections. In all cases results are included for both open and closed tunnels.

  17. The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.; Nunes, A. C., Jr.

    2000-01-01

    The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.

  18. The Effect of Magnetic Field on Mean Flow Generation by Rotating Two-dimensional Convection

    NASA Astrophysics Data System (ADS)

    Currie, Laura K.

    2016-11-01

    Motivated by the significant interaction of convection, rotation, and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilize a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organizes them, leading to stronger time-averaged flows. Furthermore, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behavior is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even when the quenching of the overall flow velocity by the field is relatively strong.

  19. Flow Field Analysis of a Future Launcher Configuration during Start

    NASA Astrophysics Data System (ADS)

    Bozic, O.; Otto, H.

    2005-02-01

    Within the German Future Space Launcher Technology Research Program ASTRA several reusable concepts have been investigated. Particularly one dedicated for near-term application consists of an Ariane 5-type expendable core stage and two liquid fly back boosters (LFBB). The present investigation focused on the interaction between the booster and the core stage during ascent phase. The analysis is carried out numerically by means of the DLR unstructured code TAU. The numerical results allow a compressive study of the complicate flow pattern between the boosters and the central core and address the changes on aerodynamic drag between the three configurations considered. Key words: launcher, ASTRA, LFBB, flow simulation, CFD simulation, unstructured grid

  20. Research on Aeroheating of Hypersonic Reentry Vehicle Base Flow Fields

    NASA Astrophysics Data System (ADS)

    Xuguo, Qin; Yongtao, Shui; Yonghai, Wang; Gang, Chen; Qiang, Li

    2017-09-01

    The structure of the base flow of a hypersonic reentry vehicle and the resulting base pressure and heat transfer have been studied by numerical study. The compressible Navier-Stokes equations are solved by the finite-volume method. SST k-ω turbulence model is used, and comparisons are made with flight test. Attention was focused on assessing the effects of angle of attack and Mach number. It was found that angle of attack can significantly alter the wake flow structure and reentry vehicle base pressure and heating distributions. The results of the simulation may provide a theoretical basis for the design of the thermal protection system of hypersonic reentry vehicles.

  1. Transverse high gradient magnetic filter cell with bounded flow field

    SciTech Connect

    Badescu, V.; Rotariu, O.; Murariu, V.; Rezlescu, N.

    1997-11-01

    The capture of fine paramagnetic particles from a fluid suspension in a magnetic filter element of a novel design is analyzed. Unlike the systems previously analyzed, in the model the flow is bounded by two by two parallel planar plates, and the ferromagnetic wires are installed outside these spaces, within planes parallel with the plates. The analysis is based on the study of particle trajectories, considering the laminar flow of carrier fluid. From these the authors establish the conditions for the maximum recovery of the particles in suspension. This study is useful in designing magnetic filter batteries with corrosion-protected ferromagnetic wires.

  2. Lateral Flow Field Behavior Downstream of Mixing Vanes In a Simulated Nuclear Fuel Rod Bundle

    SciTech Connect

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2004-07-01

    To assess the fuel assembly performance of PWR nuclear fuel assemblies, average subchannel flow values are used in design analyses. However, for this highly complex flow, it is known that local conditions around fuel rods vary dependent upon the location of the fuel rod in the fuel assembly and upon the support grid design that maintains the fuel rod pitch. To investigate the local flow in a simulated nuclear fuel rod bundle, a testing technique has been employed to measure the lateral flow field in a 5 x 5 rod bundle. Particle Image Velocimetry was used to measure the lateral flow field downstream of a support grid with mixing vanes for four unique subchannels in the 5 x 5 bundle. The dominant lateral flow structures for each subchannel are compared in this paper including the decay of these flow structures. (authors)

  3. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  4. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    NASA Astrophysics Data System (ADS)

    Kolokolov, I. V.

    2017-03-01

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  5. Zonal Flow Magnetic Field Interaction in the Semi-Conducting Region of Giant Planets

    NASA Astrophysics Data System (ADS)

    Cao, H.; Stevenson, D. J.

    2016-12-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the planet with constant velocity along the direction of the spin-axis. The electrical conductivity increases smoothly as a function of depth inside Jupiter and Saturn, while a discontinuity of electrical conductivity inside Uranus and Neptune cannot be ruled out. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. We first investigate the kinematic interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the kinematic interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets. We then investigate the role of magnetic field in establishing the global property of deep zonal flows inside giant planet. By solving the Reynolds-averaged magnetohydrodynamics (MHD) equation, we show that the meridional circulation driven by the Reynolds stress and the Lorentz force in mid-to-high latitude will give rise to latitudinal thermal gradient acting to decrease the zonal wind velocity along the direction of the spin-axis (the thermal wind shear). Furthermore, we evaluate the modified Taylor integral, which takes into account the contribution from the Reynolds stress, to assess its role in determining the amplitude

  6. Experimental Measurement of the Flow Field of Heavy Trucks

    SciTech Connect

    Fred Browand; Charles Radovich

    2005-05-31

    Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated

  7. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  8. Steady Flow Field Measurements Using Laser Doppler Velocimetry.

    DTIC Science & Technology

    1987-12-01

    TRANSMITTED BEAM PATH ...... !6 C. SCATTERED LIGHT PATH . . . . . . . . . . . 2 D . SIGNAL FLOW AND PROCESSING .... ........ 28 E. COMPUTER INTERFACE...39 B. CALIBRATION PROCEDURE . . . . . . . . . . C . FREE J ET . . . . . . . . . . . . . . . . D . WIND TUNNEL DATA...King whose good humor, as much as his multifaceted technical talents made the work that much easier. Also a special thank you to Chet Heard for his

  9. Computational study of generic hypersonic vehicle flow fields

    NASA Technical Reports Server (NTRS)

    Narayan, Johnny R.

    1994-01-01

    The geometric data of the generic hypersonic vehicle configuration included body definitions and preliminary grids for the forebody (nose cone excluded), midsection (propulsion system excluded), and afterbody sections. This data was to be augmented by the nose section geometry (blunt conical section mated with the noncircular cross section of the forebody initial plane) along with a grid and a detailed supersonic combustion ramjet (scramjet) geometry (inlet and combustor) which should be merged with the nozzle portion of the afterbody geometry. The solutions were to be obtained by using a Navier-Stokes (NS) code such as TUFF for the nose portion, a parabolized Navier-Stokes (PNS) solver such as the UPS and STUFF codes for the forebody, a NS solver with finite rate hydrogen-air chemistry capability such as TUFF and SPARK for the scramjet and a suitable solver (NS or PNS) for the afterbody and external nozzle flows. The numerical simulation of the hypersonic propulsion system for the generic hypersonic vehicle is the major focus of this entire work. Supersonic combustion ramjet is such a propulsion system, hence the main thrust of the present task has been to establish a solution procedure for the scramjet flow. The scramjet flow is compressible, turbulent, and reacting. The fuel used is hydrogen and the combustion process proceeds at a finite rate. As a result, the solution procedure must be capable of addressing such flows.

  10. A study of the flow field surrounding interacting line fires

    Treesearch

    Trevor Maynard; Marko Princevac; David R. Weise

    2016-01-01

    The interaction of converging fires often leads to significant changes in fire behavior, including increased flame length, angle, and intensity. In this paper, the fluid mechanics of two adjacent line fires are studied both theoretically and experimentally. A simple potential flow model is used to explain the tilting of interacting flames towards each other, which...

  11. Pollen- and Seed-Mediated Transgene Flow in Commercial Cotton Seed Production Fields

    PubMed Central

    Heuberger, Shannon; Ellers-Kirk, Christa; Tabashnik, Bruce E.; Carrière, Yves

    2010-01-01

    Background Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt) cotton is planted on millions of hectares annually and is a potential source of transgene flow. Methodology/Principal Findings Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L.) seed production fields (some transgenic for herbicide resistance, some not) for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. Conclusions/Significance A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow. PMID:21152426

  12. Deforming the theory λϕ4 along the parameters and fields gradient flows

    NASA Astrophysics Data System (ADS)

    Cartas-Fuentevilla, R.; Olvera-Santamaria, A.

    2015-01-01

    Considering the action for the theory λϕ4 for a massive scalar bosonic field as an entropy functional on the space of coupling constants and on the space of fields, we determine the gradient flows for the scalar field, the mass and the self-interaction parameter. When the flow parameter is identified with the energy scale, we show that there exist phase transitions between unbroken exact symmetry scenarios and spontaneous symmetry breaking scenarios at increasingly high energies. Since a nonlinear heat equation drives the scalar field through a reaction-diffusion process, in general the flows are not reversible, mimicking the renormalization group flows of the c-theorem; the deformation of the field at increasingly high energies can be described as nonlinear traveling waves, or solitons associated to self-similar solutions.

  13. The behavior of a magnetic filament in flow under the influence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Lüsebrink, Daniel; Cerdà, Joan J.; Sánchez, Pedro A.; Kantorovich, Sofia S.; Sintes, Tomás

    2016-12-01

    We present an extensive numerical study of the behaviour of a filament made of ferromagnetic colloidal particles subjected to the simultaneous action of a fluid flow and a stationary external magnetic field perpendicular to the flow lines. We found that in the presence of a shear flow, the tumbling motion observed at zero field is strongly inhibited when the external magnetic field is applied. The field is able to stabilise the filament with a well defined degree of alignment that depends on the balance between hydrodynamic and magnetic torques. In addition, for a Poiseuille flow, it has been found that the initial position has a long lasting influence on the behaviour of the magnetic filament when the external field is applied.

  14. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect

    Song, P.; Vasyliūnas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  15. Magnetic field impact on the high and low Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Pleskacz, L.; Fornalik-Wajs, E.

    2014-08-01

    The effect of a strong magnetic field on the temperature and velocity fields of laminar flow was examined. The magnetizing force and gravity term were included in the momentum conservation equation. Biot-Savart's law was applied to obtain the distribution of magnetic field. Three-dimensional computations were performed for straight pipe and pipe with elbow. The single circular magnetic coil was oriented perpendicularly to the flow axis and divided the straight pipe in two equal parts, while in the case of pipe with elbow was just at the beginning of elbow. The wall of the first straight part was adiabatic while the second was isothermal. Half of the elbow was heated, while the reamining part was adiabatic. Various boundary conditions were applied to estimate their influence on the velocity and temperature distributions. Low entrance velocity, high wall temperature and strong magnetic field led to deceleration of the flow in the central area, acceleration near the wall and formation of recirculation zone in between for the straight pipe. Flow structure and temperature field in the pipe with elbow were significantly modified by the magnetic force. Increasing entrance velocity reduced influence of magnetic field, therefore the flow was less modified. High temperature and magnetic induction resulted in significant changes of the velocity profile. The analysis was conducted with an application of software with special user-defined function. The magnetic field had an influence on the forced convection but its scale depended on the fluid and flow properties, boundary conditions and magnetic field induction.

  16. Cormorant fields flowing 45,000 B/D

    SciTech Connect

    Fulmar, N.

    1982-03-01

    Initial rates at Shell/Esso's 2 newest producing fields in the UK North Sea are 30,000 bpd at Fulmar field and 15,000 bpd at the North Cormorant field. Peak production at both fields will be 180,000 bpd. Fulmar will build to 50,000 bpd within 3 months. Shell expects output to peak in 1985. North Cormorant output is scheduled to double to 30,000 bpd in the second month's operation. The production buildup will be slower than Fulmar and will not reach the peak rate until 1986. Fulmar Field, ca. 170 miles east of Dundee, became the 19th field to go on stream in UK waters. It was followed shortly by North Cormorant field in the East Shetlands basin ca. 100 miles northeast of the Shetland Islands. Reserves are 450 million bbl of crude, 56 million bbl of gas liquids, and 130 billion cu ft of gas. Production buildup is quicker than at North Cormorant because of the 1500-ton wellhead jacket installed alongside the main drilling and accommodation platform to facilitate early production. It is the first time that a well head platform has been used in the oil bearing part of the North Sea. Production has started from 3 wells on the wellhead platform.

  17. Numerical study of soap-film flow by nonuniform alternating electric fields

    NASA Astrophysics Data System (ADS)

    Nasiri, M.; Shirsavar, R.; Mollaei, S.; Ramos, A.

    2017-02-01

    Fluid flow of suspended liquid films induced by non-uniform alternating electric fields has been reported. The electric fields were generated by two rod-like electrodes perpendicular to the fluid surface. The observed fluid flow was explained qualitatively by considering a charge induction mechanism, where the electric field actuates on the charge induced on the film surface. In this paper we perform a numerical study of this fluid flow taking into account the charge induction mechanism. The numerical results are compared with experiments and good agreement is found. Finally, we propose the application of the device as a new kind of two dimensional fluid pump.

  18. Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow

    NASA Astrophysics Data System (ADS)

    Kim, Wonkyoung; Chun Ryu, Jae; Kweon Suh, Yong; Hyoung Kang, Kwan

    2011-11-01

    We present a method of pumping dielectric (or non-polar) liquids. The pumping method relies on the electrohydrodynamic flow generated by field dependent electrical conductivity (Onsager effect). Adding a small amount of polar liquid increases the field-dependency of conductivity. Applying either dc or ac voltage produces a fast and regular flow around electrodes. Flow speed is proportional to cube of electric-field strength and inversely to applied frequency. The experimental results agreed well with numerical analysis based on our theoretical model.

  19. Numerical study of soap-film flow by nonuniform alternating electric fields.

    PubMed

    Nasiri, M; Shirsavar, R; Mollaei, S; Ramos, A

    2017-02-01

    Fluid flow of suspended liquid films induced by non-uniform alternating electric fields has been reported. The electric fields were generated by two rod-like electrodes perpendicular to the fluid surface. The observed fluid flow was explained qualitatively by considering a charge induction mechanism, where the electric field actuates on the charge induced on the film surface. In this paper we perform a numerical study of this fluid flow taking into account the charge induction mechanism. The numerical results are compared with experiments and good agreement is found. Finally, we propose the application of the device as a new kind of two dimensional fluid pump.

  20. New method of asymmetric flow field measurement in hypersonic shock tunnel.

    PubMed

    Yan, D P; He, A Z; Ni, X W

    1991-03-01

    In this paper a method of large aperture (?500 mm) high sensitivity moire deflectometry is used to obtain multidirectional deflectograms of the asymmetric flow field in hypersonic (M = 10.29) shock tunnel. At the same time, a 3-D reconstructive method of the asymmetric flow field is presented which is based on the integration of the moire deflective angle and the double-cubic many-knot interpolating splines; it is used to calculate the 3-D density distribution of the asymmetric flow field.

  1. Energy and momentum flow in electromagnetic fields and plasma. [solar wind-magnetospheric interaction

    NASA Technical Reports Server (NTRS)

    Parish, J. L.; Raitt, W. J.

    1983-01-01

    The energy momentum tensor for a perfect fluid in a magnetic field is used to predict the momentum density, energy density, momentum flow, and energy flow of the fluid and the electromagnetic field. It is shown that taking the momentum flow from the energy momentum tensor, rather than starting with differential magnetohydrodynamic equations, can produce more accurate results on the basis of magnetic field data. It is suggested that the use of the energy momentum tensor has the potential for application to analysis of data from the more dynamic regions of the solar system, such as the plasma boundaries of Venus, the Jovian ionosphere, and the terrestrial magnetopause.

  2. Optical visualisation of the flow around a cylinder in electrolyte under strong axial magnetic field.

    NASA Astrophysics Data System (ADS)

    Andreev, O.; Kobzev, A.; Kolesnikov, Yu.; Thess, A.

    Flows around obstacles are among the most common problems encountered in the fluid mechanics literature, and cylindrical obstacles definitely received the most extensive attention. The reason for this is that this relatively simple geometry already encompasses most of the important physical effects likely to play a role in flow around more complicated obstacles. This means that understanding the cylinder problem provides relevant insight on a wide variety of problem ranging from aerodynamics, with the flow around a wing or a vehicle, to pollutant dispersion around building, flows in turbines … When the working fluid conducts electricity additional effects are involved. In particular, the presence of a magnetic field tends to homogenise the flow in the direction of the magnetic field lines which leads to strong alterations of the flow patterns known from the classical nonconducting case. This configuration is also a very generic one as Magnetohydrodynamic flows around obstacle also occur in a wide variety of applications: for instance, the space vehicle re-entry problem features the flow of a conducting plasma around an obstacle: [1] and [2] have shown that it could be influenced by a strong magnetic field in order to reduce heat transfer. The cooling blanket of the future nuclear fusion reactor ITER soon to be built in France, features a complex flow of liquid metal in a very high magnetic field (typically 10 T), in which the occurrence of obstacles cannot be avoided.

  3. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  4. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  5. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.

  6. Field implementation of Particle Image Velocimetry (PIV) for studying flow dynamics at river confluences

    NASA Astrophysics Data System (ADS)

    Lewis, Q. W.; Rhoads, B. L.

    2014-12-01

    The complex hydrodynamics of river confluences have been the focus of numerous investigations over the past several decades. Confluences are locations in river systems characterized by complex patterns of turbulent flow structure, especially within the mixing interface that develops between the two flows. To date, most field investigations of flow structure at stream confluences have been based on point measurements of velocity time series (e.g using ADVs) or on time-averaged data with high spatial resolution, but poor temporal resolution (e.g. using ADCPs). Past approaches have failed to capture the spatial and temporal density of velocity measurements needed to adequately characterize complex turbulent flow structures. In contrast, Particle Image Velocimetry (PIV) has been used successfully in laboratory studies to define in considerable detail the characteristics of turbulent structures. This study uses field-based PIV to characterize surficial flow structure within a small stream confluence. Landscape mulch served as seeding material for the PIV. Particle motion was recorded at a high frame rate using a small action camera mounted above the surface of the flow. Near-surface 3D velocities of flow were measured with an acoustic Doppler velocimeter (ADV) to evaluate velocity data generated by the PIV analysis. Results show that field-based PIV captures nicely complex patterns of fluid motion at the surface of the flow, revealing the two-dimensional characteristics of coherent flow structures. Velocities resulting from the PIV analysis match measured velocities most closely where the flow is least complex and where seeding material remains uniformly distributed throughout the flow. Overall the method appears promising for qualitatively assessing flow structure and for quantifying the size, duration, and vorticity of turbulent structures. Field-based PIV is a valuable technique that can be used along with traditional velocity measurements to more completely and

  7. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    SciTech Connect

    Moawad, S. M. Ibrahim, D. A.

    2016-08-15

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  8. Zonal Flow Magnetic Field Interaction in the Semi-Conducting Region of Giant Planets

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2016-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the planet with constant velocity along the direction of the spin-axis. The electrical conductivity increases smoothly as a function of depth inside Jupiter and Saturn, while a discontinuity of electrical conductivity inside Uranus and Neptune cannot be ruled out. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. Here we investigate the interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. Assuming the peak amplitude of the dynamo α-effect to be 0.1 mm/s, deep zonal flows on the order of 0.1 - 1 m/s in the semi-conducting region of Jupiter and Saturn would generate poloidal magnetic perturbations on the order of 0.01 % - 1 % of the background dipole field. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the upcoming Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets.

  9. Surface and Flow Field Measurements on the FAITH Hill Model

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  10. Liquid Spray Characterization in Flow Fields with Centripetal Acceleration

    DTIC Science & Technology

    2014-03-27

    29 For practical purposes of atomization, most nozzles do not produce a jet of liquid, rather they form a flat or conical sheet of liquid. Fuel...in phase difference due to particle size [15] ...................................... 37 Figure 24: Full annulus UCC (a) design and (b) main flow...operating conditions of 0.7 MPa and g-loadings of 300, 1400, and 5000 g .............................. 80 Figure 55: Vector plot of the difference of

  11. Whole Field Measurements of Vorticity in Turbulent and Unsteady Flows

    DTIC Science & Technology

    1988-10-11

    shown in Fig. 2. It was fabricated by component of velocity in flows with predominately one individually fixing Aluminum coated mirrors (with the...3. EXPERIMENTAL RESULTS Two experiments were performed to demonstrate the technique. Both used deodorized kerosene with 10 ppm of the photochromtic...the blaze angle, and the grating step width and spacing. It was fabricated by individually fixing 2.1. Review of the measurement technique aluminum

  12. Turbulence Modeling for Thrust Reverser Flow Field Prediction Methods

    DTIC Science & Technology

    1992-12-01

    Barata 28 of a normal impinging jet at H/D = 5 and Vj/V_. = 30 indicate that the shear stress in the vortex is roughly an order of magnitude less than...Speed Afterbody Flows," 1. Propulsion and Power, Vol. 7, No. 4, 1991, pp. 607-616 28. Barata , J. M. M., Durao, D. F. G., and Heitor, M. V., "Turbulent

  13. The Interaction of Focused Attention with Flow-field Sensitivity

    NASA Technical Reports Server (NTRS)

    Stoffregen, T.

    1984-01-01

    Two studies were performed to determine whether a subject's response to naturalistic optical flow specifying egomotion would be affected by a concurrent attention task. In the first study subjects stood in a moving room in which various areas of the optical flow generated by room movement were visible. Subjects responded to room motion with strong compensatory sway when the entire room was visible. When the side walls of the room were completely obscured by stationary screens, leaving only the front wall visible, sway was significantly reduced, though it remained greater than in an eyes-closed control. In Exp. 2 subjects were presented with either the full room (large sway response) or the room with only the front wall visible (moderate response), each in combination with either a hard or easy verbal addition task. Preliminary results show that swaying in the fully visible room and in the room with only the front wall visible increased when combined with either the hard or easy tasks. These preliminary results suggest that at the least the pick-up of optical flow specifying egomotion is not affected by concurrent attentional activity.

  14. Fast measurements of average flow velocity by Low-Field ¹H NMR.

    PubMed

    Osán, T M; Ollé, J M; Carpinella, M; Cerioni, L M C; Pusiol, D J; Appel, M; Freeman, J; Espejo, I

    2011-04-01

    In this paper, we describe a method for measuring the average flow velocity of a sample by means of Nuclear Magnetic Resonance. This method is based on the Carr-Purcell-Meiboom-Gill (CPMG) sequence and does not require the application of any additional static or pulsed magnetic field gradients to the background magnetic field. The technique is based on analyzing the early-time behavior of the echo amplitudes of the CPMG sequence. Measurements of average flow velocity of water are presented. The experimental results show a linear relationship between the slope/y-intercept ratio of a linear fit of the first echoes in the CPMG sequence, and the average flow velocity of the flowing fluid. The proposed method can be implemented in low-cost Low-Field NMR spectrometers allowing a continuous monitoring of the average velocity of a fluid in almost real-time, even if the flow velocity changes rapidly.

  15. LDA measurement of the passage flow field in a 3-D airfoil cascade

    NASA Technical Reports Server (NTRS)

    Stauter, R. C.; Fleeter, S.

    1986-01-01

    Three-dimensional internal flow computational models are currently being developed to predict the flow through turbomachinery blade rows. For these codes to be of quantitative value, they must be verified with data obtained in experiments which model the fundamental flow phenomena. In this paper, the complete three-dimensional flow field through a subsonic annular cascade of cambered airfoils is experimentally quantified. In particular, detailed three-dimensional data are obtained to quantify the inlet velocity profile, the cascade passage velocity field, and the exit region flow field. The primary instrumentation for acquiring these data is a single-channel Laser Doppler Anemometer operating in the backscatter mode, with chordwise distributions of airfoil surface static pressure taps also utilized. Appropriate data are correlated with predictions from the MERIDL/TSONIC codes.

  16. An experimental investigation of circulation control flow fields using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1982-01-01

    Experiments are presented which were conducted on flow fields produced by a circulation control airfoil utilizing the Coanda effect at the trailing edge. The application of holographic interferometry to obtain both visualization and quantitative data on the flow field about a circulation control airfoil at transonic flow speed is covered. A brief description of the flow model and measurement techniques is given. The data reduction procedure, results, and interpretation are presented. The results have provided a good deal of information on the character of the flow field, particularly in the neighborhood of the trailing edge. As to the airfoil design, it is apparent that improved performance can be achieved if jet detachment is delayed. Another design improvement would involve the development of an optimum trailing-edge shape for the expected operating Mach and Reynolds number ranges.

  17. Influence of magnetic field on chemically reactive blood flow through stenosed bifurcated arteries

    NASA Astrophysics Data System (ADS)

    Hossain, Khan Enaet; Haque, Md. Mohidul

    2017-06-01

    Dynamic response of mass transfer in chemically reactive blood flow through bifurcated arteries under the stenotic condition is numerically studied in the present of a uniform magnetic field. The blood flowing through the artery is assumed an incompressible, fully developed and Newtonian. The nonlinear unsteady flow phenomena are governed by the Navier-Stokes and concentration equations. All these equations together with the appropriate boundary conditions describing the present biomechanical problem are transformed by using a radial transformation and the numerical results are obtained using a finite difference technique. Effects of stenosed bifurcation and externally applied magnetic field on the blood flow with chemical reaction are discussed with the help of graph. All the flow characteristics are found to be affected by the presence of chemical reaction and exposure of magnetic field of different intensities. Finally some important findings of the problem are concluded in this work.

  18. Analytical study of mixing and reacting three-dimensional supersonic combustor flow fields

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Rogers, R. C.; Zelazny, S. W.

    1975-01-01

    An analytical investigation is presented of mixing and reacting hydrogen jets injected from multiple orifices transverse and parallel to a supersonic airstream. The COMOC computer program, based upon a finite-element solution algorithm, was developed to solve the governing equations for three-dimensional, turbulent, reacting, boundary-region, and confined flow fields. The computational results provide a three-dimensional description of the velocity, temperature, and species-concentration fields downstream of hydrogen injection. Detailed comparisons between cold-flow data and results of the computational analysis have established validity of the turbulent-mixing model based on the elementary mixing-length hypothesis. A method is established to initiate computations for reacting flow fields based upon cold-flow correlations and the appropriate experimental parameters of Mach number, injector spacing, and pressure ratio. Key analytical observations on mixing and combustion efficiency for reacting flows are presented and discussed.

  19. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    PubMed

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  20. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    SciTech Connect

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.

  1. Lava flow surface textures - SIR-B radar image texture, field observations, and terrain measurements

    NASA Technical Reports Server (NTRS)

    Gaddis, Lisa R.; Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1990-01-01

    SIR-B images, field observations, and small-scale (cm) terrain measurements are used to study lave flow surface textures related to emplacement processes of a single Hawaiian lava flow. Although smooth pahoehoe textures are poorly characterized on the SIR-B data, rougher pahoehoe types and the a'a flow portion show image textures attributed to spatial variations in surface roughness. Field observations of six distinct lava flow textural units are described and used to interpret modes of emplacement. The radar smooth/rough boundary between pahoehoe and a'a occurs at a vertical relief of about 10 cm on this lava flow. While direct observation and measurement most readily yield information related to lava eruption and emplacement processes, analyses of remote sensing data such as those acquired by imaging radars and altimeters can provide a means of quantifying surface texture, identifying the size and distribution of flow components, and delineating textural unit boundaries.

  2. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  3. Constraints on the Observed Zonal Flows from the Magnetic Fields in Giant Planets

    NASA Astrophysics Data System (ADS)

    Liu, J. J.; Stevenson, D. J.

    2003-05-01

    The zonal winds on the surface of the giant planets are very strong ( 100m/s ) and stable (on a decadal time scale). Observations by the Galileo probe suggest that the zonal flow might be deep seated. However, the magnitude of the zonal flow must be reduced to a small value in the interior of the giant planets because the flow is defined relative to the magnetic field frame of reference (System III) and very large zonal flows can not be tolerated in a high conductivity region. The mechanisms for reducing the magnitude of the zonal flow and the coupling between the zonal flow and magnetic field are unclear. Here we use a coupled Navier-Stokes equation and the magnetic induction equation in steady state to study this. From Navier-Stokes, we find that the zonal flow vth can be expressed in three parts: vth(s,z) = a(s) + Bth2/4μ0ρ Ω s + F(grad(ρ ),Bth)/4μ0ρ Ω s, where a(s) is an arbitrary function of cylindrical radius (s) only, z is the coordinate parallel to the rotation axis, Bth is the toroidal field, μ 0 is the permeability of free space, ρ (s,z) is the density, Ω is the planetary rotation and F is a function of the density gradient (grad(ρ )) and the toroidal magnetic field. The first part is the geostrophic flow consistent with the Taylor-Proudman theorem. The second part is due to the tensile force that arises from the curvature of the toroidal field, and always leads a prograde flow. The third part comes from the density variation and meridional gradient of the toroidal field, and may lead to the prograde flow or the retrograde flow. Whether the flow observed on the surface could be reduced to small values in the interior will depend on the direction of the flow, the density gradient and also the structure of the toroidal magnetic field. It can also be shown that the magnitude of the generated toroidal magnetic field in the interior of the giant planets is very large and around 10 Tesla for consistency with the observed zonal flow on the surface of

  4. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-07-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k- ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  5. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-03-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k-ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  6. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong

    2016-12-01

    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  7. Electric Discharge Flow Interaction in Parallel and Cross-Flow Electric Fields.

    DTIC Science & Technology

    1981-09-01

    was measured by a pitot-static probe (connected to a mercury manometer ) inserted in the exhaust opening of the test section. The probe was removed...fan was employed, blowing in the reverse direction from the normal flow, at an air flow speed too small to be measured by the pitot tube and mercury ... manometer . Results summarized on Figure 21 indicate an increase in power with increased electrode spacing. This is a fundamental improvement over the

  8. A source flow characteristic technique for the analysis of scramjet exhaust flow field

    NASA Technical Reports Server (NTRS)

    Delguidice, P.; Dash, S.; Kalben, P.

    1974-01-01

    The factors which influence the design and selection of a nozzle for a hypersonic scramjet are described. A two dimensional second-order characteristic procedure capable of analyzing the aerodynamic performance of typical nozzle configurations is presented. Equations of motion governing the two dimensional, axisymmetric, or axially expanding inviscid flow of a gas mixture, with frozen chemistry, are provided. Diagrams of the flow conditions for various configurations are included.

  9. Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1999-01-01

    The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.

  10. Automated frit inlet/frit outlet flow field-flow fractionation for protein characterization with emphasis on polymeric wheat proteins.

    PubMed

    Stevenson, S G; Ueno, T; Preston, K R

    1999-01-01

    A flow field-flow fractionation (FFF) unit fitted with a 254-nm spacer, frit inlet (FI), and frit outlet (FO) was automated for protein analysis by addition of a system controller, autosampler, and computer software to control pumps, sample loading, and data capture. Standard molecular size marker proteins and polymeric wheat storage protein extracts were used to assess the performance of the automated unit. Optimum resolution for these proteins was obtained with a sample inlet flow of 0.2 mL/min, a frit inlet flow (recirculating) of 1.4 mL/min, and a cross-flow (recirculating) of 5 mL/min using 0.05 M acetic acid containing 0.002% FL-70 as a carrier. Use of the FIFO FFF eliminates the requirement for stop-flow relaxation and pressure balancing, results in better reproducibility, and generates a 7-10-fold increase in sensitivity at the detector by concentrating fractions eluting from the channel. These improvements resulted in superior resolution of polymeric wheat protein fractions compared to those obtained previously using a standard channel with manual load and stop-flow relaxation, allowing accurate integration of peak or size range areas. Automation of this system allows unattended sample fractionation and hence markedly increases potential for sample throughput.

  11. Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan

    1991-01-01

    The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.

  12. Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan

    1991-01-01

    The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.

  13. Local motion detectors are required for the computation of expansion flow-fields

    PubMed Central

    Schilling, Tabea; Borst, Alexander

    2015-01-01

    ABSTRACT Avoidance of predators or impending collisions is important for survival. Approaching objects can be mimicked by expanding flow-fields. Tethered flying fruit flies, when confronted with an expansion flow-field, reliably turn away from the pole of expansion when presented laterally, or perform a landing response when presented frontally. Here, we show that the response to an expansion flow-field is independent of the overall luminance change and edge acceleration. As we demonstrate by blocking local motion-sensing neurons T4 and T5, the response depends crucially on the neural computation of appropriately aligned local motion vectors, using the same hardware that also controls the optomotor response to rotational flow-fields. PMID:26231626

  14. A knowledge-based approach to automated flow-field zoning for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1989-01-01

    An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.

  15. Numerical simulations on the flow fields of dynamic axial compression columns in chromatography processes

    NASA Astrophysics Data System (ADS)

    Chien Liang, Ru; Che Liu, Cheng; Tsai Liang, Ming; Chen, Jiann Lin

    2017-02-01

    Dynamic axial compression (DAC) columns are key elements in Simulated Moving Bed, which is a chromatography process in drug industry and chemical engineering. In this study, we apply the computational fluid dynamics (CFD) technique to analyze the flow fields in the DAC column and propose rules for distributor design based on mass conservation in fluid dynamics. Computer aided design (CAD) is used in constructing the numerical 3D modelling for the mesh system. The laminar flow fields with Darcy’s law to model the porous zone are governed by the Navier-Stokes equations and employed to describe the porous flow fields. Experimental works have been conducted as the benchmark for us to choose feasible porous parameters for CFD. Besides, numerical treatments are elaborated to avoid calculation divergence resulting from large source terms. Results show that CFD combined with CAD is a good approach to investigate detailed flow fields in DAC columns and the design for distributors is straightforward.

  16. Digital program analyzes supersonic flow field within bell-shaped rocket nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, J. J.; Stromsta, R. R.

    1970-01-01

    Digital computer program computes and analyzes supersonic flow field in axisymmetric rocket nozzle for specified gas properties, nozzle geometry, and input or starting line. Method of characteristics is used for solution of set of hyperbolic partial differential equations.

  17. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  18. Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.

    2003-01-01

    We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.

  19. Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.

    2003-01-01

    We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.

  20. Experimental measurement of the flow field around a freely swimming microorganism

    NASA Astrophysics Data System (ADS)

    Polin, Marco; Drescher, Knut; Goldstein, Raymond; Michel, Nicolas; Tuval, Idan

    2010-03-01

    Despite their small size, the fluid flows produced by billions of microscopic swimmers in nature can have dramatic macroscopic effects (e.g. biogenic mixing in the ocean). Understanding the flow structure of a single swimming microorganism is essential to explain and model these macroscopic phenomena. Here we report the first detailed measurement of the flow field around an isolated, freely swimming microorganism, the spherical alga Volvox, and discuss the implications of this measurement for other species.