Science.gov

Sample records for doxorubicin potential therapeutic

  1. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics.

    PubMed

    Low, Stewart A; Yang, Jiyuan; Kopeček, Jindřich

    2014-11-19

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic D-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data.

  2. Bone-Targeted Acid-Sensitive Doxorubicin Conjugate Micelles as Potential Osteosarcoma Therapeutics

    PubMed Central

    2015-01-01

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic d-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data. PMID:25291150

  3. Potential Therapeutic Advantages of Doxorubicin when Activated by Formaldehyde to Function as a DNA Adduct-Forming Agent.

    PubMed

    Cutts, Suzanne M; Rephaeli, Ada; Nudelman, Abraham; Ugarenko, Michal; Phillips, Don R

    2015-01-01

    Doxorubicin has been in use as a key anticancer drug for forty years, either as a single agent or in combination chemotherapy. It functions primarily by interfering with topoisomerase II activity but in the presence of formaldehyde, it forms adducts with DNA, mainly with the exocyclic amine of guanine at GpC sites and these adducts are more cytotoxic than topoisomerase II induced damage. High levels of adducts form spontaneously from the endogenous level of formaldehyde in tumour cells (1,300 adducts per cell after a 4 hr treatment with doxorubicin), but substantially higher levels form with the addition of exogenous sources of formaldehyde, such as formaldehyde releasing prodrugs. The enhanced cytotoxicity of adducts has been confirmed in mouse models, with adduct-forming conditions resulting in much improved inhibition of tumour growth, as well as cardioprotection. Doxorubicin cardiotoxicity has been attributed to topoisomerase II poisoning, and the cardioprotection is consistent with a mechanism switch from topoisomerase II poisoning to covalent adduct formation. Although the adducts have a half-life of less than one day, a population remains as essentially permanent lesions. The capacity of doxorubicin to form adducts offers a range of potential advantages over the conventional use of doxorubicin (as a topoisomerase II poison), including: enhanced cell kill; tumour-selective activation, hence tumour-selective cell kill; decreased cardiotoxicity; decreased resistance to prolonged doxorubicin treatment. There is therefore enormous potential to improve clinical responses to doxorubicin by using conditions which favour the formation of doxorubicin-DNA adducts.

  4. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin.

    PubMed

    Moyal, Lilach; Feldbaum, Nataly; Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS.

  5. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin

    PubMed Central

    Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS. PMID:26752418

  6. Potential therapeutic strategies for non - muscle invasive bladder cancer based on association of intravesical immunotherapy with P-MAPA and systemic administration of cisplatin and doxorubicin

    PubMed Central

    Dias, Queila Cristina; Nunes, Iseu da Silva; Garcia, Patrick Vianna; Fávaro, Wagner José

    2016-01-01

    ABSTRACT The present study describes the histopathological and molecular effects of P-MAPA (Protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride) intravesical immunotherapy combined with systemic doxorubicin or cisplatin for treatment of non-muscle invasive bladder cancer (NMIBC) in an appropriate animal model. Our results showed an undifferentiated tumor, characterizing a tumor invading mucosa or submucosa of the bladder wall (pT1) and papillary carcinoma in situ (pTa) in the Cancer group. The histopathological changes were similar between the combined treatment with intravesical P-MAPA plus systemic Cisplatin and P-MAPA immunotherapy alone, showing decrease of urothelial neoplastic lesions progression and histopathological recovery in 80% of the animals. The animals treated systemically with cisplatin or doxorubicin singly, showed 100% of malignant lesions in the urinary bladder. Furthemore, the combined treatment with P-MAPA and Doxorubicin showed no decrease of urothelial neoplastic lesions progression and histopathological recovery. Furthermore, Akt, PI3K, NF-kB and VEGF protein levels were significantly lower in intravesical P-MAPA plus systemic cisplatin and in intravesical P-MAPA alone treatments than other groups. In contrast, PTEN protein levels were significantly higher in intravesical P-MAPA plus systemic cisplatin and in intravesical P-MAPA alone treatments. Thus, it could be concluded that combination of intravesical P-MAPA immunotherapy and systemic cisplatin in the NMIBC animal model was effective, well tolerated and showed no apparent signs of antagonism between the drugs. In addition, intravesical P-MAPA immunotherapy may be considered as a valuable option for treatment of BCG unresponsive patients that unmet the criteria for early cystectomy. PMID:24893914

  7. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Wang, Zheran; Wang, Ju; Jiang, Weihua; Jiang, Xuewei; Bai, Zhaoshi; He, Yunpeng; Jiang, Jianqi; Wang, Dongkai; Yang, Li

    2016-03-01

    Carbon dots (CDs) have shown great potential in imaging and drug/gene delivery applications. In this work, CDs functionalized with a nuclear localization signal peptide (NLS-CDs) were employed to transport doxorubicin (DOX) into cancer cells for enhanced antitumor activity. DOX was coupled to NLS-CDs (DOX-CDs) through an acid-labile hydrazone bond, which was cleavable in the weakly acidic intracellular compartments. The cytotoxicity of DOX-CD complexes was evaluated by the MTT assay and the cellular uptake was monitored using flow cytometry and confocal laser scanning microscopy. Cell imaging confirmed that DOX-CDs were mainly located in the nucleus. Furthermore, the complexes could efficiently induce apoptosis in human lung adenocarcinoma A549 cells. The in vivo therapeutic efficacy of DOX-CDs was investigated in an A549 xenograft nude mice model and the complexes exhibited an enhanced ability to inhibit tumor growth compared with free DOX. Thus, the DOX-CD conjugates may be exploited as promising drug delivery vehicles in cancer therapy.Carbon dots (CDs) have shown great potential in imaging and drug/gene delivery applications. In this work, CDs functionalized with a nuclear localization signal peptide (NLS-CDs) were employed to transport doxorubicin (DOX) into cancer cells for enhanced antitumor activity. DOX was coupled to NLS-CDs (DOX-CDs) through an acid-labile hydrazone bond, which was cleavable in the weakly acidic intracellular compartments. The cytotoxicity of DOX-CD complexes was evaluated by the MTT assay and the cellular uptake was monitored using flow cytometry and confocal laser scanning microscopy. Cell imaging confirmed that DOX-CDs were mainly located in the nucleus. Furthermore, the complexes could efficiently induce apoptosis in human lung adenocarcinoma A549 cells. The in vivo therapeutic efficacy of DOX-CDs was investigated in an A549 xenograft nude mice model and the complexes exhibited an enhanced ability to inhibit tumor growth compared

  8. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer.

    PubMed

    Kopansky, Eva; Shamay, Yosi; David, Ayelet

    2011-12-01

    Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers--bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively--were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells. PMID:22074249

  9. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer.

    PubMed

    Kopansky, Eva; Shamay, Yosi; David, Ayelet

    2011-12-01

    Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers--bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively--were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells.

  10. Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer

    NASA Astrophysics Data System (ADS)

    Salaam, Amanee D.; Hwang, Patrick T. J.; Poonawalla, Aliza; Green, Hadiyah N.; Jun, Ho-wook; Dean, Derrick

    2014-10-01

    Enhancing therapeutic efficacy is essential for successful treatment of chemoresistant cancers such as metastatic hormone-refractory prostate cancer (HRPC). To improve the efficacy of doxorubicin (DOX) for treating chemoresistant disease, the feasibility of using nanodiamond (ND) particles was investigated. Utilizing the pH responsive properties of ND, a novel protocol for complexing NDs and DOX was developed using a pH 8.5 coupling buffer. The DOX loading efficiency, loading on the NDs, and pH responsive release characteristics were determined utilizing UV-Visible spectroscopy. The effects of the ND-DOX on HRPC cell line PC3 were evaluated with MTS and live/dead cell viability assays. ND-DOX displayed exceptional loading efficiency (95.7%) and drug loading on NDs (23.9 wt%) with optimal release at pH 4 (80%). In comparison to treatment with DOX alone, cell death significantly increased when cells were treated with ND-DOX complexes demonstrating a 50% improvement in DOX efficacy. Of the tested treatments, ND-DOX with 2.4 μg mL-1 DOX exhibited superior efficacy (60% cell death). ND-DOX with 1.2 μg mL-1 DOX achieved 42% cell death, which was comparable to cell death in response to 2.4 μg mL-1 of free DOX, suggesting that NDs aid in decreasing the DOX dose necessary to achieve a chemotherapeutic efficacy. Due to its enhanced efficacy, ND-DOX can be used to successfully treat HRPC and potentially decrease the clinical side effects of DOX.

  11. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    SciTech Connect

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  12. Redox nanoparticle therapeutics to cancer--increase in therapeutic effect of doxorubicin, suppressing its adverse effect.

    PubMed

    Yoshitomi, Toru; Ozaki, Yuki; Thangavel, Sindhu; Nagasaki, Yukio

    2013-11-28

    The ultimate goal of cancer chemotherapy is to achieve a cure without causing any adverse effects. We have developed a pH-sensitive redox nanoparticle (RNP(N)), which disintegrates under acidic conditions and exposes nitroxide radicals, leading to strongly scavenging reactive oxygen species (ROS). After intravenous administration of RNP(N) to tumor bearing mice, it effectively accumulated in tumors due to the leaky neovascular and immature lymphatic system and scavenged ROS, resulting in suppression of inflammation and activation of NF-кB, after disintegration of RNP(N) in the tumors. Pre-administration of RNP(N) prior to treatments with anticancer agents, doxorubicin, to tumor-bearing mice significantly suppressed the progression of tumor size, compared to low-molecular weight 4-hydroxy-TEMPO. Interestingly, the administration of RNP(N) suppressed adverse effects of doxorubicin to normal organs due to the scavenging ROS and suppression of inflammation, which was confirmed by reduction in lactate dehydrogenase and creatine phosphokinase activities in plasma. RNP(N) is thus anticipated as a novel and ideal adjuvant for cancer chemotherapy.

  13. Doxorubicin nanoconjugates.

    PubMed

    Deepa, Kannan; Singha, Siddhartha; Panda, Tapobrata

    2014-01-01

    Doxorubicin is one of the most widely administered drugs for treatment of cancer. The shortcomings commonly encountered with this drug are severe cardiotoxicity, narrow therapeutic indices, and the development of multiple drug resistance. Hence, several nanoparticulate drug delivery systems have been designed to overcome these limitations and to improvise the overall therapeutic efficacy of doxorubicin. This review outlines the doxorubicin delivery systems, viz., metals and metal oxide nanoparticles, carbon nanotubes, liposomes, nanoparticles of solid lipid materials, lipid microemulsions, polymer-based nanoparticles, protein-attached nanoparticles, polysaccharide nanoparticles, functional polymers, and nanoparticles of virus. PMID:24730306

  14. Doxorubicin nanoconjugates.

    PubMed

    Deepa, Kannan; Singha, Siddhartha; Panda, Tapobrata

    2014-01-01

    Doxorubicin is one of the most widely administered drugs for treatment of cancer. The shortcomings commonly encountered with this drug are severe cardiotoxicity, narrow therapeutic indices, and the development of multiple drug resistance. Hence, several nanoparticulate drug delivery systems have been designed to overcome these limitations and to improvise the overall therapeutic efficacy of doxorubicin. This review outlines the doxorubicin delivery systems, viz., metals and metal oxide nanoparticles, carbon nanotubes, liposomes, nanoparticles of solid lipid materials, lipid microemulsions, polymer-based nanoparticles, protein-attached nanoparticles, polysaccharide nanoparticles, functional polymers, and nanoparticles of virus.

  15. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic.

    PubMed

    Xu, Weiguo; Ding, Jianxun; Xiao, Chunsheng; Li, Lingyu; Zhuang, Xiuli; Chen, Xuesi

    2015-06-01

    Recently, chemotherapy has been one of the most important therapeutic approaches for malignant tumors. The tumor tissular or intracellular microenvironment-sensitive polymer-doxorubicin (DOX) conjugates demonstrate great potential for improved antitumor efficacy and reduced side effects. In this work, the acid-sensitive dextran-DOX conjugate (noted as Dex-O-DOX) was synthesized through the versatile efficient oximation reaction between the terminal aldehyde group of polysaccharide and the amino group in DOX in the buffer solution of sodium acetate/acetic acid. The insensitive one, i.e., Dex-b-DOX, was prepared similarly as Dex-O-DOX with a supplemented reduction reaction. The DOX release from Dex-O-DOX was pH-dependent and accelerated by the decreased pH. The efficient intracellular DOX release from Dex-O-DOX toward the human hepatoma HepG2 cells was further confirmed. Furthermore, Dex-O-DOX exhibited a closer antiproliferative activity to free DOX·HCl as the extension of time. More importantly, compared with Dex-b-DOX, Dex-O-DOX exhibited higher antitumor activity and lower toxicity, which were further confirmed by the systemic histological and immunohistochemical analyses. Hence, the facilely prepared smart polysaccharide-DOX conjugates, i.e., Dex-O-DOX, exhibited great potential in the clinical chemotherapy of malignancy.

  16. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic.

    PubMed

    Xu, Weiguo; Ding, Jianxun; Xiao, Chunsheng; Li, Lingyu; Zhuang, Xiuli; Chen, Xuesi

    2015-06-01

    Recently, chemotherapy has been one of the most important therapeutic approaches for malignant tumors. The tumor tissular or intracellular microenvironment-sensitive polymer-doxorubicin (DOX) conjugates demonstrate great potential for improved antitumor efficacy and reduced side effects. In this work, the acid-sensitive dextran-DOX conjugate (noted as Dex-O-DOX) was synthesized through the versatile efficient oximation reaction between the terminal aldehyde group of polysaccharide and the amino group in DOX in the buffer solution of sodium acetate/acetic acid. The insensitive one, i.e., Dex-b-DOX, was prepared similarly as Dex-O-DOX with a supplemented reduction reaction. The DOX release from Dex-O-DOX was pH-dependent and accelerated by the decreased pH. The efficient intracellular DOX release from Dex-O-DOX toward the human hepatoma HepG2 cells was further confirmed. Furthermore, Dex-O-DOX exhibited a closer antiproliferative activity to free DOX·HCl as the extension of time. More importantly, compared with Dex-b-DOX, Dex-O-DOX exhibited higher antitumor activity and lower toxicity, which were further confirmed by the systemic histological and immunohistochemical analyses. Hence, the facilely prepared smart polysaccharide-DOX conjugates, i.e., Dex-O-DOX, exhibited great potential in the clinical chemotherapy of malignancy. PMID:25907041

  17. Therapeutic Efficacy of Orally Delivered Doxorubicin Nanoparticles in Rat Tongue Cancer Induced by 4-Nitroquinoline 1-Oxide

    PubMed Central

    Moradzadeh Khiavi, Monir; Rostami, Ahamd; Hamishekar, Hamed; Mesgari Abassi, Mehran; Aghbali, Amirala; Salehi, Roya; Abdollahi, Bita; Fotoohi, Soheila; Sina, Mahmud

    2015-01-01

    Purpose: Oral cancer is one of the most significant cancers in the world, and squamous cell carcinoma makes up about 94% of oral malignancies. The aim of the present study was to compare the efficacy of doxorubicin plus methotrexate - loaded nanoparticles on tongue squamous cell carcinoma induced by 4NQO and compare it with the commercial doxorubicin and methotrexate delivered orally on seventy SD male rats. Methods: 70 rats were divided into five groups. During the study, the animals were weighed by a digital scale once a week. Number of mortalities was recorded in the data collection forms. At the end of the treatment, biopsy samples were taken from rat tongues in order to evaluate the severity of dysplasia and the extent of cell proliferation. The results were analyzed using ANOVA, descriptive statistics and chi-square test. Results: No statistically significant difference was found in the mean weight of five groups (p>0.05). No significant relationship was found between groups and mortality rate (P = 0. 39). In addition, there was a significant relationship between groups and the degree of dysplasia (P <0.001). The statistical analysis showed a significant relationship between groups and the rate of cell proliferation (p <0.001). Conclusion: The results of the present study showed that the use of doxorubicin plus methotrexate - loaded nanoparticles orally had more therapeutic effects than commercial doxorubicin plus methotrexate. PMID:26236659

  18. Therapeutic potential of cannabinoid medicines.

    PubMed

    Robson, P J

    2014-01-01

    Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines. The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology. In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders. PMID:24006213

  19. Thymoquinone and its therapeutic potentials.

    PubMed

    Darakhshan, Sara; Bidmeshki Pour, Ali; Hosseinzadeh Colagar, Abasalt; Sisakhtnezhad, Sajjad

    2015-01-01

    Herbal medicine has attracted great attention in the recent years and is increasingly used as alternatives to chemical drugs. Several lines of evidence support the positive impact of medicinal plants in the prevention and cure of a wide range of diseases. Thymoquinone (TQ) is the most abundant constituent of the volatile oil of Nigella sativa seeds and most properties of N sativa are mainly attributed to TQ. A number of pharmacological actions of TQ have been investigated including anti-oxidant, anti-inflammatory, immunomodulatory, anti-histaminic, anti-microbial and anti-tumor effects. It has also gastroprotective, hepatoprotective, nephroprotective and neuroprotective activities. In addition, positive effects of TQ in cardiovascular disorders, diabetes, reproductive disorders and respiratory ailments, as well as in the treatment of bone complications as well as fibrosis have been shown. In addition, a large body of data shows that TQ has very low adverse effects and no serious toxicity. More recently, a great deal of attention has been given to this dietary phytochemical with an increasing interest to investigate it in pre-clinical and clinical researches for assessing its health benefits. Here we report on and analyze numerous properties of the active ingredient of N. sativa seeds, TQ, in the context of its therapeutic potentials for a wide range of illnesses. We also summarize the drug's possible mechanisms of action. The evidence reported sugests that TQ should be developed as a novel drug in clinical trials. PMID:25829334

  20. Therapeutic potential of atmospheric neutrons

    PubMed Central

    Voyant, Cyril; Roustit, Rudy; Tatje, Jennifer; Biffi, Katia; Leschi, Delphine; Briançon, Jérome; Marcovici, Céline Lantieri

    2010-01-01

    Background Glioblastoma multiform (GBM) is the most common and most aggressive type of primary brain tumour in humans. It has a very poor prognosis despite multi-modality treatments consisting of open craniotomy with surgical resection, followed by chemotherapy and/or radiotherapy. Recently, a new treatment has been proposed – Boron Neutron Capture Therapy (BNCT) – which exploits the interaction between Boron-10 atoms (introduced by vector molecules) and low energy neutrons produced by giant accelerators or nuclear reactors. Methods The objective of the present study is to compute the deposited dose using a natural source of neutrons (atmospheric neutrons). For this purpose, Monte Carlo computer simulations were carried out to estimate the dosimetric effects of a natural source of neutrons in the matter, to establish if atmospheric neutrons interact with vector molecules containing Boron-10. Results The doses produced (an average of 1 μGy in a 1 g tumour) are not sufficient for therapeutic treatment of in situ tumours. However, the non-localised yet specific dosimetric properties of 10B vector molecules could prove interesting for the treatment of micro-metastases or as (neo)adjuvant treatment. On a cellular scale, the deposited dose is approximately 0.5 Gy/neutron impact. Conclusion It has been shown that BNCT may be used with a natural source of neutrons, and may potentially be useful for the treatment of micro-metastases. The atmospheric neutron flux is much lower than that utilized during standard NBCT. However the purpose of the proposed study is not to replace the ordinary NBCT but to test if naturally occurring atmospheric neutrons, considered to be an ionizing pollution at the Earth's surface, can be used in the treatment of a disease such as cancer. To finalize this study, it is necessary to quantify the biological effects of the physically deposited dose, taking into account the characteristics of the incident particles (alpha particle and Lithium

  1. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    SciTech Connect

    Tikoo, Kulbhushan Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Our results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.

  2. Zinc is a potential therapeutic for chemoresistant ovarian cancer.

    PubMed

    Bastow, Max; Kriedt, Christopher L; Baldassare, Joseph; Shah, Maulik; Klein, Claudette

    2011-01-01

    Ovarian cancer is the leading cause of death from gynecological cancer. The high mortality rate reflets the lack of early diagnosis and limited treatment alternatives. We have observed a number of properties of zinc cytotoxicity that make it attractive from a therapeutic standpoint. Using SKOV3 and ES2 cells, ovarian cancer cell lines that demonstrate varied degrees of resistance to known therapeutics, we show that zinc killing is time and concentration dependent. Death is preceded by distinct changes in cell shape and size. The effects of zinc are additive with cisplatin or doxorubicin, whose morphological effects are distinct from those of zinc. Cytotoxicity of paclitaxel is minimal, making it difficult to determine additivity with zinc. Paclitaxel results in changes in cell shape and size similar to those of zinc but has different effects on cell cycle progression and cyclin expression. The data indicate that the means by which zinc kills ovarian cancer cells is distinct from currently used chemotherapeutics. Based on the properties reported here, zinc has the potential to be developed as either a primary treatment or as a second line of defense against cancers that have developed resistance to currently used chemotherapeutics. PMID:22070048

  3. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential.

    PubMed

    Patra, Prasun; Mitra, Shouvik; Das Gupta, Amarto; Pradhan, Saheli; Bhattacharya, Saurav; Ahir, Manisha; Mukherjee, Sudeshna; Sarkar, Sampad; Roy, Subhrodeb; Chattopadhyay, Sreya; Adhikary, Arghya; Goswami, Arunava; Chattopadhyay, Dhrubajyoti

    2015-09-01

    Targeted drug delivery with porous materials features great promise as improved therapeutic potential for treatment of various diseases. In the present study we have attempted a microwave synthesis of porous hexagonal nanodisc of zinc oxide (PZHD) for the first time and its subsequent targeted delivery to breast cancer cells, MCF7. PZHD has been fabricated suitably with 3-aminopropyltriethoxysilane to impart additional stability and surface amines to anchor site directing ligand NHS-biotin. Biotinylated scaffold showed targeted delivery of anticancer drug doxorubicin and pH triggered release to MCF 7 cells with preferential distribution on specified domain. A detailed in vitro cytotoxicity study was associated with it to evaluate the mode of action of Dox loaded PZHD on MCF-7 cells by means of cell cycle analysis, apoptosis assays, Western blot and immuno-fluorescence image analysis. The efficacy of the Dox loaded PZHD was further validated from our in vivo tumor regression studies. Finally, the whole study has been supported by in vitro and in vivo bio-safety studies which also signified its biocompatibility with real time applications. To the best of our knowledge this is the first effort to use biotinylated PZHD for targeted delivery of doxorubicin within MCF 7 cells with a detailed study of its mechanistic application. This study might thus hold future prospects for therapeutic intervention for treatment of cancer.

  4. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential.

    PubMed

    Patra, Prasun; Mitra, Shouvik; Das Gupta, Amarto; Pradhan, Saheli; Bhattacharya, Saurav; Ahir, Manisha; Mukherjee, Sudeshna; Sarkar, Sampad; Roy, Subhrodeb; Chattopadhyay, Sreya; Adhikary, Arghya; Goswami, Arunava; Chattopadhyay, Dhrubajyoti

    2015-09-01

    Targeted drug delivery with porous materials features great promise as improved therapeutic potential for treatment of various diseases. In the present study we have attempted a microwave synthesis of porous hexagonal nanodisc of zinc oxide (PZHD) for the first time and its subsequent targeted delivery to breast cancer cells, MCF7. PZHD has been fabricated suitably with 3-aminopropyltriethoxysilane to impart additional stability and surface amines to anchor site directing ligand NHS-biotin. Biotinylated scaffold showed targeted delivery of anticancer drug doxorubicin and pH triggered release to MCF 7 cells with preferential distribution on specified domain. A detailed in vitro cytotoxicity study was associated with it to evaluate the mode of action of Dox loaded PZHD on MCF-7 cells by means of cell cycle analysis, apoptosis assays, Western blot and immuno-fluorescence image analysis. The efficacy of the Dox loaded PZHD was further validated from our in vivo tumor regression studies. Finally, the whole study has been supported by in vitro and in vivo bio-safety studies which also signified its biocompatibility with real time applications. To the best of our knowledge this is the first effort to use biotinylated PZHD for targeted delivery of doxorubicin within MCF 7 cells with a detailed study of its mechanistic application. This study might thus hold future prospects for therapeutic intervention for treatment of cancer. PMID:26093304

  5. Curcumin: therapeutical potential in ophthalmology.

    PubMed

    Pescosolido, Nicola; Giannotti, Rossella; Plateroti, Andrea Maria; Pascarella, Antonia; Nebbioso, Marcella

    2014-03-01

    Curcumin (diferuloylmethane) is the main curcuminoid of the popular Indian spice turmeric (Curcuma longa). In the last 50 years, in vitro and in vivo experiments supported the main role of polyphenols and curcumin for the prevention and treatment of many different inflammatory diseases and tumors.The anti-inflammatory, antioxidant, and antitumor properties of curcumin are due to different cellular mechanisms: this compound, in fact, produces different responses in different cell types. Unfortunately, because of its low solubility and oral bioavailability, the biomedical potential of curcumin is not easy to exploit; for this reason more attention has been given to nanoparticles and liposomes, which are able to improve curcumin's bioavailability. Pharmacologically, curcumin does not show any dose-limiting toxicity when it is administered at doses of up to 8 g/day for three months. It has been demonstrated that curcumin has beneficial effects on several ocular diseases, such as chronic anterior uveitis, diabetic retinopathy, glaucoma, age-related macular degeneration, and dry eye syndrome. The purpose of this review is to report what has so far been elucidated about curcumin properties and its potential use in ophthalmology. PMID:24323538

  6. Curcumin: therapeutical potential in ophthalmology.

    PubMed

    Pescosolido, Nicola; Giannotti, Rossella; Plateroti, Andrea Maria; Pascarella, Antonia; Nebbioso, Marcella

    2014-03-01

    Curcumin (diferuloylmethane) is the main curcuminoid of the popular Indian spice turmeric (Curcuma longa). In the last 50 years, in vitro and in vivo experiments supported the main role of polyphenols and curcumin for the prevention and treatment of many different inflammatory diseases and tumors.The anti-inflammatory, antioxidant, and antitumor properties of curcumin are due to different cellular mechanisms: this compound, in fact, produces different responses in different cell types. Unfortunately, because of its low solubility and oral bioavailability, the biomedical potential of curcumin is not easy to exploit; for this reason more attention has been given to nanoparticles and liposomes, which are able to improve curcumin's bioavailability. Pharmacologically, curcumin does not show any dose-limiting toxicity when it is administered at doses of up to 8 g/day for three months. It has been demonstrated that curcumin has beneficial effects on several ocular diseases, such as chronic anterior uveitis, diabetic retinopathy, glaucoma, age-related macular degeneration, and dry eye syndrome. The purpose of this review is to report what has so far been elucidated about curcumin properties and its potential use in ophthalmology.

  7. Evaluation of the potential of doxorubicin loaded microbubbles as a theranostic modality using a murine tumor model.

    PubMed

    Abdalkader, Rodi; Kawakami, Shigeru; Unga, Johan; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2015-06-01

    In this study, a novel phospholipid-based microbubble formulation containing doxorubicin and perfluoropropane gas (DLMB) was developed. The DLMBs were prepared by mechanical agitation of a phospholipid dispersion in the presence of perfluoropropane (PFP) gas. An anionic phospholipid, distearoyl phosphatidylglycerol (DSPG) was selected to load doxorubicin in the microbubbles by means of electrostatic interaction. The particle size, zeta potential, echogenicity and stability of the DLMBs were measured. Drug loading was ⩾ 92%. The potential of the DLMBs for use as a theranostic modality was evaluated in tumor bearing mice. Gas chromatography analysis of PFP showed significant enhancement of PFP retention when doxorubicin was used at concentrations of 10-82% equivalent to DSPG. The inhibitory effects on the proliferation of B16BL6 melanoma murine cells in vitro were enhanced using a combination of ultrasound (US) irradiation and DLMBs. Moreover, in vivo DLMBs in combination with (US) irradiation significantly inhibited the growth of B16BL6 melanoma tumor in mice. Additionally, US echo imaging showed high contrast enhancement of the DLMBs in the tumor vasculature. These results suggest that DLMBs could serve as US triggered carriers of doxorubicin as well as tumor imaging agents in cancer therapy. PMID:25795624

  8. Coating doxorubicin-loaded nanocapsules with alginate enhances therapeutic efficacy against Leishmaniain hamsters by inducing Th1-type immune responses

    PubMed Central

    Kansal, S; Tandon, R; Verma, A; Misra, P; Choudhary, A K; Verma, R; Verma, P R P; Dube, A; Mishra, P R

    2014-01-01

    Background and Purpose The aim of the present study was to evaluate the immunomodulatory and chemotherapeutic potential of alginate-(SA) coated nanocapsule (NCs) loaded with doxorubicin (SA-NCs-DOX) against visceral leishmaniasis in comparison with nano-emulsions containing doxorubicin (NE-DOX). Experimental Approach NE-DOX was prepared using low-energy emulsification methods. Stepwise addition of protamine sulphate and SA in a layer-by-layer manner was used to form SA-NCs-DOX. SA-NCs-DOX, NE-DOX and Free DOX were compared for their cytotoxicity against Leishmania donovani-infected macrophages in vitro and generation of T-cell responses in infected hamsters in vivo. Key Results Size and ζ potential of the NE-DOX and SA-NCs-DOX formulations were 310 ± 2.1 nm and (−)32.6 ± 2.1 mV, 342 ± 4.1 nm and (−)29.3 ± 1.2 mV respectively. SA-NCs-DOX was better (1.5 times) taken up by J774A.1 macrophages compared with NE-DOX. SA-NCs -DOX showed greater efficacy than NE-DOX against intramacrophagic amastigotes. SA-NCs-DOX treatment exhibited enhanced apoptotic efficiency than NE-DOX and free DOX as evident by cell cycle analysis, decrease in mitochondrial membrane potential, ROS and NO production. T-cell responses, when assessed through lymphoproliferative responses, NO production along with enhanced levels of iNOS, TNF-α, IFN-γ and IL-12 were found to be up-regulated after SA-NCs-DOX, compared with responses to NE-DOX in vivo. Parasitic burden was decreased in Leishmania-infected hamsters treated with SA-NCs-DOX, compared with NE-DOX. Conclusions and Implications Our results provide insights into the development of an alternative approach to improved management of leishmaniasis through a combination of chemotherapy with stimulation of the innate immune system. PMID:24837879

  9. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin

    PubMed Central

    Wang, Yi-Jun; Huang, Yujian; Anreddy, Nagaraju; Zhang, Guan-Nan; Zhang, Yun-Kai; Xie, Meina; Lin, Derrick; Yang, Dong-Hua; Zhang, Mingjun; Chen, Zhe-Sheng

    2016-01-01

    An infusion-dialysis based procedure has been developed as an approach to isolate organic nanoparticles from green tea. Tea nanoparticle (TNP) can effectively load doxorubicin (DOX) via electrostatic and hydrophobic interactions. We established an ABCB1 overexpressing tumor xenograft mouse model to investigate whether TNP can effectively deliver DOX into tumors and bypass the efflux function of the ABCB1 transporter, thereby increasing the intratumoral accumulation of DOX and potentiating the anticancer activity of DOX. MTT assays suggested that DOX-TNP showed higher cytotoxicity toward CCD-18Co, SW620 and SW620/Ad300 cells than DOX. Animal study revealed that DOX-TNP resulted in greater inhibitory effects on the growth of SW620 and SW620/Ad300 tumors than DOX. In pharmacokinetics study, DOX-TNP greatly increased the SW620 and SW620/Ad300 intratumoral concentrations of DOX. But DOX-TNP had no effect on the plasma concentrations of DOX. Furthermore, TNP is a safe nanocarrier with excellent biocompatibility and minimal toxicity. Ex vivo IHC analysis of SW620 and SW620/Ad300 tumor sections revealed evidence of prominent antitumor activity of DOX-TNP. In conclusion, our findings suggested that natural nanomaterials could be useful in combating multidrug resistance (MDR) in cancer cells and potentiating the anticancer activity of chemotherapeutic agents in cancer treatment. PMID:26716507

  10. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). PMID:27474599

  11. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin.

    PubMed

    Wang, Yi-Jun; Huang, Yujian; Anreddy, Nagaraju; Zhang, Guan-Nan; Zhang, Yun-Kai; Xie, Meina; Lin, Derrick; Yang, Dong-Hua; Zhang, Mingjun; Chen, Zhe-Sheng

    2016-02-01

    An infusion-dialysis based procedure has been developed as an approach to isolate organic nanoparticles from green tea. Tea nanoparticle (TNP) can effectively load doxorubicin (DOX) via electrostatic and hydrophobic interactions. We established an ABCB1 overexpressing tumor xenograft mouse model to investigate whether TNP can effectively deliver DOX into tumors and bypass the efflux function of the ABCB1 transporter, thereby increasing the intratumoral accumulation of DOX and potentiating the anticancer activity of DOX. MTT assays suggested that DOX-TNP showed higher cytotoxicity toward CCD-18Co, SW620 and SW620/Ad300 cells than DOX. Animal study revealed that DOX-TNP resulted in greater inhibitory effects on the growth of SW620 and SW620/Ad300 tumors than DOX. In pharmacokinetics study, DOX-TNP greatly increased the SW620 and SW620/Ad300 intratumoral concentrations of DOX. But DOX-TNP had no effect on the plasma concentrations of DOX. Furthermore, TNP is a safe nanocarrier with excellent biocompatibility and minimal toxicity. Ex vivo IHC analysis of SW620 and SW620/Ad300 tumor sections revealed evidence of prominent antitumor activity of DOX-TNP. In conclusion, our findings suggested that natural nanomaterials could be useful in combating multidrug resistance (MDR) in cancer cells and potentiating the anticancer activity of chemotherapeutic agents in cancer treatment. PMID:26716507

  12. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics.

  13. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics. PMID:25445515

  14. Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity

    PubMed Central

    Ojha, Shreesh; Al Taee, Hasan; Goyal, Sameer; Mahajan, Umesh B.; Patil, Chandrgouda R.; Arya, D. S.; Rajesh, Mohanraj

    2016-01-01

    Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity. PMID:27313831

  15. L-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells.

    PubMed

    Nurcahyanti, Agustina Dr; Wink, Michael

    2016-01-01

    The non-protein amino acid L-canavanine (L-CAV), an antimetabolite of L-arginine (L-ARG), can alter the 3D conformation of proteins when incorporated into a protein instead of L-ARG. L-CAV inhibits the proliferation of some tumour cells. The deprivation of L-ARG in the culture medium enhances the response of cells to L-CAV. This study aimed to investigate the interaction of L-CAV in combination with the chemotherapeutic drugs, doxorubicin (DOX) or cisplatin (CIS), in cancer cells, especially in the absence of L-ARG. A combination method based on the median-effect principle and mass-action law was used. The following cancer cells were employed: HeLa and Caco-2 cells, overexpressing argininosuccinate synthase (ASS), pancreatic cells (MIA PaCa-2 and BxPC-3) and hepatocellular carcinoma cells (Hep G2 and SK-HEP-1), with down-regulated ASS. When constant and non-constant ratios of L-CAV were combined with DOX and CIS, a synergistic potentiation of cytotoxicity was recorded. Cells expressing high levels of ASS were more sensitive to the treatment as compared to the cells with reduced ASS levels. Overall, this study may provide a new approach to targeting some cancer cells with L-CAV in combination with DNA-targeting drugs such as DOX and CIS, especially those cells which overexpress ASS, such as human cervical and colorectal carcinoma cells.

  16. L-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells

    PubMed Central

    Wink, Michael

    2016-01-01

    The non-protein amino acid L-canavanine (L-CAV), an antimetabolite of L-arginine (L-ARG), can alter the 3D conformation of proteins when incorporated into a protein instead of L-ARG. L-CAV inhibits the proliferation of some tumour cells. The deprivation of L-ARG in the culture medium enhances the response of cells to L-CAV. This study aimed to investigate the interaction of L-CAV in combination with the chemotherapeutic drugs, doxorubicin (DOX) or cisplatin (CIS), in cancer cells, especially in the absence of L-ARG. A combination method based on the median-effect principle and mass-action law was used. The following cancer cells were employed: HeLa and Caco-2 cells, overexpressing argininosuccinate synthase (ASS), pancreatic cells (MIA PaCa-2 and BxPC-3) and hepatocellular carcinoma cells (Hep G2 and SK-HEP-1), with down-regulated ASS. When constant and non-constant ratios of L-CAV were combined with DOX and CIS, a synergistic potentiation of cytotoxicity was recorded. Cells expressing high levels of ASS were more sensitive to the treatment as compared to the cells with reduced ASS levels. Overall, this study may provide a new approach to targeting some cancer cells with L-CAV in combination with DNA-targeting drugs such as DOX and CIS, especially those cells which overexpress ASS, such as human cervical and colorectal carcinoma cells. PMID:26839743

  17. L-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells.

    PubMed

    Nurcahyanti, Agustina Dr; Wink, Michael

    2016-01-01

    The non-protein amino acid L-canavanine (L-CAV), an antimetabolite of L-arginine (L-ARG), can alter the 3D conformation of proteins when incorporated into a protein instead of L-ARG. L-CAV inhibits the proliferation of some tumour cells. The deprivation of L-ARG in the culture medium enhances the response of cells to L-CAV. This study aimed to investigate the interaction of L-CAV in combination with the chemotherapeutic drugs, doxorubicin (DOX) or cisplatin (CIS), in cancer cells, especially in the absence of L-ARG. A combination method based on the median-effect principle and mass-action law was used. The following cancer cells were employed: HeLa and Caco-2 cells, overexpressing argininosuccinate synthase (ASS), pancreatic cells (MIA PaCa-2 and BxPC-3) and hepatocellular carcinoma cells (Hep G2 and SK-HEP-1), with down-regulated ASS. When constant and non-constant ratios of L-CAV were combined with DOX and CIS, a synergistic potentiation of cytotoxicity was recorded. Cells expressing high levels of ASS were more sensitive to the treatment as compared to the cells with reduced ASS levels. Overall, this study may provide a new approach to targeting some cancer cells with L-CAV in combination with DNA-targeting drugs such as DOX and CIS, especially those cells which overexpress ASS, such as human cervical and colorectal carcinoma cells. PMID:26839743

  18. Tumour vasculature--a potential therapeutic target.

    PubMed Central

    Baillie, C. T.; Winslet, M. C.; Bradley, N. J.

    1995-01-01

    The tumour vasculature is vital for the establishment, growth and metastasis of solid tumours. Its physiological properties limit the effectiveness of conventional anti-cancer strategies. Therapeutic approaches directed at the tumour vasculature are reviewed, suggesting the potential of anti-angiogenesis and the targeting of vascular proliferation antigens as cancer treatments. PMID:7543770

  19. An Engineered Bivalent Neuregulin Protects Against Doxorubicin-Induced Cardiotoxicity with Reduced Pro-Neoplastic Potential

    PubMed Central

    Jay, Steven M.; Murthy, Ashwin C.; Hawkins, Jessica F.; Wortzel, Joshua R.; Steinhauser, Matthew L.; Alvarez, Luis M.; Gannon, Joseph; Macrae, Calum A.; Griffith, Linda G.; Lee, Richard T.

    2013-01-01

    Background Doxorubicin (DOXO) is an effective anthracycline chemotherapeutic, but its use is limited by cumulative dose-dependent cardiotoxicity. Neuregulin-1β (NRG1B) is an ErbB receptor family ligand that is effective against DOXO-induced cardiomyopathy in experimental models but is also pro-neoplastic. We previously showed that an engineered bivalent neuregulin-1β (NN) has reduced pro-neoplastic potential compared to the epidermal growth factor (EGF)-like domain of NRG1B (NRG), an effect mediated by receptor biasing towards ErbB3 homotypic interactions uncommonly formed by native NRG1B. Here, we hypothesized that a newly formulated, covalent NN would be cardioprotective with reduced pro-neoplastic effects compared to NRG. Methods and Results NN was expressed as a maltose-binding protein fusion in E. coli. As established previously, NN stimulated anti-neoplastic or cytostatic signaling and phenotype in cancer cells, whereas NRG stimulated pro-neoplastic signaling and phenotype. In neonatal rat cardiomyocytes (NRCM), NN and NRG induced similar downstream signaling. NN, like NRG, attenuated the double-stranded DNA breaks associated with DOXO exposure in NRCM and human cardiomyocytes derived from induced pluripotent stem cells. NN treatment significantly attenuated DOXO-induced decrease in fractional shortening as measured by blinded echocardiography in mice in a chronic cardiomyopathy model (57.7% ± 0.6% vs. 50.9% ± 2.6%, P=0.004), whereas native NRG had no significant effect (49.4% ± 3.7% vs. 50.9% ± 2.6%, P=0.813). Conclusions NN is a cardioprotective agent that promotes cardiomyocyte survival and improves cardiac function in DOXO-induced cardiotoxicity. Given the reduced pro-neoplastic potential of NN versus NRG, NN has translational potential for cardioprotection in cancer patients receiving anthracyclines. PMID:23757312

  20. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings.

    PubMed

    Luo, Xiaogang; Zhang, Hao; Cao, Zhenni; Cai, Ning; Xue, Yanan; Yu, Faquan

    2016-06-01

    The objective of this study is to develop transparent porous nanodiamonds/cellulose nanocomposite membranes with controlled release of doxorubicin for potential applications as wound dressings, which were fabricated by tape casting method from dispersing carboxylated nanodiamonds and dissolving cellulose homogeneously in 7 wt% NaOH/12 wt% urea aqueous solution. By adjusting the carboxylated nanodiamonds content, various nanocomposite membranes were obtained. The structure and properties of these membranes have been investigated by light transmittance measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests, water loss analyses, etc. The drug loading and release was investigated using doxorubicin hydrochloride as a model drug. In vitro cytotoxicity assay of the membranes was also studied. This work presented a proof-of-concept utility of these membranes for loading and release of bioactive compounds to be employed as a candidate for wound dressing.

  1. Tumor-specific Anti-Nucleosome Antibody Improves Therapeutic Efficacy of Doxorubicin-Loaded Long-Circulating Liposomes against Primary and Metastatic Tumor in Mice

    PubMed Central

    ElBayoumi, Tamer A.; Torchilin, Vladimir P.

    2009-01-01

    The efficacy of drug delivery systems can be significantly enhanced by making them target-specific via the attachment of various ligands to their surface. We attempted to enhance tumor accumulation and therapeutic effect of doxorubicin-loaded long-circulating liposomes (Doxil®, ALZA Corp.) by coupling to their surface the anti-cancer monoclonal antibody 2C5 (mAb 2C5) with nuclesome (NS)-restricted activity, that can recognize the surface of various tumor but not normal cells via the surface-bound nucleosomes released from the apoptotically dying neighboring tumor cells and specifically targets pharmaceutical carriers to tumor cells in vitro and in vivo. Antibody coupling to PEGylated doxorubicin-liposomes was performed by the “post-insertion” technique. The pharmacokinetics of plain and immuno-targeted Doxil®-mimicking liposomes, as well as their accumulation in primary Lewis Lung Carcinoma (LLC) tumors in mice was followed by real-time gamma-scintigraphy upon liposomal membrane labeling with 111In. Therapeutic action of various liposomal formulations was followed by registering primary tumor growth, determining tumor weigh upon mice sacrifice, and by counting the number of metastases in the liver and lungs. 2C5 antibody-targeted liposomes demonstrate significantly enhanced accumulation in LLC tumors. Targeted doxorubicin-loaded PEG-liposomes were significantly more effective in inhibiting tumor growth and metastatic process in the LLC tumor models in mice. Our results clearly show the remarkable capability of 2C5-targeted Doxil® to specifically deliver its cargo into various tumor manifestations (solid and metastatic) significantly increasing the efficacy of therapy. PMID:19049322

  2. Brown adipose tissue and its therapeutic potential.

    PubMed

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  3. Therapeutic potential of cannabis-related drugs.

    PubMed

    Alexander, Stephen P H

    2016-01-01

    In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit. PMID:26216862

  4. Therapeutic potential of cannabis-related drugs.

    PubMed

    Alexander, Stephen P H

    2016-01-01

    In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit.

  5. Doxorubicin Cardiomyopathy

    PubMed Central

    Chatterjee, Kanu; Zhang, Jianqing; Honbo, Norman; Karliner, Joel S.

    2010-01-01

    Established doxorubicin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50%. Extensive research has been done to understand the mechanism and pathophysiology of doxorubicin cardiomyopathy, and considerable knowledge and experience has been gained. Unfortunately, no effective treatment for established doxorubicin cardiomyopathy is presently available. Extensive research has been done and is being done to discover preventive treatments. However an effective and clinically applicable preventive treatment is yet to be discovered. PMID:20016174

  6. Therapeutic Efficacy of Combining PEGylated Liposomal Doxorubicin and Radiofrequency (RF) Ablation: Comparison between Slow-Drug-Releasing, Non-Thermosensitive and Fast-Drug-Releasing, Thermosensitive Nano-Liposomes

    PubMed Central

    Andriyanov, Alexander V.; Koren, Erez; Barenholz, Yechezkel

    2014-01-01

    Aims To determine how the accumulation of drug in mice bearing an extra-hepatic tumor and its therapeutic efficacy are affected by the type of PEGylated liposomal doxorubicin used, treatment modality, and rate of drug release from the liposomes, when combined with radiofrequency (RF) ablation. Materials and Methods Two nano-drugs, both long-circulating PEGylated doxorubicin liposomes, were formulated: (1) PEGylated doxorubicin in thermosensitive liposomes (PLDTS), having a burst-type fast drug release above the liposomes’ solid ordered to liquid disordered phase transition (at 42°C), and (2) non-thermosensitive PEGylated doxorubicin liposomes (PLDs), having a slow and continuous drug release. Both were administered intravenously at 8 mg/kg doxorubicin dose to tumor-bearing mice. Animals were divided into 6 groups: no treatment, PLD, RF, RF+PLD, PLDTS, and PLDTS+RF, for intra-tumor doxorubicin deposition at 1, 24, and 72 h post-injection (in total 41, mice), and 31 mice were used for randomized survival studies. Results Non-thermosensitive PLD combined with RF had the least tumor growth and the best end-point survival, better than PLDTS+RF (p<0.005) or all individual therapies (p<0.001). Although at 1 h post-treatment the greatest amount of intra-tumoral doxorubicin was seen following PLDTS+RF (p<0.05), by 24 and 72 h the greatest doxorubicin amount was seen for PLD+RF (p<0.05); in this group the tumor also has the longest exposure to doxorubicin. Conclusion Optimizing therapeutic efficacy of PLD requires a better understanding of the relationship between the effect of RF on tumor microenvironment and liposome drug release profile. If drug release is too fast, the benefit of changing the microenvironment by RF on tumor drug localization and therapeutic efficacy may be much smaller than for PLDs having slow and temperature-independent drug release. Thus the much longer circulation time of doxorubicin from PLD than from PLDTS may be beneficial in many therapeutic

  7. Therapeutic Potential of Spirooxindoles as Antiviral Agents.

    PubMed

    Ye, Na; Chen, Haiying; Wold, Eric A; Shi, Pei-Yong; Zhou, Jia

    2016-06-10

    Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy. PMID:27627626

  8. Antioxidants as potential therapeutics for neuropsychiatric disorders.

    PubMed

    Pandya, Chirayu D; Howell, Kristy R; Pillai, Anilkumar

    2013-10-01

    Oxidative stress has been implicated in the pathophysiology of many neuropsychiatric disorders such as schizophrenia, bipolar disorder, major depression etc. Both genetic and non-genetic factors have been found to cause increased cellular levels of reactive oxygen species beyond the capacity of antioxidant defense mechanism in patients of psychiatric disorders. These factors trigger oxidative cellular damage to lipids, proteins and DNA, leading to abnormal neural growth and differentiation. Therefore, novel therapeutic strategies such as supplementation with antioxidants can be effective for long-term treatment management of neuropsychiatric disorders. The use of antioxidants and PUFAs as supplements in the treatment of neuropsychiatric disorders has provided some promising results. At the same time, one should be cautious with the use of antioxidants since excessive antioxidants could dangerously interfere with some of the protective functions of reactive oxygen species. The present article will give an overview of the potential strategies and outcomes of using antioxidants as therapeutics in psychiatric disorders. PMID:23123357

  9. Mn-porphyrin Conjugated Au Nanoshells Encapsulating Doxorubicin for Potential Magnetic Resonance Imaging and Light Triggered Synergistic Therapy of Cancer

    PubMed Central

    Jing, Lijia; Liang, Xiaolong; Li, Xiaoda; Lin, Li; Yang, Yongbo; Yue, Xueli; Dai, Zhifei

    2014-01-01

    A theranostic agent was successfully fabricated by the formation of Au nanoshell around poly(lactic acid) nanoparticles entrapping doxorubicin, followed by linking a Mn-porphyrin derivative on the Au shell surface through polyethylene glycol. The resulted agent exhibited excellent colloidal stability and long blood circulation time due to introducing polyethylene glycol. The grafting Mn-porphyrin onto the nanoparticle surface endowed a greatly improved relaxivity (r1 value of 22.18 mM-1s-1 of Mn3+), favorable for accurate cancer diagnosing and locating the tumor site to guide the external near infrared (NIR) laser irradiation for photothermal ablation of tumors. The in vitro experiments confirmed that the agent exhibited an efficient photohyperthermia and a light triggered and stepwise release behavior of doxorubicin due to the high NIR light absorption coefficient of Au nanoshell. The in vivo experiments showed that the combination of chemotherapy and photothermal therapy through such theranostic agent offered a synergistically improved therapeutic outcome compared with either therapy alone, making it a promising approach for cancer therapy. Therefore, such theranostic agent can be developed as a smart and promising nanosystemplatform that integrates multiple capabilities for both effective contrast enhanced magnetic resonance imaging and synergistic therapy. PMID:25057312

  10. Cannabidiol and epilepsy: Rationale and therapeutic potential.

    PubMed

    Leo, Antonio; Russo, Emilio; Elia, Maurizio

    2016-05-01

    Despite the introduction of new antiepileptic drugs (AEDs), the quality of life and therapeutic response for patients with epilepsy remains still poor. Unfortunately, besides several advantages, these new AEDs have not satisfactorily reduced the number of refractory patients. Therefore, the need for different other therapeutic options to manage epilepsy is still a current issue. To this purpose, emphasis has been given to phytocannabinoids, which have been medicinally used since ancient time in the treatment of neurological disorders including epilepsy. In particular, the nonpsychoactive compound cannabidiol (CBD) has shown anticonvulsant properties, both in preclinical and clinical studies, with a yet not completely clarified mechanism of action. However, it should be made clear that most phytocannabinoids do not act on the endocannabinoid system as in the case of CBD. In in vivo preclinical studies, CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures, whereas restricted data exist in chronic models of epilepsy as well as in animal models of epileptogenesis. Likewise, clinical evidence seems to indicate that CBD is able to manage epilepsy both in adults and children affected by refractory seizures, with a favourable side effect profile. However, to date, clinical trials are both qualitatively and numerically limited, thus yet inconsistent. Therefore, further preclinical and clinical studies are undoubtedly needed to better evaluate the potential therapeutic profile of CBD in epilepsy, although the actually available data is promising. PMID:26976797

  11. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

    PubMed Central

    Liang, Xing-Jie; Chen, Chunying; Zhao, Yuliang; Jia, Lee; Wang, Paul C.

    2009-01-01

    Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well. PMID:18855608

  12. [Lactoferrin - a glycoprotein of great therapeutic potentials].

    PubMed

    Lauterbach, Ryszard; Kamińska, Ewa; Michalski, Piotr; Lauterbach, Jan Paweł

    2016-01-01

    Lactoferrin is an iron-binding glycoprotein, which is present in most biological fluids with particularly high levels in colostrum and in mammalian milk. Bovine lactoferrin is more than 70% homologous with human lactoferrin. Most of the clinical trials have used bovine lactoferrin for supplementation. This review summarizes the recent advances in explaining the mechanisms, which are responsible for the multifunctional roles of lactoferrin, and presents its potential prophylactic and therapeutic applications. On the ground of the results of preliminary clinical observations, authors suggest beneficial effect of lactoferrin supplementation on the prevalence of necrotizing enterocolitis in infants with birth weight below 1250 grams. PMID:27442696

  13. Catalpol: a potential therapeutic for neurodegenerative diseases.

    PubMed

    Jiang, B; Shen, R F; Bi, J; Tian, X S; Hinchliffe, T; Xia, Y

    2015-01-01

    Neurodegenerative disorders, e.g., Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the progressive loss of neurons and subsequent cognitive decline. They are mainly found in older populations. Due to increasing life expectancies, the toll inflicted upon society by these disorders continues to become heavier and more prominent. Despite extensive research, however, the exact etiology of these disorders is still unknown, though the pathophysiological mechanisms have been attributed to oxidative, inflammatory and apoptotic injury in the brain. Moreover, there is currently no promising therapeutic agent against these neurodegenerative changes. Catalpol, an iridoid glucoside contained richly in the roots of the small flowering plant species Rehmannia glutinosa Libosch, has been shown to have antioxidation, anti-inflammation, anti-apoptosis and other neuroprotective properties and plays a role in neuroprotection against hypoxic/ischemic injury, AD and PD in both in vivo and in vitro models. It may therefore represent a potential therapeutical agent for the treatment of hypoxic/ischemic injury and neurodegenerative diseases. Based on our studies and those of others in the literature, here we comprehensively review the role of Catalpol in neuroprotection against pathological conditions, especially in neurodegenerative states and the potential mechanisms involved.

  14. Essential Oil from Myrica rubra Leaves Potentiated Antiproliferative and Prooxidative Effect of Doxorubicin and its Accumulation in Intestinal Cancer Cells.

    PubMed

    Ambrož, Martin; Hanušová, Veronika; Skarka, Adam; Boušová, Iva; Králová, Věra; Langhasová, Lenka; Skálová, Lenka

    2016-01-01

    Essential oil from the leaves of Myrica rubra, a subtropical Asian fruit tree traditionally used in folk medicines, has a significant antiproliferative effect in several intestinal cancer cell lines. Doxorubicin belongs to the most important cytostatics used in cancer therapy. The present study was designed to evaluate the effects of defined essential oil from M. rubra leaves on efficacy, prooxidative effect, and accumulation of doxorubicin in cancer cell lines and in non-cancerous cells. For this purpose, intestinal adenocarcinoma CaCo2 cells were used. Human fibroblasts (periodontal ligament) and a primary culture of rat hepatocytes served as models of non-cancerous cells. The results showed that the sole essential oil from M. rubra has a strong prooxidative effect in cancer cells while it acts as a mild antioxidant in hepatocytes. Combined with doxorubicin, the essential oil enhanced the antiproliferative and prooxidative effects of doxorubicin in cancer cells. At higher concentrations, synergism of doxorubicin and essential oil from M. rubra was proved. In non-cancerous cells, the essential oil did not affect the toxicity of doxorubicin and the doxorubicin-mediated reactive oxygen species formation. The essential oil increased the intracellular concentration of doxorubicin and enhanced selectively the doxorubicin accumulation in nuclei of cancer cells. Taken together, essential oil from M. rubra leaves could be able to improve the doxorubicin efficacy in cancer cells due to an increased reactive oxygen species production, and the doxorubicin accumulation in nuclei of cancer cells.

  15. Essential Oil from Myrica rubra Leaves Potentiated Antiproliferative and Prooxidative Effect of Doxorubicin and its Accumulation in Intestinal Cancer Cells.

    PubMed

    Ambrož, Martin; Hanušová, Veronika; Skarka, Adam; Boušová, Iva; Králová, Věra; Langhasová, Lenka; Skálová, Lenka

    2016-01-01

    Essential oil from the leaves of Myrica rubra, a subtropical Asian fruit tree traditionally used in folk medicines, has a significant antiproliferative effect in several intestinal cancer cell lines. Doxorubicin belongs to the most important cytostatics used in cancer therapy. The present study was designed to evaluate the effects of defined essential oil from M. rubra leaves on efficacy, prooxidative effect, and accumulation of doxorubicin in cancer cell lines and in non-cancerous cells. For this purpose, intestinal adenocarcinoma CaCo2 cells were used. Human fibroblasts (periodontal ligament) and a primary culture of rat hepatocytes served as models of non-cancerous cells. The results showed that the sole essential oil from M. rubra has a strong prooxidative effect in cancer cells while it acts as a mild antioxidant in hepatocytes. Combined with doxorubicin, the essential oil enhanced the antiproliferative and prooxidative effects of doxorubicin in cancer cells. At higher concentrations, synergism of doxorubicin and essential oil from M. rubra was proved. In non-cancerous cells, the essential oil did not affect the toxicity of doxorubicin and the doxorubicin-mediated reactive oxygen species formation. The essential oil increased the intracellular concentration of doxorubicin and enhanced selectively the doxorubicin accumulation in nuclei of cancer cells. Taken together, essential oil from M. rubra leaves could be able to improve the doxorubicin efficacy in cancer cells due to an increased reactive oxygen species production, and the doxorubicin accumulation in nuclei of cancer cells. PMID:26485638

  16. Chaperones as potential therapeutics for Krabbe disease.

    PubMed

    Graziano, Adriana Carol Eleonora; Pannuzzo, Giovanna; Avola, Rosanna; Cardile, Venera

    2016-11-01

    Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc. PMID:27638605

  17. Spices: Potential Therapeutics for Alzheimer's Disease.

    PubMed

    Satheeshkumar, N; Vijayan, R S K; Lingesh, A; Santhikumar, S; Vishnuvardhan, Ch

    2016-01-01

    India has traditionally been known to all over the world for spices and medicinal plants. Spices exhibit a wide range of pharmacological activities. In contemporary, Indian spices are used to rustle up delicious delicacies. However, the Indian spices are more than just adjuvant which adds aroma and fragrance to foods. A few spices are very widely used and grown commercially in many countries, contain many important chemical constituents in the form of essential oil, oleoresin, oleogum, and resins, which impart flavor, pungency, and color to the prepared dishes, simultaneously exerts diverse therapeutic benefits. Ayurveda, the traditional systems of medicine in India has many evidences for the utilization of spices to cure various diseases. Some of the activities have been scientifically proven. Among various indications central nervous system disorders are of prime importance and it has been evident in traditional books and published reports that spices in fact protect and cure neuronal ailments. Likewise there are many spices found in India used for culinary purpose and have been found to have reported specific activities against brain disorders. About 400 B.C., Hippocrates rightly said "Let food be thy medicine and medicine thy food." This review focuses on the importance of spices in therapeutics and the till date scientific findings of Indian spices in CNS pharmacology and explores the potential of Indian spices to cure CNS disorders.

  18. Spices: Potential Therapeutics for Alzheimer's Disease.

    PubMed

    Satheeshkumar, N; Vijayan, R S K; Lingesh, A; Santhikumar, S; Vishnuvardhan, Ch

    2016-01-01

    India has traditionally been known to all over the world for spices and medicinal plants. Spices exhibit a wide range of pharmacological activities. In contemporary, Indian spices are used to rustle up delicious delicacies. However, the Indian spices are more than just adjuvant which adds aroma and fragrance to foods. A few spices are very widely used and grown commercially in many countries, contain many important chemical constituents in the form of essential oil, oleoresin, oleogum, and resins, which impart flavor, pungency, and color to the prepared dishes, simultaneously exerts diverse therapeutic benefits. Ayurveda, the traditional systems of medicine in India has many evidences for the utilization of spices to cure various diseases. Some of the activities have been scientifically proven. Among various indications central nervous system disorders are of prime importance and it has been evident in traditional books and published reports that spices in fact protect and cure neuronal ailments. Likewise there are many spices found in India used for culinary purpose and have been found to have reported specific activities against brain disorders. About 400 B.C., Hippocrates rightly said "Let food be thy medicine and medicine thy food." This review focuses on the importance of spices in therapeutics and the till date scientific findings of Indian spices in CNS pharmacology and explores the potential of Indian spices to cure CNS disorders. PMID:27651248

  19. Garlic: a review of potential therapeutic effects

    PubMed Central

    Bayan, Leyla; Koulivand, Peir Hossain; Gorji, Ali

    2014-01-01

    Throughout history, many different cultures have recognized the potential use of garlic for prevention and treatment of different diseases. Recent studies support the effects of garlic and its extracts in a wide range of applications. These studies raised the possibility of revival of garlic therapeutic values in different diseases. Different compounds in garlic are thought to reduce the risk for cardiovascular diseases, have anti-tumor and anti-microbial effects, and show benefit on high blood glucose concentration. However, the exact mechanism of all ingredients and their long-term effects are not fully understood. Further studies are needed to elucidate the pathophysiological mechanisms of action of garlic as well as its efficacy and safety in treatment of various diseases. PMID:25050296

  20. The role of milk thistle extract in breast carcinoma cell line (MCF-7) apoptosis with doxorubicin.

    PubMed

    Rastegar, Hussein; Ahmadi Ashtiani, Hamidreza; Anjarani, Soghra; Bokaee, Saeed; Khaki, Arash; Javadi, Leila

    2013-01-01

    Breast cancer is the most commonly diagnosed invasive malignancy and first leading cause of cancer-related deaths in Iranian women. Based on silymarin's unique characteristics, its application in chemotherapy combined with doxorubicin can be effective to enhance the efficacy together with a reduced toxicity on normal tissues. The present study focus on evaluate the efficacy of silymarin in combination with doxorubicin, on viability and apoptosis of estrogen-dependent breast carcinoma cell line (MCF-7). After being cultured, MCF-7 cells were divided into 8 groups and treated as follows: 1st group received 75 μg silymarin, groups 2, 3, and 4 were treated with 10, 25, and 50 nM doxorubicin, respectively, and groups 5, 6, and 7 respectively received 10, 25, and 50 nM doxorubicin as well as 75 μg silymarin. Viability percentage and apoptosis of the cells were assessed with Trypan Blue staining after 16, 24, and 48 hours. Silymarin has a synergistic effect on the therapeutic potential of doxorubicin. Use of silymarin in combination with doxorubicin can be more effective on the therapeutic potential of doxorubicin and decreases its dose-limiting side effects.

  1. Mesenchymal chondroprogenitor cell origin and therapeutic potential.

    PubMed

    O'Sullivan, Janice; D'Arcy, Sinéad; Barry, Frank P; Murphy, J Mary; Coleman, Cynthia M

    2011-01-01

    Mesenchymal progenitor cells, a multipotent adult stem cell population, have the ability to differentiate into cells of connective tissue lineages, including fat, cartilage, bone and muscle, and therefore generate a great deal of interest for their potential use in regenerative medicine. During development, endochondral bone is formed from a template of cartilage that transforms into bone; however, mature articular cartilage remains in the articulating joints, where its principal role is reducing friction and dispersing mechanical load. Articular cartilage is prone to damage from sports injuries or ageing, which regularly progresses to more serious joint disorders, such as osteoarthritis. Osteoarthritis is a degenerative joint disease characterized by the thinning and eventual wearing of articular cartilage, and affects millions of people worldwide. Due to low chondrocyte motility and proliferative rates, and complicated by the absence of blood vessels, cartilage has a limited ability to self-repair. Current pharmaceutical and surgical interventions fail to generate repair tissue with the mechanical and cellular properties of native host cartilage. The long-term success of cartilage repair will therefore depend on regenerative methodologies resulting in the restoration of articular cartilage that closely duplicates the native tissue. For cell-based therapies, the optimal cell source must be readily accessible with easily isolated, abundant cells capable of collagen type II and sulfated proteoglycan production in appropriate proportions. Although a cell source with these therapeutic properties remains elusive, mesenchymal chondroprogenitors retain their expansion capacity with the promise of reproducing the structural or biomechanical properties of healthy articular cartilage. As current knowledge regarding chondroprogenitors is relatively limited, this review will focus on their origin and therapeutic application. PMID:21371355

  2. Therapeutic potential of fecal microbiota transplantation.

    PubMed

    Smits, Loek P; Bouter, Kristien E C; de Vos, Willem M; Borody, Thomas J; Nieuwdorp, Max

    2013-11-01

    There has been growing interest in the use of fecal microbiota for the treatment of patients with chronic gastrointestinal infections and inflammatory bowel diseases. Lately, there has also been interest in its therapeutic potential for cardiometabolic, autoimmune, and other extraintestinal conditions that were not previously considered to be associated with the intestinal microbiota. Although it is not clear if changes in the microbiota cause these conditions, we review the most current and best methods for performing fecal microbiota transplantation and summarize clinical observations that have implicated the intestinal microbiota in various diseases. We also discuss case reports of fecal microbiota transplantations for different disorders, including Clostridium difficile infection, irritable bowel syndrome, inflammatory bowel diseases, insulin resistance, multiple sclerosis, and idiopathic thrombocytopenic purpura. There has been increasing focus on the interaction between the intestinal microbiome, obesity, and cardiometabolic diseases, and we explore these relationships and the potential roles of different microbial strains. We might someday be able to mine for intestinal bacterial strains that can be used in the diagnosis or treatment of these diseases.

  3. Cannabinoids and Schizophrenia: Risks and Therapeutic Potential.

    PubMed

    Manseau, Marc W; Goff, Donald C

    2015-10-01

    A convergence of evidence shows that use of Cannabis sativa is associated with increased risk of developing psychotic disorders, including schizophrenia, and earlier age at which psychotic symptoms first manifest. Cannabis exposure during adolescence is most strongly associated with the onset of psychosis amongst those who are particularly vulnerable, such as those who have been exposed to child abuse and those with family histories of schizophrenia. Schizophrenia that develops after cannabis use may have a unique clinical phenotype, and several genetic polymorphisms may modulate the relationship between cannabis use and psychosis. The endocannabinoid system has been implicated in psychosis both related and unrelated to cannabis exposure, and studying this system holds potential to increase understanding of the pathophysiology of schizophrenia. Anandamide signaling in the central nervous system may be particularly important. Δ(9)-Tetrahydrocannabinol in cannabis can cause symptoms of schizophrenia when acutely administered, and cannabidiol (CBD), another compound in cannabis, can counter many of these effects. CBD may have therapeutic potential for the treatment of psychosis following cannabis use, as well as schizophrenia, possibly with better tolerability than current antipsychotic treatments. CBD may also have anti-inflammatory and neuroprotective properties. Establishing the role of CBD and other CBD-based compounds in treating psychotic disorders will require further human research. PMID:26311150

  4. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. PMID:26876916

  5. Caffeic Acid Phenethyl Ester and Therapeutic Potentials

    PubMed Central

    Karim, Sabiha; Akram, Muhammad Rouf; Khan, Shujaat Ali; Azhar, Saira; Mumtaz, Amara; Bin Asad, Muhammad Hassham Hassan

    2014-01-01

    Caffeic acid phenethyl ester (CAPE) is a bioactive compound of propolis extract. The literature search elaborates that CAPE possesses antimicrobial, antioxidant, anti-inflammatory, and cytotoxic properties. The principal objective of this review article is to sum up and critically assess the existing data about therapeutic effects of CAPE in different disorders. The findings elaborate that CAPE is a versatile therapeutically active polyphenol and an effective adjuvant of chemotherapy for enhancing therapeutic efficacy and diminishing chemotherapy-induced toxicities. PMID:24971312

  6. Solid lipid nanoparticles for potential doxorubicin delivery in glioblastoma treatment: preliminary in vitro studies.

    PubMed

    Battaglia, Luigi; Gallarate, Marina; Peira, Elena; Chirio, Daniela; Muntoni, Elisabetta; Biasibetti, Elena; Capucchio, Maria Teresa; Valazza, Alberto; Panciani, Pier Paolo; Lanotte, Michele; Schiffer, Davide; Annovazzi, Laura; Caldera, Valentina; Mellai, Marta; Riganti, Chiara

    2014-07-01

    The major obstacle to glioblastoma pharmacological therapy is the overcoming of the blood-brain barrier (BBB). In literature, several strategies have been proposed to overcome the BBB: in this experimental work, solid lipid nanoparticles (SLN), prepared according to fatty acid coacervation technique, are proposed as the vehicle for doxorubicin (Dox), to enhance its permeation through an artificial model of BBB. The in vitro cytotoxicity of Dox-loaded SLN has been measured on three different commercial and patient-derived glioma cell lines. Dox was entrapped within SLN thanks to hydrophobic ion pairing with negatively charged surfactants, used as counterions. Results indicate that Dox entrapped in SLN maintains its cytotoxic activity toward glioma cell lines; moreover, its permeation through hCMEC/D3 cell monolayer, assumed as a model of the BBB, was increased when the drug was entrapped in SLN. In conclusion, SLN proved to be a promising vehicle for the delivery of Dox to the brain in glioblastoma treatment.

  7. Phytomodulatory potential of lycopene from Lycopersicum esculentum against doxorubicin induced nephrotoxicity.

    PubMed

    Koul, Ashwani; Shubrant; Gupta, Prachi

    2013-08-01

    An elevated level of serum urea and creatinine was observed in doxorubicin (DOX) treated animals indicating DOX-induced nephrotoxicity. Enhanced lipid peroxidation (LPO) in the renal tissue was accompanied by a significant decrease in the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) activities. Administration of lycopene (LycT) extracted from tomato to DOX treated mice showed a significant reduction in serum creatinine and urea levels which were associated with significantly low levels of LPO and significantly enhanced level of GSH and related antioxidant enzymes activity (GPx, GR and CAT) when compared to DOX group. Histopathological analysis revealed severe damage in the renal tissue of DOX treated animals. However, animals pretreated with LycT were observed to have reduced damage. Thus, from present results it may be inferred that lycopene may be beneficial in mitigating DOX induced nephrotoxicity in mice. PMID:24228387

  8. Therapeutic potential of monoamine transporter substrates.

    PubMed

    Rothman, Richard B; Baumann, Michael H

    2006-01-01

    Monoamine transporter proteins are targets for many psychoactive compounds, including therapeutic and abused stimulant drugs. This paper reviews recent work from our laboratory investigating the interaction of stimulants with transporters in brain tissue. We illustrate how determining the precise mechanism of stimulant drug action (uptake inhibitor vs. substrate) can provide unique opportunities for medication discovery. An important lesson learned from this work is that drugs which display equipotent substrate activity at dopamine (DA) and serotonin (5-HT) transporters have minimal abuse liability and few stimulant side-effects, yet are able to suppress ongoing drug-seeking behavior. As a specific example, we describe the development of PAL-287 (alpha-methylnapthylethylamine), a dual DA/5-HT releasing agent that suppresses cocaine self-administration in rhesus monkeys, without the adverse effects associated with older phenylethylamine 5-HT releasers (e.g., fenfluramine) and DA releasers (e.g., amphetamine). Our findings demonstrate the feasibility of developing non-amphetamine releasing agents as potential treatments for substance abuse disorders and other psychiatric conditions. PMID:17017961

  9. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    SciTech Connect

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  10. An inulin and doxorubicin conjugate for improving cancer therapy

    PubMed Central

    Schoener, C.A.; Carillo-Conde, B.; Hutson, H.N.; Peppas, N.A.

    2014-01-01

    Chemotherapy is one of the primary treatment mechanisms for treating cancer. Current chemotherapy is systemically delivered and causes significant side effects; therefore the development of new chemotherapeutic agents or enhancing the effectiveness of current chemotherapeutic could prove vital to patients and cancer care. The purpose of this research was to develop a new conjugate composed of doxorubicin (chemotherapeutic) and inulin (polysaccharide chain) and evaluate its potential as a new therapeutic agent for cancer treatment. The synergistic effect of inulin conjugated to doxorubicin has allowed the same cytotoxic response to be maintained or improved at lower doses as compared to doxorubicin. Supporting results include cytotoxicity profiles, calf thymus DNA binding studies, confocal microscopy, and transport studies. PMID:24734120

  11. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells

    PubMed Central

    2013-01-01

    Background In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Methods Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. Results The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. Conclusion These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression. PMID:23343191

  12. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects

    PubMed Central

    Zazo, Sandra; Arpí, Oriol; Menéndez, Silvia; Manso, Rebeca; Lluch, Ana; Eroles, Pilar; Rovira, Ana; Albanell, Joan; García-Foncillas, Jesús; Madoz-Gúrpide, Juan; Rojo, Federico

    2015-01-01

    The protein phosphatase 2A (PP2A) is a key tumor suppressor which has emerged as a novel molecular target in some human cancers. Here, we show that PP2A inhibition is a common event in breast cancer and identified PP2A phosphorylation and deregulation SET and CIP2A as molecular contributing mechanisms to inactivate PP2A. Interestingly, restoration of PP2A activity after FTY720 treatment reduced cell growth, induced apoptosis and decreased AKT and ERK activation. Moreover, FTY720 led to PP2A activation then enhancing doxorubicin-induced antitumor effects both in vitro and in vivo. PP2A inhibition (CPscore: PP2A phosphorylation and/or CIP2A overexpression) was detected in 27% of cases (62/230), and associated with grade (p = 0.017), relapse (p < 0.001), negative estrogen (p < 0.001) and progesterone receptor expression (p < 0.001), HER2-positive tumors (p = 0.049), Ki-67 expression (p < 0.001), and higher AKT (p < 0.001) and ERK (p < 0.001) phosphorylation. Moreover, PP2A inhibition determined shorter overall (p = 0.006) and event-free survival (p = 0.003), and multivariate analysis confirmed its independent prognostic impact. Altogether, our results indicate that PP2A is frequently inactivated in breast cancer and determines worse outcome, and its restoration using PP2A activators represents an alternative therapeutic strategy in this disease. PMID:25726524

  13. Gambogic acid sensitizes ovarian cancer cells to doxorubicin through ROS-mediated apoptosis.

    PubMed

    Wang, Jianxia; Yuan, Zhixiang

    2013-09-01

    Ovarian cancer is one human malignancy which has response portly to doxorubicin. The anti-cancer activity of gambogic acid has been tested in in vitro and in vivo studies. In this study, we showed that gambogic acid, a natural compound, could potentiate the anticancer activity of doxorubicin in ovarian cancer through ROS-mediated apoptosis. Platinum-resistant human ovarian cancer cell line (SKOV-3) was treated with gambogic acid, doxorubicin, or the combination of both to investigate cell proliferation and apoptosis. We found that the combination of gambogic acid and doxorubicin causes synergistic loss of cell viability in SKOV-3 cells and this synergistic effect correlated with increased cellular ROS accumulation. Moreover, in vivo results showed that gambogic acid and doxorubicin combination resulted in a synergistic suppressing effect on tumor growth in ovarian cancer mice model. Taken together, the results suggested that doxorubicin in combination with gambogic acid might provide a promising therapeutic strategy to enhance chemosensitivity of ovarian cancer to doxorubicin.

  14. The therapeutic potential of regulated hypothermia.

    PubMed

    Gordon, C J

    2001-03-01

    Reducing body temperature of rodents has been found to improve their survival to ischaemia, hypoxia, chemical toxicants, and many other types of insults. Larger species, including humans, may also benefit from a lower body temperature when recovering from CNS ischaemia and other traumatic insults. Rodents subjected to these insults undergo a regulated hypothermic response (that is, decrease in set point temperature) characterised by preference for cooler ambient temperatures, peripheral vasodilatation, and reduced metabolic rate. However, forced hypothermia (that is, body temperature forced below set point) is the only method used in the study and treatment of human pathological insults. The therapeutic efficacy of the hypothermic treatment is likely to be influenced by the nature of the reduction in body temperature (that is, forced versus regulated). Homeostatic mechanisms counter forced reductions in body temperature resulting in physiological stress and decreased efficacy of the hypothermic treatment. On the other hand, regulated hypothermia would seem to be the best means of achieving a therapeutic benefit because thermal homeostatic systems mediate a controlled reduction in core temperature. PMID:11300205

  15. The therapeutic potential of regulated hypothermia

    PubMed Central

    Gordon, C.

    2001-01-01

    Reducing body temperature of rodents has been found to improve their survival to ischaemia, hypoxia, chemical toxicants, and many other types of insults. Larger species, including humans, may also benefit from a lower body temperature when recovering from CNS ischaemia and other traumatic insults. Rodents subjected to these insults undergo a regulated hypothermic response (that is, decrease in set point temperature) characterised by preference for cooler ambient temperatures, peripheral vasodilatation, and reduced metabolic rate. However, forced hypothermia (that is, body temperature forced below set point) is the only method used in the study and treatment of human pathological insults. The therapeutic efficacy of the hypothermic treatment is likely to be influenced by the nature of the reduction in body temperature (that is, forced versus regulated). Homeostatic mechanisms counter forced reductions in body temperature resulting in physiological stress and decreased efficacy of the hypothermic treatment. On the other hand, regulated hypothermia would seem to be the best means of achieving a therapeutic benefit because thermal homeostatic systems mediate a controlled reduction in core temperature. PMID:11300205

  16. Smac Mimetic SM-164 Potentiates APO2L/TRAIL- and Doxorubicin-Mediated Anticancer Activity in Human Hepatocellular Carcinoma Cells

    PubMed Central

    Zhang, Shuijun; Li, Gongquan; Zhao, Yongfu; Liu, Guangzhi; Wang, Yu; Ma, Xiuxian; Li, Dexu; Wu, Yang; Lu, Jianfeng

    2012-01-01

    Background The members of inhibitor of apoptosis proteins (IAPs) family are key negative regulators of apoptosis. Overexpression of IAPs are found in hepatocellular carcinoma (HCC), and can contribute to chemotherapy resistance and recurrence of HCC. Small-molecule Second mitochondria-derived activator of caspases (Smac) mimetics have recently emerged as novel anticancer drugs through targeting IAPs. The specific aims of this study were to 1) examine the anticancer activity of Smac mimetics as a single agent and in combination with chemotherapy in HCC cells, and 2) investigate the mechanism of anticancer action of Smac mimetics. Methods Four HCC cell lines, including SMMC-7721, BEL-7402, HepG2 and Hep3B, and 12 primary HCC cells were used in this study. Smac mimetic SM-164 was used to treat HCC cells. Cell viability, cell death induction and clonal formation assays were used to evaluate the anticancer activity. Western blotting analysis and a pancaspase inhibitor were used to investigate the mechanisms. Results Although SM-164 induced complete cIAP-1 degradation, it displayed weak inhibitory effects on the viability of HCC cells. Nevertheless, SM-164 considerably potentiated Apo2 ligand or TNF-related apoptosis-inducing ligand (APO2L/TRAIL)- and Doxorubicin-mediated anticancer activity in HCC cells. Mechanistic studies demonstrated that SM-164 in combination with chemotherapeutic agents resulted in enhanced activation of caspases-9, -3 and cleavage of poly ADP-ribose polymerase (PARP), and also led to decreased AKT activation. Conclusions Smac mimetics can enhance chemotherapeutic-mediated anticancer activity by enhancing apoptosis signaling and suppressing survival signaling in HCC cells. This study suggests Smac mimetics are potential therapeutic agents for HCC. PMID:23240027

  17. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice

    SciTech Connect

    Guenancia, Charles; Li, Na; Hachet, Olivier; Rigal, Eve; Cottin, Yves; Dutartre, Patrick; Rochette, Luc; Vergely, Catherine

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran–iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran–iron (15 mg/kg) for 3 weeks (D0–D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6 mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran–iron (125–1000 μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+ 22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. - Highlights: • The effects of iron on cardiomyocytes were opposite to those on cancer cell lines. • In our model, iron overload did not potentiate anthracycline cardiotoxicity. • Chronic oxidative stress induced by iron could mitigate doxorubicin cardiotoxicity. • The role of iron in

  18. New model system for testing effects of flavonoids on doxorubicin-related formation of hydroxyl radicals.

    PubMed

    Soucek, Pavel; Kondrova, Eliska; Hermanek, Josef; Stopka, Pavel; Boumendjel, Ahcene; Ueng, Yune-Fang; Gut, Ivan

    2011-02-01

    Doxorubicin belongs to anthracycline cytotoxic drugs and it is widely used as a major therapeutic agent in the treatment of various types of tumors. However,its therapeutic use is limited by the development of myelosuppression and cardiotoxicity after a specific cumulative dose is reached. The aim of this study was to investigate the effect of flavonoids, either natural or synthetic on doxorubicin-mediated formation of oxidative stress implicated in doxorubicin toxicity. Doxorubicin caused a concentration-dependent increase in the formation of hydroxyl radicals in minipig liver microsomes used as an in-vitro model system. When bacterial membranes heterologously expressing human NADPH cytochrome-P450 oxidoreductase were incubated with doxorubicin, formation of the superoxide radical under aerobic conditions and the doxorubicin–semiquinone radical under anaerobic conditions was detected. Forty different flavonoids were tested for their potency to prevent NADPH-induced or Fe2+-induced peroxidation of lipids in the microsomal system. According to the results, seven flavonoids were selected for evaluation of their potency to inhibit doxorubicin-dependent formation of hydroxyl radicals assessed by electron spin resonance. Myricetin, fisetin, and kaempferol were found to produce a significant protective effect against hydroxyl radicals in the minipig liver microsomal system. In conclusion, this study shows the use of a novel cost-effective in-vitro model system for preselection of antioxidants for testing of their protective effects against toxicity of anthracyclines and potentially other oxidative stress-inducing chemicals.

  19. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors

    PubMed Central

    Yu, Man; Lee, Carol; Wang, Marina; Tannock, Ian F

    2015-01-01

    Cellular causes of resistance and limited drug distribution within solid tumors limit therapeutic efficacy of anticancer drugs. Acidic endosomes in cancer cells mediate autophagy, which facilitates survival of stressed cells, and may contribute to drug resistance. Basic drugs (e.g. doxorubicin) are sequestered in acidic endosomes, thereby diverting drugs from their target DNA and decreasing penetration to distal cells. Proton pump inhibitors (PPIs) may raise endosomal pH, with potential to improve drug efficacy and distribution in solid tumors. We determined the effects of the PPI lansoprazole to modify the activity of doxorubicin. To gain insight into its mechanisms, we studied the effects of lansoprazole on endosomal pH, and on the spatial distribution of doxorubicin, and of biomarkers reflecting its activity, using in vitro and murine models. Lansoprazole showed concentration-dependent effects to raise endosomal pH and to inhibit endosomal sequestration of doxorubicin in cultured tumor cells. Lansoprazole was not toxic to cancer cells but potentiated the cytotoxicity of doxorubicin and enhanced its penetration through multilayered cell cultures. In solid tumors, lansoprazole improved the distribution of doxorubicin but also increased expression of biomarkers of drug activity throughout the tumor. Combined treatment with lansoprazole and doxorubicin was more effective in delaying tumor growth as compared to either agent alone. Together, lansoprazole enhances the therapeutic effects of doxorubicin both by improving its distribution and increasing its activity in solid tumors. Use of PPIs to improve drug distribution and to inhibit autophagy represents a promising strategy to enhance the effectiveness of anticancer drugs in solid tumors. PMID:26212113

  20. HAMLET: functional properties and therapeutic potential.

    PubMed

    Ho C S, James; Rydström, Anna; Trulsson, Maria; Bålfors, Johannes; Storm, Petter; Puthia, Manoj; Nadeem, Aftab; Svanborg, Catharina

    2012-10-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein-lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.

  1. The Therapeutic Potential of Medicinal Foods

    PubMed Central

    Ramalingum, Nelvana; Mahomoodally, M. Fawzi

    2014-01-01

    Pharmaceutical and nutritional sciences have recently witnessed a bloom in the scientific literature geared towards the use of food plants for their diversified health benefits and potential clinical applications. Health professionals now recognize that a synergism of drug therapy and nutrition might confer optimum outcomes in the fight against diseases. The prophylactic benefits of food plants are being investigated for potential use as novel medicinal remedies due to the presence of pharmacologically active compounds. Although the availability of scientific data is rapidly growing, there is still a paucity of updated compilation of data and concerns about the rationale of these health-foods still persist in the literature. This paper attempts to congregate the nutritional value, phytochemical composition, traditional uses, in vitro and in vivo studies of 10 common medicinal food plants used against chronic noncommunicable and infectious diseases. Food plants included were based on the criteria that they are consumed as a common food in a typical diet as either fruit or vegetable for their nutritive value but have also other parts which are in common use in folk medicine. The potential challenges of incorporating these medicinal foods in the diet which offers prospective opportunities for future drug development are also discussed. PMID:24822061

  2. Integrated Treatment of Aqueous Extract of Solanum nigrum-Potentiated Cisplatin- and Doxorubicin-Induced Cytotoxicity in Human Hepatocellular Carcinoma Cells

    PubMed Central

    Wang, Chien-Kai; Lin, Yi-Feng; Tai, Cheng-Jeng; Wang, Chia-Wowi; Chang, Yu-Jia; Choong, Chen-Yen; Lin, Chi-Shian; Tai, Chen-Jei; Chang, Chun-Chao

    2015-01-01

    Chemotherapy is the main approach for treating advanced and recurrent hepatocellular carcinoma (HCC), but the clinical performance of chemotherapy is limited by a relatively low response rate, drug resistance, and adverse effects that severely affect the quality of life of patients. The aqueous extract of Solanum nigrum (AE-SN) is a crucial ingredient in some traditional Chinese medicine (TCM) formulas for treating cancer patients and exhibits antitumor effects in human HCC cells. Therefore, this study examined the tumor-suppression efficiency of AE-SN integrated with a standard chemotherapeutic drug, namely, cisplatin or doxorubicin, in human HCC cells, namely, Hep3B and HepJ5. The results suggested that the integrated treatment with AE-SN-potentiated cisplatin and doxorubicin induced cytotoxicity through the cleavage of caspase-7 and accumulation of microtubule-associated protein-1 light chain-3 A/1B II (LC-3 A/B II), which were associated with apoptotic and autophagic cell death, respectively, in both the Hep3B and HepJ5 cells. In conclusion, AE-SN can potentially be used in novel integrated chemotherapy with cisplatin or doxorubicin to treat HCC patients. PMID:26221175

  3. Potential Therapeutic Targets in Uterine Sarcomas

    PubMed Central

    Cuppens, Tine; Tuyaerts, Sandra; Amant, Frédéric

    2015-01-01

    Uterine sarcomas are rare tumors accounting for 3,4% of all uterine cancers. Even after radical hysterectomy, most patients relapse or present with distant metastases. The very limited clinical benefit of adjuvant cytotoxic treatments is reflected by high mortality rates, emphasizing the need for new treatment strategies. This review summarizes rising potential targets in four distinct subtypes of uterine sarcomas: leiomyosarcoma, low-grade and high-grade endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Based on clinical reports, promising approaches for uterine leiomyosarcoma patients include inhibition of VEGF and mTOR signaling, preferably in combination with other targeted or cytotoxic compounds. Currently, the only targeted therapy approved in leiomyosarcoma patients is pazopanib, a multitargeted inhibitor blocking VEGFR, PDGFR, FGFR, and c-KIT. Additionally, preclinical evidence suggests effect of the inhibition of histone deacetylases, tyrosine kinase receptors, and the mitotic checkpoint protein aurora kinase A. In low-grade endometrial stromal sarcomas, antihormonal therapies including aromatase inhibitors and progestins have proven activity. Other potential targets are PDGFR, VEGFR, and histone deacetylases. In high-grade ESS that carry the YWHAE/FAM22A/B fusion gene, the generated 14-3-3 oncoprotein is a putative target, next to c-KIT and the Wnt pathway. The observation of heterogeneity within uterine sarcoma subtypes warrants a personalized treatment approach. PMID:26576131

  4. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  5. Therapeutic Potential of Resveratrol in Lymphoid Malignancies.

    PubMed

    Khan, Omar S; Bhat, Ajaz A; Krishnankutty, Roopesh; Mohammad, Ramzi M; Uddin, Shahab

    2016-01-01

    Natural products have always been sought as a dependable source for the cure of many fatal diseases including cancer. Resveratrol (RSV), a naturally occurring plant polyphenol, has been of recent research interest and is being investigated for its beneficial biological properties that include antioxidant, anti-inflammatory, proapoptotic, and growth inhibitory activities. These effects are mainly mediated by cell cycle arrest, upregulation of proapoptotic proteins, loss of mitochondrial potential, and generation of reactive oxygen species. Among the beneficial properties of RSV, the anticancer property has been of the prime focus and extensively explored during the last few years. Although reports exist on the chemopreventive role of RSV in many solid tumors, limited information is available on the antiproliferative activity of RSV in human lymphoma cells and experimental models. Potential mechanisms for its antiproliferative effect include induction of cell differentiation, apoptosis, and inhibition of DNA synthesis. In this review, the different kinds of lymphoid malignancies and the main mechanisms of cell death induced by resveratrol are discussed. The challenges are limiting in vivo experimental studies involving resveratrol. An attempt for the translation of this compound into a clinical drug also forms a part of this review. PMID:27028800

  6. Therapeutic potential of amniotic fluid stem cells.

    PubMed

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  7. Therapeutic Potential of Dietary Phenolic Acids

    PubMed Central

    Saibabu, Venkata; Fatima, Zeeshan; Khan, Luqman Ahmad; Hameed, Saif

    2015-01-01

    Although modern lifestyle has eased the quality of human life, this lifestyle's related patterns have imparted negative effects on health to acquire multiple diseases. Many synthetic drugs are invented during the last millennium but most if not all of them possess several side effects and proved to be costly. Convincing evidences have established the premise that the phytotherapeutic potential of natural compounds and need of search for novel drugs from natural sources are of high priority. Phenolic acids (PAs) are a class of secondary metabolites spread throughout the plant kingdom and generally involved in plethora of cellular processes involved in plant growth and reproduction and also produced as defense mechanism to sustain various environmental stresses. Extensive research on PAs strongly suggests that consumption of these compounds hold promise to offer protection against various ailments in humans. This paper focuses on the naturally derived PAs and summarizes the action mechanisms of these compounds during disease conditions. Based on the available information in the literature, it is suggested that use of PAs as drugs is very promising; however more research and clinical trials are necessary before these bioactive molecules can be made for treatment. Finally this review provides greater awareness of the promise that natural PAs hold for use in the disease prevention and therapy. PMID:26442119

  8. Folic Acid and Trastuzumab Functionalized Redox Responsive Polymersomes for Intracellular Doxorubicin Delivery in Breast Cancer.

    PubMed

    Lale, Shantanu V; Kumar, Arun; Prasad, Shyam; Bharti, Alok C; Koul, Veena

    2015-06-01

    Redox responsive biodegradable polymersomes comprising of poly(ethylene glycol)-polylactic acid-poly(ethylene glycol) [PEG-s-s-PLA-s-s-PLA-s-s-PEG] triblock copolymer with multiple disulfide linkages were developed to improve intracellular delivery and to enhance chemotherapeutic efficacy of doxorubicin in breast cancer with minimal cardiotoxicity. Folic acid and trastuzumab functionalized monodispersed polymersomes of size ∼150 nm were prepared by nanoprecipitation method while achieving enhanced doxorubicin loading of ∼32% in the polymersomes. Multiple redox responsive disulfide linkages were incorporated in the polymer in order to achieve complete disintegration of polymersomes in redox rich environment of cancer cells resulting in enhanced doxorubicin release as observed in in vitro release studies, where ∼90% doxorubicin release was achieved in pH 5.0 in the presence of 10 mM glutathione (GSH) as compared to ∼20% drug release in pH 7.4. Folic acid and trastuzumab mediated active targeting resulted in improved cellular uptake and enhanced apoptosis in in vitro studies in breast cancer cell lines. In vivo studies in Ehrlich ascites tumor bearing Swiss albino mice showed enhanced antitumor efficacy and minimal cardiotoxicity of polymersomes with ∼90% tumor regression as compared to ∼38% tumor regression observed with free doxorubicin. The results highlight therapeutic potential of the polymersomes as doxorubicin delivery nanocarrier in breast cancer therapy with its superior antitumor efficacy and minimal cardiotoxicity.

  9. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity

    SciTech Connect

    Reynolds, Joseph G.; Geretti, Elena; Hendriks, Bart S.; Lee, Helen; Leonard, Shannon C.; Klinz, Stephan G.; Noble, Charles O.; Lücker, Petra B.; Zandstra, Peter W.; Drummond, Daryl C.; Olivier, Kenneth J.; Nielsen, Ulrik B.; Niyikiza, Clet; Agresta, Samuel V.; Wickham, Thomas J.

    2012-07-01

    Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there has been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers. -- Highlights: ► Novel approach using stem cell-derived cardiomyocytes to assess preclinical safety. ► HER2-targeted liposomal doxorubicin has improved safety profile vs free doxorubicin

  10. Calcium modulation of doxorubicin cytotoxicity in yeast and human cells.

    PubMed

    Nguyen, Thi Thuy Trang; Lim, Ying Jun; Fan, Melanie Hui Min; Jackson, Rebecca A; Lim, Kim Kiat; Ang, Wee Han; Ban, Kenneth Hon Kim; Chen, Ee Sin

    2016-03-01

    Doxorubicin is a widely used chemotherapeutic agent, but its utility is limited by cellular resistance and off-target effects. To understand the molecular mechanisms regulating chemotherapeutic responses to doxorubicin, we previously carried out a genomewide search of doxorubicin-resistance genes in Schizosaccharomyces pombe fission yeast and showed that these genes are organized into networks that counteract doxorubicin cytotoxicity. Here, we describe the identification of a subgroup of doxorubicin-resistance genes that, when disrupted, leads to reduced tolerance to exogenous calcium. Unexpectedly, we observed a suppressive effect of calcium on doxorubicin cytotoxicity, where concurrent calcium and doxorubicin treatment resulted in significantly higher cell survival compared with cells treated with doxorubicin alone. Conversely, inhibitors of voltage-gated calcium channels enhanced doxorubicin cytotoxicity in the mutants. Consistent with these observations in fission yeast, calcium also suppressed doxorubicin cytotoxicity in human breast cancer cells. Further epistasis analyses in yeast showed that this suppression of doxorubicin toxicity by calcium was synergistically dependent on Rav1 and Vph2, two regulators of vacuolar-ATPase assembly; this suggests potential modulation of the calcium-doxorubicin interaction by fluctuating proton concentrations within the cellular environment. Thus, the modulatory effects of drugs or diet on calcium concentrations should be considered in doxorubicin treatment regimes. PMID:26891792

  11. Doxorubicin-CdS nanoparticles: a potential anticancer agent for enhancing the drug uptake of cancer cells.

    PubMed

    Li, Jingyuan; Wu, Chunhui; Dai, Yongyuan; Zhang, Renyun; Wang, Xuemei; Fu, Degang; Chen, Baoan

    2007-02-01

    A novel strategy of enhancing the drug uptake by cancer cells through the combination of anticancer drug doxorubicin with cadium sulfide (CdS) nanoparticles has been explored by using confocal fluorescence scanning microscopy as well as electrochemical studies, which demonstrates that CdS nanoparticles can readily conjugate with doxorubicin on the targeted cancer cells and facilitate the uptake of drug molecules in the human leukemia K562 cells. Besides, our observations also indicate that the aggregation of the leukemia cells occured when CdS nanoparticles were introduced into the relative target system together with doxorubicin, suggesting that the specific association of CdS nanoparticles with biologically active molecules on the surface of leukemia K562 cells may change some biorecognition or signal transfer pathway among cancer cells. It is suggested that the competitive binding of CdS nanoparticles with accompanying anticancer drug to the membrane of leukemia K562 cells could efficiently prevent the drug release by the drug resistant leukemia cells and thus inhibit the relative multidrug resistance (MDR) of targeted cancer cells.

  12. Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges

    PubMed Central

    LEE, JIN-KU; NAM, DO-HYUN; LEE, JEONGWU

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and most lethal primary brain tumor, with tragically little therapeutic progress over the last 30 years. Surgery provides a modest benefit, and GBM cells are resistant to radiation and chemotherapy. Despite significant development of the molecularly targeting strategies, the clinical outcome of GBM patients remains dismal. The challenges inherent in developing effective GBM treatments have become increasingly clear, and include resistance to standard treatments, the blood-brain barrier, resistance of GBM stem-like cells, and the genetic complexity and molecular adaptability of GBM. Recent studies have collectively suggested that certain antipsychotics harbor antitumor effects and have potential utilities as anti-GBM therapeutics. In the present review, the anti-tumorigenic effects and putative mechanisms of antipsychotics, and the challenges for the potential use of antipsychotic drugs as anti-GBM therapeutics are reviewed. PMID:26893731

  13. Molecular Mechanisms of Diabetic Retinopathy: Potential Therapeutic Targets

    PubMed Central

    Coucha, Maha; Elshaer, Sally L.; Eldahshan, Wael S.; Mysona, Barbara A.; El-Remessy, Azza B.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease. PMID:25949069

  14. Hydrogen-containing saline attenuates doxorubicin-induced heart failure in rats.

    PubMed

    Wu, Shujing; Zhu, Liqun; Yang, Jing; Fan, Zhixin; Dong, Yanli; Luan, Rui; Cai, Jingjing; Fu, Lu

    2014-08-01

    Interactions between doxorubicin (DOX) and iron generate reactive oxygen species and contribute to DOX-induced heart failure. Hydrogen, as a selective antioxidant, is a promising potential therapeutic option for the treatment of a variety of diseases. Therefore, we investigated the preventive effects of hydrogen treatment on DOX-induced heart failure in rats. We found that cardiac function was significantly improved and that the plasma levels of oxidative-stress markers and myocardial autophagic activity were decreased in animals treated with hydrogen-containing saline. Therefore, we conclude that hydrogen-containing saline may have beneficial effects for doxorubicin-induced heart failure.

  15. Assessing the therapeutic potential of lab-made hepatocytes.

    PubMed

    Rezvani, Milad; Grimm, Andrew A; Willenbring, Holger

    2016-07-01

    Hepatocyte transplantation has potential as a bridge or even alternative to whole-organ liver transplantation. Because donor livers are scarce, realizing this potential requires the development of alternative cell sources. To be therapeutically effective, surrogate hepatocytes must replicate the complex function and ability to proliferate of primary human hepatocytes. Ideally, they are also autologous to eliminate the need for immune suppression, which can have severe side effects and may not be sufficient to prevent rejection long term. In the past decade, several methods have been developed to generate hepatocytes from other readily and safely accessible somatic cells. These lab-made hepatocytes show promise in animal models of liver diseases, supporting the feasibility of autologous liver cell therapies. Here, we review recent preclinical studies exemplifying different types of lab-made hepatocytes that can potentially be used in autologous liver cell therapies. To define the therapeutic efficacy of current lab-made hepatocytes, we compare them to primary human hepatocytes, focusing on engraftment efficiency and posttransplant proliferation and function. In addition to summarizing published results, we discuss animal models and assays effective in assessing therapeutic efficacy. This analysis underscores the therapeutic potential of current lab-made hepatocytes, but also highlights deficiencies and uncertainties that need to be addressed in future studies aimed at developing liver cell therapies with lab-made hepatocytes. (Hepatology 2016;64:287-294). PMID:27014802

  16. WIP1 phosphatase as a potential therapeutic target in neuroblastoma.

    PubMed

    Richter, Mark; Dayaram, Tajhal; Gilmartin, Aidan G; Ganji, Gopinath; Pemmasani, Sandhya Kiran; Van Der Key, Harjeet; Shohet, Jason M; Donehower, Lawrence A; Kumar, Rakesh

    2015-01-01

    The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with

  17. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma (a ...

  18. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer - doxorubicin.

    PubMed

    Seib, F Philipp; Jones, Arwyn T; Duncan, Ruth

    2006-07-01

    Polymer therapeutics are being designed for lysosomotropic, endosomotropic and transcellular drug delivery. Their appropriate intracellular routing is thus crucial for successful use. For example, polymer-anticancer drug conjugates susceptible to lysosomal enzyme degradation will never deliver their drug payload unless they encounter the appropriate activating enzymes. Many studies use confocal microscopy to monitor intracellular fate, but there is a pressing need for more quantitative methods able to define intracellular compartmentation over time. Only then will it be possible to optimise the next generation of polymer therapeutics for specific applications. The aim of this study was to establish a subcellular fractionation method for B16F10 murine melanoma cells and subsequently to use it to define the intracellular trafficking of N-(2-hydroxyproplylmethacrylamide) (HPMA) copolymer-bound doxorubicin (PK1). Free doxorubicin was used as a reference. The cell cracker method was used to achieve cell breakage and optimised to reproducibly achieve approximately 90% breakage efficiency. This ensured that subsequent subcellular fractionation experiments were representative for the whole cell population. To characterise the subcellular fractions obtained by differential centrifugation, DNA (nuclei), succinate dehydrogenase (mitochondria), N-acetyl-beta-glucosaminidase (lysosomes), alkaline phosphatase (plasma membrane) and lactate dehydrogenase (cytosol) were selected as markers and their assay was carefully validated. The relative specific activity (RSA) of the fractions obtained from B16F10 cells were: nuclei (2.2), mitochondria (4.1), lysosomes (3.7) and cytosol (2.5). When used to study the intracellular distribution at non-toxic concentrations of PK1 and doxorubicin, time-dependent accumulation of PK1 in lysosomes was evident and the expected nuclear localisation of free doxorubicin was seen. Live cell fluorescence microscopy and confocal co-localisation studies

  19. Ursolic acid (UA): A metabolite with promising therapeutic potential.

    PubMed

    Kashyap, Dharambir; Tuli, Hardeep Singh; Sharma, Anil K

    2016-02-01

    Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action. PMID:26775565

  20. Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease.

    PubMed

    Li, Weibin; Lan, Xiaopeng

    2015-08-01

    Aptamers are single-stranded deoxyribonucleic acid or ribonucleic acid oligonucleotides generated in vitro based on affinity for certain target molecules by a process known as Systematic Evolution of Ligands by Exponential Enrichment. Aptamers can bind their target molecules with high specificity and selectivity by means of structure compatibility, stacking of aromatic rings, electrostatic and van der Waals interactions, and hydrogen bonding. With several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch to batch variation, flexible modification and stability, lack of toxicity and low immunogenicity, aptamers are becoming promising novel diagnostic and therapeutic agents. This review focuses on the development of aptamers as potential therapeutics for autoimmune diseases, including diabetes mellitus, multiple sclerosis, rheumatoid arthritis, myasthenia gravis, and systemic lupus erythematosus. PMID:25993618

  1. Potential Therapeutic Uses of Mecamylamine and its Stereoisomers

    PubMed Central

    Nickell, Justin R.; Grinevich, Vladimir P.; Siripurapu, Kiran B.; Smith, Andrew M.; Dwoskin, Linda P.

    2013-01-01

    Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side-effects at therapeutically relevant doses. As such, mecamylamine’s use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side-effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(−)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder. PMID:23603417

  2. Potential therapeutic uses of mecamylamine and its stereoisomers.

    PubMed

    Nickell, Justin R; Grinevich, Vladimir P; Siripurapu, Kiran B; Smith, Andrew M; Dwoskin, Linda P

    2013-07-01

    Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side effects at therapeutically relevant doses. As such, mecamylamine's use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(-)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder.

  3. Securinine, a Myeloid Differentiation Agent with Therapeutic Potential for AML

    PubMed Central

    Gupta, Kalpana; Chakrabarti, Amitabha; Rana, Sonia; Ramdeo, Ritu; Roth, Bryan L.; Agarwal, Munna L.; Tse, William; Agarwal, Mukesh K.; Wald, David N.

    2011-01-01

    As the defining feature of Acute Myeloid Leukemia (AML) is a maturation arrest, a highly desirable therapeutic strategy is to induce leukemic cell maturation. This therapeutic strategy has the potential of avoiding the significant side effects that occur with the traditional AML therapeutics. We identified a natural compound securinine, as a leukemia differentiation-inducing agent. Securinine is a plant-derived alkaloid that has previously been used clinically as a therapeutic for primarily neurological related diseases. Securinine induces monocytic differentiation of a wide range of myeloid leukemia cell lines as well as primary leukemic patient samples. Securinine's clinical potential for AML can be seen from its ability to induce significant growth arrest in cell lines and patient samples as well as its activity in significantly impairing the growth of AML tumors in nude mice. In addition, securinine can synergize with currently employed agents such as ATRA and decitabine to induce differentiation. This study has revealed securinine induces differentiation through the activation of DNA damage signaling. Securinine is a promising new monocytic differentiation inducing agent for AML that has seen previous clinical use for non-related disorders. PMID:21731671

  4. The therapeutic potential of cannabinoids for movement disorders.

    PubMed

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2015-03-01

    There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders. PMID:25649017

  5. The Therapeutic Potential of Cannabinoids for Movement Disorders

    PubMed Central

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2014-01-01

    Background There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and particularly for neurologic conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science, preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. Results The pharmacology of cannabis is complex with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits but more consistently suggest potential neuroprotective effects in several animal models of Parkinson’s (PD) and Huntington’s disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia or ataxia and nonexistent for myoclonus or restless legs syndrome. Conclusions Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological and therapeutic effects of this class of drugs in movement disorders. PMID:25649017

  6. Inhibition of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-11-21

    Highlights: • Suppression of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin. • Repression of PKM2 affects the glycolysis and decreases ATP production. • Downregulation of PKM2 increases the intracellular accumulation of doxorubicin. • Inhibition of PKM2 enhances the antitumor efficacy of doxorubicin in vivo. - Abstract: Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy. Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.

  7. The pharmacology and therapeutic potential of (−)-huperzine A

    PubMed Central

    Tun, Maung Kyaw Moe; Herzon, Seth B

    2012-01-01

    (−)-Huperzine A (1) is an alkaloid isolated from a Chinese club moss. Due to its potent neuroprotective activities, it has been investigated as a candidate for the treatment of neurodegenerative diseases, including Alzheimer’s disease. In this review, we will discuss the pharmacology and therapeutic potential of (−)-huperzine A (1). Synthetic studies of (−)-huperzine A (1) aimed at enabling its development as a pharmaceutical will be described. PMID:27186124

  8. The therapeutic potential of carbon monoxide for inflammatory bowel disease.

    PubMed

    Takagi, Tomohisa; Uchiyama, Kazuhiko; Naito, Yuji

    2015-01-01

    Inflammatory bowel disease (IBD), encompassing ulcerative colitis and Crohn's disease, are chronic, relapsing and remitting inflammatory disorders of the intestinal tract. Because the precise pathogenesis of IBD remains unclear, it is important to investigate the pathogenesis of IBD and to evaluate new anti-inflammatory strategies. Recent accumulating evidence has suggested that carbon monoxide (CO) may act as an endogenous defensive gaseous molecule to reduce inflammation and tissue injury in various organ injury models, including intestinal inflammation. Furthermore, exogenous CO administration at low concentrations is protective against intestinal inflammation. These data suggest that CO may be a novel therapeutic molecule in patients with IBD. In this review, we present what is currently known regarding the therapeutic potential of CO in intestinal inflammation.

  9. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma.

    PubMed

    Siurala, Mikko; Bramante, Simona; Vassilev, Lotta; Hirvinen, Mari; Parviainen, Suvi; Tähtinen, Siri; Guse, Kilian; Cerullo, Vincenzo; Kanerva, Anna; Kipar, Anja; Vähä-Koskela, Markus; Hemminki, Akseli

    2015-02-15

    Despite originating from several different tissues, soft-tissue sarcomas (STS) are often grouped together as they share mesenchymal origin and treatment guidelines. Also, with some exceptions, a common denominator is that when the tumor cannot be cured with surgery, the efficacy of current therapies is poor and new treatment modalities are thus needed. We have studied the combination of a capsid-modified oncolytic adenovirus CGTG-102 (Ad5/3-D24-GMCSF) with doxorubicin, with or without ifosfamide, the preferred first-line chemotherapeutic options for most types of STS. We show that CGTG-102 and doxorubicin plus ifosfamide together are able to increase cell killing of Syrian hamster STS cells over single agents, as well as upregulate immunogenic cell death markers. When tested in vivo against established STS tumors in fully immunocompetent Syrian hamsters, the combination was highly effective. CGTG-102 and doxorubicin (without ifosfamide) resulted in synergistic antitumor efficacy against human STS xenografts in comparison with single agent treatments. Doxorubicin increased adenoviral replication in human and hamster STS cells, potentially contributing to the observed therapeutic synergy. In conclusion, the preclinical data generated here support clinical translation of the combination of CGTG-102 and doxorubicin, or doxorubicin plus ifosfamide, for the treatment of STS, and provide clues on the mechanisms of synergy.

  10. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  11. Therapeutic potential of perivascular cells from human pluripotent stem cells.

    PubMed

    Dar, Ayelet; Itskovitz-Eldor, Joseph

    2015-09-01

    Vascularization of injured tissues or artificial grafts is a major challenge in tissue engineering, stimulating a continued search for alternative sources for vasculogenic cells and the development of therapeutic strategies. Human pluripotent stem cells (hPSCs), either embryonic or induced, offer a plentiful platform for the derivation of large numbers of vasculogenic cells, as required for clinical transplantations. Various protocols for generation of vasculogenic smooth muscle cells (SMCs) from hPSCs have been described with considerably different SMC derivatives. In addition, we recently identified hPSC-derived pericytes, which are similar to their physiological counterparts, exhibiting unique features of blood vessel-residing perivascular cells, as well as multipotent mesenchymal precursors with therapeutic angiogenic potential. In this review we refer to methodologies for the development of a variety of perivascular cells from hPSCs with respect to developmental induction, differentiation capabilities, potency and their dual function as mesenchymal precursors. The therapeutic effect of hPSC-derived perivascular cells in experimental models of tissue engineering and regenerative medicine are described and compared to those of their native physiological counterparts.

  12. Commercially available interactive video games in burn rehabilitation: therapeutic potential.

    PubMed

    Parry, Ingrid S; Bagley, Anita; Kawada, Jason; Sen, Soman; Greenhalgh, David G; Palmieri, Tina L

    2012-06-01

    Commercially available interactive video games (IVG) like the Nintendo Wii™ (NW) and PlayStation™II Eye Toy (PE) are increasingly used in the rehabilitation of patients with burn. Such games have gained popularity in burn rehabilitation because they encourage range of motion (ROM) while distracting from pain. However, IVGs were not originally designed for rehabilitation purposes but rather for entertainment and may lack specificity for achieving rehabilitative goals. Objectively evaluating the specific demands of IVGs in relation to common burn therapy goals will determine their true therapeutic benefit and guide their use in burn rehabilitation. Upper extremity (UE) motion of 24 normal children was measured using 3D motion analysis during play with the two types of IVGs most commonly described for use after burn: NW and PE. Data was analyzed using t-tests and One-way Analysis of Variance. Active range of motion for shoulder flexion and abduction during play with both PE and NW was within functional range, thus supporting the idea that IVGs offer activities with therapeutic potential to improve ROM. PE resulted in higher demands and longer duration of UE motion than NW, and therefore may be the preferred tool when UE ROM or muscular endurance are the goals of rehabilitation. When choosing a suitable IVG for application in rehabilitation, the user's impairment together with the therapeutic attributes of the IVG should be considered to optimize outcome.

  13. Leveraging biodiversity knowledge for potential phyto-therapeutic applications

    PubMed Central

    Sharma, Vivekanand; Sarkar, Indra Neil

    2013-01-01

    Objective To identify and highlight the feasibility, challenges, and advantages of providing a cross-domain pipeline that can link relevant biodiversity information for phyto-therapeutic assessment. Materials and methods A public repository of clinical trials information (ClinicalTrials.gov) was explored to determine the state of plant-based interventions under investigation. Results The results showed that ∼15% of drug interventions in ClinicalTrials.gov were potentially plant related, with about 60% of them clustered within 10 taxonomic families. Further analysis of these plant-based interventions identified ∼3.7% of associated plant species as endangered as determined from the International Union for the Conservation of Nature Red List. Discussion The diversity of the plant kingdom has provided human civilization with life-sustaining food and medicine for centuries. There has been renewed interest in the investigation of botanicals as sources of new drugs, building on traditional knowledge about plant-based medicines. However, data about the plant-based biodiversity potential for therapeutics (eg, based on genetic or chemical information) are generally scattered across a range of sources and isolated from contemporary pharmacological resources. This study explored the potential to bridge biodiversity and biomedical knowledge sources. Conclusions The findings from this feasibility study suggest that there is an opportunity for developing plant-based drugs and further highlight taxonomic relationships between plants that may be rich sources for bioprospecting. PMID:23518859

  14. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  15. Potential therapeutic strategy to treat substance abuse related disorders.

    PubMed

    Chang, Sulie L

    2013-12-01

    The "Potential Therapeutic Strategy to Treat Substance Abuse Related Disorders" session was chaired by Dr. Sulie Chang, director of NeuroImmune Phamacology at Seton University. The four presenters (and their topics) were: Dr. Wen-zhe Ho (Miniway to stop HIV/HCV), Dr. Ru-Band Lu (Low dose of memantine in the treatment of opioid dependence in human), Dr. Ping Zhang (Treatment of alcohol-related disorders-Learning from stem/progenitor cell), and Chia-Hsiang Chen (Treatment of methamphetamine abuse: an antibody-based immunotherapy approach).

  16. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  17. Potential therapeutic strategy to treat substance abuse related disorders.

    PubMed

    Chang, Sulie L

    2013-12-01

    The "Potential Therapeutic Strategy to Treat Substance Abuse Related Disorders" session was chaired by Dr. Sulie Chang, director of NeuroImmune Phamacology at Seton University. The four presenters (and their topics) were: Dr. Wen-zhe Ho (Miniway to stop HIV/HCV), Dr. Ru-Band Lu (Low dose of memantine in the treatment of opioid dependence in human), Dr. Ping Zhang (Treatment of alcohol-related disorders-Learning from stem/progenitor cell), and Chia-Hsiang Chen (Treatment of methamphetamine abuse: an antibody-based immunotherapy approach). PMID:25267886

  18. Inflammation and hypertension: new understandings and potential therapeutic targets.

    PubMed

    De Miguel, Carmen; Rudemiller, Nathan P; Abais, Justine M; Mattson, David L

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension. PMID:25432899

  19. Inflammation and hypertension: new understandings and potential therapeutic targets

    PubMed Central

    Miguel, Carmen De; Rudemiller, Nathan P.; Abais, Justine M.; Mattson, David L.

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objective of this brief review is to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors and inflammasomes in hypertension. PMID:25432899

  20. A hierarchical porous bowl-like PLA@MSNs-COOH composite for pH-dominated long-term controlled release of doxorubicin and integrated nanoparticle for potential second treatment.

    PubMed

    Pan, Jianming; Wu, Runrun; Dai, Xiaohui; Yin, Yijie; Pan, Guoqing; Meng, Minjia; Shi, Weidong; Yan, Yongsheng

    2015-04-13

    We chemically integrated mesoporous silica nanoparticles (MSNs) and macroporous bowl-like polylactic acid (pBPLA) matrix, for noninvasive electrostatic loading and long-term controlled doxorubicin (DOX) release, to prepare a hierarchical porous bowl-like pBPLA@MSNs-COOH composite with a nonspherical and hierarchical porous structure. Strong electrostatic interaction with DOX rendered excellent encapsulation efficiency (up to 90.14%) to the composite. DOX release showed pH-dominated drug release kinetics; thus, maintaining a weak acidic pH (e.g., 5.0) triggered sustained release, suggesting the composite's great potential for long-term therapeutic approaches. In-vitro cell viability assays further confirmed that the composite was biocompatible and that the loaded drugs were pharmacologically active, exhibiting dosage-dependent cytotoxicity. Additionally, a wound-healing assay revealed the composite's intrinsic ability to inhibit cell migration. Moreover, pH- and time-dependent leaching of the integrated MSNs due to pBPLA matrix degradation allow us to infer that the leached (and drug loaded) MSNs may be engulfed by cancer cells contributing to a second wave of DOX-mediated cytotoxicity following pH-triggered DOX release.

  1. Therapeutic potential of flurbiprofen against obesity in mice.

    PubMed

    Hosoi, Toru; Baba, Sachiko; Ozawa, Koichiro

    2014-06-20

    Obesity is associated with several diseases including diabetes, nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease, and cancer. Therefore, anti-obesity drugs have the potential to prevent these diseases. In the present study, we demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited therapeutic potency against obesity. Mice were fed a high-fat diet (HFD) for 6 months, followed by a normal-chow diet (NCD). The flurbiprofen treatment simultaneously administered. Although body weight was significantly decreased in flurbiprofen-treated mice, growth was not affected. Flurbiprofen also reduced the HFD-induced accumulation of visceral fat. Leptin resistance, which is characterized by insensitivity to the anti-obesity hormone leptin, is known to be involved in the development of obesity. We found that one of the possible mechanisms underlying the anti-obesity effects of flurbiprofen may have been mediated through the attenuation of leptin resistance, because the high circulating levels of leptin in HFD-fed mice were decreased in flurbiprofen-treated mice. Therefore, flurbiprofen may exhibit therapeutic potential against obesity by reducing leptin resistance.

  2. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis).

  3. Therapeutic potential of mesenchymal stem cell-derived microvesicles.

    PubMed

    Biancone, Luigi; Bruno, Stefania; Deregibus, Maria Chiara; Tetta, Ciro; Camussi, Giovanni

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851627

  4. Proteasome inhibition and its therapeutic potential in multiple myeloma

    PubMed Central

    Chari, Ajai; Mazumder, Amitabha; Jagannath, Sundar

    2010-01-01

    Due to an unmet clinical need for treatment, the first in class proteasome inhibitor, bortezomib, moved from drug discovery to FDA approval in multiple myeloma in an unprecedented eight years. In the wake of this rapid approval arose a large number of questions about its mechanism of action and toxicity as well as its ultimate role in the treatment of this disease. In this article, we briefly review the preclinical and clinical development of the drug as the underpinning for a systematic review of the large number of clinical trials that are beginning to shed some light on the full therapeutic potential of bortezomib in myeloma. We conclude with our current understanding of the mechanism of action of this agent and a discussion of the novel proteasome inhibitors under development, as it will be progress in these areas that will ultimately determine the true potential of proteasome inhibition in myeloma. PMID:21116326

  5. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    PubMed Central

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors. PMID:27807473

  6. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.

    PubMed

    Lao, Yeh-Hsing; Phua, Kyle K L; Leong, Kam W

    2015-03-24

    Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.

  7. Therapeutic potential and health benefits of Sargassum species

    PubMed Central

    Yende, Subhash R.; Harle, Uday N.; Chaugule, Bhupal B.

    2014-01-01

    Sargassum species are tropical and sub-tropical brown macroalgae (seaweed) of shallow marine meadow. These are nutritious and rich source of bioactive compounds such as vitamins, carotenoids, dietary fibers, proteins, and minerals. Also, many biologically active compounds like terpenoids, flavonoids, sterols, sulfated polysaccharides, polyphenols, sargaquinoic acids, sargachromenol, pheophytine were isolated from different Sargassum species. These isolated compounds exhibit diverse biological activities like analgesic, anti-inflammatory, antioxidant, neuroprotective, anti-microbial, anti-tumor, fibrinolytic, immune-modulatory, anti-coagulant, hepatoprotective, anti-viral activity etc., Hence, Sargassum species have great potential to be used in pharmaceutical and neutralceutical areas. This review paper explores the current knowledge of phytochemical, therapeutic potential, and health benefits of different species of genus Sargassum. PMID:24600190

  8. Therapeutic Potential of Steroidal Alkaloids in Cancer and Other Diseases.

    PubMed

    Jiang, Qi-Wei; Chen, Mei-Wan; Cheng, Ke-Jun; Yu, Pei-Zhong; Wei, Xing; Shi, Zhi

    2016-01-01

    Steroidal alkaloids are a class of secondary metabolites isolated from plants, amphibians, and marine invertebrates. Evidence accumulated in the recent two decades demonstrates that steroidal alkaloids have a wide range of bioactivities including anticancer, antimicrobial, anti-inflammatory, antinociceptive, etc., suggesting their great potential for application. It is therefore necessary to comprehensively summarize the bioactivities, especially anticancer activities and mechanisms of steroidal alkaloids. Here we systematically highlight the anticancer profiles both in vitro and in vivo of steroidal alkaloids such as dendrogenin, solanidine, solasodine, tomatidine, cyclopamine, and their derivatives. Furthermore, other bioactivities of steroidal alkaloids are also discussed. The integrated molecular mechanisms in this review can increase our understanding on the utilization of steroidal alkaloids and contribute to the development of new drug candidates. Although the therapeutic potentials of steroidal alkaloids look promising in the preclinical and clinical studies, further pharmacokinetic and clinical studies are mandated to define their efficacy and safety in cancer and other diseases.

  9. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential

    PubMed Central

    Lusvarghi, Sabrina; Bewley, Carole A.

    2016-01-01

    Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin’s antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin. PMID:27783038

  10. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    PubMed

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking. PMID:25944010

  11. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    PubMed

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking.

  12. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential

    PubMed Central

    Rebouças, Júlio S.; Spasojević, Ivan

    2010-01-01

    Abstract Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918. PMID:20095865

  13. Stem cells as potential therapeutic targets for inflammatory bowel disease

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Mishra, Manoj K.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Singh, Shree Ram

    2010-01-01

    The rates of incidence and prevalence of Crohn’s disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. Estimates indicate >1 million new cases of IBD in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD. PMID:20515838

  14. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  15. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  16. Melanocyte Stem Cells as Potential Therapeutics in Skin Disorders

    PubMed Central

    Lee, Ju Hee; Fisher, David E.

    2015-01-01

    Introduction Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSC) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation, and proliferation of MelSC are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSC and their niche may lead to use of MelSC in new treatments for various pigmentation disorders. Areas covered We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration, and proliferation of melanocytes and factors involved in the survival, maintenance, and regeneration of MelSC are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. Expert Opinion MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSC would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSC it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying. PMID:25104310

  17. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    PubMed Central

    Cockle, J V; Picton, S; Levesley, J; Ilett, E; Carcaboso, A M; Short, S; Steel, L P; Melcher, A; Lawler, S E; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours. PMID:25628092

  18. Vitamin D: preventive and therapeutic potential in Parkinson's disease.

    PubMed

    Liu, Yan; Li, Yan-Wu; Tang, Ya-Lan; Liu, Xin; Jiang, Jun-Hao; Li, Qing-Gen; Yuan, Jian-Yong

    2013-11-01

    Vitamin D is one of the important nuclear steroid transcription regulators that controls transcriptions of a large number of genes. Vitamin D supplement is commonly recommended for the elderly to prevent bone diseases. Amounting new evidence has indicated that vitamin D plays a crucial role in brain development, brain function regulation and neuroprotection. Parkinson's disease (PD) is a degenerative disorder commonly seen in the elderly, characterized by movement disorders including tremor, akinesia, and loss of postural reflexes. The motor symptoms largely result from the continued death of dopaminergic neurons in the substantia nigra, despite use of current therapeutic interventions. The cause and mechanism of neuron death is currently unknown. Vitamin D deficiency is common in patients with PD suggesting its preventive and therapeutic potential. Vitamin D may exert protective and neurotropic effects directly at cellular level, e.g. protection of dopamine system, and/or by regulating gene expression. This review summarizes the epidemiological, genetic and translational evidence implicating vitamin D as a candidate for prevention and treatment for PD. PMID:24160295

  19. MicroRNAs in neurodegenerative diseases and their therapeutic potential.

    PubMed

    Junn, Eunsung; Mouradian, M Maral

    2012-02-01

    MicroRNAs (miRNAs) are abundant, endogenous, short, noncoding RNAs that act as important post-transcriptional regulators of gene expression by base-pairing with their target mRNA. During the last decade, substantial knowledge has accumulated regarding the biogenesis of miRNAs, their molecular mechanisms and functional roles in a variety of cellular contexts. Altered expression of certain miRNA molecules in the brains of patients with neurodegenerative diseases such as Alzheimer and Parkinson suggests that miRNAs could have a crucial regulatory role in these disorders. Polymorphisms in miRNA target sites may also constitute an important determinant of disease risk. Additionally, emerging evidence points to specific miRNAs targeting and regulating the expression of particular proteins that are key to disease pathogenesis. Considering that the amount of these proteins in susceptible neuronal populations appears to be critical to neurodegeneration, miRNA-mediated regulation represents a new target of significant therapeutic prospects. In this review, the implications of miRNAs in several neurodegenerative disorders and their potential as therapeutic interventions are discussed.

  20. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  1. Therapeutic potential of targeting glucose metabolism in glioma stem cells.

    PubMed

    Nakano, Ichiro

    2014-11-01

    Glioblastoma is a highly lethal cancer. Glioma stem cells (GSCs) are potentially an attractive therapeutic target and eradication of GSCs may impact tumor growth and sensitize tumors to conventional therapies. The brain is one of the most metabolically active organs with glucose representing the most important, but not the only, source of energy and carbon. Like all other cancers, glioblastoma requires a continuous source of energy and molecular resources for new cell production with a preferential use of aerobic glycolysis, recognized as the Warburg effect. As selected metabolic nodes are amenable to therapeutic targeting, we observed that the Warburg effect may causally contribute to glioma heterogeneity. This Editorial summarizes recent studies that examine the relationship between GSCs and metabolism and briefly provides our views for the future directions. The ultimate goal is to establish a new concept by incorporating both the cellular hierarchical theory and the cellular evolution theory to explain tumor heterogeneity. Such concept may better elucidate the mechanisms of how tumors gain cellular and molecular complexity and guide us develop novel and effective targeted therapies.

  2. Biochemistry and therapeutic potential of hydrogen sulfide - reality or fantasy?

    PubMed

    Brodek, Paulina; Olas, Beata

    2016-01-01

    Hydrogen sulfide (H2S) is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes - cystathionine-b synthase (CBS), mercaptopyruvate sulfurtransferase (3-MST), cystathionine-γ lyase (CSE) and cysteine aminotransferase (CAT) - are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO). The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic) donors of H2S in pre-clinical and clinical studies. PMID:27516569

  3. Potential Therapeutic Benefits of Strategies Directed to Mitochondria

    PubMed Central

    Lesnefsky, Edward J.; Stowe, David F.

    2010-01-01

    Abstract The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279–347. PMID:20001744

  4. mTOR kinase inhibitors as potential cancer therapeutic drugs

    PubMed Central

    Sun, Shi-Yong

    2013-01-01

    The mammalian target of rapamycin (mTOR) plays a critical role in the positive regulation of cell growth and survival primarily through direct interaction with raptor (forming mTORC complex 1; mTORC1) or rictor (forming mTOR complex 2; mTORC2). The mTOR axis is often activated in many types of cancer and thus has become an attractive cancer therapeutic target. The modest clinical anticancer activity of conventional mTOR allosteric inhibitors, rapamycin and its analogues (rapalogs), which preferentially inhibit mTORC1, in most types of cancer, has encouraged great efforts to develop mTOR kinase inhibitors (TORKinibs) that inhibit both mTORC1 and mTORC2, in the hope of developing a novel generation of mTOR inhibitors with better therapeutic efficacy than rapalogs. Several TORKinibs have been developed and actively studied preclinically and clinically. This review will highlight recent advances in the development and research of TORKinibs and discuss some potential issues or challenges in this area. PMID:23792225

  5. Emerging therapeutic potential of whey proteins and peptides.

    PubMed

    Yalçin, A Süha

    2006-01-01

    Whey is a natural by-product of cheese making process. Bovine milk has about 3.5% protein, 80% of which are caseins and the remaining 20% are whey proteins. Whey proteins contain all the essential amino acids and have the highest protein quality rating among other proteins. Advances in processing technologies have led to the industrial production of different products with varying protein contents from liquid whey. These products have different biological activities and functional properties. Also recent advances in processing technologies have expanded the commercial use of whey proteins and their products. As a result, whey proteins are used as common ingredients in various products including infant formulas, specialized enteral and clinical protein supplements, sports nutrition products, products specific to weight management and mood control. This brief review intends to focus on scientific evidence and recent findings related to the therapeutic potential of whey proteins and peptides.

  6. Mechanisms and therapeutic potential of microRNAs in hypertension.

    PubMed

    Shi, Lijun; Liao, Jingwen; Liu, Bailin; Zeng, Fanxing; Zhang, Lubo

    2015-10-01

    Hypertension is the major risk factor for the development of stroke, coronary artery disease, heart failure and renal disease. The underlying cellular and molecular mechanisms of hypertension are complex and remain largely elusive. MicroRNAs (miRNAs) are short, noncoding RNA fragments of 22-26 nucleotides and regulate protein expression post-transcriptionally by targeting the 3'-untranslated region of mRNA. A growing body of recent research indicates that miRNAs are important in the pathogenesis of arterial hypertension. Herein, we summarize the current knowledge regarding the mechanisms of miRNAs in cardiovascular remodeling, focusing specifically on hypertension. We also review recent progress of the miRNA-based therapeutics including pharmacological and nonpharmacological therapies (such as exercise training) and their potential applications in the management of hypertension.

  7. Therapeutic potential of Aegle marmelos (L.)-An overview

    PubMed Central

    Rahman, Shahedur; Parvin, Rashida

    2014-01-01

    Medicinal plants are used in herbalism. They form the easily available source for healthcare purposes in rural and tribal areas. In the present review, an attempt has been made to congregate the phytochemical and pharmacological studies done on an important medicinal plant Aegle marmelos. Extensive experimental and clinical studies prove that Aegle marmelos possesses antidiarrhoeal, antimicrobial, antiviral, radioprotective, anticancer, chemopreventive, antipyretic, ulcer healing, antigenotoxic, diuretic, antifertility and anti-inflammatory properties, which help it to play role in prevention and treatment of many disease. Therefore, it is worthwhile to review its therapeutic properties to give an overview of its status to scientist both modern and ancient. This review also encompasses on the potential application of the above plant in the pharmaceutical field due to its wide pharmacological activities.

  8. Functions of astrocytes and their potential as therapeutic targets

    PubMed Central

    Kimelberg, Harold K.; Nedergaard, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases. Furthermore, this review will critically re-evaluate our concepts of the functional properties of astrocytes and relate these tasks to their intricate morphology. PMID:20880499

  9. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  10. The preventive and therapeutic potential of natural polyphenols on influenza.

    PubMed

    Bahramsoltani, Roodabeh; Sodagari, Hamid Reza; Farzaei, Mohammad Hosein; Abdolghaffari, Amir Hossein; Gooshe, Maziar; Rezaei, Nima

    2016-01-01

    Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications.

  11. Vitamin D: Implications for ocular disease and therapeutic potential.

    PubMed

    Reins, Rose Y; McDermott, Alison M

    2015-05-01

    Vitamin D is a multifunctional hormone that is now known to play a significant role in a variety of biological functions in addition to its traditional role in regulating calcium homeostasis. There are a large number of studies demonstrating that adequate vitamin D levels are important in maintaining health and show that vitamin D is able to be utilized at local tissue sites. In the eye, we have increasing evidence of the association between disease and vitamin D. In this narrative review, we summarize recent findings on vitamin D and its relationship to various ocular pathologies and the therapeutic potential for some of these, as well as examine the basic science studies that demonstrate that vitamin D is biologically relevant in the eye. PMID:25724179

  12. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  13. Revisiting Metal Toxicity in Neurodegenerative Diseases and Stroke: Therapeutic Potential

    PubMed Central

    Mitra, Joy; Vasquez, Velmarini; Hegde, Pavana M; Boldogh, Istvan; Mitra, Sankar; Kent, Thomas A; Rao, Kosagi S; Hegde, Muralidhar L

    2015-01-01

    Excessive accumulation of pro-oxidant metals, observed in affected brain regions, has consistently been implicated as a contributor to the brain pathology including neurodegenerative diseases and acute injuries such as stroke. Furthermore, the potential interactions between metal toxicity and other commonly associated etiological factors, such as misfolding/aggregation of amyloidogenic proteins or genomic damage, are poorly understood. Decades of research provide compelling evidence implicating metal overload in neurological diseases and stroke. However, the utility of metal toxicity as a therapeutic target is controversial, possibly due to a lack of comprehensive understanding of metal dyshomeostasis-mediated neuronal pathology. In this article, we discuss the current understanding of metal toxicity and the challenges associated with metal-targeted therapies. PMID:25717476

  14. High therapeutic potential of Spilanthes acmella: A review.

    PubMed

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2013-01-01

    Spilanthes acmella, a well known antitoothache plant with high medicinal usages, has been recognized as an important medicinal plant and has an increasingly high demand worldwide. From its traditional uses in health care and food, extensive phytochemical studies have been reported. This review provides an overview and general description of the plant species, bioactive metabolites and important pharmacological activities including the preparation, purification and in vitro large-scale production. Structure-activity relationships of the bioactive compounds have been discussed. Considering data from the literature, it could be demonstrated that S. acmella possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements. As a health food, it is enriched with high therapeutic value with high potential for further development. PMID:27092032

  15. Vitamin D: Implications for Ocular Disease and Therapeutic Potential

    PubMed Central

    Reins, Rose Y.; McDermott, Alison M.

    2015-01-01

    Vitamin D is a multifunctional hormone that is now known to play a significant role in a variety of biological functions in addition to its traditional role in regulating calcium homeostasis. There are a large number of studies demonstrating that adequate vitamin D levels are important in maintaining health and show that vitamin D is able to be utilized at local tissue sites. In the eye, we have increasing evidence of the association between disease and vitamin D. In this narrative review, we summarize recent findings on vitamin D and its relationship to various ocular pathologies and the therapeutic potential for some of these, as well as examine the basic science studies that demonstrate that vitamin D is biologically relevant in the eye. PMID:25724179

  16. Telmisartan, its potential therapeutic implications in cardiometabolic disorders.

    PubMed

    Yamagishi, Sho-ichi; Nakamura, Kazuo

    2006-01-01

    There is a growing body of evidence that the renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of cardiovascular diseases. Indeed, large clinical trials have demonstrated substantial benefit of the blockade of this system for cardiovascular-organ protection. Although several types of angiotensin II type 1 (AT(1)) receptor blockers (ARBs) are commercially available for the treatment of patients with hypertension, we have recently found that telmisartan (Micardis) could have the strongest binding affinity to AT(1) receptor. Telmisartan will be a promising cardiometabolic sartan due to its unique peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-inducing properties as well. In this review, we focused on telmisartan, and discussed its potential therapeutic implications in cardiometabolic disorders. PMID:18221077

  17. Potential biomarkers for monitoring therapeutic response in patients with CIDP.

    PubMed

    Dalakas, Marinos C

    2011-06-01

    Although the majority of patients with CIDP variably respond to intravenous immunoglobulin (IVIg), steroids, or plasmapheresis, 30% of them are unresponsive or insufficiently responsive to these therapies. The heterogeneity in therapeutic responses necessitates the need to search for biomarkers to determine the most suitable therapy from the outset and explore the best means for monitoring disease activity. The ICE study, which led to the first FDA-approved indication for IVIg in CIDP, has shown that maintenance therapy prevents relapses and axonal loss. In this paper, the multiple actions exerted by IVIg on the immunoregulatory network of CIDP are discussed as potential predictors of response to therapies. Emerging molecular markers, promising in identifying responders to IVIg from non-responders, include modulation of FcγRIIB receptors on monocytes and genome-wide transcription studies related to inflammatory mediators, demyelination, or axonal degeneration. Skin biopsies, Peripheral Blood Lymhocytes, CSF, and sera are accessible surrogate tissues for further exploring these molecules during therapies.

  18. High therapeutic potential of Spilanthes acmella: A review

    PubMed Central

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2013-01-01

    Spilanthes acmella, a well known antitoothache plant with high medicinal usages, has been recognized as an important medicinal plant and has an increasingly high demand worldwide. From its traditional uses in health care and food, extensive phytochemical studies have been reported. This review provides an overview and general description of the plant species, bioactive metabolites and important pharmacological activities including the preparation, purification and in vitro large-scale production. Structure-activity relationships of the bioactive compounds have been discussed. Considering data from the literature, it could be demonstrated that S. acmella possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements. As a health food, it is enriched with high therapeutic value with high potential for further development. PMID:27092032

  19. The potential therapeutic effects of THC on Alzheimer's disease.

    PubMed

    Cao, Chuanhai; Li, Yaqiong; Liu, Hui; Bai, Ge; Mayl, Jonathan; Lin, Xiaoyang; Sutherland, Kyle; Nabar, Neel; Cai, Jianfeng

    2014-01-01

    The purpose of this study was to investigate the potential therapeutic qualities of Δ9-tetrahydrocannabinol (THC) with respect to slowing or halting the hallmark characteristics of Alzheimer's disease. N2a-variant amyloid-β protein precursor (AβPP) cells were incubated with THC and assayed for amyloid-β (Aβ) levels at the 6-, 24-, and 48-hour time marks. THC was also tested for synergy with caffeine, in respect to the reduction of the Aβ level in N2a/AβPPswe cells. THC was also tested to determine if multiple treatments were beneficial. The MTT assay was performed to test the toxicity of THC. Thioflavin T assays and western blots were performed to test the direct anti-Aβ aggregation significance of THC. Lastly, THC was tested to determine its effects on glycogen synthase kinase-3β (GSK-3β) and related signaling pathways. From the results, we have discovered THC to be effective at lowering Aβ levels in N2a/AβPPswe cells at extremely low concentrations in a dose-dependent manner. However, no additive effect was found by combining caffeine and THC together. We did discover that THC directly interacts with Aβ peptide, thereby inhibiting aggregation. Furthermore, THC was effective at lowering both total GSK-3β levels and phosphorylated GSK-3β in a dose-dependent manner at low concentrations. At the treatment concentrations, no toxicity was observed and the CB1 receptor was not significantly upregulated. Additionally, low doses of THC can enhance mitochondria function and does not inhibit melatonin's enhancement of mitochondria function. These sets of data strongly suggest that THC could be a potential therapeutic treatment option for Alzheimer's disease through multiple functions and pathways.

  20. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice.

    PubMed

    Guenancia, Charles; Li, Na; Hachet, Olivier; Rigal, Eve; Cottin, Yves; Dutartre, Patrick; Rochette, Luc; Vergely, Catherine

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran-iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran-iron (15mg/kg) for 3weeks (D0-D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran-iron (125-1000μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice.

  1. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice.

    PubMed

    Guenancia, Charles; Li, Na; Hachet, Olivier; Rigal, Eve; Cottin, Yves; Dutartre, Patrick; Rochette, Luc; Vergely, Catherine

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran-iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran-iron (15mg/kg) for 3weeks (D0-D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran-iron (125-1000μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. PMID:25711856

  2. Phenylboronic-acid-modified nanoparticles: potential antiviral therapeutics.

    PubMed

    Khanal, Manakamana; Vausselin, Thibaut; Barras, Alexandre; Bande, Omprakash; Turcheniuk, Kostiantyn; Benazza, Mohammed; Zaitsev, Vladimir; Teodorescu, Cristian Mihail; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2013-12-11

    Phenylboronic-acid-modified nanoparticles (NPs) are attracting considerable attention for biological and biomedical applications. We describe here a convenient and general protocol for attaching multiple copies of para-substituted phenylboronic acid moieties onto either iron-oxide-, silica- or diamond-derived NPs. The boronic acid functionalized NPs are all fabricated by first modifying the surface of each particle type with 4-azidobenzoic ester functions. These azide-terminated nanostructures were then reacted with 4-[1-oxo-4-pentyn-1-yl) amino]phenylboronic acid units via a Cu(I) catalyzed Huisgen cycloaddition to furnish, conveniently, the corresponding boronic-acid modified NPs (or "borono-lectins") targeted in this work. The potential of these novel "borono-lectins" as antiviral inhibitors was investigated against the Hepatitis C virus (HCV) exploiting a bioassay that measures the potential of drugs to interfere with the ability of cell-culture-derived JFH1 virus particles to infect healthy hepatocytes. As far as we are aware, this is the first report that describes NP-derived viral entry inhibitors and thus serves as a "proof-of-concept" study. The novel viral entry activity demonstrated, and the fact that the described boronic-acid-functionalized NPs all display much reduced cellular toxicities compared with alternate NPs, sets the stage for their further investigation. The data supports that NP-derived borono-lectins should be pursued as a potential therapeutic strategy for blocking viral entry of HCV.

  3. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer

    PubMed Central

    Thoppil, Roslin J; Bishayee, Anupam

    2011-01-01

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called “isoprenoids”) are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  4. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  5. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  6. New therapeutic potentials of milk thistle (Silybum marianum).

    PubMed

    Milić, Natasa; Milosević, Natasa; Suvajdzić, Ljiljana; Zarkov, Marija; Abenavoli, Ludovico

    2013-12-01

    Silymarin is a bioflavonoid complex extract derived from dry seeds of Milk thistle [(Silybum marianum(L.) Gaemrnt. (Fam. Asteraceae/Compositaceae)] whose hepatoprotective effect has clinically been proved. Low toxicity, favorable pharmacokinetics, powerful antioxidant, detoxifying, preventive, protective and regenerative effects and side effects similar to placebo make silymarin extremely attractive and safe for therapeutic use. The medicinal properties of silymarin and its main component silibinin have been studied in the treatment of Alzheimer's disease, Parkinson's disease, sepsis, burns, osteoporosis, diabetes, cholestasis and hypercholesterolemia. Owing to its apoptotic effect, without cytotoxic effects, silymarin possesses potential applications in the treatment of various cancers. Silymarin is being examined as a neuro-, nephro- and cardio-protective in the damage of different etiologies due to its strong antioxidant potentials. Furthermore, it has fetoprotective (against the influence of alcohol) and prolactin effects and is safe to be used during pregnancy and lactation. Finally, the cosmetics industry is examining the antioxidant and UV-protective effects of silymarin. Further clinical studies and scientific evidence that silymarin and silibinin are effective in the therapy of various pathologies are indispensable in order to confirm their different flavonolignan pharmacological effects.

  7. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    PubMed Central

    Patel, Devang M.; Shah, Jainy; Srivastava, Anand S.

    2013-01-01

    Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases. PMID:23577036

  8. Harnessing the Therapeutic Potential of Th17 Cells

    PubMed Central

    Bystrom, Jonas; Taher, Taher E.; Muhyaddin, M. Sherwan; Clanchy, Felix I.; Mangat, Pamela; Jawad, Ali S.; Williams, Richard O.; Mageed, Rizgar A.

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases. PMID:26101460

  9. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  10. Harnessing the Therapeutic Potential of Th17 Cells.

    PubMed

    Bystrom, Jonas; Taher, Taher E; Muhyaddin, M Sherwan; Clanchy, Felix I; Mangat, Pamela; Jawad, Ali S; Williams, Richard O; Mageed, Rizgar A

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases.

  11. Quercetin-induced cardioprotection against doxorubicin cytotoxicity

    PubMed Central

    2013-01-01

    Background Cancer has continually been the leading cause of death worldwide for decades. Thus, scientists have actively devoted themselves to studying cancer therapeutics. Doxorubicin is an efficient drug used in cancer therapy, but also produces reactive oxygen species (ROS) that induce severe cytotoxicity against heart cells. Quercetin, a plant-derived flavonoid, has been proven to contain potent antioxidant and anti-inflammatory properties. Thus, this in vitro study investigated whether quercetin can decrease doxorubicin-induced cytotoxicity and promote cell repair systems in cardiomyocyte H9C2 cells. Results Proteomic analysis and a cell biology assay were performed to investigate the quercetin-induced responses. Our data demonstrated that quercetin treatment protects the cardiomyocytes in a doxorubicin-induced heart damage model. Quercetin significantly facilitated cell survival by inhibiting cell apoptosis and maintaining cell morphology by rearranging the cytoskeleton. Additionally, 2D-DIGE combined with MALDI-TOF MS analysis indicated that quercetin might stimulate cardiomyocytes to repair damage after treating doxorubicin by modulating metabolic activation, protein folding and cytoskeleton rearrangement. Conclusion Based on a review of the literature, this study is the first to report detailed protective mechanisms for the action of quercetin against doxorubicin-induced cardiomyocyte toxicity based on in-depth cell biology and proteomic analysis. PMID:24359494

  12. The Therapeutic Potential of Brown Adipocytes in Humans.

    PubMed

    Porter, Craig; Chondronikola, Maria; Sidossis, Labros S

    2015-01-01

    Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and/or treatment of obesity, owing to poor long-term adherence to such interventions. Thus, an effective strategy to prevent or correct obesity is currently lacking. As the combustion engines of our cells, mitochondria play a critical role in energy expenditure. At a whole-body level, approximately 80% of mitochondrial membrane potential generated by fuel oxidation is used to produce ATP, and the remaining 20% is lost through heat-producing uncoupling reactions. The coupling of mitochondrial respiration to ATP production represents an important component in whole-body energy expenditure. Brown adipose tissue (BAT) is densely populated with mitochondria containing the inner mitochondrial proton carrier uncoupling protein 1 (UCP1). UCP1 uncouples oxidative phosphorylation, meaning that mitochondrial membrane potential is dissipated as heat. The recent rediscovery of BAT depots in adult humans has rekindled scientific interest in the manipulation of mitochondrial uncoupling reactions as a means to increase metabolic rate, thereby counteracting obesity and its associated metabolic phenotype. In this article, we discuss the evidence for the role BAT plays in metabolic rate and glucose and lipid metabolism in humans and the potential for UCP1 recruitment in the white adipose tissue of humans. While the future holds much promise for a therapeutic role of UCP1 expressing adipocytes in human energy metabolism, particularly in the context of obesity, tissue-specific strategies that activate or recruit UCP1 in human adipocytes represent an obligatory translational step for this early promise to be realized. PMID:26528238

  13. The Therapeutic Potential of Brown Adipocytes in Humans

    PubMed Central

    Porter, Craig; Chondronikola, Maria; Sidossis, Labros S.

    2015-01-01

    Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and/or treatment of obesity, owing to poor long-term adherence to such interventions. Thus, an effective strategy to prevent or correct obesity is currently lacking. As the combustion engines of our cells, mitochondria play a critical role in energy expenditure. At a whole-body level, approximately 80% of mitochondrial membrane potential generated by fuel oxidation is used to produce ATP, and the remaining 20% is lost through heat-producing uncoupling reactions. The coupling of mitochondrial respiration to ATP production represents an important component in whole-body energy expenditure. Brown adipose tissue (BAT) is densely populated with mitochondria containing the inner mitochondrial proton carrier uncoupling protein 1 (UCP1). UCP1 uncouples oxidative phosphorylation, meaning that mitochondrial membrane potential is dissipated as heat. The recent rediscovery of BAT depots in adult humans has rekindled scientific interest in the manipulation of mitochondrial uncoupling reactions as a means to increase metabolic rate, thereby counteracting obesity and its associated metabolic phenotype. In this article, we discuss the evidence for the role BAT plays in metabolic rate and glucose and lipid metabolism in humans and the potential for UCP1 recruitment in the white adipose tissue of humans. While the future holds much promise for a therapeutic role of UCP1 expressing adipocytes in human energy metabolism, particularly in the context of obesity, tissue-specific strategies that activate or recruit UCP1 in human adipocytes represent an obligatory translational step for this early promise to be realized. PMID:26528238

  14. [Therapeutic potential of sparfloxacin for preventing mycobacterial infections].

    PubMed

    Kawahara, S; Tada, A; Takeuchi, M; Kamisaka, K; Okada, C; Mishima, Y; Soda, R; Takahashi, K; Kibata, M; Nagare, H

    1994-05-01

    We studied the therapeutic potential of utilizing sparfloxacin (SPFX), a newly developed quinolone, to prevent various mycobacterial infections. The in vitro activity of SPFX as a preventive agent for various mycobacteria was determined using the actual count method on Ogawa egg medium. The minimal inhibitory concentrations (MICs) of SPFX were as follows: ofloxacin-sensitive M. tuberculosis, 0.16-0.32 microgram/ml; ofloxacin-resistant M. tuberculosis, 0.63-2.5 micrograms/ml; M. avium; 0.63-10 micrograms/ml (MICs were equal or less than 1.25 micrograms/ml in seven out of 11 strains); M. intracellulare, 2.5-10 micrograms/ml (MICs were equal or more than 10 micrograms/ml in 17 out of 23 strains); M. kansasii, < or = 0.08-0.16 microgram/ml; M. fortuitum, < or = 0.08 microgram/ml; M. chelonae subsp. abscessus, > 10 micrograms/ml; M. chelonae subsp. chelonae, 0.63 microgram/ml; M. scrofulaceum, < or = 0.08 microgram/ml; M. nonchromogenicum, 1.25 micrograms/ml; M. xenopi, < or = 0.08 microgram/ml; M. gordonae, < or = 0.08 microgram/ml. The average serum concentrations of SPFX during the period of multiple oral administration (200 mg once a day) were 0.35 +/- 0.16 microgram/ml before administration, 0.67 +/- 0.32 microgram/ml after one hour, 1.13 +/- 0.21 microgram/ml after two hours, 1.27 +/- 0.32 microgram/ml after four hours and 1.31 +/- 0.34 micrograms/ml after six hours. These results indicate that SPFX has a strong therapeutic potential to prevent infections due to M. tuberculosis, M. kansasii, M. fortuitum, M. chelonae subsp. chelonae, M. scrofulaceum, M. xenopi and M. gordonae. Moreover, it may be expected to be a promising agent against infections due to ofloxacin-resistant M. tuberculosis, M. avium and M. nonchromogenicum. PMID:8007520

  15. The clinically active PARP inhibitor AG014699 ameliorates cardiotoxicity but does not enhance the efficacy of doxorubicin, despite improving tumor perfusion and radiation response in mice.

    PubMed

    Ali, Majid; Kamjoo, Marzieh; Thomas, Huw D; Kyle, Suzanne; Pavlovska, Ivanda; Babur, Muhammed; Telfer, Brian A; Curtin, Nicola J; Williams, Kaye J

    2011-12-01

    AG014699 was the first inhibitor of the DNA repair enzyme PARP-1 to enter clinical trial in cancer patients. In addition to enhancing the cytotoxic effect of DNA-damaging chemotherapies, we have previously shown that AG014699 is vasoactive, thereby having the potential to improve drug biodistribution. The effectiveness of the clinical agent doxorubicin is confounded both by poor tumor penetration and cardiotoxicity elicited via PARP hyperactivation. In this study, we analyzed the impact of AG014699 on doxorubicin tolerance and response in breast (MDA-MB-231) and colorectal (SW620, LoVo) tumor models in vitro and in vivo. As anticipated, AG014699 did not potentiate the response to doxorubicin in vitro. In vivo, AG014699 did not influence the pharmacokinetics of doxorubicin; however, it did ameliorate cardiotoxicity. Both toxicity and extent of amelioration were more pronounced in male than in female mice. AG014699 improved vessel perfusion in both MDA-MB-231 and SW620 tumors; however, this neither led to improved tumor-accumulation of doxorubicin nor enhanced therapeutic response. In contrast, when combined with radiotherapy, AG014699 significantly enhanced response both in vitro and in vivo. Real-time assessment of tumor vessel function and companion histologic studies indicate that doxorubicin causes a profound antivascular effect that counters the positive effect of AG014699 on perfusion. These data indicate that although AG014699 can enhance response to some chemotherapeutic drugs via improved delivery, this does not apply to doxorubicin. PARP inhibitors may still be of use to counter doxorubicin toxicity, and if the gender effect translates from rodents to humans, this would have greater effect in males. PMID:21926192

  16. Potential prognostic, diagnostic and therapeutic markers for human gastric cancer

    PubMed Central

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Chi, Hsiang-Cheng; Tseng, Yi-Hsin; Lin, Kwang-Huei

    2014-01-01

    The high incidence of gastric cancer (GC) and its consequent mortality rate severely threaten human health. GC is frequently not diagnosed until a relatively advanced stage. Surgery is the only potentially curative treatment. Thus, early screening and diagnosis are critical for improving prognoses in patients with GC. Gastroscopy with biopsy is an appropriate method capable of aiding the diagnosis of specific early GC tumor types; however, the stress caused by this method together with it being excessively expensive makes it difficult to use it as a routine method for screening for GC on a population basis. The currently used tumor marker assays for detecting GC are simple and rapid, but their use is limited by their low sensitivity and specificity. In recent years, several markers have been identified and tested for their clinical relevance in the management of GC. Here, we review the serum-based tumor markers for GC and their clinical significance, focusing on discoveries from microarray/proteomics research. We also review tissue-based GC tumor markers and their clinical application, focusing on discoveries from immunohistochemical research. This review provides a brief description of various tumor markers for the purposes of diagnosis, prognosis and therapeutics, and we include markers already in clinical practice and various forthcoming biomarkers. PMID:25320517

  17. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets

    PubMed Central

    Kim, Jong Youl; Kawabori, Masahito; Yenari, Midori A.

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke. Introduction Stroke refers to conditions caused by occlusion and/or rupture of blood vessels in the brain, and is a leading cause of death and disability in the industrialized world. PMID:24372209

  18. 14-3-3 proteins as potential therapeutic targets

    PubMed Central

    Zhao, Jing; Meyerkord, Cheryl L.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed. PMID:21983031

  19. Notch signaling: its roles and therapeutic potential in hematological malignancies

    PubMed Central

    Gu, Yisu

    2016-01-01

    Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway. PMID:26934331

  20. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed Central

    Suleman, Louise

    2016-01-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes. PMID:27785379

  1. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis

    PubMed Central

    Apaer, Shadike; Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Zhang, Heng; Aierken, Amina; Aini, Abudusalamu; Li, Yu-Peng; Lin, Ren-Yong; Wen, Hao

    2016-01-01

    Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the ‘hygiene hypothesis’ since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis. PMID:27698735

  2. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis

    PubMed Central

    Apaer, Shadike; Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Zhang, Heng; Aierken, Amina; Aini, Abudusalamu; Li, Yu-Peng; Lin, Ren-Yong; Wen, Hao

    2016-01-01

    Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the ‘hygiene hypothesis’ since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis.

  3. MPS1 kinase as a potential therapeutic target in medulloblastoma

    PubMed Central

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  4. Dopamine transporter ligands: recent developments and therapeutic potential.

    PubMed

    Runyon, Scott P; Carroll, F Ivy

    2006-01-01

    The dopamine transporter (DAT) is a target for the development of pharmacotherapies for a number of central disorders including Parkinson's disease, Alzheimer's disease, schizophrenia, Tourette's syndrome, Lesch-Nyhan disease, attention deficit hyperactivity disorder (ADHD), obesity, depression, and stimulant abuse as well as normal aging. Considerable effort continues to be devoted to the development of new ligands for the DAT. In this review, we present some of the more interesting ligands developed during the last few years from the 3-phenytropane, 1,4-dialkylpiperazine, phenylpiperidine, and benztropine classes of DAT uptake inhibitors as well as a few less studied miscellaneous DAT uptake inhibitors. Studies related to the therapeutic potential of some of the more studied compounds are presented. A few of the compounds have been studied as pharmacotherapies for Parkinson's disease, ADHD, and obesity. However, most of the drug discovery studies have been directed toward pharmacotherapies for stimulant abuse (mainly cocaine). A number of the compounds showed decreased cocaine maintained responding in rhesus monkeys trained to self-administer cocaine. One compound, GBR 12,909, was evaluated in a Phase 1 clinical trial. PMID:17017960

  5. Therapeutic potential of growth factors and their antagonists.

    PubMed Central

    Garner, A.

    1992-01-01

    This article describes studies with four peptides, epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), gastrin-releasing peptide/bombesin (GRP), and gastrin. The mitogenic and anti-secretory activities of EGF/TGF alpha appear to be mediated by a single class of high-affinity membrane receptors but may involve different signal transducing mechanisms. Biological activity of EGF resides in the N-terminal 42 amino acid fragment with the C-terminal undecapeptide determining binding affinity. A parenteral depot formulation of an EGF-related peptide or a small molecule agonist of the EGF receptor could have utility in treating various ulcerative disorders of the gut. Although antagonism of EGF (and thus TGF alpha) receptors and/or transducing mechanisms is frequently cited as a potential therapeutic approach to hyperproliferative diseases, blocking the action of TGF alpha, GRP, or gastrin with neutralizing antibodies or receptor antagonists did not influence the growth of a wide range of solid tumors in nude mice. These findings suggest that, unless tumor growth displays absolute dependency on one particular mitogen, antagonism of a specific growth factor is unlikely to have great effect in cancer therapy. PMID:1341074

  6. The therapeutic potential of milk thistle in diabetes.

    PubMed

    Kazazis, Christos E; Evangelopoulos, Angelos A; Kollas, Aris; Vallianou, Natalia G

    2014-01-01

    Milk thistle has been known for more than 2.000 years as a herbal remedy for a variety of disorders. It has mainly been used to treat liver and gallbladder diseases. Silibum marianum, the Latin term for the plant, and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds; it is extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly silibin A, silibin B, taxifolin, isosilibin A, isosilibin B, silichristin A, silidianin, and other compounds in smaller concentrations. Apart from its use in liver and gallbladder disorders, milk thistle has recently gained attention due to its hypoglycemic and hypolipidemic properties. Recently, a substance from milk thistle has been shown to possess peroxisome proliferator-activated receptor γ (PPARγ) agonist properties. PPARγ is the molecular target of thiazolidinediones, which are used clinically as insulin sensitizers to lower blood glucose levels in diabetes type 2 patients. The thiazolidinedione type of PPARγ ligands is an agonist with a very high binding affinity. However, this ligand type demonstrates a range of undesirable side effects, thus necessitating the search for new effective PPARγ agonists. Interestingly, studies indicate that partial agonism of PPARγ induces promising activity patterns by retaining the positive effects attributed to the full agonists, with reduced side effects. In this review, the therapeutic potential of milk thistle in the management of diabetes and its complications are discussed.

  7. Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis.

    PubMed

    Ball, Judith M; Medina-Bolivar, Fabricio; Defrates, Katelyn; Hambleton, Emily; Hurlburt, Megan E; Fang, Lingling; Yang, Tianhong; Nopo-Olazabal, Luis; Atwill, Richard L; Ghai, Pooja; Parr, Rebecca D

    2015-01-01

    Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.

  8. Astaxanthin: a potential therapeutic agent in cardiovascular disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  9. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection.

    PubMed

    Farombi, Ebenezer Olatunde; Surh, Young Joon

    2006-09-30

    Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-kappaB) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis. PMID:17002867

  10. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Castellarin, Mauro; Hanley, Stephen; Jamal, Al-Maleek; Laganiere, Simon; Rosenberg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16216541

  11. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Hanley, Stephen; Al-Maleek, Jamal; Laganiere, Simon; Rosenburg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16607698

  12. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors. PMID:21309118

  13. Physiological effects and therapeutic potential of proinsulin C-peptide

    PubMed Central

    Maric-Bilkan, Christine; Luppi, Patrizia; Wahren, John

    2014-01-01

    Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes. PMID:25249503

  14. Dengue virus RNA polymerase NS5: a potential therapeutic target?

    PubMed

    Rawlinson, Stephen M; Pryor, Melinda J; Wright, Peter J; Jans, David A

    2006-12-01

    Dengue fever (DF)/dengue haemorrhagic fever (DHF) is the most common arthropod-borne viral infection, where it is now estimated that 2.5-3 billion people world-wide are at risk of infection. Currently there is no available treatment, in the form of vaccine or drug, making eradication of the mosquito vector the only viable control measure, which has proved costly and of limited success. There are a number of different vaccines undergoing testing, but whilst a dengue vaccine is clearly desirable, there are several issues which make live-attenuated vaccines problematic. These include the phenomenon of antibody-dependent enhancement (ADE) and the possibility of recombination of attenuated vaccine strains with wild-type flavivirus members reverting vaccines to a virulent form. Until we gain a better understanding of these issues and their associated risks, the safety of any live dengue vaccine cannot be assured. It therefore may be safer and more feasible for therapeutic-based approaches to be developed as an alternative to live vaccines. As our understanding of dengue molecular biology expands, new potential targets for drugs are emerging. One of the most promising is the dengue non-structural protein 5 (NS5), the largest and most highly conserved of the dengue proteins. This review examines the unique properties of NS5, including its functions, interactions, subcellular localisation and regulation, and looks at ways in which some of these may be exploited in our quest for effective drugs.

  15. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis.

    PubMed

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad A; Rajaram, Murugesan V S; Schlesinger, Larry S; Tao, Lijian; Brown, Gordon D; Langdon, Wallace Y; Li, Belinda T; Zhang, Jian

    2016-08-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and dectin-2, two key pattern-recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1- and dectin-2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of C. albicans, and deficiency of dectin-1, dectin-2, or both in Cblb(-/-) mice abrogates this protection. Notably, silencing the Cblb gene in vivo protects mice from lethal systemic C. albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and dectin-2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  16. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.

  17. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    PubMed

    Mattová, Jana; Poučková, Pavla; Kučka, Jan; Skodová, Michaela; Vetrík, Miroslav; Stěpánek, Petr; Urbánek, Petr; Petřík, Miloš; Nový, Zbyněk; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease.

  18. The Therapeutic Potential of Milk Thistle in Diabetes

    PubMed Central

    Kazazis, Christos E.; Evangelopoulos, Angelos A.; Kollas, Aris; Vallianou, Natalia G.

    2014-01-01

    Milk thistle has been known for more than 2.000 years as a herbal remedy for a variety of disorders. It has mainly been used to treat liver and gallbladder diseases. Silibum marianum, the Latin term for the plant, and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds; it is extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly silibin A, silibin B, taxifolin, isosilibin A, isosilibin B, silichristin A, silidianin, and other compounds in smaller concentrations. Apart from its use in liver and gallbladder disorders, milk thistle has recently gained attention due to its hypoglycemic and hypolipidemic properties. Recently, a substance from milk thistle has been shown to possess peroxisome proliferator-activated receptor γ (PPARγ) agonist properties. PPARγ is the molecular target of thiazolidinediones, which are used clinically as insulin sensitizers to lower blood glucose levels in diabetes type 2 patients. The thiazolidinedione type of PPARγ ligands is an agonist with a very high binding affinity. However, this ligand type demonstrates a range of undesirable side effects, thus necessitating the search for new effective PPARγ agonists. Interestingly, studies indicate that partial agonism of PPARγ induces promising activity patterns by retaining the positive effects attributed to the full agonists, with reduced side effects. In this review, the therapeutic potential of milk thistle in the management of diabetes and its complications are discussed. PMID:25396404

  19. Knockdown of heme oxygenase-1 promotes apoptosis and autophagy and enhances the cytotoxicity of doxorubicin in breast cancer cells

    PubMed Central

    ZHU, XIAO-FENG; LI, WEN; MA, JIE-YI; SHAO, NAN; ZHANG, YUN-JIAN; LIU, RUI-MING; WU, WEI-BIN; LIN, YING; WANG, SHEN-MING

    2015-01-01

    Heme oxygenase-1 (HMOX-1) is a microsomal enzyme that exerts anti-apoptotic and cytoprotective effects. In the present study, HMOX-1 was demonstrated to be overexpressed and able to be induced by doxorubicin in breast cancer cell lines. Knockdown of HMOX-1 using short interfering (si)RNA enhanced the cytotoxicity of doxorubicin in MDA-MB-231 and BT549 cells. Knockdown of HMOX-1 downregulated B cell lymphoma (Bcl)-2 and Bcl-extra large expression, and significantly enhanced doxorubicin-induced apoptosis in MDA-MB-231 and BT549 cells. Additionally, knockdown of HMOX-1 upregulated light chain 3B expression and markedly increased the accumulation of autophagic vacuoles in MDA-MB-231 and BT549 cells treated with doxorubicin. These results indicated that HMOX-1 may be involved in conferring the chemoresistance of breast cancer cells, by preventing apoptosis and autophagy. Therefore, HMOX-1 may represent a potential therapeutic target for enhancing the cytotoxicity and efficacy of doxorubicin during the treatment of breast cancer. PMID:26722274

  20. Covalent attachment of Mn-porphyrin onto doxorubicin-loaded poly(lactic acid) nanoparticles for potential magnetic resonance imaging and pH-sensitive drug delivery.

    PubMed

    Jing, Lijia; Liang, Xiaolong; Li, Xiaoda; Yang, Yongbo; Dai, Zhifei

    2013-12-01

    In this paper, theranostic nanoparticles (MnP-DOX NPs) were fabricated by conjugating Mn-porphyrin onto the surface of doxorubicin (DOX)-loaded poly(lactic acid) (PLA) nanoparticles (DOX NPs) for potential T1 magnetic resonance imaging and pH-sensitive drug delivery. An in vitro drug release study showed that the release rate of DOX from MnP-DOX NPs was slow at neutral pH but accelerated significantly in acidic conditions. It was found that MnP-DOX NPs could be easily internalized by HeLa cells and effectively suppressed the growth of HeLa cells and HT-29 cells due to the accelerated drug release in acidic lysosomal compartments. Magnetic resonance imaging (MRI) scanning analysis demonstrated that MnP-DOX NPs had much higher longitudinal relaxivity in water (r1 value of 27.8 mM(-1) s(-1) of Mn(3+)) than Mn-porphyrin (Mn(III)TPPS3NH2; r1 value of 6.70 mM(-1) s(-1) of Mn(3+)), behaving as an excellent contrast agent for T1-weighted MRI both in vitro and in vivo. In summary, such a smart and promising nanoplatform integrates multiple capabilities for effective cancer diagnosis and therapy.

  1. Therapeutic potential of ginseng in the management of cardiovascular disorders.

    PubMed

    Karmazyn, Morris; Moey, Melissa; Gan, Xiaohong Tracey

    2011-10-22

    Although employed in Asian societies for thousands of years, the use of ginseng as an herbal medication for a variety of disorders has increased tremendously worldwide in recent years. Ginseng belongs to the genus Panax, of which there exists a variety, generally reflecting their geographic origin. North American ginseng (Panax quinquefolius) and Asian ginseng (Panax ginseng) are two such varieties possessing a plethora of pharmacological properties, which are attributed primarily to the presence of different ginsenosides that bestow these ginsengs with distinct pharmacodynamic profiles. The many cardiovascular benefits attributed to ginseng include cardioprotection, antihypertensive effects, and attenuation of myocardial hypertrophy and heart failure. Experimental studies have revealed a number of beneficial properties of ginseng, particularly in the area of cardiac protection, where ginseng and ginsenosides have been shown to protect the ischaemic and reperfused heart in a variety of experimental models. Emerging evidence also suggests that ginseng attenuates myocardial hypertrophy, thus blunting the remodelling and heart failure processes. However, clinical evidence of efficacy is not convincing, likely owing primarily to the paucity of well designed, randomized, controlled clinical trials. Adding to the complexity in understanding the cardiovascular effects of ginseng is the fact that each of the different ginseng varieties possesses distinct cardiovascular properties, as a result of their respective ginsenoside composition, rendering it difficult to assign a general, common cardiovascular effect to ginseng. Additional challenges include the identification of mechanisms (likely multifaceted) that account for the effects of ginseng and determining which ginsenoside(s) mediate these cardiovascular properties. These concerns notwithstanding, the potential cardiovascular benefit of ginseng is worthy of further studies in view of its possible development as a

  2. [The specific enzyme inhibitors for potential therapeutic use].

    PubMed

    Bretner, Maria

    2015-01-01

    Therapy for hepatitis C virus (HCV) initially consisted on administering ribavirin - having a broad spectrum of action - and pegylated interferon, and was only effective in 40-50% of patients. Appropriate was to find effective inhibitors of viral replication e.g. by inhibition of a viral enzyme, NTPase/helicase required in the process of translation and RNA replication of the HCV. We developed methods of synthesis of many compounds belonging to different groups - derivatives of nucleosides, benzotriazole, benzimidazole, tropolone and epirubicine. Some of the derivatives inhibit HCV helicase activity at low concentrations and reduces replication of the viral RNA in subgenomic replicon system. In the process of HCV replication casein kinase CK2 plays an important role. It regulates the level of phosphorylation of HCV protein NS5A, which affects the production of infectious virions of HCV. Effective and selective inhibitors of kinase CK2 could be of use in the treatment of HCV in combination with other drugs. CK2 kinase phosphorylates approximately 300 proteins that affect the growth, differentiation, proliferation or apoptosis. Elevated CK2 kinase activity has been observed in several types of cancer and other diseases, therefore, inhibitors of this enzyme are potential therapeutic importance, particularly for anti-cancer treatment. Research carried out in collaboration with prof. Shugar led to the synthesis of one of the most selective inhibitors of this enzyme which is 4,5,6,7-tetrabromo-1H-benzotriazole, used for the study of the role of kinase CK2 in a number of metabolic processes in tumor cells.

  3. Therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.

    PubMed

    Huang, Yen Ta; Cheng, Chuan Chu; Chiu, Ted H; Lai, Pei Chun

    2015-11-01

    Controversial effects of thalidomide for solid malignancies have been reported. In the present study, we evaluate the effects of thalidomide for transitional cell carcinoma (TCC), the most common type of bladder cancer. Thalidomide precipitates were observed when its DMSO solution was added to the culture medium. No precipitation was found when thalidomide was dissolved in 45% γ-cyclodextrin, and this concentration of γ-cyclodextrin elicited slight cytotoxicity on TCC BFTC905 and primary human urothelial cells. Thalidomide-γ-cyclodextrin complex exerted a concentration-dependent cytotoxicity in TCC cells, but was relatively less cytotoxic (with IC50 of 200 µM) in BFTC905 cells than the other 3 TCC cell lines, possibly due to upregulation of Bcl-xL and HIF-1α mediated carbonic anhydrase IX, and promotion of quiescence. Gemcitabine-resistant BFTC905 cells were chosen for additional experiments. Thalidomide induced apoptosis through downregulation of survivin and securin. The secretion of VEGF and TNF-α was ameliorated by thalidomide, but they did not affect cell proliferation. Immune-modulating lenalidomide and pomalidomide did not elicit cytotoxicity. In addition, cereblon did not play a role in the thalidomide effect. Oxidative DNA damage was triggered by thalidomide, and anti-oxidants reversed the effect. Thalidomide also inhibited TNF-α induced invasion through inhibition of NF-κB, and downregulation of effectors, ICAM-1 and MMP-9. Thalidomide inhibited the growth of BFTC905 xenograft tumors in SCID mice via induction of DNA damage and suppression of angiogenesis. Higher average body weight, indicating less chachexia, was observed in thalidomide treated group. Sedative effect was observed within one-week of treatment. These pre-clinical results suggest therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.

  4. Physiology and therapeutic potential of the thymic peptide thymulin.

    PubMed

    Reggiani, Paula C; Schwerdt, Jose I; Console, Gloria M; Roggero, Eduardo A; Dardenne, Mireille; Goya, Rodolfo G

    2014-01-01

    Thymulin is a thymic hormone exclusively produced by the epithelial cells of the thymus. After its discovery and initial characterization in the '70s, it was demonstrated that the production and secretion of thymulin are strongly influenced by the neuro-endocrine system. Conversely, a growing body of evidence, to be reviewed here, suggests that thymulin is a hypophysiotropic peptide. Additionally, a substantial body of information pointing to thymulin and a synthetic analog as anti-inflammatory and analgesic peptides in the central nervous system brain and other organs will be also reviewed. In recent years, a synthetic DNA sequence encoding a biologically active analog of thymulin, metFTS, was constructed and cloned in a number of adenovectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be down-regulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies indicate that gene therapy for thymulin may be an effective therapeutic strategy to prevent some of the hormonal and reproductive abnormalities that typically appear in congenitally athymic (nude) mice, used as a suitable model of neuroendocrine and reproductive aging. Summing up, this article briefly reviews the publications on the physiology of the thymulin-neuroendocrine axis and the anti-inflammatory properties of the molecule and its analog. The availability of novel biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans. PMID:24588820

  5. Llama Nanoantibodies with Therapeutic Potential against Human Norovirus Diarrhea

    PubMed Central

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I.; Bok, Marina; Sosnovtsev, Stanislav V.; Canziani, Gabriela; Green, Kim Y.; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  6. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea.

    PubMed

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I; Bok, Marina; Sosnovtsev, Stanislav V; Canziani, Gabriela; Green, Kim Y; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  7. Liposomal Coencapsulation of Doxorubicin with Listeriolysin O Increases Potency via Subcellular Targeting.

    PubMed

    Walls, Zachary F; Gong, Henry; Wilson, Rebecca J

    2016-03-01

    Liposomal doxorubicin is a clinically important drug formulation indicated for the treatment of several different forms of cancer. For doxorubicin to exert a therapeutic effect, it must gain access to the nucleus. However, a large proportion of the liposomal doxorubicin dose fails to work because it is sequestered within endolysosomal organelles following endocytosis of the liposomes due to the phenomenon of ion trapping. Listeriolysin O (LLO) is a pore-forming protein that can provide a mechanism for endosomal escape. The present study demonstrates that liposomal coencapsulation of doxorubicin with LLO enables a significantly larger percentage of the dose to colocalize with the nucleus compared to liposomes containing doxorubicin alone. The change in intracellular distribution resulted in a significantly more potent formulation of liposomal doxorubicin as demonstrated in both the ovarian carcinoma cell line A2780 and its doxorubicin-resistant derivative A2780ADR. PMID:26751497

  8. Overcoming doxorubicin-resistance in the NCI/ADR-RES model cancer cell line by novel anthracene-9,10-dione derivatives.

    PubMed

    Sangthong, Supranee; Ha, Helen; Teerawattananon, Thapong; Ngamrojanavanich, Nattaya; Neamati, Nouri; Muangsin, Nongnuj

    2013-11-15

    Overcoming drug resistance with remarkable cytotoxic activity by anthracene-9,10-dione derivatives would offer a potential therapeutic strategy. In this study, we report the synthesis and the cytotoxicity of a novel set of anthraquninones. (4-(4-Aminobenzylamino)-9,10-dioxo-9,10-dihydroanthracen-1-yl-4-methylbenzenesulfonate) (3) has excellent in vitro cytotoxicity against doxorubicin-resistant cancer cell line (IC50=0.8 μM), 20-fold higher than doxorubicin. The cytotoxic effect via G2/M arrest does not appear to be ROS.

  9. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10.

    PubMed

    Morikawa, Yoshifumi; Kezuka, Chihiro; Endo, Satoshi; Ikari, Akira; Soda, Midori; Yamamura, Keiko; Toyooka, Naoki; El-Kabbani, Ossama; Hara, Akira; Matsunaga, Toshiyuki

    2015-03-25

    Continuous exposure to doxorubicin (DOX) accelerates hyposensitivity to the drug-elicited lethality of gastric cells, with increased risks of the recurrence and serious cardiovascular side effects. However, the detailed mechanisms underlying the reduction of DOX sensitivity remain unclear. In this study, we generated a DOX-resistant variant upon continuously treating human gastric cancer MKN45 cells with incremental concentrations of the drug, and investigated whether the gain of DOX resistance influences gene expression of four aldo-keto reductases (AKRs: 1B10, 1C1, 1C2 and 1C3). RT-PCR analysis revealed that among the enzymes AKR1B10 is most highly up-regulated during the chemoresistance induction. The up-regulation of AKR1B10 was confirmed by analyses of Western blotting and enzyme activity. The DOX sensitivity of MKN45 cells was reduced and elevated by overexpression and inhibition of AKR1B10, respectively. Compared to the parental MKN45 cells, the DOX-resistant cells had higher migrating and invasive abilities, which were significantly suppressed by addition of AKR1B10 inhibitors. Zymographic and real-time PCR analyses also revealed significant increases in secretion and expression of matrix metalloproteinase (MMP) 2 associated with DOX resistance. Moreover, the overexpression of AKR1B10 in the parental cells remarkably facilitated malignant progression (elevation of migrating and invasive potentials) and MMP2 secretion, which were lowered by the AKR1B10 inhibitors. These results suggest that AKR1B10 is a DOX-resistance gene in the gastric cancer cells, and is responsible for elevating the migrating and invasive potentials of the cells through induction of MMP2. PMID:25686905

  10. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity

    PubMed Central

    Biswas, Swati; Dodwadkar, Namita S.; Deshpande, Pranali P.; Parab, Shruti; Torchilin, Vladimir P.

    2014-01-01

    Doxorubicin-loaded PEGylated liposomes (commercially available as DOXIL® or Lipodox®) were surface functionalized with a cell-penetrating peptide, octa-arginine (R8). For this purpose, R8-peptide was conjugated to the polyethylene glycol–dioleoyl phosphatidylethanolamine (PEG–DOPE) amphiphilic co-polymer. The resultant R8–PEG–PE conjugate was introduced into the lipid bilayer of liposomes at 2 mol% of total lipid amount via spontaneous micelle-transfer technique. The liposomal modification did not alter the particle size distribution, as measured by Particle Size Analyzer and transmission electron microscopy (TEM). However, surface-associated cationic peptide increased zeta potential of the modified liposomes. R8-functionalized liposomes (R8-Dox-L) markedly increased the intracellular and intratumoral delivery of doxorubicin as measured by flow cytometry and visualizing by confocal laser scanning microscopy (CLSM) compared to unmodified Doxorubicin-loaded PEGylated liposomes (Dox-L). R8-Dox-L delivered loaded Doxorubicin to the nucleus, being released from the endosomes at higher efficiency compared to unmodified liposomes, which had marked entrapment in the endosomes at tested time point of 1 h. The significantly higher accumulation of loaded drug to its site of action for R8-Dox-L resulted in improved cytotoxic activity in vitro (cell viability of 58.5 ± 7% for R8-Dox-L compared to 90.6 ± 2% for Dox-L at Dox dose of 50 μg/mL for 4 h followed by 24 h incubation) and enhanced suppression of tumor growth (348 ± 53 mm3 for R8-Dox-L, compared to 504 ± 54 mm3 for Dox-L treatment) in vivo compared to Dox-L. R8-modification has the potential for broadening the therapeutic window of pegylated liposomal doxorubicin treatment, which could lead to lower non-specific toxicity. PMID:23333899

  11. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity.

    PubMed

    Biswas, Swati; Dodwadkar, Namita S; Deshpande, Pranali P; Parab, Shruti; Torchilin, Vladimir P

    2013-08-01

    Doxorubicin-loaded PEGylated liposomes (commercially available as DOXIL or Lipodox) were surface functionalized with a cell-penetrating peptide, octa-arginine (R8). For this purpose, R8-peptide was conjugated to the polyethylene glycol-dioleoyl phosphatidylethanolamine (PEG-DOPE) amphiphilic co-polymer. The resultant R8-PEG-PE conjugate was introduced into the lipid bilayer of liposomes at 2 mol% of total lipid amount via spontaneous micelle-transfer technique. The liposomal modification did not alter the particle size distribution, as measured by Particle Size Analyzer and transmission electron microscopy (TEM). However, surface-associated cationic peptide increased zeta potential of the modified liposomes. R8-functionalized liposomes (R8-Dox-L) markedly increased the intracellular and intratumoral delivery of doxorubicin as measured by flow cytometry and visualizing by confocal laser scanning microscopy (CLSM) compared to unmodified Doxorubicin-loaded PEGylated liposomes (Dox-L). R8-Dox-L delivered loaded Doxorubicin to the nucleus, being released from the endosomes at higher efficiency compared to unmodified liposomes, which had marked entrapment in the endosomes at tested time point of 1h. The significantly higher accumulation of loaded drug to its site of action for R8-Dox-L resulted in improved cytotoxic activity in vitro (cell viability of 58.5 ± 7% for R8-Dox-L compared to 90.6 ± 2% for Dox-L at Dox dose of 50 μg/mL for 4h followed by 24h incubation) and enhanced suppression of tumor growth (348 ± 53 mm(3) for R8-Dox-L, compared to 504 ± 54 mm(3) for Dox-L treatment) in vivo compared to Dox-L. R8-modification has the potential for broadening the therapeutic window of pegylated liposomal doxorubicin treatment, which could lead to lower non-specific toxicity. PMID:23333899

  12. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa

    2015-02-01

    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis.

  13. Stratification and therapeutic potential of PML in metastatic breast cancer.

    PubMed

    Martín-Martín, Natalia; Piva, Marco; Urosevic, Jelena; Aldaz, Paula; Sutherland, James D; Fernández-Ruiz, Sonia; Arreal, Leire; Torrano, Verónica; Cortazar, Ana R; Planet, Evarist; Guiu, Marc; Radosevic-Robin, Nina; Garcia, Stephane; Macías, Iratxe; Salvador, Fernando; Domenici, Giacomo; Rueda, Oscar M; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Zúñiga-García, Patricia; Caro-Maldonado, Alfredo; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Varela-Rey, Marta; Martínez-Chantar, Maria Luz; Anguita, Juan; Ibrahim, Yasir H; Scaltriti, Maurizio; Lawrie, Charles H; Aransay, Ana M; Iovanna, Juan L; Baselga, Jose; Caldas, Carlos; Barrio, Rosa; Serra, Violeta; Vivanco, Maria dM; Matheu, Ander; Gomis, Roger R; Carracedo, Arkaitz

    2016-01-01

    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification. PMID:27553708

  14. Asparagus racemosus: a review on its phytochemical and therapeutic potential.

    PubMed

    Singh, Ram

    2016-09-01

    Asparagus racemosus (Willd.) is a widely found medicinal plant in tropical and subtropical parts of India. The therapeutic applications of this plant have been reported in Indian and British Pharmacopoeias and in traditional system of medicine, such as Ayurveda, Unani and Siddha. The crude, semi-purified and purified extracts obtained from different parts of this plant have been useful in therapeutic applications. Numerous bioactive phytochemicals mostly saponins and flavonoids have been isolated and identified from this plant which are responsible alone or in combination for various pharmacological activities. This review aims to give a comprehensive overview of traditional applications, current knowledge on the phytochemistry, pharmacology and overuse of A. racemosus. PMID:26463825

  15. Stratification and therapeutic potential of PML in metastatic breast cancer

    PubMed Central

    Martín-Martín, Natalia; Piva, Marco; Urosevic, Jelena; Aldaz, Paula; Sutherland, James D.; Fernández-Ruiz, Sonia; Arreal, Leire; Torrano, Verónica; Cortazar, Ana R.; Planet, Evarist; Guiu, Marc; Radosevic-Robin, Nina; Garcia, Stephane; Macías, Iratxe; Salvador, Fernando; Domenici, Giacomo; Rueda, Oscar M.; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Zúñiga-García, Patricia; Caro-Maldonado, Alfredo; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Varela-Rey, Marta; Martínez-Chantar, Maria Luz; Anguita, Juan; Ibrahim, Yasir H.; Scaltriti, Maurizio; Lawrie, Charles H.; Aransay, Ana M.; Iovanna, Juan L.; Baselga, Jose; Caldas, Carlos; Barrio, Rosa; Serra, Violeta; dM Vivanco, Maria; Matheu, Ander; Gomis, Roger R.; Carracedo, Arkaitz

    2016-01-01

    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification. PMID:27553708

  16. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    PubMed

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair. PMID:27574685

  17. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    PubMed

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.

  18. The endocrine system and sarcopenia: potential therapeutic benefits.

    PubMed

    McIntire, Kevin L; Hoffman, Andrew R

    2011-12-01

    Age related muscle loss, known as sarcopenia, is a major factor in disability, loss of mobility and quality of life in the elderly. There are many proposed mechanisms of age-related muscle loss that include the endocrine system. A variety of hormones regulate growth, development and metabolism throughout the lifespan. Hormone activity may change with age as a result of reduced hormone secretion or decreased tissue responsiveness. This review will focus on the complex interplay between the endocrine system, aging and skeletal muscle and will present possible benefits of therapeutic interventions for sarcopenia.

  19. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property

    PubMed Central

    Srinivasan, Marimuthu; Sudheer, Adluri R.; Menon, Venugopal P.

    2007-01-01

    There has been considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat human diseases. They are naturally occurring substances found in plants. Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn and rice bran. It arises from metabolism of phenylalanine and tyrosine by Shikimate pathway in plants. It exhibits a wide range of therapeutic effects against various diseases like cancer, diabetes, cardiovascular and neurodegenerative. A wide spectrum of beneficial activity for human health has been advocated for this phenolic compound, at least in part, because of its strong antioxidant activity. FA, a phenolic compound is a strong membrane antioxidant and known to positively affect human health. FA is an effective scavenger of free radicals and it has been approved in certain countries as food additive to prevent lipid peroxidation. It effectively scavenges superoxide anion radical and inhibits the lipid peroxidation. It possesses antioxidant property by virtue of its phenolic hydroxyl group in its structure. The hydroxy and phenoxy groups of FA donate electrons to quench the free radicals. The phenolic radical in turn forms a quinone methide intermediate, which is excreted via the bile. The past few decades have been devoted to intense research on antioxidant property of FA. So, the present review deals with the mechanism of antioxidant property of FA and its possible role in therapeutic usage against various diseases. PMID:18188410

  20. Therapeutic potential of turmeric in Alzheimer's disease: curcumin or curcuminoids?

    PubMed

    Ahmed, Touqeer; Gilani, Anwarul-Hassan

    2014-04-01

    Alzheimer's disease (AD) is the most common form of dementia. There is limited choice in modern therapeutics, and drugs available have limited success with multiple side effects in addition to high cost. Hence, newer and alternate treatment options are being explored for effective and safer therapeutic targets to address AD. Turmeric possesses multiple medicinal uses including treatment for AD. Curcuminoids, a mixture of curcumin, demethoxycurcumin, and bisdemethoxycurcumin, are vital constituents of turmeric. It is generally believed that curcumin is the most important constituent of the curcuminoid mixture that contributes to the pharmacological profile of parent curcuminoid mixture or turmeric. A careful literature study reveals that the other two constituents of the curcuminoid mixture also contribute significantly to the effectiveness of curcuminoids in AD. Therefore, it is emphasized in this review that each component of the curcuminoid mixture plays a distinct role in making curcuminoid mixture useful in AD, and hence, the curcuminoid mixture represents turmeric in its medicinal value better than curcumin alone. The progress in understanding the disease etiology demands a multiple-site-targeted therapy, and the curcuminoid mixture of all components, each with different merits, makes this mixture more promising in combating the challenging disease.

  1. Diagnostic and therapeutic potentials of exosomes in CNS diseases.

    PubMed

    Kawikova, Ivana; Askenase, Philip W

    2015-08-18

    A newly discovered cell-to-cell communication system involves small, membrane-enveloped nanovesicles, called exosomes. We describe here how these extracellular nanoparticles were discovered and how it became gradually apparent that they play fundamental roles in regulation of physiological functions and pathological processes. Exosomes enable intercellular communication by transporting genetic material, proteins and lipids to cells in their vicinity or at distant sites, and subsequently regulating functions of targeted cells. Relatively recent experiments indicate that exosomes are released also by CNS cells, including cortical and hippocampal neurons, glial cells, astrocytes and oligodendrocytes, and that exosomes have significant impact on pathophysiology of the brain. How it is decided what individual exosomes will carry to their targets is not understood, but it appears that the contents may represent "signature cargos" that are characteristic for various conditions. Exploration of such characteristics could result in discovery of novel diagnostic biomarkers. Exosomes are also promising as a vehicle for therapeutic delivery of micro RNA or other compounds. How to deliver exosomes to selected sites has been a tantalizing question. Recent experiments revealed that at least some exosomes carry antibodies on their surface, suggesting that it may be feasible to deliver exosomes to unique sites based on the recognition of antigens by those antibodies. This discovery implies that rather precise targeting of both natural and engineered exosomes may be feasible. This would reduce distribution volume of therapeutics, and consequently minimize their side effects. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.

  2. Potential role of bromelain in clinical and therapeutic applications

    PubMed Central

    Rathnavelu, Vidhya; Alitheen, Noorjahan Banu; Sohila, Subramaniam; Kanagesan, Samikannu; Ramesh, Rajendran

    2016-01-01

    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.

  3. Dietary lipids and adipocytes: potential therapeutic targets in cancers.

    PubMed

    Kwan, Hiu Yee; Chao, Xiaojuan; Su, Tao; Fu, Xiu-Qiong; Liu, Bin; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2015-04-01

    Lipids play an important role to support the rapid growth of cancer cells, which can be derived from both the endogenous synthesis and exogenous supplies. Enhanced de novo fatty acid synthesis and mobilization of stored lipids in cancer cells promote tumorigenesis. Besides, lipids and fatty acids derived from diet or transferred from neighboring adipocytes also influence the proliferation and metastasis of cancer cells. Indeed, the pathogenic roles of adipocytes in the tumor microenvironment have been recognized recently. The adipocyte-derived mediators or the cross talk between adipocytes and cancer cells in the microenvironment is gaining attention. This review will focus on the impacts of lipids on cancers and the pathogenic roles of adipocytes in tumorigenesis and discuss the possible anticancer therapeutic strategies targeting lipids in the cancer cells.

  4. Apoptotic cell clearance: basic biology and therapeutic potential.

    PubMed

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S

    2014-03-01

    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

  5. Potential role of bromelain in clinical and therapeutic applications

    PubMed Central

    Rathnavelu, Vidhya; Alitheen, Noorjahan Banu; Sohila, Subramaniam; Kanagesan, Samikannu; Ramesh, Rajendran

    2016-01-01

    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain. PMID:27602208

  6. Curcumin, a potential therapeutic candidate for retinal diseases.

    PubMed

    Wang, Lei-Lei; Sun, Yue; Huang, Kun; Zheng, Ling

    2013-09-01

    Curcumin, the major extraction of turmeric, has been widely used in many countries for centuries both as a spice and as a medicine. In the last decade, researchers have found the beneficial effects of curcumin on multiple disorders are due to its antioxidative, anti-inflammatory, and antiproliferative properties, as well as its novel function as an inhibitor of histone aectyltransferases. In this review, we summarize the recent progress made on studying the beneficial effects of curcumin on multiple retinal diseases, including diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases.

  7. Therapeutic potential of CD8+ cytotoxic T lymphocytes in SLE☆

    PubMed Central

    Puliaeva, I.; Puliaev, R.; Via, C.S.

    2011-01-01

    Recent evidence supports the idea that following a break in tolerance, CD8 cytotoxic T lymphocytes (CTL) may be an important but unrecognized mechanism for limiting expansion of autoreactive B cells. Failure of this mechanism could allow persistence of CD4 T cell driven polyclonal B cell activation resulting in clinical lupus. Although CD8 CTL failure may occur early in disease, work in mice supports the concept that therapeutic CTL enhancement may be both practical and beneficial in lupus. Devising such therapy for humans will first require an understanding of the in vivo mechanisms critical in CTL expansion and down regulation, particularly in the lupus setting which may differ from CTL generation in other clinical settings (e.g. tumors, infections). PMID:18725326

  8. [Mitochondrial dynamics: a potential new therapeutic target for heart failure].

    PubMed

    Kuzmicic, Jovan; Del Campo, Andrea; López-Crisosto, Camila; Morales, Pablo E; Pennanen, Christian; Bravo-Sagua, Roberto; Hechenleitner, Jonathan; Zepeda, Ramiro; Castro, Pablo F; Verdejo, Hugo E; Parra, Valentina; Chiong, Mario; Lavandero, Sergio

    2011-10-01

    Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases. PMID:21820793

  9. Iron deprivation in cancer--potential therapeutic implications.

    PubMed

    Heath, Jessica L; Weiss, Joshua M; Lavau, Catherine P; Wechsler, Daniel S

    2013-07-24

    Iron is essential for normal cellular function. It participates in a wide variety of cellular processes, including cellular respiration, DNA synthesis, and macromolecule biosynthesis. Iron is required for cell growth and proliferation, and changes in intracellular iron availability can have significant effects on cell cycle regulation, cellular metabolism, and cell division. Perhaps not surprisingly then, neoplastic cells have been found to have higher iron requirements than normal, non-malignant cells. Iron depletion through chelation has been explored as a possible therapeutic intervention in a variety of cancers. Here, we will review iron homeostasis in non-malignant and malignant cells, the widespread effects of iron depletion on the cell, the various iron chelators that have been explored in the treatment of cancer, and the tumor types that have been most commonly studied in the context of iron chelation.

  10. Yoga school of thought and psychiatry: Therapeutic potential.

    PubMed

    Rao, Naren P; Varambally, Shivarama; Gangadhar, Bangalore N

    2013-01-01

    Yoga is a traditional life-style practice used for spiritual reasons. However, the physical components like the asanas and pranayaamas have demonstrated physiological and therapeutic effects. There is evidence for Yoga as being a potent antidepressant that matches with drugs. In depressive disorder, yoga 'corrects' an underlying cognitive physiology. In schizophrenia patients, yoga has benefits as an add-on intervention in pharmacologically stabilized subjects. The effects are particularly notable on negative symptoms. Yoga also helps to correct social cognition. Yoga can be introduced early in the treatment of psychosis with some benefits. Elevation of oxytocin may be a mechanism of yoga effects in schizophrenia. Certain components of yoga have demonstrated neurobiological effects similar to those of vagal stimulation, indicating this (indirect or autogenous vagal stimulation) as a possible mechanism of its action. It is time, psychiatrists exploited the benefits if yoga for a comprehensive care in their patients. PMID:23858245

  11. Biological Relevance and Therapeutic Potential of the Hypusine Modification System*

    PubMed Central

    Pällmann, Nora; Braig, Melanie; Sievert, Henning; Preukschas, Michael; Hermans-Borgmeyer, Irm; Schweizer, Michaela; Nagel, Claus Henning; Neumann, Melanie; Wild, Peter; Haralambieva, Eugenia; Hagel, Christian; Bokemeyer, Carsten; Hauber, Joachim; Balabanov, Stefan

    2015-01-01

    Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2. We discovered that homozygous depletion of deoxyhypusine synthase and/or deoxyhypusine hydroxylase causes lethality in adult mice with different penetrance compared with haploinsufficiency. Network-based bioinformatic analysis of proline repeat-rich proteins, which are putative eIF-5A targets, revealed that these proteins are organized in highly connected protein-protein interaction networks. Hypusine-dependent translational control of essential proteins (hubs) and protein complexes inside these networks might explain the lethal phenotype observed after deletion of hypusine-modifying enzymes. Remarkably, our results also demonstrate that the cancer-associated isoform eIF-5A2 is dispensable for normal development and viability. Together, our results provide the first genetic evidence that the hypusine modification in eIF-5A is crucial for homeostasis in mammals. Moreover, these findings highlight functional diversity of the hypusine system compared with lower eukaryotes and indicate eIF-5A2 as a valuable and safe target for therapeutic intervention in cancer. PMID:26037925

  12. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  13. COGNITION AS A THERAPEUTIC TARGET IN LATE-LIFE DEPRESSION: POTENTIAL FOR NICOTINIC THERAPEUTICS

    PubMed Central

    Zurkovsky, Lilia; Taylor, Warren D.; Newhouse, Paul A.

    2013-01-01

    Depression is associated with impairments to cognition and brain function at any age, but such impairments in the elderly are particularly problematic because of the additional burden of normal cognitive aging and in some cases, structural brain pathology. Individuals with late-life depression exhibit impairments in cognition and brain structural integrity, alongside mood dysfunction. Antidepressant treatment improves symptoms in some but not all patients, and those who benefit may not return to the cognitive and functional level of nondepressed elderly. Thus, for comprehensive treatment of late-life depression, it may be necessary to address both the affective and cognitive deficits. In this review, we propose a model for the treatment of late-life depression in which nicotinic stimulation is used to improve cognitive performance and improve the efficacy of an antidepressant treatment of the syndrome of late-life depression. The cholinergic system is well-established as important to cognition. Although muscarinic stimulation may exacerbate depressive symptoms, nicotinic stimulation may improve cognition and neural functioning without a detriment to mood. While some studies of nicotinic subtype specific receptor agonists have shown promise in improving cognitive performance, less is known regarding how nicotinic receptor stimulation affects cognition in depressed elderly patients. Late-life depression thus represents a new therapeutic target for the development of nicotinic agonist drugs and parallel treatment of cognitive dysfunction along with medical and psychological approaches to treating mood dysfunction may be necessary to ensure full resolution of depressive illness in aging. PMID:23933385

  14. Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger

    2016-02-18

    Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis. PMID:26799241

  15. Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger

    2016-02-18

    Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis.

  16. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders

    PubMed Central

    Lanznaster, Débora; Dal-Cim, Tharine; Piermartiri, Tetsadê C. B.; Tasca, Carla I.

    2016-01-01

    Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases. PMID:27699087

  17. Centipede venoms and their components: resources for potential therapeutic applications.

    PubMed

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-17

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  18. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia

    PubMed Central

    Perez, Dominique R.; Smagley, Yelena; Garcia, Matthew; Carter, Mark B.; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S.; Sklar, Larry A.; Chigaev, Alexandre

    2016-01-01

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3′-5′-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing. PMID:27129155

  19. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  20. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    PubMed Central

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-01-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  1. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders

    PubMed Central

    Lanznaster, Débora; Dal-Cim, Tharine; Piermartiri, Tetsadê C. B.; Tasca, Carla I.

    2016-01-01

    Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases.

  2. GEMINs: potential therapeutic targets for spinal muscular atrophy?

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2014-01-01

    The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development. PMID:25360080

  3. Centipede venoms and their components: resources for potential therapeutic applications.

    PubMed

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  4. Therapeutic Potential of Traditional Chinese Medicine on Inflammatory Diseases

    PubMed Central

    Tsai, Wen-Hsin; Yang, Chih-Ching; Li, Ping-Chia; Chen, Wang-Chuan; Chien, Chiang-Ting

    2013-01-01

    Increased oxidative stress induces inflammation to several tissues/organs leading to cell death and long-term injury. Traditional Chinese Medicine (TCM) with antioxidant, anti-inflammatory, anti-apoptotic, and autophagic regulatory functions has been widely used as preventive or therapeutic strategy in modern medicine. Oxidative stress and inflammation have been widely reported to contribute to cigarette smoke-induced lung inflammation, hepatotoxicity, or sympathetic activation-induced liver inflammation, lipopolysaccharide-induced renal inflammation, and substance P-mediated neurogenic hyperactive bladder based on clinical findings. In this review, we introduce several evidences for TCM treatment including Monascus adlay (MA) produced by inoculating adlay (Cois lachrymal-jobi L. var. ma-yuen Stapf) with Monascus purpureus on lung injury, Amla (Emblica officinalis Gaertn. of Euphorbiaceae family) on hepatotoxin-induced liver inflammation, Virgate Wormwood Decoction (Yīn Chén Hāo tāng) and its active component genipin on sympathetic activation–induced liver inflammation, and green tea extract and its active components, catechins, or a modified TCM formula Five Stranguries Powder (Wǔ Lén Sǎn) plus Crataegi Fructus (Shān Zhā) on hyperactive bladder. The pathophysiologic and molecular mechanisms of TCM on ameliorating inflammatory diseases are discussed in the review. PMID:24716170

  5. Therapeutic potential of Brazilian fluoride varnishes: an in vivo study.

    PubMed

    Almeida, Marcella Quirino de; Costa, Olívia Ximenes Izidro; Ferreira, Jainara Maria Soares; Menezes, Valdenice Aparecida de; Leal, Rossana Barbosa; Sampaio, Fábio Correia

    2011-01-01

    The aim of this study was to assess in vivo the therapeutic effect of three fluoride varnishes available in the Brazilian market on the performance of white spot lesions (WSL). The sample included 36 children aged 7 to 13 years old, with a total of 67 active WSL in permanent anterior teeth. The children were randomly divided into 3 groups, according to fluoride varnish used: FL- Fluorniz (n=24), DUO - Duofluorid XII (n=22) and DF - Durafluor (n=21). Maximum WSL dimensions (mesiodistal and incisogingival) were measured in millimeters by a previously calibrated single examiner using a periodontal probe. WSL were also assessed regarding lesion activity. Initial and final S-OHI (Simplified Oral Hygiene Index) scores were recorded. Pearson's chi-square test revealed no statistically significant differences (p>0.05) in the performance of the varnishes. At the end of the 5th week, FL had 6 active and 18 inactive WSL; DUO had 7 active and 15 inactive WSL; and DL had 6 active and 15 inactive WSL. Taking into account all lesions, there was a 45.7% reduction in WSL dimensions. Paired Student's t-test revealed a statistically significant difference (p<0.05) between the initial size (1.88) and final size (1.02). After four applications, all varnishes obtained similar clinical results.

  6. Therapeutic potential of traditional chinese medicine on inflammatory diseases.

    PubMed

    Tsai, Wen-Hsin; Yang, Chih-Ching; Li, Ping-Chia; Chen, Wang-Chuan; Chien, Chiang-Ting

    2013-07-01

    Increased oxidative stress induces inflammation to several tissues/organs leading to cell death and long-term injury. Traditional Chinese Medicine (TCM) with antioxidant, anti-inflammatory, anti-apoptotic, and autophagic regulatory functions has been widely used as preventive or therapeutic strategy in modern medicine. Oxidative stress and inflammation have been widely reported to contribute to cigarette smoke-induced lung inflammation, hepatotoxicity, or sympathetic activation-induced liver inflammation, lipopolysaccharide-induced renal inflammation, and substance P-mediated neurogenic hyperactive bladder based on clinical findings. In this review, we introduce several evidences for TCM treatment including Monascus adlay (MA) produced by inoculating adlay (Cois lachrymal-jobi L. var. ma-yuen Stapf) with Monascus purpureus on lung injury, Amla (Emblica officinalis Gaertn. of Euphorbiaceae family) on hepatotoxin-induced liver inflammation, Virgate Wormwood Decoction (Yīn Chén Hāo tāng) and its active component genipin on sympathetic activation-induced liver inflammation, and green tea extract and its active components, catechins, or a modified TCM formula Five Stranguries Powder (Wǔ Lén Sǎn) plus Crataegi Fructus (Shān Zhā) on hyperactive bladder. The pathophysiologic and molecular mechanisms of TCM on ameliorating inflammatory diseases are discussed in the review. PMID:24716170

  7. Physiological mechanisms and therapeutic potential of bone mechanosensing

    PubMed Central

    Xiao, Zhousheng

    2016-01-01

    Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as “physical environment” sensors in cells of the osteoblasts lineage. Indeed, polycystin–1 (Pkd1, or PC1) and polycystin–2 (Pkd2, or PC2, or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone. PMID:26038304

  8. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics

    PubMed Central

    Mondragón, Estefanía

    2016-01-01

    Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3′ untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise. PMID:26509637

  9. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge.

    PubMed

    Đuričić, Dražen; Valpotić, Hrvoje; Samardžija, Marko

    2015-08-01

    Ozone therapy has been in use since 1896 in the USA. As a highly reactive molecule, ozone may inactivate bacteria, viruses, fungi, yeasts and protozoans, stimulate the oxygen metabolism of tissue, treat diseases, activate the immune system, and exhibit strong analgesic activity. More recently, ozone has been used in veterinary medicine, particularly in buiatrics, but still insufficiently. Medical ozone therapy has shown effectiveness as an alternative to the use of antibiotics, which are restricted to clinical use and have been withdrawn from non-clinical use as in-feed growth promoters in animal production. This review is an overview of current knowledge regarding the preventive and therapeutic effects of ozone in ruminants for the treatment of puerperal diseases and improvement in their fertility. In particular, ozone preparations have been tested in the treatment of reproductive tract lesions, urovagina and pneumomovagina, metritis, endometritis, fetal membrane retention and mastitis, as well as in the functional restoration of endometrium in dairy cows and goats. In addition, the preventive use of the intrauterine application of ozone has been assessed in order to evaluate its effectiveness in improving reproductive efficiency in dairy cows. No adverse effects were observed in cows and goats treated with ozone preparations. Moreover, there is a lot of evidence indicating the advantages of ozone preparation therapy in comparison to the application of antibiotics. However, there are certain limitations on ozone use in veterinary medicine and buiatrics, such as inactivity against intracellular microbes and selective activity against the same bacterial species, as well as the induction of tissue inflammation through inappropriate application of the preparation.

  10. The therapeutic potential of the cerebellum in schizophrenia

    PubMed Central

    Parker, Krystal L.; Narayanan, Nandakumar S.; Andreasen, Nancy C.

    2014-01-01

    The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia. PMID:25309350

  11. Microtubule-Stabilizing Agents as Potential Therapeutics for Neurodegenerative Disease

    PubMed Central

    Brunden, Kurt R.; Trojanowski, John Q.; Smith, Amos B.; Lee, Virginia M.-Y.; Ballatore, Carlo

    2014-01-01

    Microtubules (MTs)1, cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington’s disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders. PMID:24433963

  12. Thalidomide: chemistry, therapeutic potential and oxidative stress induced teratogenicity.

    PubMed

    Kumar, Neeraj; Sharma, Upendra; Singh, Chitra; Singh, Bikram

    2012-01-01

    lacking. In this review, we will concisely describe the therapeutic aspects, metabolism and synthesis of thalidomide. PMID:22650376

  13. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

    PubMed Central

    Green, David W.; Padula, Matthew P.; Santos, Jerran; Chou, Joshua; Milthorpe, Bruce; Ben-Nissan, Besim

    2013-01-01

    A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. PMID:23574983

  14. Mitophagy: therapeutic potentials for liver disease and beyond.

    PubMed

    Lee, Sooyeon; Kim, Jae-Sung

    2014-12-01

    Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy. PMID:25584143

  15. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  16. MicroRNAs in common diseases and potential therapeutic applications.

    PubMed

    Tsai, Louis M; Yu, Di

    2010-01-01

    1. Evidence gathered in recent years has revealed microRNAs (miRNAs) fine-tune gene expression and play an important role in various cellular processes, including cell growth, differentiation, proliferation and apoptosis. 2. The present review summarizes current knowledge of miRNA pathways in the pathogenesis of cancer, cardiac diseases, neurodegenerative diseases, diabetes, autoimmune/inflammatory diseases and infection. 3. There is considerable potential to target miRNAs as a novel approach in the treatment of human diseases. Currently, miRNA-based therapies are being examined in both animal models and human clinical trials.

  17. Therapeutic Potential of Pterocarpus santalinus L.: An Update.

    PubMed

    Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy

    2016-01-01

    Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with "up-to-date" discussion. PMID:27041873

  18. Therapeutic potential of melatonin in oral medicine and periodontology.

    PubMed

    Najeeb, Shariq; Khurshid, Zohaib; Zohaib, Sana; Zafar, Muhammad Sohail

    2016-08-01

    Melatonin (N-acetyl-5-methoxy tryptamine) is a substance secreted by multiple organs in vertebrates. In addition to playing a part in the circadian cycle of the body, melatonin is known to have antioxidant, antiinflammatory, and antioncotic effects on human tissues. Oral cavity is affected by a number of conditions such as periodontitis, mucositis, cancers, and cytotoxicity from various drugs or biomaterials. Research has suggested that melatonin is effective in treating the aforementioned pathologies. Furthermore, melatonin has been observed to enhance osseointegration and bone regeneration. The aim of this review is to critically analyze and summarize the research focusing on the potential of melatonin in the field of oral medicine. Topical administration of melatonin has a positive effect on periodontal health and osseointegration. Furthermore, melatonin is particularly effective in improving the periodontal parameters of diabetic patients with periodontitis. Melatonin exerts a regenerative effect on periodontal bone and may be incorporated into of periodontal scaffolds. The cytotoxic effect of various drugs and dental materials may be countered by the antioxidant properties of melatonin. Topical administration of melatonin promotes the healing of tooth extraction sockets and may also impede the progression of oral cancer. Although, there are a number of current and potential applications of melatonin, further long term clinical and animal studies are needed to assess its efficacy. Moreover, the role of melatonin supplements in the management of periodontitis should also be assessed. PMID:27523451

  19. Therapeutic Potential of Pterocarpus santalinus L.: An Update

    PubMed Central

    Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy

    2016-01-01

    Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with “up-to-date” discussion. PMID:27041873

  20. G-quadruplexes in viruses: function and potential therapeutic applications

    PubMed Central

    Métifiot, Mathieu; Amrane, Samir; Litvak, Simon; Andreola, Marie-Line

    2014-01-01

    G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300 000 sequences that can potentially form G4s. Likewise, the presence of putative G4-sequences has been reported in various viruses genomes [e.g., Human immunodeficiency virus (HIV-1), Epstein–Barr virus (EBV), papillomavirus (HPV)]. Many studies have focused on telomeric G4s and how their dynamics are regulated to enable telomere synthesis. Moreover, a role for G4s has been proposed in cellular and viral replication, recombination and gene expression control. In parallel, DNA aptamers that form G4s have been described as inhibitors and diagnostic tools to detect viruses [e.g., hepatitis A virus (HAV), EBV, cauliflower mosaic virus (CaMV), severe acute respiratory syndrome virus (SARS), simian virus 40 (SV40)]. Here, special emphasis will be given to the possible role of these structures in a virus life cycle as well as the use of G4-forming oligonucleotides as potential antiviral agents and innovative tools. PMID:25332402

  1. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    PubMed Central

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M.; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  2. Therapeutic radiation and the potential risk of second malignancies.

    PubMed

    Kamran, Sophia C; Berrington de Gonzalez, Amy; Ng, Andrea; Haas-Kogan, Daphne; Viswanathan, Akila N

    2016-06-15

    Radiation has long been associated with carcinogenesis. Nevertheless, it is an important part of multimodality therapy for many malignancies. It is critical to assess the risk of secondary malignant neoplasms (SMNs) after radiation treatment. The authors reviewed the literature with a focus on radiation and associated SMNs for primary hematologic, breast, gynecologic, and pediatric tumors. Radiation appeared to increase the risk of SMN in all of these; however, this risk was found to be associated with age, hormonal influences, chemotherapy use, environmental influences, genetic predisposition, infection, and immunosuppression. The risk also appears to be altered with modern radiotherapy techniques. Practitioners of all specialties who treat cancer survivors in follow-up should be aware of this potential risk. Cancer 2016;122:1809-21. © 2016 American Cancer Society.

  3. The CBM signalosome: Potential therapeutic target for aggressive lymphoma?

    PubMed Central

    Yang, Chenghua; David, Liron; Qiao, Qi; Damko, Ermelinda; Wu, Hao

    2014-01-01

    The CBM signalosome plays a pivotal role in mediating antigen-receptor induced NF-κB signaling to regulate lymphocyte functions. The CBM complex forms filamentous structure and recruits downstream signaling components to activate NF-κB. MALT1, the protease component in the CBM complex, cleaves key proteins in the feedback loop of the NF-κB signaling pathway and enhances NF-κB activation. The aberrant activity of the CBM complex has been linked to aggressive lymphoma. Recent years have witnessed dramatic progresses in understanding the assembly mechanism of the CBM complex, and advances in the development of targeted therapy for aggressive lymphoma. Here, we will highlight these progresses and give an outlook on the potential translation of this knowledge from bench to bedside for aggressive lymphoma patients. PMID:24411492

  4. Therapeutic radiation and the potential risk of second malignancies.

    PubMed

    Kamran, Sophia C; Berrington de Gonzalez, Amy; Ng, Andrea; Haas-Kogan, Daphne; Viswanathan, Akila N

    2016-06-15

    Radiation has long been associated with carcinogenesis. Nevertheless, it is an important part of multimodality therapy for many malignancies. It is critical to assess the risk of secondary malignant neoplasms (SMNs) after radiation treatment. The authors reviewed the literature with a focus on radiation and associated SMNs for primary hematologic, breast, gynecologic, and pediatric tumors. Radiation appeared to increase the risk of SMN in all of these; however, this risk was found to be associated with age, hormonal influences, chemotherapy use, environmental influences, genetic predisposition, infection, and immunosuppression. The risk also appears to be altered with modern radiotherapy techniques. Practitioners of all specialties who treat cancer survivors in follow-up should be aware of this potential risk. Cancer 2016;122:1809-21. © 2016 American Cancer Society. PMID:26950597

  5. The therapeutic potential of human olfactory-derived stem cells.

    PubMed

    Marshall, C T; Lu, C; Winstead, W; Zhang, X; Xiao, M; Harding, G; Klueber, K M; Roisen, F J

    2006-06-01

    Stem cells from fetal and adult central nervous system have been isolated and characterized, providing populations for potential replacement therapy for traumatic injury repair and neurodegenerative diseases. The regenerative capacity of the olfactory system has attracted scientific interest. Studies focusing on animal and human olfactory bulb ensheathing cells (OECs) have heightened the expectations that OECs can enhance axonal regeneration and repair demyelinating diseases. Harvest of OECs from the olfactory bulb requires highly invasive surgery, which is a major obstacle. In contrast, olfactory epithelium (OE) has a unique regenerative capacity and is readily accessible from its location in the nasal cavity, allowing for harvest without lasting damage to the donor. Adult OE contains progenitors responsible for the normal life-long continuous replacement of neurons and supporting cells. Culture techniques have been established for human OE that generate populations of mitotically active neural progenitors that form neurospheres (Roisen et al., 2001; Winstead et al., 2005). The potential application of this technology includes autologous transplantation where minimal donor material can be isolated, expanded ex vivo, and lineage restricted to a desired phenotype prior to/or after re-implantation. Furthermore, these strategies circumvent the ethical issues that arise with embryonic or fetal tissues. The long term goal is to develop procedures through which a victim of a spinal cord injury or neurodegenerative condition would serve as a source of progenitors for his/her own regenerative grafts, avoiding the need for immunosuppression and ethical controversy. In addition, these cells can provide populations for pharmacological and/or diagnostic evaluation.

  6. Silibinin as a potential therapeutic for sulfur mustard injuries.

    PubMed

    Balszuweit, Frank; John, Harald; Schmidt, Annette; Kehe, Kai; Thiermann, Horst; Steinritz, Dirk

    2013-12-01

    Sulfur mustard (SM) is a vesicating chemical warfare agent causing skin blistering, ulceration, impaired wound healing, prolonged hospitalization and permanent lesions. Silibinin, the lead compound from Silybum marianum, has also been discussed as a potential antidote to SM poisoning. However, its efficacy has been demonstrated only with regard to nitrogen mustards. Moreover, there are no data on the efficacy of the water-soluble prodrug silibinin-bis-succinat (silibinin-BS). We investigated the effect of SIL-BS treatment against SM toxicity in HaCaT cells with regard to potential reduction of necrosis, apoptosis and inflammation including dose-dependency of any protective effects. We also demonstrated the biotransformation of the prodrug into free silibinin. HaCaT cells were exposed to SM (30, 100, and 300μM) for 30min and treated thereafter with SIL-BS (10, 50, and 100μM) for 24h. Necrosis and apoptosis were quantified using the ToxiLight BioAssay and the nucleosome ELISA (CDDE). Pro-inflammatory interleukins-6 and -8 were determined by ELISA. HaCaT cells, incubated with silibinin-BS were lysed and investigated by LC-ESI MS/MS. LC-ESI MS/MS results suggest that SIL-BS is absorbed by HaCaT cells and biotransformed into free silibinin. SIL-BS dose-dependently reduced SM cytotoxicity, even after 300μM exposure. Doses of 50-100μM silibinin-BS were required for significant protection. Apoptosis and interleukin production remained largely unchanged by 10-50μM silibinin-BS but increased after 100μM treatment. Observed reductions of SM cytotoxicity by post-exposure treatment with SIL-BS suggest this as a promising approach for treatment of SM injuries. While 100μM SIL-BS is most effective to reduce necrosis, 50μM may be safer to avoid pro-inflammatory effects. Pro-apoptotic effects after high doses of SIL-BS are in agreement with findings in literature and might even be useful to eliminate cells irreversibly damaged by SM. Further investigations will focus on the

  7. Doxorubicin liposomal pegylated: new preparation. Breast cancer: not just a question of short-term cardiac effects.

    PubMed

    2004-06-01

    (1) There is no reference first-line chemotherapy regimen for metastatic breast cancer. Anthracycline-based combinations are generally used. One of the main problems with anthracyclines is the risk of heart failure, both during and some time after treatment. (2) A liposomal pegylated doxorubicin, an anthracycline, is now available in Europe. The aim of pegylation is supposedly to reduce the cardiotoxicity relative to standard doxorubicin. The marketing licence specifies that liposomal pegylated doxorubicin must not be used in combination with other drugs in people with metastatic breast cancer. This is the second liposomal doxorubicin preparation to be authorised for this use in France; we concluded that the first product, a non-pegylated form, offered no therapeutic advance. (3) According to the only available comparative trial, liposomal pegylated doxorubicin is no more effective than standard doxorubicin in terms of the duration or quality of survival. (4) In this trial, liposomal pegylated doxorubicin was associated with slightly fewer cardioechographic abnormalities than standard doxorubicin. (5) Other adverse events were also less common (hair loss, nausea and vomiting, and neutropenia), while some were more common (palmoplantar erythrodysesthesia, stomatitis and mucitis). Overall, 24% of patients stopped using liposomal pegylated doxorubicin because of adverse events, compared with 11% of patients receiving standard doxorubicin. (6) Unlike liposomal non-pegylated doxorubicin, the liposomal pegylated form is no more difficult than standard doxorubicin to prepare for injection. (7) In practice, when the decision is made to use doxorubicin, the standard form, at an appropriate dose, is suitable for most patients, as long as cardiac function is closely monitored. Differences in the adverse effect profile (especially hair loss) may make liposomal pegylated doxorubicin more attractive to some patients (it costs 20 times more than standard doxorubicin in France

  8. The potential for emerging therapeutic options for Clostridium difficile infection.

    PubMed

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  9. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer.

    PubMed

    Steffen, Jamin D; Tholey, Renee M; Langelier, Marie-France; Planck, Jamie L; Schiewer, Matthew J; Lal, Shruti; Bildzukewicz, Nikolai A; Yeo, Charles J; Knudsen, Karen E; Brody, Jonathan R; Pascal, John M

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs, raising important questions about long-term off-target effects. Here, we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage-dependent catalytic activation. Furthermore, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anticancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA-damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Finally, the development of a high-throughput PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors.

  10. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  11. Therapeutic Potential of Hyporesponsive CD4+ T Cells in Autoimmunity

    PubMed Central

    Maggi, Jaxaira; Schafer, Carolina; Ubilla-Olguín, Gabriela; Catalán, Diego; Schinnerling, Katina; Aguillón, Juan C.

    2015-01-01

    The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T-cell deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is defined as an unresponsive state that retains T cells in an “off” mode under conditions in which immune activation is undesirable. This mechanism is crucial for the control of T-cell responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs (tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients with autoimmune pathologies, were shown to modulate immune responses by inducing T-cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact of T-cell anergy on disease development and progression in vivo. Thus, the induction of T-cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy for the treatment of T-cell-mediated autoimmune disorders. Here, we review recent findings in the area and discuss the potential of anergy induction for clinical purposes. PMID:26441992

  12. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    PubMed Central

    Islam, Md. Asiful; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims. PMID:25386217

  13. Conundrum and therapeutic potential of curcumin in drug delivery.

    PubMed

    Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula

    2010-01-01

    Turmeric, the source of the polyphenolic active compound curcumin (diferuloylmethane), has been used extensively in traditional medicine since ancient times as a household remedy against various diseases, including hepatic disorders, cough, sinusitis, rheumatism, and biliary disorders. In the past few decades, a number of studies have been done on curcumin showing its potential role in treating inflammatory disorders, cardiovascular disease, cancer, AIDS, and neurological disorders. However, the main drawback associated with curcumin is its poor aqueous solubility and stability in gastrointestinal fluids, which leads to poor bioavailability. Multifarious novel drug-delivery approaches, including microemulsions, nanoemulsions, liposomes, solid lipid nanoparticles, microspheres, solid dispersion, polymeric nanoparticles, and self-microemulsifying drug-delivery systems have been used to enhance the bioavailability and tissue-targeting ability of curcumin. These attempts have revealed promising results for enhanced bioavailability and targeting to disease such as cancer, but more extensive research on tissue-targeting and stability-related issues is needed. Tissue targeting and enhanced bioavailability of curcumin using novel drug-delivery methods with minimum side effects will in the near future bring this promising natural product to the forefront of therapy for the treatment of human diseases such as cancer and cardiovascular ailments. We provide a detailed analysis of prominent research in the field of curcumin drug delivery with special emphasis on bioavailability-enhancement approaches and novel drug-delivery system approaches. PMID:20932240

  14. The potential for emerging therapeutic options for Clostridium difficile infection

    PubMed Central

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  15. Therapeutic Potential of Tea Tree Oil for Scabies

    PubMed Central

    Thomas, Jackson; Carson, Christine F.; Peterson, Greg M.; Walton, Shelley F.; Hammer, Kate A.; Naunton, Mark; Davey, Rachel C.; Spelman, Tim; Dettwiller, Pascale; Kyle, Greg; Cooper, Gabrielle M.; Baby, Kavya E.

    2016-01-01

    Globally, scabies affects more than 130 million people at any time. In the developed world, outbreaks in health institutions and vulnerable communities result in a significant economic burden. A review of the literature demonstrates the emergence of resistance toward classical scabicidal treatments and the lack of effectiveness of currently available scabicides in reducing the inflammatory skin reactions and pyodermal progression that occurs in predisposed patient cohorts. Tea tree oil (TTO) has demonstrated promising acaricidal effects against scabies mites in vitro and has also been successfully used as an adjuvant topical medication for the treatment of crusted scabies, including cases that did not respond to standard treatments. Emerging acaricide resistance threatens the future usefulness of currently used gold standard treatments (oral ivermectin and topical permethrin) for scabies. The imminent development of new chemical entities is doubtful. The cumulative acaricidal, antibacterial, antipruritic, anti-inflammatory, and wound healing effects of TTO may have the potential to successfully reduce the burden of scabies infection and the associated bacterial complications. This review summarizes current knowledge on the use of TTO for the treatment of scabies. On the strength of existing data for TTO, larger scale, randomized controlled clinical trials are warranted. PMID:26787146

  16. Vernonia kotschyana roots: therapeutic potential via antioxidant activity.

    PubMed

    Vasincu, Alexandru; Paulsen, Berit S; Diallo, Drissa; Vasincu, Ioana; Aprotosoaie, Ana C; Bild, Veronica; Charalambous, Christiana; Constantinou, Andreas I; Miron, Anca; Gavrilescu, Cristina M

    2014-11-19

    The roots of Vernonia kotschyana Sch. Bip. ex Walp. (Asteraceae) are used in Malian traditional medicine in the treatment of gastroduodenal ulcers and gastritis. Since oxidative stress is involved in gastric ulceration, the aim of this study was to screen the root extracts for their in vitro antioxidant activity and phenolic content. The roots were extracted successively with chloroform, ethyl acetate, ethanol and water. The antioxidant activity of root extracts was evaluated in both cell-free and cell-based assays. Their chemical characterization was performed by Fourier transform infrared spectroscopy (FT-IR) whereas the total phenolic content was determined by the Folin-Ciocalteu method. The ethyl acetate extract displayed the highest phenolic content and was found to be the most active in the free radical scavenging and lipid peroxidation inhibition assays; it also showed a high antioxidant activity in MCF-12F cells. This study suggests a potential use of the ethyl acetate extract of Vernonia kotschyana not only as an antioxidant agent in gastroduodenal ulcers and gastritis, but also in other disorders characterized by high levels of oxidative stress.

  17. Therapeutic Potential of Tea Tree Oil for Scabies.

    PubMed

    Thomas, Jackson; Carson, Christine F; Peterson, Greg M; Walton, Shelley F; Hammer, Kate A; Naunton, Mark; Davey, Rachel C; Spelman, Tim; Dettwiller, Pascale; Kyle, Greg; Cooper, Gabrielle M; Baby, Kavya E

    2016-02-01

    Globally, scabies affects more than 130 million people at any time. In the developed world, outbreaks in health institutions and vulnerable communities result in a significant economic burden. A review of the literature demonstrates the emergence of resistance toward classical scabicidal treatments and the lack of effectiveness of currently available scabicides in reducing the inflammatory skin reactions and pyodermal progression that occurs in predisposed patient cohorts. Tea tree oil (TTO) has demonstrated promising acaricidal effects against scabies mites in vitro and has also been successfully used as an adjuvant topical medication for the treatment of crusted scabies, including cases that did not respond to standard treatments. Emerging acaricide resistance threatens the future usefulness of currently used gold standard treatments (oral ivermectin and topical permethrin) for scabies. The imminent development of new chemical entities is doubtful. The cumulative acaricidal, antibacterial, antipruritic, anti-inflammatory, and wound healing effects of TTO may have the potential to successfully reduce the burden of scabies infection and the associated bacterial complications. This review summarizes current knowledge on the use of TTO for the treatment of scabies. On the strength of existing data for TTO, larger scale, randomized controlled clinical trials are warranted. PMID:26787146

  18. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  19. Therapeutic potential of oncolytic Newcastle disease virus: a critical review

    PubMed Central

    Tayeb, Shay; Zakay-Rones, Zichria; Panet, Amos

    2015-01-01

    Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient’s tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials. PMID

  20. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  1. Hormetic/cytotoxic effects of Nigella sativa seed alcoholic and aqueous extracts on MCF-7 breast cancer cells alone or in combination with doxorubicin.

    PubMed

    Mahmoud, Sherif S; Torchilin, Vladmir P

    2013-07-01

    In this study, we investigate the possible cytotoxic effects of different Nigella sativa seed extracts on human MCF-7 breast cancer cells and screening the effects of a wide range of extracts concentrations and their application as an adjuvant therapy to doxorubicin. The results obtained showed that the cytotoxic solvent dimethyl sulfoxide can be used for permeation assay in concentration range 697.5-0.341 mmol/ml without affecting the viability of MCF-7 cells. N. sativa lipid extract is cytotoxic to MCF-7 cells with LC50 of 2.72 ± 0.232 mg/ml, while its aqueous extract cytotoxicity exhibited when the applied concentration is high as ≈ 50 mg/ml. The results of this study reveal for the first time that low concentrations of aqueous extract of the seed has a hormetic rather than cytotoxic effect. It is also possible to use cell culture medium or bovine serum to dilute the oil extract for the permeation assay. In conclusion, N. sativa aqueous extract should not be used as antitumor compound by its own. The oil is a promising antitumor compound and its cytotoxicity was greatly enhanced with its nanoemulsion formulation. Antitumor activity of doxorubicin was enhanced, as a function of time, when N. sativa extracts were involved as adjunct therapeutic compounds. Adding doxorubicin to the prepared lipid nanoemulsion has a beneficial impact to their bioactivity. These doxorubicin-N. sativa lipid nanoemulsion are promising and potential therapeutic modality. PMID:23242945

  2. Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity.

    PubMed

    Kheirolomoom, Azadeh; Mahakian, Lisa M; Lai, Chun-Yen; Lindfors, Heather A; Seo, Jai Woong; Paoli, Eric E; Watson, Katherine D; Haynam, Eric M; Ingham, Elizabeth S; Xing, Li; Cheng, R Holland; Borowsky, Alexander D; Cardiff, Robert D; Ferrara, Katherine W

    2010-12-01

    Repeated administration of chemotherapeutics is typically required for the effective treatment of highly aggressive tumors and often results in systemic toxicity. We have created a copper-doxorubicin complex within the core of liposomes and applied the resulting particle in multidose therapy. Copper and doxorubicin concentrations in the blood pool were similar at 24 h (∼40% of the injected dose), indicating stable circulation of the complex. Highly quenched doxorubicin fluorescence remained in the blood pool over tens of hours, with fluorescence increasing only with the combination of liposome disruption and copper trans-chelation. At 48 h after injection, doxorubicin fluorescence within the heart and skin was one-fifth and one-half, respectively, of fluorescence observed with ammonium sulfate-loaded doxorubicin liposomes. After 28 days of twice per week doxorubicin administration of 6 mg/kg, systemic toxicity (cardiac hypertrophy and weight and hair loss) was not detected with the copper-doxorubicin liposomes but was substantial with ammonium sulfate-loaded doxorubicin liposomes. We then incorporated two strategies designed to enhance efficacy, mTOR inhibition (rapamycin) to slow proliferation and therapeutic ultrasound to enhance accumulation and local diffusion. Tumor accumulation was ∼10% ID/g and was enhanced approximately 2-fold with the addition of therapeutic ultrasound. After the 28-day course of therapy, syngeneic tumors regressed to a premalignant phenotype of ∼(1 mm)(3) or could not be detected.

  3. Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity.

    PubMed

    Kheirolomoom, Azadeh; Mahakian, Lisa M; Lai, Chun-Yen; Lindfors, Heather A; Seo, Jai Woong; Paoli, Eric E; Watson, Katherine D; Haynam, Eric M; Ingham, Elizabeth S; Xing, Li; Cheng, R Holland; Borowsky, Alexander D; Cardiff, Robert D; Ferrara, Katherine W

    2010-12-01

    Repeated administration of chemotherapeutics is typically required for the effective treatment of highly aggressive tumors and often results in systemic toxicity. We have created a copper-doxorubicin complex within the core of liposomes and applied the resulting particle in multidose therapy. Copper and doxorubicin concentrations in the blood pool were similar at 24 h (∼40% of the injected dose), indicating stable circulation of the complex. Highly quenched doxorubicin fluorescence remained in the blood pool over tens of hours, with fluorescence increasing only with the combination of liposome disruption and copper trans-chelation. At 48 h after injection, doxorubicin fluorescence within the heart and skin was one-fifth and one-half, respectively, of fluorescence observed with ammonium sulfate-loaded doxorubicin liposomes. After 28 days of twice per week doxorubicin administration of 6 mg/kg, systemic toxicity (cardiac hypertrophy and weight and hair loss) was not detected with the copper-doxorubicin liposomes but was substantial with ammonium sulfate-loaded doxorubicin liposomes. We then incorporated two strategies designed to enhance efficacy, mTOR inhibition (rapamycin) to slow proliferation and therapeutic ultrasound to enhance accumulation and local diffusion. Tumor accumulation was ∼10% ID/g and was enhanced approximately 2-fold with the addition of therapeutic ultrasound. After the 28-day course of therapy, syngeneic tumors regressed to a premalignant phenotype of ∼(1 mm)(3) or could not be detected. PMID:20925429

  4. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity.

    PubMed

    Fouad, Amr A; Albuali, Waleed H; Al-Mulhim, Abdulruhman S; Jresat, Iyad

    2013-09-01

    The potential protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against doxorubicin cardiotoxicity in rats. Cardiotoxicity was induced by six equal doses of doxorubicin (2.5mgkg(-1) i.p., each) given at 48h intervals over two weeks to achieve a total dose of 15mgkg(-1). Cannabidiol treatment (5mgkg(-1)/day, i.p.) was started on the same day of doxorubicin administration and continued for four weeks. Cannabidiol significantly reduced the elevations of serum creatine kinase-MB and troponin T, and cardiac malondialdehyde, tumor necrosis factor-α, nitric oxide and calcium ion levels, and attenuated the decreases in cardiac reduced glutathione, selenium and zinc ions. Histopathological examination showed that cannabidiol ameliorated doxorubicin-induced cardiac injury. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in cardiac tissue of doxorubicin-treated rats. These results indicate that cannabidiol represents a potential protective agent against doxorubicin cardiac injury.

  5. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity.

    PubMed

    Fouad, Amr A; Albuali, Waleed H; Al-Mulhim, Abdulruhman S; Jresat, Iyad

    2013-09-01

    The potential protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against doxorubicin cardiotoxicity in rats. Cardiotoxicity was induced by six equal doses of doxorubicin (2.5mgkg(-1) i.p., each) given at 48h intervals over two weeks to achieve a total dose of 15mgkg(-1). Cannabidiol treatment (5mgkg(-1)/day, i.p.) was started on the same day of doxorubicin administration and continued for four weeks. Cannabidiol significantly reduced the elevations of serum creatine kinase-MB and troponin T, and cardiac malondialdehyde, tumor necrosis factor-α, nitric oxide and calcium ion levels, and attenuated the decreases in cardiac reduced glutathione, selenium and zinc ions. Histopathological examination showed that cannabidiol ameliorated doxorubicin-induced cardiac injury. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in cardiac tissue of doxorubicin-treated rats. These results indicate that cannabidiol represents a potential protective agent against doxorubicin cardiac injury. PMID:23721741

  6. Apoferritin Modified Magnetic Particles as Doxorubicin Carriers for Anticancer Drug Delivery

    PubMed Central

    Blazkova, Iva; Nguyen, Hoai Viet; Dostalova, Simona; Kopel, Pavel; Stanisavljevic, Maja; Vaculovicova, Marketa; Stiborova, Marie; Eckschlager, Tomas; Kizek, Rene; Adam, Vojtech

    2013-01-01

    Magnetic particle mediated transport in combination with nanomaterial based drug carrier has a great potential for targeted cancer therapy. In this study, doxorubicin encapsulation into the apoferritin and its conjugation with magnetic particles was investigated by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The quantification of encapsulated doxorubicin was performed by fluorescence spectroscopy and compared to CE-LIF. Moreover, the significant enhancement of the doxorubicin signal was observed by addition of methanol into the sample solution. PMID:23807501

  7. Doxorubicin liposome-loaded microbubbles for contrast imaging and ultrasound-triggered drug delivery.

    PubMed

    Escoffre, Jean-Michel; Mannaris, Christophoros; Geers, Bart; Novell, Anthony; Lentacker, Ine; Averkiou, Michalakis; Bouakaz, Ayache

    2013-01-01

    Targeted drug delivery under image guidance is gaining more interest in the drug-delivery field. The use of microbubbles as contrast agents in diagnostic ultrasound provides new opportunities in noninvasive image-guided drug delivery. In the present study, the imaging and therapeutic properties of novel doxorubicin liposome-loaded microbubbles are evaluated. The results showed that at scanning settings (1.7 MHz and mechanical index 0.2), these microbubbles scatter sufficient signal for nonlinear ultrasound imaging and can thus be imaged in real time and be tracked in vivo. In vitro therapeutic evaluation showed that ultrasound at 1 MHz and pressures up to 600 kPa in combination with the doxorubicin liposomeloaded microbubbles induced 4-fold decrease of cell viability compared with treatment with free doxorubicin or doxorubicin liposome-loaded microbubbles alone. The therapeutic effectiveness is correlated to an ultrasound-triggered release of doxorubicin from the liposomes and an enhanced uptake of the free doxorubicin by glioblastoma cells. The results obtained demonstrate that the combination of ultrasound and the doxorubicin liposome-loaded microbubbles can provide a new method of noninvasive image-guided drug delivery.

  8. Doxorubicin induced heart failure: Phenotype and molecular mechanisms

    PubMed Central

    Mitry, Maria A.; Edwards, John G.

    2016-01-01

    Long term survival of childhood cancers is now more than 70%. Anthracyclines, including doxorubicin, are some of the most efficacious anticancer drugs available. However, its use as a chemotherapeutic agent is severely hindered by its dose-limiting toxicities. Most notably observed is cardiotoxicity, but other organ systems are also degraded by doxorubicin use. Despite the years of its use and the amount of information written about this drug, an understanding of its cellular mechanisms is not fully appreciated. The mechanisms by which doxorubicin induces cytotoxicity in target cancer cells have given insight about how the drug damages cardiomyocytes. The major mechanisms of doxorubicin actions are thought to be as an oxidant generator and as an inhibitor of topoisomerase 2. However, other signaling pathways are also invoked with significant consequences for the cardiomyocyte. Further the interaction between oxidant generation and topoisomerase function has only recently been appreciated and the consequences of this interaction are still not fully understood. The unfortunate consequences of doxorubicin within cardiomyocytes have promoted the search for new drugs and methods that can prevent or reverse the damage caused to the heart after treatment in cancer patients. Alternative protocols have lessened the impact on newly diagnosed cancer patients. However the years of doxorubicin use have generated a need for monitoring the onset of cardiotoxicity as well as understanding its potential long-term consequences. Although a fairly clear understanding of the short-term pathologic mechanisms of doxorubicin actions has been achieved, the long-term mechanisms of doxorubicin induced heart failure remain to be carefully delineated. PMID:27213178

  9. Evaluation of Doxorubicin-loaded 3-Helix Micelles as Nanocarriers

    PubMed Central

    Dube, Nikhil; Shu, Jessica Y.; Dong, He; Seo, Jai W.; Ingham, Elizabeth; Kheirolomoom, Azadeh; Chen, Pin-Yuan; Forsayeth, John; Bankiewicz, Krystof; Ferrara, Katherine W.; Xu, Ting

    2013-01-01

    Designing stable drug nanocarriers, 10-30 nm in size, would have significant impact on their transport in circulation, tumor penetration and therapeutic efficacy. In the present study, biological properties of 3-helix micelles loaded with 8 wt% doxorubicin (DOX), ~15 nm in size, were characterized to validate their potential as a nanocarrier platform. DOX-loaded micelles exhibited high stability in terms of size and drug retention in concentrated protein environments similar to conditions after intravenous injections. DOX-loaded micelles were cytotoxic to PPC-1 and 4T1 cancer cells at levels comparable to free DOX. 3-helix micelles can be disassembled by proteolytic degradation of peptide shell to enable drug release and clearance to minimize long-term accumulation. Local administration to normal rat striatum by convection enhanced delivery (CED) showed greater extent of drug distribution and reduced toxicity relative to free drug. Intravenous administration of DOX-loaded 3-helix micelles demonstrated improved tumor half-life and reduced toxicity to healthy tissues in comparison to free DOX. In vivo delivery of DOX-loaded 3-helix micelles through two different routes clearly indicates the potential of 3-helix micelles as safe and effective nanocarriers for cancer therapeutics. PMID:24050265

  10. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    PubMed

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  11. The regulatory mechanisms of myogenin expression in doxorubicin-treated rat cardiomyocytes

    PubMed Central

    Yen, Li-Chen; Huang, Chi-Jung; Lin, Wei-Shiang; Chan, James Yi-Hsin

    2015-01-01

    Doxorubicin, an anthracycline antibiotic, has been used as an anti-neoplastic drug for almost 60 years. However, the mechanism(s) by which anthracyclines cause irreversible myocardial injury remains unclear. In order to delineate possible molecular signals involved in the myocardial toxicity, we assessed candidate genes using mRNA expression profiling in the doxorubicin-treated rat cardiomyocyte H9c2 cell line. In the study, it was confirmed that myogenin, an important transcriptional factor for muscle terminal differentiation, was significantly reduced by doxorubicin in a dose-dependent manner using both RT-PCR and western blot analyses. Also, it was identified that the doxorubicin-reduced myogenin gene level could not be rescued by most cardio-protectants. Furthermore, it was demonstrated how the signaling of the decreased myogenin expression by doxorubicin was altered at the transcriptional, post-transcriptional and translational levels. Based on these findings, a working model was proposed for relieving doxorubicin-associated myocardial toxicity by down-regulating miR-328 expression and increasing voltage-gated calcium channel β1 expression, which is a repressor of myogenin gene regulation. In summary, this study provides several lines of evidence indicating that myogenin is the target for doxorubicin-induced cardio-toxicity and a novel therapeutic strategy for doxorubicin clinical applications based on the regulatory mechanisms of myogenin expression. PMID:26452256

  12. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    PubMed Central

    2009-01-01

    Background Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy. Methods Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOSR2, U-2OS, and U-2OSR2 cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed. Results Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone. Conclusion Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma. PMID:19917123

  13. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    PubMed

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  14. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    PubMed Central

    Wilkinson, Emma L.; Sidaway, James E.

    2016-01-01

    ABSTRACT Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes. PMID:27543060

  15. Accidental acute exposure to doxorubicin.

    PubMed

    Curran, C F; Luce, J K

    1989-12-01

    Accidental ocular exposure to doxorubicin was followed by no reaction or rapidly resolving conjunctivitis in 13 of 15 cases (87%). In the two remaining cases, persistent photophobia and chronic inflammation were reported. Of 28 accidental exposures to sites other than the eyes, no reactions or rapidly resolving local reactions were reported in 24 cases (86%). Nurses are at particular risk for accidental exposure to doxorubicin and accounted for 20 of the 43 reported exposures (47%). PMID:2590899

  16. Doxorubicin: the good, the bad and the ugly effect.

    PubMed

    Carvalho, Cristina; Santos, Renato X; Cardoso, Susana; Correia, Sónia; Oliveira, Paulo J; Santos, Maria S; Moreira, Paula I

    2009-01-01

    The anthracycline doxorubicin (DOX) is widely used in chemotherapy due to its efficacy in fighting a wide range of cancers such as carcinomas, sarcomas and hematological cancers. Despite extensive clinical utilization, the mechanisms of action of DOX remain under intense debate. A growing body of evidence supports the view that this drug can be a double-edge sword. Indeed, injury to nontargeted tissues often complicates cancer treatment by limiting therapeutic dosages of DOX and diminishing the quality of patients' life during and after DOX treatment. The literature shows that the heart is a preferential target of DOX toxicity. However, this anticancer drug also affects other organs like the brain, kidney and liver. This review is mainly devoted to discuss the mechanisms underlying not only DOX beneficial effects but also its toxic outcomes. Additionally, clinical studies focusing the therapeutic efficacy and side effects of DOX treatment will be discussed. Finally, some potential strategies to attenuate DOX-induced toxicity will be debated. PMID:19548866

  17. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride.

    PubMed

    Xiong, Wei; Li, Li; Wang, Yingying; Yu, Yibin; Wang, Shenxia; Gao, Yunyun; Liang, Yanyao; Zhang, Guogang; Pan, Weisan; Yang, Xinggang

    2016-09-10

    To improve the low loading content of hydrophilic drugs in nanodrug delivery systems, a natural watersoluble polysaccharide, Auricularia auricular polysaccharide (AAP), was extracted and purified as a vehicle for the hydrophilic drug doxorubicin hydrochloride (Dox·HCl). This involved the preparation of polyelectrolyte complexes nanoparticles (PEC NPs) using the electrostatic interaction between cationic chitosan (CS) and anionic AAP. The formation of AAP-CS-NPs was confirmed by FT-IR and TEM. It was found that Dox-loaded AAP-CS-NPs possessed a spherical morphology with average diameters of 237.6nm and 74.1% Dox·HCl encapsulation efficiency. The stability of Dox AAP-CS-NPs was examined by suspending the nanoparticles in PBS (pH 7.4) at room temperature. The particle size of the nanoparticle samples remained stable and exhibited no obvious variations in drug content after half a month. In addition, in vitro cytotoxicity studies showed that blank AAP-CS-NPs did not exhibit any cytotoxic effects, while Dox AAP-CS-NPs increased the Dox·HCl cytotoxicity against MCF-7 cells as the result of significantly increased cellular uptake, compared with free Dox·HCl. Hence, the overall results obtained suggest that AAP-CS-NPs are very effective in entrapping Dox·HCl and to penetrate into tumor cells, rendering them promising carriers for hydrophilic antitumor drugs. PMID:27424168

  18. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    PubMed Central

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-01-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics. PMID:26619814

  19. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    NASA Astrophysics Data System (ADS)

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-12-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics.

  20. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats

    PubMed Central

    Fan, Hua-Ying; Yang, Ming-Yan; Qi, Dong; Zhang, Zuo-Kai; Zhu, Lin; Shang-Guan, Xiu-Xin; Liu, Ke; Xu, Hui; Che, Xin

    2015-01-01

    Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investigated the effect of SAA on doxorubicin-induced nephropathy. The kidney function related-biochemical changes, hemorheological parameters and oxidative stress status were determined, and histological examination using light and transmission electron microcopies and western blot analysis were also performed. Results revealed that treatment with SAA alleviated histological damages, relieved proteinuria, hypoalbuminemia and hyperlipidemia, reduced oxidative stress, as well as improving hemorheology. Furthermore, SAA restored podocin expression, down-regulated the expression of NF-κB p65 and p-IκBα while up-regulating IκBα protein expression. Overall, as a multifunctional agent, SAA has a favorable renoprotection in doxorubicin-induced nephropathy. The anti-inflammation, antioxidant, amelioration of podocyte injury, improvement of hemorheology and hypolipidemic properties may constituent an important part of its therapeutic effects. All these indicate that SAA is likely to be a promising agent for NS. PMID:26194431

  1. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy

    PubMed Central

    Zhang, Longjiang; Chen, Hongwei; Wang, Liya; Liu, Tian; Yeh, Julie; Lu, Guangming; Yang, Lily; Mao, Hui

    2010-01-01

    Radiation therapy is an effective cancer treatment option in conjunction with chemotherapy and surgery. Emerging individualized internal and systemic radiation treatment promises significant improvement in efficacy and reduction of normal tissue damage; however, it requires cancer cell targeting platforms for efficient delivery of radiation sources. With recent advances in nanoscience and nanotechnology, there is great interest in developing nanomaterials as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery and tumor response to the treatment. This paper provides an overview on developing nanoparticles for carrying and delivering therapeutic radioisotopes for systemic radiation treatment. Topics discussed in the review include: selecting nanoparticles and radiotherapy isotopes, strategies for targeting nanoparticles to cancers, together with challenges and potential solutions for the in vivo delivery of nanoparticles. Some examples of using nanoparticle platforms for the delivery of therapeutic radioisotopes in preclinical studies of cancer treatment are also presented. PMID:24198480

  2. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth.

    PubMed

    Laube, Mandy; Stolzing, Alexandra; Thome, Ulrich H; Fabian, Claire

    2016-05-01

    Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies. PMID:26928452

  3. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease.

    PubMed

    Choi, Hee Soon; Kim, Hee Jin; Oh, Jin-Hwan; Park, Hyeong-Geun; Ra, Jeong Chan; Chang, Keun-A; Suh, Yoo-Hun

    2015-10-01

    The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions.

  4. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-01

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in

  5. Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin Therapy

    PubMed Central

    Arechaga-Ocampo, Elena; Flores-Pérez, Ali; Palacios-Rodríguez, Yadira; Domínguez-Gómez, Guadalupe; Marchat, Laurence A.; Fuentes-Mera, Lizeth; Mendoza-Hernández, Guillermo; Gariglio, Patricio; López-Camarillo, César

    2013-01-01

    The use of chemopreventive natural compounds represents a promising strategy in the search for novel therapeutic agents in cancer. Resveratrol (3,4′,5-trans-trihydroxystilbilene) is a dietary polyphenol found in fruits, vegetables and medicinal plants that exhibits chemopreventive and antitumor effects. In this study, we searched for modulated proteins with preventive or therapeutic potential in MCF-7 breast cancer cells exposed to resveratrol. Using two-dimensional electrophoresis we found significant changes (FC >2.0; p≤0.05) in the expression of 16 proteins in resveratrol-treated MCF-7 cells. Six down-regulated proteins were identified by tandem mass spectrometry (ESI-MS/MS) as heat shock protein 27 (HSP27), translationally-controlled tumor protein, peroxiredoxin-6, stress-induced-phosphoprotein-1, pyridoxine-5′-phosphate oxidase-1 and hypoxanthine-guanine phosphoribosyl transferase; whereas one up-regulated protein was identified as triosephosphate isomerase. Particularly, HSP27 overexpression has been associated to apoptosis inhibition and resistance of human cancer cells to therapy. Consistently, we demonstrated that resveratrol induces apoptosis in MCF-7 cells. Apoptosis was associated with a significant increase in mitochondrial permeability transition, cytochrome c release in cytoplasm, and caspases -3 and -9 independent cell death. Then, we evaluated the chemosensitization effect of increasing concentrations of resveratrol in combination with doxorubicin anti-neoplastic agent in vitro. We found that resveratrol effectively sensitize MCF-7 cells to cytotoxic therapy. Next, we evaluated the relevance of HSP27 targeted inhibition in therapy effectiveness. Results evidenced that HSP27 inhibition using RNA interference enhances the cytotoxicity of doxorubicin. In conclusion, our data indicate that resveratrol may improve the therapeutic effects of doxorubicin in part by cell death induction. We propose that potential modulation of HSP27 levels using

  6. Enhanced Tumor Delivery and Antitumor Activity in Vivo of Liposomal Doxorubicin Modified with MCF-7-Specific Phage Fusion Protein

    PubMed Central

    Wang, Tao; Hartner, William C.; Gillespie, James W.; Praveen, Kulkarni P.; Yang, Shenghong; Mei, Leslie A.; Petrenko, Valery A.; Torchilin, Vladimir P.

    2013-01-01

    A novel strategy to improve the therapeutic index of chemotherapy has been developed by the integration of nanotechnology with phage technique. The objective of this study was to combine phage display, identifying tumor-targeting ligands, with a liposomal nanocarrier for targeted delivery of doxorubicin. Following the proof of concept in cell-based experiments, this study focused on in vivo assessment of antitumor activity and potential side-effects of phage fusion protein-modified liposomal doxorubicin. MCF-7-targeted phage-Doxil treatments led to greater tumor remission and faster onset of antitumor activity than the treatments with non-targeted formulations. The enhanced anticancer effect induced by the targeted phage-Doxil correlated with an improved tumor accumulation of doxorubicin. Tumor sections consistently revealed enhanced apoptosis, reduced proliferation activity and extensive necrosis. Phage-Doxil-treated mice did not show any sign of hepatotoxicity and maintained overall health. Therefore, MCF-7-targeted phage-Doxil seems to be an active and tolerable chemotherapy for breast cancer treatment. PMID:24028893

  7. Persistent GP130/STAT3 Signaling Contributes to the Resistance of Doxorubicin, Cisplatin, and MEK Inhibitor in Human Rhabdomyosarcoma Cells

    PubMed Central

    Wu, Xiaojuan; Xiao, Hui; Wang, Ruoning; Liu, Lingling; Li, Chenglong; Lin, Jiayuh

    2016-01-01

    To test the role of STAT3 in human rhabdomyosarcoma cells, genetic approaches were used to either knockdown the expression of STAT3 and GP130, an upstream activator of STAT3 using short hairpin RNA (shRNA) or express persistently active STAT3 protein. Knockdown expression of GP130 or STAT3 sensitized cells to anti-cancer drugs doxorubicin, cisplatin, and MEK inhibitor AZD6244. On the other hand, expression of the constitutively active STAT3 protein reduced the sensitivity of rhabdomyosarcoma cells to those drugs. In addition, we tested a small molecule STAT3 inhibitor LY5 and a GP130 inhibitor bazedoxifene in rhabdomyosarcoma cells. Our data demonstrated that the combination of LY5 or bazedoxifene with doxorubicin, cisplatin, and AZD6244 showed stronger inhibitory effects than single agent alone. In summary, our results demonstrated that GP130/STAT3 signaling contributes to the resistance of these drugs in rhabdomyosarcoma cells. They also suggested a potentially novel cancer therapeutic strategy using the combination of inhibitors of GP130/STAT3 signaling with doxorubicin, cisplatin, or AZD6244 for rhabdomyosarcoma treatments. PMID:26373715

  8. Life on the line: the therapeutic potentials of computer-mediated conversation.

    PubMed

    Miller, J K; Gergen, K J

    1998-04-01

    In what ways are computer networking practices comparable to face-to-face therapy? With the exponential increase in computer-mediated communication and the increasing numbers of people joining topically based computer networks, the potential for grass-roots therapeutic (or antitherapeutic) interchange is greatly augmented. Here we report the results of research into exchanges on an electronic bulletin board devoted to the topic of suicide. Over an 11-month period participants offered each other valuable resources in terms of validation of experience, sympathy, acceptance, and encouragement. They also asked provocative questions and furnished broad-ranging advice. Hostile entries were rare. However, there were few communiques that parallel the change-inducing practices more frequent within many therapeutic settings. In effect, on-line dialogues seemed more sustaining than transforming. Further limits and potentials of on-line communication are explored. PMID:9583058

  9. The endoplasmic reticulum as a potential therapeutic target in nonalcoholic fatty liver disease

    PubMed Central

    Gentile, Christopher L; Pagliassotti, Michael J

    2008-01-01

    The endoplasmic reticulum (ER) has emerged as a key to understanding the development and consequences of hepatic fat accumulation in nonalcoholic fatty liver disease (NAFLD). An essential function of this organelle is the proper assembly of proteins that are destined for intracellular organelles and the cell surface. Recent evidence suggests that chemical chaperones that enhance the functional capacity of the ER improve liver function in obesity and NAFLD. These chaperones may therefore provide a novel potential therapeutic strategy in NAFLD. PMID:18821470

  10. Selective androgen receptor modulators in drug discovery: medicinal chemistry and therapeutic potential.

    PubMed

    Cadilla, Rodolfo; Turnbull, Philip

    2006-01-01

    Modulation of the androgen receptor has the potential to be an effective treatment for hypogonadism, andropause, and associated conditions such as sarcopenia, osteoporosis, benign prostatic hyperplasia, and sexual dysfunction. Side effects associated with classical anabolic steroid treatments have driven the quest for drugs that demonstrate improved therapeutic profiles. Novel, non-steroidal compounds that show tissue selective activity and improved pharmacokinetic properties have been developed. This review provides an overview of current advances in the development of selective androgen receptor modulators (SARMs).

  11. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    SciTech Connect

    Lai, H.C.; Yeh, Y.C.; Wang, L.C.; Ting, C.T.; Lee, W.L.; Lee, H.W.; Wang, K.Y.; Wu, A.; Su, C.S.; Liu, T.J.

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  12. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  13. Wnt signaling in bone formation and its therapeutic potential for bone diseases

    PubMed Central

    Kim, Jeong Hwan; Liu, Xing; Wang, Jinhua; Chen, Xiang; Zhang, Hongyu; Kim, Stephanie H.; Cui, Jing; Li, Ruidong; Zhang, Wenwen; Kong, Yuhan; Zhang, Jiye; Shui, Wei; Lamplot, Joseph; Rogers, Mary Rose; Zhao, Chen; Wang, Ning; Rajan, Prashant; Tomal, Justin; Statz, Joseph; Wu, Ningning; Luu, Hue H.; Haydon, Rex C.

    2013-01-01

    The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential. PMID:23514963

  14. Pharmacological Properties and Therapeutic Potential of Naringenin: A Citrus Flavonoid of Pharmaceutical Promise.

    PubMed

    Rani, Neha; Bharti, Saurabh; Krishnamurthy, Bhaskar; Bhatia, Jagriti; Sharma, Charu; Kamal, Mohammad Amjad; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Naringenin chemically known as 5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a common dietary polyphenolic constituent of the citrus fruits. It has received considerable attention for pharmaceutical and nutritional development due to potent pharmacological activities and therapeutic potential. Accruing evidence from both in vitro and in vivo studies have unraveled numerous biological targets along with complex underlying mechanisms suggesting possible therapeutic applications of naringenin in various neurological, cardiovascular, gastrointestinal, rheumatological, metabolic and malignant disorders. Functionally, this ameliorative effect of naringenin is primarily attributed to its antiinflammatory (via inhibiting recruitment of cytokines and inflammatory transcription factors) and anti-oxidant (via scavenging of free radicals, bolstering of endogenous antioxidant defense system and metal ion chelation) effects. The present article provides a comprehensive review of the various studies that have evaluated the therapeutic potential of naringenin and its actions at the molecular level. It also summarizes the pharmacokinetic data and issues and challenges involved in pharmaceutical development and suggest that it may be a potential agent for further exploration as well as may be useful as a dietary adjunct in treatment of various human ailments.

  15. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease.

    PubMed

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Shin, Ji-woong; Carter, Janet E; Sakamoto, Toshiro; Jin, Hee Kyung; Bae, Jae-sung

    2010-08-30

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.

  16. Berberine attenuates doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Zhao, X; Zhang, J; Tong, N; Liao, X; Wang, E; Li, Z; Luo, Y; Zuo, H

    2011-01-01

    This study investigated the effects of berberine, a natural alkaloid, on doxorubicin-induced cardiotoxicity in mice. Mice were injected intraperitoneally with saline 10 ml/kg (n = 10), doxorubicin 2.5 mg/kg (n = 10), 60 mg/kg berberine 1 h before doxorubicin 2.5 mg/kg (n = 10), or 60 mg/kg berberine alone (n = 10) every other day for 14 days. Body weight, general condition and mortality were recorded over the 14-day study period. Electro cardiography was performed before the start of treatment and after 14 days and plasma lactate dehydrogenase (LDH) activity was measured after 14 days. At the end of the study period the heart was excised and examined histologically. An increase in mortality, an initial decrease in body weight, increased LDH activity, prolongation of QRS duration and increased myocardial injury were seen in the doxorubicin-treated group compared with the saline control group. These changes were significantly attenuated by pretreatment with berberine. The study suggests that berberine may have a potential protective role against doxorubicin-induced cardiotoxicity in mice. PMID:22117972

  17. Mesenchymal stromal cells as multifunctional cellular therapeutics - a potential role for extracellular vesicles.

    PubMed

    Stephen, Jillian; Bravo, Elena Lopez; Colligan, David; Fraser, Alasdair R; Petrik, Juraj; Campbell, John D M

    2016-08-01

    Mesenchymal stromal cells (MSCs), multipotent cells present in tissues throughout the body, can reconstitute adipogenic, osteogenic and chondrogenic tissues, but are also of great interest as mediators of immune modulation and suppression. MSCs are able to improve transplant engraftment, treat graft versus host disease and suppress T cell responses and therefore have great potential as therapeutic agents. Their immune modulatory capacity is mediated through both cell-to-cell contact and cytokine secretion, but it is becoming clear that extracellular vesicles (EV) produced by MSC also possess immunomodulatory properties. These vesicles are easy to prepare and store, do not carry nuclear material and cannot form tumours, and therefore also represent a highly desirable therapeutic agent. This review outlines the formation and characterisation of extracellular vesicles, the reported function of MSC-EVs in vitro and in vivo, and addresses some of the emerging issues with nomenclature, EV therapeutic dose and tissue source. The development of GMP-grade production protocols and effective characterisation of MSC extracellular vesicles is essential to their successful use as immune modulating therapeutic agents, and this review outlines the current status of the research in this area.

  18. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation.

    PubMed

    Faravelli, Irene; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Zanetta, Chiara; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.

  19. Mesenchymal stromal cells as multifunctional cellular therapeutics - a potential role for extracellular vesicles.

    PubMed

    Stephen, Jillian; Bravo, Elena Lopez; Colligan, David; Fraser, Alasdair R; Petrik, Juraj; Campbell, John D M

    2016-08-01

    Mesenchymal stromal cells (MSCs), multipotent cells present in tissues throughout the body, can reconstitute adipogenic, osteogenic and chondrogenic tissues, but are also of great interest as mediators of immune modulation and suppression. MSCs are able to improve transplant engraftment, treat graft versus host disease and suppress T cell responses and therefore have great potential as therapeutic agents. Their immune modulatory capacity is mediated through both cell-to-cell contact and cytokine secretion, but it is becoming clear that extracellular vesicles (EV) produced by MSC also possess immunomodulatory properties. These vesicles are easy to prepare and store, do not carry nuclear material and cannot form tumours, and therefore also represent a highly desirable therapeutic agent. This review outlines the formation and characterisation of extracellular vesicles, the reported function of MSC-EVs in vitro and in vivo, and addresses some of the emerging issues with nomenclature, EV therapeutic dose and tissue source. The development of GMP-grade production protocols and effective characterisation of MSC extracellular vesicles is essential to their successful use as immune modulating therapeutic agents, and this review outlines the current status of the research in this area. PMID:27452645

  20. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery

    PubMed Central

    Cochran, Michael C.; Eisenbrey, John; Ouma, Richard O.; Soulen, Michael; Wheatley, Margaret A.

    2011-01-01

    A polymer ultrasound contrast agent (UCA) developed in our lab has been shown to greatly reduce in size when exposed to ultrasound, resulting in nanoparticles less than 400 nm in diameter capable of escaping the leaky vasculature of a tumor to provide a sustained release of drug. Previous studies with the hydrophilic drug doxorubicin (DOX) demonstrated enhanced drug delivery to tumors when triggered with ultrasound. However the therapeutic potential has been limited due to the relatively low payload of DOX. This study compares the effects of loading the hydrophobic drug paclitaxel (PTX) on the agent’s acoustic properties, drug payload, tumoricidal activity, and the ability to deliver drugs through 400 nm pores. A maximum payload of 129.46 ± 1.80 μg PTX/mg UCA (encapsulation efficiency 71.92 ± 0.99 %) was achieved, 20 times greater than the maximum payload of DOX (6.2 μg/mg), while maintaining the acoustic properties. In vitro, the tumoricidal activity of paclitaxel loaded UCA exposed to ultrasound was significantly greater than controls not exposed to ultrasound (p<0.0016). This study has shown that PTX loaded UCA triggered with focused ultrasound have the potential to provide a targeted and sustained delivery of drug to tumors. PMID:21609756

  1. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin.

    PubMed

    Jain, Ashay; Kesharwani, Prashant; Garg, Neeraj K; Jain, Atul; Jain, Som Akshay; Jain, Amit Kumar; Nirbhavane, Pradip; Ghanghoria, Raksha; Tyagi, Rajeev Kumar; Katare, Om Prakash

    2015-10-01

    The present investigation reports the preparation, optimization, and characterization of surface engineered solid lipid nanoparticles (SLNs) encapsulated with doxorubicin (DOX). Salient features such as biocompatibility, controlled release, target competency, potential of penetration, improved physical stability, low cost and ease of scaling-up make SLNs viable alternative to liposomes for effective drug delivery. Galactosylation of SLNs instructs some gratifying characteristic, which leads to the evolution of promising delivery vehicles. The impendence of lectin receptors on different cell surfaces makes the galactosylated carriers admirable for targeted delivery of drugs to ameliorate their therapeutic index. Active participation of some lectin receptors in immune responses to antigen overlaid the application of galactosylated carriers in delivery of antigen and immunotherapy for treatment of maladies like cancer. These advantages revealed the promising potential of galactosylated carriers in each perspective of drug delivery. The developed DOX loaded galactosylated SLNs formulation was found to have particle size 239 ± 2.40 nm, PDI 0.307 ± 0.004, entrapment efficiency 72.3 ± 0.9%. Higher cellular uptake, cytotoxicity, and nuclear localization of galactosylated SLNs against A549 cells revealed higher efficiency of the formulation. In a nutshell, the galactosylation strategy with SLNs could be a promising approach in improving the delivery of DOX for cancer therapy. PMID:26142628

  2. Sinus node dysfunction in catecholaminergic polymorphic ventricular tachycardia: risk factor and potential therapeutic target?

    PubMed

    Faggioni, Michela; van der Werf, Christian; Knollmann, Bjorn C

    2014-10-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited heart rhythm disorder characterized by the occurrence of potentially life-threatening polymorphic ventricular tachyarrhythmias in conditions of physical or emotional stress. The underlying cause is a dysregulation in intracellular Ca handling due to mutations in the sarcoplasmic reticulum Ca release unit. Recent experimental work suggests that sinus bradycardia, which is sometimes observed in CPVT patients, may be another primary defect caused by CPVT mutations. Herein, we review the pathophysiology of CPVT and discuss the role of sinus node dysfunction as a modulator of arrhythmia risk and potential therapeutic target.

  3. Sinus node dysfunction in catecholaminergic polymorphic ventricular tachycardia – risk factor and potential therapeutic target?

    PubMed Central

    Faggioni, Michela; van der Werf, Christian; Knollmann, Bjorn

    2014-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited rhythm disorder characterized by the occurrence of potentially life-threatening polymorphic ventricular tachyarrhythmias in conditions of physical or emotional stress. The underlying cause is a dysregulation in intracellular Ca handling due to mutations in the sarcoplasmic reticulum Ca release channel. Recent experimental work suggests that the sinus bradycardia that is sometimes observed in CPVT patients may be another primary defect caused by CPVT mutations. Here, we review the pathophysiology of CPVT and discuss the role of sinus node dysfunction as a modulator of arrhythmia risk and potential therapeutic target. PMID:25112803

  4. Doxorubicin induced dilated cardiomyopathy in a rabbit model: an update.

    PubMed

    Gava, Fábio N; Zacché, Evandro; Ortiz, Edna M G; Champion, Tatiana; Bandarra, Marcio B; Vasconcelos, Rosemeri O; Barbosa, José C; Camacho, Aparecido A

    2013-02-01

    Dilated cardiomyopathy (DCM) is characterized by chamber dilation and cardiac dysfunction. Because of the poor prognosis, models are needed for the investigation of and development of new therapeutic approaches, as well as stem cell therapy. Doxorubicin (DOX), used as chemotherapeutic agent, is reported to be cumulative cardiotoxic causing DCM. The aim of the study was to investigate the onset of systolic dysfunction using echocardiography in rabbits receiving two different doses of DOX (1mg/kg twice a week and 2 mg/kg once a week). Twenty rabbits were treated with doxorubicin in two different doses for 6 weeks and compared with a control group treated with NaCl 0.9%. The effect of doxorubicin on the myocardium was investigated with histological analysis and scanning electron microscopy of left ventricle (LV), as well as in the interventricular septum (IVS) and right ventricle (RV). The results showed a high mortality rate for rabbits receiving 2 mg/kg once a week. A significant reduction in systolic function was present in animals treated with DOX after 6 weeks, with decreased ejection fraction and shortening fraction. Histology and electron microscopy revealed vacuolization, intracytoplasmic granulation, necrosis and interstitial fibrosis in LV, as well as in the IVS and RV. Doxorubicin induced changes are present in the LV, RV and IVS, and the administration at the dose of 1 mg/kg twice a week for only 6 weeks is safe and sufficient to induce DCM in rabbits.

  5. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  6. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications

    PubMed Central

    Kasote, Deepak M.; Katyare, Surendra S.; Hegde, Mahabaleshwar V.; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants. PMID:26157352

  7. Gain of BDNF Function in Engrafted Neural Stem Cells Promotes the Therapeutic Potential for Alzheimer's Disease.

    PubMed

    Wu, Cheng-Chun; Lien, Cheng-Chang; Hou, Wen-Hsien; Chiang, Po-Min; Tsai, Kuen-Jer

    2016-01-01

    Stem cell-based therapy is a potential treatment for neurodegenerative diseases, but its application to Alzheimer's disease (AD) remains limited. Brain-derived neurotrophic factor (BDNF) is critical in the pathogenesis and treatment of AD. Here, we present a novel therapeutic approach for AD treatment using BDNF-overexpressing neural stem cells (BDNF-NSCs). In vitro, BDNF overexpression was neuroprotective to beta-amyloid-treated NSCs. In vivo, engrafted BDNF-NSCs-derived neurons not only displayed the Ca(2+)-response fluctuations, exhibited electrophysiological properties of mature neurons and integrated into local brain circuits, but recovered the cognitive deficits. Furthermore, BDNF overexpression improved the engrafted cells' viability, neuronal fate, neurite complexity, maturation of electrical property and the synaptic density. In contrast, knockdown of the BDNF in BDNF-NSCs diminished stem cell-based therapeutic efficacy. Together, our findings indicate BDNF overexpression improves the therapeutic potential of engrafted NSCs for AD via neurogenic effects and neuronal replacement, and further support the feasibility of NSC-based ex vivo gene therapy for AD. PMID:27264956

  8. Potential therapeutic utility of mesenchymal stem cells in inflammatory bowel disease in mice.

    PubMed

    Abdel Salam, Ahmed G; Ata, Hazem M; Salman, Tarek M; Rashed, Laila A; Sabry, Dina; Schaalan, Mona F

    2014-10-01

    Mesenchymal stem cells (MSCs) were found to provide an effective therapeutic role in inflammatory diseases by modulating inflammatory responses and tissue regeneration by their differentiation ability. The present work sought to demonstrate the potential therapeutic use of MSCs in treating chronic inflammatory bowel disease (IBD) in mice. A new model to induce chronic IBD based on alternative administration periods of Dextran Sodium Sulfate (DSS) was established. Mice were divided into 2 groups; one was treated with MSCs and the other was treated with phosphate-buffered saline (PBS). Assessment of therapeutic efficacy of MSCs was by measuring weight, stool scoring, histopathological examination, and measuring the gene expression of inflammatory markers: Interleukin-23 (IL-23), Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), and Intercellular adhesion molecule-1 (ICAM-1). The results showed that DSS administration causes bloody and watery stool, weight loss, and altered histopathologic picture. MSC treated mice showed a significant improvement in stool condition, weight gain, and normal histopathologic picture compared to the PBS treated mice. Moreover, gene expressions of inflammatory markers in the intestines of the MSC treated mice were also significantly lower than those of the PBS treated mice. In conclusion, the data here showed that MSCs have a clear potential efficacy in the treatment for IBD, as their immune modulation effects include inhibition in the expression of key inflammatory markers that each plays an important role in the pathogenesis of IBD.

  9. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor.

    PubMed

    Valvona, Cara J; Fillmore, Helen L; Nunn, Peter B; Pilkington, Geoffrey J

    2016-01-01

    There are over 120 types of brain tumor and approximately 45% of primary brain tumors are gliomas, of which glioblastoma multiforme (GBM) is the most common and aggressive with a median survival rate of 14 months. Despite progress in our knowledge, current therapies are unable to effectively combat primary brain tumors and patient survival remains poor. Tumor metabolism is important to consider in therapeutic approaches and is the focus of numerous research investigations. Lactate dehydrogenase A (LDHA) is a cytosolic enzyme, predominantly involved in anaerobic and aerobic glycolysis (the Warburg effect); however, it has multiple additional functions in non-neoplastic and neoplastic tissues, which are not commonly known or discussed. This review summarizes what is currently known about the function of LDHA and identifies areas that would benefit from further exploration. The current knowledge of the role of LDHA in the brain and its potential as a therapeutic target for brain tumors will also be highlighted. The Warburg effect appears to be universal in tumors, including primary brain tumors, and LDHA (because of its involvement with this process) has been identified as a potential therapeutic target. Currently, there are, however, no suitable LDHA inhibitors available for tumor therapies in the clinic.

  10. Significance of antioxidant potential of plants and its relevance to therapeutic applications.

    PubMed

    Kasote, Deepak M; Katyare, Surendra S; Hegde, Mahabaleshwar V; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants.

  11. Polymodal Transient Receptor Potential Vanilloid Type 1 Nocisensor: Structure, Modulators, and Therapeutic Applications.

    PubMed

    Cui, Minghua; Gosu, Vijayakumar; Basith, Shaherin; Hong, Sunhye; Choi, Sun

    2016-01-01

    Transient receptor potential (TRP) channels belong to a superfamily of sensory-related ion channels responding to a wide variety of thermal, mechanical, or chemical stimuli. In an attempt to comprehend the piquancy and pain mechanism of the archetypal vanilloids, transient receptor potential vanilloid (TRPV) 1 was discovered. TRPV1, a well-established member of the TRP family, is implicated in a range of functions including inflammation, painful stimuli sensation, and mechanotransduction. TRPV1 channels are nonselective cation receptors that are gated by a broad array of noxious ligands. Such polymodal-sensor aspect makes the TRPV1 channel extremely versatile and important for its role in sensing burning pain. Besides ligands, TRPV1 signaling can also be modulated by lipids, secondary messengers, protein kinases, cytoskeleton, and several other proteins. Due to its central role in hyperalgesia transduction and inflammatory processes, it is considered as the primary pharmacological pain target. Moreover, understanding the structural and functional intricacies of the channel is indispensable for the therapeutic intervention of TRPV1 in pain and other pathological disorders. In this chapter, we seek to give a mechanistic outlook on the TRPV1 channel. Specifically, we will explore the TRPV1 structure, activation, modulation, ligands, and its therapeutic targeting. However, the major objective of this review is to highlight the fact that TRPV1 channel can be treated as an effective therapeutic target for treating several pain- and nonpain-related physiological and pathological states. PMID:27038373

  12. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    PubMed Central

    Zamponi, Gerald W.; Striessnig, Joerg; Koschak, Alexandra

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type CaV1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (CaV3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (CaV2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., CaV1.2 and CaV1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective CaV1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson’s disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and

  13. Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery.

    PubMed

    Strong, Laura E; Dahotre, Shreyas N; West, Jennifer L

    2014-03-28

    A poly(N-isopropylacrylamide-co-acrylamide) (NIPAAm-co-AAm) hydrogel with near-infrared (NIR) absorbing silica-gold nanoshells was designed as a platform for pulsatile delivery of cancer therapeutics. This hydrogel was designed to have a lower critical solution temperature (LCST) above physiologic temperature, such that the material will transition from a hydrated state to a collapsed state above ~40°C. Additionally, the silica-gold nanoshells used were designed to have a peak extinction coefficient in the NIR, where penetration of light through tissue is maximal. This heat-triggered material phase transition of the composite was found to follow exposure of NIR light, indicating the ability of the NIR absorption by the nanoshells to sufficiently drive this transition. The composite material was loaded with either doxorubicin or a DNA duplex (a model nucleic acid therapeutic), two cancer therapeutics with differing physical and chemical properties. Release of both therapeutics was dramatically enhanced by NIR light exposure, causing 2-5x increase in drug release. Drug delivery profiles were influenced by both the molecular size of the drug as well as its chemical properties. The DNA therapeutic showed slower rates of nonspecific delivery by passive diffusion due to its larger size. Additionally, only 70% of the more hydrophobic doxorubicin was released from the material, whereas the more hydrophilic DNA showed over 90% release. Further, hydrogel composites were used to deliver the doxorubicin to CT.26-WT colon carcinoma cells, eliciting a therapeutic response. This work validates the potential application for this material in site-specific cancer therapeutic delivery.

  14. Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery.

    PubMed

    Strong, Laura E; Dahotre, Shreyas N; West, Jennifer L

    2014-03-28

    A poly(N-isopropylacrylamide-co-acrylamide) (NIPAAm-co-AAm) hydrogel with near-infrared (NIR) absorbing silica-gold nanoshells was designed as a platform for pulsatile delivery of cancer therapeutics. This hydrogel was designed to have a lower critical solution temperature (LCST) above physiologic temperature, such that the material will transition from a hydrated state to a collapsed state above ~40°C. Additionally, the silica-gold nanoshells used were designed to have a peak extinction coefficient in the NIR, where penetration of light through tissue is maximal. This heat-triggered material phase transition of the composite was found to follow exposure of NIR light, indicating the ability of the NIR absorption by the nanoshells to sufficiently drive this transition. The composite material was loaded with either doxorubicin or a DNA duplex (a model nucleic acid therapeutic), two cancer therapeutics with differing physical and chemical properties. Release of both therapeutics was dramatically enhanced by NIR light exposure, causing 2-5x increase in drug release. Drug delivery profiles were influenced by both the molecular size of the drug as well as its chemical properties. The DNA therapeutic showed slower rates of nonspecific delivery by passive diffusion due to its larger size. Additionally, only 70% of the more hydrophobic doxorubicin was released from the material, whereas the more hydrophilic DNA showed over 90% release. Further, hydrogel composites were used to deliver the doxorubicin to CT.26-WT colon carcinoma cells, eliciting a therapeutic response. This work validates the potential application for this material in site-specific cancer therapeutic delivery. PMID:24462898

  15. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy.

    PubMed

    Krens, Stefanie D; McLeod, Howard L; Hertz, Daniel L

    2013-04-01

    The taxanes are a class of chemotherapeutic agents that are widely used in the treatment of various solid tumors. Although taxanes are highly effective in cancer treatment, their use is associated with serious complications attributable to large interindividual variability in pharmacokinetics and a narrow therapeutic window. Unpredictable toxicity occurrence necessitates close patient monitoring while on therapy and adverse effects frequently require decreasing, delaying or even discontinuing taxane treatment. Currently, taxane dosing is based primarily on body surface area, ignoring other factors that are known to dictate variability in pharmacokinetics or outcome. This article discusses three potential strategies for individualizing taxane treatment based on patient information that can be collected before or during care. The clinical implementation of pharmacogenetics, enzyme probes or therapeutic drug monitoring could enable clinicians to personalize taxane treatment to enhance efficacy and/or limit toxicity.

  16. Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials.

    PubMed

    Seo, Jung Hwa; Cho, Sung-Rae

    2012-11-01

    Stem cells are emerging as therapeutic candidates in a variety of diseases because of their multipotent capacities. Among these, mesenchymal stem cells (MSCs) derived from bone marrow, umbilical cord blood or adipose tissue, comprise a population of cells that exhibit extensive proliferative potential and retain the ability to differentiate into multiple tissue-specific lineage cells including osteoblasts, chondrocytes, and adipocytes. MSCs have also been shown to enhance neurological recovery, although the therapeutic effects seem to be derived from an indirect paracrine effect rather than direct cell replacement. MSCs secrete neurotrophic factors, promote endogenous neurogenesis and angiogenesis, encourage synaptic connection and remyelination of damaged axons, decrease apoptosis, and regulate inflammation primarily through paracrine actions. Accordingly, MSCs may prevail as a promising cell source for cell-based therapy in neurological diseases.

  17. Potential Therapeutic Strategies for Alzheimer's Disease Targeting or Beyond β-Amyloid: Insights from Clinical Trials

    PubMed Central

    Jia, Qiutian; Qing, Hong

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease. PMID:25136630

  18. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation

    PubMed Central

    Kennedy, Kelly M; Dewhirst, Mark W

    2010-01-01

    Tumor metabolism consists of complex interactions between oxygenation states, metabolites, ions, the vascular network and signaling cascades. Accumulation of lactate within tumors has been correlated with poor clinical outcomes. While its production has negative implications, potentially contributing to tumor progression, the implications of the ability of tumors to utilize lactate can offer new therapeutic targets for the future. Monocarboxylate transporters (MCTs) of the SLC16A gene family influence substrate availability, the metabolic path of lactate and pH balance within the tumor. CD147, a chaperone to some MCT subtypes, contributes to tumor progression and metastasis. The implications and consequences of lactate utilization by tumors are currently unknown; therefore future research is needed on the intricacies of tumor metabolism. The possibility of metabolic modification of the tumor microenvironment via regulation or manipulation of MCT1 and CD147 may prove to be promising avenues of therapeutic options. PMID:20021214

  19. PIAS3 may represent a potential biomarker for diagnosis and therapeutic of human colorectal cancer.

    PubMed

    Li, Heping; Gao, Hua; Bijukchhe, Sunil Man; Wang, Yunhai; Li, Tao

    2013-12-01

    Colorectal cancer (CRC) is a challenging problem both for the developed and underdeveloped countries. Despite numerous improvements in early diagnosis and treatment, the incidence and mortality is still keeping in a high level. Molecule targeted therapy has drawn much attention as next generation anticancer agents for diagnosis and therapeutic of CRC. Protein Inhibitor of Activated Signal Transducer and Activators of Transcription 3 (PIAS3) as a novel biomarker has been focused to have a role in the development of malignancy, which was expressed at a higher level in most common malignancies compared with corresponding normal tissues. Furthermore, evidences suggest that the expression of PIAS3 can affect the growth of cancer cells by inhibiting the JAK/STAT and PI3-K/Akt signaling pathways or regulating its SUMO (small-ubiquitin like modifiers) ligase activity in some malignancy. Therefore, we hypothesized that PIAS3 may be a potential biomarker target for early cancer detection and therapeutic of human CRC.

  20. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets?

    PubMed Central

    Donnelly, Christopher J; Grima, Jonathan C; Sattler, Rita

    2015-01-01

    Summary Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron degeneration. The disease pathogenesis is multifaceted in that multiple cellular and molecular pathways have been identified as contributors to the disease progression. Consequently, numerous therapeutic targets have been pursued for clinical development, unfortunately with little success. The recent discovery of mutations in RNA modulating genes such as TARDBP/TDP-43, FUS/TLS or C9ORF72 changed our understanding of neurodegenerative mechanisms in ALS and introduced the role of dysfunctional RNA processing as a significant contributor to disease pathogenesis. This article discusses the latest findings on such RNA toxicity pathways in ALS and potential novel therapeutic approaches. PMID:25531686

  1. Animal models of diabetic retinopathy: doors to investigate pathogenesis and potential therapeutics

    PubMed Central

    2013-01-01

    Effective and validated animal models are valuable to investigate the pathogenesis and potential therapeutics for human diseases. There is much concern for diabetic retinopathy (DR) in that it affects substantial number of working population all around the world, resulting in visual deterioration and social deprivation. In this review, we discuss animal models of DR based on different species of animals from zebrafish to monkeys and prerequisites for animal models. Despite criticisms on imprudent use of laboratory animals, we hope that animal models of DR will be appropriately utilized to deepen our understanding on the pathogenesis of DR and to support our struggle to find novel therapeutics against catastrophic visual loss from DR. PMID:23786217

  2. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    PubMed

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges.

  3. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease.

    PubMed

    Mullen, Lisa M; Chamberlain, Giselle; Sacre, Sandra

    2015-05-15

    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets.

  4. Exploring the potential of monoclonal antibody therapeutics for HIV-1 eradication.

    PubMed

    Euler, Zelda; Alter, Galit

    2015-01-01

    The HIV field has seen an increased interest in novel cure strategies. In particular, new latency reversal agents are in development to reverse latency to flush the virus out of its hiding place. Combining these efforts with immunotherapeutic approaches may not only drive the virus out of latency, but allow for the rapid elimination of these infected cells in a "shock and kill" approach. Beyond cell-based approaches, growing interest lies in the potential use of functionally enhanced "killer" monoclonal therapeutics to purge the reservoir. Here we discuss prospects for a monoclonal therapeutic-based "shock and kill" strategy that may lead to the permanent elimination of replication-competent virus, making a functional cure a reality for all patients afflicted with HIV worldwide.

  5. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma

    PubMed Central

    Farra, Rossella; Grassi, Mario; Grassi, Gabriele; Dapas, Barbara

    2015-01-01

    Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and represents the third leading cause of cancer-related death worldwide. Current available therapeutic approaches are poorly effective, especially for the advanced forms of the disease. In the last year, short double stranded RNA molecules termed small interfering RNAs (siRNAs) and micro interfering RNAs (miRNA), emerged as interesting molecules with potential therapeutic value for HCC. The practical use of these molecules is however limited by the identification of optimal molecular targets and especially by the lack of effective and targeted HCC delivery systems. Here we focus our discussion on the most recent advances in the identification of siRNAs/miRNAs molecular targets and on the development of suitable siRNA/miRNAs delivery systems. PMID:26290628

  6. Gestational trophoblastic neoplasia, an ancient disease: new light and potential therapeutic targets.

    PubMed

    Alazzam, Mo'iad; Tidy, John; Hancock, Barry W; Powers, Hilary

    2010-02-01

    Gestational trophoblastic neoplasia is a rare malignancy, which can occur after any type of pregnancy. The incidence varies according to the geographical location and ethnic origin. Although most patients with gestational trophoblastic neoplasia are cured by conventional chemotherapy and surgery, some suffer resistant disease and may die. New therapeutic agents are needed to reduce the toxicity associated with conventional chemotherapy and treat those with resistant or refractory disease. Molecular targeted treatment provides an exciting avenue, however, the biology of gestational trophoblastic neoplasia is not well understood. This review briefly summarises the recent advances in understanding the pathogenesis and molecular biology of this group of diseases and sheds light on molecules that could provide potential therapeutic targets.

  7. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization

    PubMed Central

    Frecska, Ede; Bokor, Petra; Winkelman, Michael

    2016-01-01

    Ayahuasca is an Amazonian psychoactive brew of two main components. Its active agents are β-carboline and tryptamine derivatives. As a sacrament, ayahuasca is still a central element of many healing ceremonies in the Amazon Basin and its ritual consumption has become common among the mestizo populations of South America. Ayahuasca use amongst the indigenous people of the Amazon is a form of traditional medicine and cultural psychiatry. During the last two decades, the substance has become increasingly known among both scientists and laymen, and currently its use is spreading all over in the Western world. In the present paper we describe the chief characteristics of ayahuasca, discuss important questions raised about its use, and provide an overview of the scientific research supporting its potential therapeutic benefits. A growing number of studies indicate that the psychotherapeutic potential of ayahuasca is based mostly on the strong serotonergic effects, whereas the sigma-1 receptor (Sig-1R) agonist effect of its active ingredient dimethyltryptamine raises the possibility that the ethnomedical observations on the diversity of treated conditions can be scientifically verified. Moreover, in the right therapeutic or ritual setting with proper preparation and mindset of the user, followed by subsequent integration of the experience, ayahuasca has proven effective in the treatment of substance dependence. This article has two important take-home messages: (1) the therapeutic effects of ayahuasca are best understood from a bio-psycho-socio-spiritual model, and (2) on the biological level ayahuasca may act against chronic low grade inflammation and oxidative stress via the Sig-1R which can explain its widespread therapeutic indications. PMID:26973523

  8. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.

    PubMed

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-12-01

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ(9)-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca(2+)) increase, etc.), on CBD behavioural effects. PMID:23108553

  9. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.

    PubMed

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-12-01

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ(9)-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca(2+)) increase, etc.), on CBD behavioural effects.

  10. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders

    PubMed Central

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-01-01

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ9-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca2+) increase, etc.), on CBD behavioural effects. PMID:23108553

  11. Therapeutic Potential of Human Adipose-Derived Stem Cells (ADSCs) from Cancer Patients: A Pilot Study

    PubMed Central

    García-Contreras, Marta; Vera-Donoso, César David; Hernández-Andreu, José Miguel; García-Verdugo, José Manuel; Oltra, Elisa

    2014-01-01

    Mesenchymal stem cells from adipose tissue (ADSCs) are an important source of cells for regenerative medicine. The therapeutic effect of culture-expanded adipose derived stem cells has been shown; however, optimal xeno-free culture conditions remain to be determined. Cancer patients, specifically those undergoing invasive surgery, constitute a subgroup of patients who could benefit from autologous stem cell transplantation. Although regenerative potential of their ADSCs could be affected by the disease and/or treatment, we are not aware of any study that has evaluated the therapeutic potential of ADSCs isolated from cancer patients in reference to that of ADSCs derived from healthy subjects. Here we report that ADSCs isolated from subabdominal adipose tissue of patients with urological neoplasms yielded similar growth kinetics, presented equivalent mesenchymal surface markers and showed similar differentiation potential into distinct mesodermal cell lineages: adipocytes, chondroblasts and osteoblasts than ADSCs isolated from adipose tissue of age-matched non-oncogenic participants, all under xeno-free growth culture conditions. Molecular karyotyping of patient expanded ADSCs genomes showed no disease-related alterations indicating their safety. In addition, vesicles <100 nm identified as exosomes (EXOs) which may be at least partly responsible for the attributed therapeutic paracrine effects of the ADSCs were effectively isolated from ADSCs and showed equivalent miRNA content regardless they were derived from cancer patients or non-oncogenic participants indicating that the repair capabilities of xeno-free expanded ADSCs are not compromised by patient condition and therefore their xeno-free culture expanded ADSCs should be suitable for autologous stem cell transplantation in a clinical setting. PMID:25412325

  12. Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects.

    PubMed

    Marco, Eva M; García-Gutiérrez, María S; Bermúdez-Silva, Francisco-Javier; Moreira, Fabricio A; Guimarães, Francisco; Manzanares, Jorge; Viveros, María-Paz

    2011-01-01

    Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.

  13. Endocannabinoid System and Psychiatry: In Search of a Neurobiological Basis for Detrimental and Potential Therapeutic Effects

    PubMed Central

    Marco, Eva M.; García-Gutiérrez, María S.; Bermúdez-Silva, Francisco-Javier; Moreira, Fabricio A.; Guimarães, Francisco; Manzanares, Jorge; Viveros, María-Paz

    2011-01-01

    Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation. PMID:22007164

  14. Prophylactic and Therapeutic Potential of Acetyl-L-carnitine against Acetaminophen-Induced Hepatotoxicity in Mice.

    PubMed

    Alotaibi, Salman A; Alanazi, Abdulrazaq; Bakheet, Saleh A; Alharbi, Naif O; Nagi, Mahmoud N

    2016-01-01

    Prophylactic and therapeutic effects of acetylcarnitine against acetaminophen-induced hepatotoxicity were studied in mice. To evaluate the prophylactic effects of acetylcarnitine, mice were supplemented with acetylcarnitine (2 mmol/kg/day per oral (p.o.) for 5 days) before a single dose of acetaminophen (350 mg/kg intraperitoneal (i.p.)). Animals were sacrificed 6 h after acetaminophen injection. Acetaminophen significantly increased the markers of liver injury, hepatic reactive oxygen species, and nitrate/nitrite, and decreased hepatic glutathione (GSH) and the antioxidant enzymes. Acetylcarnitine supplementation resulted in reversal of all biochemical parameters toward the control values. To explore the therapeutic effects of acetylcarnitine, mice were given a single dose of acetylcarnitine (0.5, 1, and 2 mmol/kg p.o.) 1.5 h after acetaminophen. Animals were sacrificed 6 h after acetaminophen. Acetylcarnitine administration resulted in partial reversal of liver injury only at 2 mmol/kg p.o. At equimolar doses, N-acetylcystiene was superior as therapeutic agent to acetylcarnitine. However, acetylcarnitine potentiated the effect of N-acetylcystiene in the treatment of acetaminophen toxicity. PMID:26265018

  15. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases.

    PubMed

    Basith, Shaherin; Cui, Minghua; Hong, Sunhye; Choi, Sun

    2016-01-01

    Capsaicin is the most predominant and naturally occurring alkamide found in Capsicum fruits. Since its discovery in the 19th century, the therapeutic roles of capsaicin have been well characterized. The potential applications of capsaicin range from food flavorings to therapeutics. Indeed, capsaicin and few of its analogues have featured in clinical research covered by more than a thousand patents. Previous records suggest pleiotropic pharmacological activities of capsaicin such as an analgesic, anti-obesity, anti-pruritic, anti-inflammatory, anti-apoptotic, anti-cancer, anti-oxidant, and neuro-protective functions. Moreover, emerging data indicate its clinical significance in treating vascular-related diseases, metabolic syndrome, and gastro-protective effects. The dearth of potent drugs for management of such disorders necessitates the urge for further research into the pharmacological aspects of capsaicin. This review summarizes the historical background, source, structure and analogues of capsaicin, and capsaicin-triggered TRPV1 signaling and desensitization processes. In particular, we will focus on the therapeutic roles of capsaicin and its analogues in both normal and pathophysiological conditions. PMID:27455231

  16. From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond.

    PubMed

    Padhye, Subhash; Banerjee, Sanjeev; Ahmad, Aamir; Mohammad, Ramzi; Sarkar, Fazlul H

    2008-01-01

    Over many centuries humans have been mining the bounties of nature for discovering substances that have been used for the treatment of all human diseases; many such remedies are useful even today as modern day medicine. Emerging evidence also suggests that the search is still continuing for harnessing active compounds from nature in combating human illnesses although pharmaceutical industries are equally active for synthesizing small molecule compounds as novel therapeutics. The lesson learned over many centuries clearly suggests that further sophisticated search for finding compounds from natural resources together with robust characterization and chemical synthesis will lead to the discovery of novel drugs that may have high therapeutic efficacy against all human diseases including cancer. Black cumin seed (Nigella sativa) oil extracts have been used for many centuries for the treatment of many human illnesses, and more recently the active compound found in black seed oil, viz. thymoquinone (TQ) has been tested for its efficacy against several diseases including cancer. However, further research is needed in order to assess the full potential of TQ as a chemopreventive and/or therapeutic agent against cancers. Here, we have summarized what is known regarding the value of black seed oil and its active compound TQ, and how this knowledge will help us to advance further research in this field by creating awareness among scientists and health professionals in order to appreciate the medicinal value of TQ and beyond.

  17. Prophylactic and Therapeutic Potential of Acetyl-L-carnitine against Acetaminophen-Induced Hepatotoxicity in Mice.

    PubMed

    Alotaibi, Salman A; Alanazi, Abdulrazaq; Bakheet, Saleh A; Alharbi, Naif O; Nagi, Mahmoud N

    2016-01-01

    Prophylactic and therapeutic effects of acetylcarnitine against acetaminophen-induced hepatotoxicity were studied in mice. To evaluate the prophylactic effects of acetylcarnitine, mice were supplemented with acetylcarnitine (2 mmol/kg/day per oral (p.o.) for 5 days) before a single dose of acetaminophen (350 mg/kg intraperitoneal (i.p.)). Animals were sacrificed 6 h after acetaminophen injection. Acetaminophen significantly increased the markers of liver injury, hepatic reactive oxygen species, and nitrate/nitrite, and decreased hepatic glutathione (GSH) and the antioxidant enzymes. Acetylcarnitine supplementation resulted in reversal of all biochemical parameters toward the control values. To explore the therapeutic effects of acetylcarnitine, mice were given a single dose of acetylcarnitine (0.5, 1, and 2 mmol/kg p.o.) 1.5 h after acetaminophen. Animals were sacrificed 6 h after acetaminophen. Acetylcarnitine administration resulted in partial reversal of liver injury only at 2 mmol/kg p.o. At equimolar doses, N-acetylcystiene was superior as therapeutic agent to acetylcarnitine. However, acetylcarnitine potentiated the effect of N-acetylcystiene in the treatment of acetaminophen toxicity.

  18. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.

    PubMed

    Wang, Qi; Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2015-09-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes.

  19. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.

    PubMed

    Wang, Qi; Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2015-09-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  20. From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond

    PubMed Central

    Padhye, Subhash; Banerjee, Sanjeev; Ahmad, Aamir; Mohammad, Ramzi; Sarkar, Fazlul H

    2008-01-01

    Summary Over many centuries humans have been mining the bounties of nature for discovering substances that have been used for the treatment of all human diseases; many such remedies are useful even today as modern day medicine. Emerging evidence also suggests that the search is still continuing for harnessing active compounds from nature in combating human illnesses although pharmaceutical industries are equally active for synthesizing small molecule compounds as novel therapeutics. The lesson learned over many centuries clearly suggests that further sophisticated search for finding compounds from natural resources together with robust characterization and chemical synthesis will lead to the discovery of novel drugs that may have high therapeutic efficacy against all human diseases including cancer. Black cumin seed (Nigella sativa) oil extracts have been used for many centuries for the treatment of many human illnesses, and more recently the active compound found in black seed oil, viz. thymoquinone (TQ) has been tested for its efficacy against several diseases including cancer. However, further research is needed in order to assess the full potential of TQ as a chemopreventive and/or therapeutic agent against cancers. Here, we have summarized what is known regarding the value of black seed oil and its active compound TQ, and how this knowledge will help us to advance further research in this field by creating awareness among scientists and health professionals in order to appreciate the medicinal value of TQ and beyond. PMID:19018291

  1. Latest advances in novel cannabinoid CB2 ligands for drug abuse and their therapeutic potential

    PubMed Central

    Yang, Peng; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    The field of cannabinoid (CB) drug research is experiencing a challenge as the CB1 antagonist Rimonabant, launched in 2006 as an anorectic/anti-obesity drug, was withdrawn from the European market due to the complications of suicide and depression as side effects. There is interest in developing CB2 drugs without CB1 psychotropic side effects for drug-abuse treatment and therapeutic medication. The CB1 receptor was discovered predominantly in the brain, whereas the CB2 is mainly expressed in peripheral cells and tissues, and is involved in immune signal transduction. Conversely, the CB2 receptor was recently detected in the CNS, for example, in the microglial cells and the neurons. While the CB2 neurons activity remains controversial, the CB2 receptor is an attractive therapeutic target for neuropathic pain, immune system, cancer and osteoporosis without psychoactivity. This review addresses CB drug abuse and therapeutic potential with a focus on the most recent advances on new CB2 ligands from the literature as well as patents. PMID:22300098

  2. Molecular pathology and potential therapeutic targets in esophageal basaloid squamous cell carcinoma.

    PubMed

    Saito, Tsuyoshi; Mitomi, Hiroyuki; Yao, Takashi

    2015-01-01

    Basaloid squamous cell carcinoma (BSCC) is a rare and poorly differentiated variant of typical squamous cell carcinoma. Emerging studies show that genetic alterations are more frequent in BSCC than in conventional SCC, and some of which led to the identification of potential therapeutic targets in esophageal BSCC. Approximately half of the esophageal BSCC cases harbor either an EGFR mutation or amplification, and these occur in a mutually exclusive fashion. Therefore, the application of tyrosine kinase inhibitors may be beneficial to esophageal BSCC patients. This tumor is partly characterized by the activation of the Wnt and Hedgehog (HH) signaling pathways. Wnt signaling is activated by SFRP2 promoter hypermethylation and HH signaling is activated by the frequent mutations in PTCH1. Increasing evidence shows that the Wnt signaling pathway is involved in cross-talk with other developmental pathways, including the HH pathway. Therefore, pharmaceutical therapy targeting both the HH and Wnt pathways would be quite effective in patients with esophageal BSCC with highly malignant potential. In this review, we discuss the pathology, prognostic factors, genetic alterations and potential therapeutic targets in BSCC of esophagus. PMID:26045734

  3. Marijuana, endocannabinoids, and epilepsy: potential and challenges for improved therapeutic intervention

    PubMed Central

    Hofmann, Mackenzie E.; Frazier, Charles J.

    2012-01-01

    Phytocannabinoids isolated from the cannabis plant have broad potential in medicine that has been well recognized for many centuries. It is presumed that these lipid soluble signaling molecules exert their effects in both the central and peripheral nervous system in large part through direct interaction with metabotropic cannabinoid receptors. These same receptors are also targeted by a variety of endogenous cannabinoids including 2-arachidonoyl glycerol and anandamide. Significant effort over the last decade has produced an enormous advance in our understanding of both the cellular and the synaptic physiology of endogenous lipid signaling systems. This increase in knowledge has left us better prepared to carefully evaluate the potential for both natural and synthetic cannabinoids in the treatment of a variety of neurological disorders. In the case of epilepsy, long standing interest in therapeutic approaches that target endogenous cannabinoid signaling systems are, for the most part, not well justified by available clinical data from human epileptics. Nevertheless, basic science experiments have clearly indicated a key role for endogenous cannabinoid signaling systems in moment to moment regulation of neuronal excitability. Further it has become clear that these systems can both alter and be altered by epileptiform activity in a wide range of in vitro and in vivo models of epilepsy. Collectively these observations suggest clear potential for effective therapeutic modulation of endogenous cannabinoid signaling systems in the treatment of human epilepsy, and in fact, further highlight key obstacles that would need to be addressed to reach that goal. PMID:22178327

  4. Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease.

    PubMed

    Fisk, Marie; Gajendragadkar, Parag R; Mäki-Petäjä, Kaisa M; Wilkinson, Ian B; Cheriyan, Joseph

    2014-06-01

    p38 mitogen-activated protein kinases (p38 MAPKs) are key signalling molecules that regulate cellular behavior in response to environmental stresses. They regulate pro-inflammatory cytokines and therefore p38 MAPKs are implicated in the pathogenesis of many inflammatory-driven conditions, including atherosclerosis. Therapeutic inhibition of p38 MAPKs to attenuate inflammation has been the focus of comprehensive research in the last 2 decades, following the discovery of p38α as the molecular target of pyrindinyl imidazole compounds, which suppress the cytokines tumor necrosis factor-α and interleukin-1. The potential of p38 MAPK inhibitors was initially explored within archetypal inflammatory conditions such as rheumatoid arthritis and Crohn's disease, but early studies demonstrated poor clinical efficacy and unacceptable side effects. Subsequent clinical trials evaluating different p38 MAPK inhibitor compounds in disease models such as chronic obstructive pulmonary disease (COPD) and atherosclerosis have shown potential clinical efficacy. This review aims to provide succinct background information regarding the p38 MAPK signaling pathway, a focus of p38 MAPKs in disease, and a brief summary of relevant pre-clinical studies. An update of human clinical trial experience encompassing a clinically orientated approach, dedicated to cardiovascular disease follows. It provides a current perspective of the therapeutic potential of p38 MAPK inhibitors in the cardiovascular domain, including safety, tolerability, and pharmacokinetics.

  5. The survivin suppressant YM155 reverses doxorubicin resistance in osteosarcoma

    PubMed Central

    Zhang, Zhuo; Zhang, Yunfeng; Lv, Jiayin; Wang, Jincheng

    2015-01-01

    Doxorubicin (DOX) is one of the widely used chemotherapeutic drugs for the treatment of human osteosarcoma (OS). However, acquisition of DOX resistance is common in patients with OS, leading to local and distant failure. In this study, we demonstrate that survivin expression is significantly upregulated in OS primary tumors compared to paired normal tissue. In addition, survivin expression was further increased in DOX resistant cells (MG63/DOX) as compared to its parent cells (MG63). Thus, we hypothesize that targeting of survivin in OS could reverse the DOX resistant phenotype in tumor cells thereby enhancing the therapeutic efficacy of DOX. We test the efficacy of YM155, a small molecule survivin inhibitor, either as a single agent or in combination with DOX in vitro and in vivo. We found that combination treatment of YM155 and DOX in DOX resistant cells (MG63/DOX) could significantly inhibited cell proliferation and colony formation, induce cell apoptosis and promoted caspase-3, -8, and -9 activity in vitro, and promoted tumor regression in established OS xenograft models. Taken together, the evidence presented here supports the favorable preclinical evaluation that YM155 could overcome DOX the resistance in tumor cells thereby enhancing the effectiveness of DOX in OS, suggesting that YM155 in combination with DOX has potential in the treatment of osteosarcoma. PMID:26770398

  6. iPAD or PADi-'tablets' with therapeutic disease potential?

    PubMed

    Lewis, Huw D; Nacht, Mariana

    2016-08-01

    Over the last five years, a growing body of literature has strengthened the rationale for the involvement of PAD (protein arginine deiminase) enzymes in diverse diseases, through direct roles of citrullination in mechanisms such as neutrophil extracellular trap formation and immune complex formation. The recent development of inhibitors of the PAD family, coupled with the availability of mice genetically deficient in PAD2 or PAD4, has accelerated understanding of the role of these targets in varied disease models. This review surveys the recent literature to confirm the therapeutic potential of PAD inhibitors as a new class of drugs to treat human autoimmune disease. PMID:27372273

  7. Combination therapy of potential gene to enhance oral cancer therapeutic effect

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hsu, Yih-Chih

    2015-03-01

    The epidermal growth factor receptor (EGFR) over-regulation related to uncontrolled cell division and promotes progression in tumor. Over-expression of human epidermal growth factor receptor (EGFR) has been detected in oral cancer cells. EGFR-targeting agents are potential therapeutic modalities for treating oral cancer based on our in vitro study. Liposome nanotechnology is used to encapsulate siRNA and were modified with target ligand to receptors on the surface of tumor cells. We used EGFR siRNA to treat oral cancer in vitro.

  8. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations

    PubMed Central

    Louten, Jennifer; Beach, Michael; Palermino, Kristina; Weeks, Maria; Holenstein, Gabrielle

    2015-01-01

    MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus. PMID:26819546

  9. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease

    PubMed Central

    Grice, Elizabeth A.

    2015-01-01

    A vast diversity of microorganisms, including bacteria, fungi, viruses, and arthropods, colonize the human skin. Culture-independent genomic approaches for identifying and characterizing microbial communities have provided glimpses into the topographical, temporal, and interpersonal complexity that defines the skin microbiome. Identification of changes associated with cutaneous disease, including acne, atopic dermatitis, rosacea, and psoriasis, are being established. In this review, our current knowledge of the skin microbiome in health and disease is discussed, with particular attention to potential opportunities to leverage the skin microbiome as a diagnostic, prognostic, and/or therapeutic tool. PMID:25085669

  10. Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE.

    PubMed

    Das, Nibhriti; Biswas, Bintili; Khera, Rohan

    2013-01-01

    For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE. PMID:23402019

  11. New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones

    PubMed Central

    Spratley, Samantha J.

    2016-01-01

    Missense mutations in the lysosomal hydrolase β‐galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small‐molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27638604

  12. Potential errors in the volume of distribution estimation of therapeutic proteins composed of differently cleared components.

    PubMed

    Richter, Wolfgang F; Grimm, Hans Peter; Theil, Frank-Peter

    2011-10-01

    The volume of distribution at steady state (Vss) of therapeutic proteins is usually assessed by non-compartmental or compartmental pharmacokinetic (PK) analysis wherein errors may arise due to the elimination of therapeutic proteins from peripheral tissues that are not in rapid equilibrium with the sampling compartment (usually blood). Here we explored another potential source of error in the estimation of Vss that is linked to the heterogeneity of therapeutic proteins which may consist of components (e.g. glycosylation variants) with different elimination rates. PK simulations were performed with such hypothetical binary protein mixtures where elimination was assumed to be exclusively from the central compartment. The simulations demonstrated that binary mixtures containing a rapid-elimination component can give rise to pronounced bi-phasic concentration-time profiles. Apparent Vss observed with both non-compartmental and 2-compartmental PK analysis, increased with increasing fraction as well as with increasing elimination rate k ( 10 ) of the rapid-elimination component. Simulation results were complemented by PK analysis of an in vivo study in cynomolgus monkeys with different lots of lenercept, a tumor necrosis factor receptor-immunoglobulin G1 fusion protein, with different heterogeneities. The comparative Vss data for the three lenercept lots with different amounts of rapidly cleared components were consistent with the outcome of our simulations. Both lots with a higher fraction of rapidly cleared components had a statistically significant higher Vss as compared to the reference lot. Overall our study demonstrates that Vss of a therapeutic protein may be overestimated in proteins with differently eliminated components.

  13. New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones.

    PubMed

    Spratley, Samantha J; Deane, Janet E

    2016-11-01

    Missense mutations in the lysosomal hydrolase β-galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small-molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27638604

  14. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis.

    PubMed

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-19

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.

  15. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    PubMed Central

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Huang, Hsiang-Wei; Chi, Hsiang-Cheng; Lin, Yang-Hsiang; Lu, Pei-Hsuan; Lin, Kwang-Huei

    2016-01-01

    Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets. PMID:27322246

  16. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders.

    PubMed

    Chiu, Chi-Tso; Chuang, De-Maw

    2010-11-01

    Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.

  17. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  18. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders

    PubMed Central

    Chiu, Chi-Tso; Chuang, De-Maw

    2011-01-01

    Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium’s therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium’s main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington’s, Alzheimer’s, and Parkinson’s diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium’s neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases. PMID:20705090

  19. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases.

    PubMed

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-03-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  20. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases

    PubMed Central

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-01-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  1. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer's disease

    PubMed Central

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2009-01-01

    Alzheimer's disease (AD) is a devastating neuro-degenerative disorder characterized by the progressive and irreversible loss of memory followed by complete dementia. Despite the disease's high prevalence and great economic and social burden, an explicative etiology or viable cure is not available. Great effort has been made to better understand the disease's pathogenesis, and to develop more effective therapeutic agents. However, success is greatly hampered by the presence of the blood-brain barrier that limits a large number of potential therapeutics from entering the brain. Nanoparticle-mediated drug delivery is one of the few valuable tools for overcoming this impediment and its application as a potential AD treatment shows promise. In this review, the current studies on nanoparticle delivery of chelation agents as possible therapeutics for AD are discussed because several metals are found excessive in the AD brain and may play a role in the disease development. Specifically, a novel approach involving transport of iron chelation agents into and out of the brain by nanoparticles is highlighted. This approach may provide a safer and more effective means of simultaneously reducing several toxic metals in the AD brain. It may also provide insights into the mechanisms of AD pathophysiology, and prove useful in treating other iron-associated neurodegenerative diseases such as Friedreich's ataxia, Parkinson's disease, Huntington's disease and Hallervorden-Spatz Syndrome. It is important to note that the use of nanoparticle-mediated transport to facilitate toxicant excretion from diseased sites in the body may advance nanoparticle technology, which is currently focused on targeted drug delivery for disease prevention and treatment. The application of nanoparticle-mediated drug transport in the treatment of AD is at its very early stages of development and, therefore, more studies are warranted. PMID:19936278

  2. Expression Profiling Identifies Bezafibrate as Potential Therapeutic Drug for Lung Adenocarcinoma

    PubMed Central

    Liu, Xinyan; Yang, Xiaoqin; Chen, Xinmei; Zhang, Yantao; Pan, Xuebin; Wang, Guiping; Ye, Yun

    2015-01-01

    Drug-induced gene expression patterns that invert disease profiles have recently been illustrated to be a new strategy for drug-repositioning. In the present study, we validated this approach and focused on prediction of novel drugs for lung adenocarcinoma (AC), for which there is a pressing need to find novel therapeutic compounds. Firstly, connectivity map (CMap) analysis computationally predicted bezafibrate as a putative compound against lung AC. Then this hypothesis was verified by in vitro assays of anti-proliferation and cell cycle arrest. In silico docking evidence indicated that bezafibrate could target cyclin dependent kinase 2(CDK2), which regulates progression through the cell cycle. Furthermore, we found that bezafibrate can significantly down-regulate the expression of CDK2 mRNA and p-CDK2. Using a nude mice xenograft model, we also found that bezafibrate could inhibit tumor growth of lung AC in vivo. In conclusion, this study proposed bezafibrate as a potential therapeutic option for lung AC patients, illustrating the potential of in silico drug screening. PMID:26535062

  3. Angiogenic cytokines in renovascular disease: do they have potential for therapeutic use?

    PubMed

    Chade, Alejandro R; Stewart, Nicholas

    2013-01-01

    Experimental and clinical studies suggest that the damage of the renal microvascular function and architecture may participate in the early steps of renal injury in chronic renal disease, irrespective of the cause. This supporting evidence has provided the impetus to targeting the renal microvasculature as an attempt to interfere with the progressive nature of the disease process. Chronic renovascular disease is often associated with renal microvascular dysfunction, damage, loss, and defective renal angiogenesis associated with progressive renal dysfunction and damage. It is possible that damage of the renal microvasculature in renovascular disease constitutes an initiating event for renal injury and contributes towards progressive and later on irreversible renal injury. Recent studies have suggested that protection of the renal microcirculation can slow or halt the progression of renal injury in this disease. This brief review will focus on the therapeutic potential and feasibility of using angiogenic cytokines to protect the kidney microvasculature in chronic renovascular disease. There is limited but provocative evidence showing that stimulation of vascular proliferation and repair using vascular endothelial growth factor or hepatocyte growth factor can slow the progression of renal damage, stabilize renal function, and protect the renal parenchyma. Such interventions may potentially constitute a sole strategy to preserve renal function and/or a co-adjuvant tool to improve the success of current therapeutic approaches in renovascular disease. PMID:23428409

  4. Effects and therapeutic potentials of kisspeptin analogs: regulation of the hypothalamic-pituitary-gonadal axis.

    PubMed

    Matsui, Hisanori; Asami, Taiji

    2014-01-01

    The hypothalamic peptide kisspeptin (metastin), the endogenous ligand of the G protein-coupled receptor KISS1R, plays a critical role in controlling GnRH release from hypothalamic GnRH neurons and thereby regulates hypothalamic-pituitary-gonadal functions. Although the therapeutic potential of kisspeptin is attractive, its susceptibility to proteolytic degradation limits its utility. To overcome this, KISS1R agonists or antagonists as peptide analogs or small molecules have been investigated. Kisspeptin analogs have been most extensively studied by reducing the length of the peptide from the original 54 amino acids to 10 amino acids or less and by substituting key amino acid residues. Also, 2 investigational kisspeptin agonist analogs have been evaluated in clinical studies in men; in agreement with animal studies, abrupt elevations in gonadotropin and testosterone levels were observed as an acute effect, followed by rapid reductions in these hormones as a chronic effect. Some studies of small-molecule KISS1R antagonists have also been published. In this review, we present a brief overview on kisspeptin/KISS1R physiology in reproductive functions and summarize the available knowledge of both agonists and antagonists. We also focus on the kisspeptin agonist analogs by summarizing key pharmacological findings from both clinical and preclinical studies, and discuss their potential therapeutic utility.

  5. Therapeutic Potential of Moringa oleifera Leaves in Chronic Hyperglycemia and Dyslipidemia: A Review

    PubMed Central

    Mbikay, Majambu

    2012-01-01

    Moringa oleifera (M. oleifera) is an angiosperm plant, native of the Indian subcontinent, where its various parts have been utilized throughout history as food and medicine. It is now cultivated in all tropical and sub-tropical regions of the world. The nutritional, prophylactic, and therapeutic virtues of this plant are being extolled on the Internet. Dietary consumption of its part is therein promoted as a strategy of personal health preservation and self-medication in various diseases. The enthusiasm for the health benefits of M. oleifera is in dire contrast with the scarcity of strong experimental and clinical evidence supporting them. Fortunately, the chasm is slowly being filled. In this article, I review current scientific data on the corrective potential of M. oleifera leaves in chronic hyperglycemia and dyslipidemia, as symptoms of diabetes and cardiovascular disease (CVD) risk. Reported studies in experimental animals and humans, although limited in number and variable in design, seem concordant in their support for this potential. However, before M. oleifera leaf formulations can be recommended as medication in the prevention or treatment of diabetes and CVD, it is necessary that the scientific basis of their efficacy, the therapeutic modalities of their administration and their possible side effects be more rigorously determined. PMID:22403543

  6. Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors

    PubMed Central

    Gras Navarro, Andrea; Björklund, Andreas T.; Chekenya, Martha

    2015-01-01

    Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach. PMID:25972872

  7. A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses.

    PubMed

    Mercer, Derry K; Robertson, Jennifer; Wright, Kristine; Miller, Lorna; Smith, Shane; Stewart, Colin S; O Neil, Deborah A

    2013-01-01

    Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20-25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide), inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l) and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones.

  8. A Prodrug Approach to the Use of Coumarins as Potential Therapeutics for Superficial Mycoses

    PubMed Central

    Mercer, Derry K.; Robertson, Jennifer; Wright, Kristine; Miller, Lorna; Smith, Shane; Stewart, Colin S.; O′Neil, Deborah A.

    2013-01-01

    Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20–25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide), inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l) and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones. PMID:24260474

  9. Therapeutic potential of cannabidiol against ischemia/reperfusion liver injury in rats.

    PubMed

    Fouad, Amr A; Jresat, Iyad

    2011-11-16

    The therapeutic potential of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated in rats exposed to ischemia/reperfusion liver injury. Ischemia was induced by clamping the pedicle of the left hepatic lobe for 30 min, and cannabidiol (5mg/kg, i.v.) was given 1h following the procedure and every 24h thereafter for 2 days. Ischemia/reperfusion caused significant elevations of serum alanine aminotransferase and hepatic malondialdehyde, tumor necrosis factor-α and nitric oxide levels, associated with significant decrease in hepatic reduced glutathione. Cannabidiol significantly attenuated the deterioration in the measured biochemical parameters mediated by ischemia/reperfusion. Histopathological examination showed that cannabidiol ameliorated ischemia/reperfusion-induced liver damage. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin protein in ischemic/reperfused liver tissue. These results emphasize that cannabidiol represents a potential therapeutic option to protect the liver against hypoxia-reoxygenation injury.

  10. Expression Profiling Identifies Bezafibrate as Potential Therapeutic Drug for Lung Adenocarcinoma.

    PubMed

    Liu, Xinyan; Yang, Xiaoqin; Chen, Xinmei; Zhang, Yantao; Pan, Xuebin; Wang, Guiping; Ye, Yun

    2015-01-01

    Drug-induced gene expression patterns that invert disease profiles have recently been illustrated to be a new strategy for drug-repositioning. In the present study, we validated this approach and focused on prediction of novel drugs for lung adenocarcinoma (AC), for which there is a pressing need to find novel therapeutic compounds. Firstly, connectivity map (CMap) analysis computationally predicted bezafibrate as a putative compound against lung AC. Then this hypothesis was verified by in vitro assays of anti-proliferation and cell cycle arrest. In silico docking evidence indicated that bezafibrate could target cyclin dependent kinase 2(CDK2), which regulates progression through the cell cycle. Furthermore, we found that bezafibrate can significantly down-regulate the expression of CDK2 mRNA and p-CDK2. Using a nude mice xenograft model, we also found that bezafibrate could inhibit tumor growth of lung AC in vivo. In conclusion, this study proposed bezafibrate as a potential therapeutic option for lung AC patients, illustrating the potential of in silico drug screening. PMID:26535062

  11. Alcohol Versus Cannabinoids: A Review of Their Opposite Neuro-Immunomodulatory Effects and Future Therapeutic Potentials

    PubMed Central

    Nair, Madhavan P.; Figueroa, Gloria; Casteleiro, Gianna; Muñoz, Karla; Agudelo, Marisela

    2015-01-01

    Due to the legalization of marijuana and the increased demand for cannabis and alcohol consumption, research efforts highlighting the biomedical consequences of the use of alcohol and cannabinoids are not only relevant to the substance abuse scientific field, but are also of public health interest. Moreover, an overview of the recent literature about alcohol and cannabinoids neuro-immunomodulatory effects highlighting their future therapeutic potentials will provide a significant contribution to science and medicine. Therefore, in the current review, we will first discuss briefly the prevalence of alcohol and marijuana abuse, followed by a discussion on the individual effects of alcohol and cannabinoids on the immune system; then, we will focus on the role of endocannabinoids on the alcohol-induced inflammatory effects. In addition, the review also incorporates cytokine array data obtained from human monocyte-derived dendritic cells, providing a different perspective on the alcohol and cannabinoid abuse divergent effects on cytokine production. The final section will highlight the therapeutic potential of cannabinoid receptors and the novel strategies to treat alcohol dependence as determined by in vitro, in vivo and clinical studies. PMID:26478902

  12. Stromal interactions as regulators of tumor growth and therapeutic response: A potential target for photodynamic therapy?

    PubMed Central

    Celli, Jonathan P.

    2013-01-01

    It has become increasingly widely recognized that the stroma plays several vital roles in tumor growth and development and that tumor-stroma interactions can in many cases account poor therapeutic response. Inspired by an emerging body of literature, we consider the potential role of photodynamic therapy (PDT) for targeting interactions with stromal fibroblasts and mechano-sensitive signaling with the extracellular matrix as a means to drive tumors toward a more therapeutically responsive state and synergize with other treatments. This concept is particularly relevant for cancer of the pancreas, which is characterized by tumors with a profoundly dense, rigid fibrous stroma. Here we introduce new in vitro systems to model interactions between pancreatic tumors and their mechanical microenvironment and restore signaling with stromal fibroblasts. Using one such model as a test bed it is shown here that PDT treatment is able to destroy fibroblasts in an in vitro 3D pancreatic tumor-fibroblast co-culture. These results and the literature suggest the further development of PDT as a potential modality for stromal depletion. PMID:23457416

  13. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness

    PubMed Central

    2011-01-01

    Disrupted in schizophrenia 1 (DISC1) is well established as a genetic risk factor across a spectrum of psychiatric disorders, a role supported by a growing body of biological studies, making the DISC1 protein interaction network an attractive therapeutic target. By contrast, there is a relative deficit of structural information to relate to the myriad biological functions of DISC1. Here, we critically appraise the available bioinformatics and biochemical analyses on DISC1 and key interacting proteins, and integrate this with the genetic and biological data. We review, analyze, and make predictions regarding the secondary structure and propensity for disordered regions within DISC1, its protein-interaction domains, subcellular localization motifs, and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We discuss signaling pathways of high pharmacological potential wherein DISC1 participates, including those involving phosphodiesterase 4 (PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and priority areas can inform future research in the translational and potentially guide the therapeutic processes. PMID:22116789

  14. Monoacylglycerol Lipase: A Novel Potential Therapeutic Target and Prognostic Indicator for Hepatocellular Carcinoma

    PubMed Central

    Zhang, Junyong; Liu, Zuojin; Lian, Zhengrong; Liao, Rui; Chen, Yi; Qin, Yi; Wang, Jinlong; Jiang, Qing; Wang, Xiaobo; Gong, Jianping

    2016-01-01

    Monoacylglycerol lipase (MAGL) is a key enzyme in lipid metabolism that is demonstrated to be involved in tumor progression through both energy supply of fatty acid (FA) oxidation and enhancing cancer cell malignance. The aim of this study was to investigate whether MAGL could be a potential therapeutic target and prognostic indicator for hepatocellular carcinoma (HCC). To evaluate the relationship between MAGL levels and clinical characteristics, a tissue microarray (TMA) of 353 human HCC samples was performed. MAGL levels in HCC samples were closely linked to the degree of malignancy and patient prognosis. RNA interference, specific pharmacological inhibitor JZL-184 and gene knock-in of MAGL were utilized to investigate the effects of MAGL on HCC cell proliferation, apoptosis, and invasion. MAGL played important roles in both proliferation and invasion of HCC cells through mechanisms that involved prostaglandin E2 (PGE2) and lysophosphatidic acid (LPA). JZL-184 administration significantly inhibited tumor growth in mice. Furthermore, we confirmed that promoter methylation of large tumor suppressor kinase 1 (LATS1) resulted in dysfunction of the Hippo signal pathway, which induced overexpression of MAGL in HCC. These results indicate that MAGL could be a potentially novel therapeutic target and prognostic indicator for HCC. PMID:27767105

  15. Therapeutic Potential of Induced Neural Stem Cells for Spinal Cord Injury*

    PubMed Central

    Hong, Jin Young; Lee, Sung Ho; Lee, Seung Chan; Kim, Jong-Wan; Kim, Kee-Pyo; Kim, Sung Min; Tapia, Natalia; Lim, Kyung Tae; Kim, Jonghun; Ahn, Hong-Sun; Ko, Kinarm; Shin, Chan Young; Lee, Hoon Taek; Schöler, Hans R.; Hyun, Jung Keun; Han, Dong Wook

    2014-01-01

    The spinal cord does not spontaneously regenerate, and treatment that ensures functional recovery after spinal cord injury (SCI) is still not available. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) by the forced expression defined transcription factors. Although directly converted iNSCs have been considered to be a cell source for clinical applications, their therapeutic potential has not yet been investigated. Here we show that iNSCs directly converted from mouse fibroblasts enhance the functional recovery of SCI animals. Engrafted iNSCs could differentiate into all neuronal lineages, including different subtypes of mature neurons. Furthermore, iNSC-derived neurons could form synapses with host neurons, thus enhancing the locomotor function recovery. A time course analysis of iNSC-treated SCI animals revealed that engrafted iNSCs effectively reduced the inflammatory response and apoptosis in the injured area. iNSC transplantation also promoted the active regeneration of the endogenous recipient environment in the absence of tumor formation. Therefore, our data suggest that directly converted iNSCs hold therapeutic potential for treatment of SCI and may thus represent a promising cell source for transplantation therapy in patients with SCI. PMID:25294882

  16. Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs

    PubMed Central

    2013-01-01

    Viral vectors have become the best option for the delivery of therapeutic genes in conventional and RNA interference-based gene therapies. The current viral vectors for the delivery of small regulatory RNAs are based on DNA viruses and retroviruses/lentiviruses. Cytoplasmic RNA viruses have been excluded as viral vectors for RNAi therapy because of the nuclear localization of the microprocessor complex and the potential degradation of the viral RNA genome during the excision of any virus-encoded pre-microRNAs. However, in the last few years, the presence of several species of small RNAs (e.g., virus-derived small interfering RNAs, virus-derived short RNAs, and unusually small RNAs) in animals and cell cultures that are infected with cytoplasmic RNA viruses has suggested the existence of a non-canonical mechanism of microRNA biogenesis. Several studies have been conducted on the tick-borne encephalitis virus and on the Sindbis virus in which microRNA precursors were artificially incorporated and demonstrated the production of mature microRNAs. The ability of these viruses to recruit Drosha to the cytoplasm during infection resulted in the efficient processing of virus-encoded microRNA without the viral genome entering the nucleus. In this review, we discuss the relevance of these findings with an emphasis on the potential use of cytoplasmic RNA viruses as vehicles for the efficient delivery of therapeutic small RNAs. PMID:23759022

  17. Therapeutic potential of mesenchymal stem cells to treat Achilles tendon injuries.

    PubMed

    Vieira, M H C; Oliveira, R J; Eça, L P M; Pereira, I S O; Hermeto, L C; Matuo, R; Fernandes, W S; Silva, R A; Antoniolli, A C M B

    2014-12-12

    Rupture of the Achilles tendon diminishes quality of life. The gold-standard therapy is a surgical suture, but this presents complications, including wound formation and inflammation. These complications spurred evaluation of the therapeutic potential of mesenchymal stem cells (MSCs) from adipose tissue. New Zealand rabbits were divided into 6 groups (three treatments with two time points each) evaluated at either 14 or 28 days after surgery: cross section of the Achilles tendon (CSAT); CSAT + Suture; and CSAT + MSC. A comparison between all groups at both time points showed a statistically significant increase in capillaries and in the structural organization of collagen in the healed tendon in the CSAT + Suture and CSAT + MSC groups at the 14-day assessment. Comparison between the two time points within the same group showed a statistically significant decrease in the inflammatory process and an increase in the structural organization of collagen in the CSAT and CSAT + MSC groups. A study of the genomic integrity of the cells suggested a linear correlation between an increase of injuries and culture time. Thus, MSC transplantation is a good alternative for treatment of Achilles tendon ruptures because it may be conducted without surgery and tendon suture and, therefore, has no risk of adverse effects resulting from the surgical wound or inflammation caused by nonabsorbable sutures. Furthermore, this alternative treatment exhibits a better capacity for wound healing and maintaining the original tendon architecture, depending on the arrangement of the collagen fibers, and has important therapeutic potential.

  18. Modulation of Adult Mesenchymal Stem Cells Activity by Toll-Like Receptors: Implications on Therapeutic Potential

    PubMed Central

    DelaRosa, Olga; Lombardo, Eleuterio

    2010-01-01

    Mesenchymal stem cells (MSCs) are of special interest as therapeutic agents in the settings of both chronic inflammatory and autoimmune diseases. Toll-like receptors (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases due to the permanent exposure of the immune system to TLR-specific stimuli. Therefore, MSCs employed in therapy can be potentially exposed to TLR ligands, which may modulate MSC therapeutic potential in vivo. Recent results demonstrate that MSCs are activated by TLR ligands leading to modulation of the differentiation, migration, proliferation, survival, and immunosuppression capacities. However inconsistent results among authors have been reported suggesting that the source of MSCs, TLR stimuli employed or culture conditions play a role. Notably, activation by TLR ligands has not been reported to modulate the “immunoprivileged” phenotype of MSCs which is of special relevance regarding the use of allogeneic MSC-based therapies. In this review, we discuss the available data on the modulation of MSCs activity through TLR signalling. PMID:20628526

  19. Effect of hypobaric hypoxia on cognitive functions and potential therapeutic agents.

    PubMed

    Muthuraju, Sangu; Pati, Soumya

    2014-12-01

    High altitude (HA), defined as approximately 3000-5000 m, considerably alters physiological and psychological parameters within a few hours. Chronic HA-mediated hypoxia (5000 m) results in permanent neuronal damage to the human brain that persists for one year or longer, even after returning to sea level. At HA, there is a decrease in barometric pressure and a consequential reduction in the partial pressure of oxygen (PO2), an extreme environmental condition to which humans are occasionally exposed. This condition is referred to as hypobaric hypoxia (HBH), which represents the most unfavourable characteristics of HA. HBH causes the disruption of oxygen availability to tissue. However, no review article has explored the impact of HBH on cognitive functions or the potential therapeutic agents for HBH. Therefore, the present review aimed to describe the impact of HBH on both physiological and cognitive functions, specifically learning and memory. Finally, the potential therapeutic agents for the treatment of HBH-induced cognitive impairment are discussed. PMID:25941462

  20. Host-defense peptides of the skin with therapeutic potential: From hagfish to human.

    PubMed

    Conlon, J Michael

    2015-05-01

    It is now well established that peptides that were first identified on the basis of their ability to inhibit growth of bacteria and fungi are multifunctional and so are more informatively described as host-defense peptides. In some cases, their role in protecting the organism against pathogenic microorganisms, although of importance, may be secondary. A previous article in the journal (Peptides 2014; 57:67-77) assessed the potential of peptides present in the skin secretions of frogs for development into anticancer, antiviral, immunomodulatory and antidiabetic drugs. This review aims to extend the scope of this earlier article by focusing upon therapeutic applications of host-defense peptides present in skin secretions and/or skin extracts of species belonging to other vertebrate classes (Agnatha, Elasmobranchii, Teleostei, Reptilia, and Mammalia as represented by the human) that supplement their potential role as anti-infectives for use against multidrug-resistant microorganisms.

  1. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    PubMed Central

    Burdon, Tom J.; Paul, Arghya; Noiseux, Nicolas; Prakash, Satya; Shum-Tim, Dominique

    2011-01-01

    During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy. PMID:22046556

  2. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy.

    PubMed

    Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H

    2013-09-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082

  3. DisSim: an online system for exploring significant similar diseases and exhibiting potential therapeutic drugs.

    PubMed

    Cheng, Liang; Jiang, Yue; Wang, Zhenzhen; Shi, Hongbo; Sun, Jie; Yang, Haixiu; Zhang, Shuo; Hu, Yang; Zhou, Meng

    2016-01-01

    The similarity of pair-wise diseases reveals the molecular relationships between them. For example, similar diseases have the potential to be treated by common therapeutic chemicals (TCs). In this paper, we introduced DisSim, an online system for exploring similar diseases, and comparing corresponding TCs. Currently, DisSim implemented five state-of-the-art methods to measure the similarity between Disease Ontology (DO) terms and provide the significance of the similarity score. Furthermore, DisSim integrated TCs of diseases from the Comparative Toxicogenomics Database (CTD), which can help to identify potential relationships between TCs and similar diseases. The system can be accessed from http://123.59.132.21:8080/DisSim. PMID:27457921

  4. Therapeutic potential of mGluR5 targeting in Alzheimer's disease

    PubMed Central

    Kumar, Anil; Dhull, Dinesh K.; Mishra, Pooja S.

    2015-01-01

    Decades of research dedicated toward Alzheimer's disease (AD) has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD. PMID:26106290

  5. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview.

    PubMed

    Singh, Rajinder; De, Subrata; Belkheir, Asma

    2013-01-01

    The aim of the present review article is to summarize the available information related to the availability, production, chemical composition, pharmacological activity, and traditional uses of Avena sativa to highlight its potential to contribute to human health. Oats are now cultivated worldwide and form an important dietary staple for the people in number of countries. Several varieties of oats are available. It is a rich source of protein, contains a number of important minerals, lipids, β-glucan, a mixed-linkage polysaccharide, which forms an important part of oat dietary fiber, and also contains various other phytoconstituents like avenanthramides, an indole alkaloid-gramine, flavonoids, flavonolignans, triterpenoid saponins, sterols, and tocols. Traditionally oats have been in use since long and are considered as stimulant, antispasmodic, antitumor, diuretic, and neurotonic. Oat possesses different pharmacological activities like antioxidant, anti-inflammatory, wound healing, immunomodulatory, antidiabetic, anticholesterolaemic, etc. A wide spectrum of biological activities indicates that oat is a potential therapeutic agent.

  6. DisSim: an online system for exploring significant similar diseases and exhibiting potential therapeutic drugs

    PubMed Central

    Cheng, Liang; Jiang, Yue; Wang, Zhenzhen; Shi, Hongbo; Sun, Jie; Yang, Haixiu; Zhang, Shuo; Hu, Yang; Zhou, Meng

    2016-01-01

    The similarity of pair-wise diseases reveals the molecular relationships between them. For example, similar diseases have the potential to be treated by common therapeutic chemicals (TCs). In this paper, we introduced DisSim, an online system for exploring similar diseases, and comparing corresponding TCs. Currently, DisSim implemented five state-of-the-art methods to measure the similarity between Disease Ontology (DO) terms and provide the significance of the similarity score. Furthermore, DisSim integrated TCs of diseases from the Comparative Toxicogenomics Database (CTD), which can help to identify potential relationships between TCs and similar diseases. The system can be accessed from http://123.59.132.21:8080/DisSim. PMID:27457921

  7. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    PubMed

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  8. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss

    PubMed Central

    2014-01-01

    Background The resistance of cancerous cells to chemotherapy remains the main limitation for cancer treatment at present. Doxorubicin (DOX) is a potent antitumor drug that activates the ubiquitin-proteasome system, but unfortunately it also activates the Nuclear factor kappa B (NF-кB) pathway leading to the promotion of tumor cell survival. MG132 is a drug that inhibits I kappa B degradation by the proteasome-avoiding activation of NF-кB. In this work, we studied the sensitizing effect of the MG132 proteasome inhibitor on the antitumor activity of DOX. Methods U937 human leukemia cells were treated with MG132, DOX, or both drugs. We evaluated proliferation, viability, apoptosis, caspase-3, -8, and −9 activity and cleavage, cytochrome c release, mitochondrial membrane potential, the Bcl-2 and Bcl-XL antiapoptotic proteins, senescence, p65 phosphorylation, and pro- and antiapoptotic genes. Results The greatest apoptosis percentage in U937 cells was obtained with a combination of MG132 + DOX. Likewise, employing both drugs, we observed a decrease in tumor cell proliferation and important caspase-3 activation, as well as mitochondrial membrane potential loss. Therefore, MG132 decreases senescence, p65 phosphorylation, and the DOX-induced Bcl-2 antiapoptotic protein. The MG132 + DOX treatment induced upregulation of proapoptotic genes BAX, DIABLO, NOXA, DR4, and FAS. It also induced downregulation of the antiapoptotic genes BCL-XL and SURVIVIN. Conclusion MG132 sensitizes U937 leukemia cells to DOX-induced apoptosis, increasing its anti-leukemic effectiveness. PMID:24495648

  9. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    PubMed

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  10. The Therapeutic Potential of Cystathionine β-Synthetase/Hydrogen Sulfide Inhibition in Cancer

    PubMed Central

    Hellmich, Mark R.; Coletta, Ciro; Chao, Celia

    2015-01-01

    Abstract Significance: Cancer represents a major socioeconomic problem; there is a significant need for novel therapeutic approaches targeting tumor-specific pathways. Recent Advances: In colorectal and ovarian cancers, an increase in the intratumor production of hydrogen sulfide (H2S) from cystathionine β-synthase (CBS) plays an important role in promoting the cellular bioenergetics, proliferation, and migration of cancer cells. It also stimulates peritumor angiogenesis inhibition or genetic silencing of CBS exerts antitumor effects both in vitro and in vivo, and potentiates the antitumor efficacy of anticancer therapeutics. Critical Issues: Recently published studies are reviewed, implicating CBS overexpression and H2S overproduction in tumor cells as a tumor-growth promoting “bioenergetic fuel” and “survival factor,” followed by an overview of the experimental evidence demonstrating the anticancer effect of CBS inhibition. Next, the current state of the art of pharmacological CBS inhibitors is reviewed, with special reference to the complex pharmacological actions of aminooxyacetic acid. Finally, new experimental evidence is presented to reconcile a controversy in the literature regarding the effects of H2S donor on cancer cell proliferation and survival. Future Directions: From a basic science standpoint, future directions in the field include the delineation of the molecular mechanism of CBS up-regulation of cancer cells and the delineation of the interactions of H2S with other intracellular pathways of cancer cell metabolism and proliferation. From the translational science standpoint, future directions include the translation of the recently emerging roles of H2S in cancer into human diagnostic and therapeutic approaches. Antioxid. Redox Signal. 22, 424–448. PMID:24730679

  11. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors.

    PubMed

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-05-01

    Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE(-/-)) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE(-/-) mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression.

  12. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors

    PubMed Central

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-01-01

    ABSTRACT Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE−/−) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE−/− mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. PMID:26989193

  13. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis.

    PubMed

    Man, Dede K W; Chow, Michael Y T; Casettari, Luca; Gonzalez-Juarrero, Mercedes; Lam, Jenny K W

    2016-07-01

    Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment.

  14. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  15. Therapeutic potential of Polyalthia cerasoides stem bark extracts against oxidative stress and nociception

    PubMed Central

    Goudarshivananavar, B. C.; Vigneshwaran, V.; Somegowda, Madhusudana; Dharmappa, Kattepura K.; Pramod, Siddanakoppalu N.

    2015-01-01

    Background: Polyalthia cerasoides is a medicinal plant known for its ethnopharmacological importance. Despite this, investigation related to its therapeutic benefit is still unexplored. Aim: To evaluate the stem bark extracts of Polyalthia cerasoides for pharmacological activities relating to inflammation, nociception and oxidative stress using in vivo and in vitro models. Materials and Methods: Pet ether, ethyl acetate and chloroform fractions of the stem bark were evaluated for anti-inflammatory activity by carrageenan-induced hind paw edema in rats. Anti-nociceptive activity in mice was assessed using thermally and chemically induced analgesic models. The free radical quenching potential of the extracts was initially analyzed using the in vitro DPPH photometric assay, Hydroxyl radical scavenging and Lipid Peroxidation assays. Then modulatory effect of the extracts on in vivo antioxidant system was evaluated by carbon tetrachloride induced hepatotoxicity and subsequent measurements of antioxidant enzymes such as Superoxide dismutase, Catalase and Peroxidase from the liver homogenate. Results: Among the tested fractions, ethyl acetate extract had substantially inhibited the inflammation by 68.5% that was induced by subcutaneous carrageenan injection whereas pet ether and chloroform extract showed only minimal inhibitory effect. Investigation of the anti-nociceptive activity revealed that the ethyl acetate fractions had significantly repressed the algesia in both the analgesic experimental models. In vitro and in vivo individual antioxidant assays demonstrated that the ethyl acetate fraction has strong free radical quenching potential which also restores the endogenous hepatic enzymes. Conclusion: The ethyl acetate fraction enriched with flavinoids and steroids from Polyalthia cerasoides stem bark has potent bioactivity to combat inflammation, ROS and pain. This needs further characterization for potential therapeutic applications. PMID:26865738

  16. High-intensity focused ultrasound-mediated doxorubicin delivery with thermosensitive liposomes

    NASA Astrophysics Data System (ADS)

    Escoffre, Jean-Michel; Mannaris, Christophoros; Novell, Anthony; Rioc, Laëtitia; Meyre, Marie-Edith; Germain, Matthieu; Averkiou, Michalakis; Bouakaz, Ayache

    2012-10-01

    Local drug delivery of doxorubicin holds promise to improve the therapeutic efficacy and to reduce toxicity profiles. Here, we investigated the release of doxorubicin from thermosensitive liposomes (Dox-TSL) into human glioblastoma (U-87MG) cells. Using Dox-TSL, experiments were carried out in a water bath and showed that 15 min incubation of TSL at 43°C induced the release of 80% doxorubicin loaded TSL compared to the release at 37°C. The cytotoxicity of a range of concentrations of Dox-TSL was also evaluated on U-87MG cells. At 37°C, no cytotoxicity was observed, whereas at 43°C the results showed that the cytotoxicity is dose dependent. At maximal dose of doxorubicin (30 μg/mL), the cell viability was less than 20%. Application of 15 min of HIFU at 1 MHz, 1.5 MPa and 50% duty cycle induced the release of 100% of doxorubicin from Dox-TSL. In the same experimental condition, the cell viability decreased to 40% and 20% at 12h and 48h, respectively, in comparison to that obtained during the incubation of cells with Dox-TSL alone without HIFU. In conclusion, a significant release of doxorubicin from temperature-sensitive liposomes can be achieved leading to an efficient treatment and cell death of tumor cells using HIFU.

  17. Randomized comparison of cisplatin plus epirubicin or doxorubicin for advanced epithelial ovarian carcinoma. A multicenter trial.

    PubMed

    Homesley, H D; Harry, D S; O'Toole, R V; Hoogstraten, B; Franklin, E W; Cavanagh, D; Nahhas, W A; Smith, J J; Lovelace, J V

    1992-04-01

    Stage III and IV epithelial ovarian cancer patients were prospectively randomized to receive eight courses of 60 mg/m2 of cisplatin plus either 75 mg/m2 of epirubicin (62 patients) or 60 mg/m2 of doxorubicin (54 patients). Clinical response rates for cisplatin/epirubicin of 42% [15% complete response (CR) and 27% partial response (PR)] and for cisplatin/doxorubicin of 55% (24% CR and 31% PR) were not statistically different (p = 0.14). The negative second look rate was 35% (10/29) for cisplatin/doxorubicin and 17% (5/30) for cisplatin/epirubicin (p = 0.12). The progression-free interval for cisplatin/epirubicin (13 months) was not statistically different (p = 0.09) from that for cisplatin/doxorubicin (19 months). The median survivals for cisplatin/epirubicin (756 days) and cisplatin/doxorubicin (739 days) were similar (p = 0.70). Cardiotoxicity was greater for the cisplatin/doxorubicin group (p = 0.0003). With similar survival and less cardiotoxicity, the cisplatin/epirubicin regimen had the more favorable therapeutic index.

  18. Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases

    PubMed Central

    Owaga, Eddy; Hsieh, Rong-Hong; Mugendi, Beatrice; Masuku, Sakhile; Shih, Chun-Kuang; Chang, Jung-Su

    2015-01-01

    Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A–F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn’s disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed. PMID:26340622

  19. Potential Therapeutic Benefit of Combining Gefitinib and Tamoxifen for Treating Advanced Lung Adenocarcinoma

    PubMed Central

    Chiu, Kuo-Liang; Chen, Tzu-Sheng; Chang, Shang-Miao; Yang, Shu-Yun; Chen, Li-Hsiou; Ni, Yung-Lun

    2015-01-01

    Introduction. Epidermal growth factor receptor (EGFR) mutations are known as oncogene driver mutations and with EGFR mutations exhibit good response to the EGFR tyrosine kinase inhibitor Gefitinib. Some studies have shown that activation of estrogen and estrogen receptor α or β (ERα/β) promote adenocarcinoma. We evaluated the relationship between the two receptors and the potential therapeutic benefit with Gefitinib and Tamoxifen. Methods. We assessed the association between EGFR mutations as well as ERα/β expression/location and overall survival in a cohort of 55 patients with LAC from a single hospital. PC9 (EGFR exon 19 deletion mutant; Gefitinib-vulnerable cells) and A549 (EGFR wild type; Gefitinib-resistant cells) cancer cells were used to evaluate the in vitro therapeutic benefits of combining Gefitinib and Tamoxifen. Results. We found that the cytosolic but not the nuclear expression of ERβ was associated with better OS in LAC tumors but not associated with EGFR mutation. The in vitro study showed that combined Gefitinib and Tamoxifen resulted in increased apoptosis and cytosolic expression of ERβ. In addition, combining both medications resulted in reduced cell growth and increased the cytotoxic effect of Gefitinib. Conclusion. Tamoxifen enhanced advanced LAC cytotoxic effect induced by Gefitinib by arresting ERβ in cytosol. PMID:25692143

  20. Direct-acting fibrinolytic enzymes in shark cartilage extract: potential therapeutic role in vascular disorders.

    PubMed

    Ratel, David; Glazier, Geneviève; Provençal, Mathieu; Boivin, Dominique; Beaulieu, Edith; Gingras, Denis; Béliveau, Richard

    2005-01-01

    Fibrinogen and fibrin are molecules with overlapping roles in blood clotting, fibrinolysis, wound healing, inflammation, matrix and cellular interactions and neoplasia. There is currently much interest in the possible use of fibrinolytic agents in human therapeutics. In this study, we report the presence of fibrinolytic activities in shark cartilage extract (SCE). In vitro, SCE at 100 microg/ml completely degraded fibrin gel in an aprotinin-insensitive manner, suggesting a non-plasmin molecular nature. SCE was able to cleave all chains of fibrinogen and fibrin and the cleavage was completely inhibited by 1,10-phenanthroline, suggesting an essential role for metalloprotease(s) in this process. Using fibrinogen zymography, we show that SCE contains two plasmin-independent fibrinolytic activities and that these activities are correlated with the presence of 58 and 62 kDa proteases in the extract. SCE-fibrinolytic activities are inhibited by dithiothreitol, suggesting that disulfide bonds are necessary for the protease structure. Finally, using thromboelastography, SCE markedly induced retraction of human platelet-rich plasma (PRP) clot, this process being completely abolished by 1,10-phenanthroline. These data suggest the presence of novel non-plasmin fibrinolytic activities within SCE. This extract may thus represent a potential source of new therapeutic molecules to prevent and treat vaso-occlusive and thromboembolic disorders. PMID:15567466

  1. Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases.

    PubMed

    Owaga, Eddy; Hsieh, Rong-Hong; Mugendi, Beatrice; Masuku, Sakhile; Shih, Chun-Kuang; Chang, Jung-Su

    2015-01-01

    Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A-F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn's disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed. PMID:26340622

  2. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications.

    PubMed

    Vilema-Enríquez, Gabriela; Arroyo, Aurora; Grijalva, Marcelo; Amador-Zafra, Ricardo Israel; Camacho, Javier

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy.

  3. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications

    PubMed Central

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  4. ERα-Negative and Triple Negative Breast Cancer: Molecular Features and Potential Therapeutic Approaches

    PubMed Central

    Chen, Jin-Qiang; Russo, Jose

    2010-01-01

    Triple negative breast cancer (TNBC) is a type of aggressive breast cancer lacking the expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER-2). TNBC patients account for approximately 15% of total breast cancer patients and are more prevalent among young African, African-American and Latino women patients. The currently available ER-targeted and Her-2-based therapies are not effective for treating TNBC. Recent studies have revealed a number of novel features of TNBC. In the present work, we comprehensively addressed these features and discussed potential therapeutic approaches based on these features for TNBC, with particular focus on: 1) the pathological features of TNBC/basal-like breast cancer; 2) E2/ERβ – mediated signaling pathways; 3) G-protein coupling receptor-30/epithelial growth factor receptor (GPCR-30/EGFR) signaling pathway; 4) interactions of ERβ with breast cancer 1/2 (BRCA1/2); 5) chemokine CXCL8 and related chemokines; 6) altered microRNA signatures and suppression of ERα expression/ERα-signaling by micro-RNAs; 7) altered expression of several pro-oncongenic and tumor suppressor proteins; and 8) genotoxic effects caused by oxidative estrogen metabolites. Gaining better insights into these molecular pathways in TNBC may lead to identification of novel biomarkers and targets for development of diagnostic and therapeutic approaches for prevention and treatment of TNBC. PMID:19527773

  5. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    PubMed

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  6. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications.

    PubMed

    Vilema-Enríquez, Gabriela; Arroyo, Aurora; Grijalva, Marcelo; Amador-Zafra, Ricardo Israel; Camacho, Javier

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  7. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma

    PubMed Central

    Shum, Ka-To; Zhou, Jiehua; Rossi, John J.

    2014-01-01

    Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed. PMID:25057429

  8. Diagnostic and therapeutic potential of new radiopharmaceutical agents in medullary thyroid carcinoma

    SciTech Connect

    Troncone, L.; Rufini, V.; De Rosa, G.; Testa, A.

    1989-01-01

    Recently developed radiopharmaceuticals have been proposed for imaging medullary thyroid carcinoma (MTC) with some having therapeutic potential. This study compares the imaging results obtained with radioiodinated meta-iodo-benzylguanidine (MIBG), {sup 99m}Tc (V) DMSA, and {sup 131}I F(ab')2 anti-carcinoembryonic antigen (anti-CEA) in a group of MTC patients. In 23 patients {sup 131}I MIBG imaging showed a high specificity (no false-positive results) but a less satisfactory sensitivity (50%). In 12 patients {sup 99m}Tc (V) DMSA revealed a better sensitivity (77%) but a lower specificity (three false-positive results). Positive results were obtained in two of three patients studied with {sup 131}I F(ab')2 anti-CEA. These data suggest that the highly sensitive {sup 99m}Tc (V) DMSA should be considered as a first choice procedure followed by the highly specific radioiodinated MIBG to confirm the initial results. Since radioiodinated MIBG imaging may have therapeutic usefulness, {sup 131}I MIBG was evaluated in an integrated treatment protocol in four cases of proven MTC. The preliminary results obtained were encouraging.

  9. Chemopreventive and therapeutic potential of "naringenin," a flavanone present in citrus fruits.

    PubMed

    Mir, Irfan Ahmad; Tiku, Ashu Bhan

    2015-01-01

    Cancer is one of the major causes of deaths in developed countries and is emerging as a major public health burden in developing countries too. Changes in cancer prevalence patterns have been noticed due to rapid urbanization and changing lifestyles. One of the major concerns is an influence of dietary habits on cancer rates. Approaches to prevent cancer are many and chemoprevention or dietary cancer prevention is one of them. Therefore, nutritional practices are looked at as effective types of dietary cancer prevention strategies. Attention has been given to identifying plant-derived dietary agents, which could be developed as a promising chemotherapeutic with minimal toxic side effects. Naringenin, a phytochemical mainly present in citrus fruits and tomatoes, is a frequent component of the human diet and has gained increasing interest because of its positive health effects not only in cancer prevention but also in noncancer diseases. In the last few years, significant progress has been made in studying the biological effects of naringenin at cellular and molecular levels. This review examines the cancer chemopreventive/therapeutic effects of naringenin in an organ-specific format, evaluating its limitations, and its considerable potential for development as a cancer chemopreventive/therapeutic agent.

  10. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    PubMed Central

    2012-01-01

    The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies. PMID:24278740

  11. Therapeutic Strategies for Neuropathic Pain: Potential Application of Pharmacosynthetics and Optogenetics

    PubMed Central

    Lee, Gum Hwa; Kim, Sang Seong

    2016-01-01

    Chronic pain originating from neuronal damage remains an incurable symptom debilitating patients. Proposed molecular modalities in neuropathic pain include ion channel expressions, immune reactions, and inflammatory substrate diffusions. Recent advances in RNA sequence analysis have discovered specific ion channel expressions in nociceptors such as transient receptor potential (TRP) channels, voltage-gated potassium, and sodium channels. G protein-coupled receptors (GPCRs) also play an important role in triggering surrounding immune cells. The multiple protein expressions complicate therapeutic development for neuropathic pain. Recent progress in optogenetics and pharmacogenetics may herald the development of novel therapeutics for the incurable pain. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) facilitate the artificial manipulation of intracellular signaling through excitatory or inhibitory G protein subunits activated by biologically inert synthetic ligands. Expression of excitatory channelrhodopsins and inhibitory halorhodopsins on injured neurons or surrounding cells can attenuate neuropathic pain precisely controlled by light stimulation. To achieve the discrete treatment of injured neurons, we can exploit the transcriptome database obtained by RNA sequence analysis in specific neuropathies. This can recommend the suitable promoter information to target the injury sites circumventing intact neurons. Therefore, novel strategies benefiting from pharmacogenetics, optogenetics, and RNA sequencing might be promising for neuropathic pain treatment in future. PMID:26884648

  12. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design

    PubMed Central

    Thompson, Ruth; Eastman, Alan

    2013-01-01

    Many anticancer agents damage DNA and activate cell cycle checkpoints that permit time for the cells to repair their DNA and recover. These checkpoints have undergone intense investigation as potential therapeutic targets and Chk1 inhibitors have emerged as promising novel therapeutic agents. Chk1 was initially recognized as a regulator of the G2/M checkpoint, but has since been demonstrated to have additional roles in replication fork stability, replication origin firing and homologous recombination. Inhibition of these pathways can dramatically sensitize cells to some antimetabolites. Current clinical trials with Chk1 inhibitors are primarily focusing on their combination with gemcitabine. Here, we discuss the mechanisms of, and emerging uses for Chk1 inhibitors as single agents and in combination with antimetabolites. We also discuss the pharmacodynamic issues that need to be addressed in attaining maximum efficacy in vivo. Following administration of gemcitabine to mice and humans, tumour cells accumulate in S phase for at least 24 h before recovering. In addition, stalled replication forks evolve over time to become more Chk1 dependent. We emphasize the need to assess cell cycle perturbation and Chk1 dependence of tumours in patients administered gemcitabine. These assessments will define the optimum dose and schedule for administration of these drug combinations. PMID:23593991

  13. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis.

    PubMed

    Wang, Shu-Na; Xu, Tian-Ying; Li, Wen-Lin; Miao, Chao-Yu

    2016-06-01

    Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration. PMID:27018006

  14. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design.

    PubMed

    Thompson, Ruth; Eastman, Alan

    2013-09-01

    Many anticancer agents damage DNA and activate cell cycle checkpoints that permit time for the cells to repair their DNA and recover. These checkpoints have undergone intense investigation as potential therapeutic targets and Chk1 inhibitors have emerged as promising novel therapeutic agents. Chk1 was initially recognized as a regulator of the G2/M checkpoint, but has since been demonstrated to have additional roles in replication fork stability, replication origin firing and homologous recombination. Inhibition of these pathways can dramatically sensitize cells to some antimetabolites. Current clinical trials with Chk1 inhibitors are primarily focusing on their combination with gemcitabine. Here, we discuss the mechanisms of, and emerging uses for Chk1 inhibitors as single agents and in combination with antimetabolites. We also discuss the pharmacodynamic issues that need to be addressed in attaining maximum efficacy in vivo. Following administration of gemcitabine to mice and humans, tumour cells accumulate in S phase for at least 24 h before recovering. In addition, stalled replication forks evolve over time to become more Chk1 dependent. We emphasize the need to assess cell cycle perturbation and Chk1 dependence of tumours in patients administered gemcitabine. These assessments will define the optimum dose and schedule for administration of these drug combinations.

  15. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    PubMed

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  16. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    PubMed

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.

  17. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue

    PubMed Central

    Cruz, Maysa Mariana; Cunha, Roberta D. C.; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M. Oller; Pimentel, Gustavo Duarte; dos Santos, Ronaldo V. T.; Lira, Fabio Santos

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  18. Curious (Old and New) Antiviral Nucleoside Analogues with Intriguing Therapeutic Potential.

    PubMed

    De Clercq, Erik

    2015-01-01

    In the current context of antiviral drug development, which has been traditionally dominated by herpesviruses, human immunodeficiency virus (HIV) and hepatitis C virus (HCV), a new viral target has been recently gained unforeseen attention, Ebola virus. Ten nucleoside analogues, or categories thereof, are reviewed for their therapeutic potential as antiviral drugs: (i) BCX4430, a C-nucleoside; (ii) 4'-azido-, 4'-cyano-, and 4'-ethynyl derivatives; (iii) 4'-thionucleosides; (iv) cordycepin (3'-deoxyadeosine); (v) pyrazofurin, another C-nucleoside; (vi) neplanocin A analogues; (vii) EICAR, a ribavirin analogue; (viii) GR-92938X, a double carboxamide; (ix) sofosbuvir (Solvaldi(®)), a 2'-C-methylnucleoside; and (x) favipiravir (T-705), a pyrazine analogue.

  19. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review.

    PubMed

    Ostadhadi, Sattar; Rahmatollahi, Mahdieh; Dehpour, Ahmad-Reza; Rahimian, Reza

    2015-03-01

    Cannabinoids (the active constituents of Cannabis sativa) and their derivatives have got intense attention during recent years because of their extensive pharmacological properties. Cannabinoids first developed as successful agents for alleviating chemotherapy associated nausea and vomiting. Recent investigations revealed that cannabinoids have a wide range of therapeutic effects such as appetite stimulation, inhibition of nausea and emesis, suppression of chemotherapy or radiotherapy-associated bone loss, chemotherapy-induced nephrotoxicity and cardiotoxicity, pain relief, mood amelioration, and last but not the least relief from insomnia. In this exploratory review, we scrutinize the potential of cannabinoids to counteract chemotherapy-induced side effects. Moreover, some novel and yet important pharmacological aspects of cannabinoids such as antitumoral effects will be discussed.

  20. Small-molecule PARP modulators--current status and future therapeutic potential.

    PubMed

    Penning, Thomas D

    2010-09-01

    PARP-1 inhibitors have emerged as a promising therapeutic class of compounds, and numerous PARP inhibitors, including iniparib (BiPar Sciences Inc/sanofi-aventis), olaparib (AstraZeneca plc), veliparib (Abbott Laboratories), PF-1367338 (Pfizer Inc), MK-4827 (Merck & Co Inc) and CEP-9722 (Cephalon Inc), have advanced into clinical trials. Several additional inhibitors are expected to enter clinical trials within the next year. Early investigations with PARP-1 inhibitors involved non-oncological indications, but development has since progressed to focus primarily on oncology, for use both as single chemotherapeutic agents in specific patient populations (eg, BRCA-deficient) and as combination therapies with various chemotherapeutics. This review focuses on new developments in lead clinical PARP inhibitors, recent disclosures of new inhibitors and the potential use of PARP-1 inhibitors in new disease settings.

  1. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies

    PubMed Central

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Liu, Qiangqiang; Lei, Shan; Peng, Rufang

    2016-01-01

    A series of novel hexadentate enterobactin analogues, which contain three catechol chelating moieties attached to different molecular scaffolds with flexible alkyl chain lengths, were prepared. The solution thermodynamic stabilities of the complexes with uranyl, ferric(III), and zinc(II) ions were then investigated. The hexadentate ligands demonstrate effective binding ability to uranyl ion, and the average uranyl affinities are two orders of magnitude higher than 2,3-dihydroxy-N1,N4-bis[(1,2-hydroxypyridinone-6-carboxamide)ethyl]terephthalamide [TMA(2Li-1,2-HOPO)2] ligand with similar denticity. The high affinity of hexadentate ligands could be due to the presence of the flexible scaffold, which favors the geometric agreement between the ligand and the uranyl coordination preference. The hexadentate ligands also exhibit higher antiradical efficiency than butylated hydroxyanisole (BHA). These results provide a basis for further studies on the potential applications of hexadentate ligands as therapeutic chelating agents. PMID:27671769

  2. Potential therapeutic use of antibodies directed towards HuIFN-gamma.

    PubMed

    Froyen, G; Billiau, A

    1997-01-01

    IFN-gamma is an important regulator of immune responses and inflammation. Studies in animal models of inflammation, autoimmunity, cancer, transplant rejection and delayed-type hypersensitivity have indicated that administration of antibodies against IFN-gamma can prevent the occurrence of diseases or alleviate disease manifestations. Therefore, it is speculated that such antibodies may have therapeutical efficacy in human diseases. Since animal-derived antibodies are immunogenic in patients several strategies are being developed in order to reduce or abolish this human anti-mouse antibody (HAMA) response. In our laboratory, we have constructed a single-chain variable fragment (scFv) derived from a mouse antibody with neutralizing potential for human IFN-gamma. A scFv consists of only variable domains tethered together by a flexible linker. The scFv was demonstrated to neutralize the antiviral activity of HuIFN-gamma in vitro and therefore might be considered as a candidate for human therapy.

  3. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    SciTech Connect

    Abubakar, Sani; Isa, Nasiru Fage; Usman, Ahmed Rufa’i; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-24

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  4. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  5. Fucoidan as a Potential Therapeutic for Major Blinding Diseases--A Hypothesis.

    PubMed

    Klettner, Alexa

    2016-02-01

    Fucoidan is a heterogeneous group of sulfated polysaccharide with a high content of l-fucose, which can be extracted from brown algae and marine invertebrates. It has many beneficial biological activities that make fucoidan an interesting candidate for therapeutic application in a variety of diseases. Age-related macular degeneration and diabetic retinopathy are major causes for vision loss and blindness in the industrialized countries and increasingly in the developing world. Some of the characteristics found in certain fucoidans, such as its anti-oxidant activity, complement inhibition or interaction with the Vascular Endothelial Growth factor, which would be of high interest for a potential application of fucoidan in age-related macular degeneration or diabetic retinopathy. However, the possible usage of fucoidan in ophthalmological diseases has received little attention so far. In this review, biological activities of fucoidan that could be of interest regarding these diseases will be discussed.

  6. Therapeutic Potential of Nitroxyl (HNO) Donors in the Management of Acute Decompensated Heart Failure.

    PubMed

    Kemp-Harper, Barbara K; Horowitz, John D; Ritchie, Rebecca H

    2016-09-01

    Heart failure (HF) is a major cause of hospital admission in the Western world, yet there remains a paucity of effective pharmacological management options. With the recent development of synthetic, next-generation nitroxyl (HNO) donors and their progress into clinical trials, it is timely to now provide an update on the therapeutic potential of HNO donors in the management of acute decompensated heart failure. In this article, we summarize current understanding of the pharmacology of HNO (in comparison with its redox sibling, nitric oxide), its spectrum of cardioprotective actions, and efforts to translate these into the clinic. Future research directions for this exciting new class of HF drugs are also considered. PMID:27566478

  7. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Abubakar, Sani; Usman, Ahmed Rufa'i.; Isa, Nasiru Fage; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-01

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  8. Fucoidan as a Potential Therapeutic for Major Blinding Diseases—A Hypothesis

    PubMed Central

    Klettner, Alexa

    2016-01-01

    Fucoidan is a heterogeneous group of sulfated polysaccharide with a high content of l-fucose, which can be extracted from brown algae and marine invertebrates. It has many beneficial biological activities that make fucoidan an interesting candidate for therapeutic application in a variety of diseases. Age-related macular degeneration and diabetic retinopathy are major causes for vision loss and blindness in the industrialized countries and increasingly in the developing world. Some of the characteristics found in certain fucoidans, such as its anti-oxidant activity, complement inhibition or interaction with the Vascular Endothelial Growth factor, which would be of high interest for a potential application of fucoidan in age-related macular degeneration or diabetic retinopathy. However, the possible usage of fucoidan in ophthalmological diseases has received little attention so far. In this review, biological activities of fucoidan that could be of interest regarding these diseases will be discussed. PMID:26848666

  9. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. PMID:25986976

  10. Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential.

    PubMed

    Nazarov, Igor; Lee, Jae W; Soupene, Eric; Etemad, Sara; Knapik, Derrick; Green, William; Bashkirova, Elizaveta; Fang, Xiaohui; Matthay, Michael A; Kuypers, Frans A; Serikov, Vladimir B

    2012-05-01

    We describe human chorionic mesenchymal stem cell (hCMSC) lines obtained from the chorion of human term placenta with high therapeutic potential in human organ pathology. hCMSCs propagated for more than 100 doublings without a decrease in telomere length and with no telomerase activity. Cells were highly positive for the embryonic stem cell markers OCT-4, NANOG, SSEA-3, and TRA-1-60. In vitro, cells could be differentiated into neuron-like cells (ectoderm), adipocytes, osteoblasts, endothelial-like cells (mesoderm), and hepatocytes (endoderm)-derivatives of all three germ layers. hCMSCs effectively facilitated repair of injured epithelium as demonstrated in an ex vivo-perfused human lung preparation injured by Escherichia coli endotoxin and in in vitro human lung epithelial cultures. We conclude that the chorion of human term placenta is an abundant source of multipotent stem cells that are promising candidates for cell-based therapies. PMID:23197815

  11. Drawing trauma: the therapeutic potential of witnessing the child's visual testimony of war.

    PubMed

    Farley, Lisa; Mishra Tarc, Aparna

    2014-10-01

    Countertransference plays an often neglected role in witnessing children's testimony of war and trauma. A dual notion of countertransference, based on the work of Winnicott and Klein, is offered that involves both internal conflict related to early life experience and socially mediated notions of childhood, war, and trauma circulating in a given time and place. A drawing by a thirteen-year-old boy living in the refugee camps in Darfur is used to show how countertransference affects our interpretation of the image, even while its symbolization in language establishes the conditions for a potentially therapeutic response. It is argued that a psychoanalytic reading can supplement the "legal-conscious terminology" in which the Darfur archive has been predominantly framed (Felman 2002, p. 5). This expanded view of witnessing involves reading the child's testimony both for the history of violence it conveys and for the social and emotional histories it calls up in the witness as the ground and possibility of justice.

  12. Multipotent Stromal Stem Cells from Human Placenta Demonstrate High Therapeutic Potential

    PubMed Central

    Nazarov, Igor; Lee, Jae W.; Soupene, Eric; Etemad, Sara; Knapik, Derrick; Green, William; Bashkirova, Elizaveta; Fang, Xiaohui; Matthay, Michael A.; Kuypers, Frans A.

    2012-01-01

    We describe human chorionic mesenchymal stem cell (hCMSC) lines obtained from the chorion of human term placenta with high therapeutic potential in human organ pathology. hCMSCs propagated for more than 100 doublings without a decrease in telomere length and with no telomerase activity. Cells were highly positive for the embryonic stem cell markers OCT-4, NANOG, SSEA-3, and TRA-1–60. In vitro, cells could be differentiated into neuron-like cells (ectoderm), adipocytes, osteoblasts, endothelial-like cells (mesoderm), and hepatocytes (endoderm)—derivatives of all three germ layers. hCMSCs effectively facilitated repair of injured epithelium as demonstrated in an ex vivo-perfused human lung preparation injured by Escherichia coli endotoxin and in in vitro human lung epithelial cultures. We conclude that the chorion of human term placenta is an abundant source of multipotent stem cells that are promising candidates for cell-based therapies. PMID:23197815

  13. The Therapeutic Potential of LRRK2 and α-Synuclein in Parkinson's Disease

    PubMed Central

    Sen, Saurabh

    2009-01-01

    Abstract Current treatments for Parkinson's disease fail to modify disease progression, and the underlying pathogenic mechanisms remain elusive. The identification of specific targets responsible for disease will aid in the development of relevant model systems and the discovery of neuroprotective and neurorestorative therapies. Two promising protein candidates, α-synuclein and LRRK2, offer unique insight into the molecular basis of disease and the potential to intervene in pathogenesis. Although multiple lines of evidence support α-synuclein and LRRK2 as robust targets for therapy, the connection between protein function and neurodegeneration is unclear. Technology capable of mitigating α-synuclein and LRRK2 disease-associated function will ultimately be required before the true value of these proteins as therapeutic targets can be discerned. Antioxid. Redox Signal. 11, 2167–2187. PMID:19271991

  14. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review)

    PubMed Central

    ARMUTCU, FERAH; AKYOL, SUMEYYA; USTUNSOY, SEYFETTIN; TURAN, FATIME FILIZ

    2015-01-01

    Caffeic acid phenethyl ester (CAPE), a naturally occurring compound isolated from propolis extract, has been reported to have a number of biological and pharmacological properties, exerting antioxidant, anti-inflammatory, anticarcinogenic, antibacterial and immunomodulatory effects. Recent in vivo and in vitro study findings have provided novel insights into the molecular mechanisms involved in the anti-inflammatory and immunomodulatory activities of this natural compound. CAPE has been reported to have anti-inflammatory properties involving the inhibition of certain enzyme activities, such as xanthine oxidase, cyclooxygenase and nuclear factor-κB (NF-κB) activation. Since inflammation and immune mechanisms play a crucial role in the onset of several inflammatory diseases, the inhibition of NF-κB represents a rationale for the development of novel and safe anti-inflammatory agents. The primary goal of the present review is to highlight the anti-inflammatory and immunomodulatory activities of CAPE, and critically evaluate its potential therapeutic effects. PMID:26136862

  15. The therapeutic potential of IGF-I in skeletal muscle repair

    PubMed Central

    Song, Yao-Hua; Song, Jenny L.; Delafontaine, Patrice; Godard, Michael P.

    2013-01-01

    Skeletal muscle loss due to aging, motor neuron degeneration, cancer, heart failure and ischemia is a serious condition for which currently there is no effective treatment. Insulin-like growth factor 1 (IGF-I) plays an important role in muscle maintenance and repair. Preclinical studies have shown that IGF-I is involved in increasing muscle mass and strength, reducing degeneration, inhibiting the prolonged and excessive inflammatory process due to toxin injury and increasing the proliferation potential of satellite cells. However, clinical trials have not been successful due to ineffective delivery method. Choosing the appropriate isoforms or peptides and developing targeted delivery techniques can resolve this issue. Here we discuss the latest development in the field with special emphasis on novel therapeutic approaches. PMID:23628587

  16. Potential application of miRNAs as diagnostic and therapeutic tools in chronic pancreatitis

    PubMed Central

    Hu, Liang-Hao; Ji, Jun-Tao; Li, Zhao-Shen

    2015-01-01

    Chronic pancreatitis (CP) is a progressive inflammatory disease typified by end-stage fibrosis. This disease can also increase the risk of pancreatic cancer. The associated diagnosis, pain and other complications further add to the burden of disease management. In recent years, significant progress has been achieved in identifying miRNAs and their physiological functions, including mRNA repression and protein expression control. Given the extensive effort made on miRNA research, a close correlation has been discovered between certain types of miRNAs and disease progression, particularly for tissue fibrosis. Designing miRNA-related tools for disease diagnosis and therapeutic treatments presents a novel and potential research frontier. In the current review, we discuss various miRNAs closely interacting with CP, as well as the possible development of targeted miRNA therapies in managing this disease. PMID:26149296

  17. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome

    PubMed Central

    Braat, Sien; D'Hulst, Charlotte; Heulens, Inge; De Rubeis, Silvia; Mientjes, Edwin; Nelson, David L; Willemsen, Rob; Bagni, Claudia; Van Dam, Debby; De Deyn, Peter P; Kooy, R Frank

    2015-01-01

    Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor. PMID:25790165

  18. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Ketring, Alan R.; Singh, Prahlad R.

    1997-01-01

    A class of diagnostic and therapeutic compounds derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g. .sup.99m Tc or .sup.186 Re/.sup.188 Re) or late transition metals (e.g., .sup.105 Rh or .sup.109 Pd). The complexes with these metals .sup.186 Re/.sup.188 Re, .sup.99m Tc and .sup.109 Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g. Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  19. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies

    NASA Astrophysics Data System (ADS)

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Liu, Qiangqiang; Lei, Shan; Peng, Rufang

    2016-09-01

    A series of novel hexadentate enterobactin analogues, which contain three catechol chelating moieties attached to different molecular scaffolds with flexible alkyl chain lengths, were prepared. The solution thermodynamic stabilities of the complexes with uranyl, ferric(III), and zinc(II) ions were then investigated. The hexadentate ligands demonstrate effective binding ability to uranyl ion, and the average uranyl affinities are two orders of magnitude higher than 2,3-dihydroxy-N1,N4-bis[(1,2-hydroxypyridinone-6-carboxamide)ethyl]terephthalamide [TMA(2Li-1,2-HOPO)2] ligand with similar denticity. The high affinity of hexadentate ligands could be due to the presence of the flexible scaffold, which favors the geometric agreement between the ligand and the uranyl coordination preference. The hexadentate ligands also exhibit higher antiradical efficiency than butylated hydroxyanisole (BHA). These results provide a basis for further studies on the potential applications of hexadentate ligands as therapeutic chelating agents.

  20. Evasins: Therapeutic Potential of a New Family of Chemokine-Binding Proteins from Ticks

    PubMed Central

    Bonvin, Pauline; Power, Christine A.; Proudfoot, Amanda E. I.

    2016-01-01

    Blood-sucking parasites, such as ticks, remain attached to their hosts for relatively long periods of time in order to obtain their blood meal without eliciting an immune response. One mechanism used to avoid rejection is the inhibition of the recruitment of immune cells, which can be achieved by a class of chemokine-binding proteins (CKBPs) known as Evasins. We have identified three distinct Evasins produced by the salivary glands of the common brown dog tick, Rhipicephalus sanguineus. They display different selectivities for chemokines, the first two identified show a narrow selectivity profile, while the third has a broader binding spectrum. The Evasins showed efficacy in animal models of inflammatory disease. Here, we will discuss the potential of their development for therapeutic use, addressing both the advantages and disadvantages that this entails. PMID:27375615

  1. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  2. Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Huang, Heqing

    2014-01-01

    Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315

  3. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential

    PubMed Central

    Zasloff, Michael; Adams, A. Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M.; Weaver, Scott C.; Wong, Gerard C. L.

    2011-01-01

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  4. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential.

    PubMed

    Zasloff, Michael; Adams, A Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Weaver, Scott C; Wong, Gerard C L

    2011-09-20

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  5. A potential therapeutic strategy for inhibition of corneal neovascularization with new anti-VEGF agents.

    PubMed

    Hosseini, Hamid; Nejabat, Mahmood

    2007-01-01

    The factors triggering corneal neovascularization involve various growth factors. The data supporting a causal role for vascular endothelial growth factor (VEGF) in corneal neovascularization are extensive. One possible strategy for treating corneal neovascularization is to inhibit VEGF activity by competitively binding VEGF with a specific neutralizing anti-VEGF antibody. The vireo-retinal service in the recent years enjoyed a high level of success in managing choroidal neovascularization using anti-VEGF strategies. Efficacy and tolerability have been demonstrated for drugs targeting VEGF. We herein hypothesize that topical application of new anti-VEGF agents such as pegaptanib, ranibizumab and bevacizumab are potentially useful for inhibiting corneal neovascularization and restoration of corneal clarity. Further investigations are needed to place these medical treatments alongside corneal neovascularization therapeutics. PMID:17107753

  6. The apelin-APJ axis: A novel potential therapeutic target for organ fibrosis.

    PubMed

    Huang, Shifang; Chen, Linxi; Lu, Liqun; Li, Lanfang

    2016-05-01

    Apelin, an endogenous ligand of the G-protein-coupled receptor APJ, is expressed in a diverse number of organs. The apelin-APJ axis helps to control the processes of pathological and physiological fibrosis, including renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. However, the role of apelin-APJ in organ fibrosis remains controversial due to conflicting study results. The apelin-APJ axis is a detrimental mechanism which promotes liver fibrosis mainly via up-regulation the expression of collagen-II and platelet-derived growth factor receptor β (PDGFRβ). On the contrary, the apelin-APJ axis is beneficial for renal fibrosis, cardiac fibrosis and pulmonary fibrosis. The apelin-APJ axis alleviates renal fibrosis by restraining the expression of transforming growth factor-β1 (TGF-β1). In addition, the apelin-APJ axis attenuates cardiac fibrosis through multiple pathways. Furthermore, the apelin-APJ axis has beneficial effects on experimental bronchopulmonary dysplasia (BPD) and acute respiratory distress syndrome (ARDS) which suggest the apelin-APJ axis potentially alleviates pulmonary fibrosis. In this article, we review the controversies associated with apelin-APJ in organ fibrosis and introduce the drugs that target apelin-APJ. We conclude that future studies should place more emphasis on the relationship among apelin isoforms, APJ receptor subtypes and organ fibrosis. The apelin-APJ axis will be a potential therapeutic target and those drugs targeted for apelin-APJ may constitute a novel therapeutic strategy for renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. PMID:26944568

  7. Therapeutic potential of histaminergic compounds in the treatment of addiction and drug-related cognitive disorders.

    PubMed

    Alleva, Livia; Tirelli, Ezio; Brabant, Christian

    2013-01-15

    Addiction is a behavioral disorder characterized by the compulsive seeking and taking of drugs despite serious negative consequences. In particular, the chronic use of drugs impairs memory and cognitive functions, which aggravates the loss of control over drug use and complicates treatment outcome. Therefore, cognitive enhancers targeting acetylcholine have been proposed to treat addiction. Interestingly, histamine H(3) receptor (H(3)R) antagonists/inverse agonists stimulate acetylcholine transmission in different brain areas, facilitate memory in animal models and can reverse learning deficits induced by drugs such as scopolamine, dizocilpine and alcohol. Moreover, several studies found that compounds capable of activating the histaminergic system generally decrease the reinforcing effects of drugs, namely alcohol and opioids, in preclinical models of addiction. Finally, several H(3)R antagonists/inverse agonists increase histamine in the brain and have proven to be safe in humans. However, no studies have yet investigated the therapeutic potential of cognitive enhancing H(3)R antagonists/inverse agonists in the treatment of addiction in humans. The present review first describes the impact of addictive drugs on learning processes and cognitive functions that play an important role for addicts to remain abstinent. Second, our work briefly summarizes the relevant literature describing the function of histamine in learning, memory and drug addiction. Finally, the potential therapeutic use of histaminergic agents in the treatment of addiction is discussed. Our review suggests that histaminergic compounds like H(3)R antagonists/inverse agonists may improve the treatment outcome of addiction by reversing drug-induced cognitive deficits and/or diminishing the reinforcing properties of addictive drugs, especially opioids and alcohol.

  8. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications.

    PubMed

    Elosta, Abdulhakim; Ghous, Tahseen; Ahmed, Nessar

    2012-03-01

    Diabetes mellitus is characterised by hyperglycaemia, lipidaemia and oxidative stress and predisposes affected individuals to long-term complications afflicting the eyes, skin, kidneys, nerves and blood vessels. Increased protein glycation and the subsequent build-up of tissue advanced glycation endproducts (AGEs) contribute towards the pathogenesis of diabetic complications. Protein glycation is accompanied by generation of free radicals through autoxidation of glucose and glycated proteins and via interaction of AGEs with their cell surface receptors (referred to as RAGE). Glycationderived free radicals can damage proteins, lipids and nucleic acids and contribute towards oxidative stress in diabetes. There is interest in compounds with anti-glycation activity as they may offer therapeutic potential in delaying or preventing the onset of diabetic complications. Although many different compounds are under study, only a few have successfully entered clinical trials but none have yet been approved for clinical use. Whilst the search for new synthetic inhibitors of glycation continues, little attention has been paid to anti-glycation compounds from natural sources. In the last few decades the traditional system of medicine has become a topic of global interest. Various studies have indicated that dietary supplementation with combined anti-glycation and antioxidant nutrients may be a safe and simple complement to traditional therapies targeting diabetic complications. Data for forty two plants/constituents studied for anti-glycation activity is presented in this review and some commonly used medicinal plants that possess anti-glycation activity are discussed in detail including their active ingredients, mechanism of action and therapeutic potential. PMID:22268395

  9. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications.

    PubMed

    Ohta, Shigeo

    2011-01-01

    Persistent oxidative stress is one of the major causes of most lifestyle-related diseases, cancer and the aging process. Acute oxidative stress directly causes serious damage to tissues. Despite the clinical importance of oxidative damage, antioxidants have been of limited therapeutic success. We have proposed that molecular hydrogen (H(2)) has potential as a "novel" antioxidant in preventive and therapeutic applications [Ohsawa et al., Nat Med. 2007: 13; 688-94]. H(2) has a number of advantages as a potential antioxidant: H(2) rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect reactive oxygen species (ROS) that function in cell signaling, thereby, there should be little adverse effects of consuming H(2). There are several methods to ingest or consume H(2), including inhaling hydrogen gas, drinking H(2)-dissolved water (hydrogen water), taking a hydrogen bath, injecting H(2)- dissolved saline (hydrogen saline), dropping hydrogen saline onto the eye, and increasing the production of intestinal H(2) by bacteria. Since the publication of the first H(2) paper in Nature Medicine in 2007, the biological effects of H(2) have been confirmed by the publication of more than 38 diseases, physiological states and clinical tests in leading biological/medical journals, and several groups have started clinical examinations. Moreover, H(2) shows not only effects against oxidative stress, but also various anti-inflammatory and antiallergic effects. H(2) regulates various gene expressions and protein-phosphorylations, though the molecular mechanisms underlying the marked effects of very small amounts of H(2) remain elusive. PMID:21736547

  10. The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics

    NASA Astrophysics Data System (ADS)

    Bowen, Tian; Wafa', T. Al-Jamal; Kostas, Kostarelos

    2014-08-01

    Many studies have recently attempted to develop multifunctional nanoconstructs by integrating the superior fluorescence properties of quantum dots (QD) with therapeutic capabilities into a single vesicle for cancer theranostics. Liposome-quantum dot (L-QD) hybrid vesicles have shown promising potential for the construction of multifunctional nanoconstructs for cancer imaging and therapy. To fulfil such a potential, we report here the further functionalization of L-QD hybrid vesicles with therapeutic capabilities by loading anticancer drug doxorubicin (Dox) into their aqueous core. L-QD hybrid vesicles are first engineered by the incorporation of TOPO-capped, CdSe/ZnS QD into the lipid bilayers of DSPC:Chol:DSPE-PEG2000, followed by Dox loading using the pH-gradient technique. The loading efficiency of Dox into L-QD hybrid vesicles is achieved up to 97%, comparable to liposome control. All these evidences prove that the incorporation of QD into the lipid bilayer does not affect Dox loading through the lipid membrane of liposomes using the pH-gradient technique. Moreover, the release study shows that Dox release profile can be modulated simply by changing lipid composition. In conclusion, the Dox-loaded L-QD hybrid vesicles presented here constitute a promising multifunctional nanoconstruct capable of transporting combinations of therapeutic and diagnostic modalities.

  11. [Selective toxicity of cytostatic agents: studies on the cardiotoxicity of doxorubicin, its pathogenesis and contraindications].

    PubMed

    Lenzhofer, R

    1983-01-01

    In the past few years the medical treatment of malignant diseases has steadily increased in scope and importance. However, the tumor regimens described in the textbooks still are rather schematic recommendations, which are inadequately tailored to the needs of the individual case. Current tumor therapy is based on the results of the statistical analysis using empirical data collected in randomized trials. While patients can today be given a statistical value which expresses their computed chance of a cure versus that of a defined population, there is still no generally valid method which could serve as a rational basis for individualized counselling. But cytostatic chemotherapy has yet another major shortcoming: the collective assessment of toxicity, which is related to one of the basic properties of cytostatic drugs, i.e. their extremely low therapeutic index. Many of the side effects of cytostatics may cause severe irreversible, at times even fatal, organ dysfunction. Consequently, the definition of the therapeutic risks involved on the basis of an objective identification of potential organ toxicity is a major challenge. "Surgery without a knife", as K.H. Spitzy has called chemotherapy, should be subjected to objective criteria for its indications and contraindications so that patients can truly benefit from what are become increasingly aggressive measures. The principle of weighing the benefits desired in the individual case against the potential risks involved in a specific treatment, which Paul Ehrlich postulated for antibacterial chemotherapy, should also be applied to cytostatic chemotherapy with a view to facilitating the decision for or against therapy in borderline cases. The present contribution which is designed to shed light on the cardiotoxicity of doxorubicin should be interpreted in light of this situation. Pathogenetic aspects and animal experiments on drug-induced lipid peroxidation will be discussed and clinical trials on both acute and chronic

  12. The therapeutic potential of orphan GPCRs, GPR35 and GPR55

    PubMed Central

    Shore, Derek M.; Reggio, Patricia H.

    2015-01-01

    The G protein-coupled receptor (GPCR) superfamily of integral proteins is the largest family of signal transducers, comprised of ∼1000 members. Considering their prevalence and functional importance, it’s not surprising that ∼60% of drugs target GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely uncharacterized and poorly understood; specifically, more than 140 GPCRs have unknown endogenous ligands—the so-called orphan GPCRs. Orphan GPCRs offer tremendous promise, as they may provide novel therapeutic targets that may be more selective than currently known receptors, resulting in the potential reduction in side effects. In addition, they may provide access to signal transduction pathways currently unknown, allowing for new strategies in drug design. Regardless, orphan GPCRs are an important area of inquiry, as they represent a large gap in our understanding of signal transduction at the cellular level. Here, we focus on the therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems, including the gastrointestinal tract, liver, immune system, central nervous system, and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in numerous pathologies involving these tissues/systems. While several endogenous ligands have been identified, GPR35/CXCR8 has recently been observed to bind the chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney, and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that GPR55 has been implicated in pathologies involving these tissues/systems. GPR55 was initially deorphanized as a cannabinoid receptor and this receptor does bind many cannabinoid compounds. However, the GPR55 endogenous ligand has been found to be a non

  13. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts.

    PubMed

    Dell'Osso, Liliana; Del Grande, Claudia; Gesi, Camilla; Carmassi, Claudia; Musetti, Laura

    2016-01-01

    Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic-ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties.

  14. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts

    PubMed Central

    Dell’Osso, Liliana; Del Grande, Claudia; Gesi, Camilla; Carmassi, Claudia; Musetti, Laura

    2016-01-01

    Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic–ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties. PMID:27468233

  15. Nanoparticle-conjugated animal venom-toxins and their possible therapeutic potential

    PubMed Central

    Biswas, Archita; Gomes, Aparna; Sengupta, Jayeeta; Datta, Poulami; Singha, Santiswarup; Dasgupta, Anjan Kr; Gomes, Antony

    2012-01-01

    Nano-medical approaches to develop drugs have attracted much attention in different arenas to design nanoparticle conjugates for better efficacy of the potential bio-molecules. A group of promising candidates of this category would be venom-toxins of animal origin of potential medicinal value. Traditional systems of medicine as well as folklores mention the use of venom-toxins for the treatment of various diseases. Research has led to scientific validation of medicinal applications of venoms-toxins and many active constituents derived from venoms-toxins are already in clinical use or under clinical trial. Nanomedicine is an emerging field of medicine where nanotechnology is used to develop molecules of nano-scale dimension, so that these molecules can be taken up by the cells more easily and have better efficacy, as compared to large molecules that may tend to get eliminated. This review will focus on some of the potential venoms and toxins along with nanoparticle conjugated venom-toxins of snakes, amphibians, scorpions and bees, etc., for possible therapeutic clues against emerging diseases. PMID:23236583

  16. The Origin, Biology, and Therapeutic Potential of Facultative Adult Hepatic Progenitor Cells

    PubMed Central

    Shin, Soona; Kaestner, Klaus H.

    2015-01-01

    The liver plays an essential role in glucose and lipid metabolism, synthesis of plasma proteins, and detoxification of xenobiotics and other toxins. Chronic disease of this important organ is one of the leading causes of death in the United States. Following loss of tissue, liver mass can be restored by two mechanisms. Under normal conditions, or after massive loss of parenchyma by surgical resection, liver mass is maintained by division of hepatocytes. After chronic injury, or when proliferation of hepatocytes is impaired, facultative adult hepatic progenitor cells (HPCs) proliferate and differentiate into hepatocytes and cholangiocytes (biliary epithelial cells). HPCs are attractive candidates for cell transplantation because of their potential contribution to liver regeneration. However, until recently, the lack of highly specific markers has hampered efforts to better understand the origin and physiology of HPCs. Recent advances in cell isolation methods and genetic lineage tracing have enabled investigators to explore multiple aspects of HPC biology. In this review, we describe the potential origins of HPCs, the markers used to detect them, the contribution of HPCs to recovery, and the signaling pathways that regulate their biology. We end with an examination of the therapeutic potential of HPCs and their derivatives. PMID:24439810

  17. Retinoic acid and retinoid receptors: potential chemopreventive and therapeutic role in cervical cancer.

    PubMed

    Abu, Jafaru; Batuwangala, Madu; Herbert, Karl; Symonds, Paul

    2005-09-01

    Retinoids are natural and synthetic derivatives of vitamin A, which can be obtained from animal products (milk, liver, beef, fish oils, and eggs) and vegetables (carrots, mangos, sweet potatoes, and spinach). Retinoids regulate various important cellular functions in the body through specific nuclear retinoic-acid receptors and retinoid-X receptors, which are encoded by separate genes. Retinoic-acid receptors specifically bind tretinoin and alitretinoin, whereas retinoid-X receptors bind only alitretinoin. Retinoids have long been established as crucial for several essential life processes-healthy growth, vision, maintenance of tissues, reproduction, metabolism, tissue differentiation (normal, premalignant cells, and malignant cells), haemopoiesis, bone development, spermatogenesis, embryogenesis, and overall survival. Therefore, deficiency of vitamin A can lead to various unwanted biological effects. Several experimental and epidemiological studies have shown the antiproliferative activity of retinoids and their potential use in cancer treatment and chemoprevention. Emerging clinical trials have shown the chemotherapeutic and chemopreventive potential of retinoids in cancerous and precancerous conditions of the uterine cervix. In this review, we explore the potential chemopreventive and therapeutic roles of retinoids in preinvasive and invasive cervical neoplasia.

  18. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts.

    PubMed

    Dell'Osso, Liliana; Del Grande, Claudia; Gesi, Camilla; Carmassi, Claudia; Musetti, Laura

    2016-01-01

    Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic-ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties. PMID:27468233

  19. Clinical modulation of doxorubicin resistance by the calmodulin-inhibitor, trifluoperazine: a phase I/II trial.

    PubMed

    Miller, R L; Bukowski, R M; Budd, G T; Purvis, J; Weick, J K; Shepard, K; Midha, K K; Ganapathi, R

    1988-05-01

    Drug resistance to chemotherapy agents such as doxorubicin appears to be an important cause of therapeutic failure in cancer treatment. Based on preclinical information demonstrating that the phenothiazine calmodulin-inhibitor trifluoperazine can enhance retention and cytotoxicity of doxorubicin in resistant cells, a phase I/II trial of the combination was performed to determine the maximally tolerated dose (MTD) of trifluoperazine that could be administered with doxorubicin. Patients with intrinsic (no previous response) and acquired (previous response with relapse) doxorubicin resistance were eligible. Doxorubicin was administered as a 96-hour continuous infusion (60 mg/m2) on days 2 through 5. Trifluoperazine was administered in divided doses orally on days 1 through 6, with dose escalation from 20 to 100 mg/d. Thirty-six patients were evaluable. The MTD of trifluoperazine was 60 mg/d, with dose-limiting toxicity being extrapyramidal side effects. No alteration of doxorubicin toxicity was observed. Seven of the 36 patients responded (one complete response [CR], six partial responses [PR]), with seven of 21 patients having acquired resistance, and zero of 15 with intrinsic resistance demonstrating responses. Doxorubicin plasma levels were not affected by trifluoperazine, and the maximal trifluoperazine plasma levels achieved were 129.83 ng/mL. This trial demonstrates the combination of trifluoperazine and doxorubicin is well tolerated, and the schedule recommended for phase II trials is doxorubicin, 60 mg/m2 (continuous infusion) days 2 through 5, and trifluoperazine, 15 mg four times per day orally days 1 through 6. Continued investigation of this combination is indicated for patients with acquired doxorubicin resistance.

  20. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics.

    PubMed

    Patra, Sujata; Mukherjee, Sudip; Barui, Ayan Kumar; Ganguly, Anirban; Sreedhar, Bojja; Patra, Chitta Ranjan

    2015-08-01

    In the present article, we demonstrate the delivery of anti-cancer drug to the cancer cells using biosynthesized gold and silver nanoparticles (b-AuNP & b-AgNP). The nanoparticles synthesized by using Butea monosperma (BM) leaf extract are thoroughly characterized by various analytical techniques. Both b-AuNP and b-AgNP are stable in biological buffers and biocompatible towards normal endothelial cells (HUVEC, ECV-304) as well as cancer cell lines (B16F10, MCF-7, HNGC2 & A549). Administration of nanoparticle based drug delivery systems (DDSs) using doxorubicin (DOX) [b-Au-500-DOX and b-Ag-750-DOX] shows significant inhibition of cancer cell proliferation (B16F10, MCF-7) compared to pristine drug. Therefore, we strongly believe that biosynthesized nanoparticles will be useful for the development of cancer therapy using nanomedicine approach in near future.

  1. A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line

    PubMed Central

    2012-01-01

    Background Enhancement of tumor cell sensitivity may help facilitate a reduction in drug dosage using conventional chemotherapies. Consequently, it is worthwhile to search for adjuvants with the potential of increasing chemotherapeutic drug effectiveness and improving patient quality of life. Natural products are a very good source of such adjuvants. Methods The biological activity of a fraction enriched in hydrolysable polyphenols (P2Et) obtained from Caesalpinia spinosa was evaluated using the hematopoietic cell line K562. This fraction was tested alone or in combination with the conventional chemotherapeutic drugs doxorubicin, vincristine, etoposide, camptothecin and taxol. The parameters evaluated were mitochondrial depolarization, caspase 3 activation, chromatin condensation and clonogenic activity. Results We found that the P2Et fraction induced mitochondrial depolarization, activated caspase 3, induced chromatin condensation and decreased the clonogenic capacity of the K562 cell line. When the P2Et fraction was used in combination with chemotherapeutic drugs at sub-lethal concentrations, a fourfold reduction in doxorubicin inhibitory concentration 50 (IC50) was seen in the K562 cell line. This finding suggested that P2Et fraction activity is specific for the molecular target of doxorubicin. Conclusions Our results suggest that a natural fraction extracted from Caesalpinia spinosa in combination with conventional chemotherapy in combination with natural products on leukemia cells may increase therapeutic effectiveness in relation to leukemia.