Sample records for dqa1 intron sequence

  1. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae.

    PubMed

    Janova, Eva; Matiasovic, Jan; Vahala, Jiri; Vodicka, Roman; Van Dyk, Enette; Horin, Petr

    2009-07-01

    The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.

  2. Genome-Wide Analysis of Genetic Risk Factors for Rheumatic Heart Disease in Aboriginal Australians Provides Support for Pathogenic Molecular Mimicry.

    PubMed

    Gray, Lesley-Ann; D'Antoine, Heather A; Tong, Steven Y C; McKinnon, Melita; Bessarab, Dawn; Brown, Ngiare; Reményi, Bo; Steer, Andrew; Syn, Genevieve; Blackwell, Jenefer M; Inouye, Michael; Carapetis, Jonathan R

    2017-12-12

    Rheumatic heart disease (RHD) after group A streptococcus (GAS) infections is heritable and prevalent in Indigenous populations. Molecular mimicry between human and GAS proteins triggers proinflammatory cardiac valve-reactive T cells. Genome-wide genetic analysis was undertaken in 1263 Aboriginal Australians (398 RHD cases; 865 controls). Single-nucleotide polymorphisms were genotyped using Illumina HumanCoreExome BeadChips. Direct typing and imputation was used to fine-map the human leukocyte antigen (HLA) region. Epitope binding affinities were mapped for human cross-reactive GAS proteins, including M5 and M6. The strongest genetic association was intronic to HLA-DQA1 (rs9272622; P = 1.86 × 10-7). Conditional analyses showed rs9272622 and/or DQA1*AA16 account for the HLA signal. HLA-DQA1*0101_DQB1*0503 (odds ratio [OR], 1.44; 95% confidence interval [CI], 1.09-1.90; P = 9.56 × 10-3) and HLA-DQA1*0103_DQB1*0601 (OR, 1.27; 95% CI, 1.07-1.52; P = 7.15 × 10-3) were risk haplotypes; HLA_DQA1*0301-DQB1*0402 (OR 0.30, 95%CI 0.14-0.65, P = 2.36 × 10-3) was protective. Human myosin cross-reactive N-terminal and B repeat epitopes of GAS M5/M6 bind with higher affinity to DQA1/DQB1 alpha/beta dimers for the 2-risk haplotypes than the protective haplotype. Variation at HLA_DQA1-DQB1 is the major genetic risk factor for RHD in Aboriginal Australians studied here. Cross-reactive epitopes bind with higher affinity to alpha/beta dimers formed by risk haplotypes, supporting molecular mimicry as the key mechanism of RHD pathogenesis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Association of HLA haplotype with alopecia areata in Chinese Hans.

    PubMed

    Xiao, F-L; Ye, D-Q; Yang, S; Zhou, F-S; Zhou, S-M; Zhu, Y-G; Liang, Y-H; Ren, Y-Q; Zhang, X-J

    2006-11-01

    Some studies have shown discrepancies in human leucocyte antigen (HLA) associated with alopecia areata (AA) between different ethnic populations. To investigate whether HLA-I, -DQA1 and -DQB1 alleles and the HLA haplotype are associated with AA, and the correlation between the HLA haplotype profile, age of onset and severity of AA in Chinese Hans. The polymerase chain reaction-sequence specific primer (PCR-SSP) method was used to analyse the frequencies of HLA class I, -DQA1 and -DQB1 alleles in 192 patients with AA and 252 controls in Chinese Hans. The linkage disequilibrium was calculated using the 2 x 2 table. The 24 two-locus haplotypes [including A*02-B*18, A*02-B*27, A*02-B*52, A*02-Cw*0704, A*02-DQA1*0104, A*02-DQB1*0604, A*02-DQB1*0606, B*18-Cw*0704, B*18-DQA1*0104, B*18-DQA1*0302, B*18-DQB1*0606, B*27-Cw*0704, B*27-DQA1*0104, B*27-DQA1*0302, B*52-Cw*0704, B*52-DQA1*0104, B*52-DQA1*0302, B52-DQB1*0606, Cw*0704-DQA1*0104, Cw*0704-DQA1*0302, Cw*0704-DQB1*0606, DQA1*0104-DQB1*0604, DQA1*0104-DQB1*0606, DQA1*0302-DQB1*0606 (P<0.05)] were associated with AA, while eight extended haplotypes (A*02-B*18-DQA1*0104, A*02-B*27-DQA1*0104, A*02-B*52-DQA1*0104, A*02-B*52-DQA1*0302, A*02-B*52-DQB1*0606, B*52-Cw*0704-DQA1*0104, B*52-Cw*0704-DQA1*0302, A*02-B*52-DQA1*0302-DQB1*0606) were found to be related to AA in Chinese Hans. Through stratified analysis, we found that the extended haplotype B*52-Cw*0704-DQA1*0302 was related to early onset of AA, and no haplotype was only associated with severe AA. This is the first detailed report to elucidate HLA haplotypes associated with AA and that demonstrates the significant HLA haplotypes in Chinese Hans AA. The haplotype B*52-Cw*0704-DQA1*0302 was identified to be related to early onset of AA. Our results provide some information for future research on predisposing genes in HLA regions in Chinese Hans.

  4. Use of PCR with Sequence-specific Primers for High-Resolution Human Leukocyte Antigen Typing of Patients with Narcolepsy

    PubMed Central

    Woo, Hye In; Joo, Eun Yeon; Lee, Kyung Wha

    2012-01-01

    Background Narcolepsy is a neurologic disorder characterized by excessive daytime sleepiness, symptoms of abnormal rapid eye movement (REM) sleep, and a strong association with HLA-DRB1*1501, -DQA1*0102, and -DQB1*0602. Here, we investigated the clinico-physical characteristics of Korean patients with narcolepsy, their HLA types, and the clinical utility of high-resolution PCR with sequence-specific primers (PCR-SSP) as a simple typing method for identifying DRB1*15/16, DQA1, and DQB1 alleles. Methods The study population consisted of 67 consecutively enrolled patients having unexplained daytime sleepiness and diagnosed narcolepsy based on clinical and neurological findings. Clinical data and the results of the multiple sleep latency test and polysomnography were reviewed, and HLA typing was performed using both high-resolution PCR-SSP and sequence-based typing (SBT). Results The 44 narcolepsy patients with cataplexy displayed significantly higher frequencies of DRB1*1501 (Pc= 0.003), DQA1*0102 (Pc=0.001), and DQB1*0602 (Pc=0.014) than the patients without cataplexy. Among patients carrying DRB1*1501-DQB1*0602 or DQA1*0102, the frequencies of a mean REM sleep latency of less than 20 min in nocturnal polysomnography and clinical findings, including sleep paralysis and hypnagogic hallucination were significantly higher. SBT and PCR-SSP showed 100% concordance for high-resolution typing of DRB1*15/16 alleles and DQA1 and DQB1 loci. Conclusions The clinical characteristics and somnographic findings of narcolepsy patients were associated with specific HLA alleles, including DRB1*1501, DQA1*0102, and DQB1*0602. Application of high-resolution PCR-SSP, a reliable and simple method, for both allele- and locus-specific HLA typing of DRB1*15/16, DQA1, and DQB1 would be useful for characterizing clinical status among subjects with narcolepsy. PMID:22259780

  5. Different DRB1*03:01-DQB1*02:01 haplotypes confer different risk for celiac disease.

    PubMed

    Alshiekh, S; Zhao, L P; Lernmark, Å; Geraghty, D E; Naluai, Å T; Agardh, D

    2017-08-01

    Celiac disease is associated with the HLA-DR3-DQA1*05:01-DQB1*02:01 and DR4-DQA1*03:01-DQB1*03:02 haplotypes. In addition, there are currently over 40 non-HLA loci associated with celiac disease. This study extends previous analyses on different HLA haplotypes in celiac disease using next generation targeted sequencing. Included were 143 patients with celiac disease and 135 non-celiac disease controls investigated at median 9.8 years (1.4-18.3 years). PCR-based amplification of HLA and sequencing with Illumina MiSeq technology were used for extended sequencing of the HLA class II haplotypes HLA-DRB1, DRB3, DRB4, DRB5, DQA1 and DQB1, respectively. Odds ratios were computed marginally for every allele and haplotype as the ratio of allelic frequency in patients and controls as ratio of exposure rates (RR), when comparing a null reference with equal exposure rates in cases and controls. Among the extended HLA haplotypes, the strongest risk haplotype for celiac disease was shown for DRB3*01:01:02 in linkage with DQA1*05:01-DQB1*02:01 (RR = 6.34; P-value < .0001). In a subpopulation analysis, DRB3*01:01:02-DQA1*05:01-DQB1*02:01 remained the most significant in patients with Scandinavian ethnicity (RR = 4.63; P < .0001) whereas DRB1*07:01:01-DRB4*01:03:01-DQA1*02:01-DQB1*02:02:01 presented the highest risk of celiac disease among non-Scandinavians (RR = 7.94; P = .011). The data also revealed 2 distinct celiac disease risk DR3-DQA1*05:01-DQB*02:01 haplotypes distinguished by either the DRB3*01:01:02 or DRB3*02:02:01 alleles, indicating that different DRB1*03:01-DQB1*02:01 haplotypes confer different risk for celiac disease. The associated risk of celiac disease for DR3-DRB3*01:01:02-DQA1*05:01-DQB1*02:01 is predominant among patients of Scandinavian ethnicity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. HLA-DRB1, -DQA1 and -DQB1 genotyping of 180 Czech individuals from the Czech Republic pop 3.

    PubMed

    Zajacova, Marta; Kotrbova-Kozak, Anna; Cerna, Marie

    2016-04-01

    One hundred and eighty Czech individuals from the Czech Republic pop 3 were genotyped at the HLA-DRB1, -DQA1 and -DQB1 loci using sequence-specific primers PCR methods. HLA-DRB1, -DQA1 and -DQB1 genotypes are consistent with expected Hardy-Weinberg (HW) proportions. These genotype data are available in the Allele Frequencies Net Database under identifier AFND. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  7. Is HLA the cause of the high incidence of type 1 diabetes in the Canary Islands? Results from the Type 1 Diabetes Genetics Consortium (T1DGC).

    PubMed

    Santana Del Pino, Angelo; Medina-Rodríguez, Nathan; Hernández-García, Marta; Nóvoa-Mogollón, Francisco J; Wägner, Ana M

    2017-03-01

    Incidence of childhood-onset type 1 diabetes mellitus in the Canary Islands is the highest reported so far in Spain, and among the highest worldwide. The HLA region accounts for approximately half the genetic risk of type 1 diabetes. Our aim was to assess distribution of high-risk and protective HLA haplotypes in the Canarian families included in the T1DGC, as compared to the rest of Spain. The T1DGC study, an international project to study the genetics and pathogenesis of type 1 diabetes, enrolled more than 3000 families with type 1 diabetes worldwide. Spain provided 149 of these families, of whom 42 were from Tenerife and Gran Canaria. HLA was genotyped centrally using a PCR-based, sequence-specific oligonucleotide probe system. Haplotypes were reconstructed using the deterministic algorithm alleHap in the R programming environment. Based on prior T1DGC results in Caucasian population, haplotypes DRB1*0405-DQA1*0301-DQB1*0302, DRB1*0401-DQA1*0301-DQB1*0302, DRB1*0301-DQA1*0501-DQB1*0201, DRB1*0402-DQA1*0301-DQB1*0302 and DRB1*0404-DQA1*0301-DQB1*0302 were considered high-risk. DRB1*0701-DQA1*0201-DQB1*0303, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*1501-DQA1*0102-DQB1*0602, DRB1*1101-DQA1*0501-DQB1*0301, DRB1*1104-DQA1*0501-DQB1*0301, DRB1*1303-DQA1*0501-DQB1*0301, DRB1*1301-DQA1*0103-DQB1*0603 and DRB1*0403-DQA1*0301-DQB1*0302 were considered protective. The distribution of protective, high-risk, and other haplotypes in the (first two) affected siblings and unaffected parents from Canarian and non-Canarian Spanish families was compared (Chi-square test). No significant differences were found between the regions in distribution of the HLA haplotypes in the affected siblings or in the non-affected parents. The high incidence of childhood-onset type 1 diabetes in the Canarian population does not appear to be explained by a greater prevalence of high-risk class II HLA haplotypes in families with the disease. However, sample size limits the differences that can be detected in this study. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Polymorphisms of HLA-DRB1, -DQA1 and -DQB1 in inhabitants of Astana, the capital city of Kazakhstan.

    PubMed

    Kuranov, Alexandr B; Vavilov, Mikhail N; Abildinova, Gulshara Zh; Akilzhanova, Ainur R; Iskakova, Aisha N; Zholdybayeva, Elena V; Boldyreva, Margarita N; Müller, Claudia A; Momynaliev, Kuvat T

    2014-01-01

    Kazakhstan has been inhabited by different populations, such as the Kazakh, Kyrgyz, Uzbek and others. Here we investigate allelic and haplotypic polymorphisms of human leukocyte antigen (HLA) genes at DRB1, DQA1 and DQB1 loci in the Kazakh ethnic group, and their genetic relationship between world populations. A total of 157 unrelated Kazakh ethnic individuals from Astana were genotyped using sequence based typing (SBT-Method) for HLA-DRB1, -DQA1 and -DQB1 loci. Allele frequencies, neighbor-joining method, and multidimensional scaling analysis have been obtained for comparison with other world populations. Statistical analyses were performed using Arlequin v3.11. Applying the software PAST v. 2.17 the resulting genetic distance matrix was used for a multidimensional scaling analysis (MDS). Respectively 37, 17 and 19 alleles were observed at HLA-DRB1, -DQA1 and -DQB1 loci. The most frequent alleles were HLA-DRB1*07:01 (13.1%), HLA-DQA1*03:01 (13.1%) and HLA-DQB1*03:01 (17.6%). In the observed group of Kazakhs DRB1*07:01-DQA1*02:01-DQB1*02:01 (8.0%) was the most common three loci haplotype. DRB1*10:01-DQB1*05:01 showed the strongest linkage disequilibrium. The Kazakh population shows genetic kinship with the Kazakhs from China, Uyghurs, Mongolians, Todzhinians, Tuvinians and as well as with other Siberians and Asians. The HLA-DRB1, -DQA1 and -DQB1 loci are highly polymorphic in the Kazakh population, and this population has the closest relationship with other Asian and Siberian populations.

  9. Evaluation of the class II region of the major histocompatibility complex of the greyhound with the genomic matching technique and sequence-based typing.

    PubMed

    Fliegner, R A; Holloway, S A; Lester, S; McLure, C A; Dawkins, R L

    2008-08-01

    The class II region of the major histocompatibility complex was evaluated in 25 greyhounds by sequence-based typing and the genomic matching technique (GMT). Two new DLA-DRB1 alleles were identified. Twenty-four dogs carried the DLA-DRB1*01201/DQA1*00401/DQB1*01303/DQB1*01701 haplotype, which carries two DQB1 alleles. One haplotype was identified from which DQB1 and DQA1 appeared to be deleted. The GMT enabled detection of DQB1 copy number, discrimination of the different class II haplotypes and the identification of new, possibly biologically relevant polymorphisms.

  10. Identification of Splice Variants, Targeted MicroRNAs and Functional Single Nucleotide Polymorphisms of the BOLA-DQA2 Gene in Dairy Cattle

    PubMed Central

    Hou, Qinlei; Huang, Jinming; Ju, Zhihua; Li, Qiuling; Li, Liming; Wang, Changfa; Sun, Tao; Wang, Lingling; Hou, Minghai

    2012-01-01

    Major histocompatibility complex, class II, DQ alpha 2, also named BOLA-DQA2, belongs to the Bovine Leukocyte Antigen (BOLA) class II genes which are involved in the immune response. To explore the variability of the BOLA-DQA2 gene and resistance to mastitis in cows, the splice variants (SV), targeted microRNAs (miRNAs), and single nucleotide polymorphisms (SNPs) were identified in this study. A new SV (BOLA-DQA2-SV1) lacking part of exon 3 (195 bp) and two 3′-untranslated regions (UTR) (52 bp+167 bp) of the BOLA-DQA2 gene was found in the healthy and mastitis-infected mammary gland tissues. Four of 13 new SNPs and multiple nucleotide polymorphisms resulted in amino acid changes in the protein and SNP (c. +1283 C>T) may affect the binding to the seed sequence of bta-miR-2318. Further, we detected the relative expressions of two BOLA-DQA2 transcripts and five candidated microRNAs binding to the 3′-UTR of two transcripts in the mammary gland tissues in dairy cattle by using the quantitative real-time polymerase chain reaction. The result showed that expression of the BOLA-DQA2-SV1 mRNA was significantly upregulated 2.67-fold (p<0.05) in mastitis-infected mammary tissues (n=5) compared with the healthy mammary gland mammary tissues (n=5). Except for bta-miR-1777a, miRNA expression (bta-miR-296, miR-2430, and miR-671) was upregulated 1.75 to 2.59-fold (p<0.05), whereas miR-2318 was downregulated in the mastitis cows. Our findings reveal that BOLA-DQA2-SV1 may play an important role in the mastitis resistance in dairy cattle. Whether the SNPs affect the structure of the BOLA-DQA2 gene or association with mastitis resistance is unknown and warrants further investigation. PMID:22084936

  11. MHC class II genes in European wolves: a comparison with dogs.

    PubMed

    Seddon, Jennifer M; Ellegren, Hans

    2002-10-01

    The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.

  12. Nucleotide sequence of the ribosomal RNA gene of Physarum polycephalum: intron 2 and its flanking regions of the 26S rRNA gene.

    PubMed Central

    Nomiyama, H; Kuhara, S; Kukita, T; Otsuka, T; Sakaki, Y

    1981-01-01

    The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved. Images PMID:6171776

  13. Genetics of autoimmune thyroid disease in the Lebanese population.

    PubMed

    Farra, C; Awwad, J; Fadlallah, A; Sebaly, G; Hage, G; Souaid, M; Ashkar, H; Medlej, R; Gannageh, M H; Halaby, G

    2012-10-01

    This study aims to investigate the association of human leukocyte antigen (HLA) class II genes and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) with autoimmune thyroid diseases in the Lebanese population. A total of 128 patients with autoimmune thyroid disease (55 with Graves' disease (GD) and 73 with Hashimoto's thyroiditis (HT)) were typed for HLA DQA1 (0301 and 0501) and DQB1 (0201, 0302, and 0303) and for 49A/G CTLA-4 using PCR-based sequence-specific priming methods. A total of 186 matched controls were typed for the same alleles and compared to the diseased population. Results showed no significant differences in HLA DQB1*0201 or DQB1*0301 allelic frequencies or CTLA-4 polymorphisms between patients and controls. For GD, there was a weak association with HLA DQB1*0302 [34.6% (19 of 55) vs. 21.5% (40 of 186), P = 0.048, odds ratio (OR) = 1.926, confidence interval (CI) = 0.999-3.715] and HLA DQB1*0302-DQA1*0501 haplotype [56.36% (31 of 55) vs. 40.8% (76 of 186), P = 0.042, OR = 1.870, CI = 1.018-3.433]. For HT, the frequencies of DQB1*0302-DQA1*0501 haplotype [28.8% (21of 73) vs. 14.5% (27 of 186), P = 0.008, OR = 2.378, CI = 1.241-4.558] and DQB1*0302-DQA1*0301 haplotype [60.2% (44 of 73) vs. 38.7% (72 of 186), P = 0.002, OR = 2.402, CI = 1.381-4.180] were significantly higher in patients. On the other hand, weak association was found between HT and DQA1*0301 allele [32.9% (24 of 73) vs. 20.9% (39 of 186), P = 0.044, OR = 1.846, CI = 1.011-3.373]. Findings show that DQB1*0302-DQA1*0501 and DQB1*0302-DQA1*0301 haplotypes may play a role in the pathogenesis of HT in the Lebanese population. For the 49A/G CTLA-4 polymorphism, no significant difference was found between patients and controls.

  14. Dog leucocyte antigen class II diversity and relationships among indigenous dogs of the island nations of Indonesia (Bali), Australia and New Guinea.

    PubMed

    Runstadler, J A; Angles, J M; Pedersen, N C

    2006-11-01

    The genetic polymorphism at the dog leucocyte antigen (DLA) class II loci DQA1, DQB1 and DRB1 was studied in a large genetically diverse population of feral and wild-type dogs from the large island nations of Indonesia (Bali), Australia and New Guinea (Bali street dog, dingo and New Guinea singing dog, respectively). Sequence-based typing (SBT) of the hypervariable region of DLA-DRB1, -DQA1 and -DQB1 alleles was used to determine genetic diversity. No new DQA1 alleles were recognized among the three dog populations, but five novel DLA-DRB1 and 2 novel DLA-DQB1 allele sequences were detected. Additional unknown alleles were postulated to exist in Bali street dogs, as indicated by the large percentage of individuals (15%-33%) that had indeterminate DRB1, DQA1 and DQB1 alleles by SBT. All three groups of dogs possessed alleles that were relatively uncommon in conventional purebreds. The New Guinea singing dog and dingo shared alleles that were not present in the Bali street dogs. These findings suggested that the dingo was more closely related to indigenous dogs from New Guinea. Feral dog populations, in particular large ones such as that of Bali, show genetic diversity that existed prior to phenotypic selection for breeds originating from their respective regions. This diversity needs to be identified and maintained in the face of progressive Westernization. These populations deserve further study as potential model populations for the evolution of major histocompatibility complex alleles, for the study of canine genetic diversity, for the development of dog breeds and for studies on the comigration of ancestral human and dog populations.

  15. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1998-10-05

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.

  16. Remarkable sequence conservation of the last intron in the PKD1 gene.

    PubMed

    Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P

    2003-10-01

    The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.

  17. Relation between HLA-DQA1 genes and genetic susceptibility to duodenal ulcer in Wuhan Hans

    PubMed Central

    Du, Yi-Ping; Deng, Chang-Sheng; Lu, De-Yin; Huang, Mei-Fang; Guo, Shu-Fang; Hou, Wei

    2000-01-01

    AIM: To study the genetic susceptibility of HLA-DQA1 alleles to duodenal ulcer in Wuhan Hans. METHODS: Seventy patients with duodenal ulcer and fifty health y controls were examined for HLA-DQA1 genotypes. HLA-DQA1 typing was carried out by digesting the locus specific polymerase chain reaction amplified products with alleles specific restriction enzymes (PCR-RFLP), i.e. Apal I, Bsaj I, Hph I, Fok I, Mbo II and Mnl I. RESULTS: The allele frequencies of DQA1*0301 and DQA1*0102 in patients with duodenal ulcer were significantly higher and lower respectivel y than those in healthy controls (0.40 vs 0.20, P = 0.003, Pc orret = 0.024) and (0.05 vs 0.14, P = 0.012, but P corret > 0.05), respectively. CONCLUSION: DQA1*0301 is a susceptible gene for duodenal ulcer in Wuhan Hans, and there are immunogenetic differences in HLA-DQA1 locus between duodenal ulcer patients and healthy controls. PMID:11819534

  18. Polymorphism and haplotype analyses of swine leukocyte antigen DQA exons 2, 3, 4, and their associations with piglet diarrhea in Chinese native pig.

    PubMed

    Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B

    2015-09-08

    In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.

  19. Distribution of HLA-DQA1 alleles in Arab and Pakistani individuals from Dubai, United Arab Emirates.

    PubMed

    Tahir, M A; al Khayat, A Q; al Shamali, F; Budowle, B; Novick, G E

    1997-03-14

    PCR-based typing of the HLA-DQA1 locus, using allele specific oligonucleotide (ASO) probes and reverse dot blot methodology was used to determine allelic distributions and construct a database for Arab and Pakistani individuals living in Dubai. Genotype and allelic frequencies were calculated, and the data were tested for departures from Hardy-Weinberg (HWE) equilibrium. The most frequent HLA-DQA1 alleles among Dubaian Arabs are DQA1 4 and 1.2. Among Pakistanis, the most frequent allele is also DQA1 4. No significant deviations from HWE were detected.

  20. Two subsets of HLA-DQA1 alleles mark phenotypic variation in levels of insulin autoantibodies in first degree relatives at risk for insulin-dependent diabetes.

    PubMed Central

    Pugliese, A; Bugawan, T; Moromisato, R; Awdeh, Z L; Alper, C A; Jackson, R A; Erlich, H A; Eisenbarth, G S

    1994-01-01

    Levels of insulin autoantibodies (IAA) vary among different first degree relatives of insulin-dependent diabetes mellitus patients, suggesting genetic regulation. We previously reported elevated IAA among DR4-positive at risk relatives. In this study, 72/82 at risk relatives were IAA positive, of whom 75% (54/72) carried DR4 versus 20% (2/10) of IAA-negative relatives (P = 0.0004). However, 69% (18/26) of DR4-negative relatives were IAA positive. Since DR4 did not account for all IAA positivity, we analyzed DQA1 and DQB1 alleles. Homozygosity for DQA1 alleles deriving from the evolutionary lineage 4 (*0401, *0501, *0601) was associated with low IAA levels, while lineage 1-3 alleles (*0101, *0102, *0103, *0201, *0301) correlated with higher levels. Most (93%, 65/70) relatives with lineage 1-3 alleles were IAA positive (mean = 360 +/- 63 SEM nU/ml). Only 7/12 relatives homozygous for lineage 4 alleles were IAA-positive, with lower levels than relatives with lineage 1-3 alleles (mean = 55 +/- 15 SEM nU/ml, P < 0.0001; 7/12 vs 65/70, P = 0.004). The amino acid sequences of lineage 1-3 alleles uniquely share glutamic acid (E) and phenylalanine (F) at positions 40 and 51 (EF alleles). Lineage 4 alleles have glycine (G) and leucine (L) at those positions (GL alleles). 90% (65/72) of IAA-positive relatives had an EF allele, while only 75% (54/72) had DR4 (P = 0.01). Homozygosity for GL alleles (often DQA1 *0501 on DR3 haplotypes) correlated with little or no humoral response to insulin. Thus, HLA-DQB1 GL alleles, or other genes on haplotypes (e.g., DR3) that carry these DQA1 alleles, may confer recessive low responsiveness to insulin. PMID:8200980

  1. Hidden genetic history of the Japanese sand dollar Peronella (Echinoidea: Laganidae) revealed by nuclear intron sequences.

    PubMed

    Endo, Megumi; Hirose, Mamiko; Honda, Masanao; Koga, Hiroyuki; Morino, Yoshiaki; Kiyomoto, Masato; Wada, Hiroshi

    2018-06-15

    The marine environment around Japan experienced significant changes during the Cenozoic Era. In this study, we report findings suggesting that this dynamic history left behind traces in the genome of the Japanese sand dollar species Peronella japonica and P. rubra. Although mitochondrial Cytochrome C Oxidase I sequences did not indicate fragmentation of the current local populations of P. japonica around Japan, two different types of intron sequence were found in the Alx1 locus. We inferred that past fragmentation of the populations account for the presence of two types of nuclear sequences as alleles in the Alx1 intron of P. japonica. It is likely that the split populations have intermixed in recent times; hence, we did not detect polymorphisms in the sequences reflecting the current localization of the species. In addition, we found two allelic sequences of theAlx1 intron in the sister species P. rubra. The divergence times of the two types of Alx1 intron sequences were estimated at approximately 14.9 and 4.0 million years ago for P. japonica and P. rubra, respectively. Our study indicates that information from the intron sequences of nuclear genes can enhance our understanding of past genetic events in organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Genomic structure of two ras family genes in the slime mold Physarum polycephalum.

    PubMed

    Trzcińska-Danielewicz, Joanna; Kozlowski, Piotr; Gierdal, Katarzyna; Wiejak, Jolanta; Jagielski, Adam; Toczko, Kazimierz; Fronk, Jan

    2002-08-01

    Genomic structure of two Physarum polycephalum ras family genes, Ppras2 and Pprap1, has been determined, including the upstream region of the latter. The genes are interrupted by three and four introns, respectively. The first intron of Ppras2 has the same location within the coding sequence as the first intron in another ras homolog from this organism, Ppras1 [Trzcińska-Danielewicz, J., Kozlowski, P., and Toczko, K. (1996). "Cloning and genomic sequence of the Physarum polycephalum Ppras1 gene, a homologue of the ras protooncogene", Gene 169, pp. 143-144]. All introns, ranging from 53 to ca. 460 base pairs, have the canonical 5' and 3' ends, are greatly enriched in pyrimidines in the coding strand and have frequent pyrimidines-only tracts. These latter features seem to be responsible for the difficulties in cloning and sequencing of parts of these genes. Short sequences shared with P. polycephalum transposon-like repeats are common in the introns, indicating a possible role of transposition in intron evolution. In all three ras family genes phase zero introns are located mostly between sequences coding for regular protein secondary structure elements.

  3. Molecular characterization of swine leukocyte antigen gene diversity in purebred Pietrain pigs.

    PubMed

    Essler, Sabine E; Ertl, Werner; Deutsch, Julia; Ruetgen, Barbara C; Groiss, Sandra; Stadler, Maria; Wysoudil, Bhuma; Gerner, Wilhelm; Ho, Chak-Sum; Saalmueller, Armin

    2013-04-01

    The porcine major histocompatibility complex (MHC) harbors the highly polymorphic swine leukocyte antigen (SLA) class I and II gene clusters encoding glycoproteins that present antigenic peptides to T cells in the adaptive immune response. In Austria, the majority of commercial pigs are F 2 descendants of F 1 Large White/Landrace hybrids paired with Pietrain boars. Therefore, the repertoire of SLA alleles and haplotypes present in Pietrain pigs has an important influence on that of their descendants. In this study, we characterized the SLA class I ( SLA-1 , SLA-2 , SLA-3 ) and class II ( SLA-DRB1 , SLA-DQB1 , SLA-DQA ) genes of 27 purebred Pietrain pigs using a combination of the high-resolution sequence-based typing (SBT) method and a low-resolution (Lr) PCR-based method using allele-group, sequence-specific primers (PCR-SSP). A total of 15 class I and 13 class II haplotypes were identified in the studied cohort. The most common SLA class I haplotype Lr-43.0 ( SLA-1 *11XX- SLA-3 *04XX- SLA-2 *04XX) was identified in 11 animals with a frequency of 20%. For SLA class II, the most prevalent haplotype, Lr-0.14 [ SLA-DRB1 *0901- SLA-DQB1 *0801- SLA-DQA *03XX], was found in 14 animals with a frequency of 26%. Two class II haplotypes, tentatively designated as Lr-Pie-0.1 [ SLA-DRB1 *01XX/be01/ha04- SLA-DQB1 *05XX- SLA - DQA*blank] and Lr-Pie-0.2 [ SLA-DRB1 *06XX- SLA-DQB1 *03XX- SLA-DQA *03XX], appeared to be novel and have never been reported so far in other pig populations. We showed that SLA genotyping using PCR-SSP-based assays represents a rapid and cost-effective way to study SLA diversity in outbred commercial pigs and may facilitate the development of more effective vaccines or identification of disease-resistant pigs in the context of SLA antigens to improve overall swine health. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  4. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns.

    PubMed Central

    Wolff, G; Burger, G; Lang, B F; Kück, U

    1993-01-01

    The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles. PMID:7680126

  5. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria.

    PubMed

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-09-14

    The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.

  6. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  7. Colonization of heterochromatic genes by transposable elements in Drosophila.

    PubMed

    Dimitri, Patrizio; Junakovic, Nikolaj; Arcà, Bruno

    2003-04-01

    As a further step toward understanding transposable element-host genome interactions, we investigated the molecular anatomy of introns from five heterochromatic and 22 euchromatic protein-coding genes of Drosophila melanogaster. A total of 79 kb of intronic sequences from heterochromatic genes and 355 kb of intronic sequences from euchromatic genes have been used in Blast searches against Drosophila transposable elements (TEs). The results show that TE-homologous sequences belonging to 19 different families represent about 50% of intronic DNA from heterochromatic genes. In contrast, only 0.1% of the euchromatic intron DNA exhibits homology to known TEs. Intraspecific and interspecific size polymorphisms of introns were found, which are likely to be associated with changes in TE-related sequences. Together, the enrichment in TEs and the apparent dynamic state of heterochromatic introns suggest that TEs contribute significantly to the evolution of genes located in heterochromatin.

  8. DLA-DRB1, DQA1, and DQB1 alleles and haplotypes in North American Gray Wolves.

    PubMed

    Kennedy, Lorna J; Angles, John M; Barnes, Annette; Carmichael, Lindsey E; Radford, Alan D; Ollier, William E R; Happ, George M

    2007-01-01

    The canine major histocompatibility complex contains highly polymorphic genes, many of which are critical in regulating immune response. Since domestic dogs evolved from Gray Wolves (Canis lupus), common DLA class II alleles should exist. Sequencing was used to characterize 175 Gray Wolves for DLA class II alleles, and data from 1856 dogs, covering 85 different breeds of mostly European origin, were available for comparison. Within wolves, 28 new alleles were identified, all occurring in at least 2 individuals. Three DLA-DRB1, 8 DLA-DQA1, and 6 DLA-DQB1 alleles also identified in dogs were present. Twenty-eight haplotypes were identified, of which 2 three-locus haplotypes, and many DLA-DQA1/DQB1 haplotypes, are also found in dogs. The wolves studied had relatively few dog DLA alleles and may therefore represent a remnant population descended from Asian wolves. The single European wolf included carried a haplotype found in both these North American wolves and in many dog breeds. Furthermore, one wolf DQB1 allele has been found in Shih Tzu, a breed of Asian origin. These data suggest that the wolf ancestors of Asian and European dogs may have had different gene pools, currently reflected in the DLA alleles present in dog breeds.

  9. Euglena gracilis chloroplast DNA: analysis of a 1.6 kb intron of the psb C gene containing an open reading frame of 458 codons.

    PubMed

    Montandon, P E; Vasserot, A; Stutz, E

    1986-01-01

    We retrieved a 1.6 kbp intron separating two exons of the psb C gene which codes for the 44 kDa reaction center protein of photosystem II. This intron is 3 to 4 times the size of all previously sequenced Euglena gracilis chloroplast introns. It contains an open reading frame of 458 codons potentially coding for a basic protein of 54 kDa of yet unknown function. The intron boundaries follow consensus sequences established for chloroplast introns related to class II and nuclear pre-mRNA introns. Its 3'-terminal segment has structural features similar to class II mitochondrial introns with an invariant base A as possible branch point for lariat formation.

  10. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria

    PubMed Central

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-01-01

    Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986

  11. [Study on the correlation between chronic asymptomatic HBV carriers of yin asthenia constitution and genotypes of HLA-DRB1 and HLA DQA1 alleles].

    PubMed

    Guo, Jian-chun; Xiao, Li-na; Xun, Yun-hao

    2012-08-01

    To study on the correlation between chronic asymptomatic HBV carriers (ASC) of yin asthenia constitution and genotypes of HLA-DRB1 and HLA DQA1 alleles. Totally 105 ASC were assigned to two groups according to their constitutions, i.e., the yin asthenia group (47 cases) and the non-yin asthenia group (58 cases). The genotypes of HLA-DRB1 and HLA DQA1 alleles were determined using PCR-SSP. The gene frequency of HLA-DRB1 * 09 allele and HLA-DQA1 * 0301 allele (being 12.1% and 19.1%) were obviously lower in the yin asthenia group than in the non-yin asthenia group (being 27.8% and 39.7%, P < 0.05). The gene frequency of HLA-DRB1 * 11 allele and HLA-DQA1 * 0501 allele were obviously higher in the yin asthenia group (being 12.1% and 28.7%) than in the non-yin asthenia group (4.3% and 9.5%), showing statistical difference (P < 0.05, P < 0.01). HLA-DRB1 * 09 allele and HLA-DQA1 * 0301 allele might be the molecular bases for non-yin asthenia patients with ASC. HLA-DRB1 * 11 allele and HLA-DQA1 * 0501 allele might be the molecular bases for yin asthenia patients with ASC.

  12. HLA class II polymorphism and IDDM susceptibility in the Greek population.

    PubMed

    Khalil, I; Spyropoulou, M; Mallet, C; Loste, M N; Douay, C; Laperrière, J; Bartzokas, C; Lepage, V; Charron, D; Stavropoulos, C

    1993-06-01

    The frequencies of HLA-DQA1, DQB1 and DRB1 alleles were compared between 50 Insulin-Dependent Diabetes Melitus (IDDM) patients and 49 healthy controls in the Greek population. Statistically significant difference in the frequencies of HLA-DQA1*0501-DQB1*0201 (P = 10(-4)), DQA1*0301-DQB1*0201 (P = 0.01) and DQA1*0301-DQB1*0302 (P = 0.001) were observed. The DRB1*0405-DQA1*0301-DQB1*0201 was the only DR, DQ combination significantly associated with the disease. The unexpected increase of DRB1*0405 observed in the Greek IDDM may suggest as reported in Chinese and Japanese IDDM a contribution of DR beta and DQ alpha in susceptibility. Moreover, in contrast to the Asians, in the Greek, the DR beta, DQ alpha are found with the usual DQ beta 57-ve.

  13. An intronic open reading frame was released from one of group II introns in the mitochondrial genome of the haptophyte Chrysochromulina sp. NIES-1333

    PubMed Central

    Nishimura, Yuki; Kamikawa, Ryoma; Hashimoto, Tetsuo; Inagaki, Yuji

    2014-01-01

    Mitochondrial (mt) genome sequences, which often bear introns, have been sampled from phylogenetically diverse eukaryotes. Thus, we can anticipate novel insights into intron evolution from previously unstudied mt genomes. We here investigated the origins and evolution of three introns in the mt genome of the haptophyte Chrysochromulina sp. NIES-1333, which was sequenced completely in this study. All the three introns were characterized as group II, on the basis of predicted secondary structure, and the conserved sequence motifs at the 5′ and 3′ termini. Our comparative studies on diverse mt genomes prompt us to propose that the Chrysochromulina mt genome laterally acquired the introns from mt genomes in distantly related eukaryotes. Many group II introns harbor intronic open reading frames for the proteins (intron-encoded proteins or IEPs), which likely facilitate the splicing of their host introns. However, we propose that a “free-standing,” IEP-like protein, which is not encoded within any introns in the Chrysochromulina mt genome, is involved in the splicing of the first cox1 intron that lacks any open reading frames. PMID:25054084

  14. Plan delivery quality assurance for CyberKnife: Statistical process control analysis of 350 film-based patient-specific QAs.

    PubMed

    Bellec, J; Delaby, N; Jouyaux, F; Perdrieux, M; Bouvier, J; Sorel, S; Henry, O; Lafond, C

    2017-07-01

    Robotic radiosurgery requires plan delivery quality assurance (DQA) but there has never been a published comprehensive analysis of a patient-specific DQA process in a clinic. We proposed to evaluate 350 consecutive film-based patient-specific DQAs using statistical process control. We evaluated the performance of the process to propose achievable tolerance criteria for DQA validation and we sought to identify suboptimal DQA using control charts. DQAs were performed on a CyberKnife-M6 using Gafchromic-EBT3 films. The signal-to-dose conversion was performed using a multichannel-correction and a scanning protocol that combined measurement and calibration in a single scan. The DQA analysis comprised a gamma-index analysis at 3%/1.5mm and a separate evaluation of spatial and dosimetric accuracy of the plan delivery. Each parameter was plotted on a control chart and control limits were calculated. A capability index (Cpm) was calculated to evaluate the ability of the process to produce results within specifications. The analysis of capability showed that a gamma pass rate of 85% at 3%/1.5mm was highly achievable as acceptance criteria for DQA validation using a film-based protocol (Cpm>1.33). 3.4% of DQA were outside a control limit of 88% for gamma pass-rate. The analysis of the out-of-control DQA helped identify a dosimetric error in our institute for a specific treatment type. We have defined initial tolerance criteria for DQA validations. We have shown that the implementation of a film-based patient-specific DQA protocol with the use of control charts is an effective method to improve patient treatment safety on CyberKnife. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Mitochondrial intronic open reading frames in Podospora: mobility and consecutive exonic sequence variations.

    PubMed

    Sellem, C H; d'Aubenton-Carafa, Y; Rossignol, M; Belcour, L

    1996-06-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group 1 intronic ORFs are mobile elements and that their transfer, and concomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes.

  16. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    PubMed Central

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  17. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    PubMed

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  18. Mitochondrial Intronic Open Reading Frames in Podospora: Mobility and Consecutive Exonic Sequence Variations

    PubMed Central

    Sellem, C. H.; d'Aubenton-Carafa, Y.; Rossignol, M.; Belcour, L.

    1996-01-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. PMID:8725226

  19. HLA-DQA1 and PLA2R1 polymorphisms and risk of idiopathic membranous nephropathy.

    PubMed

    Bullich, Gemma; Ballarín, José; Oliver, Artur; Ayasreh, Nadia; Silva, Irene; Santín, Sheila; Díaz-Encarnación, Montserrat M; Torra, Roser; Ars, Elisabet

    2014-02-01

    Single nucleotide polymorphisms (SNPs) within HLA complex class II HLA-DQ α-chain 1 (HLA-DQA1) and M-type phospholipase A2 receptor (PLA2R1) genes were identified as strong risk factors for idiopathic membranous nephropathy (IMN) development in a recent genome-wide association study. Copy number variants (CNVs) within the Fc gamma receptor III (FCGR3) locus have been associated with several autoimmune diseases, but their role in IMN has not been studied. This study aimed to validate the association of HLA-DQA1 and PLA2R1 risk alleles with IMN in a Spanish cohort, test the putative association of FCGR3A and FCGR3B CNVs with IMN, and assess the use of these genetic factors to predict the clinical outcome of the disease. A Spanish cohort of 89 IMN patients and 286 matched controls without nephropathy was recruited between October of 2009 and July of 2012. Case-control studies for SNPs within HLA-DQA1 (rs2187668) and PLA2R1 (rs4664308) genes and CNVs for FCGR3A and FCGR3B genes were performed. The contribution of these polymorphisms to predict clinical outcome and renal function decline was analyzed. This study validated the association of these HLA-DQA1 and PLA2R1 SNPs with IMN in a Spanish cohort and its increased risk when combining both risk genotypes. No significant association was found between FCGR3 CNVs and IMN. These results revealed that HLA-DQA1 and PLA2R1 genotype combination adjusted for baseline proteinuria strongly predicted response to immunosuppressive therapy. HLA-DQA1 genotype adjusted for proteinuria was also linked with renal function decline. This study confirms that HLA-DQA1 and PLA2R1 genotypes are risk factors for IMN, whereas no association was identified for FCGR3 CNVs. This study provides, for the first time, evidence of the contribution of these HLA-DQA1 and PLA2R1 polymorphisms in predicting IMN response to immunosuppressors and disease progression. Future studies are needed to validate and identify prognostic markers.

  20. Accurate, simple, and inexpensive assays to diagnose F8 gene inversion mutations in hemophilia A patients and carriers.

    PubMed

    Dutta, Debargh; Gunasekera, Devi; Ragni, Margaret V; Pratt, Kathleen P

    2016-12-27

    The most frequent mutations resulting in hemophilia A are an intron 22 or intron 1 gene inversion, which together cause ∼50% of severe hemophilia A cases. We report a simple and accurate RNA-based assay to detect these mutations in patients and heterozygous carriers. The assays do not require specialized equipment or expensive reagents; therefore, they may provide useful and economic protocols that could be standardized for central laboratory testing. RNA is purified from a blood sample, and reverse transcription nested polymerase chain reaction (RT-NPCR) reactions amplify DNA fragments with the F8 sequence spanning the exon 22 to 23 splice site (intron 22 inversion test) or the exon 1 to 2 splice site (intron 1 inversion test). These sequences will be amplified only from F8 RNA without an intron 22 or intron 1 inversion mutation, respectively. Additional RT-NPCR reactions are then carried out to amplify the inverted sequences extending from F8 exon 19 to the first in-frame stop codon within intron 22 or a chimeric transcript containing F8 exon 1 and the VBP1 gene. These latter 2 products are produced only by individuals with an intron 22 or intron 1 inversion mutation, respectively. The intron 22 inversion mutations may be further classified (eg, as type 1 or type 2, reflecting the specific homologous recombination sites) by the standard DNA-based "inverse-shifting" PCR assay if desired. Efficient Bcl I and T4 DNA ligase enzymes that cleave and ligate DNA in minutes were used, which is a substantial improvement over previous protocols that required overnight incubations. These protocols can accurately detect F8 inversion mutations via same-day testing of patient samples.

  1. Mechanism for DNA transposons to generate introns on genomic scales

    PubMed Central

    Huff, Jason T.; Zilberman, Daniel; Roy, Scott W.

    2017-01-01

    Discovered four decades ago, the existence of introns was one of the most unexpected findings in molecular biology1. Introns are sequences interrupting genes that must be removed as part of mRNA production. Genome sequencing projects have documented that most eukaryotic genes contain at least one and frequently many introns2,3. Comparison of these genomes reveals a history of long evolutionary periods with little intron gain punctuated by episodes of rapid, extensive gain2,3. However, no detailed mechanism for such episodic intron generation has been empirically supported on a sufficient scale, despite several proposals4–8. Here we show how short non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from gene sequence duplicated upon transposon insertion, allowing perfect splicing out of RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between preexisting nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases2 and prevalence of nucleosome-sized exons9 observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism plausibly accounting for episodes of rapid, extensive intron gain during eukaryotic evolution2,3. PMID:27760113

  2. Role of a Novel Human Leukocyte Antigen-DQA1*01:02;DRB1*15:01 Mixed Isotype Heterodimer in the Pathogenesis of “Humanized” Multiple Sclerosis-like Disease*

    PubMed Central

    Kaushansky, Nathali; Eisenstein, Miriam; Boura-Halfon, Sigalit; Hansen, Bjarke Endel; Nielsen, Claus Henrik; Milo, Ron; Zeilig, Gabriel; Lassmann, Hans; Altmann, Daniel M.; Ben-Nun, Avraham

    2015-01-01

    Gene-wide association and candidate gene studies indicate that the greatest effect on multiple sclerosis (MS) risk is driven by the HLA-DRB1*15:01 allele within the HLA-DR15 haplotype (HLA-DRB1*15:01-DQA1*01:02-DQB1*0602-DRB5*01:01). Nevertheless, linkage disequilibrium makes it difficult to define, without functional studies, whether the functionally relevant effect derives from DRB1*15:01 only, from its neighboring DQA1*01:02-DQB1*06:02 or DRB5*01:01 genes of HLA-DR15 haplotype, or from their combinations or epistatic interactions. Here, we analyzed the impact of the different HLA-DR15 haplotype alleles on disease susceptibility in a new “humanized” model of MS induced in HLA-transgenic (Tg) mice by human oligodendrocyte-specific protein (OSP)/claudin-11 (hOSP), one of the bona fide potential primary target antigens in MS. We show that the hOSP-associated MS-like disease is dominated by the DRB1*15:01 allele not only as the DRA1*01:01;DRB1*15:01 isotypic heterodimer but also, unexpectedly, as a functional DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. The contribution of HLA-DQA1/DRB1 mixed isotype heterodimer to OSP pathogenesis was revealed in (DRB1*1501xDQB1*0602)F1 double-Tg mice immunized with hOSP(142–161) peptide, where the encephalitogenic potential of prevalent DRB1*1501/hOSP(142–161)-reactive Th1/Th17 cells is hindered due to a single amino acid difference in the OSP(142–161) region between humans and mice; this impedes binding of DRB1*1501 to the mouse OSP(142–161) epitope in the mouse CNS while exposing functional binding of mouse OSP(142–161) to DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. This study, which shows for the first time a functional HLA-DQA1/DRB1 mixed isotype heterodimer and its potential association with disease susceptibility, provides a rationale for a potential effect on MS risk from DQA1*01:02 through functional DQA1*01:02;DRB1*15:01 antigen presentation. Furthermore, it highlights a potential contribution to MS risk also from interisotypic combination between products of neighboring HLA-DR15 haplotype alleles, in this case the DQA1/DRB1 combination. PMID:25911099

  3. Dominant Sequences of Human Major Histocompatibility Complex Conserved Extended Haplotypes from HLA-DQA2 to DAXX

    PubMed Central

    Larsen, Charles E.; Alford, Dennis R.; Trautwein, Michael R.; Jalloh, Yanoh K.; Tarnacki, Jennifer L.; Kunnenkeri, Sushruta K.; Fici, Dolores A.; Yunis, Edmond J.; Awdeh, Zuheir L.; Alper, Chester A.

    2014-01-01

    We resequenced and phased 27 kb of DNA within 580 kb of the MHC class II region in 158 population chromosomes, most of which were conserved extended haplotypes (CEHs) of European descent or contained their centromeric fragments. We determined the single nucleotide polymorphism and deletion-insertion polymorphism alleles of the dominant sequences from HLA-DQA2 to DAXX for these CEHs. Nine of 13 CEHs remained sufficiently intact to possess a dominant sequence extending at least to DAXX, 230 kb centromeric to HLA-DPB1. We identified the regions centromeric to HLA-DQB1 within which single instances of eight “common” European MHC haplotypes previously sequenced by the MHC Haplotype Project (MHP) were representative of those dominant CEH sequences. Only two MHP haplotypes had a dominant CEH sequence throughout the centromeric and extended class II region and one MHP haplotype did not represent a known European CEH anywhere in the region. We identified the centromeric recombination transition points of other MHP sequences from CEH representation to non-representation. Several CEH pairs or groups shared sequence identity in small blocks but had significantly different (although still conserved for each separate CEH) sequences in surrounding regions. These patterns partly explain strong calculated linkage disequilibrium over only short (tens to hundreds of kilobases) distances in the context of a finite number of observed megabase-length CEHs comprising half a population's haplotypes. Our results provide a clearer picture of European CEH class II allelic structure and population haplotype architecture, improved regional CEH markers, and raise questions concerning regional recombination hotspots. PMID:25299700

  4. Non-additive and epistatic effects of HLA polymorphisms contributing to risk of adult glioma.

    PubMed

    Zhang, Chenan; de Smith, Adam J; Smirnov, Ivan V; Wiencke, John K; Wiemels, Joseph L; Witte, John S; Walsh, Kyle M

    2017-11-01

    Although genome-wide association studies have identified several susceptibility loci for adult glioma, little is known regarding the potential contribution of genetic variation in the human leukocyte antigen (HLA) region to glioma risk. HLA associations have been reported for various malignancies, with many studies investigating selected candidate HLA polymorphisms. However, no systematic analysis has been conducted in glioma patients, and no investigation into potential non-additive effects has been described. We conducted comprehensive genetic analyses of HLA variants among 1746 adult glioma patients and 2312 controls of European-ancestry from the GliomaScan Consortium. Genotype data were generated with the Illumina 660-Quad array, and we imputed HLA alleles using a reference panel of 5225 individuals in the Type 1 Diabetes Genetics Consortium who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for population stratification using ancestry-informative principal components. Because alleles in different loci across the HLA region are linked, we created multigene haplotypes consisting of the genes DRB1, DQA1, and DQB1. Although none of the haplotypes were associated with glioma in additive models, inclusion of a dominance term significantly improved the model for multigene haplotype HLA-DRB1*1501-DQA1*0102-DQB1*0602 (P = 0.002). Heterozygous carriers of the haplotype had an increased risk of glioma [odds ratio (OR) 1.23; 95% confidence interval (CI) 1.01-1.49], while homozygous carriers were at decreased risk compared with non-carriers (OR 0.64; 95% CI 0.40-1.01). Our results suggest that the DRB1*1501-DQA1*0102-DQB1*0602 haplotype may contribute to the risk of glioma in a non-additive manner, with the positive dominance effect partly explained by an epistatic interaction with HLA-DRB1*0401-DQA1*0301-DQB1*0301.

  5. The intron 1 of HPV 16 has a suboptimal branch point at a guanosine.

    PubMed

    De la Rosa-Rios, Marco Antonio; Martínez-Salazar, Martha; Martínez-Garcia, Martha; González-Bonilla, César; Villegas-Sepúlveda, Nicolás

    2006-06-01

    The branch point sequence (BPS) of intron 1 of the HPV-16 was determined via RT-PCR in a cell free system, using lariat intermediates obtained by in vitro splicing reactions. We used synthetic E6/E7 transcripts and HeLa nuclear protein extracts to obtain the splicing intermediates. Then, a divergent oligonucleotide primer set, pairing on the lariat RNA that encompassed the 2'-5' phosphodiester bond formed between the 5' end of the intron and the BPS, was used for cDNA synthesis and PCR amplification. Subsequent RT-PCR assays revealed four splicing intermediates, made up of a major intermediary corresponding to the BPS and four cryptic branched sequences. Only intermediates bound at the 5' end of the intron are probably the authentic branch point sequence, and all of them branch at guanosine 328 instead of the typical adenosine. Unusually, the BPS of intron 1 of HPV-16 is a suboptimal sequence (AGUGAGU) that differs from the eukaryotic consensus BPS, which correlates with the splicing profile observed for early transcripts of HPV-16 in tumors and tumor derived cell lines. The implications of this unusual branch point sequence for splicing of the HPV-16 pre-mRNA are discussed.

  6. Analysis of Claviceps africana and C. sorghi from India using AFLPs, EF-1alpha gene intron 4, and beta-tubulin gene intron 3.

    PubMed

    Tooley, Paul W; Bandyopadhyay, Ranajit; Carras, Marie M; Pazoutová, Sylvie

    2006-04-01

    Isolates of Claviceps causing ergot on sorghum in India were analysed by AFLP analysis, and by analysis of DNA sequences of the EF-1alpha gene intron 4 and beta-tubulin gene intron 3 region. Of 89 isolates assayed from six states in India, four were determined to be C. sorghi, and the rest C. africana. A relatively low level of genetic diversity was observed within the Indian C. africana population. No evidence of genetic exchange between C. africana and C. sorghi was observed in either AFLP or DNA sequence analysis. Phylogenetic analysis was conducted using DNA sequences from 14 different Claviceps species. A multigene phylogeny based on the EF-1alpha gene intron 4, the beta-tubulin gene intron 3 region, and rDNA showed that C. sorghi grouped most closely with C. gigantea and C. africana. Although the Claviceps species we analysed were closely related, they colonize hosts that are taxonomically very distinct suggesting that there is no direct coevolution of Claviceps with its hosts.

  7. A pipeline of programs for collecting and analyzing group II intron retroelement sequences from GenBank

    PubMed Central

    2013-01-01

    Background Accurate and complete identification of mobile elements is a challenging task in the current era of sequencing, given their large numbers and frequent truncations. Group II intron retroelements, which consist of a ribozyme and an intron-encoded protein (IEP), are usually identified in bacterial genomes through their IEP; however, the RNA component that defines the intron boundaries is often difficult to identify because of a lack of strong sequence conservation corresponding to the RNA structure. Compounding the problem of boundary definition is the fact that a majority of group II intron copies in bacteria are truncated. Results Here we present a pipeline of 11 programs that collect and analyze group II intron sequences from GenBank. The pipeline begins with a BLAST search of GenBank using a set of representative group II IEPs as queries. Subsequent steps download the corresponding genomic sequences and flanks, filter out non-group II introns, assign introns to phylogenetic subclasses, filter out incomplete and/or non-functional introns, and assign IEP sequences and RNA boundaries to the full-length introns. In the final step, the redundancy in the data set is reduced by grouping introns into sets of ≥95% identity, with one example sequence chosen to be the representative. Conclusions These programs should be useful for comprehensive identification of group II introns in sequence databases as data continue to rapidly accumulate. PMID:24359548

  8. A Comparative Genomics Strategy for Targeted Discovery of Single-Nucleotide Polymorphisms and Conserved-Noncoding Sequences in Orphan Crops1[W

    PubMed Central

    Feltus, F.A.; Singh, H.P.; Lohithaswa, H.C.; Schulze, S.R.; Silva, T.D.; Paterson, A.H.

    2006-01-01

    Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. PMID:16607031

  9. A common class of transcripts with 5'-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification.

    PubMed

    Cenik, Can; Chua, Hon Nian; Singh, Guramrit; Akef, Abdalla; Snyder, Michael P; Palazzo, Alexander F; Moore, Melissa J; Roth, Frederick P

    2017-03-01

    Introns are found in 5' untranslated regions (5'UTRs) for 35% of all human transcripts. These 5'UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5'UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5'UTR intron status, we developed a classifier that can predict 5'UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5 ' proximal- i ntron- m inus-like-coding regions ("5IM" transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5' cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5' proximal positions. Finally, N 1 -methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5' proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N 1 -methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC. © 2017 Cenik et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Mitochondrial intronic open reading frames in Podospora: Mobility and consecutive exonic sequence variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellem, C.H.; Rossignol, M.; Belcour, L.

    1996-06-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optical sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences.more » In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. 46 refs., 5 figs., 2 tabs.« less

  11. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  12. Nucleotide sequence of the COX1 gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron.

    PubMed

    Hardy, C M; Clark-Walker, G D

    1991-07-01

    The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.

  13. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations

    USGS Publications Warehouse

    Bowen, Lizabeth; Aldridge, B.M.; Miles, A. Keith; Stott, J.L.

    2006-01-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide‐binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters.

  14. Molecular gene organisation and secondary structure of the mitochondrial large subunit ribosomal RNA from the cultivated Basidiomycota Agrocybe aegerita: a 13 kb gene possessing six unusual nucleotide extensions and eight introns.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1999-04-01

    The complete gene sequence and secondary structure of the mitochondrial LSU rRNA from the cultivated Basidiomycota Agrocybe aegerita was derived by chromosome walking. The A.aegerita LSU rRNA gene (13 526 nt) represents, to date, the longest described, due to the highest number of introns (eight) and the occurrence of six long nucleotidic extensions. Seven introns belong to group I, while the intronic sequence i5 constitutes the first typical group II intron reported in a fungal mitochondrial LSU rDNA. As with most fungal LSU rDNA introns reported to date, four introns (i5-i8) are distributed in domain V associated with the peptidyl-transferase activity. One intron (i1) is located in domain I, and three (i2-i4) in domain II. The introns i2-i8 possess homologies with other fungal, algal or protozoan introns located at the same position in LSU rDNAs. One of them (i6) is located at the same insertion site as most Ascomycota or algae LSU introns, suggesting a possible inheritance from a common ancestor. On the contrary, intron i1 is located at a so-far unreported insertion site. Among the six unusual nucleotide extensions, five are located in domain I and one in domain V. This is the first report of a mitochondrial LSU rRNA gene sequence and secondary structure for the whole Basidiomycota division.

  15. COL1A1 transgene expression in stably transfected osteoblastic cells. Relative contributions of first intron, 3'-flanking sequences, and sequences derived from the body of the human COL1A1 minigene

    NASA Technical Reports Server (NTRS)

    Breault, D. T.; Lichtler, A. C.; Rowe, D. W.

    1997-01-01

    Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.

  16. HLA-DQA1 and PLA2R1 Polymorphisms and Risk of Idiopathic Membranous Nephropathy

    PubMed Central

    Bullich, Gemma; Ballarín, José; Oliver, Artur; Ayasreh, Nadia; Silva, Irene; Santín, Sheila; Díaz-Encarnación, Montserrat M.; Torra, Roser

    2014-01-01

    Summary Background and objectives Single nucleotide polymorphisms (SNPs) within HLA complex class II HLA-DQ α-chain 1 (HLA-DQA1) and M-type phospholipase A2 receptor (PLA2R1) genes were identified as strong risk factors for idiopathic membranous nephropathy (IMN) development in a recent genome-wide association study. Copy number variants (CNVs) within the Fc gamma receptor III (FCGR3) locus have been associated with several autoimmune diseases, but their role in IMN has not been studied. This study aimed to validate the association of HLA-DQA1 and PLA2R1 risk alleles with IMN in a Spanish cohort, test the putative association of FCGR3A and FCGR3B CNVs with IMN, and assess the use of these genetic factors to predict the clinical outcome of the disease. Design, settings, participants, & measurements A Spanish cohort of 89 IMN patients and 286 matched controls without nephropathy was recruited between October of 2009 and July of 2012. Case-control studies for SNPs within HLA-DQA1 (rs2187668) and PLA2R1 (rs4664308) genes and CNVs for FCGR3A and FCGR3B genes were performed. The contribution of these polymorphisms to predict clinical outcome and renal function decline was analyzed. Results This study validated the association of these HLA-DQA1 and PLA2R1 SNPs with IMN in a Spanish cohort and its increased risk when combining both risk genotypes. No significant association was found between FCGR3 CNVs and IMN. These results revealed that HLA-DQA1 and PLA2R1 genotype combination adjusted for baseline proteinuria strongly predicted response to immunosuppressive therapy. HLA-DQA1 genotype adjusted for proteinuria was also linked with renal function decline. Conclusion This study confirms that HLA-DQA1 and PLA2R1 genotypes are risk factors for IMN, whereas no association was identified for FCGR3 CNVs. This study provides, for the first time, evidence of the contribution of these HLA-DQA1 and PLA2R1 polymorphisms in predicting IMN response to immunosuppressors and disease progression. Future studies are needed to validate and identify prognostic markers. PMID:24262501

  17. Group I introns are widespread in archaea.

    PubMed

    Nawrocki, Eric P; Jones, Thomas A; Eddy, Sean R

    2018-05-18

    Group I catalytic introns have been found in bacterial, viral, organellar, and some eukaryotic genomes, but not in archaea. All known archaeal introns are bulge-helix-bulge (BHB) introns, with the exception of a few group II introns. It has been proposed that BHB introns arose from extinct group I intron ancestors, much like eukaryotic spliceosomal introns are thought to have descended from group II introns. However, group I introns have little sequence conservation, making them difficult to detect with standard sequence similarity searches. Taking advantage of recent improvements in a computational homology search method that accounts for both conserved sequence and RNA secondary structure, we have identified 39 group I introns in a wide range of archaeal phyla, including examples of group I introns and BHB introns in the same host gene.

  18. Genetic association of sequence variation in exon 3 of the swine leukocyte antigen-DQA gene with piglet diarrhea in Large White, Landrace, and Duroc piglets.

    PubMed

    Yang, Q L; Huang, X Y; Kong, J J; Zhao, S G; Liu, L X; Gun, S B

    2016-08-19

    Piglet diarrhea is one of the primary factors that affects the benefits of the swine industry. Recent studies have shown that exon 2 of the swine leukocyte antigen-DQA gene is associated with piglet resistance to diarrhea; however, the contributions of additional exon coding regions of this gene remain unclear. Here, we detected and sequenced variants in the exon 3 region and examined their associations with diarrhea infection in 425 suckling piglets using the polymerase chain reaction-single-strand conformational polymorphism and sequencing analysis. The results revealed that exon 3 of the swine leukocyte antigen-DQA gene is highly polymorphic and pivotal to both diarrhea susceptibility and resistance in piglets. We identified 14 genotypes (AA, AB, BB, BC, CC, EE, EF, BE, BF, CF, DD, DH, GG, and GF) and eight alleles (A-H) that were generated by 14 nucleotide variants, eight of which were novel, and three nucleotide deletions. Statistical analyses revealed that the genotypes AB and EF were associated with resistance to diarrheal disease (P < 0.05), and the genotype DD may contribute to diarrhea susceptibility but was unique to Large White pigs (P > 0.05). These results elucidate the genetic and immunological background to piglet diarrhea, and provide useful information for resistance breeding programs.

  19. Interactions between the promoter and first intron are involved in transcriptional control of alpha 1(I) collagen gene expression.

    PubMed Central

    Bornstein, P; McKay, J; Liska, D J; Apone, S; Devarayalu, S

    1988-01-01

    The first intron of the human collagen alpha 1(I) gene contains several positively and negatively acting elements. We have studied the transcription of collagen-human growth hormone fusion genes, containing deletions and rearrangements of collagen intronic sequences, by transient transfection of chick tendon fibroblasts and NIH 3T3 cells. In chick tendon fibroblasts, but not in 3T3 cells, inversion of intronic sequences containing a previously studied 274-base-pair segment, A274, resulted in markedly reduced human growth hormone mRNA levels as determined by an RNase protection assay. This inhibitory effect was largely alleviated when deletions were introduced in the collagen promoter of plasmids containing negatively oriented intronic sequences. Evidence for interaction of the promoter with the intronic segment, A274, was obtained by gel mobility shift assays. We suggest that promoter-intron interactions, mediated by DNA-binding proteins, regulate collagen gene transcription. Inversion of intronic segments containing critical interactive elements might then lead to an altered geometry and reduced activity of a transcriptional complex in those cells with sufficiently high levels of appropriate transcription factors. We further suggest that the deleted promoter segment plays a key role in directing DNA interactions involved in transcriptional control. Images PMID:3211130

  20. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  1. [Applylication of new type combined fragments: nrDNA ITS+ nad 1-intron 2 for identification of Dendrobium species of Fengdous].

    PubMed

    Geng, Li-xia; Zheng, Rui; Ren, Jie; Niu, Zhi-tao; Sun, Yu-long; Xue, Qing-yun; Liu, Wei; Ding, Xiao-yu

    2015-08-01

    In this study, 17 kinds of Dendrobium species of Fengdous including 39 individuals were collected from 4 provinces. Mitochondrial gene sequences co I, nad 5, nad 1-intron 2 and chloroplast gene sequences rbcL, matK amd psbA-trnH were amplified from these materials, as well as nrDNA ITS. Furthermore, suitable sequences for identification of Dendrobium species of Fengdous were screened by K-2-P and P-distance. The results showed that during the mentioned 7 sequences, nrDNA ITS, nad 1-intron 2 and psbA-trnH which had a high degree of variability could be used to identify Dendrobium species of Fengdous. However, single fragment could not be used to distinguish D. moniliforme and D. huoshanense. Moreover, compared to other combined fragments, new type combined fragments nrDNA ITS+nad 1-intron 2 was more effective in identifying the original plants of Dendrobium species and could be used to identify D. huoshanense and D. moniliforme. Besides, according to the UPGMA tree constructed with nrDNA ITS+nad 1-intron 2, 3 inspected Dendrobium plants were identified as D. huoshanense, D. moniliforme and D. officinale, respectively. This study identified Dendrobium species of Fengdous by combined fragments nrDNA ITS+nad 1-intron 2 for the first time, which provided a more effective basis for identification of Dendrobium species. And this study will be helpful for regulating the market of Fengdous.

  2. HLA-DQA1 and HLA-DQB1 allele diversity and its extended haplotypes in Madeira Island (Portugal).

    PubMed

    Spínola, H; Lemos, A; Couto, A R; Parreira, B; Soares, M; Dutra, I; Bruges-Armas, J; Brehm, A

    2017-02-01

    This study shows, for the first time, high-resolution allele frequencies of HLA-DQA1 loci in Madeira Island (Portugal) and allows us to better understand and refine present knowledge on DQB1 variation, with the identification of several alleles not previously reported in this population. Estimates on haplotype profile, involving HLA-A, HLA-B, HLA-DRB1, HLA-DQA1 and HLA-DQB1, are also reported. © 2016 John Wiley & Sons Ltd.

  3. Genetic variation in domestic reindeer and wild caribou in Alaska

    USGS Publications Warehouse

    Cronin, M.; Renecker, L.; Pierson, Barbara J.; Patton, J.C.

    1995-01-01

    Reindeer were introduced into Alaska 100 years ago and have been maintained as semidomestic livestock. They have had contact with wild caribou herds, including deliberate cross-breeding and mixing in the wild. Reindeer have considerable potential as a domestic animal for meat or velvet antler production, and wild caribou are important to subsistence and sport hunters. Our objective was to quantify the genetic relationships of reindeer and caribou in Alaska. We identified allelic variation among five herds of wild caribou and three herds of reindeer with DNA sequencing and restriction enzymes for three loci: a DQA locus of the major histocompatibility complex (Rata-DQA1), k-casein and the D-loop of mitochondrial DNA. These loci are of interest because of their potential influence on domestic animal performance and the fitness of wild populations. There is considerable genetic variation in reindeer and caribou for all three loci, including five, three and six alleles for DQA, k-casein and D-loop respectively. Most alleles occur in both reindeer and caribou, which may be the result of recent common ancestry or genetic introgression in either direction. However, allele frequencies differ considerably between reindeer and caribou, which suggests that gene flow has been limited.

  4. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops.

    PubMed

    Feltus, F A; Singh, H P; Lohithaswa, H C; Schulze, S R; Silva, T D; Paterson, A H

    2006-04-01

    Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.

  5. Human leucocyte antigens class II allele and haplotype association with Type 1 Diabetes in Madeira Island (Portugal).

    PubMed

    Spínola, H; Lemos, A; Couto, A R; Parreira, B; Soares, M; Dutra, I; Bruges-Armas, J; Brehm, A; Abreu, S

    2017-12-01

    This study confirms for Madeira Island (Portugal) population the Type 1 Diabetes (T1D) susceptible and protective Human leucocyte antigens (HLA) markers previously reported in other populations and adds some local specificities. Among the strongest T1D HLA associations, stands out, as susceptible, the alleles DRB1*04:05 (OR = 7.3), DQB1*03:02 (OR = 6.1) and DQA1*03:03 (OR = 4.5), as well as the haplotypes DRB1*04:05-DQA1*03:03-DQB1*03:02 (OR = 100.9) and DRB1*04:04-DQA1*03:01-DQB1*03:02 (OR = 22.1), and DQB1*06:02 (OR = 0.07) and DRB1*15:01-DQA1*01:02-DQB1*06:02 (OR = 0.04) as protective. HLA-DQA1 positive for Arginine at position 52 (Arg52) (OR = 15.2) and HLA-DQB1 negative for Aspartic acid at the position 57 (Asp57) (OR = 9.0) alleles appear to be important genetic markers for T1D susceptibility, with higher odds ratio values than any single allele and than most of the haplotypes. Genotypes generated by the association of markers Arg52 DQA1 positive and Asp57 DQB1 negative increase T1D susceptibility much more than one would expected by a simple additive effect of those markers separately (OR = 26.9). This study also confirms an increased risk for DRB1*04/DRB1*03 heterozygote genotypes (OR = 16.8) and also a DRB1*04-DQA1*03:01-DQB1*03:02 haplotype susceptibility dependent on the DRB1*04 allele (DRB1*04:01, OR = 7.9; DRB1*04:02, OR = 3.2; DRB1*04:04, OR = 22.1). © 2017 John Wiley & Sons Ltd.

  6. The wheat cytochrome oxidase subunit II gene has an intron insert and three radical amino acid changes relative to maize

    PubMed Central

    Bonen, Linda; Boer, Poppo H.; Gray, Michael W.

    1984-01-01

    We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity. ImagesFig. 3.Fig. 4.Fig. 5. PMID:16453565

  7. Molecular and bioinformatical characterization of a novel superfamily of cysteine-rich peptides from arthropods.

    PubMed

    Zeng, Xian-Chun; Nie, Yao; Luo, Xuesong; Wu, Shifen; Shi, Wanxia; Zhang, Lei; Liu, Yichen; Cao, Hanjun; Yang, Ye; Zhou, Jianping

    2013-03-01

    The full-length cDNA sequences of two novel cysteine-rich peptides (referred to as HsVx1 and MmKTx1) were obtained from scorpions. The two peptides represent a novel class of cysteine-rich peptides with a unique cysteine pattern. The genomic sequence of HsVx1 is composed of three exons interrupted by two introns that are localized in the mature peptide encoding region and inserted in phase 1 and phase 2, respectively. Such a genomic organization markedly differs from those of other peptides from scorpions described previously. Genome-wide search for the orthologs of HsVx1 identified 59 novel cysteine-rich peptides from arthropods. These peptides share a consistent cysteine pattern with HsVx1. Genomic comparison revealed extensive intron length differences and intronic number and position polymorphisms among the genes of these peptides. Further analysis identified 30 cases of intron sliding, 1 case of intron gain and 22 cases of intron loss occurred with the genes of the HsVx1 and HsVx1-like peptides. It is interesting to see that three HsVx1-like peptides XP_001658928, XP_001658929 and XP_001658930 were derived from a single gene (XP gene): the former two were generated from alternative splicing; the third one was encoded by a DNA region in the reverse complementary strand of the third intron of the XP gene. These findings strongly suggest that the genes of these cysteine-rich peptides were evolved by intron sliding, intron gain/loss, gene recombination and alternative splicing events in response to selective forces without changing their cysteine pattern. The evolution of these genes is dominated by intron sliding and intron loss. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Is a quasi-3D dosimeter better than a 2D dosimeter for Tomotherapy delivery quality assurance?

    NASA Astrophysics Data System (ADS)

    Xing, Aitang; Deshpande, Shrikant; Arumugam, Sankar; George, Armia; Holloway, Lois; Vial, Philip; Goozee, Gary

    2015-01-01

    Delivery quality assurance (DQA) has been performed for each Tomotherapy patient either using ArcCHECK or MatriXX Evolution in our clinic since 2012. ArcCHECK is a quasi-3D dosimeter whereas MatriXX is a 2D detector. A review of DQA results was performed for all patients in the last three years, a total of 221 DQA plans. These DQA plans came from 215 patients with a variety of treatment sites including head-neck, pelvis, and chest wall. The acceptable Gamma pass rate in our clinic is over 95% using 3mm and 3% of maximum planned dose with 10% dose threshold. The mean value and standard deviation of Gamma pass rates were 98.2% ± 1.98(1SD) for MatriXX and 98.5%±1.88 (1SD) for ArcCHECK. A paired t-test was also performed for the groups of patients whose DQA was performed with both the ArcCHECK and MatriXX. No statistical dependence was found in terms of the Gamma pass rate for ArcCHECK and MatriXX. The considered 3D and 2D dosimeters have achieved similar results in performing routine patient-specific DQA for patients treated on a TomoTherapy unit.

  9. Challenges in data quality: the influence of data quality assessments on data availability and completeness in a voluntary medical male circumcision programme in Zimbabwe

    PubMed Central

    Xiao, Y; Bochner, A F; Makunike, B; Holec, M; Xaba, S; Tshimanga, M; Chitimbire, V; Barnhart, S; Feldacker, C

    2017-01-01

    Objectives To assess availability and completeness of data collected before and after a data quality audit (DQA) in voluntary medical male circumcision (VMMC) sites in Zimbabwe to determine the effect of this process on data quality. Setting 4 of 10 VMMC sites in Zimbabwe that received a DQA in February, 2015 selected by convenience sampling. Participants Retrospective reviews of all client intake forms (CIFs) from November, 2014 and May, 2015. A total of 1400 CIFs were included from those 2 months across four sites. Primary and secondary outcomes Data availability was measured as the percentage of VMMC clients whose CIF was on file at each site. A data evaluation tool measured the completeness of 34 key CIF variables. A comparison of pre-DQA and post-DQA results was conducted using χ2 and t-tests. Results After the DQA, high record availability of over 98% was maintained by sites 3 and 4. For sites 1 and 2, record availability increased by 8.0% (p=0.001) and 9.7% (p=0.02), respectively. After the DQA, sites 1, 2 and 3 improved significantly in data completeness across 34 key indicators, increasing by 8.6% (p<0.001), 2.7% (p=0.003) and 3.8% (p<0.001), respectively. For site 4, CIF data completeness decreased by 1.7% (p<0.01) after the DQA. Conclusions Our findings suggest that CIF data availability and completeness generally improved after the DQA. However, gaps in documentation of vital signs and adverse events signal areas for improvement. Additional emphasis on data completeness would help support high-quality programme implementation and availability of reliable data for decision-making. PMID:28132009

  10. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence.

    PubMed

    Akkuratov, Evgeny E; Walters, Lorraine; Saha-Mandal, Arnab; Khandekar, Sushant; Crawford, Erin; Zirbel, Craig L; Leisner, Scott; Prakash, Ashwin; Fedorova, Larisa; Fedorov, Alexei

    2014-09-10

    Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts.

    DTIC Science & Technology

    1987-07-31

    1{ 1. Project Goals: A. To determine the mechanism of tRNA intron processing in the halophilic archaebacteria. B. Characterize and compare the...enzyme(s) responsible for the removal of 5’-flanking sequences from halophilic and sulfur-dependent tRNA gene transcripts. C. Examine the structure and...distribution of tRNA introns in the halophilic archaebacteria. 2. Accomplishments: A. Intron processing mechanism We have succeeded in our primary

  12. The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria

    PubMed Central

    Sultan, Laure D.; Grewe, Felix; Rolle, Katarzyna; Abudraham, Sivan; Shevtsov, Sofia; Klipcan, Liron; Barciszewski, Jan; Dietrich, André

    2016-01-01

    Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4. Its conservation across land plants and RNA editing events, which restore conserved amino acids, indicates that matR encodes a functional protein. However, the biological role of MatR remains unclear. Here, we performed an in vivo investigation of the roles of MatR in Brassicaceae. Directed knockdown of matR expression via synthetically designed ribozymes altered the processing of various introns, including nad1 i4. Pull-down experiments further indicated that MatR is associated with nad1 i4 and several other intron-containing pre-mRNAs. MatR may thus represent an intermediate link in the gradual evolutionary transition from the intron-specific maturases in bacteria into their versatile spliceosomal descendants in the nucleus. The similarity between maturases and the core spliceosomal Prp8 protein further supports this intriguing theory. PMID:27760804

  13. Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons

    PubMed Central

    2011-01-01

    Background The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intron's promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element. Results Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1. Re-examination of all published cox1 genes uncovered additional cases of extended co-conversion and identified a rare case of putative intron loss, accompanied by full retention of the CCT. Conclusions We infer that the cox1 intron was separately and recently acquired by at least three different lineages of Solanaceae. The striking identity of the intron and CCT from two of these lineages suggests that one of these three intron captures may have occurred by a within-family transfer event. This is consistent with previous evidence that horizontal transfer in plants is biased towards phylogenetically local events. The discovery of extended co-conversion suggests that other cox1 conversions may be longer than realized but obscured by the exceptional conservation of plant mitochondrial sequences. Our findings provide further support for the rampant-transfer model of cox1 intron evolution and recommend the Solanaceae as a model system for the experimental analysis of cox1 intron transfer in plants. PMID:21943226

  14. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia.

    PubMed

    Vaughn, J C; Mason, M T; Sper-Whitis, G L; Kuhlman, P; Palmer, J D

    1995-11-01

    We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.

  15. Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies.

    PubMed

    Sekula, Peggy; Li, Yong; Stanescu, Horia C; Wuttke, Matthias; Ekici, Arif B; Bockenhauer, Detlef; Walz, Gerd; Powis, Stephen H; Kielstein, Jan T; Brenchley, Paul; Eckardt, Kai-Uwe; Kronenberg, Florian; Kleta, Robert; Köttgen, Anna

    2017-02-01

    Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Previous genome-wide association studies (GWAS) of 300 000 genotyped variants identified MN-associated loci at HLA-DQA1 and PLA2R1. We used a combined approach of genotype imputation, GWAS, human leucocyte antigen (HLA) imputation and extension to other aetiologies of chronic kidney disease (CKD) to investigate genetic MN risk variants more comprehensively. GWAS using 9 million high-quality imputed genotypes and classical HLA alleles were conducted for 323 MN European-ancestry cases and 345 controls. Additionally, 4960 patients with different CKD aetiologies in the German Chronic Kidney Disease (GCKD) study were genotyped for risk variants at HLA-DQA1 and PLA2R1. In GWAS, lead variants in known loci [rs9272729, HLA-DQA1, odds ratio (OR) = 7.3 per risk allele, P = 5.9 × 10 -27 and rs17830558, PLA2R1, OR = 2.2, P = 1.9 × 10 -8 ] were significantly associated with MN. No novel signals emerged in GWAS of X-chromosomal variants or in sex-specific analyses. Classical HLA alleles (DRB1*0301-DQA1*0501-DQB1*0201 haplotype) were associated with MN but provided little additional information beyond rs9272729. Associations were replicated in 137 GCKD patients with MN (HLA-DQA1: P = 6.4 × 10 -24 ; PLA2R1: P = 5.0 × 10 -4 ). MN risk increased steeply for patients with high-risk genotype combinations (OR > 79). While genetic variation in PLA2R1 exclusively associated with MN across 19 CKD aetiologies, the HLA-DQA1 risk allele was also associated with lupus nephritis (P = 2.8 × 10 -6 ), type 1 diabetic nephropathy (P = 6.9 × 10 -5 ) and focal segmental glomerulosclerosis (P = 5.1 × 10 -5 ), but not with immunoglobulin A nephropathy. PLA2R1 and HLA-DQA1 are the predominant risk loci for MN detected by GWAS. While HLA-DQA1 risk variants show an association with other CKD aetiologies, PLA2R1 variants are specific to MN. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  16. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design.

    PubMed

    Costa, José Hélio; de Melo, Dirce Fernandes; Gouveia, Zélia; Cardoso, Hélia Guerra; Peixe, Augusto; Arnholdt-Schmitt, Birgit

    2009-12-01

    'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection against a transposable-element insertion that is 5028 bp in size. An EST database basic local alignment search tool (BLAST) search of GenBank revealed the following ESTs percentages for each gene: Aox1a (26.2%), Aox1b (11.9%) and Aox2 (61.9%). Aox1a was expressed in fruits and roots, Aox1b expression was confined to flowers and Aox2 was ubiquitously expressed. These data for V. vinifera show that atypically long Aox intron lengths are related to high levels of gene expression. Furthermore, it is shown for the first time that two grapevine cultivars can be distinguished by Aox intron length polymorphism.

  17. Phylogenetics and Gene Structure Dynamics of Polygalacturonase Genes in Aspergillus and Neurospora crassa

    PubMed Central

    Hong, Jin-Sung; Ryu, Ki-Hyun; Kwon, Soon-Jae; Kim, Jin-Won; Kim, Kwang-Soo; Park, Kyong-Cheul

    2013-01-01

    Polygalacturonase (PG) gene is a typical gene family present in eukaryotes. Forty-nine PGs were mined from the genomes of Neurospora crassa and five Aspergillus species. The PGs were classified into 3 clades such as clade 1 for rhamno-PGs, clade 2 for exo-PGs and clade 3 for exo- and endo-PGs, which were further grouped into 13 sub-clades based on the polypeptide sequence similarity. In gene structure analysis, a total of 124 introns were present in 44 genes and five genes lacked introns to give an average of 2.5 introns per gene. Intron phase distribution was 64.5% for phase 0, 21.8% for phase 1, and 13.7% for phase 2, respectively. The introns varied in their sequences and their lengths ranged from 20 bp to 424 bp with an average of 65.9 bp, which is approximately half the size of introns in other fungal genes. There were 29 homologous intron blocks and 26 of those were sub-clade specific. Intron losses were counted in 18 introns in which no obvious phase preference for intron loss was observed. Eighteen introns were placed at novel positions, which is considerably higher than those of plant PGs. In an evolutionary sense both intron loss and gain must have taken place for shaping the current PGs in these fungi. Together with the small intron size, low conservation of homologous intron blocks and higher number of novel introns, PGs of fungal species seem to have recently undergone highly dynamic evolution. PMID:25288950

  18. Intron Definition Is Required for Excision of the Minute Virus of Mice Small Intron and Definition of the Upstream Exon

    PubMed Central

    Haut, Donald D.; Pintel, D. J.

    1998-01-01

    Alternative splicing of pre-mRNAs plays a critical role in maximizing the coding capacity of the small parvovirus genome. The small-intron region of minute virus of mice (MVM) pre-mRNAs undergoes an unusual pattern of overlapping alternative splicing—using two donors (D1 and D2) and two acceptors (A1 and A2) within a region of 120 nucleotides—that determines the steady-state ratios of the various viral mRNAs. In this report, we show that the determinants that govern excision of the small intron are complex and are also required for efficient definition of the upstream exon. For the MVM small intron in its natural context, the two donors appear to compete for the splicing machinery: the position of D1 favors its usage, while the primary sequence of D2 must be more like the consensus sequence than is D1 to be used efficiently. We have genetically defined the branch points that are used for generation of the major and minor spliced forms and show that recognition of components of the small-intron acceptors is likely to be the dominant determinant in alternative small-intron excision. We have also identified a G-rich intronic enhancer sequence within the small intron that is essential for splicing of the minor form (D2 to A2) but not the major form (D1 to A1) of MVM mRNAs and is required for efficient definition of the upstream NS2-specific exon. In its natural context, the small intron appears to be excised by a mechanism consistent with intron definition. When the MVM small intron is expanded, various parameters of its excision are altered, indicating that critical cis-acting signals are context dependent. Relative use of the donors and acceptors is altered, and the upstream NS2-specific exon is no longer efficiently defined. The fact that definition of the upstream NS2-specific exon can be achieved by the MVM small intron in its natural context, but not when it is expanded, suggests that the multiple determinants that govern definition and excision of the small intron are required, in concert, for upstream exon definition. Our data are consistent with a model in which alternative splicing of the MVM P4-generated pre-mRNAs is governed by a hybrid of intron- and exon-defining mechanisms. PMID:9499034

  19. DLA Class II Alleles Are Associated with Risk for Canine Symmetrical Lupoid Onychodystropy (SLO)

    PubMed Central

    Wilbe, Maria; Ziener, Martine Lund; Aronsson, Anita; Harlos, Charlotte; Sundberg, Katarina; Norberg, Elin; Andersson, Lisa; Lindblad-Toh, Kerstin; Hedhammar, Åke; Andersson, Göran; Lingaas, Frode

    2010-01-01

    Symmetrical lupoid onychodystrophy (SLO) is an immune-mediated disease in dogs affecting the claws with a suggested autoimmune aethiology. Sequence-based genotyping of the polymorphic exon 2 from DLA-DRB1, -DQA1, and -DQB1 class II loci were performed in a total of 98 SLO Gordon setter cases and 98 healthy controls. A risk haplotype (DRB1*01801/DQA1*00101/DQB1*00802) was present in 53% of cases and 34% of controls and conferred an elevated risk of developing SLO with an odds ratio (OR) of 2.1. When dogs homozygous for the risk haplotype were compared to all dogs not carrying the haplotype the OR was 5.4. However, a stronger protective haplotype (DRB1*02001/DQA1*00401/DQB1*01303, OR = 0.03, 1/OR = 33) was present in 16.8% of controls, but only in a single case (0.5%). The effect of the protective haplotype was clearly stronger than the risk haplotype, since 11.2% of the controls were heterozygous for the risk and protective haplotypes, whereas this combination was absent from cases. When the dogs with the protective haplotype were excluded, an OR of 2.5 was obtained when dogs homozygous for the risk haplotype were compared to those heterozygous for the risk haplotype, suggesting a co-dominant effect of the risk haplotype. In smaller sample sizes of the bearded collie and giant schnauzer breeds we found the same or similar haplotypes, sharing the same DQA1 allele, over-represented among the cases suggesting that the risk is associated primarily with DLA-DQ. We obtained conclusive results that DLA class II is significantly associated with risk of developing SLO in Gordon setters, thus supporting that SLO is an immune-mediated disease. Further studies of SLO in dogs may provide important insight into immune privilege of the nail apparatus and also knowledge about a number of inflammatory disorders of the nail apparatus like lichen planus, psoriasis, alopecia areata and onycholysis. PMID:20808798

  20. Introns: The Functional Benefits of Introns in Genomes.

    PubMed

    Jo, Bong-Seok; Choi, Sun Shim

    2015-12-01

    The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced.

  1. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  2. Splicing-Related Features of Introns Serve to Propel Evolution

    PubMed Central

    Luo, Yuping; Li, Chun; Gong, Xi; Wang, Yanlu; Zhang, Kunshan; Cui, Yaru; Sun, Yi Eve; Li, Siguang

    2013-01-01

    The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron's ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution. PMID:23516505

  3. The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria.

    PubMed

    Sultan, Laure D; Mileshina, Daria; Grewe, Felix; Rolle, Katarzyna; Abudraham, Sivan; Głodowicz, Paweł; Niazi, Adnan Khan; Keren, Ido; Shevtsov, Sofia; Klipcan, Liron; Barciszewski, Jan; Mower, Jeffrey P; Dietrich, André; Ostersetzer-Biran, Oren

    2016-11-01

    Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4. Its conservation across land plants and RNA editing events, which restore conserved amino acids, indicates that matR encodes a functional protein. However, the biological role of MatR remains unclear. Here, we performed an in vivo investigation of the roles of MatR in Brassicaceae. Directed knockdown of matR expression via synthetically designed ribozymes altered the processing of various introns, including nad1 i4. Pull-down experiments further indicated that MatR is associated with nad1 i4 and several other intron-containing pre-mRNAs. MatR may thus represent an intermediate link in the gradual evolutionary transition from the intron-specific maturases in bacteria into their versatile spliceosomal descendants in the nucleus. The similarity between maturases and the core spliceosomal Prp8 protein further supports this intriguing theory. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species.

    PubMed

    Liu, Yanbin; Yap, Sihui Amy; Koh, Chong Mei John; Ji, Lianghui

    2016-11-25

    Red yeast species in the Rhodotorula/Rhodosporidium genus are outstanding producers of triacylglyceride and cell biomass. Metabolic engineering is expected to further enhance the productivity and versatility of these hosts for the production of biobased chemicals and fuels. Promoters with strong activity during oil-accumulation stage are critical tools for metabolic engineering of these oleaginous yeasts. The upstream DNA sequences of 6 genes involved in lipid biosynthesis or accumulation in Rhodotorula toruloides were studied by luciferase reporter assay. The promoter of perilipin/lipid droplet protein 1 gene (LDP1) displayed much stronger activity (4-11 folds) than that of glyceraldehyde-3-phosphate dehydrogenase gene (GPD1), one of the strongest promoters known in yeasts. Depending on the stage of cultivation, promoter of acetyl-CoA carboxylase gene (ACC1) and fatty acid synthase β subunit gene (FAS1) exhibited intermediate strength, displaying 50-160 and 20-90% levels of GPD1 promoter, respectively. Interestingly, introns significantly modulated promoter strength at high frequency. The incorporation of intron 1 and 2 of LDP1 (LDP1in promoter) enhanced its promoter activity by 1.6-3.0 folds. Similarly, the strength of ACC1 promoter was enhanced by 1.5-3.2 folds if containing intron 1. The intron 1 sequences of ACL1 and FAS1 also played significant regulatory roles. When driven by the intronic promoters of ACC1 and LDP1 (ACC1in and LDP1in promoter, respectively), the reporter gene expression were up-regulated by nitrogen starvation, independent of de novo oil biosynthesis and accumulation. As a proof of principle, overexpression of the endogenous acyl-CoA-dependent diacylglycerol acyltransferase 1 gene (DGA1) by LDP1in promoter was significantly more efficient than GPD1 promoter in enhancing lipid accumulation. Intronic sequences play an important role in regulating gene expression in R. toruloides. Three intronic promoters, LDP1in, ACC1in and FAS1in, are excellent promoters for metabolic engineering in the oleaginous and carotenogenic yeast, R. toruloides.

  5. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.

    PubMed

    Rath, Matthias; Jenssen, Sönke E; Schwefel, Konrad; Spiegler, Stefanie; Kleimeier, Dana; Sperling, Christian; Kaderali, Lars; Felbor, Ute

    2017-09-01

    Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can cause headaches, seizures and hemorrhagic stroke. Disease-associated mutations have been identified in three genes: CCM1/KRIT1, CCM2 and CCM3/PDCD10. The precise proportion of deep-intronic variants in these genes and their clinical relevance is yet unknown. Here, a long-range PCR (LR-PCR) approach for target enrichment of the entire genomic regions of the three genes was combined with next generation sequencing (NGS) to screen for coding and non-coding variants. NGS detected all six CCM1/KRIT1, two CCM2 and four CCM3/PDCD10 mutations that had previously been identified by Sanger sequencing. Two of the pathogenic variants presented here are novel. Additionally, 20 stringently selected CCM index cases that had remained mutation-negative after conventional sequencing and exclusion of copy number variations were screened for deep-intronic mutations. The combination of bioinformatics filtering and transcript analyses did not reveal any deep-intronic splice mutations in these cases. Our results demonstrate that target enrichment by LR-PCR combined with NGS can be used for a comprehensive analysis of the entire genomic regions of the CCM genes in a research context. However, its clinical utility is limited as deep-intronic splice mutations in CCM1/KRIT1, CCM2 and CCM3/PDCD10 seem to be rather rare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Human Leukocyte Antigen (HLA) Class I and II Polymorphism in Iranian Healthy Population from Yazd Province.

    PubMed

    Nikbin, Behrouz; Nicknam, Mohammad Hossein; Hadinedoushan, Hossein; Ansaripour, Bita; Moradi, Batol; Yekaninejad, Mirsaeed; Aminikhah, Mahdi; Ranjbar, Mohammad Mehdi; Amirzargar, Aliakbar

    2017-02-01

    The major histocompatibility complex (MHC) genes are the most polymorphic loci in the human genome and have been widely studied in various populations and ethnic groups. Investigations into the HLA genes and proteins have been useful tool for anthropological, transplantation and disease association studies. The polymorphism of the HLA class I (A, B, C) and class II (DRB1, DQA1, DQB1) genes were investigated in 90 unrelated Iranian individuals from Yazd province located in the center of Iran using sequence-specific primers (PCR-SSP). Allele and haplotype frequencies, expected/observed heterozygosity, unbiased expected heterozygosity, number of effective alleles, deviations from Hardy-Weinberg (HW) equilibrium and genetic diversity were computed. A total of 23, 48, 23, 24, 13 and 16 alleles for HLA-A, -B,-C, -DRB1, -DQA and -DQB loci were determined, respectively in the population study. The most frequent allele identified in this study were A*02:01 (18.889%), HLA-B* 51:01 (12.778%), HLA-C* 12:03 (17.033%), HLA-DRB* 11 (24.4%), HLA-DQA* 05:05 (20.55%) and HLA-DQB*03:01 (22.8%).Furthermore, the most frequent 3-locus haplotypes were DRB*11-DQA*05:01-DQB*03:01 (21.1%), HLA-A*02:01- B *50:01- DRB*07:01 (4.9%) and A*26:01 -B* 38:01 -C*12:03(5%). The most 4-locus haplotype were A*11:01 -B* 52:01 -C*12:03 -DRB!*15(2.5%) and A*02:01 -B* 50:01 -DRB1*07:01 -DQB1*02:01(4.5%). The heterozygosity of the study population was confirmed the expected value and not deviated from Hardy-Weinberg equilibrium for all loci (p>0.05). Our study shows a close relatedness between Yazd population and other ethnic group of Iran despite some differences, which may be due to admixture of each one of these groups with each other or foreigner subpopulations during centuries. Moreover, the results of this study suggest that the Iranian population from Yazd province is in close vicinity with the Caucasians populations and far from the Korean and Japanese populations.

  7. [Frequency of intron 1 inversion of factor VIII gene in Chinese hemophilia A patients with case report of a female patient with heterozygous intron 1 inversion].

    PubMed

    Yan, Zhen-yu; Liang, Yan; Yan, Mei; Fan, Lian-kai; Xiao, Bai; Hua, Bao-lai; Liu, Jing-zhong; Zhao, Yong-qiang

    2008-10-21

    To investigate the frequency of intron 1 inversion (inv1) in FVIII gene in Chinese hemophilia A (HA) patients and to investigate the mechanism of pathogenesis. Peripheral blood samples were collected from 158 unrelated HA patients, aged 20 (1 - 73), including one female HA patient, aged 5, and several family members of a patient positive in inv1. One-stage method was used to assay the FVIII activity (FVIII:C). Long distance PCR and multiple PCR in duplex reactions were used to screen for the intron 22 inversion (inv22) and inv1 of the FVIII coding gene (F8). The F8 coding sequence was amplified with PCR and sequenced with an automatic sequencer. Two unrelated patients (pedigrees) were detected as inv1 positive with a positive rate of 1.26%. A rare female HA patient with inv1 was also discovered in a positive family (3 HA cases were found in this family and regarded as one case in calculating the total detection rate). The full length of FVIII was sequenced, and no other mutation was detected. There frequency of FVIII inv1 is low in Chinese HA patients compared with other populations. Female HA patients are heterozygous for FVIII inv1 and that may be resulted from nonrandom inactivation of X chromosome.

  8. Evolution of Mhc-DRB introns: implications for the origin of primates.

    PubMed

    Kupfermann, H; Satta, Y; Takahata, N; Tichy, H; Klein, J

    1999-06-01

    Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders-Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera.

  9. [Detection of factor VIII intron 1 inversion in severe haemophilia A].

    PubMed

    Liang, Yan; Yan, Zhen-yu; Yan, Mei; Hua, Bao-lai; Xiao, Bai; Zhao, Yong-qiang; Liu, Jing-zhong

    2009-06-01

    Screening the intron 1 inversion of factor VIII (FVIII) in the population of severe haemophilia A(HA) in China and performing carrier detection and prenatal diagnosis. Using LD-PCR to detect intron 22 inversions and multiple-PCR within two tubes to intron 1 inversions in severe HA patients. Carrier detection and prenatal diagnosis were performed in affected families. Linkage analysis and DNA sequencing were used to verify these tests. One hundred and eighteen patients were seven diagnosed as intron 22 inversions and 7 were intron 1 inversions out of 247 severe HA patients. The prevalence of the intron 1 inversion in Chinese severe haemophilia A patients was 2.8% (7/247). Six women from family A and 2 from family B were diagnosed as carriers. One fetus from family A was affected fetus. Intron 1 inversion could be detected directly by multiple-PCR within two tubes. This method made the strategy more perfective in carrier and prenatal diagnosis of haemophilia A.

  10. Contradictory intrahepatic immune responses activated in high-load hepatitis C virus livers compared with low-load livers.

    PubMed

    Ishibashi, Mariko; Yamaguchi, Hiromi; Hirotani, Yukari; Sakurada, Akihisa; Endo, Toshihide; Sugitani, Masahiko; Takayama, Tadatoshi; Makishima, Makoto; Esumi, Mariko

    2018-04-01

    We found a HLA class II histocompatibility antigen gene, DQ alpha 1 chain (HLA-DQA1), that was expressed more than 9-fold higher in high-load hepatitis C virus (HCV) livers than low-load HCV livers using transcriptomics of chronic HCV-infected livers. To further investigate this finding, we examined which cells were positive for HLA-DQA1 and what liver immune responses were different between HCV-high and -low livers. HLA-DQA1-positive cells were significantly increased in the HCV-high group, and most positive cells were identified as non-parenchymal sinusoid cells and lymphocytic infiltrates in the portal area. Parenchymal hepatocytes were negative for HLA-DQA1. HLA-DQA1-positive cells in the liver sinusoid were positive for CD68 (macrophages or Kupffer cells); those in the lymphocytic infiltrates were positive for CD20 (B cells) or CD3 (T cells). mRNA levels of antigen-presenting cell (APC) markers such as CD68 and CD11c were significantly upregulated in the HCV-high group and were correlated with HLA-DQA mRNA levels. CD8B mRNA (CD8 + T cells) was upregulated in both HCV-positive livers compared with HCV-negative livers, whereas CD154 mRNA (CD4 + T helper cell) was upregulated in the HCV-high group compared with the HCV-low group. The immune regulatory molecules FOXP3 mRNA (regulatory T cell, T reg) and programmed cell death ligand-1 (PD-L1) mRNA were significantly increased in the HCV-high group. HCV-high livers had two molecular immune responses: increased APC numbers and adaptive immunity and the induction of immune tolerance. The local hepatic imbalance of contradictory immune responses might be responsible for high HCV loads.

  11. Evaluation of non-coding variation in GLUT1 deficiency.

    PubMed

    Liu, Yu-Chi; Lee, Jia Wei Audrey; Bellows, Susannah T; Damiano, John A; Mullen, Saul A; Berkovic, Samuel F; Bahlo, Melanie; Scheffer, Ingrid E; Hildebrand, Michael S

    2016-12-01

    Loss-of-function mutations in SLC2A1, encoding glucose transporter-1 (GLUT-1), lead to dysfunction of glucose transport across the blood-brain barrier. Ten percent of cases with hypoglycorrhachia (fasting cerebrospinal fluid [CSF] glucose <2.2mmol/L) do not have mutations. We hypothesized that GLUT1 deficiency could be due to non-coding SLC2A1 variants. We performed whole exome sequencing of one proband with a GLUT1 phenotype and hypoglycorrhachia negative for SLC2A1 sequencing and copy number variants. We studied a further 55 patients with different epilepsies and low CSF glucose who did not have exonic mutations or copy number variants. We sequenced non-coding promoter and intronic regions. We performed mRNA studies for the recurrent intronic variant. The proband had a de novo splice site mutation five base pairs from the intron-exon boundary. Three of 55 patients had deep intronic SLC2A1 variants, including a recurrent variant in two. The recurrent variant produced less SLC2A1 mRNA transcript. Fasting CSF glucose levels show an age-dependent correlation, which makes the definition of hypoglycorrhachia challenging. Low CSF glucose levels may be associated with pathogenic SLC2A1 mutations including deep intronic SLC2A1 variants. Extending genetic screening to non-coding regions will enable diagnosis of more patients with GLUT1 deficiency, allowing implementation of the ketogenic diet to improve outcomes. © 2016 Mac Keith Press.

  12. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication.

    PubMed

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-06-04

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.

  13. Sequence Variation of the tRNALeu Intron as a Marker for Genetic Diversity and Specificity of Symbiotic Cyanobacteria in Some Lichens

    PubMed Central

    Paulsrud, Per; Lindblad, Peter

    1998-01-01

    We examined the genetic diversity of Nostoc symbionts in some lichens by using the tRNALeu (UAA) intron as a genetic marker. The nucleotide sequence was analyzed in the context of the secondary structure of the transcribed intron. Cyanobacterial tRNALeu (UAA) introns were specifically amplified from freshly collected lichen samples without previous DNA extraction. The lichen species used in the present study were Nephroma arcticum, Peltigera aphthosa, P. membranacea, and P. canina. Introns with different sizes around 300 bp were consistently obtained. Multiple clones from single PCRs were screened by using their single-stranded conformational polymorphism pattern, and the nucleotide sequence was determined. No evidence for sample heterogenity was found. This implies that the symbiont in situ is not a diverse community of cyanobionts but, rather, one Nostoc strain. Furthermore, each lichen thallus contained only one intron type, indicating that each thallus is colonized only once or that there is a high degree of specificity. The same cyanobacterial intron sequence was also found in samples of one lichen species from different localities. In a phylogenetic analysis, the cyanobacterial lichen sequences grouped together with the sequences from two free-living Nostoc strains. The size differences in the intron were due to insertions and deletions in highly variable regions. The sequence data were used in discussions concerning specificity and biology of the lichen symbiosis. It is concluded that the tRNALeu (UAA) intron can be of great value when examining cyanobacterial diversity. PMID:9435083

  14. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment1

    PubMed Central

    Johnson, Matthew G.; Gardner, Elliot M.; Liu, Yang; Medina, Rafael; Goffinet, Bernard; Shaw, A. Jonathan; Zerega, Nyree J. C.; Wickett, Norman J.

    2016-01-01

    Premise of the study: Using sequence data generated via target enrichment for phylogenetics requires reassembly of high-throughput sequence reads into loci, presenting a number of bioinformatics challenges. We developed HybPiper as a user-friendly platform for assembly of gene regions, extraction of exon and intron sequences, and identification of paralogous gene copies. We test HybPiper using baits designed to target 333 phylogenetic markers and 125 genes of functional significance in Artocarpus (Moraceae). Methods and Results: HybPiper implements parallel execution of sequence assembly in three phases: read mapping, contig assembly, and target sequence extraction. The pipeline was able to recover nearly complete gene sequences for all genes in 22 species of Artocarpus. HybPiper also recovered more than 500 bp of nontargeted intron sequence in over half of the phylogenetic markers and identified paralogous gene copies in Artocarpus. Conclusions: HybPiper was designed for Linux and Mac OS X and is freely available at https://github.com/mossmatters/HybPiper. PMID:27437175

  15. The complete plastid genome sequence of Eustrephus latifolius (Asparagaceae: Lomandroideae).

    PubMed

    Kim, Hyoung Tae; Kim, Jung Sung; Kim, Joo-Hwan

    2016-01-01

    The complete chloroplast (cp) genome sequence of Eustrephus latifolius was firstly determined in subfamily Lomandriodeae of family Asparagaceae. It was 159,736 bp and contained a large single copy region (82,403 bp) and a small single copy region (13,607 bp) which were separated by two inverted repeat regions (31,863 bp). In total, 132 genes were identified and they were consisted of 83 coding genes, 8 rRNA genes, 38 tRNA genes, 3 pseudogenes. rpl23 and clpP were pseudogenes due to sequence deletions. Among 23 genes containing introns, rps12 and ycf3 contained two introns and the rest had just one intron. The intact ycf68 was identified within an intron of trnI-GAU. The amino acid sequence was almost identical with Phoenix dactylifera in Aracales. Ycf1 of E. latifolius was completely located in IR. It was similar to cp genome structure of Lemna minor, Spirodela polyrhiza, Wolffiella lingulata, Wolffia australiana in Alismatales.

  16. HFE gene polymorphism defined by sequence-based typing of the Brazilian population and a standardized nomenclature for HFE allele sequences.

    PubMed

    Campos, W N; Massaro, J D; Martinelli, A L C; Halliwell, J A; Marsh, S G E; Mendes-Junior, C T; Donadi, E A

    2017-10-01

    The HFE molecule controls iron uptake from gut, and defects in the molecule have been associated with iron overload, particularly in hereditary hemochromatosis. The HFE gene including both coding and boundary intronic regions were sequenced in 304 Brazilian individuals, encompassing healthy individuals and patients exhibiting hereditary or acquired iron overload. Six sites of variation were detected: (1) H63D C>G in exon 2, (2) IVS2 (+4) T>C in intron 2, (3) a C>G transversion in intron 3, (4) C282Y G>A in exon 4, (5) IVS4 (-44) T>C in intron 4, and (6) a new guanine deletion (G>del) in intron 5, which were used for haplotype inference. Nine HFE alleles were detected and six of these were officially named on the basis of the HLA Nomenclature, defined by the World Health Organization (WHO) Nomenclature Committee for Factors of the HLA System, and published via the IPD-IMGT/HLA website. Four alleles, HFE*001, *002, *003, and *004 exhibited variation within their exon sequences. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales.

    PubMed

    Nadimi, Maryam; Beaudet, Denis; Forget, Lise; Hijri, Mohamed; Lang, B Franz

    2012-09-01

    Gigaspora rosea is a member of the arbuscular mycorrhizal fungi (AMF; Glomeromycota) and a distant relative of Glomus species that are beneficial to plant growth. To allow for a better understanding of Glomeromycota, we have sequenced the mitochondrial DNA of G. rosea. A comparison with Glomus mitochondrial genomes reveals that Glomeromycota undergo insertion and loss of mitochondrial plasmid-related sequences and exhibit considerable variation in introns. The gene order between the two species is almost completely reshuffled. Furthermore, Gigaspora has fragmented cox1 and rns genes, and an unorthodox initiator tRNA that is tailored to decoding frequent UUG initiation codons. For the fragmented cox1 gene, we provide evidence that its RNA is joined via group I-mediated trans-splicing, whereas rns RNA remains in pieces. According to our model, the two cox1 precursor RNA pieces are brought together by flanking cox1 exon sequences that form a group I intron structure, potentially in conjunction with the nad5 intron 3 sequence. Finally, we present analyses that address the controversial phylogenetic association of Glomeromycota within fungi. According to our results, Glomeromycota are not a separate group of paraphyletic zygomycetes but branch together with Mortierellales, potentially also Harpellales.

  18. Clinical implementation of an exit detector-based dose reconstruction tool for helical tomotherapy delivery quality assurance.

    PubMed

    Deshpande, Shrikant; Xing, Aitang; Metcalfe, Peter; Holloway, Lois; Vial, Philip; Geurts, Mark

    2017-10-01

    The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA tool to assess the time required for DQA and similarity between two methods. The measured ion chamber dose agreed to within 1.5% of the reconstructed dose computed by the exit detector DQA tool on a cheese phantom for all unmodified "Tomophant" plans. Excellent agreement in gamma pass rate (>95%) was observed between the planned and reconstructed dose for all "Tomophant" plans considered using the tool. The gamma pass rate from 119 clinical plan DQA measurements was 94.9% ± 1.5% and 91.9% ± 4.37% for the exit detector DQA tool and ArcCHECK phantom measurements (P = 0.81), respectively. For the clinical plans (treatment length <25 cm), the average time required to perform DQA was 24.7 ± 3.5 and 39.5 ± 4.5 min using the exit detector QA tool and ArcCHECK phantom, respectively, whereas the average time required for the 3 CSI treatments was 35 ± 3.5 and 90 ± 5.2 min, respectively. The exit detector tool has been demonstrated to be faster for performing the DQA with equivalent sensitivity for detecting MLC LOT errors relative to a conventional phantom-based QA method. In addition, comprehensive MLC performance evaluation and features of reconstructed dose provide additional insight into understanding DQA failures and the clinical relevance of DQA results. © 2017 American Association of Physicists in Medicine.

  19. [Identifying and sequence analysis of HLA-B*2736].

    PubMed

    Li, Zhen; Zou, Hong-Yan; Shao, Chao-Peng; Tang, Si; Wang, Da-Ming; Cheng, Liang-Hong

    2007-11-01

    An unknown HLA-B allele which was similar to HLA-B*270401 was detected by FLOW-SSOPCR-SSP and heterozygous sequence-based typing (SBT) in Chinese Han individual. Its anomalous patterns suggested the possible presence of new allele. Amplifying exon 2-5(include intron 2-4) of the HLA-B*27 allele separately by using allele-specific primers and sequencing in both directions. Identifying the difference between the novel B*27 allele and B*270401. The sequence of novel B*27 from exon 2 to partial exon 5 is 1 815 bp. There are 10 nt changes from B*270401 in exon 3-4, at nt634where A-->C(codon130 AGC-->CGC, 130 S-->R); nt670 where A-->T (codon142 ACC-->TCC, 142 T-->S); nt683 where G-->T (codon146 TGG-->TTG, 146 W-->L); nt698 where A-->T (codon151 GAG-->GTG, 151 E-->V); nt774 where G-->C (codon176 GAG-->GAC, 176 E-->D); nt776 where C-->A (codon177 ACG-->AAG, 177 T-->K); nt781 where C-->G (codon179 CAG-->GAG, 179Q-->E); nt789 where G-->T (codon181 GCG-->GCT) resulting no coding change; nt1438 where C-->T (codon206 GGC-->GGT) resulting no coding change; nt1449 where G-->C (codon210 GGG-->GCG, 210G-->A). In IMGT/HLA database, only three alleles (B*270502/2706/2732) have sequences of introns. The same sequence in intron 2 showed homology between the novel HLA-B*27 allele and B*2706, but their homology could not be supported in intron 3-4. Comparing the sequence of the novel B*27 allele in intron 3 and 4 with B*27 group, it showed there are three mutations at nt106 C-->G, nt179 G-->A, nt536 G-->A and one deletion at nt168 in intron 3 and one mutations at nt82 T-->C in intron 4, but the sequence of the novel B*27 allele in intron 3 and 4 was all the same to B*070201. The sequence was submitted to Gen-Bank and the accession number was DQ915176. The allele has been confirmed as an extension of B*2736 by the WHO Nomenclature committee in November 2006.

  20. Intron open reading frames as mobile elements and evolution of a group I intron.

    PubMed

    Sellem, C H; Belcour, L

    1997-05-01

    Group I introns are proposed to have become mobile following the acquisition of open reading frames (ORFs) that encode highly specific DNA endonucleases. This proposal implies that intron ORFs could behave as autonomously mobile entities. This was supported by abundant circumstantial evidence but no experiment of ORF transfer from an ORF-containing intron to its ORF-less counterpart has been described. In this paper we present such experiments, which demonstrate the efficient mobility of the mitochondrial nad1-i4-orf1 between two Podospora strains. The homing of this mobile ORF was accompanied by a bidirectional co-conversion that did not systematically involve the whole intron sequence. Orf1 acquisition would be the most recent step in the evolution of the nad1-i4 intron, which has resulted in many strains of Podospora having an intron with two ORFs (biorfic) and four splicing pathways. We show that two of the splicing events that operate in this biorfic intron, as evidenced by PCR experiments, are generated by a 5'-alternative splice site, which is most probably a remnant of the monoorfic ancestral form of the intron. We propose a sequential evolution model that is consistent with the four organizations of the corresponding nad1 locus that we found among various species of the Pyrenomycete family; these organizations consist of no intron, an intron alone, a monoorfic intron, and a biorfic intron.

  1. The in vivo use of alternate 3'-splice sites in group I introns.

    PubMed

    Sellem, C H; Belcour, L

    1994-04-11

    Alternative splicing of group I introns has been postulated as a possible mechanism that would ensure the translation of proteins encoded into intronic open reading frames, discontinuous with the upstream exon and lacking an initiation signal. Alternate splice sites were previously depicted according to secondary structures of several group I introns. We present here strong evidence that, in the case of Podospora anserina nad 1-i4 and cox1-i7 mitochondrial introns, alternative splicing events do occur in vivo. Indeed, by PCR experiments we have detected molecules whose sequence is precisely that expected if the predicted alternate 3'-splice sites were used.

  2. Ovarian Tumors related to Intronic Mutations in DICER1: A Report from the International Ovarian and Testicular Stromal Tumor Registry

    PubMed Central

    Schultz, Kris Ann; Harris, Anne; Messinger, Yoav; Sencer, Susan; Baldinger, Shari; Dehner, Louis P.; Hill, D. Ashley

    2015-01-01

    Germline DICER1 mutations have been described in individuals with pleuropulmonary blastoma (PPB), ovarian Sertoli-Leydig cell tumor (SLCT), sarcomas, multinodular goiter, thyroid carcinoma, cystic nephroma and other neoplastic conditions. Early results from the International Ovarian and Testicular Stromal Tumor Registry show germline DICER1 mutations in 48% of girls and women with SLCT. In this report, a young woman presented with ovarian undifferentiated sarcoma. Four years later, she presented with SLCT. She was successfully treated for both malignancies. Sequence results showed a germline intronic mutation in DICER1. This mutation results in an exact duplication of the six bases at the splice site at the intron 23 and exon 24 junction. Predicted improper splicing leads to inclusion of 10 bases of intronic sequence, frameshift and premature truncation of the protein disrupting the RNase IIIb domain. A second individual with SLCT was found to have an identical germline mutation. In each of the ovarian tumors, an additional somatic mutation in the RNase IIIb domain of DICER1 was found. In rare patients, germline intronic mutations in DICER1 that are predicted to cause incorrect splicing can also contribute to the pathogenesis of SLCT. PMID:26289771

  3. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella

    PubMed Central

    2010-01-01

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 μmol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days. PMID:20377865

  4. HLA-DQA1/B1 alleles as putative susceptibility markers in congenital toxoplasmosis

    PubMed Central

    Shimokawa, Paulo Tadashi; Targa, Lília Spaleta; Yamamoto, Lidia; Rodrigues, Jonatas Cristian; Kanunfre, Kelly Aparecida; Okay, Thelma Suely

    2016-01-01

    ABSTRACT Host and parasite genotypes are among the factors associated with congenital toxoplasmosis pathogenesis. As HLA class II molecules play a key role in the immune system regulation, the aim of this study was to investigate whether HLA-DQA1/B1 alleles are associated with susceptibility or protection to congenital toxoplasmosis. One hundred and twenty-two fetuses with and 103 without toxoplasmosis were studied. The two study groups were comparable according to a number of socio-demographic and genetic variables. HLA alleles were typed by PCR-SSP. In the HLA-DQA1 region, the allele frequencies showed that *01:03 and *03:02 alleles could confer susceptibility (OR= 3.06, p = 0.0002 and OR= 9.60, p= 0.0001, respectively) as they were more frequent among infected fetuses. Regarding the HLA-DQB1 region, the *05:04 allele could confer susceptibility (OR = 6.95, p < 0.0001). Of the 122 infected fetuses, 10 presented susceptibility haplotypes contrasting with only one in the non-infected group. This difference was not statistically significant after correction for multiple comparison (OR = 9.37, p=0.011). In the casuistic, there were two severely damaged fetuses with high parasite loads determined in amniotic fluid samples and HLA-DQA1 susceptibility alleles. In the present study, a discriminatory potential of HLA-DQA1/B1 alleles to identify susceptibility to congenital toxoplasmosis and the most severe cases has been shown. PMID:26856406

  5. DNA double-strand break in vivo at the 3' extremity of exons located upstream of group II introns. Senescence and circular DNA introns in Podospora mitochondria.

    PubMed

    Sainsard-Chanet, A; Begel, O; Belcour, L

    1994-10-07

    In the filamentous fungus Podospora anserina, the unavoidable phenomenon of senescence is associated with the amplification of the first intron of the mitochondrial cox1 that accumulates as circular DNA molecules consisting of tandem repeats. This group II intron (cox1-i1 or alpha) is able to transpose and contains an open reading frame with significant amino acid similarity with reverse transcriptases. The generation of these intronic circular DNA molecules, their amplification and their involvement in the senescence process are unresolved questions. We demonstrate here that: (1) another group II intron, the fourth intron of gene cox1, cox1-i4, is also able to give precise DNA end to end junctions; (2) this intronic sequence can be found amplified during senescence, although to a lesser extent than cox1-i1; (3) the amplification of the DNA multimeric cox1-i1 molecules likely does not proceed by autonomous replication; (4) the generation of the DNA intronic circles does not require efficient intron splicing; (5) a DNA double-strand break occurs in vivo at the 3' extremity of the cox1-e1 and cox1-e4 exons preceding the group II introns that form circular DNAs. On the whole, these results show that the ability to form DNA circular molecules is a property of some group II introns and they demonstrate the occurrence of a specific DNA cleavage at or near the integration site of these group II introns. The results strongly suggest that this cleavage is involved in the formation of the group II intronic DNA circles and could also be involved in the phenomenon of group II intron homing.

  6. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication

    PubMed Central

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-01-01

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615

  7. Comparative Analysis of Vertebrate Dystrophin Loci Indicate Intron Gigantism as a Common Feature

    PubMed Central

    Pozzoli, Uberto; Elgar, Greg; Cagliani, Rachele; Riva, Laura; Comi, Giacomo P.; Bresolin, Nereo; Bardoni, Alessandra; Sironi, Manuela

    2003-01-01

    The human DMD gene is the largest known to date, spanning > 2000 kb on the X chromosome. The gene size is mainly accounted for by huge intronic regions. We sequenced 190 kb of Fugu rubripes (pufferfish) genomic DNA corresponding to the complete dystrophin gene (FrDMD) and provide the first report of gene structure and sequence comparison among dystrophin genomic sequences from different vertebrate organisms. Almost all intron positions and phases are conserved between FrDMD and its mammalian counterparts, and the predicted protein product of the Fugu gene displays 55% identity and 71% similarity to human dystrophin. In analogy to the human gene, FrDMD presents several-fold longer than average intronic regions. Analysis of intron sequences of the human and murine genes revealed that they are extremely conserved in size and that a similar fraction of total intron length is represented by repetitive elements; moreover, our data indicate that intron expansion through repeat accumulation in the two orthologs is the result of independent insertional events. The hypothesis that intron length might be functionally relevant to the DMD gene regulation is proposed and substantiated by the finding that dystrophin intron gigantism is common to the three vertebrate genes. [Supplemental material is available online at www.genome.org.] PMID:12727896

  8. Common variants in the HLA-DRB1-HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis.

    PubMed

    Fakiola, Michaela; Strange, Amy; Cordell, Heather J; Miller, E Nancy; Pirinen, Matti; Su, Zhan; Mishra, Anshuman; Mehrotra, Sanjana; Monteiro, Gloria R; Band, Gavin; Bellenguez, Céline; Dronov, Serge; Edkins, Sarah; Freeman, Colin; Giannoulatou, Eleni; Gray, Emma; Hunt, Sarah E; Lacerda, Henio G; Langford, Cordelia; Pearson, Richard; Pontes, Núbia N; Rai, Madhukar; Singh, Shri P; Smith, Linda; Sousa, Olivia; Vukcevic, Damjan; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Wilson, Mary E; Deloukas, Panos; Peltonen, Leena; Christiansen, Frank; Witt, Campbell; Jeronimo, Selma M B; Sundar, Shyam; Spencer, Chris C A; Blackwell, Jenefer M; Donnelly, Peter

    2013-02-01

    To identify susceptibility loci for visceral leishmaniasis, we undertook genome-wide association studies in two populations: 989 cases and 1,089 controls from India and 357 cases in 308 Brazilian families (1,970 individuals). The HLA-DRB1-HLA-DQA1 locus was the only region to show strong evidence of association in both populations. Replication at this region was undertaken in a second Indian population comprising 941 cases and 990 controls, and combined analysis across the three cohorts for rs9271858 at this locus showed P(combined) = 2.76 × 10(-17) and odds ratio (OR) = 1.41, 95% confidence interval (CI) = 1.30-1.52. A conditional analysis provided evidence for multiple associations within the HLA-DRB1-HLA-DQA1 region, and a model in which risk differed between three groups of haplotypes better explained the signal and was significant in the Indian discovery and replication cohorts. In conclusion, the HLA-DRB1-HLA-DQA1 HLA class II region contributes to visceral leishmaniasis susceptibility in India and Brazil, suggesting shared genetic risk factors for visceral leishmaniasis that cross the epidemiological divides of geography and parasite species.

  9. Common variants in the HLA-DRB1-HLA-DQA1 Class II region are associated with susceptibility to visceral leishmaniasis

    PubMed Central

    Fakiola, Michaela; Strange, Amy; Cordell, Heather J.; Miller, E. Nancy; Pirinen, Matti; Su, Zhan; Mishra, Anshuman; Mehrotra, Sanjana; Monteiro, Gloria R.; Band, Gavin; Bellenguez, Céline; Dronov, Serge; Edkins, Sarah; Freeman, Colin; Giannoulatou, Eleni; Gray, Emma; Hunt, Sarah E.; Lacerda, Henio G.; Langford, Cordelia; Pearson, Richard; Pontes, Núbia N.; Rai, Madhukar; Singh, S.P.; Smith, Linda; Sousa, Olivia; Vukcevic, Damjan; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Wilson, Mary E.; Deloukas, Panos; Peltonen, Leena; Christiansen, Frank; Witt, Campbell; Jeronimo, Selma M.B.; Sundar, Shyam; Spencer, Chris C.A.; Blackwell, Jenefer M.; Donnelly, Peter

    2013-01-01

    To identify susceptibility loci for visceral leishmaniasis we undertook genome-wide association studies in two populations; 989 cases and 1089 controls from India, and 357 cases in 308 Brazilian families (1970 individuals). The HLA-DRB1-HLA-DQA1 locus was the only region to show strong evidence of association in both populations. Replication at this region was undertaken in a second Indian population comprising 941 cases and 990 controls, resulting in Pcombined=2.76×10−17 and OR(95%CI)=1.41(1.30-1.52) across the three cohorts at rs9271858. A conditional analysis provided evidence for multiple associations within the HLA-DRB1-HLA-DQA1 region, and a model in which risk differed between three groups of haplotypes better explained the signal and was significant in the Indian discovery and replication cohorts. In conclusion the HLA-DRB1-HLA-DQA1 HLA class II region contributes to visceral leishmaniasis susceptibility in India and Brazil, suggesting shared genetic risk factors for visceral leishmaniasis that cross the epidemiological divides of geography and parasite species. PMID:23291585

  10. G to A substitution in 5{prime} donor splice site of introns 18 and 48 of COL1A1 gene of type I collagen results in different splicing alternatives in osteogenesis imperfecta type I cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.; Deschenes, S.

    We have identified a G to A substitution in the 5{prime} donor splice site of intron 18 of one COL1A1 allele in two unrelated families with osteogenesis imperfecta (OI) type I. A third OI type I family has a G to A substitution at the identical position in intron 48 of one COL1A1 allele. Both mutations abolish normal splicing and lead to reduced steady-state levels of mRNA from the mutant COL1A1 allele. The intron 18 mutation leads to both exon 18 skipping in the mRNA and to utilization of a single alternative splice site near the 3{prime} end of exonmore » 18. The latter results in deletion of the last 8 nucleotides of exon 18 from the mRNA, a shift in the translational reading-frame, and the creation of a premature termination codon in exon 19. Of the potential alternative 5{prime} splice sites in exon 18 and intron 18, the one utilized has a surrounding nucleotide sequence which most closely resembles that of the natural splice site. Although a G to A mutation was detected at the identical position in intron 48 of one COL1A1 allele in another OI type I family, nine complex alternative splicing patterns were identified by sequence analysis of cDNA clones derived from fibroblast mRNA from this cell strain. All result in partial or complete skipping of exon 48, with in-frame deletions of portions of exons 47 and/or 49. The different patterns of RNA splicing were not explained by their sequence homology with naturally occuring 5{prime} splice sites, but rather by recombination between highly homologous exon sequences, suggesting that we may not have identified the major splicing alternative(s) in this cell strain. Both G to A mutations result in decreased production of type I collagen, the common biochemical correlate of OI type I.« less

  11. Comparative Analysis of Four Calypogeia Species Revealed Unexpected Change in Evolutionarily-Stable Liverwort Mitogenomes

    PubMed Central

    Ślipiko, Monika; Buczkowska-Chmielewska, Katarzyna; Bączkiewicz, Alina; Szczecińska, Monika; Sawicki, Jakub

    2017-01-01

    Liverwort mitogenomes are considered to be evolutionarily stable. A comparative analysis of four Calypogeia species revealed differences compared to previously sequenced liverwort mitogenomes. Such differences involve unexpected structural changes in the two genes, cox1 and atp1, which have lost three and two introns, respectively. The group I introns in the cox1 gene are proposed to have been lost by two-step localized retroprocessing, whereas one-step retroprocessing could be responsible for the disappearance of the group II introns in the atp1 gene. These cases represent the first identified losses of introns in mitogenomes of leafy liverworts (Jungermanniopsida) contrasting the stability of mitochondrial gene order with certain changes in the gene content and intron set in liverworts. PMID:29257096

  12. Myostatin-2 gene structure and polymorphism of the promoter and first intron in the marine fish Sparus aurata: evidence for DNA duplications and/or translocations.

    PubMed

    Nadjar-Boger, Elisabeth; Funkenstein, Bruria

    2011-02-01

    Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. Fish express at least two genes for MSTN: MSTN-1 and MSTN-2. To date, MSTN-2 promoters have been cloned only from salmonids and zebrafish. Here we described the cloning and sequence analysis of MSTN-2 gene and its 5' flanking region in the marine fish Sparus aurata (saMSTN-2). We demonstrate the existence of three alleles of the promoter and three alleles of the first intron. Sequence comparison of the promoter region in the three alleles revealed that although the sequences of the first 1050 bp upstream of the translation start site are almost identical in the three alleles, a substantial sequence divergence is seen further upstream. Careful sequence analysis of the region upstream of the first 1050 bp in the three alleles identified several elements that appear to be repeated in some or all sequences, at different positions. This suggests that the promoter region of saMSTN-2 has been subjected to various chromosomal rearrangements during the course of evolution, reflecting either insertion or deletion events. Screening of several genomic DNA collections indicated differences in allele frequency, with allele 'b' being the most abundant, followed by allele 'c', whereas allele 'a' is relatively rare. Sequence analysis of saMSTN-2 gene also revealed polymorphism in the first intron, identifying three alleles. The length difference in alleles '1R' and '2R' of the first intron is due to the presence of one or two copies of a repeated block of approximately 150 bp, located at the 5' end of the first intron. The third allele, '4R', has an additional insertion of 323 bp located 116 bp upstream of the 3' end of the first intron. Analysis of several DNA collections showed that the '2R' allele is the most common, followed by the '4R' allele, whereas the '1R' allele is relatively rare. Progeny analysis of a full-sib family showed a Mendelian mode of inheritance of the two genetic loci. No clear association was found between the two genetic markers and growth rate. These results show for the first time a substantial degree of polymorphism in both the promoter and first intron of MSTN-2 gene in a perciform fish species which points to chromosomal rearrangements that took place during evolution.

  13. Elongation Factor-1α Accurately Reconstructs Relationships Amongst Psyllid Families (Hemiptera: Psylloidea), with Possible Diagnostic Implications.

    PubMed

    Martoni, Francesco; Bulman, Simon R; Pitman, Andrew; Armstrong, Karen F

    2017-12-05

    The superfamily Psylloidea (Hemiptera: Sternorrhyncha) lacks a robust multigene phylogeny. This impedes our understanding of the evolution of this group of insects and, consequently, an accurate identification of individuals, of their plant host associations, and their roles as vectors of economically important plant pathogens. The conserved nuclear gene elongation factor-1 alpha (EF-1α) has been valuable as a higher-level phylogenetic marker in insects and it has also been widely used to investigate the evolution of intron/exon structure. To explore evolutionary relationships among Psylloidea, polymerase chain reaction amplification and nucleotide sequencing of a 250-bp EF-1α gene fragment was applied to psyllids belonging to five different families. Introns were detected in three individuals belonging to two families. The nine genera belonging to the family Aphalaridae all lacked introns, highlighting the possibility of using intron presence/absence as a diagnostic tool at a family level. When paired with cytochrome oxidase I gene sequences, the 250 bp EF-1α sequence appeared to be a very promising higher-level phylogenetic marker for psyllids. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome

    PubMed Central

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes. PMID:25482895

  15. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    PubMed

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  16. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer

    PubMed Central

    Nisa-Martínez, Rafael; Jiménez-Zurdo, José I.; Martínez-Abarca, Francisco; Muñoz-Adelantado, Estefanía; Toro, Nicolás

    2007-01-01

    RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase–maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless homing sites (ISRm2011-2) by a mechanism known as retrohoming. This work describes how the RmInt1 intron spreads in the S.meliloti genome upon acquisition by conjugation. This process was revealed by using the wild-type intron RmInt1 and engineered intron-donor constructs based on ribozyme coding sequence (ΔORF)-derivatives with higher homing efficiency than the wild-type intron. The data demonstrate that RmInt1 propagates into the S.meliloti genome primarily by retrohoming with a strand bias related to replication of the chromosome and symbiotic megaplasmids. Moreover, we show that when expressed in trans from a separate plasmid, the IEP is able to mobilize genomic ΔORF ribozymes that afterward displayed wild-type levels of retrohoming. Our results contribute to get further understanding of how group II introns spread into bacterial genomes in nature. PMID:17158161

  17. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer.

    PubMed

    Nisa-Martínez, Rafael; Jiménez-Zurdo, José I; Martínez-Abarca, Francisco; Muñoz-Adelantado, Estefanía; Toro, Nicolás

    2007-01-01

    RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase-maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless homing sites (ISRm2011-2) by a mechanism known as retrohoming. This work describes how the RmInt1 intron spreads in the S.meliloti genome upon acquisition by conjugation. This process was revealed by using the wild-type intron RmInt1 and engineered intron-donor constructs based on ribozyme coding sequence (DeltaORF)-derivatives with higher homing efficiency than the wild-type intron. The data demonstrate that RmInt1 propagates into the S.meliloti genome primarily by retrohoming with a strand bias related to replication of the chromosome and symbiotic megaplasmids. Moreover, we show that when expressed in trans from a separate plasmid, the IEP is able to mobilize genomic DeltaORF ribozymes that afterward displayed wild-type levels of retrohoming. Our results contribute to get further understanding of how group II introns spread into bacterial genomes in nature.

  18. Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies

    PubMed Central

    2010-01-01

    Background Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. Methods We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. Results A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. Conclusions Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes. PMID:20302629

  19. Frequencies of VNTR and RFLP polymorphisms associated with factor VIII gene in Singapore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, I.; Lai, P.S.; Ouah, T.C.

    1994-09-01

    The allelic frequency of any polymorphism within a population determines its usefulness for genetic counselling. This is important in populations of non-Caucasian origin as RFLPs may significantly differ among ethnic groups. We report a study of five intragenic polymorphisms in factor VIII gene carried out in Singapore. The three PCR-based RFLP markers studied were Intron 18/Bcl I, Intron 19/Hind III and Intron 22/Xba I. In an analysis of 148 unrelated normal X chromosomes, the allele frequencies were found to be A1 = 0.18, A2 = 0.82 (Bcl I RFLP), A1 = 0.80, A2 = 0.20 (Hind III RFLP) and A1more » = 0.58, and A2 = 0.42 (Xba I RFLP). The heterozygosity rates of 74 females analyzed separately were 31%, 32% and 84.2%, respectively. Linkage disequilibrium was also observed to some degree between Bcl I and Hind III polymorphism in our population. We have also analyzed a sequence polymorphism in Intron 7 using hybridization with radioactive-labelled {sup 32}P allele-specific oligonucleotide probes. This polymorphism was not very polymorphic in our population with only 2% of 117 individuals analyzed being informative. However, the use of a hypervariable dinucleotide repeat sequence (VNTR) in Intron 13 showed that 25 of our of 27 (93%) females were heterozygous. Allele frequencies ranged from 1 to 55 %. We conclude that a viable strategy for molecular analysis of Hemophilia A families in our population should include the use of Intron 18/Bcl I and Intron 22/Xba I RFLP markers and the Intron 13 VNTR marker.« less

  20. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae).

    PubMed

    Brouard, Jean-Simon; Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA) structure, size, gene order, and intron content have been observed. The large inverted repeat (IR), an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales) but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum . The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium , it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold longer and dispersed repeats are more abundant, but a smaller fraction of the Oedocladium genome is occupied by introns. Six additional group II introns are present, five of which lack ORFs and carry highly similar sequences to that of the ORF-less IIA intron shared with Oedogonium . Secondary structure analysis of the group IIA introns disclosed marked differences in the exon-binding sites; however, each intron showed perfect or nearly perfect base pairing interactions with its target site. Our results suggest that chloroplast genes rearrange more slowly in the Oedogoniales than in the Chaetophorales and raise questions as to what was the nature of the foreign coding sequences in the IR of the common ancestor of the Oedogoniales. They provide the first evidence for intragenomic proliferation of group IIA introns in the Viridiplantae, revealing that intron spread in the Oedocladium lineage likely occurred by retrohoming after sequence divergence of the exon-binding sites.

  1. Characterization of a marsupial sperm protamine gene and its transcripts from the North American opossum (Didelphis marsupialis).

    PubMed

    Winkfein, R J; Nishikawa, S; Connor, W; Dixon, G H

    1993-07-01

    A synthetic oligonucleotide primer, designed from marsupial protamine protein-sequence data [Balhorn, R., Corzett, M., Matrimas, J. A., Cummins, J. & Faden, B. (1989) Analysis of protamines isolated from two marsupials, the ring-tailed wallaby and gray short-tailed opossum, J. Cell. Biol. 107] was used to amplify, via the polymerase chain reaction, protamine sequences from a North American opossum (Didelphis marsupialis) cDNA. Using the amplified sequences as probes, several protamine cDNA clones were isolated. The protein sequence, predicted from the cDNA sequences, consisted of 57 amino acids, contained a large number of arginine residues and exhibited the sequence ARYR at its amino terminus, which is conserved in avian and most eutherian mammal protamines. Like the true protamines of trout and chicken, the opossum protamine lacked cysteine residues, distinguishing it from placental mammalian protamine 1 (P1 or stable) protamines. Examination of the protamine gene, isolated by polymerase-chain-reaction amplification of genomic DNA, revealed the presence of an intron dividing the protamine-coding region, a common characteristic of all mammalian P1 genes. In addition, extensive sequence identity in the 5' and 3' flanking regions between mouse and opossum sequences classify the marsupial protamine as being closely related to placental mammal P1. Protamine transcripts, in both birds and mammals, are present in two size classes, differing by the length of their poly(A) tails (either short or long). Examination of opossum protamine transcripts by Northern hybridization revealed four distinct mRNA species in the total RNA fraction, two of which were enriched in the poly(A)-rich fraction. Northern-blot analysis, using an intron-specific probe, revealed the presence of intron sequences in two of the four protamine transcripts. If expressed, the corresponding protein from intron-containing transcripts would differ from spliced transcripts by length (49 versus 57 amino acids) and would contain a cysteine residue.

  2. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking amore » long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In contrast to this mtDNA structure and organization diversity, current genome level studies point to a monophyletic origin of the mitochondria (REFS), raising questions such as: what are the pressures at work shaping the evolution of the mitochondrial genome at 'higher' levels? What drives the absence of introns and other non-coding spacers in metazoan mtDNA? What characteristics must have an intron to be maintained in an environment where 'extra chromosomes' are usually selected against?« less

  3. Determinism and randomness in the evolution of introns and sine inserts in mouse and human mitochondrial solute carrier and cytokine receptor genes.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A

    2015-04-01

    In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Spliced RNA of woodchuck hepatitis virus.

    PubMed

    Ogston, C W; Razman, D G

    1992-07-01

    Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.

  5. The utility of DNA sequences of an intron from the beta-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae).

    PubMed

    Prychitko, T M; Moore, W S

    1997-10-01

    Estimating phylogenies from DNA sequence data has become the major methodology of molecular phylogenetics. To date, molecular phylogenetics of the vertebrates has been very dependent on mtDNA, but studies involving mtDNA are limited because the several genes comprising the mt-genome are inherited as a single linkage group. The only apparent solution to this problem is to sequence additional genes, each representing a distinct linkage group, so that the resultant gene trees provide independent estimates of the species tree. There exists the need to find novel gene sequences which contain enough phylogenetic information to resolve relationships between closely related species. A possible source is the nuclear-encoded introns, because they evolve more rapidly than exons. We designed primers to amplify and sequence the 7 intron from the beta-fibrinogen gene for a recently evolved group, the woodpeckers. We sequenced the entire intron for 10 specimens representing five species. Nucleotide substitutions are randomly distributed along the length of the intron, suggesting selective neutrality. A preliminary analysis indicates that the phylogenetic signal in the intron is as strong as that in the mitochondrial encoded cytochrome b (cyt b) gene. The topology of the beta-fibrinogen tree is identical to that of the cyt b tree. This analysis demonstrates the ability of the 7 intron of beta-fibrinogen to provide well resolved, independent gene trees for recently evolved groups and establishes it as a source of sequences to be used in other phylogenetic studies. Copyright 1997 Academic Press

  6. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences.

    PubMed

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2017-08-01

    The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Identification of human short introns

    PubMed Central

    Abebrese, Emmanuel L.; Arnold, Zachary R.; Armstrong, Katharine; Burns, Lindsay; Day, R. Thomas; Hsu, Daniel G.; Jarrell, Katherine; Luo, Yi; Mugayo, Daphine

    2017-01-01

    Canonical pre-mRNA splicing requires snRNPs and associated splicing factors to excise conserved intronic sequences, with a minimum intron length required for efficient splicing. Non-canonical splicing–intron excision without the spliceosome–has been documented; most notably, some tRNAs and the XBP1 mRNA contain short introns that are not removed by the spliceosome. There have been some efforts to identify additional short introns, but little is known about how many short introns are processed from mRNAs. Here, we report an approach to identify RNA short introns from RNA-Seq data, discriminating against small genomic deletions. We identify hundreds of short introns conserved among multiple human cell lines. These short introns are often alternatively spliced and are found in a variety of RNAs–both mRNAs and lncRNAs. Short intron splicing efficiency is increased by secondary structure, and we detect both canonical and non-canonical short introns. In many cases, splicing of these short introns from mRNAs is predicted to alter the reading frame and change protein output. Our findings imply that standard gene prediction models which often assume a lower limit for intron size fail to predict short introns effectively. We conclude that short introns are abundant in the human transcriptome, and short intron splicing represents an added layer to mRNA regulation. PMID:28520720

  8. Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins

    NASA Technical Reports Server (NTRS)

    Kretsinger, R. H.; Nakayama, S.

    1993-01-01

    In the previous three reports in this series we demonstrated that the EF-hand family of proteins evolved by a complex pattern of gene duplication, transposition, and splicing. The dendrograms based on exon sequences are nearly identical to those based on protein sequences for troponin C, the essential light chain myosin, the regulatory light chain, and calpain. This validates both the computational methods and the dendrograms for these subfamilies. The proposal of congruence for calmodulin, troponin C, essential light chain, and regulatory light chain was confirmed. There are, however, significant differences in the calmodulin dendrograms computed from DNA and from protein sequences. In this study we find that introns are distributed throughout the EF-hand domain and the interdomain regions. Further, dendrograms based on intron type and distribution bear little resemblance to those based on protein or on DNA sequences. We conclude that introns are inserted, and probably deleted, with relatively high frequency. Further, in the EF-hand family exons do not correspond to structural domains and exon shuffling played little if any role in the evolution of this widely distributed homolog family. Calmodulin has had a turbulent evolution. Its dendrograms based on protein sequence, exon sequence, 3'-tail sequence, intron sequences, and intron positions all show significant differences.

  9. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  10. Comparative analysis of the 5{prime} genomic and promoter regions between the mouse (Hdh) and human Huntington disease (HD) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchman, M.; Lin, B.; Nasir, J.

    1994-09-01

    The mouse homologue of the Huntington disease gene (Hdh) has recently been cloned and mapped to a region of synteny with the human, on mouse chromosome 5. The two genes share a high degree of both coding (90% amino acid) and nucleotide (86.2%) identity. We have subsequently performed a detailed comparison of the genomic organization of the 5{prime} region of the two genes encompassing the promoter region and first five exons of both the human and mouse genes. The comparative sequence analysis of the promoter region between HD and Hdh reveals two highly conserved regions. One region (-56 to -118)more » (+1 is the ATG start codon), shared 84% nucleotide identity and another region (-130 to -206) had 81% nucleotide identity. Nine putative Sp1 sites appear in the human promoter region contrasted with only 3 in a similar region in the mouse. Furthermore, 17 and 20 base pair direct repeats present in the HD 5{prime} region are absent in the similar Hdh region. Although both the mouse and human intron/exon boundaries conform to the GT/AG rule, the intron sizes between HD and Hdh are markedly different. The first four introns in Hdh are 15, 7, 5 and 0.5 kb compared to sizes of 10, 15, 7 and 0.5 kb, respectively. Comparison between the mouse and human intronic sequences immediately adjacent to the first five exons (excluding exon 1) reveals only about 46 to 50% identity within the first 60 bp of intronic sequence. Furthermore, we have identified novel polymorphic di-, tri- and tetra-nucleotide repeats in Hdh introns of various mouse strains that are not present in the human. For example, polymorphic CT repeats are present in introns 2 and 4 of Hdh and a novel mouse 56 AAG trinucleotide repeat (interrupted by an AAGG) is also located within intron 2. This information concerning the promoter and genomic organization of both HD and Hdh is critical for designing appropriate gene targetting vectors for studying the normal function of the HD and Hdh genes in model systems.« less

  11. Isolation and characterization of full-length putative alcohol dehydrogenase genes from polygonum minus

    NASA Astrophysics Data System (ADS)

    Hamid, Nur Athirah Abd; Ismail, Ismanizan

    2013-11-01

    Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.

  12. Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice.

    PubMed

    Horiuchi, Keiko; Perez-Cerezales, Serafín; Papasaikas, Panagiotis; Ramos-Ibeas, Priscila; López-Cardona, Angela Patricia; Laguna-Barraza, Ricardo; Fonseca Balvís, Noelia; Pericuesta, Eva; Fernández-González, Raul; Planells, Benjamín; Viera, Alberto; Suja, Jose Angel; Ross, Pablo Juan; Alén, Francisco; Orio, Laura; Rodriguez de Fonseca, Fernando; Pintado, Belén; Valcárcel, Juan; Gutiérrez-Adán, Alfonso

    2018-04-03

    The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Evolutionary Dynamics of the Gametologous CTNNB1 Gene on the Z and W Chromosomes of Snakes.

    PubMed

    Laopichienpong, Nararat; Muangmai, Narongrit; Chanhome, Lawan; Suntrarachun, Sunutcha; Twilprawat, Panupon; Peyachoknagul, Surin; Srikulnath, Kornsorn

    2017-03-01

    Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the nonrecombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these 2 genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion–deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of 2 major clades: 1) Z-linked sequences of Caenophidia and 2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia.

  14. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    PubMed Central

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  15. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting.

    PubMed

    Qu, Guosheng; Piazza, Carol Lyn; Smith, Dorie; Belfort, Marlene

    2018-06-15

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis , inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. © 2018, Qu et al.

  16. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence.

    PubMed

    Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L

    2009-07-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (

  17. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence

    PubMed Central

    Shin, Dong-Ho; Webb, Barbara M.; Nakao, Miki; Smith, Sylvia L.

    2009-01-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and –d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (≤) amino acid identities with each other, 35.4 ~ 39.6% and 62.8 ~ 65.9% with factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1, 2 and 3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082 bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent. PMID:19423168

  18. Immunogenetic Risk and Protective Factors for Development of L-tryptophan-associated Eosinophilia-Myalgia Syndrome and Associated Symptoms

    PubMed Central

    Okada, Satoshi; Kamb, Mary L.; Pandey, Janardan P.; Philen, Rossanne M.; Love, Lori A.; Miller, Frederick W.

    2009-01-01

    Objective To assess L-tryptophan (LT) dose, age, gender and immunogenetic markers as possible risk or protective factors for development of LT-associated eosinophilia myalgia syndrome (EMS) and related clinical findings. Methods HLA DRB1 and DQA1 allele typing and GM/KM phenotyping were performed on a cohort of 94 Caucasian subjects with documented LT ingestion and standardized evaluations. Multivariate analyses compared LT dose, age, gender and alleles among groups of subjects who ingested LT and subsequently developed surveillance criteria for EMS (EMS), or developed EMS or characteristic features of EMS (EMS spectrum disorder), or developed no features of EMS (unaffected). Results Considering all sources of LT, higher LT dose (odds ratio (OR) 1.4, 95% confidence interval (CI) 1.1-1.8), age >45 years (OR 3.0, CI 1.03-8.8) and HLA DRB1*03 (OR 3.9, CI 1.2-15.2), DRB1*04 (OR 3.9, CI 1.1-16.4) and DQA1*0601 (OR 13.7, CI 1.3-1874) were risk factors for the development of EMS, while DRB1*07 (OR 0.12, CI 0.02-0.48) and DQA1*0501 (OR 0.23, CI 0.05-0.85) were protective. Similar risk and protective factors were seen for developing EMS following ingestion of implicated LT, except DRB1*03 was not a risk factor and DQA1*0201 was an additional protective factor. EMS spectrum disorder also showed similar findings, but with DRB1*04 being a risk factor and DRB1*07 and DQA1*0201 being protective. There were no differences in gender distribution, GM/KM allotypes or GM/KM phenotypes among any groups. Conclusion In addition to the xenobiotic dose and subject age, polymorphisms in immune response genes may underlie the development of certain xenobiotic-induced immune-mediated disorders and these findings may have implications for future related epidemics. PMID:19790128

  19. A 5′ Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo

    PubMed Central

    Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072

  20. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    PubMed

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome. © 2015 Collins et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Allelic variation in key peptide-binding pockets discriminates between closely related diabetes-protective and diabetes-susceptible HLA-DQB1*06 alleles.

    PubMed

    Ettinger, Ruth A; Papadopoulos, George K; Moustakas, Antonis K; Nepom, Gerald T; Kwok, William W

    2006-02-01

    HLA-DQA1*0102-DQB1*0602 is associated with protection against type 1 diabetes (T1D). A similar allele, HLA-DQA1*0102-DQB1*0604, contributes to T1D susceptibility in certain populations but differs only at seven amino acids from HLA-DQA1*0102-DQB1*0602. Five of these polymorphisms are found within the peptide-binding groove, suggesting that differences in peptide binding contribute to the mechanism of their association with T1D. In this study, we determine the peptide-binding motif for HLA-DQA1*0102-DQB1*0604 allelic protein (DQ0604) in comparison to the established HLA-DQA1*0102-DQB1*0602 (DQ0602) motif using binding assays with model peptides from T1D autoantigens and homology modeling using the coordinates of the DQ0602-hypocretin 1-13 crystal structure. The peptide binding preferences were deduced with a peptide from insulin that bound both with a 2- to 3-fold difference in avidity using the same amino acids in the peptide as anchors. Peptide binding differences directly influenced by the polymorphisms in or nearby pockets 1, 6, and 9 were observed. In pocket 1, DQ0604 was better able to accommodate aromatic residues due to the beta86 and beta87 polymorphisms. A negatively charged amino acid was preferred by DQ0604 in pocket 6 due to the positively charged beta30His. In pocket 9, DQ0604 preferred aromatic amino acids due to the beta9 and beta30 polymorphisms and had low tolerance of acidic residues. beta57Val in DQ0604 functions differently than beta57Ala, in that it pushes alpha76Arg outside of the pocket, preventing the formation of a salt bridge with an acidic amino acid in the peptide. This study furthers our understanding of the structure-function relationships of MHC class II polymorphisms.

  2. HLA Matching at the Eplet Level Protects Against Chronic Lung Allograft Dysfunction.

    PubMed

    Walton, D C; Hiho, S J; Cantwell, L S; Diviney, M B; Wright, S T; Snell, G I; Paraskeva, M A; Westall, G P

    2016-09-01

    Donor selection in lung transplantation (LTx) is historically based upon clinical urgency, ABO compatibility, and donor size. HLA matching is not routinely considered; however, the presence or later development of anti-HLA antibodies is associated with poorer outcomes, particularly chronic lung allograft dysfunction (CLAD). Using eplet mismatches, we aimed to determine whether donor/recipient HLA incompatibility was a significant predictor of CLAD. One hundred seventy-five LTx undertaken at the Alfred Hospital between 2008 and 2012 met criteria. Post-LTx monitoring was continued for at least 12 months, or until patient death. HLA typing was performed by sequence-based typing and Luminex sequence-specific oligonucleotide. Using HLAMatchmaker, eplet mismatches between each donor/recipient pairing were analyzed and correlated against incidences of CLAD. HLA-DRB1/3/4/5+DQA/B eplet mismatch was a significant predictor of CLAD (hazard ratio [HR] 3.77, 95% confidence interval [CI]: 1.71-8.29 p < 0.001). When bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS) were analyzed independently, HLA-DRB1/3/4/5 + DQA/B eplet mismatch was shown to significantly predict RAS (HR 8.3, 95% CI: 2.46-27.97 p < 0.001) but not BOS (HR 1.92, 95% CI: 0.64-5.72, p = 0.237). HLA-A/B eplet mismatch was shown not to be a significant predictor when analyzed independently but did provide additional stratification of results. This study illustrates the importance of epitope immunogenicity in defining donor-recipient immune compatibility in LTx. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. The structure of the coding and 5'-flanking region of the type 1 iodothyronine deiodinase (dio1) gene is normal in a patient with suspected congenital dio1 deficiency.

    PubMed

    Toyoda, N; Kleinhaus, N; Larsen, P R

    1996-06-01

    We analyzed the exon-intron structure of the human type 1 deiodinase gene (dio1) and compared it with that of a patient with suspected congenital type 1 deiodinase (D1) deficiency. The hdio1 gene is identical in exon-intron arrangement to the mouse gene, with coding sequences and a selenocysteine insertion sequence (SECIS) element contained in four exons. There were no mutations in the sequences of exons 1-4 of the patient's genomic DNA. Functional studies by transient expression techniques showed no difference in basal promoter activity or T3 responsiveness between the patient's and the normal dio1 gene. A structural abnormality in the dio1 gene is not a likely explanation for this patient's D1-deficient phenotype.

  4. Expression of a polyubiquitin promoter isolated from Gladiolus.

    PubMed

    Joung, Young Hee; Kamo, Kathryn

    2006-10-01

    A polyubiquitin promoter (GUBQ1) including its 5'UTR and intron was isolated from the floral monocot Gladiolus because high levels of expression could not be obtained using publicly available promoters isolated from either cereals or dicots. Sequencing of the promoter revealed highly conserved 5' and 3' intron splicing sites for the 1.234 kb intron. The coding sequence of the first two ubiquitin genes showed the highest homology (87 and 86%, respectively) to the ubiquitin genes of Nicotiana tabacum and Oryza sativa RUBQ2. Transient expression following gene gun bombardment showed that relative levels of GUS activity with the GUBQ1 promoter were comparable to the CaMV 35S promoter in gladiolus, tobacco, rose, rice, and the floral monocot freesia. The highest levels of GUS expression with GUBQ1 were attained with Gladiolus. The full-length GUBQ1 promoter including 5'UTR and intron were necessary for maximum GUS expression in Gladiolus. The relative GUS activity for the promoter only was 9%, and the activity for the promoter with 5'UTR and 399 bp of the full-length 1.234 kb intron was 41%. Arabidopsis plants transformed with uidA under GUBQ1 showed moderate GUS expression throughout young leaves and in the vasculature of older leaves. The highest levels of transient GUS expression in Gladiolus have been achieved using the GUBQ1 promoter. This promoter should be useful for genetic engineering of disease resistance in Gladiolus, rose, and freesia, where high levels of gene expression are important.

  5. Ribosomal DNA sequence divergence and group I introns within the Leucostoma species L. cinctum, L. persoonii, and L. parapersoonii sp. nov., ascomycetes that cause Cytospora canker of fruit trees.

    PubMed

    Adams, Gerard C; Surve-Iyer, Rupa S; Iezzoni, Amy F

    2002-01-01

    Leucostoma species that are the causal agents of Cytospora canker of stone and pome fruit trees were studied in detail. DNA sequence of the internal transcribed spacer regions and the 5.8S of the nuclear ribosomal DNA operon (ITS rDNA) supplied sufficient characters to assess the phylogenetic relationships among species of Leucostoma, Valsa, Valsella, and related anamorphs in Cytospora. Parsimony analysis of the aligned sequence divided Cytospora isolates from fruit trees into clades that generally agreed with the morphological species concepts, and with some of the phenetic groupings (PG 1-6) identified previously by isozyme analysis and cultural characteristics. Phylogenetic analysis inferred that isolates of L. persoonii formed two well-resolved clades distinct from isolates of L. cinctum. Phylogenetic analysis of the ITS rDNA, isozyme analysis, and cultural characteristics supported the inference that L. persoonii groups PG 2 and PG 3 were populations of a new species apparently more genetically different from L. persoonii PG 1 than from isolates representative of L. massariana, L. niveum, L. translucens, and Valsella melastoma. The new species, L. parapersoonii, was described. A diverse collection of isolates of L. cinctum, L. persoonii, and L. parapersoonii were examined for genetic variation using restriction fragment length polymorphism (RFLP) analysis of the ITS rDNA and the five prime end of the large subunit of the rDNA (LSU rDNA). HinfI and HpaII endonucleases were each useful in dividing the Leucostoma isolates into RFLP profiles corresponding to the isozyme phenetic groups, PG 1-6. RFLP analysis was more effective than isozyme analysis in uncovering variation among isolates of L. persoonii PG 1, but less effective within L. cinctum populations. Isolates representative of seven of the L. persoonii formae speciales proposed by G. Défago in 1935 were found to be genetically diverse isolates of PG 1. Two large insertions, 415 and 309 nucleotides long, in the small subunit (SSU) of the nuclear rDNA of L. cinctum were identified as Group 1 introns; intron 1 at position 943 and intron 2 at position 1199. The two introns were found to be consistently present in isolates of L. cinctum PG 4 and PG 5 and absent from L. cinctum PG 6 isolates, despite the similarity of the ITS sequence and teleomorph morphology. Intron 1 was of subgroup 1C1 whereas intron 2 was of an unknown subgroup. RFLP patterns and presence/absence of introns were useful characters for expediting the identification of cultures of Leucostoma isolated from stone and pome fruit cankers. RFLP patterns from 13 endonucleases provided an effective method for selecting an array of diverse PG 1 isolates useful in screening plant germplasm for disease-resistance.

  6. Association of HLA-DQA1 and -DQB1 alleles with type I diabetes in Arabs: a meta-analyses.

    PubMed

    Hamzeh, A R; Nair, P; Al-Khaja, N; Al Ali, M T

    2015-07-01

    This study aimed at assessing the nature and significance of associations between various alleles of HLA-DQA1, HLA-DQB1, and type I diabetes (T1D) in Arab populations. Evidence from literature (published before 20 April 2015) was amassed and analysed through multiple meta-analyses, which yielded effect summary odds ratios and 95% confidence intervals for 24 alleles and 4 haplotypes. A total of 1273 cases and 1747 controls from 16 studies were analysed. High levels of significance were obtained to support higher T1D risk when harbouring DQA1*03:01. The alleles DQB1*02:01 and *03:02 and the haplotypes DR3 and DR4 were significant risk factors, albeit with high publication heterogeneity. The protective effects of DQA1*01:01, DQB1*05:03, *06:02, *06:03, and *06:04 were robustly suggested by all indicators of meta-analyses. The haplotypes DR7 and DR11 were strongly suggested to be protective in Arabs. A relatively small number of studies have emerged from Arab countries, mostly with inadequate power on an individual basis. This study fills the gap by providing significant size effect of human leukocyte antigen (HLA) alleles and completes the continuum of global ethnic differences in this context. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae)

    PubMed Central

    Jansen, Robert K.; Wojciechowski, Martin F.; Sanniyasi, Elumalai; Lee, Seung-Bum; Daniell, Henry

    2008-01-01

    Chickpea (Cicer arietinum, Leguminosae), an important grain legume, is widely used for food and fodder throughout the world. We sequenced the complete plastid genome of chickpea, which is 125,319 bp in size, and contains only one copy of the inverted repeat (IR). The genome encodes 108 genes, including 4 rRNAs, 29 tRNAs, and 75 proteins. The genes rps16, infA, and ycf4 are absent in the chickpea plastid genome, and ndhB has an internal stop codon in the 5′exon, similar to other legumes. Two genes have lost their introns, one in the 3′exon of the transpliced gene rps12, and the one between exons 1 and 2 of clpP; this represents the first documented case of the loss of introns from both of these genes in the same plastid genome. An extensive phylogenetic survey of these intron losses was performed on 302 taxa across legumes and the related family Polygalaceae. The clpP intron has been lost exclusively in taxa from the temperate “IR-lacking clade” (IRLC), whereas the rps12 intron has been lost in most members of the IRLC (with the exception of Wisteria, Callerya, Afgekia, and certain species of Millettia, which represent the earliest diverging lineages of this clade), and in the tribe Desmodieae, which is closely related to the tribes Phaseoleae and Psoraleeae. Data provided here suggest that the loss of the rps12 intron occurred after the loss of the IR. The two new genomic changes identified in the present study provide additional support of the monophyly of the IR-loss clade, and resolution of the pattern of the earliest-branching lineages in this clade. The availability of the complete chickpea plastid genome sequence also provides valuable information on intergenic spacer regions among legumes and endogenous regulatory sequences for plastid genetic engineering. PMID:18638561

  8. HLA class II SNP interactions and the association with type 1 diabetes mellitus in Bengali speaking patients of Eastern India.

    PubMed

    Raha, Oindrila; Sarkar, Biswanath; Lakkakula, Bhaskar V K S; Pasumarthy, Veerraju; Godi, Sudhakar; Chowdhury, Subhankar; Raychaudhuri, Pradip; Vadlamudi, Raghavendra Rao

    2013-02-27

    Several studies have demonstrated a fundamental role for the HLA in the susceptibility of, or protection to, type 1 diabetes mellitus (T1DM). However, this has not been adequately studied in Asian Indian populations. To assess the frequency of HLA class II (DPA1, DPB1, DQA1, DQB1 and DRB1) associated to susceptibility or protection toT1DM in a Bengali population of India with diabetes. Single nucleotide polymorphism study. The HLA genotyping was performed by a polymerase chain reaction followed by their HLA-DP, DQ, and DRB1 genotypes and haplotypes by sequencing method. The results are studied by Plink software. The χ2 tests were used for the inferential statistics. To our knowledge, this study is the first of a kind which has attempted to check the HLA association with T1DM by SNPs analysis. The study recruited 151 patients with T1DM and same number of ethno-linguistic, sex matched non-diabetic controls. The present study found a significant SNP rs7990 of HLA-DQA1 (p = 0.009) negative correlation, again indicating that risk from HLA is considerably more with T1DM. This study demonstrates that the HLA class-II alleles play a major role in genetic basis of T1DM.

  9. Polymorphism in Mitochondrial Group I Introns among Cryptococcus neoformans and Cryptococcus gattii Genotypes and Its Association with Drug Susceptibility.

    PubMed

    Gomes, Felipe E E S; Arantes, Thales D; Fernandes, José A L; Ferreira, Leonardo C; Romero, Héctor; Bosco, Sandra M G; Oliveira, Maria T B; Del Negro, Gilda M B; Theodoro, Raquel C

    2018-01-01

    Cryptococcosis, one of the most important systemic mycosis in the world, is caused by different genotypes of Cryptococcus neoformans and Cryptococcus gattii , which differ in their ecology, epidemiology, and antifungal susceptibility. Therefore, the search for new molecular markers for genotyping, pathogenicity and drug susceptibility is necessary. Group I introns fulfill the requisites for such task because (i) they are polymorphic sequences; (ii) their self-splicing is inhibited by some drugs; and (iii) their correct splicing under parasitic conditions is indispensable for pathogen survival. Here, we investigated the presence of group I introns in the mitochondrial LSU rRNA gene in 77 Cryptococcus isolates and its possible relation to drug susceptibility. Sequencing revealed two new introns in the LSU rRNA gene. All the introns showed high sequence similarity to other mitochondrial introns from distinct fungi, supporting the hypothesis of an ancient non-allelic invasion. Intron presence was statistically associated with those genotypes reported to be less pathogenic ( p < 0.001). Further virulence assays are needed to confirm this finding. In addition, in vitro antifungal tests indicated that the presence of LSU rRNA introns may influence the minimum inhibitory concentration (MIC) of amphotericin B and 5-fluorocytosine. These findings point to group I introns in the mitochondrial genome of Cryptococcus as potential molecular markers for antifungal resistance, as well as therapeutic targets.

  10. Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach.

    PubMed

    Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M

    2017-03-27

    Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting that enhanced genomic alignments may reveal many more conserved intronic sequences.

  11. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.

  12. a Simple Symmetric Algorithm Using a Likeness with Introns Behavior in RNA Sequences

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2009-02-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences has some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algoritnm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  13. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  14. A Bioinformatics-Based Alternative mRNA Splicing Code that May Explain Some Disease Mutations Is Conserved in Animals.

    PubMed

    Qu, Wen; Cingolani, Pablo; Zeeberg, Barry R; Ruden, Douglas M

    2017-01-01

    Deep sequencing of cDNAs made from spliced mRNAs indicates that most coding genes in many animals and plants have pre-mRNA transcripts that are alternatively spliced. In pre-mRNAs, in addition to invariant exons that are present in almost all mature mRNA products, there are at least 6 additional types of exons, such as exons from alternative promoters or with alternative polyA sites, mutually exclusive exons, skipped exons, or exons with alternative 5' or 3' splice sites. Our bioinformatics-based hypothesis is that, in analogy to the genetic code, there is an "alternative-splicing code" in introns and flanking exon sequences, analogous to the genetic code, that directs alternative splicing of many of the 36 types of introns. In humans, we identified 42 different consensus sequences that are each present in at least 100 human introns. 37 of the 42 top consensus sequences are significantly enriched or depleted in at least one of the 36 types of introns. We further supported our hypothesis by showing that 96 out of 96 analyzed human disease mutations that affect RNA splicing, and change alternative splicing from one class to another, can be partially explained by a mutation altering a consensus sequence from one type of intron to that of another type of intron. Some of the alternative splicing consensus sequences, and presumably their small-RNA or protein targets, are evolutionarily conserved from 50 plant to animal species. We also noticed the set of introns within a gene usually share the same splicing codes, thus arguing that one sub-type of splicesosome might process all (or most) of the introns in a given gene. Our work sheds new light on a possible mechanism for generating the tremendous diversity in protein structure by alternative splicing of pre-mRNAs.

  15. Patterns and rates of intron divergence between humans and chimpanzees

    PubMed Central

    Gazave, Elodie; Marqués-Bonet, Tomàs; Fernando, Olga; Charlesworth, Brian; Navarro, Arcadi

    2007-01-01

    Background Introns, which constitute the largest fraction of eukaryotic genes and which had been considered to be neutral sequences, are increasingly acknowledged as having important functions. Several studies have investigated levels of evolutionary constraint along introns and across classes of introns of different length and location within genes. However, thus far these studies have yielded contradictory results. Results We present the first analysis of human-chimpanzee intron divergence, in which differences in the number of substitutions per intronic site (Ki) can be interpreted as the footprint of different intensities and directions of the pressures of natural selection. Our main findings are as follows: there was a strong positive correlation between intron length and divergence; there was a strong negative correlation between intron length and GC content; and divergence rates vary along introns and depending on their ordinal position within genes (for instance, first introns are more GC rich, longer and more divergent, and divergence is lower at the 3' and 5' ends of all types of introns). Conclusion We show that the higher divergence of first introns is related to their larger size. Also, the lower divergence of short introns suggests that they may harbor a relatively greater proportion of regulatory elements than long introns. Moreover, our results are consistent with the presence of functionally relevant sequences near the 5' and 3' ends of introns. Finally, our findings suggest that other parts of introns may also be under selective constraints. PMID:17309804

  16. Evaluation of the mechanisms of intron loss and gain in the social amoebae Dictyostelium.

    PubMed

    Ma, Ming-Yue; Che, Xun-Ru; Porceddu, Andrea; Niu, Deng-Ke

    2015-12-18

    Spliceosomal introns are a common feature of eukaryotic genomes. To approach a comprehensive understanding of intron evolution on Earth, studies should look beyond repeatedly studied groups such as animals, plants, and fungi. The slime mold Dictyostelium belongs to a supergroup of eukaryotes not covered in previous studies. We found 441 precise intron losses in Dictyostelium discoideum and 202 precise intron losses in Dictyostelium purpureum. Consistent with these observations, Dictyostelium discoideum was found to have significantly more copies of reverse transcriptase genes than Dictyostelium purpureum. We also found that the lost introns are significantly further from the 5' end of genes than the conserved introns. Adjacent introns were prone to be lost simultaneously in Dictyostelium discoideum. In both Dictyostelium species, the exonic sequences flanking lost introns were found to have a significantly higher GC content than those flanking conserved introns. Together, these observations support a reverse-transcription model of intron loss in which intron losses were caused by gene conversion between genomic DNA and cDNA reverse transcribed from mature mRNA. We also identified two imprecise intron losses in Dictyostelium discoideum that may have resulted from genomic deletions. Ninety-eight putative intron gains were also observed. Consistent with previous studies of other lineages, the source sequences were found in only a small number of cases, with only two instances of intron gain identified in Dictyostelium discoideum. Although they diverged very early from animals and fungi, Dictyostelium species have similar mechanisms of intron loss.

  17. Development of single-copy nuclear intron markers for species-level phylogenetics: Case study with Paullinieae (Sapindaceae).

    PubMed

    Chery, Joyce G; Sass, Chodon; Specht, Chelsea D

    2017-09-01

    We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.

  18. Tobacco chloroplast tRNALys(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron

    PubMed Central

    Sugita, Mamoru; Shinozaki, Kazuo; Sugiura, Masahiro

    1985-01-01

    The nucleotide sequence of a tRNALys(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNAGly(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long. Images PMID:16593561

  19. Tobacco chloroplast tRNA(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron.

    PubMed

    Sugita, M; Shinozaki, K; Sugiura, M

    1985-06-01

    The nucleotide sequence of a tRNA(Lys)(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNA(Gly)(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long.

  20. Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms.

    PubMed

    Monsuur, Alienke J; de Bakker, Paul I W; Zhernakova, Alexandra; Pinto, Dalila; Verduijn, Willem; Romanos, Jihane; Auricchio, Renata; Lopez, Ana; van Heel, David A; Crusius, J Bart A; Wijmenga, Cisca

    2008-05-28

    The HLA genes, located in the MHC region on chromosome 6p21.3, play an important role in many autoimmune disorders, such as celiac disease (CD), type 1 diabetes (T1D), rheumatoid arthritis, multiple sclerosis, psoriasis and others. Known HLA variants that confer risk to CD, for example, include DQA1*05/DQB1*02 (DQ2.5) and DQA1*03/DQB1*0302 (DQ8). To diagnose the majority of CD patients and to study disease susceptibility and progression, typing these strongly associated HLA risk factors is of utmost importance. However, current genotyping methods for HLA risk factors involve many reactions, and are complicated and expensive. We sought a simple experimental approach using tagging SNPs that predict the CD-associated HLA risk factors. Our tagging approach exploits linkage disequilibrium between single nucleotide polymorphism (SNPs) and the CD-associated HLA risk factors DQ2.5 and DQ8 that indicate direct risk, and DQA1*0201/DQB1*0202 (DQ2.2) and DQA1*0505/DQB1*0301 (DQ7) that attribute to the risk of DQ2.5 to CD. To evaluate the predictive power of this approach, we performed an empirical comparison of the predicted DQ types, based on these six tag SNPs, with those executed with current validated laboratory typing methods of the HLA-DQA1 and -DQB1 genes in three large cohorts. The results were validated in three European celiac populations. Using this method, only six SNPs were needed to predict the risk types carried by >95% of CD patients. We determined that for this tagging approach the sensitivity was >0.991, specificity >0.996 and the predictive value >0.948. Our results show that this tag SNP method is very accurate and provides an excellent basis for population screening for CD. This method is broadly applicable in European populations.

  1. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci.

    PubMed

    Mills, D A; McKay, L L; Dunny, G M

    1996-06-01

    Analysis of a region involved in the conjugative transfer of the lactococcal conjugative element pRS01 has revealed a bacteria] group II intron. Splicing of this lactococcal intron (designated Ll.ltrB) in vivo resulted in the ligation of two exon messages (ltrBE1 and ltrBE2) which encoded a putative conjugative relaxase essential for the transfer of pRS01. Like many group II introns, the Ll.ltrB intron possessed an open reading frame (ltrA) with homology to reverse transcriptases. Remarkably, sequence analysis of ltrA suggested a greater similarity to open reading frames encoded by eukaryotic mitochondrial group II introns than to those identified to date from other bacteria. Several insertional mutations within ltrA resulted in plasmids exhibiting a conjugative transfer-deficient phenotype. These results provide the first direct evidence for splicing of a prokaryotic group II intron in vivo and suggest that conjugative transfer is a mechanism for group II intron dissemination in bacteria.

  2. DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1.

    PubMed

    Wong, Jing Ting; Akhbar, Farzanah; Ng, Amanda Yunn Ee; Tay, Mandy Li-Ian; Loi, Gladys Jing En; Pek, Jun Wei

    2017-10-02

    Stable intronic sequence RNAs (sisRNAs) are by-products of splicing and regulate gene expression. How sisRNAs are regulated is unclear. Here we report that a double-stranded RNA binding protein, Disco-interacting protein 1 (DIP1) regulates sisRNAs in Drosophila. DIP1 negatively regulates the abundance of sisR-1 and INE-1 sisRNAs. Fine-tuning of sisR-1 by DIP1 is important to maintain female germline stem cell homeostasis by modulating germline stem cell differentiation and niche adhesion. Drosophila DIP1 localizes to a nuclear body (satellite body) and associates with the fourth chromosome, which contains a very high density of INE-1 transposable element sequences that are processed into sisRNAs. DIP1 presumably acts outside the satellite bodies to regulate sisR-1, which is not on the fourth chromosome. Thus, our study identifies DIP1 as a sisRNA regulatory protein that controls germline stem cell self-renewal in Drosophila.Stable intronic sequence RNAs (sisRNAs) are by-products of splicing from introns with roles in embryonic development in Drosophila. Here, the authors show that the RNA binding protein DIP1 regulates sisRNAs in Drosophila, which is necessary for germline stem cell homeostasis.

  3. The gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis contains a group I intron.

    PubMed Central

    De Wachter, R; Neefs, J M; Goris, A; Van de Peer, Y

    1992-01-01

    The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing. PMID:1561081

  4. Gene structure and evolution of transthyretin in the order Chiroptera.

    PubMed

    Khwanmunee, Jiraporn; Leelawatwattana, Ladda; Prapunpoj, Porntip

    2016-02-01

    Bats are mammals in the order Chiroptera. Although many extensive morphologic and molecular genetics analyses have been attempted, phylogenetic relationships of bats has not been completely resolved. The paraphyly of microbats is of particular controversy that needs to be confirmed. In this study, we attempted to use the nucleotide sequence of transthyretin (TTR) intron 1 to resolve the relationship among bats. To explore its utility, the complete sequences of TTR gene and intron 1 region of bats in Vespertilionidae: genus Eptesicus (Eptesicus fuscus) and genus Myotis (Myotis brandtii, Myotis davidii, and Myotis lucifugus), and Pteropodidae (Pteropus alecto and Pteropus vampyrus) were extracted from the retrieved sequences, whereas those of Rhinoluphus affinis and Scotophilus kuhlii were amplified and sequenced. The derived overall amino sequences of bat TTRs were found to be very similar to those in other eutherians but differed from those in other classes of vertebrates. However, missing of amino acids from N-terminal or C-terminal region was observed. The phylogenetic analysis of amino acid sequences suggested bat and other eutherian TTRs lineal descent from a single most recent common ancestor which differed from those of non-placental mammals and the other classes of vertebrates. The splicing of bat TTR precursor mRNAs was similar to those of other eutherian but different from those of marsupial, bird, reptile and amphibian. Based on TTR intron 1 sequence, the inferred evolutionary relationship within Chiroptera revealed more closely relatedness of R. affinis to megabats than to microbats. Accordingly, the paraphyly of microbats was suggested.

  5. Efficiency of introns from various origins in fish cells.

    PubMed

    Bétancourt, O H; Attal, J; Théron, M C; Puissant, C; Houdebine, L M

    1993-06-01

    Several vectors containing (1) regulatory regions from Rous sarcoma virus (RSV), human cytomegalovirus (CMV), and herpes simplex thymidine kinase (TK); (2) introns from early or late SV40 genes and from trout growth hormone gene (tGH); (3) chloramphenicol acetyltransferase gene (CAT); and (4) transcription terminators from SV40 were transfected into carp EPC cells, salmon CHSE cells, tilapia TO2 cells, quail QT6 cells, and hamster CHO cells. CAT activity was measured in extracts from several cell lines 3 days after transfection and in the fish EPC stable clones. The CMV and RSV promoters were the most potent in all cell types. The intron from late SV40 genes (VP1 intron) worked properly in QT6 and CHO cells but not in EPC and very weakly in TO2 cells. The tGH intron was efficient in all cell types but preferentially in fish cells. The small t intron from SV40 was processed in all cell types. The small t and, to a lesser extent, the tGH introns amplified expression of cat gene in stable clones, in comparison to the transiently transfected cells. These results indicate that elements from mammalian genes may not be properly recognized by the fish cellular machinery and in an unpredictable manner. This finding suggests that vectors prepared to express foreign genes in transfected cultured fish cells and transgenic fish should preferably contain DNA sequences from fish genes or, alternatively, those sequences from mammalian genes that have been previously proved to be compatible with the fish cellular machinery.

  6. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution.

    PubMed

    Rogozin, Igor B; Wolf, Yuri I; Sorokin, Alexander V; Mirkin, Boris G; Koonin, Eugene V

    2003-09-02

    Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.

  7. [Analysis of chloroplast rpS16 intron sequences in Lemnaceae].

    PubMed

    Martirosian, E V; Ryzhova, N N; Kochieva, E Z; Skriabin, K G

    2009-01-01

    Chloroplast rpS16 gene intron sequences were determined and characterized for twenty-five Lemnaceae accessions representing nine duckweed species. For each Lemnaceae species nucleotide substitutions and for Lemna minor, Lemna aequinoctialis, Wolffia arrhiza different indels were detected. Most of indels were found for Wolffia arrhiza and Lemna aequinoctialis. The analyses of intraspecific polymorphism resulted in identification of several gaplotypes in L. gibba and L. trisulca. Lemnaceae phylogenetic relationship based on rpS16 intron variability data has revealed significant differences between L. aequinoctialis and other Lemna species. Genetic distance values corroborated competence of Landoltia punctata separations from Spirodela into an independent generic taxon. The acceptability of rpS16 intron sequences for phylogenetic studies in Lemnaceae was shown.

  8. cisprimertool: software to implement a comparative genomics strategy for the development of conserved intron scanning (CIS) markers.

    PubMed

    Jayashree, B; Jagadeesh, V T; Hoisington, D

    2008-05-01

    The availability of complete, annotated genomic sequence information in model organisms is a rich resource that can be extended to understudied orphan crops through comparative genomic approaches. We report here a software tool (cisprimertool) for the identification of conserved intron scanning regions using expressed sequence tag alignments to a completely sequenced model crop genome. The method used is based on earlier studies reporting the assessment of conserved intron scanning primers (called CISP) within relatively conserved exons located near exon-intron boundaries from onion, banana, sorghum and pearl millet alignments with rice. The tool is freely available to academic users at http://www.icrisat.org/gt-bt/CISPTool.htm. © 2007 ICRISAT.

  9. Intriguing Balancing Selection on the Intron 5 Region of LMBR1 in Human Population

    PubMed Central

    He, Fang; Wu, Dong-Dong; Kong, Qing-Peng; Zhang, Ya-Ping

    2008-01-01

    Background The intron 5 of gene LMBR1 is the cis-acting regulatory module for the sonic hedgehog (SHH) gene. Mutation in this non-coding region is associated with preaxial polydactyly, and may play crucial roles in the evolution of limb and skeletal system. Methodology/Principal Findings We sequenced a region of the LMBR1 gene intron 5 in East Asian human population, and found a significant deviation of Tajima's D statistics from neutrality taking human population growth into account. Data from HapMap also demonstrated extended linkage disequilibrium in the region in East Asian and European population, and significantly low degree of genetic differentiation among human populations. Conclusion/Significance We proposed that the intron 5 of LMBR1 was presumably subject to balancing selection during the evolution of modern human. PMID:18698406

  10. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

    PubMed Central

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang

    2015-01-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5′ intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5′ intron finds the 3′ introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5′ intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing. PMID:25838544

  11. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing.

    PubMed

    Mohr, Sabine; Ghanem, Eman; Smith, Whitney; Sheeter, Dennis; Qin, Yidan; King, Olga; Polioudakis, Damon; Iyer, Vishwanath R; Hunicke-Smith, Scott; Swamy, Sajani; Kuersten, Scott; Lambowitz, Alan M

    2013-07-01

    Mobile group II introns encode reverse transcriptases (RTs) that function in intron mobility ("retrohoming") by a process that requires reverse transcription of a highly structured, 2-2.5-kb intron RNA with high processivity and fidelity. Although the latter properties are potentially useful for applications in cDNA synthesis and next-generation RNA sequencing (RNA-seq), group II intron RTs have been difficult to purify free of the intron RNA, and their utility as research tools has not been investigated systematically. Here, we developed general methods for the high-level expression and purification of group II intron-encoded RTs as fusion proteins with a rigidly linked, noncleavable solubility tag, and we applied them to group II intron RTs from bacterial thermophiles. We thus obtained thermostable group II intron RT fusion proteins that have higher processivity, fidelity, and thermostability than retroviral RTs, synthesize cDNAs at temperatures up to 81°C, and have significant advantages for qRT-PCR, capillary electrophoresis for RNA-structure mapping, and next-generation RNA sequencing. Further, we find that group II intron RTs differ from the retroviral enzymes in template switching with minimal base-pairing to the 3' ends of new RNA templates, making it possible to efficiently and seamlessly link adaptors containing PCR-primer binding sites to cDNA ends without an RNA ligase step. This novel template-switching activity enables facile and less biased cloning of nonpolyadenylated RNAs, such as miRNAs or protein-bound RNA fragments. Our findings demonstrate novel biochemical activities and inherent advantages of group II intron RTs for research, biotechnological, and diagnostic methods, with potentially wide applications.

  12. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate.

    PubMed

    Geiss, K T; Abbas, G M; Makaroff, C A

    1994-04-01

    The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.

  13. De novo insertion of an intron into the mammalian sex determining gene, SRY

    PubMed Central

    O’Neill, Rachel J. Waugh; Brennan, Francine E.; Delbridge, Margaret L.; Crozier, Ross H.; Graves, Jennifer A. Marshall

    1998-01-01

    Two theories have been proposed to explain the evolution of introns within eukaryotic genes. The introns early theory, or “exon theory of genes,” proposes that introns are ancient and that recombination within introns provided new exon structure, and thus new genes. The introns late theory, or “insertional theory of introns,” proposes that ancient genes existed as uninterrupted exons and that introns have been introduced during the course of evolution. There is still controversy as to how intron–exon structure evolved and whether the majority of introns are ancient or novel. Although there is extensive evidence in support of the introns early theory, phylogenetic comparisons of several genes indicate recent gain and loss of introns within these genes. However, no example has been shown of a protein coding gene, intronless in its ancestral form, which has acquired an intron in a derived form. The mammalian sex determining gene, SRY, is intronless in all mammals studied to date, as is the gene from which it recently evolved. However, we report here comparisons of genomic and cDNA sequences that now provide evidence of a de novo insertion of an intron into the SRY gene of dasyurid marsupials. This recently (approximately 45 million years ago) inserted sequence is not homologous with known transposable elements. Our data demonstrate that introns may be inserted as spliced units within a developmentally crucial gene without disrupting its function. PMID:9465071

  14. Identification and analysis of multigene families by comparison of exon fingerprints.

    PubMed

    Brown, N P; Whittaker, A J; Newell, W R; Rawlings, C J; Beck, S

    1995-06-02

    Gene families are often recognised by sequence homology using similarity searching to find relationships, however, genomic sequence data provides gene architectural information not used by conventional search methods. In particular, intron positions and phases are expected to be relatively conserved features, because mis-splicing and reading frame shifts should be selected against. A fast search technique capable of detecting possible weak sequence homologies apparent at the intron/exon level of gene organization is presented for comparing spliceosomal genes and gene fragments. FINEX compares strings of exons delimited by intron/exon boundary positions and intron phases (exon fingerprint) using a global dynamic programming algorithm with a combined intron phase identity and exon size dissimilarity score. Exon fingerprints are typically two orders of magnitude smaller than their nucleic acid sequence counterparts giving rise to fast search times: a ranked search against a library of 6755 fingerprints for a typical three exon fingerprint completes in under 30 seconds on an ordinary workstation, while a worst case largest fingerprint of 52 exons completes in just over one minute. The short "sequence" length of exon fingerprints in comparisons is compensated for by the large exon alphabet compounded of intron phase types and a wide range of exon sizes, the latter contributing the most information to alignments. FINEX performs better in some searches than conventional methods, finding matches with similar exon organization, but low sequence homology. A search using a human serum albumin finds all members of the multigene family in the FINEX database at the top of the search ranking, despite very low amino acid percentage identities between family members. The method should complement conventional sequence searching and alignment techniques, offering a means of identifying otherwise hard to detect homologies where genomic data are available.

  15. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes.

    PubMed

    Zernant, Jana; Lee, Winston; Nagasaki, Takayuki; Collison, Frederick T; Fishman, Gerald A; Bertelsen, Mette; Rosenberg, Thomas; Gouras, Peter; Tsang, Stephen H; Allikmets, Rando

    2018-05-30

    Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of the ABCA4 locus in STGD1 patients identifies two expected disease-causing alleles in ~75% of patients and only one mutation in ~15% of patients. Recently, many possibly pathogenic variants in deep intronic sequences of ABCA4 have been identified in the latter group. We extended our analyses of deep intronic ABCA4 variants and determined that one of these, c.4253+43G>A (rs61754045), is present in 29/1155 (2.6%) of STGD1 patients. The variant is found at statistically significantly higher frequency in patients with only one pathogenic ABCA4 allele, 23/160 (14.38%), MAF=0.072, compared to MAF=0.013 in all STGD1 cases and MAF=0.006 in the matching general population (P<1x10-7). The variant, which is not predicted to have any effect on splicing, is the first reported intronic "extremely hypomorphic allele" in the ABCA4 locus; i.e., it is pathogenic only when in trans with a loss-of-function ABCA4 allele. It results in a distinct clinical phenotype characterized by late-onset of symptoms and foveal sparing. In ~70% of cases the variant was allelic with the c.6006-609T>A (rs575968112) variant, which was deemed non-pathogenic. Another rare deep intronic variant, c.5196+1056A>G (rs886044749), found in 5/834 (0.6%) of STGD1 cases is, conversely, a severe allele. This study determines pathogenicity for three non-coding variants in STGD1 patients of European descent accounting for ~3% of the disease. Defining disease-associated alleles in the non-coding sequences of the ABCA4 locus can be accomplished by integrated clinical and genetic analyses. Cold Spring Harbor Laboratory Press.

  16. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives From Type 1 Diabetes Throughout the Stages of Disease Progression

    PubMed Central

    Boulware, David; Yu, Liping; Babu, Sunanda; Steck, Andrea K.; Becker, Dorothy; Rodriguez, Henry; DiMeglio, Linda; Evans-Molina, Carmella; Harrison, Leonard C.; Schatz, Desmond; Palmer, Jerry P.; Greenbaum, Carla; Eisenbarth, George S.; Sosenko, Jay M.

    2016-01-01

    The HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype is linked to protection from the development of type 1 diabetes (T1D). However, it is not known at which stages in the natural history of T1D development this haplotype affords protection. We examined a cohort of 3,358 autoantibody-positive relatives of T1D patients in the Pathway to Prevention (PTP) Study of the Type 1 Diabetes TrialNet. The PTP study examines risk factors for T1D and disease progression in relatives. HLA typing revealed that 155 relatives carried this protective haplotype. A comparison with 60 autoantibody-negative relatives suggested protection from autoantibody development. Moreover, the relatives with DRB1*15:01-DQA1*01:02-DQB1*06:02 less frequently expressed autoantibodies associated with higher T1D risk, were less likely to have multiple autoantibodies at baseline, and rarely converted from single to multiple autoantibody positivity on follow-up. These relatives also had lower frequencies of metabolic abnormalities at baseline and exhibited no overall metabolic worsening on follow-up. Ultimately, they had a very low 5-year cumulative incidence of T1D. In conclusion, the protective influence of DRB1*15:01-DQA1*01:02-DQB1*06:02 spans from autoantibody development through all stages of progression, and relatives with this allele only rarely develop T1D. PMID:26822082

  17. Film-based delivery quality assurance for robotic radiosurgery: Commissioning and validation.

    PubMed

    Blanck, Oliver; Masi, Laura; Damme, Marie-Christin; Hildebrandt, Guido; Dunst, Jürgen; Siebert, Frank-Andre; Poppinga, Daniela; Poppe, Björn

    2015-07-01

    Robotic radiosurgery demands comprehensive delivery quality assurance (DQA), but guidelines for commissioning of the DQA method is missing. We investigated the stability and sensitivity of our film-based DQA method with various test scenarios and routine patient plans. We also investigated the applicability of tight distance-to-agreement (DTA) Gamma-Index criteria. We used radiochromic films with multichannel film dosimetry and re-calibration and our analysis was performed in four steps: 1) Film-to-plan registration, 2) Standard Gamma-Index criteria evaluation (local-pixel-dose-difference ≤2%, distance-to-agreement ≤2 mm, pass-rate ≥90%), 3) Dose distribution shift until maximum pass-rate (Maxγ) was found (shift acceptance <1 mm), and 4) Final evaluation with tight DTA criteria (≤1 mm). Test scenarios consisted of purposefully introduced phantom misalignments, dose miscalibrations, and undelivered MU. Initial method evaluation was done on 30 clinical plans. Our method showed similar sensitivity compared to the standard End-2-End-Test and incorporated an estimate of global system offsets in the analysis. The simulated errors (phantom shifts, global robot misalignment, undelivered MU) were detected by our method while standard Gamma-Index criteria often did not reveal these deviations. Dose miscalibration was not detected by film alone, hence simultaneous ion-chamber measurement for film calibration is strongly recommended. 83% of the clinical patient plans were within our tight DTA tolerances. Our presented methods provide additional measurements and quality references for film-based DQA enabling more sensitive error detection. We provided various test scenarios for commissioning of robotic radiosurgery DQA and demonstrated the necessity to use tight DTA criteria. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D; García-Rodríguez, Fernando M; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti , the nitrogen-fixing endosymbiont of legumes of genus Medicago , harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.

  19. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution

    PubMed Central

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D.; García-Rodríguez, Fernando M.; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation. PMID:29670598

  20. The Anopheles stephensi odorant binding protein 1 (AsteObp1) gene: a new molecular marker for biological forms diagnosis.

    PubMed

    Gholizadeh, S; Firooziyan, S; Ladonni, H; Hajipirloo, H Mohammadzadeh; Djadid, N Dinparast; Hosseini, A; Raz, A

    2015-06-01

    Anopheles (Cellia) stephensi Liston 1901 is known as an Asian malaria vector. Three biological forms, namely "mysorensis", "intermediate", and "type" have been earlier reported in this species. Nevertheless, the present morphological and molecular information is insufficient to diagnose these forms. During this investigation, An. stephensi biological forms were morphologically identified and sequenced for odorant-binding protein 1 (Obp1) gene. Also, intron I sequences were used to construct phylogenetic trees. Despite nucleotide sequence variation in exon of AsteObp1, nearly 100% identity was observed at the amino acid level among the three biological forms. In order to overcome difficulties in using egg morphology characters, intron I sequences of An. stephensi Obp1 opens new molecular way to the identification of the main Asian malaria vector biological forms. However, multidisciplinary studies are needed to establish the taxonomic status of An. stephensi. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Deep intronic GPR143 mutation in a Japanese family with ocular albinism

    PubMed Central

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-01-01

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757

  2. Deep intronic GPR143 mutation in a Japanese family with ocular albinism.

    PubMed

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-06-10

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease.

  3. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing. PMID:21935348

  4. Cloning and Genomic Organization of a Rhamnogalacturonase Gene from Locally Isolated Strain of Aspergillus niger.

    PubMed

    Damak, Naourez; Abdeljalil, Salma; Taeib, Noomen Hadj; Gargouri, Ali

    2015-08-01

    The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.

  5. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability.

    PubMed

    Joardar, Vinita; Abrams, Natalie F; Hostetler, Jessica; Paukstelis, Paul J; Pakala, Suchitra; Pakala, Suman B; Zafar, Nikhat; Abolude, Olukemi O; Payne, Gary; Andrianopoulos, Alex; Denning, David W; Nierman, William C

    2012-12-12

    The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population studies. Despite the conservation of the core genes, the mitochondrial genomes of Aspergillus and Penicillium species examined here exhibit significant amount of interspecies variation. Most of this variation can be attributed to accessory genes and mobile introns, presumably acquired by horizontal gene transfer of mitochondrial plasmids and intron homing.

  6. A new DRB1*1202 allele (DRB1*12022) found in association with DQA1*0102 and DQB1*0602 in two Black narcoleptic subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behar, E.; Grumet, F.C.; Lin, X.

    1995-01-01

    DQB1*0602 is a better genetic marker than DR2 for narcolepsy susceptibility across all ethnic groups; for instance, only 75% of African American narcoleptics are DR2+ compared with 96% DQB1*0602+. We studied DRB1 genes of DR2- but DQB1*0602+ African American patients with cataplexy and observed two with an unusual DR12, DQA1*0102, DQB1*0602 haplotype; a new allelic variant of DRB1*1202 has been designated DRB*12022. 8 refs.

  7. Breed differences in development of anti-insulin antibodies in diabetic dogs and investigation of the role of dog leukocyte antigen (DLA) genes.

    PubMed

    Holder, Angela L; Kennedy, Lorna J; Ollier, William E R; Catchpole, Brian

    2015-10-15

    Administration of insulin for treatment of diabetes mellitus in dogs can stimulate an immune response, with a proportion of animals developing anti-insulin antibodies (AIA). For an IgG antibody response to occur, this would require B cell presentation of insulin peptides by major histocompatibility complex (MHC) class II molecules, encoded by dog leukocyte antigen (DLA) genes, in order to receive T-cell help for class switching. DLA genes are highly polymorphic in the dog population and vary from breed to breed. The aim of the present study was to evaluate AIA reactivity in diabetic dogs of different breeds and to investigate whether DLA genes influence AIA status. Indirect ELISA was used to determine serological reactivity to insulin in diabetic dogs, treated with either a porcine or bovine insulin preparation. DLA haplotypes for diabetic dogs were determined by sequence-based typing of DLA-DRB1, -DQA1 and -DQB1 loci. Significantly greater insulin reactivity was seen in treated diabetic dogs (n=942) compared with non-diabetic dogs (n=100). Relatively few newly diagnosed diabetic dogs (3/109) were found to be AIA positive, although this provides evidence that insulin autoantibodies might be involved in the pathogenesis of the disease in some cases. Of the diabetic dogs treated with a bovine insulin preparation, 52.3% (182/348) were AIA positive, compared with 12.6% (75/594) of dogs treated with a porcine insulin preparation, suggesting that bovine insulin is more immunogenic. Breeds such as dachshund, Cairn terrier, miniature schnauzer and Tibetan terrier were more likely to develop AIA, whereas cocker spaniels were less likely to develop AIA, compared with crossbreed dogs. In diabetic dogs, DLA haplotype DRB1*0015--DQA1*006--DQB1*023 was associated with being AIA positive, whereas the haplotype DLA-DRB1*006--DQA1*005--DQB1*007 showed an association with being AIA negative. These research findings suggest that DLA genes influence AIA responses in treated diabetic dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil.

    PubMed

    Meinhart, Adriana Dillenburg; Damin, Fernanda Mateus; Caldeirão, Lucas; da Silveira, Tayse Ferreira Ferreira; Filho, José Teixeira; Godoy, Helena Teixeira

    2017-09-01

    This study analysed 100 plants employed in Brazil as ingredients to infusions for their caffeic acid, 3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid (4-CQA), 5-caffeoylquinic acid (5-CQA), 3,4-dicaffeoylquinic acid (3,4-DQA), 3,5-dicaffeoylquinic acid (3,5-DQA), and 4,5-dicaffeoylquinic acid (4,5-DQA) contents. The samples were collected from public markets and analysed using ultra-high performance liquid chromatography (UPLC). The highest concentrations of chlorogenic acids were found in yerba mate (Ilex paraguariensis), 9,2g·100g -1 , white tea (Camellia sinensis), winter's bark (Drimys winteri), green tea (Camellia sinensis), elderflower (Sambucus nigra), and Boehmeria caudata (known as assa-peixe in Brazil), 1,1g·100g -1 . The present work showcased the investigation of chlorogenic acids in a wide range of plants not yet studied in this regard and also resulted in a comparative table which explores the content of six isomers in the samples. Copyright © 2017. Published by Elsevier Ltd.

  9. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae.

    PubMed

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-10-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.

  10. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae

    PubMed Central

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-01-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species. PMID:24736785

  11. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    PubMed

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-02-15

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U).

  12. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    PubMed Central

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-01-01

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U). PMID:8604302

  13. Phylogenetic Analysis of Nuclear-Encoded RNA Maturases

    PubMed Central

    Malik, Sunita; Upadhyaya, KC; Khurana, SM Paul

    2017-01-01

    Posttranscriptional processes, such as splicing, play a crucial role in gene expression and are prevalent not only in nuclear genes but also in plant mitochondria where splicing of group II introns is catalyzed by a class of proteins termed maturases. In plant mitochondria, there are 22 mitochondrial group II introns. matR, nMAT1, nMAT2, nMAT3, and nMAT4 proteins have been shown to be required for efficient splicing of several group II introns in Arabidopsis thaliana. Nuclear maturases (nMATs) are necessary for splicing of mitochondrial genes, leading to normal oxidative phosphorylation. Sequence analysis through phylogenetic tree (including bootstrapping) revealed high homology with maturase sequences of A thaliana and other plants. This study shows the phylogenetic relationship of nMAT proteins between A thaliana and other nonredundant plant species taken from BLASTP analysis. PMID:28607538

  14. Phylogenetic inferences of Nepenthes species in Peninsular Malaysia revealed by chloroplast (trnL intron) and nuclear (ITS) DNA sequences.

    PubMed

    Bunawan, Hamidun; Yen, Choong Chee; Yaakop, Salmah; Noor, Normah Mohd

    2017-01-26

    The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus. Phylogeny reconstruction was carried out using neighbor-joining, maximum parsimony and Bayesian analyses. All the trees revealed two major clusters, a lowland group consisting of N. ampullaria, N. mirabilis, N. gracilis and N. rafflesiana, and another containing both intermediately distributed species (N. albomarginata and N. benstonei) and four highland species (N. sanguinea, N. macfarlanei, N. ramispina and N. alba). The trnL intron and ITS sequences proved to provide phylogenetic informative characters for deriving a phylogeny of Nepenthes species in Peninsular Malaysia. To our knowledge, this is the first molecular phylogenetic study of Nepenthes species occurring along an altitudinal gradient in Peninsular Malaysia.

  15. Targeted Deep Resequencing Identifies Coding Variants in the PEAR1 Gene That Play a Role in Platelet Aggregation

    PubMed Central

    Kim, Yoonhee; Suktitipat, Bhoom; Yanek, Lisa R.; Faraday, Nauder; Wilson, Alexander F.; Becker, Diane M.; Becker, Lewis C.; Mathias, Rasika A.

    2013-01-01

    Platelet aggregation is heritable, and genome-wide association studies have detected strong associations with a common intronic variant of the platelet endothelial aggregation receptor1 (PEAR1) gene both in African American and European American individuals. In this study, we used a sequencing approach to identify additional exonic variants in PEAR1 that may also determine variability in platelet aggregation in the GeneSTAR Study. A 0.3 Mb targeted region on chromosome 1q23.1 including the entire PEAR1 gene was Sanger sequenced in 104 subjects (45% male, 49% African American, age = 52±13) selected on the basis of hyper- and hypo- aggregation across three different agonists (collagen, epinephrine, and adenosine diphosphate). Single-variant and multi-variant burden tests for association were performed. Of the 235 variants identified through sequencing, 61 were novel, and three of these were missense variants. More rare variants (MAF<5%) were noted in African Americans compared to European Americans (108 vs. 45). The common intronic GWAS-identified variant (rs12041331) demonstrated the most significant association signal in African Americans (p = 4.020×10−4); no association was seen for additional exonic variants in this group. In contrast, multi-variant burden tests indicated that exonic variants play a more significant role in European Americans (p = 0.0099 for the collective coding variants compared to p = 0.0565 for intronic variant rs12041331). Imputation of the individual exonic variants in the rest of the GeneSTAR European American cohort (N = 1,965) supports the results noted in the sequenced discovery sample: p = 3.56×10−4, 2.27×10−7, 5.20×10−5 for coding synonymous variant rs56260937 and collagen, epinephrine and adenosine diphosphate induced platelet aggregation, respectively. Sequencing approaches confirm that a common intronic variant has the strongest association with platelet aggregation in African Americans, and show that exonic variants play an additional role in platelet aggregation in European Americans. PMID:23704978

  16. Association of canine hypothyroidism with a common major histocompatibility complex DLA class II allele.

    PubMed

    Kennedy, L J; Quarmby, S; Happ, G M; Barnes, A; Ramsey, I K; Dixon, R M; Catchpole, B; Rusbridge, C; Graham, P A; Hillbertz, N S; Roethel, C; Dodds, W J; Carmichael, N G; Ollier, W E R

    2006-07-01

    Dogs exhibit a range of immune-mediated conditions including a lymphocytic thyroiditis which has many similarities to Hashimoto's thyroiditis in man. We have recently reported an association in Doberman Pinschers between canine hypothyroidism and a rare DLA class II haplotype that contains the DLA-DQA1*00101 allele. We now report a further series of 173 hypothyroid dogs in a range of breeds where a significant association with DLA-DQA1*00101 is shown.

  17. Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

    PubMed Central

    Kaer, Kristel; Branovets, Jelena; Hallikma, Anni; Nigumann, Pilvi; Speek, Mart

    2011-01-01

    Background Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. Methodology/Principal Findings Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3′ ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. Conclusions/Significance Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression. PMID:22022525

  18. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives From Type 1 Diabetes Throughout the Stages of Disease Progression.

    PubMed

    Pugliese, Alberto; Boulware, David; Yu, Liping; Babu, Sunanda; Steck, Andrea K; Becker, Dorothy; Rodriguez, Henry; DiMeglio, Linda; Evans-Molina, Carmella; Harrison, Leonard C; Schatz, Desmond; Palmer, Jerry P; Greenbaum, Carla; Eisenbarth, George S; Sosenko, Jay M

    2016-04-01

    The HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype is linked to protection from the development of type 1 diabetes (T1D). However, it is not known at which stages in the natural history of T1D development this haplotype affords protection. We examined a cohort of 3,358 autoantibody-positive relatives of T1D patients in the Pathway to Prevention (PTP) Study of the Type 1 Diabetes TrialNet. The PTP study examines risk factors for T1D and disease progression in relatives. HLA typing revealed that 155 relatives carried this protective haplotype. A comparison with 60 autoantibody-negative relatives suggested protection from autoantibody development. Moreover, the relatives with DRB1*15:01-DQA1*01:02-DQB1*06:02 less frequently expressed autoantibodies associated with higher T1D risk, were less likely to have multiple autoantibodies at baseline, and rarely converted from single to multiple autoantibody positivity on follow-up. These relatives also had lower frequencies of metabolic abnormalities at baseline and exhibited no overall metabolic worsening on follow-up. Ultimately, they had a very low 5-year cumulative incidence of T1D. In conclusion, the protective influence of DRB1*15:01-DQA1*01:02-DQB1*06:02 spans from autoantibody development through all stages of progression, and relatives with this allele only rarely develop T1D. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases

    PubMed Central

    Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.

    2016-01-01

    Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from <1 ng of plasma RNA in <5 h. TGIRT-seq of RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030

  20. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium

    PubMed Central

    Grewe, Felix; Zhu, Andan; Mower, Jeffrey P.

    2016-01-01

    The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches. PMID:27664178

  1. Patterns of Adaptive and Neutral Diversity Identify the Xiaoxiangling Mountains as a Refuge for the Giant Panda

    PubMed Central

    Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-01-01

    Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles. PMID:23894623

  2. Patterns of adaptive and neutral diversity identify the Xiaoxiangling mountains as a refuge for the giant panda.

    PubMed

    Chen, Yi-Yan; Zhu, Ying; Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-01-01

    Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles.

  3. An RNAi-enhanced Logic Circuit for Cancer Specific Detection and Destruction

    DTIC Science & Technology

    2010-07-01

    Bcl-2 family: mBax (Mus musculus), hBax ( Homo sapiens ), and its mutant hBax-S184A [4]. A plasmid containing the tested gene was transfected into HEK...the far-red fluorescent protein mKate to express the Gata3 mStaple. Intron- feature sequences – donor site, branch point, poly- pyrimidine tract, and...intron-exon junction. Among the donor and acceptor sequences found in literature our intron features were chosen according SplicePort [5], an

  4. Discovering weighted patterns in intron sequences using self-adaptive harmony search and back-propagation algorithms.

    PubMed

    Huang, Yin-Fu; Wang, Chia-Ming; Liou, Sing-Wu

    2013-01-01

    A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete.

  5. Discovering Weighted Patterns in Intron Sequences Using Self-Adaptive Harmony Search and Back-Propagation Algorithms

    PubMed Central

    Wang, Chia-Ming; Liou, Sing-Wu

    2013-01-01

    A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete. PMID:23737711

  6. [Identification and phylogenetic application of unique nucleotide sequence of nad7 intron2 in Rhodiola (Crassulaceae) species].

    PubMed

    Deng, Ke-Jun; Yang, Zu-Jun; Liu, Cheng; Zhao, Wei; Liu, Chang; Feng, Juan; Ren, Zheng-Long

    2007-03-01

    Genetic characterization of 9 populations of Rhodiola crenulata, R. fastigiata and R. sachalinensis (Crassulaceae) species from Sichuan and Jilin Provinces of China, was investigated using the conserved primer of nad7 intron 2. All PCR products about 800 bp long were shorter than other Crassulaceae plants, which were used as molecular markers to identify the Rhodiola species. The sequence of the products indicated that total exon of 53 bp and intron of 738 bp exhibit only 9 nucleotide variations. Blasting the nad7 sequences to GenBank and the phylogenetic analysis showed that the sequence of Rhodiola species was clusted independently, and the length was smaller than all the registered sequences of higher plants. The result suggests that the Rhiodola species had a unique sequence in this gene region, which might be related to the special growth condition.

  7. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene.

    PubMed

    Rodríguez-Martín, Carlos; Cidre, Florencia; Fernández-Teijeiro, Ana; Gómez-Mariano, Gema; de la Vega, Leticia; Ramos, Patricia; Zaballos, Ángel; Monzón, Sara; Alonso, Javier

    2016-05-01

    Retinoblastoma (RB, MIM 180200) is the paradigm of hereditary cancer. Individuals harboring a constitutional mutation in one allele of the RB1 gene have a high predisposition to develop RB. Here, we present the first case of familial RB caused by a de novo insertion of a full-length long interspersed element-1 (LINE-1) into intron 14 of the RB1 gene that caused a highly heterogeneous splicing pattern of RB1 mRNA. LINE-1 insertion was inferred by mRNA studies and full-length sequenced by massive parallel sequencing. Some of the aberrant mRNAs were produced by noncanonical acceptor splice sites, a new finding that up to date has not been described to occur upon LINE-1 retrotransposition. Our results clearly show that RNA-based strategies have the potential to detect disease-causing transposon insertions. It also confirms that the incorporation of new genetic approaches, such as massive parallel sequencing, contributes to characterize at the sequence level these unique and exceptional genetic alterations.

  8. Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses

    PubMed Central

    Da Lage, Jean-Luc; Maczkowiak, Frédérique; Cariou, Marie-Louise

    2011-01-01

    Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that “resets” of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures. PMID:21611157

  9. Human Leukocyte Antigen and Interleukin 2, 10 and 12p40 Cytokine Responses to Measles: Is There Evidence of the HLA Effect?

    PubMed Central

    Ovsyannikova, Inna G.; Ryan, Jenna E.; Jacobson, Robert M.; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2007-01-01

    HLA class I and class II associations were examined in relation to measles virus-specific cytokine responses in 339 healthy children who had received two doses of live attenuated measles vaccine. Multivariate linear regression modeling analysis revealed suggestions of associations between the expression of DPA1*0201 (p=0.03) and DPA1*0202 (p=0.09) alleles and interleukin-2 (IL-2) cytokine production (global p-value 0.06). Importantly, cytokine production and DQB1 allele associations (global p-value 0.04) revealed that the alleles with the strongest association with IL-10 secretion were DQB1*0302 (p=0.02), DQB1*0303 (p=0.07) and DQB1*0502 (p=0.06). Measles-specific IL-10 secretion associations approached significance with DRB1 and DQA1 loci (both global p-values 0.08). Specifically, suggestive associations were found between DRB1*0701 (p=0.07), DRB1*1103 (p=0.06), DRB1*1302 (p=0.08), DRB1*1303 (p=0.06), DQA1*0101 (p=0.08), and DQA1*0201 (p=0.04) alleles and measles-induced IL-10 secretion. Further, suggestive association was observed between specific DQA1*0505 (p=0.002) alleles and measles-specific IL-12p40 secretion (global p-value 0.09) indicating that cytokine responses to measles antigens are predominantly influenced by HLA class II genes. We found no associations between any of the alleles of HLA A, B, and Cw loci and cytokine secretion. These novel findings suggest that HLA class II genes may influence the level of cytokine production in the adaptive immune responses to measles vaccine. PMID:17234427

  10. Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene

    PubMed Central

    Gastaldo, Elena; Harries, Lorna W.; Rubio-Cabezas, Oscar; Castaño, Luis

    2012-01-01

    Background The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. Methodology/Principal Findings Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. Conclusions/Significance This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants. PMID:22235272

  11. Pea chloroplast tRNA(Lys) (UUU) gene: transcription and analysis of an intron-containing gene.

    PubMed

    Boyer, S K; Mullet, J E

    1988-07-01

    The pea chloroplast trnK gene which encodes tRNA(Lys) (UUU) was sequenced. TrnK is located 210 bp upstream from the promoter of psbA and immediately downstream from the 3'-end of rbcL. The gene is transcribed from the same DNA strand as psbA and rbcL. A 2447 bp intron with class II features is located in the trnK anticodon loop. The intron contains a 506 amino acid open reading frame which could encode an RNA maturase. The primary transcript of trnK is 2.9 kb long; its 5'-end was identified as a site of transcription initiation by in vitro transcription experiments. The 5'-terminus is adjacent to DNA sequences previously identified as transcription promoter elements. The most abundant trnK transcript is 2.5 kb long with termini corresponding to the 5' and 3' ends of the trnK exons. Intron specific RNAs were not detected. This suggests that RNA processing which produces tRNA(Lys) leads to rapid degradation of intron sequences.

  12. New HLA haplotype frequency reference standards: high-resolution and large sample typing of HLA DR-DQ haplotypes in a sample of European Americans.

    PubMed

    Klitz, W; Maiers, M; Spellman, S; Baxter-Lowe, L A; Schmeckpeper, B; Williams, T M; Fernandez-Viña, M

    2003-10-01

    A collaborative study involving a large sample of European Americans was typed for the histocompatibility loci of the HLA DR-DQ region and subjected to intensive typing validation measures in order to accurately determine haplotype composition and frequency. The resulting tables have immediate application to HLA typing and allogeneic transplantation. The loci within the DR-DQ region are especially valuable for such an undertaking because of their tight linkage and high linkage disequilibrium. The 3798 haplotypes, derived from 1899 unrelated individuals, had a total of 75 distinct DRB1-DQA1-DQB1 haplotypes. The frequency distribution of the haplotypes was right skewed with haplotypes occurring at a frequency of less than 1% numbering 59 and yet constituting less than 12% of the total sample. Given DRB1 typing, it was possible to infer the exact DQA1 and DQB1 composition of a haplotype with high confidence (>90% likelihood) in 21 of the 35 high-resolution DRB1 alleles present in the sample. Of the DRB1 alleles without high reliability for DQ haplotype inference, only *0401, *0701 and *1302 were common, the remaining 11 DRB1 alleles constituting less than 5% of the total sample. This approach failed for the 13 serologically equivalent DR alleles in which only 33% of DQ haplotypes could be reliably inferred. The 36 DQA1-DQB1 haplotypes present in the total sample conformed to the known pattern of permissible heterodimers. Four DQA1-DQB1 haplotypes, all rare, are reported here for the first time. The haplotype frequency tables are suitable as a reference standard for HLA typing of the DR and DQ loci in European Americans.

  13. Fractal landscape analysis of DNA walks

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-01-01

    By mapping nucleotide sequences onto a "DNA walk", we uncovered remarkably long-range power law correlations [Nature 356 (1992) 168] that imply a new scale invariant property of DNA. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences, but not in cDNA sequences or intron-less genes. In this paper, we present more explicit evidences to support our findings.

  14. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerk, T.; Wulbrand, U.; Tuemmler, B.

    1993-03-01

    Single cases of the four novel splice site mutations 1525[minus]1 G [r arrow] A (intron 9), 3601[minus]2 A [r arrow] G (intron 18), 3850[minus]3 T [r arrow] G (intron 19), and 4374+1 G [r arrow] T (intron 23) were detected in the CFTR gene of cystic fibrosis patients of Indo-Iranian, Turkish, Polish, and Germany descent. The nucleotide substitutions at the +1, [minus]1, and [minus]2 positions all destroy splice sites and lead to severe disease alleles associated with features typical of gastrointestinal and pulmonary cystic fibrosis disease. The 3850[minus]3 T-to-G change was discovered in a very mildly affected 33-year-old [Delta]F508 compoundmore » heterozygote, suggesting that the T-to-G transversion at the less conserved [minus]3 position of the acceptor splice site may retain some wildtype function. 13 refs., 1 fig., 2 tabs.« less

  15. Hypervariable and highly divergent intron-exon organizations in the chordate Oikopleura dioica.

    PubMed

    Edvardsen, Rolf B; Lerat, Emmanuelle; Maeland, Anne Dorthea; Flåt, Mette; Tewari, Rita; Jensen, Marit F; Lehrach, Hans; Reinhardt, Richard; Seo, Hee-Chan; Chourrout, Daniel

    2004-10-01

    Oikopleura dioica is a pelagic tunicate with a very small genome and a very short life cycle. In order to investigate the intron-exon organizations in Oikopleura, we have isolated and characterized ribosomal protein EF-1alpha, Hox, and alpha-tubulin genes. Their intron positions have been compared with those of the same genes from various invertebrates and vertebrates, including four species with entirely sequenced genomes. Oikopleura genes, like Caenorhabditis genes, have introns at a large number of nonconserved positions, which must originate from late insertions or intron sliding of ancient insertions. Both species exhibit hypervariable intron-exon organization within their alpha-tubulin gene family. This is due to localization of most nonconserved intron positions in single members of this gene family. The hypervariability and divergence of intron positions in Oikopleura and Caenorhabditis may be related to the predominance of short introns, the processing of which is not very dependent upon the exonic environment compared to large introns. Also, both species have an undermethylated genome, and the control of methylation-induced point mutations imposes a control on exon size, at least in vertebrate genes. That introns placed at such variable positions in Oikopleura or C. elegans may serve a specific purpose is not easy to infer from our current knowledge and hypotheses on intron functions. We propose that new introns are retained in species with very short life cycles, because illegitimate exchanges including gene conversion are repressed. We also speculate that introns placed at gene-specific positions may contribute to suppressing these exchanges and thereby favor their own persistence.

  16. Late-onset spastic paraplegia: Aberrant SPG11 transcripts generated by a novel splice site donor mutation.

    PubMed

    Kawarai, Toshitaka; Miyamoto, Ryosuke; Mori, Atsuko; Oki, Ryosuke; Tsukamoto-Miyashiro, Ai; Matsui, Naoko; Miyazaki, Yoshimichi; Orlacchio, Antonio; Izumi, Yuishin; Nishida, Yoshihiko; Kaji, Ryuji

    2015-12-15

    We identified a novel homozygous mutation in the splice site donor (SSD) of intron 30 (c.5866+1G>A) in consanguineous Japanese SPG11 siblings showing late-onset spastic paraplegia using the whole-exome sequencing. Phenotypic variability was observed, including age-at-onset, dysarthria and pes cavus. Coding DNA sequencing revealed that the mutation affected the recognition of the constitutive SSD of intron 30, splicing upstream onto a nearby cryptic SSD in exon 30. The use of constitutive splice sites of intron 29 was confirmed by sequencing. The mutant transcripts are mostly subject to degradation by the nonsense-mediated mRNA decay system. SPG11 transcripts, escaping from the nonsense-mediated mRNA decay pathway, would generate a truncated protein (p.Tyr1900Phefs5X) containing the first 1899 amino acids and followed by 4 aberrant amino acids. This study showed a successful clinical application of whole-exome sequencing in spastic paraplegia and demonstrated a further evidence of allelic heterogeneity in SPG11. The confirmation of aberrant transcript by splice site mutation is a prerequisite for a more precise molecular diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia).

    PubMed

    Celis, Juan Sebastián; Edgell, David R; Stelbrink, Björn; Wibberg, Daniel; Hauffe, Torsten; Blom, Jochen; Kalinowski, Jörn; Wilke, Thomas

    2017-01-01

    Group I introns and homing endonuclease genes (HEGs) are mobile genetic elements, capable of invading target sequences in intron-less genomes. LAGLIDADG HEGs are the largest family of endonucleases, playing a key role in the mobility of group I introns in a process known as 'homing'. Group I introns and HEGs are rare in metazoans, and can be mainly found inserted in the COXI gene of some sponges and cnidarians, including stony corals (Scleractinia) and mushroom corals (Corallimorpharia). Vertical and horizontal intron transfer mechanisms have been proposed as explanations for intron occurrence in cnidarians. However, the central role of LAGLIDADG motifs in intron mobility mechanisms remains poorly understood. To resolve questions regarding the evolutionary origin and distribution of group I introns and HEGs in Scleractinia and Corallimorpharia, we examined intron/HEGs sequences within a comprehensive phylogenetic framework. Analyses of LAGLIDADG motif conservation showed a high degree of degradation in complex Scleractinia and Corallimorpharia. Moreover, the two motifs lack the respective acidic residues necessary for metal-ion binding and catalysis, potentially impairing horizontal intron mobility. In contrast, both motifs are highly conserved within robust Scleractinia, indicating a fully functional endonuclease capable of promoting horizontal intron transference. A higher rate of non-synonymous substitutions (Ka) detected in the HEGs of complex Scleractinia and Corallimorpharia suggests degradation of the HEG, whereas lower Ka rates in robust Scleractinia are consistent with a scenario of purifying selection. Molecular-clock analyses and ancestral inference of intron type indicated an earlier intron insertion in complex Scleractinia and Corallimorpharia in comparison to robust Scleractinia. These findings suggest that the lack of horizontal intron transfers in the former two groups is related to an age-dependent degradation of the endonuclease activity. Moreover, they also explain the peculiar geographical patterns of introns in stony and mushroom corals.

  18. Localization, structure and polymorphism of two paralogous Xenopus laevis mitochondrial malate dehydrogenase genes.

    PubMed

    Tlapakova, Tereza; Krylov, Vladimir; Macha, Jaroslav

    2005-01-01

    Two paralogous mitochondrial malate dehydrogenase 2 (Mdh2) genes of Xenopus laevis have been cloned and sequenced, revealing 95% identity. Fluorescence in-situ hybridization (FISH) combined with tyramide amplification discriminates both genes; Mdh2a was localized into chromosome q3 and Mdh2b into chromosome q8. One kb cDNA probes detect both genes with 85% accuracy. The remaining signals were on the paralogous counterpart. Introns interrupt coding sequences at the same nucleotide as defined for mouse. Restriction polymorphism has been detected in the first intron of Mdh2a, while the individual variability in intron 6 of Mdh2b gene is represented by an insertion of incomplete retrotransposon L1Xl. Rates of nucleotide substitutions indicate that both genes are under similar evolutionary constraints. X. laevis Mdh2 genes can be used as markers for physical mapping and linkage analysis.

  19. Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains.

    PubMed

    Keren, Ido; Klipcan, Liron; Bezawork-Geleta, Ayenachew; Kolton, Max; Shaya, Felix; Ostersetzer-Biran, Oren

    2008-08-22

    CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted "catalytically active" form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.

  20. The association between HLA DQ genetic polymorphism and type 1 diabetes in a case-parent study conducted in an admixed population.

    PubMed

    Mimbacas, Adriana; Pérez-Bravo, Fernando; Santos, Jose Luis; Pisciottano, Carmen; Grignola, Rosario; Javiel, Gerardo; Jorge, Ana Maria; Cardoso, Horacio

    2004-01-01

    Susceptibility to the type 1 diabetes is genetically controlled and there is an increased risk associated with the presence of some specific alleles of the human leukocyte antigens class II loci (DQA1 and DQB1 genes). The purpose of this study is to evaluate the association between type 1 diabetes and HLA DQ alleles using case-parents trios in the admixed population of Uruguay composed by a mixture of Caucasian, Amerindian and Negroid populations. DQA1 and DQB1 genotyping was performed by polimerase chain reaction followed by oligospecific probes hybridization in 51 case-parents trios. The transmission disequilibrium test was used for detecting differential transmission in the HLA DQ loci. DQB1*0302 was the only allele for which preferential transmission is suggested (probability of transmission = 67.56%; exact p-value TDT = 0.047 uncorrected for multiple comparisons). DQA1*0301 allele showed a trend for preferential transmission without achieving statistical significance. This result would confirm the hypothesis previously advanced in a case-control study. Therefore, DQB1*0302 allele could be considered as the most important susceptibility allele for developing type 1 diabetes in Uruguay population.

  1. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B.

    PubMed

    Jeong, Haeyoung; Lim, Jong-Min; Park, Jihye; Sim, Young Mi; Choi, Han-Gu; Lee, Jungho; Jeong, Won-Joong

    2014-04-16

    Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast genome phylogeny supports monophyly of the seven investigated members of Chlorellales. The presence of the cox1 intron at 721 in all four investigated Chlorellales taxa indicates that the cox1 intron had been introduced in early Chorellales as a cis-splice form and that the cis-splicing intron was inherited to recent Chlorellales and was recently trans-spliced in Helicosporidium.

  2. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B

    PubMed Central

    2014-01-01

    Background Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. Results The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. Conclusions The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast genome phylogeny supports monophyly of the seven investigated members of Chlorellales. The presence of the cox1 intron at 721 in all four investigated Chlorellales taxa indicates that the cox1 intron had been introduced in early Chorellales as a cis-splice form and that the cis-splicing intron was inherited to recent Chlorellales and was recently trans-spliced in Helicosporidium. PMID:24735464

  3. Molecular Targeting of Prostate Cancer During Androgen Ablation: Inhibition of CHES1/FOXN3

    DTIC Science & Technology

    2013-05-01

    the DNA sequences (~25^6 reads/sample) were mapped to the human genome reference sequence (hg19...tumor the AR has a genomic abnormality, placing the novel sequence 3’ of the transcriptional start site. However, it is unclear if a genomic alteration...exon/intron organization of the CHES1 gene was determined by BLAST analysis of the human genome using the 1,473-bp CHES1 cDNA sequence

  4. Origin and evolution of spliceosomal introns

    PubMed Central

    2012-01-01

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section. PMID:22507701

  5. Differences in idiopathic inflammatory myopathy phenotypes and genotypes between Mesoamerican Mestizos and North American Caucasians: ethnogeographic influences in the genetics and clinical expression of myositis.

    PubMed

    Shamim, Ejaz A; Rider, Lisa G; Pandey, Janardan P; O'Hanlon, Terrance P; Jara, Luis J; Samayoa, Eduardo A; Burgos-Vargas, Ruben; Vazquez-Mellado, Janitzia; Alcocer-Varela, Jorge; Salazar-Paramo, Mario; Kutzbach, Abraham Garcia; Malley, James D; Targoff, Ira N; Garcia-De la Torre, Ignacio; Miller, Frederick W

    2002-07-01

    As part of a larger, worldwide study of the ethnogeography of myositis, we evaluated the clinical, serologic, and immunogenetic features of Mestizo (Mexican and Guatemalan) and North American Caucasian patients with idiopathic inflammatory myopathy (IIM). Clinical manifestations, autoantibodies, HLA-DRB1 and DQA1 alleles, and immunoglobulin Gm/Km allotypes were compared between 138 Mestizos with IIM and 287 Caucasians with IIM, using the same classification criteria and standardized questionnaires. IIM in Mestizo patients was characterized by a higher proportion of dermatomyositis (69% of adult Mestizos versus 35% of adult Caucasians; P < 0.001) and anti-Mi-2 autoantibodies (30% versus 7% of adults, respectively, and 32% versus 4% of children, respectively; P < 0.01). Genetic risk factors also differed in these populations. Whereas Mestizos had no HLA risk factors for IIM, HLA-DRB1*0301, the linked allele DQA1*0501, and DRB1 alleles sharing the first hypervariable region motif (9)EYSTS(13) were major risk factors in Caucasian patients with IIM. Furthermore, different HLA-DRB1 and DQA1 alleles were associated with anti-Mi-2 autoantibodies (DRB1*04 and DQA1*03 in Mestizos and DRB1*07 and DQA1*02 in Caucasians). Immunoglobulin gamma-chain allotypes Gm(1), Gm(17) (odds ratio for both 11.3, P = 0.008), and Gm(21) (odds ratio 7.3, P = 0.005) and kappa-chain allotype Km(3) (odds ratio 7.3, P = 0.005) were risk factors for IIM in Mestizos; however, no Gm or Km allotypes were risk or protective factors in Caucasians. In addition, Gm and Km phenotypes were unique risk factors (Gm 1,3,17 5,13,21 and Gm 1,17 23 21 and Km 3,3) or protective factors (Km 1,1) for the development of myositis and anti-Mi-2 autoantibodies (Gm 1,2,3,17 23 5,13,21) in adult Mestizos. IIM in Mesoamerican Mestizos differs from IIM in North American Caucasians in the frequency of phenotypic features and in the immune-response genes predisposing to and protecting from myositis and anti-Mi-2 autoantibodies at 4 chromosomal loci. These and other data suggest the likelihood that the expression of IIM is modulated by different genes and environmental exposures around the world.

  6. Effects of dose scaling on delivery quality assurance in tomotherapy

    PubMed Central

    Nalichowski, Adrian; Burmeister, Jay

    2012-01-01

    Delivery quality assurance (DQA) of tomotherapy plans is routinely performed with silver halide film which has a limited range due to the effects of saturation. DQA plans with dose values exceeding this limit require the dose of the entire plan to be scaled downward if film is used, to evaluate the dose distribution in two dimensions. The potential loss of fidelity between scaled and unscaled DQA plans as a function of dose scaling is investigated. Three treatment plans for 12 Gy fractions designed for SBRT of the lung were used to create DQA procedures that were scaled between 100% and 10%. The dose was measured with an ionization chamber array and compared to values from the tomotherapy treatment planning system. Film and cylindrical ion chamber measurements were also made for one patient for scaling factors of 50% to 10% to compare with the ionization chamber array measurements. The array results show the average gamma pass rate is ≥99% from 100% to 30% scaling. The average gamma pass rate falls to 93.6% and 51.1% at 20% and 10% scaling, respectively. Film analysis yields similar pass rates. Cylindrical ion chambers did not exhibit significant variation with dose scaling, but only represent points in the low gradient region of the dose distribution. Scaling the dose changes the mechanics of the radiation delivery, as well as the signal‐to‐noise ratio. Treatment plans which exhibit parameters that differ significantly from those common to DQA plans studied in this paper may exhibit different behavior. Dose scaling should be limited to the smallest degree possible. Planar information, such as that from film or a detector array, is required. The results show that it is not necessary to perform both a scaled and unscaled DQA plan for the treatment plans considered here. PACS numbers: 87.55.km, 87.55.Qr PMID:22231213

  7. Intermediate introns in nuclear genes of euglenids - are they a distinct type?

    PubMed

    Milanowski, Rafał; Gumińska, Natalia; Karnkowska, Anna; Ishikawa, Takao; Zakryś, Bożena

    2016-02-29

    Nuclear genes of euglenids contain two major types of introns: conventional spliceosomal and nonconventional introns. The latter are characterized by variable non-canonical borders, RNA secondary structure that brings intron ends together, and an unknown mechanism of removal. Some researchers also distinguish intermediate introns, which combine features of both types. They form a stable RNA secondary structure and are classified into two subtypes depending on whether they contain one (intermediate/nonconventional subtype) or both (conventional/intermediate subtype) canonical spliceosomal borders. However, it has been also postulated that most introns classified as intermediate could simply be special cases of conventional or nonconventional introns. Sequences of tubB, hsp90 and gapC genes from six strains of Euglena agilis were obtained. They contain four, six, and two or three introns, respectively (the third intron in the gapC gene is unique for just one strain). Conventional introns were present at three positions: two in the tubB gene (at one position conventional/intermediate introns were also found) and one in the gapC gene. Nonconventional introns are present at ten positions: two in the tubB gene (at one position intermediate/nonconventional introns were also found), six in hsp90 (at four positions intermediate/nonconventional introns were also found), and two in the gapC gene. Sequence and RNA secondary structure analyses of nonconventional introns confirmed that their most strongly conserved elements are base pairing nucleotides at positions +4, +5 and +6/ -8, -7 and -6 (in most introns CAG/CTG nucleotides were observed). It was also confirmed that the presence of the 5' GT/C end in intermediate/nonconventional introns is not the result of kinship with conventional introns, but is due to evolutionary pressure to preserve the purine at the 5' end. However, an example of a nonconventional intron with GC-AG ends was shown, suggesting the possibility of intron type conversion between nonconventional and conventional. Furthermore, an analysis of conventional introns revealed that the ability to form a stable RNA secondary structure by some introns is probably not a result of their relationship with nonconventional introns. It was also shown that acquisition of new nonconventional introns is an ongoing process and can be observed at the level of a single species. In the recently acquired intron in the gapC gene an extended direct repeats at the intron-exon junctions are present, suggesting that double-strand break repair process could be the source of new nonconventional introns.

  8. Functional comparison of three transformer gene introns regulating conditional female lethality

    USDA-ARS?s Scientific Manuscript database

    The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...

  9. Branchpoint selection in the splicing of U12-dependent introns in vitro.

    PubMed

    McConnell, Timothy S; Cho, Soo-Jin; Frilander, Mikko J; Steitz, Joan A

    2002-05-01

    In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome.

  10. Branchpoint selection in the splicing of U12-dependent introns in vitro.

    PubMed Central

    McConnell, Timothy S; Cho, Soo-Jin; Frilander, Mikko J; Steitz, Joan A

    2002-01-01

    In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome. PMID:12022225

  11. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less

  12. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes

    PubMed Central

    Singh, Parmit Kumar; Plumb, Matthew R.; Ferris, Andrea L.; Iben, James R.; Wu, Xiaolin; Fadel, Hind J.; Luke, Brian T.; Esnault, Caroline; Poeschla, Eric M.; Hughes, Stephen H.; Kvaratskhelia, Mamuka; Levin, Henry L.

    2015-01-01

    The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced. PMID:26545813

  13. Mitochondrial Group II Introns, Cytochrome c Oxidase, and Senescence in Podospora anserina†

    PubMed Central

    Begel, Odile; Boulay, Jocelyne; Albert, Beatrice; Dufour, Eric; Sainsard-Chanet, Annie

    1999-01-01

    Podospora anserina is a filamentous fungus with a limited life span. It expresses a degenerative syndrome called senescence, which is always associated with the accumulation of circular molecules (senDNAs) containing specific regions of the mitochondrial chromosome. A mobile group II intron (α) has been thought to play a prominent role in this syndrome. Intron α is the first intron of the cytochrome c oxidase subunit I gene (COX1). Mitochondrial mutants that escape the senescence process are missing this intron, as well as the first exon of the COX1 gene. We describe here the first mutant of P. anserina that has the α sequence precisely deleted and whose cytochrome c oxidase activity is identical to that of wild-type cells. The integration site of the intron is slightly modified, and this change prevents efficient homing of intron α. We show here that this mutant displays a senescence syndrome similar to that of the wild type and that its life span is increased about twofold. The introduction of a related group II intron into the mitochondrial genome of the mutant does not restore the wild-type life span. These data clearly demonstrate that intron α is not the specific senescence factor but rather an accelerator or amplifier of the senescence process. They emphasize the role that intron α plays in the instability of the mitochondrial chromosome and the link between this instability and longevity. Our results strongly support the idea that in Podospora, “immortality” can be acquired not by the absence of intron α but rather by the lack of active cytochrome c oxidase. PMID:10330149

  14. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  15. DLA Class II Alleles and Haplotypes Are Associated with Risk for and Protection from Chronic Hepatitis in the English Springer Spaniel

    PubMed Central

    Bexfield, Nicholas H.; Watson, Penny J.; Aguirre-Hernandez, Jesús; Sargan, David R.; Tiley, Laurence; Heeney, Jonathan L.; Kennedy, Lorna J.

    2012-01-01

    Chronic hepatitis (CH) is common in dogs in the United Kingdom. An increased prevalence of the disease is seen in the English Springer spaniel (ESS), and this breed suffer from a severe form with young to middle aged female dogs being predisposed. The disease shares histological features with those of human viral hepatitis, although the specific aetiological agent has not yet been identified. The aim of the current study was to investigate whether dog leucocyte antigen (DLA) class II alleles and haplotypes are associated with susceptibility/resistance to CH in the ESS. Sequence-based genotyping of the polymorphic exon 2 from DLA-DRB1, -DQA1 and -DQB1 class II loci were performed in 66 ESSs with CH and 84 healthy controls. There was a significant difference in the distribution of the protective alleles DRB1*00501 (3.0% vs. 12.0%, odds ratio [OR] = 0.23, 95% confidence interval [CI] = 0.06–0.74) and DQB1*00501 (3.8% vs. 12.0%, OR = 0.29, 95% CI = 0.09–0.85) between cases and controls. The haplotype DLA-DRB1*00501/DQA1*00301/DQB1*00501 was present in 11.9% of controls and 3.0% of cases and was significantly associated with protection against disease development (OR = 0.26, 95% CI = 0.08–0.80). There was a significant difference in the distribution of the risk alleles DRB1*00601 (14.4% vs. 6.5%, OR = 2.40, 95% CI = 1.10–5.63) and DQB1*00701 (14.4% vs. 6.5%, OR = 2.40, 95% CI = 1.10–5.63) between cases and controls. A risk haplotype (DLA-DRB1*00601/DQA1*005011/DQB1*00701) was present in 14.4% of cases and 6.5% of controls and conferred an elevated risk of developing CH with an OR of 3.13 (95% CI = 1.20–8.26). These results demonstrate that DLA class II is significantly associated with risk and protection from developing CH in ESSs. PMID:22870335

  16. [Study of gene mutation in 62 hemophilia A children].

    PubMed

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense mutation; the most frequent gene mutation in medium hemophilia A is missense mutation.

  17. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    PubMed

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  18. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome.

    PubMed

    Crotti, Lia; Lewandowska, Marzena A; Schwartz, Peter J; Insolia, Roberto; Pedrazzini, Matteo; Bussani, Erica; Dagradi, Federica; George, Alfred L; Pagani, Franco

    2009-02-01

    Genetic screening of long QT syndrome (LQTS) fails to identify disease-causing mutations in about 30% of patients. So far, molecular screening has focused mainly on coding sequence mutations or on substitutions at canonical splice sites. The purpose of this study was to explore the possibility that intronic variants not at canonical splice sites might affect splicing regulatory elements, lead to aberrant transcripts, and cause LQTS. Molecular screening was performed through DHPLC and sequence analysis. The role of the intronic mutation identified was assessed with a hybrid minigene splicing assay. A three-generation LQTS family was investigated. Molecular screening failed to identify an obvious disease-causing mutation in the coding sequences of the major LQTS genes but revealed an intronic A-to-G substitution in KCNH2 (IVS9-28A/G) cosegregating with the clinical phenotype in family members. In vitro analysis proved that the mutation disrupts the acceptor splice site definition by affecting the branch point (BP) sequence and promoting intron retention. We further demonstrated a tight functional relationship between the BP and the polypyrimidine tract, whose weakness is responsible for the pathological effect of the IVS9-28A/G mutation. We identified a novel BP mutation in KCNH2 that disrupts the intron 9 acceptor splice site definition and causes LQT2. The present finding demonstrates that intronic mutations affecting pre-mRNA processing may contribute to the failure of traditional molecular screening in identifying disease-causing mutations in LQTS subjects and offers a rationale strategy for the reduction of genotype-negative cases.

  19. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases.

    PubMed

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-11-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC 3 (NM_003786.3:c.1783-1G>A), KLHDC 1 (NM_172193.1:c.568-2A>G), HOOK 1 (NM_015888.4:c.1662-1G>A), SMAD 9 (NM_001127217.2:c.1004-1C>T), and DNAH 9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC 3, HOOK 1. In ABCC 3 and HOOK 1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK 1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4-6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis.

  20. WES homozygosity mapping in a recessive form of Charcot-Marie-Tooth neuropathy reveals intronic GDAP1 variant leading to a premature stop codon.

    PubMed

    Masingue, Marion; Perrot, Jimmy; Carlier, Robert-Yves; Piguet-Lacroix, Guenaelle; Latour, Philippe; Stojkovic, Tanya

    2018-05-01

    Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.

  1. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.

    PubMed Central

    Suh, E R; Waring, R B

    1990-01-01

    It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site. Images PMID:2342465

  2. Mutation Spectrum of the ABCA4 Gene in a Greek Cohort with Stargardt Disease: Identification of Novel Mutations and Evidence of Three Prevalent Mutated Alleles

    PubMed Central

    Vassiliki, Kokkinou; George, Koutsodontis; Polixeni, Stamatiou; Christoforos, Giatzakis; Minas, Aslanides Ioannis; Stavrenia, Koukoula; Ioannis, Datseris

    2018-01-01

    Aim To evaluate the frequency and pattern of disease-associated mutations of ABCA4 gene among Greek patients with presumed Stargardt disease (STGD1). Materials and Methods A total of 59 patients were analyzed for ABCA4 mutations using the ABCR400 microarray and PCR-based sequencing of all coding exons and flanking intronic regions. MLPA analysis as well as sequencing of two regions in introns 30 and 36 reported earlier to harbor deep intronic disease-associated variants was used in 4 selected cases. Results An overall detection rate of at least one mutant allele was achieved in 52 of the 59 patients (88.1%). Direct sequencing improved significantly the complete characterization rate, that is, identification of two mutations compared to the microarray analysis (93.1% versus 50%). In total, 40 distinct potentially disease-causing variants of the ABCA4 gene were detected, including six previously unreported potentially pathogenic variants. Among the disease-causing variants, in this cohort, the most frequent was c.5714+5G>A representing 16.1%, while p.Gly1961Glu and p.Leu541Pro represented 15.2% and 8.5%, respectively. Conclusions By using a combination of methods, we completely molecularly diagnosed 48 of the 59 patients studied. In addition, we identified six previously unreported, potentially pathogenic ABCA4 mutations. PMID:29854428

  3. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    PubMed Central

    2011-01-01

    Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh) were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based on LCNGs in Pyrus. Ancient and recent duplications lead to a complex structure of Adh outparalogs and inparalogs in Pyrus and Malus, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, LFY2int2-N is the best nuclear marker for phylogenetic reconstruction of Pyrus due to suitable sequence divergence and the absence of lineage sorting. PMID:21917170

  4. The active gene that encodes human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, S.; Finelli, P.; Rocchi, M.

    The human genome contains a large number of sequences related to the cDNA for High Mobility Group 1 protein (HMG1), which so far has hampered the cloning and mapping of the active HMG1 gene. We show that the human HMG1 gene contains introns, while the HMG1-related sequences do not and most likely are retrotransposed pseudogenes. We identified eight YACs from the ICI and CEPH libraries that contain the human HMG1 gene. The HMG1 gene is similar in structure to the previously characterized murine homologue and maps to human chromosome 13 and q12, as determined by in situ hybridization. The mousemore » Hmg1 gene maps to the telomeric region of murine Chromosome 5, which is syntenic to the human 13q12 band. 18 refs., 3 figs.« less

  5. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  6. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    PubMed

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  7. A base substitution in the donor site of intron 12 of KIT gene is responsible for the dominant white coat colour of blue fox (Alopex lagopus).

    PubMed

    Yan, S Q; Hou, J N; Bai, C Y; Jiang, Y; Zhang, X J; Ren, H L; Sun, B X; Zhao, Z H; Sun, J H

    2014-04-01

    The dominant white coat colour of farmed blue fox is inherited as a monogenic autosomal dominant trait and is suggested to be embryonic lethal in the homozygous state. In this study, the transcripts of KIT were identified by RT-PCR for a dominant white fox and a normal blue fox. Sequence analysis showed that the KIT transcript in normal blue fox contained the full-length coding sequence of 2919 bp (GenBank Acc. No KF530833), but in the dominant white individual, a truncated isoform lacking the entire exon 12 specifically co-expressed with the normal transcript. Genomic DNA sequencing revealed that a single nucleotide polymorphism (c.1867+1G>T) in intron 12 appeared only in the dominant white individuals and a 1-bp ins/del polymorphism in the same intron showed in individuals representing two different coat colours. Genotyping results of the SNP with PCR-RFLP in 185 individuals showed all 90 normal blue foxes were homozygous for the G allele, and all dominant white individuals were heterozygous. Due to the truncated protein with a deletion of 35 amino acids and an amino acid replacement (p.Pro623Ala) located in the conserved ATP binding domain, we propose that the mutant receptor had absent tyrosine kinase activity. These findings reveal that the base substitution at the first nucleotide of intron 12 of KIT gene, resulting in skipping of exon 12, is a causative mutation responsible for the dominant white phenotype of blue fox. © 2013 Stichting International Foundation for Animal Genetics.

  8. Strong Signature of Natural Selection within an FHIT Intron Implicated in Prostate Cancer Risk

    PubMed Central

    Ding, Yan; Larson, Garrett; Rivas, Guillermo; Lundberg, Cathryn; Geller, Louis; Ouyang, Ching; Weitzel, Jeffrey; Archambeau, John; Slater, Jerry; Daly, Mary B.; Benson, Al B.; Kirkwood, John M.; O'Dwyer, Peter J.; Sutphen, Rebecca; Stewart, James A.; Johnson, David; Nordborg, Magnus; Krontiris, Theodore G.

    2008-01-01

    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. PMID:18953408

  9. Structural features of diverse Pin-II proteinase inhibitor genes from Capsicum annuum.

    PubMed

    Mahajan, Neha S; Dewangan, Veena; Lomate, Purushottam R; Joshi, Rakesh S; Mishra, Manasi; Gupta, Vidya S; Giri, Ashok P

    2015-02-01

    The proteinase inhibitor (PI) genes from Capsicum annuum were characterized with respect to their UTR, introns and promoter elements. The occurrence of PIs with circularly permuted domain organization was evident. Several potato inhibitor II (Pin-II) type proteinase inhibitor (PI) genes have been analyzed from Capsicum annuum (L.) with respect to their differential expression during plant defense response. However, complete gene characterization of any of these C. annuum PIs (CanPIs) has not been carried out so far. Complete gene architectures of a previously identified CanPI-7 (Beads-on-string, Type A) and a member of newly isolated Bracelet type B, CanPI-69 are reported in this study. The 5' UTR (untranslated region), 3'UTR, and intronic sequences of both the CanPI genes were obtained. The genomic sequence of CanPI-7 exhibited, exon 1 (49 base pair, bp) and exon 2 (740 bp) interrupted by a 294-bp long type I intron. We noted the occurrence of three multi-domain PIs (CanPI-69, 70, 71) with circularly permuted domain organization. CanPI-69 was found to possess exon 1 (49 bp), exon 2 (551 bp) and a 584-bp long type I intron. The upstream sequence analysis of CanPI-7 and CanPI-69 predicted various transcription factor-binding sites including TATA and CAAT boxes, hormone-responsive elements (ABRELATERD1, DOFCOREZM, ERELEE4), and a defense-responsive element (WRKY71OS). Binding of transcription factors such as zinc finger motif MADS-box and MYB to the promoter regions was confirmed using electrophoretic mobility shift assay followed by mass spectrometric identification. The 3' UTR analysis for 25 CanPI genes revealed unique/distinct 3' UTR sequence for each gene. Structures of three domain CanPIs of type A and B were predicted and further analyzed for their attributes. This investigation of CanPI gene architecture will enable the better understanding of the genetic elements present in CanPIs.

  10. Insights into evolution in Andean Polystichum (Dryopteridaceae) from expanded understanding of the cytosolic phosphoglucose isomerase gene.

    PubMed

    Lyons, Brendan M; McHenry, Monique A; Barrington, David S

    2017-07-01

    Cytosolic phosphoglucose isomerase (pgiC) is an enzyme essential to glycolysis found universally in eukaryotes, but broad understanding of variation in the gene coding for pgiC is lacking for ferns. We used a substantially expanded representation of the gene for Andean species of the fern genus Polystichum to characterize pgiC in ferns relative to angiosperms, insects, and an amoebozoan; assess the impact of selection versus neutral evolutionary processes on pgiC; and explore evolutionary relationships of selected Andean species. The dataset of complete sequences comprised nine accessions representing seven species and one hybrid from the Andes and Serra do Mar. The aligned sequences of the full data set comprised 3376 base pairs (70% of the entire gene) including 17 exons and 15 introns from two central areas of the gene. The exons are highly conserved relative to angiosperms and retain substantial homology to insect pgiC, but intron length and structure are unique to the ferns. Average intron size is similar to angiosperms; intron number and location in insects are unlike those of the plants we considered. The introns included an array of indels and, in intron 7, an extensive microsatellite array with potential utility in analyzing population-level histories. Bayesian and maximum-parsimony analysis of 129 variable nucleotides in the Andean polystichums revealed that 59 (1.7% of the 3376 total) were phylogenetically informative; most of these united sister accessions. The phylogenetic trees for the Andean polystichums were incongruent with previously published cpDNA trees for the same taxa, likely the result of rapid evolutionary change in the introns and contrasting stability in the exons. The exons code a total of seven amino-acid substitutions. Comparison of non-synonymous to synonymous substitutions did not suggest that the pgiC gene is under selection in the Andes. Variation in pgiC including two additional accessions represented by incomplete sequences provided new insights into reticulate relationships among Andean taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Comparative genomic survey, exon-intron annotation and phylogenetic analysis of NAT-homologous sequences in archaea, protists, fungi, viruses, and invertebrates

    USDA-ARS?s Scientific Manuscript database

    We have previously published extensive genomic surveys [1-3], reporting NAT-homologous sequences in hundreds of sequenced bacterial, fungal and vertebrate genomes. We present here the results of our latest search of 2445 genomes, representing 1532 (70 archaeal, 1210 bacterial, 43 protist, 97 fungal,...

  12. Analysis of the Mitochondrial Genome in Hypomyces aurantius Reveals a Novel Twintron Complex in Fungi.

    PubMed

    Deng, Youjin; Zhang, Qihui; Ming, Ray; Lin, Longji; Lin, Xiangzhi; Lin, Yiying; Li, Xiao; Xie, Baogui; Wen, Zhiqiang

    2016-06-30

    Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification.

  13. Analysis of the Mitochondrial Genome in Hypomyces aurantius Reveals a Novel Twintron Complex in Fungi

    PubMed Central

    Deng, Youjin; Zhang, Qihui; Ming, Ray; Lin, Longji; Lin, Xiangzhi; Lin, Yiying; Li, Xiao; Xie, Baogui; Wen, Zhiqiang

    2016-01-01

    Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification. PMID:27376282

  14. Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot.

    PubMed

    Kornum, Birgitte Rahbek; Burgdorf, Kristoffer Sølvsten; Holm, Anja; Ullum, Henrik; Jennum, Poul; Knudsen, Stine

    2017-08-15

    Narcolepsy type 1, a neurological sleep disorder strongly associated with Human Leukocyte Antigen (HLA-)DQB1*06:02, is caused by the loss of hypothalamic neurons producing the wake-promoting neuropeptide hypocretin (hcrt, also known as orexin). This loss is believed to be caused by an autoimmune reaction. To test whether hcrt itself could be a possible target in the autoimmune attack, CD4 + T-cell reactivity towards six different 15-mer peptides from prepro-hypocretin with high predicted affinity to the DQA1*01:02/DQB1*06:02 MHC class II dimer was tested using EliSpot in a cohort of 22 narcolepsy patients with low CSF hcrt levels, and 23 DQB1*06:02 positive healthy controls. Our ELISpot assay had a detection limit of 1:10,000 cells. We present data showing that autoreactive CD4 + T-cells targeting epitopes from the hcrt precursor in the context of MHC-DQA1*01:02/DQB1*06:02 are either not present or present in a frequency is <1:10,000 among peripheral CD4 + T-cells from narcolepsy type 1 patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. SU-E-T-379: Evaluation of An EPID-Based System for Daily Dosimetry Check by Comparison with a Widely-Used Ionization Chamber-Based Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, D; Koch, N; Peng, J

    2015-06-15

    Purpose: To examine the feasibility of using Varian’s EPID-based Machine Performance Check (MPC) system to track daily machine output through comparison with Sun Nuclear’s DailyQA3 (DQA) device. Methods: Daily machine outputs for two photon energies (6 and 16MV) and five electron energies (6, 9, 12, 16, 20MeV) were measured for one month using both MPC and DQA. Baselines measurements for MPC were taken at the start of the measurement series, while DQA baselines were set at an earlier date. In order to make absolute comparisons with MPC, all DQA readings were referenced to the average of the first three DQAmore » readings in that series, minimizing systematic differences between the measurement techniques due to baseline differences. In addition to daily output measurements, weekly averages were also calculated and compared. Finally, the electron energy dependence of each measurement technique was examined by comparing energy-specific measurements to the average electron output of all energies each day. Results: For 6 and 16MV photons, the largest absolute percent differences between MPC and DQA were 0.60% and 0.73%, respectively. Weekly averages were within 0.17% and 0.23%, respectively. For all five electron energies, the greatest absolute percent differences between MPC and DQA for each energy ranged from 0.49%–0.83%. Weekly averages ranged from 0.07%–0.28%. DQA energy-specific electron readings matched the average electron output within 0.29% for all days and all energies. MPC energy-specific readings matched the average within 0.21% for 9–20MeV. However, 6MeV showed a larger distribution about the average with four days showing a difference greater than 0.30% and a maximum difference of 0.51%. Conclusion: MPC output measurements correlated well with the widely-used DQA3 for most beam energies, making it a reliable back up technique for daily output monitoring. However, MPC may display an energy dependence for lower electrons energies, requiring additional investigation.« less

  16. Allelic association of sequence variants in the herpes virus entry mediator-B gene (PVRL2) with the severity of multiple sclerosis.

    PubMed

    Schmidt, S; Pericak-Vance, M A; Sawcer, S; Barcellos, L F; Hart, J; Sims, J; Prokop, A M; van der Walt, J; DeLoa, C; Lincoln, R R; Oksenberg, J R; Compston, A; Hauser, S L; Haines, J L; Gregory, S G

    2006-07-01

    Discrepant findings have been reported regarding an association of the apolipoprotein E (APOE) gene with the clinical course of multiple sclerosis (MS). To resolve these discrepancies, we examined common sequence variation in six candidate genes residing in a 380-kb genomic region surrounding and including the APOE locus for an association with MS severity. We genotyped at least three polymorphisms in each of six candidate genes in 1,540 Caucasian MS families (729 single-case and multiple-case families from the United States, 811 single-case families from the UK). By applying the quantitative transmission/disequilibrium test to a recently proposed MS severity score, the only statistically significant (P=0.003) association with MS severity was found for an intronic variant in the Herpes Virus Entry Mediator-B Gene PVRL2. Additional genotyping extended the association to a 16.6 kb block spanning intron 1 to intron 2 of the gene. Sequencing of PVRL2 failed to identify variants with an obvious functional role. In conclusion, the analysis of a very large data set suggests that genetic polymorphisms in PVRL2 may influence MS severity and supports the possibility that viral factors may contribute to the clinical course of MS, consistent with previous reports.

  17. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-pointmore » sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.« less

  18. Selfish DNA: homing endonucleases find a home.

    PubMed

    Edgell, David R

    2009-02-10

    Self-splicing group I introns come in two flavours - those with a homing endonuclease to promote mobility of the intron, and those without an endonuclease. How homing endonucleases and self-splicing introns associate to form a composite selfish genetic element is a question of long-standing interest. Recent work has revealed that a shared characteristic of both introns and endonucleases, the targeting of conserved sequences, may provide the impetus for the evolution of composite mobile genetic elements.

  19. Chromosomal localization and partial genomic structure of the human peroxisome proliferator activated receptor-gamma (hPPAR gamma) gene.

    PubMed

    Beamer, B A; Negri, C; Yen, C J; Gavrilova, O; Rumberger, J M; Durcan, M J; Yarnall, D P; Hawkins, A L; Griffin, C A; Burns, D K; Roth, J; Reitman, M; Shuldiner, A R

    1997-04-28

    We determined the chromosomal localization and partial genomic structure of the coding region of the human PPAR gamma gene (hPPAR gamma), a nuclear receptor important for adipocyte differentiation and function. Sequence analysis and long PCR of human genomic DNA with primers that span putative introns revealed that intron positions and sizes of hPPAR gamma are similar to those previously determined for the mouse PPAR gamma gene[13]. Fluorescent in situ hybridization localized hPPAR gamma to chromosome 3, band 3p25. Radiation hybrid mapping with two independent primer pairs was consistent with hPPAR gamma being within 1.5 Mb of marker D3S1263 on 3p25-p24.2. These sequences of the intron/exon junctions of the 6 coding exons shared by hPPAR gamma 1 and hPPAR gamma 2 will facilitate screening for possible mutations. Furthermore, D3S1263 is a suitable polymorphic marker for linkage analysis to evaluate PPAR gamma's potential contribution to genetic susceptibility to obesity, lipoatrophy, insulin resistance, and diabetes.

  20. An RRM–ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion

    PubMed Central

    Collins, Katherine M.; Kainov, Yaroslav A.; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A.

    2017-01-01

    Abstract RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1–ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. PMID:28379442

  1. An RRM-ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion.

    PubMed

    Collins, Katherine M; Kainov, Yaroslav A; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A; Makeyev, Eugene V; Ramos, Andres

    2017-06-20

    RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1-ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. HLA similarities indicate shared genetic risk in 21-hydroxylase autoantibody positive South African and United States Addison's disease.

    PubMed

    Ross, I L; Babu, S; Armstrong, T; Zhang, L; Schatz, D; Pugliese, A; Eisenbarth, G; Baker Ii, P

    2014-10-01

    Genetic similarities between patients from the United States and South African (SA) Addison's Disease (AD) strengthen evidence for genetic association. SA-AD (n = 73), SA healthy controls (N = 78), and US-AD patients (N = 83) were genotyped for DQA1, DQB1, DRB1, and HLA-B alleles. Serum was tested for the quantity of 21OH-AA and IFNα-AA at the Barbara Davis Center. Although not as profound as in US-AD, in SA-AD 21OH-AA + subjects the predominantly associated risk haplotypes were DRB1*0301-DQB1*0201 (DR3), DRB1*04xx-DQB1*0302 (DR4), and the combined DR3/4 genotype. DQB1*0302 associated DRB1*04xx haplotypes conferred higher risk than those DRB1*04xx haplotypes associated with other DQB1 alleles. We found negative association in 21OH-AA + SA-AD for DQA1*0201-DQB1*0202 and DQA1*0101-DQB1*0501 vs SA controls, and positive association for DQA1*0401-DQB1*0402 vs US-AD. Apart from the class II DR3 haplotype, HLA-B8 did not have an independent effect; however together DR3 and HLA-B8 conferred the highest risk vs 21OH-AA negative SA-AD and SA-controls. HLA-B7 (often with DR4) conferred novel risk in 21OH-AA + SA-AD vs controls. This study represents the first comparison between South African and United States AD populations utilizing genotyping and serology performed at the same center. SA-AD and US-AD 21OH-AA + patients share common HLA risk haplotypes including DR4 (with HLA-B7) and DR3 (with HLA-B8), strengthening previously described HLA associations and implicating similar genetic etiology. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene

    PubMed Central

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications of this interesting observation for trans-splicing of group I introns. PMID:24386369

  4. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis.

    PubMed

    Enyeart, Peter J; Mohr, Georg; Ellington, Andrew D; Lambowitz, Alan M

    2014-01-13

    Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into 'targetrons.' Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and 'cut-and-pastes' (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The high processivity and fidelity of group II intron reverse transcriptases along with their novel template-switching activity, which can directly link RNA-seq adaptor sequences to cDNAs during reverse transcription, open new approaches for RNA-seq and the identification and profiling of non-coding RNAs, with potentially wide applications in research and biotechnology.

  5. Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria.

    PubMed

    Santamaria, Monica; Vicario, Saverio; Pappadà, Graziano; Scioscia, Gaetano; Scazzocchio, Claudio; Saccone, Cecilia

    2009-06-16

    A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers. The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries. After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals. The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode Initiative. The large scale investigation of Ascomycota mitochondrial introns performed through this tool, allowing to exclude the introns-rich sequences from the barcode candidates exploration, could be the first step towards a mitochondrial barcoding strategy for these organisms, similar to the standard approach employed in metazoans.

  6. SinEx DB: a database for single exon coding sequences in mammalian genomes.

    PubMed

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl. © The Author(s) 2016. Published by Oxford University Press.

  7. Bio—Cryptography: A Possible Coding Role for RNA Redundancy

    NASA Astrophysics Data System (ADS)

    Regoli, M.

    2009-03-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions," are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behavior in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  8. Intronic deletions in the SLC34A3 gene: a cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria.

    PubMed

    Ichikawa, Shoji; Tuchman, Shamir; Padgett, Leah R; Gray, Amie K; Baluarte, H Jorge; Econs, Michael J

    2014-02-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6-1/2-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24-hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH), and elevated 1,25(OH)2D. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440-1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH. © 2013.

  9. Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns.

    PubMed

    Wu, Baojun; Hao, Weilong

    2014-04-16

    Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.

  10. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution.

    PubMed Central

    Copertino, D W; Christopher, D A; Hallick, R B

    1991-01-01

    The splicing of a 409 nucleotide intron from the Euglena gracilis chloroplast ribosomal protein S3 gene (rps3) was examined by cDNA cloning and sequencing, and northern hybridization. Based on the characterization of a partially spliced pre-mRNA, the intron was characterized as a 'mixed' twintron, composed of a 311 nucleotide group II intron internal to a 98 nucleotide group III intron. Twintron excision is via a 2-step sequential splicing pathway, with removal of the internal group II intron preceding excision of the external group III intron. Based on secondary structural analysis of the twintron, we propose that group III introns may represent highly degenerate versions of group II introns. The existence of twintrons is interpreted as evidence that group II introns were inserted during the evolution of Euglena chloroplast genes from a common ancestor with eubacteria, archaebacteria, cyanobacteria, and other chloroplasts. Images PMID:1721702

  11. Characterization of novel RS1 exonic deletions in juvenile X-linked retinoschisis

    PubMed Central

    D’Souza, Leera; Cukras, Catherine; Antolik, Christian; Craig, Candice; He, Hong; Li, Shibo; Hejtmancik, James F.; Sieving, Paul A.; Wang, Xinjing

    2013-01-01

    Purpose X-linked juvenile retinoschisis (XLRS) is a vitreoretinal dystrophy characterized by schisis (splitting) of the inner layers of the neuroretina. Mutations within the retinoschisis (RS1) gene are responsible for this disease. The mutation spectrum consists of amino acid substitutions, splice site variations, small indels, and larger genomic deletions. Clinically, genomic deletions are rarely reported. Here, we characterize two novel full exonic deletions: one encompassing exon 1 and the other spanning exons 4–5 of the RS1 gene. We also report the clinical findings in these patients with XLRS with two different exonic deletions. Methods Unrelated XLRS men and boys and their mothers (if available) were enrolled for molecular genetics evaluation. The patients also underwent ophthalmologic examination and in some cases electroretinogram (ERG) recording. All the exons and the flanking intronic regions of the RS1 gene were analyzed with direct sequencing. Two patients with exonic deletions were further evaluated with array comparative genomic hybridization to define the scope of the genomic aberrations. After the deleted genomic region was identified, primer walking followed by direct sequencing was used to determine the exact breakpoints. Results Two novel exonic deletions of the RS1 gene were identified: one including exon 1 and the other spanning exons 4 and 5. The exon 1 deletion extends from the 5′ region of the RS1 gene (including the promoter) through intron 1 (c.(−35)-1723_c.51+2664del4472). The exon 4–5 deletion spans introns 3 to intron 5 (c.185–1020_c.522+1844del5764). Conclusions Here we report two novel exonic deletions within the RS1 gene locus. We have also described the clinical presentations and hypothesized the genomic mechanisms underlying these schisis phenotypes. PMID:24227916

  12. Characterization of novel RS1 exonic deletions in juvenile X-linked retinoschisis.

    PubMed

    D'Souza, Leera; Cukras, Catherine; Antolik, Christian; Craig, Candice; Lee, Ji-Yun; He, Hong; Li, Shibo; Smaoui, Nizar; Hejtmancik, James F; Sieving, Paul A; Wang, Xinjing

    2013-01-01

    X-linked juvenile retinoschisis (XLRS) is a vitreoretinal dystrophy characterized by schisis (splitting) of the inner layers of the neuroretina. Mutations within the retinoschisis (RS1) gene are responsible for this disease. The mutation spectrum consists of amino acid substitutions, splice site variations, small indels, and larger genomic deletions. Clinically, genomic deletions are rarely reported. Here, we characterize two novel full exonic deletions: one encompassing exon 1 and the other spanning exons 4-5 of the RS1 gene. We also report the clinical findings in these patients with XLRS with two different exonic deletions. Unrelated XLRS men and boys and their mothers (if available) were enrolled for molecular genetics evaluation. The patients also underwent ophthalmologic examination and in some cases electroretinogram (ERG) recording. All the exons and the flanking intronic regions of the RS1 gene were analyzed with direct sequencing. Two patients with exonic deletions were further evaluated with array comparative genomic hybridization to define the scope of the genomic aberrations. After the deleted genomic region was identified, primer walking followed by direct sequencing was used to determine the exact breakpoints. Two novel exonic deletions of the RS1 gene were identified: one including exon 1 and the other spanning exons 4 and 5. The exon 1 deletion extends from the 5' region of the RS1 gene (including the promoter) through intron 1 (c.(-35)-1723_c.51+2664del4472). The exon 4-5 deletion spans introns 3 to intron 5 (c.185-1020_c.522+1844del5764). Here we report two novel exonic deletions within the RS1 gene locus. We have also described the clinical presentations and hypothesized the genomic mechanisms underlying these schisis phenotypes.

  13. The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum).

    PubMed

    Zeng, Fan-chun; Gao, Cheng-wen; Gao, Li-zhi

    2016-01-01

    The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum) is reported and characterized in this study. The genome size is 156,612 bp, containing a pair of inverted repeats (IRs) of 25,776 bp separated by a large single-copy region of 87,213 bp and a small single-copy region of 17,851 bp. The chloroplast genome harbors 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of 18 of these genes are duplicated in the inverted repeat regions, 16 genes contain 1 intron, and 2 genes and one ycf have 2 introns.

  14. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  15. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progressmore » report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.« less

  16. Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.

    PubMed

    Weber, U; Beier, H; Gross, H J

    1996-06-15

    The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.

  17. The paradox of MHC-DRB exon/intron evolution: alpha-helix and beta-sheet encoding regions diverge while hypervariable intronic simple repeats coevolve with beta-sheet codons.

    PubMed

    Schwaiger, F W; Weyers, E; Epplen, C; Brün, J; Ruff, G; Crawford, A; Epplen, J T

    1993-09-01

    Twenty-one different caprine and 13 ovine MHC-DRB exon 2 sequences were determined including part of the adjacent introns containing simple repetitive (gt)n(ga)m elements. The positions for highly polymorphic DRB amino acids vary slightly among ungulates and other mammals. From man and mouse to ungulates the basic (gt)n(ga)m structure is fixed in evolution for 7 x 10(7) years whereas ample variations exist in the tandem (gt)n and (ga)m dinucleotides and especially their "degenerated" derivatives. Phylogenetic trees for the alpha-helices and beta-pleated sheets of the ungulate DRB sequences suggest different evolutionary histories. In hoofed animals as well as in humans DRB beta-sheet encoding sequences and adjacent intronic repeats can be assembled into virtually identical groups suggesting coevolution of noncoding as well as coding DNA. In contrast alpha-helices and C-terminal parts of the first DRB domain evolve distinctly. In the absence of a defined mechanism causing specific, site-directed mutations, double-recombination or gene-conversion-like events would readily explain this fact. The role of the intronic simple (gt)n(ga)m repeat is discussed with respect to these genetic exchange mechanisms during evolution.

  18. Screening of Variations in CD22 Gene in Children with B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Aslar Oner, Deniz; Akin, Dilara Fatma; Sipahi, Kadir; Mumcuoglu, Mine; Ezer, Ustun; Kürekci, A Emin; Akar, Nejat

    2016-09-01

    CD22 is expressed on the surface of B-cell lineage cells from the early progenitor stage of pro-B cell until terminal differentiation to mature B cells. It plays a role in signal transduction and as a regulator of B-cell receptor signaling in B-cell development. We aimed to screen exons 9-14 of the CD22 gene, which is a mutational hot spot region in B-precursor acute lymphoblastic leukemia (pre-B ALL) patients, to find possible genetic variants that could play role in the pathogenesis of pre-B ALL in Turkish children. This study included 109 Turkish children with pre-B ALL who were diagnosed at Losante Hospital for Children with Leukemia. Genomic DNA was extracted from both peripheral blood and bone marrow leukocytes. Gene amplification was performed with PCR, and all samples were screened for the variants by single strand conformation polymorphism. Samples showing band shifts were sequenced on an automated sequencer. In our patient group a total of 9 variants were identified in the CD22 gene by sequencing: a novel variant in intron 10 (T2199G); a missense variant in exon 12; 5 intronic variants between exon 12 and intron 13; a novel intronic variant (C2424T); and a synonymous in exon 13. Thirteen of 109 children (11.9%) carried the T2199G novel intronic variant located in intron 10, and 17 of 109 children (15.6%) carried the C2424T novel intronic variant. Novel variants in the CD22 gene in children with pre-B ALL in Turkey that are not present, in the Human Gene Mutation Database or NCBI SNP database, were found.

  19. The Mitochondrial Genome of Chara vulgaris: Insights into the Mitochondrial DNA Architecture of the Last Common Ancestor of Green Algae and Land PlantsW⃞

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2003-01-01

    Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria. PMID:12897260

  20. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2002-01-01

    The land plants and their immediate green algal ancestors, the charophytes, form the Streptophyta. There is evidence that both the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) underwent substantial changes in their architecture (intron insertions, gene losses, scrambling in gene order, and genome expansion in the case of mtDNA) during the evolution of streptophytes; however, because no charophyte organelle DNAs have been sequenced completely thus far, the suite of events that shaped streptophyte organelle genomes remains largely unknown. Here, we have determined the complete cpDNA (131,183 bp) and mtDNA (56,574 bp) sequences of the charophyte Chaetosphaeridium globosum (Coleochaetales). At the levels of gene content (124 genes), intron composition (18 introns), and gene order, Chaetosphaeridium cpDNA is remarkably similar to land-plant cpDNAs, implying that most of the features characteristic of land-plant lineages were gained during the evolution of charophytes. Although the gene content of Chaetosphaeridium mtDNA (67 genes) closely resembles that of the bryophyte Marchantia polymorpha (69 genes), this charophyte mtDNA differs substantially from its land-plant relatives at the levels of size, intron composition (11 introns), and gene order. Our finding that it shares only one intron with its land-plant counterparts supports the idea that the vast majority of mitochondrial introns in land plants appeared after the emergence of these organisms. Our results also suggest that the events accounting for the spacious intergenic spacers found in land-plant mtDNAs took place late during the evolution of charophytes or coincided with the transition from charophytes to land plants. PMID:12161560

  1. Exon–intron organization of genes in the slime mold Physarum polycephalum

    PubMed Central

    Trzcinska-Danielewicz, Joanna; Fronk, Jan

    2000-01-01

    The slime mold Physarum polycephalum is a morphologically simple organism with a large and complex genome. The exon–intron organization of its genes exhibits features typical for protists and fungi as well as those characteristic for the evolutionarily more advanced species. This indicates that both the taxonomic position as well as the size of the genome shape the exon–intron organization of an organism. The average gene has 3.7 introns which are on average 138 bp, with a rather narrow size distribution. Introns are enriched in AT base pairs by 13% relative to exons. The consensus sequences at exon–intron boundaries resemble those found for other species, with minor differences between short and long introns. A unique feature of P.polycephalum introns is the strong preference for pyrimidines in the coding strand throughout their length, without a particular enrichment at the 3′-ends. PMID:10982858

  2. SURVEY AND SUMMARY: exon-intron organization of genes in the slime mold Physarum polycephalum.

    PubMed

    Trzcinska-Danielewicz, J; Fronk, J

    2000-09-15

    The slime mold Physarum polycephalum is a morphologically simple organism with a large and complex genome. The exon-intron organization of its genes exhibits features typical for protists and fungi as well as those characteristic for the evolutionarily more advanced species. This indicates that both the taxonomic position as well as the size of the genome shape the exon-intron organization of an organism. The average gene has 3.7 introns which are on average 138 bp, with a rather narrow size distribution. Introns are enriched in AT base pairs by 13% relative to exons. The consensus sequences at exon-intron boundaries resemble those found for other species, with minor differences between short and long introns. A unique feature of P.polycephalum introns is the strong preference for pyrimidines in the coding strand throughout their length, without a particular enrichment at the 3'-ends.

  3. Novel BRCA1 mutations and more frequent intron-20 alteration found among 236 women from Western Poland.

    PubMed

    Sobczak, K; Kozłowski, P; Napierała, M; Czarny, J; Woźniak, M; Kapuścińska, M; Lośko, M; Koziczak, M; Jasińska, A; Powierska, J; Braczkowski, R; Breborowicz, J; Godlewski, D; Mackiewicz, A; Krzyzosiak, W

    1997-10-09

    Three different novel BRCA1 mutations, five independent cases of the same 12 bp insertion-duplication in intron-20 and two novel rare BRCA1 sequence variants were identified among 122 Polish women with positive, in most cases moderate family history of breast and/or ovarian cancer, 80 controls and 34 unselected breast cancer tissue specimens. All mutations and variants were germline. The 4153 delA frameshift mutation, the Tyr105Cys missense mutation and two cases of the alteration in intron-20 were found in the group of healthy women with positive family history. Two other cases of the intronic insertion were found in unselected controls. Their carriers had no family history of breast or ovarian cancer but other cancers occurred in their families. The 1782 Trp/STOP nonsense mutation and one case of the insertion in intron-20 were first found in tissue specimens of breast cancer patient and breast/ovarian cancer patient, respectively. Their carriers also had no family history of breast or ovarian cancer. The distribution of the insertion in intron-20 in analysed groups and results of RT-PCR experiments suggest a less prominent role for this variant considered earlier a splicing mutation. This study shows also, that more population-oriented research is needed, involving women with less profound or even no family history of breast and ovarian cancer, to better understand the role and significance of different BRCA1 variants and mutations.

  4. Quantitation of normal CFTR mRNA in CF patients with splice-site mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z.; Olsen, J.C.; Silverman, L.M.

    Previously we identified two mutations in introns of the CFTR gene associated with partially active splice sites and unusual clinical phenotypes. One mutation in intron 19 (3849+10 kb C to T) is common in CF patients with normal sweat chloride values; an 84 bp sequence from intron 19, which contains a stop codon, is inserted between exon 19 and exon 20 in most nasal CFTR transcripts. The other mutation in intron 14B (2789+5 G to A) is associated with elevated sweat chloride levels, but mild pulmonary disease; exon 14B (38 bp) is spliced out of most nasal CFTR transcipts. Themore » remaining CFTR cDNA sequences, other than the 84 bp insertion of exon 14B deletion, are identical to the published sequence. To correlate genotype and phenotype, we used quantitative RT-PCR to determine the levels of normally-spliced CFTR mRNA in nasal epithelia from these patients. CFTR cDNA was amplified (25 cycles) by using primers specific for normally-spliced species, {gamma}-actin cDNA was amplified as a standard.« less

  5. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.).

    PubMed

    Aramrak, Attawan; Kidwell, Kimberlee K; Steber, Camille M; Burke, Ian C

    2015-10-23

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway, and is the target of the herbicide glyphosate. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the allohexaploid wheat EPSPS gene were cloned and characterized. Genomic and coding DNA sequences of EPSPS from the three related genomes of allohexaploid wheat were isolated using PCR and inverse PCR approaches from soft white spring "Louise'. Development of genome-specific primers allowed the mapping and expression analysis of TaEPSPS-7A1, TaEPSPS-7D1, and TaEPSPS-4A1 on chromosomes 7A, 7D, and 4A, respectively. Sequence alignments of cDNA sequences from wheat and wheat relatives served as a basis for phylogenetic analysis. The three genomic copies of wheat EPSPS differed by insertion/deletion and single nucleotide polymorphisms (SNPs), largely in intron sequences. RT-PCR analysis and cDNA cloning revealed that EPSPS is expressed from all three genomic copies. However, TaEPSPS-4A1 is expressed at much lower levels than TaEPSPS-7A1 and TaEPSPS-7D1 in wheat seedlings. Phylogenetic analysis of 1190-bp cDNA clones from wheat and wheat relatives revealed that: 1) TaEPSPS-7A1 is most similar to EPSPS from the tetraploid AB genome donor, T. turgidum (99.7 % identity); 2) TaEPSPS-7D1 most resembles EPSPS from the diploid D genome donor, Aegilops tauschii (100 % identity); and 3) TaEPSPS-4A1 resembles EPSPS from the diploid B genome relative, Ae. speltoides (97.7 % identity). Thus, EPSPS sequences in allohexaploid wheat are preserved from the most two recent ancestors. The wheat EPSPS genes are more closely related to Lolium multiflorum and Brachypodium distachyon than to Oryza sativa (rice). The three related EPSPS homoeologues of wheat exhibited conservation of the exon/intron structure and of coding region sequence, but contained significant sequence variation within intron regions. The genome-specific primers developed will enable future characterization of natural and induced variation in EPSPS sequence and expression. This can be useful in investigating new causes of glyphosate herbicide resistance.

  6. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity.

    PubMed

    Joshi, Peter K; Pirastu, Nicola; Kentistou, Katherine A; Fischer, Krista; Hofer, Edith; Schraut, Katharina E; Clark, David W; Nutile, Teresa; Barnes, Catriona L K; Timmers, Paul R H J; Shen, Xia; Gandin, Ilaria; McDaid, Aaron F; Hansen, Thomas Folkmann; Gordon, Scott D; Giulianini, Franco; Boutin, Thibaud S; Abdellaoui, Abdel; Zhao, Wei; Medina-Gomez, Carolina; Bartz, Traci M; Trompet, Stella; Lange, Leslie A; Raffield, Laura; van der Spek, Ashley; Galesloot, Tessel E; Proitsi, Petroula; Yanek, Lisa R; Bielak, Lawrence F; Payton, Antony; Murgia, Federico; Concas, Maria Pina; Biino, Ginevra; Tajuddin, Salman M; Seppälä, Ilkka; Amin, Najaf; Boerwinkle, Eric; Børglum, Anders D; Campbell, Archie; Demerath, Ellen W; Demuth, Ilja; Faul, Jessica D; Ford, Ian; Gialluisi, Alessandro; Gögele, Martin; Graff, MariaElisa; Hingorani, Aroon; Hottenga, Jouke-Jan; Hougaard, David M; Hurme, Mikko A; Ikram, M Arfan; Jylhä, Marja; Kuh, Diana; Ligthart, Lannie; Lill, Christina M; Lindenberger, Ulman; Lumley, Thomas; Mägi, Reedik; Marques-Vidal, Pedro; Medland, Sarah E; Milani, Lili; Nagy, Reka; Ollier, William E R; Peyser, Patricia A; Pramstaller, Peter P; Ridker, Paul M; Rivadeneira, Fernando; Ruggiero, Daniela; Saba, Yasaman; Schmidt, Reinhold; Schmidt, Helena; Slagboom, P Eline; Smith, Blair H; Smith, Jennifer A; Sotoodehnia, Nona; Steinhagen-Thiessen, Elisabeth; van Rooij, Frank J A; Verbeek, André L; Vermeulen, Sita H; Vollenweider, Peter; Wang, Yunpeng; Werge, Thomas; Whitfield, John B; Zonderman, Alan B; Lehtimäki, Terho; Evans, Michele K; Pirastu, Mario; Fuchsberger, Christian; Bertram, Lars; Pendleton, Neil; Kardia, Sharon L R; Ciullo, Marina; Becker, Diane M; Wong, Andrew; Psaty, Bruce M; van Duijn, Cornelia M; Wilson, James G; Jukema, J Wouter; Kiemeney, Lambertus; Uitterlinden, André G; Franceschini, Nora; North, Kari E; Weir, David R; Metspalu, Andres; Boomsma, Dorret I; Hayward, Caroline; Chasman, Daniel; Martin, Nicholas G; Sattar, Naveed; Campbell, Harry; Esko, Tōnu; Kutalik, Zoltán; Wilson, James F

    2017-10-13

    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan.

  7. Limited MHC class I intron 2 repertoire variation in bonobos.

    PubMed

    de Groot, Natasja G; Heijmans, Corrine M C; Helsen, Philippe; Otting, Nel; Pereboom, Zjef; Stevens, Jeroen M G; Bontrop, Ronald E

    2017-10-01

    Common chimpanzees (Pan troglodytes) experienced a selective sweep, probably caused by a SIV-like virus, which targeted their MHC class I repertoire. Based on MHC class I intron 2 data analyses, this selective sweep took place about 2-3 million years ago. As a consequence, common chimpanzees have a skewed MHC class I repertoire that is enriched for allotypes that are able to recognise conserved regions of the SIV proteome. The bonobo (Pan paniscus) shared an ancestor with common chimpanzees approximately 1.5 to 2 million years ago. To investigate whether the signature of this selective sweep is also detectable in bonobos, the MHC class I gene repertoire of two bonobo panels comprising in total 29 animals was investigated by Sanger sequencing. We identified 14 Papa-A, 20 Papa-B and 11 Papa-C alleles, of which eight, five and eight alleles, respectively, have not been reported previously. Within this pool of MHC class I variation, we recovered only 2 Papa-A, 3 Papa-B and 6 Papa-C intron 2 sequences. As compared to humans, bonobos appear to have an even more diminished MHC class I intron 2 lineage repertoire than common chimpanzees. This supports the notion that the selective sweep may have predated the speciation of common chimpanzees and bonobos. The further reduction of the MHC class I intron 2 lineage repertoire observed in bonobos as compared to the common chimpanzee may be explained by a founding effect or other subsequent selective processes.

  8. The human myelin oligodendrocyte glycoprotein (MOG) gene: Complete nucleotide sequence and structural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paule Roth, M.; Malfroy, L.; Offer, C.

    1995-07-20

    Human myelin oligodendrocyte glycoprotein (MOG), a myelin component of the central nervous system, is a candidate target antigen for autoimmune-mediated demyelination. We have isolated and sequenced part of a cosmid clone that contains the entire human MOG gene. The primary nuclear transcript, extending from the putative start of transcription to the site of poly(A) addition, is 15,561 nucleotides in length. The human MOG gene contains 8 exons, separated by 7 introns; canonical intron/exon boundary sites are observed at each junction. The introns vary in size from 242 to 6484 bp and contain numerous repetitive DNA elements, including 14 Alu sequencesmore » within 3 introns. Another Alu element is located in the 3{prime}-untranslated region of the gene. Alu sequences were classified with respect to subfamily assignment. Seven hundred sixty-three nucleotides 5{prime} of the transcription start and 1214 nucleotides 3{prime} of the poly(A) addition sites were also sequenced. The 5{prime}-flanking region revealed the presence of several consensus sequences that could be relevant in the transcription of the MOG gene, in particular binding sites in common with other myelin gene promoters. Two polymorphic intragenic dinucleotide (CA){sub n} and tetranucleotide (TAAA){sub n} repeats were identified and may provide genetic marker tools for association and linkage studies. 50 refs., 3 figs., 3 tabs.« less

  9. Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays

    PubMed Central

    Sugnet, Charles W; Srinivasan, Karpagam; Clark, Tyson A; O'Brien, Georgeann; Cline, Melissa S; Wang, Hui; Williams, Alan; Kulp, David; Blume, John E; Haussler, David; Ares, Manuel

    2006-01-01

    Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families. PMID:16424921

  10. Intronic deletions in the SLC34A3 gene: A cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria

    PubMed Central

    Ichikawa, Shoji; Tuchman, Shamir; Padgett, Leah R.; Gray, Amie K.; Baluarte, H. Jorge; Econs, Michael J.

    2013-01-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6 ½-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24- hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH) levels, and elevated 1,25(OH)2D level. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440–1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63 bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH. PMID:24176905

  11. Variation in the Nucleotide Sequence of Cottontail Rabbit Papillomavirus a and b Subtypes Affects Wart Regression and Malignant Transformation and Level of Viral Replication in Domestic Rabbits

    PubMed Central

    Salmon, Jérôme; Nonnenmacher, Mathieu; Cazé, Sandrine; Flamant, Patricia; Croissant, Odile; Orth, Gérard; Breitburd, Françoise

    2000-01-01

    We previously reported the partial characterization of two cottontail rabbit papillomavirus (CRPV) subtypes with strikingly divergent E6 and E7 oncoproteins. We report now the complete nucleotide sequences of these subtypes, referred to as CRPVa4 (7,868 nucleotides) and CRPVb (7,867 nucleotides). The CRPVa4 and CRPVb genomes differed at 238 (3%) nucleotide positions, whereas CRPVa4 and the prototype CRPV differed by only 5 nucleotides. The most variable region (7% nucleotide divergence) included the long regulatory region (LRR) and the E6 and E7 genes. A mutation in the stop codon resulted in an 8-amino-acid-longer CRPVb E4 protein, and a nucleotide deletion reduced the coding capacity of the E5 gene from 101 to 25 amino acids. In domestic rabbits homozygous for a specific haplotype of the DRA and DQA genes of the major histocompatibility complex, warts induced by CRPVb DNA or a chimeric genome containing the CRPVb LRR/E6/E7 region showed an early regression, whereas warts induced by CRPVa4 or a chimeric genome containing the CRPVa4 LRR/E6/E7 region persisted and evolved into carcinomas. In contrast, most CRPVa, CRPVb, and chimeric CRPV DNA-induced warts showed no early regression in rabbits homozygous for another DRA-DQA haplotype. Little, if any, viral replication is usually observed in domestic rabbit warts. When warts induced by CRPVa and CRPVb virions and DNA were compared, the number of cells positive for viral DNA or capsid antigens was found to be greater by 1 order of magnitude for specimens induced by CRPVb. Thus, both sequence variation in the LRR/E6/E7 region and the genetic constitution of the host influence the expression of the oncogenic potential of CRPV. Furthermore, intratype variation may overcome to some extent the host restriction of CRPV replication in domestic rabbits. PMID:11044121

  12. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  13. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    PubMed

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  14. Complementary DNA sequences encoding the multimammate rat MHC class II DQ alpha and beta chains and cross-species sequence comparison in rodents.

    PubMed

    de Bellocq, J Goüy; Leirs, H

    2009-09-01

    Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.M.; Fisher, L.W.; Termine, J.D.

    The authors have isolated and partially sequenced the human bone sialoprotein gene (IBSP). IBSP has been sublocalized by in situ hybridization to chromosome 4q38-q31 and is composed of six small exons (51 to 159 bp) and 1 large exon ([approximately]2.6 kb). The intron/exon junctions defined by sequence analysis are of class O, retaining an intact coding triplet. Sequence analysis of the 5[prime] upstream region revealed a TATAA (nucleotides -30 to-25 from the transcriptional start point) and a CCAAT (nucleotides -56 to-52) box, both in the reverse orientation. Intron 1 contains interesting structural elements composed of polypyrimidine repeats followed by amore » poly(AC)[sub n] tract. Both types of structural elements have been detected in promoter regions of other genes and have been implicated in transcriptional regulation. Several differences between the previously published cDNA sequence and the authors' sequence have been identified, most of which are contained within the untranslated exon 1. Three base revisions in the coding region include a G to T (Gly to Val, amino acid 195), T to C (Val to Ala, amino acid 268), and T to A (Glu to Asp, amino acid 270). In conclusion, the genomic organization and potential regulatory elements of human IBSP have been elucidated. 42 refs., 4 figs., 1 tab.« less

  16. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

    PubMed

    Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia

    2016-09-12

    Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.

  17. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    PubMed

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  18. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2006-01-01

    Prediction of microRNA (miRNA) candidates using computer programming has identified hundreds and hundreds of genomic hairpin sequences, of which, the functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene-silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem, and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, this intronic miRNA biogenesis system has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA-expressing system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafish, chicken embryos, and adult mice. Based on the strand complementarity between the designed miRNA and its target gene sequence, we have also developed a miRNA isolation protocol to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proof- of-principle method, we now have the knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic miRNA-expressing system.

  19. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2013-01-01

    Computer programming has identified hundreds of genomic hairpin sequences, many with functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem by inserting a hairpin-like pre-miRNA structure into the intron region of a gene and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. This intronic miRNA biogenesis has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA generation system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafishes, chicken embryos, and adult mice. We have also developed an miRNA isolation protocol, based on the complementarity between the designed miRNA and its target gene sequence, to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proven-of-principle method, we now have full knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic miRNA-expressing systems.

  20. New Splice Site Acceptor Mutation in AIRE Gene in Autoimmune Polyendocrine Syndrome Type 1

    PubMed Central

    Mora, Mireia; Hanzu, Felicia A.; Pradas-Juni, Marta; Aranda, Gloria B.; Halperin, Irene; Puig-Domingo, Manuel; Aguiló, Sira; Fernández-Rebollo, Eduardo

    2014-01-01

    Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300) is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison’s disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA) of intron 5 (c.653-1G>A) in two siblings with different clinical outcomes of APS-1. Coding DNA sequencing revealed that this AIRE mutation potentially compromised the recognition of the constitutive SSA of intron 5, splicing upstream onto a nearby cryptic SSA in intron 5. Surprisingly, the use of an alternative SSA entails the uncovering of a cryptic donor splice site in exon 5. This new transcript generates a truncated protein (p.A214fs67X) containing the first 213 amino acids and followed by 68 aberrant amino acids. The mutation affects the proper splicing, not only at the acceptor but also at the donor splice site, highlighting the complexity of recognizing suitable splicing sites and the importance of sequencing the intron-exon junctions for a more precise molecular diagnosis and correct genetic counseling. As both siblings were carrying the same mutation but exhibited a different APS-1 onset, and one of the brothers was not clinically diagnosed, our finding highlights the possibility to suspect mutations in the AIRE gene in cases of childhood chronic candidiasis and/or hypoparathyroidism otherwise unexplained, especially when the phenotype is associated with other autoimmune diseases. PMID:24988226

  1. A 3.0-kb deletion including an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene in an individual with the Bm phenotype.

    PubMed

    Sano, R; Kuboya, E; Nakajima, T; Takahashi, Y; Takahashi, K; Kubo, R; Kominato, Y; Takeshita, H; Yamao, H; Kishida, T; Isa, K; Ogasawara, K; Uchikawa, M

    2015-04-01

    We developed a sequence-specific primer PCR (SSP-PCR) for detection of a 5.8-kb deletion (B(m) 5.8) involving an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene. Using this SSP-PCR, we performed genetic analysis of 382 individuals with Bm or ABm. The 5.8-kb deletion was found in 380 individuals, and disruption of the GATA motif in the regulatory element was found in one individual. Furthermore, a novel 3.0-kb deletion involving the element (B(m) 3.0) was demonstrated in the remaining individual. Comparisons of single-nucleotide polymorphisms and microsatellites in intron 1 between B(m) 5.8 and B(m) 3.0 suggested that these deletions occurred independently. © 2014 International Society of Blood Transfusion.

  2. The complete chloroplast DNA sequence of Eleutherococcus senticosus (Araliaceae); comparative evolutionary analyses with other three asterids.

    PubMed

    Yi, Dong-Keun; Lee, Hae-Lim; Sun, Byung-Yun; Chung, Mi Yoon; Kim, Ki-Joong

    2012-05-01

    This study reports the complete chloroplast (cp) DNA sequence of Eleutherococcus senticosus (GenBank: JN 637765), an endangered endemic species. The genome is 156,768 bp in length, and contains a pair of inverted repeat (IR) regions of 25,930 bp each, a large single copy (LSC) region of 86,755 bp and a small single copy (SSC) region of 18,153 bp. The structural organization, gene and intron contents, gene order, AT content, codon usage, and transcription units of the E. senticosus chloroplast genome are similar to that of typical land plant cp DNA. We aligned and analyzed the sequences of 86 coding genes, 19 introns and 113 intergenic spacers (IGS) in three different taxonomic hierarchies; Eleutherococcus vs. Panax, Eleutherococcus vs. Daucus, and Eleutherococcus vs. Nicotiana. The distribution of indels, the number of polymorphic sites and nucleotide diversity indicate that positional constraint is more important than functional constraint for the evolution of cp genome sequences in Asterids. For example, the intron sequences in the LSC region exhibited base substitution rates 5-11-times higher than that of the IR regions, while the intron sequences in the SSC region evolved 7-14-times faster than those in the IR region. Furthermore, the Ka/Ks ratio of the gene coding sequences supports a stronger evolutionary constraint in the IR region than in the LSC or SSC regions. Therefore, our data suggest that selective sweeps by base collection mechanisms more frequently eliminate polymorphisms in the IR region than in other regions. Chloroplast genome regions that have high levels of base substitutions also show higher incidences of indels. Thirty-five simple sequence repeat (SSR) loci were identified in the Eleutherococcus chloroplast genome. Of these, 27 are homopolymers, while six are di-polymers and two are tri-polymers. In addition to the SSR loci, we also identified 18 medium size repeat units ranging from 22 to 79 bp, 11 of which are distributed in the IGS or intron regions. These medium size repeats may contribute to developing a cp genome-specific gene introduction vector because the region may use for specific recombination sites.

  3. Organellar maturases: A window into the evolution of the spliceosome.

    PubMed

    Schmitz-Linneweber, Christian; Lampe, Marie-Kristin; Sultan, Laure D; Ostersetzer-Biran, Oren

    2015-09-01

    During the evolution of eukaryotic genomes, many genes have been interrupted by intervening sequences (introns) that must be removed post-transcriptionally from RNA precursors to form mRNAs ready for translation. The origin of nuclear introns is still under debate, but one hypothesis is that the spliceosome and the intron-exon structure of genes have evolved from bacterial-type group II introns that invaded the eukaryotic genomes. The group II introns were most likely introduced into the eukaryotic genome from an α-proteobacterial predecessor of mitochondria early during the endosymbiosis event. These self-splicing and mobile introns spread through the eukaryotic genome and later degenerated. Pieces of introns became part of the general splicing machinery we know today as the spliceosome. In addition, group II introns likely brought intron maturases with them to the nucleus. Maturases are found in most bacterial introns, where they act as highly specific splicing factors for group II introns. In the spliceosome, the core protein Prp8 shows homology to group II intron-encoded maturases. While maturases are entirely intron specific, their descendant of the spliceosomal machinery, the Prp8 protein, is an extremely versatile splicing factor with multiple interacting proteins and RNAs. How could such a general player in spliceosomal splicing evolve from the monospecific bacterial maturases? Analysis of the organellar splicing machinery in plants may give clues on the evolution of nuclear splicing. Plants encode various proteins which are closely related to bacterial maturases. The organellar genomes contain one maturase each, named MatK in chloroplasts and MatR in mitochondria. In addition, several maturase genes have been found in the nucleus as well, which are acting on mitochondrial pre-RNAs. All plant maturases show sequence deviation from their progenitor bacterial maturases, and interestingly are all acting on multiple organellar group II intron targets. Moreover, they seem to function in the splicing of group II introns together with a number of additional nuclear-encoded splicing factors, possibly acting as an organellar proto-spliceosome. Together, this makes them interesting models for the early evolution of nuclear spliceosomal splicing. In this review, we summarize recent advances in our understanding of the role of plant maturases and their accessory factors in plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Low-copy nuclear primers and ycf1 primers in Cactaceae.

    PubMed

    Franck, Alan R; Cochrane, Bruce J; Garey, James R

    2012-10-01

    To increase the number of variable regions available for phylogenetic study in the Cactaceae, primers were developed for a portion of the plastid ycf1 gene and intron-spanning regions of two low-copy nuclear genes (isi1, nhx1). • Primers were tested on several families within Caryophyllales, focusing on the Cactaceae. Gel electrophoresis indicated positive amplification in most samples. Sequences of these three regions (isi1, nhx1, ycf1) from Harrisia exhibited variation similar to or greater than two plastid regions (atpB-rbcL intergenic spacer and rpl16 intron). • The isi, nhx, and ycf1 primers amplify phylogenetically useful information applicable to the Cactaceae and other families in the Caryophyllales.

  5. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases

    PubMed Central

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-01-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC3 (NM_003786.3:c.1783-1G>A), KLHDC1 (NM_172193.1:c.568-2A>G), HOOK1 (NM_015888.4:c.1662-1G>A), SMAD9 (NM_001127217.2:c.1004-1C>T), and DNAH9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC3, HOOK1. In ABCC3 and HOOK1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4–6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis. PMID:24498620

  6. A few nucleotide polymorphisms are sufficient to recruit nuclear factors differentially to the intron 1 of HPV-16 intratypic variants.

    PubMed

    López-Urrutia, Eduardo; Valdés, Jesús; Bonilla-Moreno, Raúl; Martínez-Salazar, Martha; Martínez-Garcia, Martha; Berumen, Jaime; Villegas-Sepúlveda, Nicolás

    2012-06-01

    The HPV-16 E6/E7 genes, which contain intron 1, are processed by alternative splicing and its transcripts are detected with a heterogeneous profile in tumours cells. Frequently, the HPV-16 positive carcinoma cells bear viral variants that contain single nucleotide polymorphisms into its DNA sequence. We were interested in analysing the contribution of this polymorphism to the heterogeneity in the pattern of the E6/E7 spliced transcripts. Using the E6/E7 sequences from three closely related HPV-16 variants, we have shown that a few nucleotide changes are sufficient to produce heterogeneity in the splicing profile. Furthermore, using mutants that contained a single SNP, we also showed that one nucleotide change was sufficient to reproduce the heterogeneous splicing profile. Additionally, a difference of two or three SNPs among these viral sequences was sufficient to recruit differentially several splicing factors to the polymorphic E6/E7 transcripts. Moreover, only one SNP was sufficient to alter the binding site of at least one splicing factor, changing the ability of splicing factors to bind the transcript. Finally, the factors that were differentially bound to the short form of intron 1 of one of these E6/E7 variants were identified as TIA1 and/or TIAR and U1-70k, while U2AF65, U5-52k and PTB were preferentially bound to the transcript of the other variants. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Variations of Human DNA Polymerase Genes as Biomarkers of Prostate Cancer Progression

    DTIC Science & Technology

    2011-07-01

    Forward sequence Reverse sequence Sequence contextb 1 g.39835C4Tc P169S 15 25 gTG GGG TC CTT g.39897C4T Intronic 22 15 AGA T GGt TA AAT g.39985T4C...Intronic 34 25 AGA TT tAA AAG g.40051C4Tc P184S 19 34 TGt CT GGA ATT 4 g.39835C4Tc P169S 19 29 gTG GGG TC CTT g.40051C4Tc P184S 23 34 TGt CT GGA ATT 6 g...39835C4Tc P169S 14 24 gTG GGG TC CTT g.40051C4Tc P184S 21 32 TGt CT GGA ATT 11 g.40055A4G D185G 28 35 TTC C AGA C AAG g.40073A4G Y191C 28 20 gGA T AtG CC

  8. Gaucher disease: A G[sup +1][yields]A[sup +1] IVS2 splice donor site mutation causing exon 2 skipping in the acid [beta]-glucosidase mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Guo-Shun; Grabowski, G.A.

    1992-10-01

    Gaucher disease is the most frequent lysosomal storage disease and the most prevalent Jewish genetic disease. About 30 identified missense mutations are causal to the defective activity of acid [beta]-glucosidase in this disease. cDNAs were characterized from a moderately affected 9-year-old Ashkenazi Jewish Gaucher disease type 1 patient whose 80-years-old, enzyme-deficient, 1226G (Asn[sup 370][yields]Ser [N370S]) homozygous grandfather was nearly asymptomatic. Sequence analyses revealed four populations of cDNAs with either the 1226G mutation, an exact exon 2 ([Delta] EX2) deletion, a deletion of exon 2 and the first 115 bp of exon 3 ([Delta] EX2-3), or a completely normal sequence. Aboutmore » 50% of the cDNAs were the [Delta] EX2, the [Delta] EX2-3, and the normal cDNAs, in a ratio of 6:3:1. Specific amplification and characterization of exon 2 and 5[prime] and 3[prime] intronic flanking sequences from the structural gene demonstrated clones with either the normal sequence or with a G[sup +1][yields]A[sup +1] transition at the exon 2/intron 2 boundary. This mutation destroyed the splice donor consensus site (U1 binding site) for mRNA processing. This transition also was present at the corresponding exon/intron boundary of the highly homologous pseudogene. This new mutation, termed [open quotes]IVS2 G[sup +1],[close quotes] is the first in the Ashkenazi Jewish population. The occurrence of this [open quotes]pseudogene[close quotes]-type mutation in the structural gene indicates the role of acid [beta]-glucosidase pseudogene and structural gene rearrangements in the pathogenesis of this disease. 33 refs., 8 figs., 1 tab.« less

  9. ExDom: an integrated database for comparative analysis of the exon–intron structures of protein domains in eukaryotes

    PubMed Central

    Bhasi, Ashwini; Philip, Philge; Manikandan, Vinu; Senapathy, Periannan

    2009-01-01

    We have developed ExDom, a unique database for the comparative analysis of the exon–intron structures of 96 680 protein domains from seven eukaryotic organisms (Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Danio rerio, Gallus gallus and Arabidopsis thaliana). ExDom provides integrated access to exon-domain data through a sophisticated web interface which has the following analytical capabilities: (i) intergenomic and intragenomic comparative analysis of exon–intron structure of domains; (ii) color-coded graphical display of the domain architecture of proteins correlated with their corresponding exon-intron structures; (iii) graphical analysis of multiple sequence alignments of amino acid and coding nucleotide sequences of homologous protein domains from seven organisms; (iv) comparative graphical display of exon distributions within the tertiary structures of protein domains; and (v) visualization of exon–intron structures of alternative transcripts of a gene correlated to variations in the domain architecture of corresponding protein isoforms. These novel analytical features are highly suited for detailed investigations on the exon–intron structure of domains and make ExDom a powerful tool for exploring several key questions concerning the function, origin and evolution of genes and proteins. ExDom database is freely accessible at: http://66.170.16.154/ExDom/. PMID:18984624

  10. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences.

    PubMed

    Bergman, C M; Kreitman, M

    2001-08-01

    Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.

  11. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA

    PubMed Central

    Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.

    1998-01-01

    Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763

  12. An RNAi-Enhanced Logic Circuit for Cancer Specific Detection and Destruction

    DTIC Science & Technology

    2013-02-01

    monomeric protein secreted by Corynebacterium diphtheriae, and pro-apoptotic members of Bcl-2 family: mBax (Mus musculus), hBax ( Homo sapiens ), and its...Gata3 mStaple. Intron- feature sequences – donor site, branch point, poly- pyrimidine tract, and acceptor site – were selected based on previously...sequences found in literature our intron features were chosen according SplicePort [4], an online analyzer that detects the likelihood of splicing to

  13. Transposition of an intron in yeast mitochondria requires a protein encoded by that intron.

    PubMed

    Macreadie, I G; Scott, R M; Zinn, A R; Butow, R A

    1985-06-01

    The optional 1143 bp intron in the yeast mitochondrial 21S rRNA gene (omega +) is nearly quantitatively inserted in genetic crosses into 21S rRNA alleles that lack it (omega -). The intron contains an open reading frame that can encode a protein of 235 amino acids, but no function has been ascribed to this sequence. We previously found an in vivo double-strand break in omega - DNA at or close to the intron insertion site only in zygotes of omega + X omega - crosses that appears with the same kinetics as intron insertion. We now show that mutations in the intron open reading frame that would alter the translation product simultaneously inhibit nonreciprocal omega recombination and the in vivo double-strand break in omega - DNA. These results provide evidence that the open reading frame encodes a protein required for intron transposition and support the role of the double-strand break in the process.

  14. Recurrent Loss of Specific Introns during Angiosperm Evolution

    PubMed Central

    Wang, Hao; Devos, Katrien M.; Bennetzen, Jeffrey L.

    2014-01-01

    Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss. PMID:25474210

  15. A Novel HURRAH Protocol Reveals High Numbers of Monomorphic MHC Class II Loci and Two Asymmetric Multi-Locus Haplotypes in the Père David's Deer

    PubMed Central

    Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo

    2011-01-01

    The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075

  16. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    PubMed Central

    Langkjær, R. B.; Casaregola, S.; Ussery, D. W.; Gaillardin, C.; Piškur, J.

    2003-01-01

    The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand. PMID:12799436

  17. EF-1α DNA Sequences Indicate Multiple Origins of Introduced Populations of Essigella californica (Hemiptera: Aphididae).

    PubMed

    Théry, Thomas; Brockerhoff, Eckehard G; Carnegie, Angus J; Chen, Rui; Elms, Stephen R; Hullé, Maurice; Glatz, Richard; Ortego, Jaime; Qiao, Ge-Xia; Turpeau, Évelyne; Favret, Colin

    2017-06-01

    Aphids in the pine-feeding Nearctic genus Essigella (Sternorrhyncha, Aphididae, Lachninae) have been introduced in Europe, North Africa, Oceania, and South America. Mitochondrial, nuclear, and endosymbiont DNA sequences of 12 introduced populations from three continents confirm they all belong to Essigella californica (Essig, 1909). Intron sequence variation of the nuclear gene EF-1α has revealed the existence of four distinct groups. Group I gathers one population from China, where the species is newly reported, and several from Europe (France and Italy); Group II is represented by one population from Argentina; Group III includes two populations from Southern Australia with one from New Zealand; and Group IV corresponds to five populations from Eastern and South-Eastern Australia. These results indicate that introduced populations of E. californica have at least four source populations. They also show that intron variation of EF-1α can be a method to discriminate populations of asexually reproducing aphids. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1.

    PubMed

    Hu, H M; Chuang, C K; Lee, M J; Tseng, T C; Tang, T K

    2000-11-01

    We previously reported two novel testis-specific serine/threonine kinases, Aie1 (mouse) and AIE2 (human), that share high amino acid identities with the kinase domains of fly aurora and yeast Ipl1. Here, we report the entire intron-exon organization of the Aie1 gene and analyze the expression patterns of Aie1 mRNA during testis development. The mouse Aie1 gene spans approximately 14 kb and contains seven exons. The sequences of the exon-intron boundaries of the Aie1 gene conform to the consensus sequences (GT/AG) of the splicing donor and acceptor sites of most eukaryotic genes. Comparative genomic sequencing revealed that the gene structure is highly conserved between mouse Aie1 and human AIE2. However, much less homology was found in the sequence outside the kinase-coding domains. The Aie1 locus was mapped to mouse chromosome 7A2-A3 by fluorescent in situ hybridization. Northern blot analysis indicates that Aie1 mRNA likely is expressed at a low level on day 14 and reaches its plateau on day 21 in the developing postnatal testis. RNA in situ hybridization indicated that the expression of the Aie1 transcript was restricted to meiotically active germ cells, with the highest levels detected in spermatocytes at the late pachytene stage. These findings suggest that Aie1 plays a role in spermatogenesis.

  19. Exon Shuffling and Origin of Scorpion Venom Biodiversity

    PubMed Central

    Wang, Xueli; Gao, Bin; Zhu, Shunyi

    2016-01-01

    Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences. PMID:28035955

  20. Exon Shuffling and Origin of Scorpion Venom Biodiversity.

    PubMed

    Wang, Xueli; Gao, Bin; Zhu, Shunyi

    2016-12-26

    Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.

  1. Genomic organization and expression of the human MSH3 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Atsushi; Ikejima, Miyoko; Suzuki, Noriko

    1996-02-01

    We have studied the expression and genomic organization of the human MSH3 gene, which encodes a human homologue of the bacterial DNA mismatch repair protein MutS. This gene is located upstream of the dihydrofolate reductase (DHFR) gene. Northern analysis has demonstrated that the hMSH3 gene is expressed in a variety of human tissues at low levels, like the DHFR gene. Characterization of cosmid clones has shown that the hMSH3 gene consists of 24 exons spanning at least 160 kb. All exon-intron junction sequences match the classical GT/AG rule, except that intron 6 has AT and AA at the ends. Twomore » major transcripts of 5.0 and 3.8 kb have been shown to be derived from the differential use of two polyadenylation sites. Elucidation of the complete genomic organization and the nucleotide sequences of the introns of the hMSH3 gene should be useful for studying the function of this gene and the possible involvement of specific mutations of the hMSH3 gene in some diseases. 34 refs., 5 figs., 1 tab.« less

  2. Short intronic repeat sequences facilitate circular RNA production

    PubMed Central

    Liang, Dongming

    2014-01-01

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery “backsplices” and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3′ end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. PMID:25281217

  3. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization.

    PubMed

    Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L

    2002-07-24

    mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.

  4. Isolation and Identification of Gene-Specific MicroRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2018-01-01

    Computer programming has identified hundreds of genomic hairpin sequences, many with functions yet to be determined. Because transfection of hairpin-like microRNA precursors (pre-miRNAs) into mammalian cells is not always sufficient to trigger RNA-induced gene silencing complex (RISC) assembly, a key step for inducing RNA interference (RNAi)-related gene silencing, we have developed an intronic miRNA expression system to overcome this problem by inserting a hairpin-like pre-miRNA structure into the intron region of a gene, and hence successfully increase the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. This intronic miRNA biogenesis mechanism has been found to depend on a coupled interaction of nascent messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA so obtained is transcribed by type-II RNA polymerases, coexpressed within a primary gene transcript, and then excised out of the gene transcript by intracellular RNA splicing and processing machineries. After that, ribonuclease III (RNaseIII) endonucleases further process the spliced introns into mature miRNAs. Using this intronic miRNA expression system, we have shown for the first time that the intron-derived miRNAs are able to elicit strong RNAi effects in not only human and mouse cells in vitro but also in zebrafishes, chicken embryos, and adult mice in vivo. We have also developed a miRNA isolation protocol, based on the complementarity between the designed miRNA and its targeted gene sequence, to purify and identify the mature miRNAs generated. As a result, several intronic miRNA identities and structures have been confirmed. According to this proof-of-principle methodology, we now have full knowledge to design various intronic pre-miRNA inserts that are more efficient and effective for inducing specific gene silencing effects in vitro and in vivo.

  5. Geographical origin of Leucobryum boninense Sull. & Lesq. (Leucobryaceae, Musci) endemic to the Bonin Islands, Japan

    PubMed Central

    Oguri, Emiko; Yamaguchi, Tomio; Tsubota, Hiromi; Deguchi, Hironori; Murakami, Noriaki

    2013-01-01

    Leucobryum boninense is endemic to the Bonin Islands, Japan, and its related species are widely distributed in Asia and the Pacific. We aimed to clarify the phylogenetic relationships among Leucobryum species and infer the origin of L. boninense. We also describe the utility of the chloroplast trnK intron including matK for resolving the phylogenetic relationships among Leucobryum species, as phylogenetic analyses using trnK intron and/or matK have not been performed well in bryophytes to date. Fifty samples containing 15 species of Leucobryum from Asia and the Pacific were examined for six chloroplast DNA regions including rbcL, rps4, partial 5′ trnK intron, matK, partial 3′ trnK intron, and trnL-F intergenic spacer plus one nuclear DNA region including ITS. A molecular phylogenetic tree showed that L. boninense made a clade with L. scabrum from Japan, Taiwan and, Hong Kong; L. javense which is widely distributed in East and Southeast Asia, and L. pachyphyllum and L. seemannii restricted to the Hawaii Islands, as well as with L. scaberulum from the Ryukyus, Japan, Taiwan, and southeastern China. Leucobryum boninense from various islands of the Bonin Islands made a monophylic group that was closely related to L. scabrum and L. javense from Japan. Therefore, L. boninense may have evolved from L. scabrum from Japan, Taiwan, or Hong Kong, or L. javense from Japan. We also described the utility of trnK intron including matK. A percentage of the parsimony-informative characters in trnK intron sequence data (5.8%) was significantly higher than that from other chloroplast regions, rbcL (2.4%) and rps4 (3.2%) sequence data. Nucleotide sequence data of the trnK intron including matK are more informative than other chloroplast DNA regions for identifying the phylogenetic relationships among Leucobryum species. PMID:23610621

  6. Geographical origin of Leucobryum boninense Sull. & Lesq. (Leucobryaceae, Musci) endemic to the Bonin Islands, Japan.

    PubMed

    Oguri, Emiko; Yamaguchi, Tomio; Tsubota, Hiromi; Deguchi, Hironori; Murakami, Noriaki

    2013-04-01

    Leucobryum boninense is endemic to the Bonin Islands, Japan, and its related species are widely distributed in Asia and the Pacific. We aimed to clarify the phylogenetic relationships among Leucobryum species and infer the origin of L. boninense. We also describe the utility of the chloroplast trnK intron including matK for resolving the phylogenetic relationships among Leucobryum species, as phylogenetic analyses using trnK intron and/or matK have not been performed well in bryophytes to date. Fifty samples containing 15 species of Leucobryum from Asia and the Pacific were examined for six chloroplast DNA regions including rbcL, rps4, partial 5' trnK intron, matK, partial 3' trnK intron, and trnL-F intergenic spacer plus one nuclear DNA region including ITS. A molecular phylogenetic tree showed that L. boninense made a clade with L. scabrum from Japan, Taiwan and, Hong Kong; L. javense which is widely distributed in East and Southeast Asia, and L. pachyphyllum and L. seemannii restricted to the Hawaii Islands, as well as with L. scaberulum from the Ryukyus, Japan, Taiwan, and southeastern China. Leucobryum boninense from various islands of the Bonin Islands made a monophylic group that was closely related to L. scabrum and L. javense from Japan. Therefore, L. boninense may have evolved from L. scabrum from Japan, Taiwan, or Hong Kong, or L. javense from Japan. We also described the utility of trnK intron including matK. A percentage of the parsimony-informative characters in trnK intron sequence data (5.8%) was significantly higher than that from other chloroplast regions, rbcL (2.4%) and rps4 (3.2%) sequence data. Nucleotide sequence data of the trnK intron including matK are more informative than other chloroplast DNA regions for identifying the phylogenetic relationships among Leucobryum species.

  7. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  8. Molecular Phylogenetic Analysis of Archaeal Intron-Containing Genes Coding for rRNA Obtained from a Deep-Subsurface Geothermal Water Pool

    PubMed Central

    Takai, Ken; Horikoshi, Koki

    1999-01-01

    Molecular phylogenetic analysis of a naturally occurring microbial community in a deep-subsurface geothermal environment indicated that the phylogenetic diversity of the microbial population in the environment was extremely limited and that only hyperthermophilic archaeal members closely related to Pyrobaculum were present. All archaeal ribosomal DNA sequences contained intron-like sequences, some of which had open reading frames with repeated homing-endonuclease motifs. The sequence similarity analysis and the phylogenetic analysis of these homing endonucleases suggested the possible phylogenetic relationship among archaeal rRNA-encoded homing endonucleases. PMID:10584021

  9. New encoded single-indicator sequences based on physico-chemical parameters for efficient exon identification.

    PubMed

    Meher, J K; Meher, P K; Dash, G N; Raval, M K

    2012-01-01

    The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.

  10. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints.

    PubMed

    Proudhon, D; Wei, J; Briat, J; Theil, E C

    1996-03-01

    Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without anymore » phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.« less

  12. Human intron-encoded Alu RNAs are processed and packaged into Wdr79-associated nucleoplasmic box H/ACA RNPs

    PubMed Central

    Jády, Beáta E.; Ketele, Amandine; Kiss, Tamás

    2012-01-01

    Alu repetitive sequences are the most abundant short interspersed DNA elements in the human genome. Full-length Alu elements are composed of two tandem sequence monomers, the left and right Alu arms, both derived from the 7SL signal recognition particle RNA. Since Alu elements are common in protein-coding genes, they are frequently transcribed into pre-mRNAs. Here, we demonstrate that the right arms of nascent Alu transcripts synthesized within pre-mRNA introns are processed into metabolically stable small RNAs. The intron-encoded Alu RNAs, termed AluACA RNAs, are structurally highly reminiscent of box H/ACA small Cajal body (CB) RNAs (scaRNAs). They are composed of two hairpin units followed by the essential H (AnAnnA) and ACA box motifs. The mature AluACA RNAs associate with the four H/ACA core proteins: dyskerin, Nop10, Nhp2, and Gar1. Moreover, the 3′ hairpin of AluACA RNAs carries two closely spaced CB localization motifs, CAB boxes (UGAG), which bind Wdr79 in a cumulative fashion. In contrast to canonical H/ACA scaRNPs, which concentrate in CBs, the AluACA RNPs accumulate in the nucleoplasm. Identification of 348 human AluACA RNAs demonstrates that intron-encoded AluACA RNAs represent a novel, large subgroup of H/ACA RNAs, which are apparently confined to human or primate cells. PMID:22892240

  13. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    PubMed Central

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns. PMID:24823358

  14. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    PubMed

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  15. The chloroplast tRNALys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide.

    PubMed

    Neuhaus, H; Link, G

    1987-01-01

    The trnK gene endocing the tRNALys(UUU) has been located on mustard (Sinapis alba) chloroplast DNA, 263 bp upstream of the psbA gene on the same strand. The nucleotide sequence of the trnK gene and its flanking regions as well as the putative transcription start and termination sites are shown. The 5' end of the transcript lies 121 bp upstream of the 5' tRNA coding region and is preceded by procaryotic-type "-10" and "-35" sequence elements, while the 3' end maps 2.77 kb downstream to a DNA region with possible stemloop secondary structure. The anticodon loop of the tRNALys is interrupted by a 2,574 bp intron containing a long open reading frame, which codes for 524 amino acids. Based on conserved stem and loop structures, this intron has characteristic features of a class II intron. A region near the carboxyl terminus of the derived polypeptide appears structurally related to maturases.

  16. RNA editing in the anticodon of tRNA Leu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue.

    PubMed

    Miyata, Y; Sugita, C; Maruyama, K; Sugita, M

    2008-03-01

    RNA editing of cytidine (C) to uridine (U) transitions occurs in plastids and mitochondria of most land plants. In this study, we amplified and sequenced the group I intron-containing tRNA Leu gene, trnL-CAA, from Takakia lepidozioides, a moss. DNA sequence analysis revealed that the T. lepidozioides tRNA Leu gene consisted of a 35-bp 5' exon, a 469-bp group I intron and a 50-bp 3' exon. The intron was inserted between the first and second position of the tRNA Leu anticodon. In general, plastid tRNA Leu genes with a group I intron code for a TAA anticodon in most land plants. This strongly suggests that the first nucleotide of the CAA anticodon could be edited in T. lepidozioides plastids. To investigate this possibility, we analysed cDNAs derived from the trnL-CAA transcripts. We demonstrated that the first nucleotide C of the anticodon was edited to create a canonical UAA anticodon in T. lepidozioides plastids. cDNA sequencing analyses of the spliced or unspliced tRNA Leu transcripts revealed that, while the spliced tRNA was completely edited, editing in the unspliced tRNAs were only partial. This is the first experimental evidence that the anticodon editing of tRNA occurs before RNA splicing in plastids. This suggests that this editing is a prerequisite to splicing of pre-tRNA Leu.

  17. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  18. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465

  19. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    PubMed

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  20. Structural analysis of the 5{prime} region of mouse and human Huntington disease genes reveals conservation of putative promoter region and Di- and trinucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Biaoyang; Nasir, J.; Kalchman, M.A.

    1995-02-10

    We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less

  1. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    PubMed Central

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  2. Structure of the horseradish peroxidase isozyme C genes.

    PubMed

    Fujiyama, K; Takemura, H; Shibayama, S; Kobayashi, K; Choi, J K; Shinmyo, A; Takano, M; Yamada, Y; Okada, H

    1988-05-02

    We have isolated, cloned and characterized three cDNAs and two genomic DNAs corresponding to the mRNAs and genes for the horseradish (Armoracia rusticana) peroxidase isoenzyme C (HPR C). The amino acid sequence of HRP C1, deduced from the nucleotide sequence of one of the cDNA clone, pSK1, contained the same primary sequence as that of the purified enzyme established by Welinder [FEBS Lett. 72, 19-23 (1976)] with additional sequences at the N and C terminal. All three inserts in the cDNA clones, pSK1, pSK2 and pSK3, coded the same size of peptide (308 amino acid residues) if these are processed in the same way, and the amino acid sequence were homologous to each other by 91-94%. Functional amino acids, including His40, His170, Tyr185 and Arg183 and S-S-bond-forming Cys, were conserved in the three isozymes, but a few N-glycosylation sites were not the same. Two HRP C isoenzyme genomic genes, prxC1 and prxC2, were tandem on the chromosomal DNA and each gene consisted of four exons and three introns. The positions in the exons interrupted by introns were the same in two genes. We observed a putative promoter sequence 5' upstream and a poly(A) signal 3' downstream in both genes. The gene product of prxC1 might be processed with a signal sequence of 30 amino acid residues at the N terminus and a peptide consisting of 15 amino acid residues at the C terminus.

  3. Using a minigene approach to characterize a novel splice site mutation in human F7 gene causing inherited factor VII deficiency in a Chinese pedigree.

    PubMed

    Yu, T; Wang, X; Ding, Q; Fu, Q; Dai, J; Lu, Y; Xi, X; Wang, H

    2009-11-01

    Factor VII deficiency which transmitted as an autosomal recessive disorder is a rare haemorrhagic condition. The aim of this study was to identify the molecular genetic defect and determine its functional consequences in a Chinese pedigree with FVII deficiency. The proband was diagnosed as inherited coagulation FVII deficiency by reduced plasma levels of FVII activity (4.4%) and antigen (38.5%). All nine exons and their flanking sequence of F7 gene were amplified by polymerase chain reaction (PCR) for the proband and the PCR products were directly sequenced. The compound heterozygous mutations of F7 (NM_000131.3) c.572-1G>A and F7 (NM_000131.3) c.1165T>G; p.Cys389Gly were identified in the proband's F7 gene. To investigate the splicing patterns associated with F7 c.572-1G>A, ectopic transcripts in leucocytes of the proband were analyzed. F7 minigenes, spanning from intron 4 to intron 7 and carrying either an A or a G at position -1 of intron 5, were constructed and transiently transfected into human embryonic kidney (HEK) 293T cells, followed by RT-PCR analysis. The aberrant transcripts from the F7 c.572-1G>A mutant allele were not detected by ectopic transcription study. Sequencing of the RT-PCR products from the mutant transfectant demonstrated the production of an erroneously spliced mRNA with exon 6 skipping, whereas a normal splicing occurred in the wide type transfectant. The aberrant mRNA produced from the F7 c.572-1G>A mutant allele is responsible for the factor VII deficiency in this pedigree.

  4. HLA variants rs9271366 and rs9275328 are associated with systemic lupus erythematosus susceptibility in Malays and Chinese.

    PubMed

    Chai, H C; Phipps, M E; Othman, I; Tan, L P; Chua, K H

    2013-02-01

    Human leukocyte antigen (HLA) antigens and genes have long been reported associated with systemic lupus erythematosus (SLE) susceptibility in many populations. With the advance in technologies such as genome-wide association studies, many newly discovered SLE-associated single-nucleotide polymorphisms (SNPs) have been reported in recent years. These include HLA-DRB1/HLA-DQA1 rs9271366 and HLA-DQB1/HLA-DQA2 rs9275328. Our aim was to investigate these SNPs in a Malaysian SLE cohort. SNPs rs9271366 and rs9275328 were screened across 790 Malaysian citizens from three ethnic groups (360 patients and 430 healthy volunteers) by Taqman SNP genotyping assays. Allele and genotyping frequencies, Hardy-Weinberg equilibrium, Fisher's exact test and odds ratio were calculated for each SNP and ethnic group. Linkage disequilibrium and interaction between the two SNPs were also evaluated. The minor allele G and its homozygous genotype GG of HLA-DRB1/HLA-DQA1 rs9271366 significantly increased the SLE susceptibility in Malaysian patients, including those of Malay and Chinese ethnicity (odds ratio (OR) > 1, p < 0.05). As for HLA-DQB1/HLA-DQA2 rs9275328, the minor allele T and the heterozygous genotype CT conferred protective effect to SLE in Malaysians, as well as in Malays and Chinese, by having OR < 1 and p value <0.05. Both SNPs did not show associations to SLE in Indians. D' and r (2) values for the two SNPs in LD analysis were 0.941 and 0.065, respectively, with haplotype GC and AT being significantly associated with SLE (p < 5.0 × 10(-4)) after 10,000 permutations were performed. The MDR test clustered the genotype combinations of GG and CC, and AG and CC of rs9271366 and rs9275328, accordingly, as high-risk group, and the two SNPs interacted redundantly by removing 1.96% of the entropy. Our findings suggest that in addition to some classical HLA variants, rs9271366 and rs9275328 are additional polymorphisms worth considering in the Malaysian and possibly in a larger Asian SLE scenario.

  5. Genomic organization of plant aminopropyl transferases.

    PubMed

    Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco

    2010-07-01

    Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin. 2010 Elsevier Masson SAS. All rights reserved.

  6. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture.

    PubMed

    Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen; Burge, Christopher B

    2017-12-27

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning ('intron definition') or exon-spanning ('exon definition') pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila , using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60-70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.

  7. BIALLELIC POLYMORPHISM IN THE INTRON REGION OF B-TUBULIN GENE OF CRYPTOSPORIDIUM PARASITES

    EPA Science Inventory

    Nucleotide sequencing of polymerase chain reaction-amplified intron region of the Cryptosporidium parvum B-tubulin gene in 26 human and 15 animal isolates revealed distinct genetic polymorphism between the human and bovine genotypes. The separation of 2 genotypes of C. parvum is...

  8. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed Central

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-01-01

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917

  9. Screening for microsatellite instability target genes in colorectal cancers

    PubMed Central

    Vilkki, S; Launonen, V; Karhu, A; Sistonen, P; Vastrik, I; Aaltonen, L

    2002-01-01

    Background: Defects in the DNA repair system lead to genetic instability because replication errors are not corrected. This type of genetic instability is a key event in the malignant progression of HNPCC and a subset of sporadic colon cancers and mutation rates are particularly high at short repetitive sequences. Somatic deletions of coding mononucleotide repeats have been detected, for example, in the TGFßRII and BAX genes, and recently many novel target genes for microsatellite instability (MSI) have been proposed. Novel target genes are likely to be discovered in the future. More data should be created on background mutation rates in MSI tumours to evaluate mutation rates observed in the candidate target genes. Methods: Mutation rates in 14 neutral intronic repeats were evaluated in MSI tumours. Bioinformatic searches combined with keywords related to cancer and tumour suppressor or CRC related gene homology were used to find new candidate MSI target genes. By comparison of mutation frequencies observed in intronic mononucleotide repeats versus exonic coding repeats of potential MSI target genes, the significance of the exonic mutations was estimated. Results: As expected, the length of an intronic mononucleotide repeat correlated positively with the number of slippages for both G/C and A/T repeats (p=0.0020 and p=0.0012, respectively). BRCA1, CtBP1, and Rb1 associated CtIP and other candidates were found in a bioinformatic search combined with keywords related to cancer. Sequencing showed a significantly increased mutation rate in the exonic A9 repeat of CtIP (25/109=22.9%) as compared with similar intronic repeats (p≤0.001). Conclusions: We propose a new candidate MSI target gene CtIP to be evaluated in further studies. PMID:12414815

  10. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    PubMed

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes

    PubMed Central

    Wörheide, Gert

    2017-01-01

    Abstract One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. PMID:28633296

  12. Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid Eutreptiella pomquetensis

    PubMed Central

    Bennett, Matthew S.; Triemer, Richard E.; Preisfeld, Angelika

    2017-01-01

    Background Over the last few years multiple studies have been published showing a great diversity in size of chloroplast genomes (cpGenomes), and in the arrangement of gene clusters, in the Euglenales. However, while these genomes provided important insights into the evolution of cpGenomes across the Euglenales and within their genera, only two genomes were analyzed in regard to genomic variability between and within Euglenales and Eutreptiales. To better understand the dynamics of chloroplast genome evolution in early evolving Eutreptiales, this study focused on the cpGenome of Eutreptiella pomquetensis, and the spread and peculiarities of introns. Methods The Etl. pomquetensis cpGenome was sequenced, annotated and afterwards examined in structure, size, gene order and intron content. These features were compared with other euglenoid cpGenomes as well as those of prasinophyte green algae, including Pyramimonas parkeae. Results and Discussion With about 130,561 bp the chloroplast genome of Etl. pomquetensis, a basal taxon in the phototrophic euglenoids, was considerably larger than the two other Eutreptiales cpGenomes sequenced so far. Although the detected quadripartite structure resembled most green algae and plant chloroplast genomes, the gene content of the single copy regions in Etl. pomquetensis was completely different from those observed in green algae and plants. The gene composition of Etl. pomquetensis was extensively changed and turned out to be almost identical to other Eutreptiales and Euglenales, and not to P. parkeae. Furthermore, the cpGenome of Etl. pomquetensis was unexpectedly permeated by a high number of introns, which led to a substantially larger genome. The 51 identified introns of Etl. pomquetensis showed two major unique features: (i) more than half of the introns displayed a high level of pairwise identities; (ii) no group III introns could be identified in the protein coding genes. These findings support the hypothesis that group III introns are degenerated group II introns and evolved later. PMID:28852596

  13. Association of the IL-15 and IL-15Rα genes with celiac disease.

    PubMed

    Escudero-Hernández, Celia; Plaza-Izurieta, Leticia; Garrote, José A; Bilbao, José Ramón; Arranz, Eduardo

    2017-11-01

    Celiac disease is a chronic autoimmune condition triggered by dietary gluten in genetically predisposed individuals and the treatment is a strict gluten-free diet. The major predisposing genes are HLA-DQA1 and HLA-DQB1, but these are not sufficient for disease development. One of the candidate genes worth studying is interleukin (IL)-15 gene, together with its specific receptor, IL-15Rα, as they participate in promoting lymphocyte signaling and survival, and the establishment of appropriate conditions for villous atrophy, then acting as key players in the immunopathogenesis of CD. Here we analyze IL-15 and IL-15Rα genes in samples from the Spanish Consortium for Genetics of Celiac Disease (CEGEC) collection, identifying two regulatory single-nucleotide polymorphisms (SNP) that might be associated with celiac disease: rs4956400 (p-value 0.0112, OR 1.21, 95% CI 1.04-1.40) and rs11100722 (p-value 0.0087, OR 1.24, 95% CI 1.06-1.45), both located upstream the IL15 gene. When the expression of both genes was assessed, these two SNPs were found to be correlated with IL-15 higher protein expression. Besides, rs8177655 from IL15RA was also associated to mRNA IL-15 expression in CD patients. Finally, three SNPs from IL15RA intronic regions, rs2296141, rs3136614 and rs3181148, and another from its 3'UTR region, rs2229135, could be related to the age of diagnosis of celiac disease patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Identification of an Intronic Splicing Enhancer Essential for the Inclusion of FGFR2 Exon IIIc*S⃞

    PubMed Central

    Seth, Puneet; Miller, Heather B.; Lasda, Erika L.; Pearson, James L.; Garcia-Blanco, Mariano A.

    2008-01-01

    The ligand specificity of fibroblast growth factor receptor 2 (FGFR2) is determined by the alternative splicing of exons 8 (IIIb) or 9 (IIIc). Exon IIIb is included in epithelial cells, whereas exon IIIc is included in mesenchymal cells. Although a number of cis elements and trans factors have been identified that play a role in exon IIIb inclusion in epithelium, little is known about the activation of exon IIIc in mesenchyme. We report here the identification of a splicing enhancer required for IIIc inclusion. This 24-nucleotide (nt) downstream intronic splicing enhancer (DISE) is located within intron 9 immediately downstream of exon IIIc. DISE was able to activate the inclusion of heterologous exons rat FGFR2 IIIb and human β-globin exon 2 in cell lines from different tissues and species and also in HeLa cell nuclear extracts in vitro. DISE was capable of replacing the intronic activator sequence 1 (IAS1), a known IIIb splicing enhancer and vice versa. This fact, together with the requirement for DISE to be close to the 5′-splice site and the ability of DISE to promote binding of U1 snRNP, suggested that IAS1 and DISE belong to the same class of cis-acting elements. PMID:18256031

  15. Choosing and Using Introns in Molecular Phylogenetics

    PubMed Central

    Creer, Simon

    2007-01-01

    Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics. PMID:19461984

  16. Short intronic repeat sequences facilitate circular RNA production.

    PubMed

    Liang, Dongming; Wilusz, Jeremy E

    2014-10-15

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery "backsplices" and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼ 30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3' end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. © 2014 Liang and Wilusz; Published by Cold Spring Harbor Laboratory Press.

  17. Genome Analysis Reveals Interplay between 5′UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes

    PubMed Central

    Cenik, Can; Chua, Hon Nian; Zhang, Hui; Tarnawsky, Stefan P.; Akef, Abdalla; Derti, Adnan; Tasan, Murat; Moore, Melissa J.; Palazzo, Alexander F.; Roth, Frederick P.

    2011-01-01

    In higher eukaryotes, messenger RNAs (mRNAs) are exported from the nucleus to the cytoplasm via factors deposited near the 5′ end of the transcript during splicing. The signal sequence coding region (SSCR) can support an alternative mRNA export (ALREX) pathway that does not require splicing. However, most SSCR–containing genes also have introns, so the interplay between these export mechanisms remains unclear. Here we support a model in which the furthest upstream element in a given transcript, be it an intron or an ALREX–promoting SSCR, dictates the mRNA export pathway used. We also experimentally demonstrate that nuclear-encoded mitochondrial genes can use the ALREX pathway. Thus, ALREX can also be supported by nucleotide signals within mitochondrial-targeting sequence coding regions (MSCRs). Finally, we identified and experimentally verified novel motifs associated with the ALREX pathway that are shared by both SSCRs and MSCRs. Our results show strong correlation between 5′ untranslated region (5′UTR) intron presence/absence and sequence features at the beginning of the coding region. They also suggest that genes encoding secretory and mitochondrial proteins share a common regulatory mechanism at the level of mRNA export. PMID:21533221

  18. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  19. RPG: the Ribosomal Protein Gene database.

    PubMed

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.

  20. RPG: the Ribosomal Protein Gene database

    PubMed Central

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes. PMID:14681386

  1. Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives.

    PubMed

    Schröder, Christiane; Bleidorn, Christoph; Hartmann, Stefanie; Tiedemann, Ralph

    2009-12-15

    Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (dog-like carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony-informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.

  2. Genomic deletions of OFD1 account for 23% of oral-facial-digital type 1 syndrome after negative DNA sequencing.

    PubMed

    Thauvin-Robinet, Christel; Franco, Brunella; Saugier-Veber, Pascale; Aral, Bernard; Gigot, Nadège; Donzel, Anne; Van Maldergem, Lionel; Bieth, Eric; Layet, Valérie; Mathieu, Michèle; Teebi, Ahmad; Lespinasse, James; Callier, Patrick; Mugneret, Francine; Masurel-Paulet, Alice; Gautier, Elodie; Huet, Frédéric; Teyssier, Jean-Raymond; Tosi, Mario; Frébourg, Thierry; Faivre, Laurence

    2009-02-01

    Oral-facial-digital type I syndrome (OFDI) is characterised by an X-linked dominant mode of inheritance with lethality in males. Clinical features include facial dysmorphism with oral, dental and distal abnormalities, polycystic kidney disease and central nervous system malformations. Considerable allelic heterogeneity has been reported within the OFD1 gene, but DNA bi-directional sequencing of the exons and intron-exon boundaries of the OFD1 gene remains negative in more than 20% of cases. We hypothesized that genomic rearrangements could account for the majority of the remaining undiagnosed cases. Thus, we took advantage of two independent available series of patients with OFDI syndrome and negative DNA bi-directional sequencing of the exons and intron-exon boundaries of the OFD1 gene from two different European labs: 13/36 cases from the French lab; 13/95 from the Italian lab. All patients were screened by a semiquantitative fluorescent multiplex method (QFMPSF) and relative quantification by real-time PCR (qPCR). Six OFD1 genomic deletions (exon 5, exons 1-8, exons 1-14, exons 10-11, exons 13-23 and exon 17) were identified, accounting for 5% of OFDI patients and for 23% of patients with negative mutation screening by DNA sequencing. The association of DNA direct sequencing, QFMPSF and qPCR detects OFD1 alteration in up to 85% of patients with a phenotype suggestive of OFDI syndrome. Given the average percentage of large genomic rearrangements (5%), we suggest that dosage methods should be performed in addition to DNA direct sequencing analysis to exclude the involvement of the OFD1 transcript when there are genetic counselling issues. (c) 2008 Wiley-Liss, Inc.

  3. A novel type of EWS-CHOP fusion gene in myxoid liposarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Yoshito; Ueda, Takafumi; Kubo, Takahiro

    2006-09-22

    The cytogenetic hallmark of myxoid type and round cell type liposarcoma consists of reciprocal translocation of t(12;16)(q13;p11) and t(12;22)(q13;q12), which results in fusion of TLS/FUS and CHOP, and EWS and CHOP, respectively. Nine structural variations of the TLS/FUS-CHOP chimeric transcript have been reported, however, only two types of EWS-CHOP have been described. We describe here a case of myxoid liposarcoma containing a novel EWS-CHOP chimeric transcript and identified the breakpoint occurring in intron 13 of EWS. Reverse transcription-polymerase chain reaction and direct sequence showed that exon 13 of EWS was in-frame fused to exon 2 of CHOP. Genomic analysis revealedmore » that the breaks were located in intron 13 of EWS and intron 1 of CHOP.« less

  4. Polymorphism of intron-1 in the voltage-gated sodium channel gene of Anopheles gambiae s.s. populations from Cameroon with emphasis on insecticide knockdown resistance mutations.

    PubMed

    Etang, Josiane; Vicente, Jose L; Nwane, Philippe; Chouaibou, Mouhamadou; Morlais, Isabelle; Do Rosario, Virgilio E; Simard, Frederic; Awono-Ambene, Parfait; Toto, Jean Claude; Pinto, Joao

    2009-07-01

    Sequence variation at the intron-1 of the voltage-gated sodium channel gene in Anopheles gambiae M- and S-forms from Cameroon was assessed to explore the number of mutational events originating knockdown resistance (kdr) alleles. Mosquitoes were sampled between December 2005 and June 2006 from three geographical areas: (i) Magba in the western region; (ii) Loum, Tiko, Douala, Kribi, and Campo along the Atlantic coast; and (iii) Bertoua, in the eastern continental plateau. Both 1014S and 1014F kdr alleles were found in the S-form with overall frequencies of 14% and 42% respectively. Only the 1014F allele was found in the M-form at lower frequency (11%). Analysis of a 455 bp region of intron-1 upstream the kdr locus revealed four independent mutation events originating kdr alleles, here named MS1 -1014F, S1-1014S and S2-1014S kdr-intron-1 haplotypes in S-form and MS3-1014F kdr-intron-1 haplotype in the M-form. Furthermore, there was evidence for mutual introgression of kdr 1014F allele between the two molecular forms, MS1 and MS3 being widely shared by them. Although no M/S hybrid was observed in analysed samples, this wide distribution of haplotypes MS1 and MS3 suggests inter-form hybridizing at significant level and emphasizes the rapid diffusion of the kdr alleles in Africa. The mosaic of genetic events found in Cameroon is representative of the situation in the West-Central African region and highlights the importance of evaluating the spatial and temporal evolution of kdr alleles for a better management of insecticide resistance.

  5. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing

    DTIC Science & Technology

    2015-04-30

    recently, we identified several novel alterations in in ER+ breast tumors, including translocations in ESR1 , the gene that encodes the estrogen receptor...modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two recent papers from the Broad Institute published

  6. Effective suppression of dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain.

    PubMed

    Carter, James R; Keith, James H; Fraser, Tresa S; Dawson, James L; Kucharski, Cheryl A; Horne, Kate M; Higgs, Stephen; Fraser, Malcolm J

    2014-06-13

    Approximately 100 million confirmed infections and 20,000 deaths are caused by Dengue virus (DENV) outbreaks annually. Global warming and rapid dispersal have resulted in DENV epidemics in formally non-endemic regions. Currently no consistently effective preventive measures for DENV exist, prompting development of transgenic and paratransgenic vector control approaches. Production of transgenic mosquitoes refractory for virus infection and/or transmission is contingent upon defining antiviral genes that have low probability for allowing escape mutations, and are equally effective against multiple serotypes. Previously we demonstrated the effectiveness of an anti-viral group I intron targeting U143 of the DENV genome in mediating trans-splicing and expression of a marker gene with the capsid coding domain. In this report we examine the effectiveness of coupling expression of ΔN Bax to trans-splicing U143 intron activity as a means of suppressing DENV infection of mosquito cells. Targeting the conserved DENV circularization sequence (CS) by U143 intron trans-splicing activity appends a 3' exon RNA encoding ΔN Bax to the capsid coding region of the genomic RNA, resulting in a chimeric protein that induces premature cell death upon infection. TCID50-IFA analyses demonstrate an enhancement of DENV suppression for all DENV serotypes tested over the identical group I intron coupled with the non-apoptotic inducing firefly luciferase as the 3' exon. These cumulative results confirm the increased effectiveness of this αDENV-U143-ΔN Bax group I intron as a sequence specific antiviral that should be useful for suppression of DENV in transgenic mosquitoes. Annexin V staining, caspase 3 assays, and DNA ladder observations confirm DCA-ΔN Bax fusion protein expression induces apoptotic cell death. This report confirms the relative effectiveness of an anti-DENV group I intron coupled to an apoptosis-inducing ΔN Bax 3' exon that trans-splices conserved sequences of the 5' CS region of all DENV serotypes and induces apoptotic cell death upon infection. Our results confirm coupling the targeted ribozyme capabilities of the group I intron with the generation of an apoptosis-inducing transcript increases the effectiveness of infection suppression, improving the prospects of this unique approach as a means of inducing transgenic refractoriness in mosquitoes for all serotypes of this important disease.

  7. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa.

    PubMed Central

    Choi, Hong-Kyu; Kim, Dongjin; Uhm, Taesik; Limpens, Eric; Lim, Hyunju; Mun, Jeong-Hwan; Kalo, Peter; Penmetsa, R Varma; Seres, Andrea; Kulikova, Olga; Roe, Bruce A; Bisseling, Ton; Kiss, Gyorgy B; Cook, Douglas R

    2004-01-01

    A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F(2) population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map. PMID:15082563

  8. Sensing Self and Foreign Circular RNAs by Intron Identity.

    PubMed

    Chen, Y Grace; Kim, Myoungjoo V; Chen, Xingqi; Batista, Pedro J; Aoyama, Saeko; Wilusz, Jeremy E; Iwasaki, Akiko; Chang, Howard Y

    2017-07-20

    Circular RNAs (circRNAs) are single-stranded RNAs that are joined head to tail with largely unknown functions. Here we show that transfection of purified in vitro generated circRNA into mammalian cells led to potent induction of innate immunity genes and confers protection against viral infection. The nucleic acid sensor RIG-I is necessary to sense foreign circRNA, and RIG-I and foreign circRNA co-aggregate in cytoplasmic foci. CircRNA activation of innate immunity is independent of a 5' triphosphate, double-stranded RNA structure, or the primary sequence of the foreign circRNA. Instead, self-nonself discrimination depends on the intron that programs the circRNA. Use of a human intron to express a foreign circRNA sequence abrogates immune activation, and mature human circRNA is associated with diverse RNA binding proteins reflecting its endogenous splicing and biogenesis. These results reveal innate immune sensing of circRNA and highlight introns-the predominant output of mammalian transcription-as arbiters of self-nonself identity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions.

    PubMed

    Lee, Hae-Lim; Jansen, Robert K; Chumley, Timothy W; Kim, Ki-Joong

    2007-05-01

    The chloroplast (cp) DNA sequence of Jasminum nudiflorum (Oleaceae-Jasmineae) is completed and compared with the large single-copy region sequences from 6 related species. The cp genomes of the tribe Jasmineae (Jasminum and Menodora) show several distinctive rearrangements, including inversions, gene duplications, insertions, inverted repeat expansions, and gene and intron losses. The ycf4-psaI region in Jasminum section Primulina was relocated as a result of 2 overlapping inversions of 21,169 and 18,414 bp. The 1st, larger inversion is shared by all members of the Jasmineae indicating that it occurred in the common ancestor of the tribe. Similar rearrangements were also identified in the cp genome of Menodora. In this case, 2 fragments including ycf4 and rps4-trnS-ycf3 genes were moved by 2 additional inversions of 14 and 59 kb that are unique to Menodora. Other rearrangements in the Oleaceae are confined to certain regions of the Jasminum and Menodora cp genomes, including the presence of highly repeated sequences and duplications of coding and noncoding sequences that are inserted into clpP and between rbcL and psaI. These insertions are correlated with the loss of 2 introns in clpP and a serial loss of segments of accD. The loss of the accD gene and clpP introns in both the monocot family Poaceae and the eudicot family Oleaceae are clearly independent evolutionary events. However, their genome organization is surprisingly similar despite the distant relationship of these 2 angiosperm families.

  10. Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant.

    PubMed

    Singh, B N; Mudgil, Yashwanti; Sopory, S K; Reddy, M K

    2003-07-01

    We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5' and 3' splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg(2+)- and ATP-dependent manner, and this activity was inhibited by 4'-(9-acridinylamino)-3'-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII(ts) yeast mutant.

  11. Genetic affinities of north and northeastern populations of India: inference from HLA-based study.

    PubMed

    Agrawal, S; Srivastava, S K; Borkar, M; Chaudhuri, T K

    2008-08-01

    India is like a microcosm of the world in terms of its diversity; religion, climate and ethnicity which leads to genetic variations in the populations. As a highly polymorphic marker, the human leukocyte antigen (HLA) system plays an important role in the genetic differentiation studies. To assess the genetic diversity of HLA class II loci, we studied a total of 1336 individuals from north India using DNA-based techniques. The study included four endogamous castes (Kayastha, Mathurs, Rastogies and Vaishyas), two inbreeding Muslim populations (Shias and Sunnis) from north India and three northeast Indian populations (Lachung, Mech and Rajbanshi). A total of 36 alleles were observed at DRB1 locus in both Hindu castes and Muslims from north, while 21 alleles were seen in northeast Indians. At the DQA1 locus, the number of alleles ranged from 11 to 17 in the studied populations. The total number of alleles at DQB1 was 19, 12 and 20 in the studied castes, Muslims and northeastern populations, respectively. The most frequent haplotypes observed in all the studied populations were DRB1*0701-DQA1*0201-DQB1*0201 and DRB1*1501-DQA1*0103-DQB1*0601. Upon comparing our results with other world populations, we observed the presence of Caucasoid element in north Indian population. However, differential admixturing among Sunnis and Shias with the other north Indians was evident. Northeastern populations showed genetic affinity with Mongoloids from southeast Asia. When genetic distances were calculated, we found the north Indians and northeastern populations to be markedly unrelated.

  12. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis.

    PubMed

    Chee, Gab-Joo; Takami, Hideto

    2011-01-01

    Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.

  13. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes

    PubMed Central

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-01-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. PMID:23427135

  14. Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9.

    PubMed

    Huang, Hua; Kapeli, Katannya; Jin, Wenhao; Wong, Yuk Peng; Arumugam, Thiruma Valavan; Koh, Joanne Huifen; Srimasorn, Sumitra; Mallilankaraman, Karthik; Chua, John Jia En; Yeo, Gene W; Soong, Tuck Wah

    2018-05-04

    Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.

  15. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

    PubMed

    Herzel, Lydia; Straube, Korinna; Neugebauer, Karla M

    2018-06-14

    Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2 , the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3' end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation. © 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.

  16. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    PubMed Central

    Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen

    2017-01-01

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing. PMID:29280736

  17. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    DOE PAGES

    Pai, Athma A.; Henriques, Telmo; McCue, Kayla; ...

    2017-12-27

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less

  18. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Athma A.; Henriques, Telmo; McCue, Kayla

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less

  19. Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences.

    PubMed

    Schwaiger, F W; Buitkamp, J; Weyers, E; Epplen, J T

    1993-02-01

    An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.

  20. [Sequence analysis of LEAFY homologous gene from Dendrobium moniliforme and application for identification of medicinal Dendrobium].

    PubMed

    Xing, Wen-Rui; Hou, Bei-Wei; Guan, Jing-Jiao; Luo, Jing; Ding, Xiao-Yu

    2013-04-01

    The LEAFY (LFY) homologous gene of Dendrobium moniliforme (L.) Sw. was cloned by new primers which were designed based on the conservative region of known sequences of orchid LEAFY gene. Partial LFY homologous gene was cloned by common PCR, then we got the complete LFY homologous gene Den LFY by Tail-PCR. The complete sequence of DenLFY gene was 3 575 bp which contained three exons and two introns. Using BLAST method, comparison analysis among the exon of LFY homologous gene indicted that the DenLFY gene had high identity with orchids LFY homologous, including the related fragment of PhalLFY (84%) in Phalaenopsis hybrid cultivar, LFY homologous gene in Oncidium (90%) and in other orchid (over 80%). Using MP analysis, Dendrobium is found to be the sister to Oncidium and Phalaenopsis. Homologous analysis demonstrated that the C-terminal amino acids were highly conserved. When the exons and introns were separately considered, exons and the sequence of amino acid were good markers for the function research of DenLFY gene. The second intron can be used in authentication research of Dendrobium based on the length polymorphism between Dendrobium moniliforme and Dendrobium officinale.

  1. CHLORELLA VIRUSES

    PubMed Central

    Yamada, Takashi; Onimatsu, Hideki; Van Etten, James L.

    2007-01-01

    Chlorella viruses or chloroviruses are large, icosahedral, plaque‐forming, double‐stranded‐DNA—containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330‐kbp genome of Paramecium bursaria chlorella virus 1 (PBCV‐1), the prototype of this virus family (Phycodnaviridae), predict ∼366 protein‐encoding genes and 11 tRNA genes. The predicted gene products of ∼50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site‐specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus‐encoded K+ channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV‐1 has three types of introns; a self‐splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV‐1 as well as other related viruses. PMID:16877063

  2. Development and utilization of novel intron length polymorphic markers in foxtail millet (Setaria italica (L.) P. Beauv.).

    PubMed

    Gupta, Sarika; Kumari, Kajal; Das, Jyotirmoy; Lata, Charu; Puranik, Swati; Prasad, Manoj

    2011-07-01

    Introns are noncoding sequences in a gene that are transcribed to precursor mRNA but spliced out during mRNA maturation and are abundant in eukaryotic genomes. The availability of codominant molecular markers and saturated genetic linkage maps have been limited in foxtail millet (Setaria italica (L.) P. Beauv.). Here, we describe the development of 98 novel intron length polymorphic (ILP) markers in foxtail millet using sequence information of the model plant rice. A total of 575 nonredundant expressed sequence tag (EST) sequences were obtained, of which 327 and 248 unique sequences were from dehydration- and salinity-stressed suppression subtractive hybridization libraries, respectively. The BLAST analysis of 98 EST sequences suggests a nearly defined function for about 64% of them, and they were grouped into 11 different functional categories. All 98 ILP primer pairs showed a high level of cross-species amplification in two millets and two nonmillets species ranging from 90% to 100%, with a mean of ∼97%. The mean observed heterozygosity and Nei's average gene diversity 0.016 and 0.171, respectively, established the efficiency of the ILP markers for distinguishing the foxtail millet accessions. Based on 26 ILP markers, a reasonable dendrogram of 45 foxtail millet accessions was constructed, demonstrating the utility of ILP markers in germplasm characterizations and genomic relationships in millets and nonmillets species.

  3. Sensitivity of BRCA1/2 testing in high-risk breast/ovarian/male breast cancer families: little contribution of comprehensive RNA/NGS panel testing.

    PubMed

    Byers, Helen; Wallis, Yvonne; van Veen, Elke M; Lalloo, Fiona; Reay, Kim; Smith, Philip; Wallace, Andrew J; Bowers, Naomi; Newman, William G; Evans, D Gareth

    2016-11-01

    The sensitivity of testing BRCA1 and BRCA2 remains unresolved as the frequency of deep intronic splicing variants has not been defined in high-risk familial breast/ovarian cancer families. This variant category is reported at significant frequency in other tumour predisposition genes, including NF1 and MSH2. We carried out comprehensive whole gene RNA analysis on 45 high-risk breast/ovary and male breast cancer families with no identified pathogenic variant on exonic sequencing and copy number analysis of BRCA1/2. In addition, we undertook variant screening of a 10-gene high/moderate risk breast/ovarian cancer panel by next-generation sequencing. DNA testing identified the causative variant in 50/56 (89%) breast/ovarian/male breast cancer families with Manchester scores of ≥50 with two variants being confirmed to affect splicing on RNA analysis. RNA sequencing of BRCA1/BRCA2 on 45 individuals from high-risk families identified no deep intronic variants and did not suggest loss of RNA expression as a cause of lost sensitivity. Panel testing in 42 samples identified a known RAD51D variant, a high-risk ATM variant in another breast ovary family and a truncating CHEK2 mutation. Current exonic sequencing and copy number analysis variant detection methods of BRCA1/2 have high sensitivity in high-risk breast/ovarian cancer families. Sequence analysis of RNA does not identify any variants undetected by current analysis of BRCA1/2. However, RNA analysis clarified the pathogenicity of variants of unknown significance detected by current methods. The low diagnostic uplift achieved through sequence analysis of the other known breast/ovarian cancer susceptibility genes indicates that further high-risk genes remain to be identified.

  4. Delivery quality assurance with ArcCHECK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Christopher; Klein, Michael; Barnett, Rob

    2013-04-01

    Radiation therapy requires delivery quality assurance (DQA) to ensure that treatment is accurate and closely follows the plan. We report our experience with the ArcCHECK phantom and investigate its potential optimization for the DQA process. One-hundred seventy DQA plans from 84 patients were studied. Plans were classified into 2 groups: those with the target situated on the diodes of the ArcCHECK (D plans) and those with the target situated at the center (C plans). Gamma pass rates for 8 target sites were examined. The parameters used to analyze the data included 3%/3 mm with the Van Dyk percent difference criteriamore » (VD) on, 3%/3 mm with the VD off, 2%/2 mm with the VD on, and x/3 mm with the VD on and the percentage dosimetric agreement “x” for diode plans adjusted. D plans typically displayed maximum planned dose (MPD) on the cylindrical surface containing ArcCHECK diodes than center plans, resulting in inflated gamma pass rates. When this was taken into account by adjusting the percentage dosimetric agreement, C plans outperformed D plans by an average of 3.5%. ArcCHECK can streamline the DQA process, consuming less time and resources than radiographic films. It is unnecessary to generate 2 DQA plans for each patient; a single center plan will suffice. Six of 8 target sites consistently displayed pass rates well within our acceptance criteria; the lesser performance of head and neck and spinal sites can be attributed to marginally lower doses and increased high gradient of plans.« less

  5. Characterization and Expression of the Lucina pectinata Oxygen and Sulfide Binding Hemoglobin Genes

    PubMed Central

    López-Garriga, Juan; Cadilla, Carmen L.

    2016-01-01

    The clam Lucina pectinata lives in sulfide-rich muds and houses intracellular symbiotic bacteria that need to be supplied with hydrogen sulfide and oxygen. This clam possesses three hemoglobins: hemoglobin I (HbI), a sulfide-reactive protein, and hemoglobin II (HbII) and III (HbIII), which are oxygen-reactive. We characterized the complete gene sequence and promoter regions for the oxygen reactive hemoglobins and the partial structure and promoters of the HbI gene from Lucina pectinata. We show that HbI has two mRNA variants, where the 5’end had either a sequence of 96 bp (long variant) or 37 bp (short variant). The gene structure of the oxygen reactive Hbs is defined by having 4-exons/3-introns with conservation of intron location at B12.2 and G7.0 and the presence of pre-coding introns, while the partial gene structure of HbI has the same intron conservation but appears to have a 5-exon/ 4-intron structure. A search for putative transcription factor binding sites (TFBSs) was done with the promoters for HbII, HbIII, HbI short and HbI long. The HbII, HbIII and HbI long promoters showed similar predicted TFBSs. We also characterized MITE-like elements in the HbI and HbII gene promoters and intronic regions that are similar to sequences found in other mollusk genomes. The gene expression levels of the clam Hbs, from sulfide-rich and sulfide-poor environments showed a significant decrease of expression in the symbiont-containing tissue for those clams in a sulfide-poor environment, suggesting that the sulfide concentration may be involved in the regulation of these proteins. Gene expression evaluation of the two HbI mRNA variants indicated that the longer variant is expressed at higher levels than the shorter variant in both environments. PMID:26824233

  6. Physical structure and chromosomal localization of a gene encoding human p58[sup clk-1], a cell division control related protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipers, P.G.

    1992-01-01

    The gene for the human p58[sup clk[minus]1] protein kinase, a cell division control-related gene, has been mapped by somatic cell hybrid analyses, in situ localization with the chromosomal gene, and nested polymerase chain reaction amplification of microdissected chromosomes. These studies indicate that the expressed p58[sup clk[minus]1] chromosomal gene maps to 1p36, while a highly related p58[sup clk[minus]1] sequence of unknown nature maps to chromosome 15. Assignment of a p34[sup cdc2]-related gene to 1p36 region, including neuroblastoma, ductal carcinoma of the breast, malignant melanoma, Merkel cell carcinoma and endocrine neoplasia among others. Aberrant expression of this protein kinase negatively regulates normalmore » cellular growth. The p58[sup clk[minus]1] protein contains a central domain of 299 amino acids that is 46% identical to human p34[sup cdc2], the master mitotic protein kinase. This dissertation details the complete structure of the p58[sup clk[minus]1] chromosomal gene, including its putative promoter region, transcriptional start sites, exonic sequences, and intron/exon boundary sequences. The gene is 10 kb in size and contains 12 exons and 11 introns. Interestingly, the rather large 2.0 kb 3[prime] untranslated region is interrupted by an intron that separates a region containing numerous AUUUA destabilization motifs from the coding region. Furthermore, the expression of this gene in normal human tissues, as well as several human tumor cell samples and lines, is examined. The origin of multiple human transcripts from the same chromosomal gene, and the possible differential stability of these various transcripts, is discussed with regard to the transcriptional and post-transcriptional regulation of this gene. This is the first report of the chromosomal gene structure of a member of the p34[sup cdc2] supergene family.« less

  7. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding tomore » the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.« less

  8. Insertion of part of an intron into the 5[prime] untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, R.; Thomas, J.; Spieth, J.

    In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of amore » vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.« less

  9. Prevalent Exon-Intron Structural Changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-Box Gene Subfamilies Provide New Insights into Their Evolution

    PubMed Central

    Yu, Xianxian; Duan, Xiaoshan; Zhang, Rui; Fu, Xuehao; Ye, Lingling; Kong, Hongzhi; Xu, Guixia; Shan, Hongyan

    2016-01-01

    AP1/FUL, SEP, AGL6, and FLC subfamily genes play important roles in flower development. The phylogenetic relationships among them, however, have been controversial, which impedes our understanding of the origin and functional divergence of these genes. One possible reason for the controversy may be the problems caused by changes in the exon-intron structure of genes, which, according to recent studies, may generate non-homologous sites and hamper the homology-based sequence alignment. In this study, we first performed exon-by-exon alignments of these and three outgroup subfamilies (SOC1, AG, and STK). Phylogenetic trees reconstructed based on these matrices show improved resolution and better congruence with species phylogeny. In the context of these phylogenies, we traced evolutionary changes of exon-intron structures in each subfamily. We found that structural changes have occurred frequently following gene duplication and speciation events. Notably, exons 7 and 8 (if present) suffered more structural changes than others. With the knowledge of exon-intron structural changes, we generated more reasonable alignments containing all the focal subfamilies. The resulting trees showed that the SEP subfamily is sister to the monophyletic group formed by AP1/FUL and FLC subfamily genes and that the AGL6 subfamily forms a sister group to the three abovementioned subfamilies. Based on this topology, we inferred the evolutionary history of exon-intron structural changes among different subfamilies. Particularly, we found that the eighth exon originated before the divergence of AP1/FUL, FLC, SEP, and AGL6 subfamilies and degenerated in the ancestral FLC-like gene. These results provide new insights into the origin and evolution of the AP1/FUL, FLC, SEP, and AGL6 subfamilies. PMID:27200066

  10. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.

  11. The occurrence of spring forms in tetraploid Timopheevi wheat is associated with variation in the first intron of the VRN-A1 gene.

    PubMed

    Shcherban, Andrey Borisovich; Schichkina, Aleksandra Aleksandrovna; Salina, Elena Artemovna

    2016-11-16

    Triticum araraticum and Triticum timopheevii are tetraploid species of the Timopheevi group. The former includes both winter and spring forms with a predominance of winter forms, whereas T. timopheevii is considered a spring species. In order to clarify the origin of the spring growth habit in T. timopheevii, allelic variability of the VRN-1 gene was investigated in a set of accessions of both tetraploid species, together with the diploid species Ae. speltoides, presumed donor of the G genome to these tetraploids. The promoter region of the VRN-A1 locus in all studied tetraploid accessions of both T. araraticum and T. timopheevii represents the previously described allele VRN-A1f with a 50 bp deletion near the start codon. Three additional alleles were identified namely, VRN-A1f-del, VRN-A1f-ins and VRN-A1f-del/ins, which contained large mutations in the first (1 st ) intron of VRN-A1. The first allele, carrying a deletion of 2.7 kb in a central part of intron 1, occurred in a few accessions of T. araraticum and no accessions of T. timopheevii. The VRN-A1f-ins allele, containing the insertion of a 0.4 kb MITE element about 0.4 kb upstream from the start of intron 1, and allele VRN-A1f-del/ins having this insertion coupled with a deletion of 2.7 kb are characteristic only for T. timopheevii. Allelic variation at the VRN-G1 locus includes the previously described allele VRN-G1a (with the insertion of a 0.2 kb MITE in the promoter) found in a few accessions of both tetraploid species. We showed that alleles VRN-A1f-del and VRN-G1a have no association with the spring growth habit, while in all accessions of T. timopheevii this habit was associated with the dominant VRN-A1f-ins and VRN-A1f-del/ins alleles. None of the Ae. speltoides accessions included in this study had changes in the promoter or 1 st intron regions of VRN-1 which might confer a spring growth habit. The VRN-1 promoter sequences analyzed herein and downloaded from databases have been used to construct a phylogram to assess the time of divergence of Ae. speltoides in relation to other wheat species. Among accessions of T. araraticum, the preferentially winter predecessor of T. timopheevii, two large mutations were found in both VRN-A1 and VRN-G1 loci (VRN-A1f-del and VRN-G1a) that were found to have no effect on vernalization requirements. Spring tetraploid T. timopheevii had one VRN-1 allele in common for two species (VRN-G1a), and two that were specific (VRN-A1f-ins, VRN-A1f-del/ins). The latter alleles include mutations in the 1 st intron of VRN-A1 and also share a 0.4 kb MITE insertion near the start of intron 1. We suggested that this insertion resulted in a spring growth habit in a progenitor of T. timopheevii which has probably been selected during subsequent domestication. The phylogram constructed on the basis of the VRN-1 promoter sequences confirmed the early divergence (~3.5 MYA) of the ancestor(s) of the B/G genomes from Ae. speltoides.

  12. In silico identification and analysis of phytoene synthase genes in plants.

    PubMed

    Han, Y; Zheng, Q S; Wei, Y P; Chen, J; Liu, R; Wan, H J

    2015-08-14

    In this study, we examined phytoene synthetase (PSY), the first key limiting enzyme in the synthesis of carotenoids and catalyzing the formation of geranylgeranyl pyrophosphate in terpenoid biosynthesis. We used known amino acid sequences of the PSY gene in tomato plants to conduct a genome-wide search and identify putative candidates in 34 sequenced plants. A total of 101 homologous genes were identified. Phylogenetic analysis revealed that PSY evolved independently in algae as well as monocotyledonous and dicotyledonous plants. Our results showed that the amino acid structures exhibited 5 motifs (motifs 1 to 5) in algae and those in higher plants were highly conserved. The PSY gene structures showed that the number of intron in algae varied widely, while the number of introns in higher plants was 4 to 5. Identification of PSY genes in plants and the analysis of the gene structure may provide a theoretical basis for studying evolutionary relationships in future analyses.

  13. New genetic variants of LATS1 detected in urinary bladder and colon cancer.

    PubMed

    Saadeldin, Mona K; Shawer, Heba; Mostafa, Ahmed; Kassem, Neemat M; Amleh, Asma; Siam, Rania

    2014-01-01

    LATS1, the large tumor suppressor 1 gene, encodes for a serine/threonine kinase protein and is implicated in cell cycle progression. LATS1 is down-regulated in various human cancers, such as breast cancer, and astrocytoma. Point mutations in LATS1 were reported in human sarcomas. Additionally, loss of heterozygosity of LATS1 chromosomal region predisposes to breast, ovarian, and cervical tumors. In the current study, we investigated LATS1 genetic variations including single nucleotide polymorphisms (SNPs), in 28 Egyptian patients with either urinary bladder or colon cancers. The LATS1 gene was amplified and sequenced and the expression of LATS1 at the RNA level was assessed in 12 urinary bladder cancer samples. We report, the identification of a total of 29 variants including previously identified SNPs within LATS1 coding and non-coding sequences. A total of 18 variants were novel. Majority of the novel variants, 13, were mapped to intronic sequences and un-translated regions of the gene. Four of the five novel variants located in the coding region of the gene, represented missense mutations within the serine/threonine kinase catalytic domain. Interestingly, LATS1 RNA steady state levels was lost in urinary bladder cancerous tissue harboring four specific SNPs (16045 + 41736 + 34614 + 56177) positioned in the 5'UTR, intron 6, and two silent mutations within exon 4 and exon 8, respectively. This study identifies novel single-base-sequence alterations in the LATS1 gene. These newly identified variants could potentially be used as novel diagnostic or prognostic tools in cancer.

  14. A novel intronic mutation in the DDP1 gene in a family with X-linked dystonia-deafness syndrome.

    PubMed

    Ezquerra, Mario; Campdelacreu, Jaume; Muñoz, Esteban; Tolosa, Eduardo; Martí, María J

    2005-02-01

    X-linked dystonia-deafness syndrome (Mohr-Tranebjaerg syndrome) is a rare neurodegenerative disease characterized by hearing loss and dystonia. So far, 7 mutations in the coding region of the DDP1 gene have been described. They consist of frameshift, nonsense, missense mutations or deletions. To investigate the presence of mutations in the DDP1 gene in a family with dystonia-deafness syndrome. Seven members belonging to 2 generations of a family with 2 affected subjects underwent genetic analysis. Mutational screening in the DDP1 gene was made through DNA direct sequencing. We found an intronic mutation in the DDP1 gene. It consists of an A-to-C substitution in the position -23 in reference to the first nucleotide of exon 2 (IVS1-23A>C). The mutation was present in 2 affected men and their respective unaffected mothers, whereas it was absent in the healthy men from this family and in 90 healthy controls. Intronic mutations in the DDP1 gene can also cause X-linked dystonia-deafness syndrome. In our case, the effect of the mutation could be due to a splicing alteration.

  15. Developmental expression of a regulatory gene is programmed at the level of splicing.

    PubMed Central

    Chou, T B; Zachar, Z; Bingham, P M

    1987-01-01

    We report sequence and transcript structures for a 6191-base chromosomal segment containing the presumptive regulatory gene from Drosophila, suppressor-of-white-apricot [su(wa)]. Our results indicate that su(wa) expression is controlled by regulating occurrence of specific splices. Seven introns are removed from the su(wa) primary transcript during precellular blastoderm development. The sequence of this mature RNA indicates that it is a conventional messenger RNA. In contrast, after cellular blastoderm the first two of these introns cease to be efficiently removed. The mature RNAs resulting from this failure to remove the first two introns have structures quite unexpected of mRNAs. We propose that postcellular blastoderm su(wa) expression is repressed by preventing splices necessary to produce a functional mRNA. Implications and mechanisms are discussed. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2832151

  16. Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient.

    PubMed

    Greer, Kane; Mizzi, Kayla; Rice, Emily; Kuster, Lukas; Barrero, Roberto A; Bellgard, Matthew I; Lynch, Bryan J; Foley, Aileen Reghan; O Rathallaigh, Eoin; Wilton, Steve D; Fletcher, Sue

    2015-07-01

    We report a dystrophinopathy patient with an in-frame deletion of DMD exons 45-47, and therefore a genetic diagnosis of Becker muscular dystrophy, who presented with a more severe than expected phenotype. Analysis of the patient DMD mRNA revealed an 82 bp pseudoexon, derived from intron 44, that disrupts the reading frame and is expected to yield a nonfunctional dystrophin. Since the sequence of the pseudoexon and canonical splice sites does not differ from the reference sequence, we concluded that the genomic rearrangement promoted recognition of the pseudoexon, causing a severe dystrophic phenotype. We characterized the deletion breakpoints and identified motifs that might influence selection of the pseudoexon. We concluded that the donor splice site was strengthened by juxtaposition of intron 47, and loss of intron 44 silencer elements, normally located downstream of the pseudoexon donor splice site, further enhanced pseudoexon selection and inclusion in the DMD transcript in this patient.

  17. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes.

    PubMed

    Francis, Warren R; Wörheide, Gert

    2017-06-01

    One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. An open reading frame in intron seven of the sea urchin DNA-methyltransferase gene codes for a functional AP1 endonuclease.

    PubMed

    Cioffi, Anna Valentina; Ferrara, Diana; Cubellis, Maria Vittoria; Aniello, Francesco; Corrado, Marcella; Liguori, Francesca; Amoroso, Alessandro; Fucci, Laura; Branno, Margherita

    2002-08-01

    Analysis of the genome structure of the Paracentrotus lividus (sea urchin) DNA methyltransferase (DNA MTase) gene showed the presence of an open reading frame, named METEX, in intron 7 of the gene. METEX expression is developmentally regulated, showing no correlation with DNA MTase expression. In fact, DNA MTase transcripts are present at high concentrations in the early developmental stages, while METEX is expressed at late stages of development. Two METEX cDNA clones (Met1 and Met2) that are different in the 3' end have been isolated in a cDNA library screening. The putative translated protein from Met2 cDNA clone showed similarity with Escherichia coli endonuclease III on the basis of sequence and predictive three-dimensional structure. The protein, overexpressed in E. coli and purified, had functional properties similar to the endonuclease specific for apurinic/apyrimidinic (AP) sites on the basis of the lyase activity. Therefore the open reading frame, present in intron 7 of the P. lividus DNA MTase gene, codes for a functional AP endonuclease designated SuAP1.

  19. Mitochondrial genomes of the green macroalga Ulva pertusa (Ulvophyceae, Chlorophyta): novel insights into the evolution of mitogenomes in the Ulvophyceae.

    PubMed

    Liu, Feng; Melton, James T; Bi, Yuping

    2017-10-01

    To further understand the trends in the evolution of mitochondrial genomes (mitogenomes or mtDNAs) in the Ulvophyceae, the mitogenomes of two separate thalli of Ulva pertusa were sequenced. Two U. pertusa mitogenomes (Up1 and Up2) were 69,333 bp and 64,602 bp in length. These mitogenomes shared two ribosomal RNAs (rRNAs), 28 transfer RNAs (tRNAs), 29 protein-coding genes, and 12 open reading frames. The 4.7 kb difference in size was attributed to variation in intron content and tandem repeat regions. A total of six introns were present in the smaller U. pertusa mtDNA (Up2), while the larger mtDNA (Up1) had eight. The larger mtDNA had two additional group II introns in two genes (cox1 and cox2) and tandem duplication mutations in noncoding regions. Our results showed the first case of intraspecific variation in chlorophytan mitogenomes and provided further genomic data for the undersampled Ulvophyceae. © 2017 Phycological Society of America.

  20. Molecular Variation at the HLA-A, B, C, DRB1, DQA1, and DQB1 Loci in Full Heritage American Indians in Arizona: Private Haplotypes and Their Evolution

    PubMed Central

    Williams, Robert; Chen, Yao-Fong; Endres, Robert; Middleton, Derek; Trucco, Massimo; Knowler, William

    2009-01-01

    A sample of 492 full heritage, unrelated residents of the Gila River Indian Community (GRIC) of Arizona were characterized for their high resolution DNA alleles at the HLA-A, B, C, DRB1, DQA1, and DQB1 loci. Only 5 allelic categories are found at HLA-A, 10 at HLA-B, 8 at HLA-C and HLA-DR, and 4 at DQA1 and DQB1. There is little evidence for population structure at the 6 loci. Two “private” alleles, B*5102 and B*4005, that are found nearly exclusively in American Indian populations in the desert southwest and northern Mexico, are likely new mutations after the first inhabitation of the area, the evolution of which are reflected in the contemporary distribution of their respective haplotypes. DRB1*1402 has the highest reported frequency of any specificity at the DRB1 locus, 0.7461, and serves as a sensitive probe for locating related east Asian populations. The haplotypes in this population also exhibit a highly restricted distribution and strong genetic disequilibria, which has important implications for matching solid organ and bone marrow allografts. It is shown that, when one considers HLA-A-B-DRB1 homozygotes as allograft donors for all full heritage members of the GRIC, 50% of the community would find a non-mismatched organ within the homozygotes for the 6 most common haplotypes. This raises questions about transplantation policy and whether, in the presence of high frequency private alleles and a restricted number of haplotypes, the full heritage American Indian community of the desert southwest should act as its own pool of donors for its affected members. PMID:19845915

  1. Molecular variation at the HLA-A, B, C, DRB1, DQA1, and DQB1 loci in full heritage American Indians in Arizona: private haplotypes and their evolution.

    PubMed

    Williams, R; Chen, Y-F; Endres, R; Middleton, D; Trucco, M; Williams, J Dunn; Knowler, W

    2009-12-01

    A sample of 492 full heritage, unrelated residents of the Gila River Indian Community (GRIC) of Arizona were characterized for their high-resolution DNA alleles at the HLA-A, B, C, DRB1, DQA1, and DQB1 loci. Only five allelic categories are found at HLA-A, 10 at HLA-B, 8 at HLA-C and HLA-DR, and 4 at DQA1 and DQB1. There is little evidence for population structure at the 6 loci. Two 'private' alleles, B*5102 and B*4005, which are found nearly exclusively in American Indian populations in the desert southwest and northern Mexico, are likely new mutations after the first inhabitation of the area, the evolution of which are reflected in the contemporary distribution of their respective haplotypes. DRB1*1402 has the highest reported frequency of any specificity at the DRB1 locus, 0.7461, and serves as a sensitive probe for locating related east Asian populations. The haplotypes in this population also exhibit a highly restricted distribution and strong genetic disequilibria, which has important implications for matching solid organ and bone marrow allografts. It is shown that, when one considers HLA-A-B-DRB1 homozygotes as allograft donors for all full heritage members of the GRIC, 50% of the community would find a non-mismatched organ within the homozygotes for the six most common haplotypes. This raises questions about transplantation policy and whether, in the presence of high-frequency private alleles and a restricted number of haplotypes, the full heritage American Indian community of the desert southwest should act as its own pool of donors for its affected members.

  2. Complex HLA association in paraneoplastic cerebellar ataxia with anti-Yo antibodies.

    PubMed

    Hillary, Ryan P; Ollila, Hanna M; Lin, Ling; Desestret, Virginie; Rogemond, Veronique; Picard, Geraldine; Small, Mathilde; Arnulf, Isabelle; Dauvilliers, Yves; Honnorat, Jerome; Mignot, Emmanuel

    2018-02-15

    Anti-Yo paraneoplastic cerebellar degeneration (PCD) is a devastating autoimmune complication of gynecological cancers. We hypothesized that as for other autoimmune diseases, specific HLA haplotypes are associated. We conducted high resolution HLA typing of Class I/Class II in 40 cases versus ethnically matched controls. Three cases with anti-Yo antibodies and peripheral neuropathy were also included. We detected protective effects of DPA1*01:03~DPB1*04:01 (OR=0, p=0.0008), DRB1*04:01~DQA1*03:03(OR=0, p=0.0016) and DPA1*01:03~DPB1*04:01 (OR=0.35, p=0.0047) overall. Increased DRB1*13:01~DQA1*01:03~DQB1*06:03 was also found in PCD ovarian cases (OR=5.4, p=0.0016). These results suggest differential genetic susceptibility to anti-Yo per cancer and with a primary HLA Class II involvement. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome.

    PubMed

    Nozu, Kandai; Iijima, Kazumoto; Nozu, Yoshimi; Ikegami, Ei; Imai, Takehide; Fu, Xue Jun; Kaito, Hiroshi; Nakanishi, Koichi; Yoshikawa, Norishige; Matsuo, Masafumi

    2009-11-01

    Many mutations have been detected in the SLC12A3 gene of Gitelman syndrome (GS, OMIM 263800) patients. In previous studies, only one mutant allele was detected in approximately 20 to 41% of patients with GS; however, the exact reason for the nonidentification has not been established. In this study, we used RT-PCR using mRNA to investigate for the first time transcript abnormalities caused by deep intronic mutation. Direct sequencing analysis of leukocyte DNA identified one base insertion in exon 6 (c.818_819insG), but no mutation was detected in another allele. We analyzed RNA extracted from leukocytes and urine sediments and detected unknown sequence containing 238bp between exons 13 and 14. The genomic DNA analysis of intron 13 revealed a single-base substitution (c.1670-191C>T) that creates a new donor splice site within the intron resulting in the inclusion of a novel cryptic exon in mRNA. This is the first report of creation of a splice site by a deep intronic single-nucleotide change in GS and the first report to detect the onset mechanism in a patient with GS and missing mutation in one allele. This molecular onset mechanism may partly explain the poor success rate of mutation detection in both alleles of patients with GS.

  4. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata.

    PubMed

    Ding, Ping; Shao, Yanhua; Li, Qian; Gao, Junli; Zhang, Runjing; Lai, Xiaoping; Wang, Deqin; Zhang, Huiye

    2016-07-01

    The complete chloroplast genome of Andrographis paniculata, an important medicinal plant with great economic value, has been studied in this article. The genome size is 150,249 bp in length, with 38.3% GC content. A pair of inverted repeats (IRs, 25,300 bp) are separated by a large single copy region (LSC, 82,459 bp) and a small single-copy region (SSC, 17,190 bp). The chloroplast genome contains 114 unique genes, 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. In these genes, 15 genes contained 1 intron and 3 genes comprised of 2 introns.

  5. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    PubMed

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  6. hnRNP L regulates differences in expression of mouse integrin α2β1

    PubMed Central

    Cheli, Yann; Kunicki, Thomas J.

    2006-01-01

    There is a 2-fold variation in platelet integrin α2β1 levels among inbred mouse strains. Decreased α2β1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet α2β1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L–specific siRNA. Thus, decreased surface α2β1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1. PMID:16455949

  7. cDNA, genomic sequence cloning, and overexpression of EIF1 from the giant panda (Ailuropoda Melanoleuca) and the black bear (Ursus Thibetanus Mupinensis).

    PubMed

    Hou, Wan-ru; Tang, Yun; Hou, Yi-ling; Song, Yan; Zhang, Tian; Wu, Guang-fu

    2010-07-01

    Eukaryotic initiation factor (eIF) EIF1 is a universally conserved translation factor that is involved in translation initiation site selection. The cDNA and the genomic sequences of EIF1 were cloned successfully from the giant panda (Ailuropoda melanoleuca) and the black bear (Ursus thibetanus mupinensis) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-polymerase chain reaction, respectively. The cDNAs of the EIF1 cloned from the giant panda and the black bear are 418 bp in size, containing an open reading frame (ORF) of 342 bp encoding 113 amino acids. The length of the genomic sequence of the giant panda is 1909 bp, which contains four exons and three introns. The length of the genomic sequence of the black bear is 1897 bp, which also contains four exons and three introns. Sequence alignment indicates a high degree of homology to those of Homo sapiens, Mus musculus, Rattus norvegicus, and Bos Taurus at both amino acid and DNA levels. Topology prediction shows there are one N-glycosylation site, two Casein kinase II phosphorylation sites, and a Amidation site in the EIF1 protein of the giant panda and black bear. In addition, there is a protein kinase C phosphorylation site in EIF1 of the giant panda. The giant panda and the black bear EIF1 genes were overexpressed in E. coli BL21. The results indicated that the both EIF1 fusion proteins with the N-terminally His-tagged form gave rise to the accumulation of two expected 19 kDa polypeptide. The expression products obtained could be used to purify the proteins and study their function further.

  8. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls

    PubMed Central

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana

    2017-01-01

    Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidaud, M.; Vidaud, D.; Amselem, S.

    The authors have characterized a Mediterranean {beta}-thalassemia allele containing a sequence change at codon 30 that alters both {beta}-globin pre-mRNA splicing and the structure of the homoglobin product. Presumably, this G {yields} C transversion at position {minus}1 of intron 1 reduces severely the utilization of the normal 5{prime} splice site since the level of the Arg {yields} Thr mutant hemoglobin (designated hemoglobin Kairouan) found in the erythrocytes of the patient is very low (2% of total hemoglobin). Since no natural mutations of the guanine located at position {minus}1 of the CAG/GTAAGT consensus sequence had been isolated previously. They investigated themore » role of this nucleotide in the constitution of an active 5{prime} splice site by studying the splicing of the pre-mRNA in cell-free extracts. They demonstrate that correct splicing of the mutant pre-mRNA is 98% inhibited. Their results provide further insights into the mechanisms of pre-mRNA maturation by revealing that the last residue of the exon plays a role at least equivalent to that of the intron residue at position +5.« less

  10. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop. PMID:22734675

  11. Genetic Contribution of MHC Class II Genes in Susceptibility to West Nile Virus Infection

    PubMed Central

    Sarri, Constantina A.; Markantoni, Maria; Stamatis, Costas; Papa, Anna; Tsakris, Athanasios; Pervanidou, Danai; Baka, Agoritsa; Politis, Constantina; Billinis, Charalambos; Hadjichristodoulou, Christos; Mamuris, Zissis

    2016-01-01

    WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004) while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003). Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018). DRB1*16:02 was also absent from the control cohort (P = 0.016). Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country. PMID:27812212

  12. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron

    PubMed Central

    Hiesel, Rudolf; Brennicke, Axel

    1983-01-01

    The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484

  14. Latency-associated transcript (LAT) exon 1 controls herpes simplex virus species-specific phenotypes: reactivation in the guinea pig genital model and neuron subtype-specific latent expression of LAT.

    PubMed

    Bertke, Andrea S; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P; Krause, Philip R

    2009-10-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5' ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA.

  15. Latency-Associated Transcript (LAT) Exon 1 Controls Herpes Simplex Virus Species-Specific Phenotypes: Reactivation in the Guinea Pig Genital Model and Neuron Subtype-Specific Latent Expression of LAT▿

    PubMed Central

    Bertke, Andrea S.; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P.; Krause, Philip R.

    2009-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5′ ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA. PMID:19641003

  16. Identification of Genetic Elements Associated with EPSPS Gene Amplification

    PubMed Central

    Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.

    2013-01-01

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434

  17. A Targeted Oligonucleotide Enhancer of SMN2 Exon 7 Splicing Forms Competing Quadruplex and Protein Complexes in Functional Conditions

    PubMed Central

    Smith, Lindsay D.; Dickinson, Rachel L.; Lucas, Christian M.; Cousins, Alex; Malygin, Alexey A.; Weldon, Carika; Perrett, Andrew J.; Bottrill, Andrew R.; Searle, Mark S.; Burley, Glenn A.; Eperon, Ian C.

    2014-01-01

    Summary The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5′ end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs. PMID:25263560

  18. Insertion of an SVA-E retrotransposon into the CASP8 gene is associated with protection against prostate cancer

    PubMed Central

    Stacey, Simon N.; Kehr, Birte; Gudmundsson, Julius; Zink, Florian; Jonasdottir, Aslaug; Gudjonsson, Sigurjon A.; Sigurdsson, Asgeir; Halldorsson, Bjarni V.; Agnarsson, Bjarni A.; Benediktsdottir, Kristrun R.; Aben, Katja K.H.; Vermeulen, Sita H.; Cremers, Ruben G.; Panadero, Angeles; Helfand, Brian T.; Cooper, Phillip R.; Donovan, Jenny L.; Hamdy, Freddie C.; Jinga, Viorel; Okamoto, Ichiro; Jonasson, Jon G.; Tryggvadottir, Laufey; Johannsdottir, Hrefna; Kristinsdottir, Anna M.; Masson, Gisli; Magnusson, Olafur T.; Iordache, Paul D.; Helgason, Agnar; Helgason, Hannes; Sulem, Patrick; Gudbjartsson, Daniel F.; Kong, Augustine; Jonsson, Eirikur; Barkardottir, Rosa B.; Einarsson, Gudmundur V.; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Mates, Ioan N.; Neal, David E.; Catalona, William J.; Mayordomo, José I.; Kiemeney, Lambertus A.; Thorleifsson, Gudmar; Stefansson, Kari

    2016-01-01

    Transcriptional and splicing anomalies have been observed in intron 8 of the CASP8 gene (encoding procaspase-8) in association with cutaneous basal-cell carcinoma (BCC) and linked to a germline SNP rs700635. Here, we show that the rs700635[C] allele, which is associated with increased risk of BCC and breast cancer, is protective against prostate cancer [odds ratio (OR) = 0.91, P = 1.0 × 10−6]. rs700635[C] is also associated with failures to correctly splice out CASP8 intron 8 in breast and prostate tumours and in corresponding normal tissues. Investigation of rs700635[C] carriers revealed that they have a human-specific short interspersed element-variable number of tandem repeat-Alu (SINE-VNTR-Alu), subfamily-E retrotransposon (SVA-E) inserted into CASP8 intron 8. The SVA-E shows evidence of prior activity, because it has transduced some CASP8 sequences during subsequent retrotransposition events. Whole-genome sequence (WGS) data were used to tag the SVA-E with a surrogate SNP rs1035142[T] (r2 = 0.999), which showed associations with both the splicing anomalies (P = 6.5 × 10−32) and with protection against prostate cancer (OR = 0.91, P = 3.8 × 10−7). PMID:26740556

  19. Regulation of insulin preRNA splicing by glucose

    PubMed Central

    Wang, Juehu; Shen, Luping; Najafi, Habiba; Kolberg, Janice; Matschinsky, Franz M.; Urdea, Mickey; German, Michael

    1997-01-01

    Glucose tightly regulates the synthesis and secretion of insulin by β cells in the pancreatic islets of Langerhans. To investigate whether glucose regulates insulin synthesis at the level of insulin RNA splicing, we developed a method to detect and quantify a small amount of RNA by using the branched DNA (bDNA) signal-amplification technique. This assay is both sensitive and highly specific: mouse insulin II mRNA can be detected from a single β cell (βTC3 cells or mouse islets), whereas 1 million non-insulin-producing α cells (αTC1.6 cells) give no signal. By using intron and exon sequences, oligonucleotide probes were designed to distinguish the various unspliced and partially spliced insulin preRNAs from mature insulin mRNA. Insulin RNA splicing rates were estimated from the rate of disappearance of insulin preRNA signal from β cells treated with actinomycin D to block transcription. We found that the two introns in mouse insulin II are not spliced with the same efficiency. Intron 2 is spliced out more efficiently than intron 1. As a result, some mRNA retaining intron 1 enters the cytoplasm, making up ≈2-10% of insulin mRNA in the cell. This partially spliced cytoplasmic mRNA is quite stable, with a half-life similar to the completely spliced form. When islets grown in high glucose are shifted to low glucose medium, the level of insulin preRNA and the rate of splicing fall significantly. We conclude that glucose stimulates insulin gene transcription and insulin preRNA splicing. Previous estimates of insulin transcription rates based on insulin preRNA levels that did not consider the rate of splicing may have underestimated the effect of glucose on insulin gene transcription. PMID:9113994

  20. Molecular characterization of beta-tubulin from Phakopsora pachyrhizi, the causal agent of Asian soybean rust

    PubMed Central

    2010-01-01

    β-tubulins are structural components of microtubules and the targets of benzimidazole fungicides used to control many diseases of agricultural importance. Intron polymorphisms in the intron-rich genes of these proteins have been used in phylogeographic investigations of phytopathogenic fungi. In this work, we sequenced 2764 nucleotides of the β-tubulin gene (Pp tubB) in samples of Phakopsora pachyrhizi collected from seven soybean fields in Brazil. Pp tubB contained an open reading frame of 1341 nucleotides, including nine exons and eight introns. Exon length varied from 14 to 880 nucleotides, whereas intron length varied from 76 to 102 nucleotides. The presence of only four polymorphic sites limited the usefulness of Pp tubB for phylogeographic studies in P. pachyrhizi. The gene structures of Pp tubB and orthologous β-tubulin genes of Melampsora lini and Uromyces viciae-fabae were highly conserved. The amino acid substitutions in β-tubulin proteins associated with the onset of benzimidazole resistance in model organisms, especially at His 6 , Glu 198 and Phe 200 , were absent from the predicted sequence of the P. pachyrhizi β-tubulin protein. PMID:21637494

  1. Genetic Analysis of 13 Iranian Families With Leukocyte Adhesion Deficiency Type 1.

    PubMed

    Teimourian, Shahram; De Boer, Martin; Roos, Dirk; Isaian, Anna; Bemanian, Mohammad Hassan; Lashkary, Sharhzad; Nabavi, Mohammad; Arshi, Saba; Nateghian, Alireza; Sayyahfar, Shirin; Sazgara, Faezeh; Taheripak, Gholamreza; Alipour Fayez, Elham

    2018-05-10

    Leukocyte adhesion deficiency type 1 is a rare, autosomal recessive disorder that results from mutations in the ITGB2 gene. This gene encodes the CD18 subunit of β2 integrin leukocyte adhesion cell molecules. Leukocyte adhesion deficiency type 1 is characterized by recurrent bacterial infections, impaired wound healing, inadequate pus formation, and delayed separation of the umbilical cord. Blood samples were taken from 13 patients after written consent had been obtained. Genomic DNA was extracted, and ITGB2 exons and exon-intron boundaries were amplified by polymerase chain reaction. The products were examined by Sanger sequencing. In this study, 8 different previously reported mutations (intron7+1G>A, c.715G>A, c.1777 C>T, c.843del C, c.1768T>C, c.1821C>A, Intron7+1G>A, c.1885G>A) and 2 novel mutations (c.1821C>A; p.Tyr607Ter and c.1822C>T; p.Gln608Ter) were found. c.1821C>A (p.Tyr607Ter) and c.1822C>T (p.Gln608Ter) mutations should be included in the panel of carrier detection and prenatal diagnosis.

  2. Structure and polymorphism of the mouse prion protein gene.

    PubMed Central

    Westaway, D; Cooper, C; Turner, S; Da Costa, M; Carlson, G A; Prusiner, S B

    1994-01-01

    Missense mutations in the prion protein (PrP) gene, overexpression of the cellular isoform of PrP (PrPC), and infection with prions containing the scrapie isoform of PrP (PrPSc) all cause neurodegenerative disease. To understand better the physiology and expression of PrPC, we retrieved mouse PrP gene (Prn-p) yeast artificial chromosome (YAC), cosmid, phage, and cDNA clones. Physical mapping positions Prn-p approximately 300 kb from ecotropic virus integration site number 4 (Evi-4), compatible with failure to detect recombination between Prn-p and Evi-4 in genetic crosses. The Prn-pa allele encompasses three exons, with exons 1 and 2 encoding the mRNA 5' untranslated region. Exon 2 has no equivalent in the Syrian hamster and human PrP genes. The Prn-pb gene shares this intron/exon structure but harbors an approximately 6-kb deletion within intron 2. While the Prn-pb open reading frame encodes two amino acid substitutions linked to prolonged scrapie incubation periods, a deletion of intron 2 sequences also characterizes inbred strains such as RIII/S and MOLF/Ei with shorter incubation periods, making a relationship between intron 2 size and scrapie pathogenesis unlikely. The promoter regions of a and b Prn-p alleles include consensus Sp1 and AP-1 sites, as well as other conserved motifs which may represent binding sites for as yet unidentified transcription factors. Images PMID:7912827

  3. The legumin gene family: structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element.

    PubMed Central

    Bäumlein, H; Wobus, U; Pustell, J; Kafatos, F C

    1986-01-01

    The field bean, Vicia faba L. var. minor, possesses two sub-families of 11 S legumin genes named A and B. We isolated from a genomic library a B-type gene (LeB4) and determined its primary DNA sequence. Gene LeB4 codes for a 484 amino acid residue prepropolypeptide, encompassing a signal peptide of 22 amino acid residues, an acidic, very hydrophilic alpha-chain of 281 residues and a basic, somewhat hydrophobic beta-chain of 181 residues. The latter two coding regions are immediately contiguous, but each is interrupted by a short intron. Type A legumin genes from soybean and pea are known to have introns in the same two positions, in addition to an extra intron (within the alpha-coding sequence). Sequence comparisons of legumin genes from these three plants revealed a highly conserved sequence element of at least 28 bp, centered at approximately 100 bp upstream of each cap site. The element is absent from the equivalent position of all non-legumin and other plant and fungal genes examined. We tentatively name this element "legumin box" and suggest that it may have a function in the regulation of legumin gene expression. PMID:3960730

  4. Germline EMSY sequence alterations in hereditary breast cancer and ovarian cancer families.

    PubMed

    Määttä, Kirsi M; Nurminen, Riikka; Kankuri-Tammilehto, Minna; Kallioniemi, Anne; Laasanen, Satu-Leena; Schleutker, Johanna

    2017-07-24

    BRCA1 and BRCA2 mutations explain approximately one-fifth of the inherited susceptibility in high-risk Finnish hereditary breast and ovarian cancer (HBOC) families. EMSY is located in the breast cancer-associated chromosomal region 11q13. The EMSY gene encodes a BRCA2-interacting protein that has been implicated in DNA damage repair and genomic instability. We analysed the role of germline EMSY variation in breast/ovarian cancer predisposition. The present study describes the first EMSY screening in patients with high familial risk for this disease. Index individuals from 71 high-risk, BRCA1/2-negative HBOC families were screened for germline EMSY sequence alterations in protein coding regions and exon-intron boundaries using Sanger sequencing and TaqMan assays. The identified variants were further screened in 36 Finnish HBOC patients and 904 controls. Moreover, one novel intronic deletion was screened in a cohort of 404 breast cancer patients unselected for family history. Haplotype block structure and the association of haplotypes with breast/ovarian cancer were analysed using Haploview. The functionality of the identified variants was predicted using Haploreg, RegulomeDB, Human Splicing Finder, and Pathogenic-or-Not-Pipeline 2. Altogether, 12 germline EMSY variants were observed. Two alterations were located in the coding region, five alterations were intronic, and five alterations were located in the 3'untranslated region (UTR). Variant frequencies did not significantly differ between cases and controls. The novel variant, c.2709 + 122delT, was detected in 1 out of 107 (0.9%) breast cancer patients, and the carrier showed a bilateral form of the disease. The deletion was absent in 897 controls (OR = 25.28; P = 0.1) and in 404 breast cancer patients unselected for family history. No haplotype was identified to increase the risk of breast/ovarian cancer. Functional analyses suggested that variants, particularly in the 3'UTR, were located within regulatory elements. The novel deletion was predicted to affect splicing regulatory elements. These results suggest that the identified EMSY variants are likely neutral at the population level. However, these variants may contribute to breast/ovarian cancer risk in single families. Additional analyses are warranted for rare novel intronic deletions and the 3'UTR variants predicted to have functional roles.

  5. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    PubMed

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null mutant makes an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium and Rhodotorula genera. The system will be a valuable tool for metabolic engineering and enzyme expression in these yeast hosts.

  6. Allotetraploid origin and divergence in Eleusine (Chloridoideae, Poaceae): evidence from low-copy nuclear gene phylogenies and a plastid gene chronogram.

    PubMed

    Liu, Qing; Triplett, Jimmy K; Wen, Jun; Peterson, Paul M

    2011-11-01

    Eleusine (Poaceae) is a small genus of the subfamily Chloridoideae exhibiting considerable morphological and ecological diversity in East Africa and the Americas. The interspecific phylogenetic relationships of Eleusine are investigated in order to identify its allotetraploid origin, and a chronogram is estimated to infer temporal relationships between palaeoenvironment changes and divergence of Eleusine in East Africa. Two low-copy nuclear (LCN) markers, Pepc4 and EF-1α, were analysed using parsimony, likelihood and Bayesian approaches. A chronogram of Eleusine was inferred from a combined data set of six plastid DNA markers (ndhA intron, ndhF, rps16-trnK, rps16 intron, rps3, and rpl32-trnL) using the Bayesian dating method. The monophyly of Eleusine is strongly supported by sequence data from two LCN markers. In the cpDNA phylogeny, three tetraploid species (E. africana, E. coracana and E. kigeziensis) share a common ancestor with the E. indica-E. tristachya clade, which is considered a source of maternal parents for allotetraploids. Two homoeologous loci are isolated from three tetraploid species in the Pepc4 phylogeny, and the maternal parents receive further support. The A-type EF-1α sequences possess three characters, i.e. a large number of variations of intron 2; clade E-A distantly diverged from clade E-B and other diploid species; and seven deletions in intron 2, implying a possible derivation through a gene duplication event. The crown age of Eleusine and the allotetraploid lineage are 3·89 million years ago (mya) and 1·40 mya, respectively. The molecular data support independent allotetraploid origins for E. kigeziensis and the E. africana-E. coracana clade. Both events may have involved diploids E. indica and E. tristachya as the maternal parents, but the paternal parents remain unidentified. The habitat-specific hypothesis is proposed to explain the divergence of Eleusine and its allotetraploid lineage.

  7. Allotetraploid origin and divergence in Eleusine (Chloridoideae, Poaceae): evidence from low-copy nuclear gene phylogenies and a plastid gene chronogram

    PubMed Central

    Liu, Qing; Triplett, Jimmy K.; Wen, Jun; Peterson, Paul M.

    2011-01-01

    Background and Aims Eleusine (Poaceae) is a small genus of the subfamily Chloridoideae exhibiting considerable morphological and ecological diversity in East Africa and the Americas. The interspecific phylogenetic relationships of Eleusine are investigated in order to identify its allotetraploid origin, and a chronogram is estimated to infer temporal relationships between palaeoenvironment changes and divergence of Eleusine in East Africa. Methods Two low-copy nuclear (LCN) markers, Pepc4 and EF-1α, were analysed using parsimony, likelihood and Bayesian approaches. A chronogram of Eleusine was inferred from a combined data set of six plastid DNA markers (ndhA intron, ndhF, rps16-trnK, rps16 intron, rps3, and rpl32-trnL) using the Bayesian dating method. Key Results The monophyly of Eleusine is strongly supported by sequence data from two LCN markers. In the cpDNA phylogeny, three tetraploid species (E. africana, E. coracana and E. kigeziensis) share a common ancestor with the E. indica–E. tristachya clade, which is considered a source of maternal parents for allotetraploids. Two homoeologous loci are isolated from three tetraploid species in the Pepc4 phylogeny, and the maternal parents receive further support. The A-type EF-1α sequences possess three characters, i.e. a large number of variations of intron 2; clade E-A distantly diverged from clade E-B and other diploid species; and seven deletions in intron 2, implying a possible derivation through a gene duplication event. The crown age of Eleusine and the allotetraploid lineage are 3·89 million years ago (mya) and 1·40 mya, respectively. Conclusions The molecular data support independent allotetraploid origins for E. kigeziensis and the E. africana–E. coracana clade. Both events may have involved diploids E. indica and E. tristachya as the maternal parents, but the paternal parents remain unidentified. The habitat-specific hypothesis is proposed to explain the divergence of Eleusine and its allotetraploid lineage. PMID:21880659

  8. The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2005-01-01

    Background The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum. Results The 157,089 bp Staurastrum and 165,372 bp Zygnema cpDNAs encode 121 and 125 genes, respectively. Although both cpDNAs lack an rRNA-encoding inverted repeat (IR), they are substantially larger than Chaetosphaeridium and land plant cpDNAs. This increased size is explained by the expansion of intergenic spacers and introns. The Staurastrum and Zygnema genomes differ extensively from one another and from their streptophyte counterparts at the level of gene order, with the Staurastrum genome more closely resembling its land plant counterparts than does Zygnema cpDNA. Many intergenic regions in Zygnema cpDNA harbor tandem repeats. The introns in both Staurastrum (8 introns) and Zygnema (13 introns) cpDNAs represent subsets of those found in land plant cpDNAs. They represent 16 distinct insertion sites, only five of which are shared by the two zygnematalean genomes. Three of these insertions sites have not been identified in Chaetosphaeridium cpDNA. Conclusion The chloroplast genome experienced substantial changes in overall structure, gene order, and intron content during the evolution of the Zygnematales. Most of the features considered earlier as typical of land plant cpDNAs probably originated before the emergence of the Zygnematales and Coleochaetales. PMID:16236178

  9. Genome-wide mapping of alternative splicing in Arabidopsis thaliana

    PubMed Central

    Filichkin, Sergei A.; Priest, Henry D.; Givan, Scott A.; Shen, Rongkun; Bryant, Douglas W.; Fox, Samuel E.; Wong, Weng-Keen; Mockler, Todd C.

    2010-01-01

    Alternative splicing can enhance transcriptome plasticity and proteome diversity. In plants, alternative splicing can be manifested at different developmental stages, and is frequently associated with specific tissue types or environmental conditions such as abiotic stress. We mapped the Arabidopsis transcriptome at single-base resolution using the Illumina platform for ultrahigh-throughput RNA sequencing (RNA-seq). Deep transcriptome sequencing confirmed a majority of annotated introns and identified thousands of novel alternatively spliced mRNA isoforms. Our analysis suggests that at least ∼42% of intron-containing genes in Arabidopsis are alternatively spliced; this is significantly higher than previous estimates based on cDNA/expressed sequence tag sequencing. Random validation confirmed that novel splice isoforms empirically predicted by RNA-seq can be detected in vivo. Novel introns detected by RNA-seq were substantially enriched in nonconsensus terminal dinucleotide splice signals. Alternative isoforms with premature termination codons (PTCs) comprised the majority of alternatively spliced transcripts. Using an example of an essential circadian clock gene, we show that intron retention can generate relatively abundant PTC+ isoforms and that this specific event is highly conserved among diverse plant species. Alternatively spliced PTC+ isoforms can be potentially targeted for degradation by the nonsense mediated mRNA decay (NMD) surveillance machinery or regulate the level of functional transcripts by the mechanism of regulated unproductive splicing and translation (RUST). We demonstrate that the relative ratios of the PTC+ and reference isoforms for several key regulatory genes can be considerably shifted under abiotic stress treatments. Taken together, our results suggest that like in animals, NMD and RUST may be widespread in plants and may play important roles in regulating gene expression. PMID:19858364

  10. mRNA-based detection of rare CFTR mutations improves genetic diagnosis of cystic fibrosis in populations with high genetic heterogeneity.

    PubMed

    Felício, V; Ramalho, A S; Igreja, S; Amaral, M D

    2017-03-01

    Even with advent of next generation sequencing complete sequencing of large disease-associated genes and intronic regions is economically not feasible. This is the case of cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible for cystic fibrosis (CF). Yet, to confirm a CF diagnosis, proof of CFTR dysfunction needs to be obtained, namely by the identification of two disease-causing mutations. Moreover, with the advent of mutation-based therapies, genotyping is an essential tool for CF disease management. There is, however, still an unmet need to genotype CF patients by fast, comprehensive and cost-effective approaches, especially in populations with high genetic heterogeneity (and low p.F508del incidence), where CF is now emerging with new diagnosis dilemmas (Brazil, Asia, etc). Herein, we report an innovative mRNA-based approach to identify CFTR mutations in the complete coding and intronic regions. We applied this protocol to genotype individuals with a suspicion of CF and only one or no CFTR mutations identified by routine methods. It successfully detected multiple intronic mutations unlikely to be detected by CFTR exon sequencing. We conclude that this is a rapid, robust and inexpensive method to detect any CFTR coding/intronic mutation (including rare ones) that can be easily used either as primary approach or after routine DNA analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    PubMed

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  12. Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1).

    PubMed

    Bachvarov, D R; Hess, J F; Menke, J G; Larrivée, J F; Marceau, F

    1996-05-01

    Two subtypes of mammalian bradykinin receptors, B1 and B2 (BDKRB1 and BDKRB2), have been defined based on their pharmacological properties. The B1 type kinin receptors have weak affinity for intact BK or Lys-BK but strong affinity for kinin metabolites without the C-terminal arginine (e.g., des-Arg9-BK and Lys-des-Arg9-BK, also called des-Arg10-kallidin), which are generated by kininase I. The B1 receptor expression is up-regulated following tissue injury and inflammation (hyperemia, exudation, hyperalgesia, etc.). In the present study, we have cloned and sequenced the gene encoding human B1 receptor from a human genomic library. The human B1 receptor gene contains three exons separated by two introns. The first and the second exon are noncoding, while the coding region and the 3'-flanking region are located entirely on the third exon. The exon-intron arrangement of the human B1 receptor gene shows significant similarity with the genes encoding the B2 receptor subtype in human, mouse, and rat. Sequence analysis of the 5'-flanking region revealed the presence of a consensus TATA box and of numerous candidate transcription factor binding sequences. Primer extension experiments have shown the existence of multiple transcription initiation sites situated downstream and upstream from the consensus TATA box. Genomic Southern blot analysis indicated that the human B1 receptor is encoded by a single-copy gene.

  13. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation. Conclusion The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution – numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis – subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views. Reviewers this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole. PMID:16907971

  14. Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

    PubMed Central

    Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin

    2015-01-01

    Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188

  15. SU-F-T-480: Evaluation of the Role of Varian Machine Performance Check (MPC) in Our Daily QA Routine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneja, B; Gao, S; Balter, P

    2016-06-15

    Purpose: (A) To assess the role of Varian MPC in our daily QA routine, and (B) evaluate the accuracy and precision of MPC. Methods: The MPC was performed weekly, for five months, on a Varian TrueBeam for five photon (6x, 10x, 15x, 6xFFF, and 10xFFF) and electron (6e, 9e, 12e, 16e, and 20e) energies. Output results were compared to those determined with an ionization chamber (TN30001, PTW-Freiburg) in plastic and a daily check device (DQA3, Sun Nuclear). Consistency of the Mechanical measurements over five months was analyzed and compared to monthly IsoCal results. Results: The MPC randomly showed large deviationsmore » (3–7%) that disappeared upon reacquisition. The MPC output closely matched monthly ion chamber and DQA3 measurements. The maximum and mean absolute difference between monthly and MPC was 1.18% and 0.28±0.21% for all energies. The maximum and mean absolute difference between DQA3 and MPC was 3.26% and 0.85±0.61%. The results suggest the MPC is comparable to the DQA3 for measuring output. The DQA3 provides wedge output, flatness, symmetry, and energy constancy checks, which are missing from the current implementation of the MPC. However, the MPC provides additional mechanical tests, such as size of the radiation isocenter (0.33±0.02 mm) and its coincidence with MV and kV isocenters (0.17±0.05 and 0.21±0.03 mm). It also provides positional accuracy of individual jaws (maximum σ, 0.33mm), all the MLC leaves (0.08mm), gantry (0.05°) and collimator (0.13°) rotation angles, and couch positioning (0.11mm) accuracy. MPC mechanical tests could replace our current daily on-board imaging QA routine and provide some additional QA not currently performed. Conclusion: MPC has the potential to be a valuable tool that facilitates reliable daily QA including many mechanical tests that are not currently performed. This system can add to our daily QA, but further development would be needed to fully replace our current Daily QA device.« less

  16. Implementation and results of an integrated data quality assurance protocol in a randomized controlled trial in Uttar Pradesh, India.

    PubMed

    Gass, Jonathon D; Misra, Anamika; Yadav, Mahendra Nath Singh; Sana, Fatima; Singh, Chetna; Mankar, Anup; Neal, Brandon J; Fisher-Bowman, Jennifer; Maisonneuve, Jenny; Delaney, Megan Marx; Kumar, Krishan; Singh, Vinay Pratap; Sharma, Narender; Gawande, Atul; Semrau, Katherine; Hirschhorn, Lisa R

    2017-09-07

    There are few published standards or methodological guidelines for integrating Data Quality Assurance (DQA) protocols into large-scale health systems research trials, especially in resource-limited settings. The BetterBirth Trial is a matched-pair, cluster-randomized controlled trial (RCT) of the BetterBirth Program, which seeks to improve quality of facility-based deliveries and reduce 7-day maternal and neonatal mortality and maternal morbidity in Uttar Pradesh, India. In the trial, over 6300 deliveries were observed and over 153,000 mother-baby pairs across 120 study sites were followed to assess health outcomes. We designed and implemented a robust and integrated DQA system to sustain high-quality data throughout the trial. We designed the Data Quality Monitoring and Improvement System (DQMIS) to reinforce six dimensions of data quality: accuracy, reliability, timeliness, completeness, precision, and integrity. The DQMIS was comprised of five functional components: 1) a monitoring and evaluation team to support the system; 2) a DQA protocol, including data collection audits and targets, rapid data feedback, and supportive supervision; 3) training; 4) standard operating procedures for data collection; and 5) an electronic data collection and reporting system. Routine audits by supervisors included double data entry, simultaneous delivery observations, and review of recorded calls to patients. Data feedback reports identified errors automatically, facilitating supportive supervision through a continuous quality improvement model. The five functional components of the DQMIS successfully reinforced data reliability, timeliness, completeness, precision, and integrity. The DQMIS also resulted in 98.33% accuracy across all data collection activities in the trial. All data collection activities demonstrated improvement in accuracy throughout implementation. Data collectors demonstrated a statistically significant (p = 0.0004) increase in accuracy throughout consecutive audits. The DQMIS was successful, despite an increase from 20 to 130 data collectors. In the absence of widely disseminated data quality methods and standards for large RCT interventions in limited-resource settings, we developed an integrated DQA system, combining auditing, rapid data feedback, and supportive supervision, which ensured high-quality data and could serve as a model for future health systems research trials. Future efforts should focus on standardization of DQA processes for health systems research. ClinicalTrials.gov identifier, NCT02148952 . Registered on 13 February 2014.

  17. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    PubMed Central

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  18. Design and simulation study of the immunization Data Quality Audit (DQA).

    PubMed

    Woodard, Stacy; Archer, Linda; Zell, Elizabeth; Ronveaux, Olivier; Birmingham, Maureen

    2007-08-01

    The goal of the Data Quality Audit (DQA) is to assess whether the Global Alliance for Vaccines and Immunization-funded countries are adequately reporting the number of diphtheria-tetanus-pertussis immunizations given, on which the "shares" are awarded. Given that this sampling design is a modified two-stage cluster sample (modified because a stratified, rather than a simple, random sample of health facilities is obtained from the selected clusters); the formula for the calculation of the standard error for the estimate is unknown. An approximated standard error has been proposed, and the first goal of this simulation is to assess the accuracy of the standard error. Results from the simulations based on hypothetical populations were found not to be representative of the actual DQAs that were conducted. Additional simulations were then conducted on the actual DQA data to better access the precision of the DQ with both the original and the increased sample sizes.

  19. Genotyping for DQA1 and PM loci in urine using PCR-based amplification: effects of sample volume, storage temperature, preservatives, and aging on DNA extraction and typing.

    PubMed

    Vu, N T; Chaturvedi, A K; Canfield, D V

    1999-05-31

    Urine is often the sample of choice for drug screening in aviation/general forensic toxicology and in workplace drug testing. In some instances, the origin of the submitted samples may be challenged because of the medicolegal and socioeconomic consequences of a positive drug test. Methods for individualization of biological samples have reached a new boundary with the application of the polymerase chain reaction (PCR) in DNA profiling, but a successful characterization of the urine specimens depends on the quantity and quality of DNA present in the samples. Therefore, the present study investigated the influence of storage conditions, sample volume, concentration modes, extraction procedures, and chemical preservations on the quantity of DNA recovered, as well as the success rate of PCR-based genotyping for DQA1 and PM loci in urine. Urine specimens from male and female volunteers were divided and stored at various temperatures for up to 30 days. The results suggested that sample purification by dialfiltration, using 3000-100,000 molecular weight cut-off filters, did not enhance DNA recovery and typing rate as compared with simple centrifugation procedures. Extraction of urinary DNA by the organic method and by the resin method gave comparable typing results. Larger sample volume yielded a higher amount of DNA, but the typing rates were not affected for sample volumes between 1 and 5 ml. The quantifiable amounts of DNA present were found to be greater in female (14-200 ng/ml) than in male (4-60 ng/ml) samples and decreased with the elapsed time under both room temperature (RT) and frozen storage. Typing of the male samples also demonstrated that RT storage samples produced significantly higher success rates than that of frozen samples, while there was only marginal difference in the DNA typing rates among the conditions tested using female samples. Successful assignment of DQA1 + PM genotype was achieved for all samples of fresh urine, independent of gender, starting sample volume, or concentration method. Preservation by 0.25% sodium azide was acceptable for sample storage at 4 degrees C during a period of 30 days. For longer storage duration, freezing at -70 degrees C may be more appropriate. Thus, the applicability of the DQA1 + PM typing was clearly demonstrated for individualization of urine samples.

  20. Parallel Loss of Plastid Introns and Their Maturase in the Genus Cuscuta

    PubMed Central

    McNeal, Joel R.; Kuehl, Jennifer V.; Boore, Jeffrey L.; Leebens-Mack, Jim; dePamphilis, Claude W.

    2009-01-01

    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta. PMID:19543388

  1. Parallel loss of plastid introns and their maturase in the genus Cuscuta.

    PubMed

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; Leebens-Mack, Jim; dePamphilis, Claude W

    2009-06-19

    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.

  2. Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron.

    PubMed

    Emblem, Åse; Karlsen, Bård Ove; Evertsen, Jussi; Johansen, Steinar D

    2011-11-01

    Group I introns are genetic insertion elements that invade host genomes in a wide range of organisms. In metazoans, however, group I introns are extremely rare, so far only identified within mitogenomes of hexacorals and some sponges. We sequenced the complete mitogenome of the cold-water scleractinian coral Lophelia pertusa, the dominating deep sea reef-building coral species in the North Atlantic Ocean. The mitogenome (16,150 bp) has the same gene content but organized in a unique gene order compared to that of other known scleractinian corals. A complex group I intron (6460 bp) inserted in the ND5 gene (position 717) was found to host seven essential mitochondrial protein genes and one ribosomal RNA gene. Phylogenetic analysis supports a vertical inheritance pattern of the ND5-717 intron among hexacoral mitogenomes with no examples of intron loss. Structural assessments of the Lophelia intron revealed an unusual organization that lacks the universally conserved ωG at the 3' end, as well as a highly compact RNA core structure with overlapping ribozyme and protein coding capacities. Based on phylogenetic and structural analyses we reconstructed the evolutionary history of ND5-717, from its ancestral protist origin, through intron loss in some early metazoan lineages, and into a compulsory feature with functional implications in hexacorals. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Molecular Evolution of the Non-Coding Eosinophil Granule Ontogeny Transcript

    PubMed Central

    Rose, Dominic; Stadler, Peter F.

    2011-01-01

    Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs). The evolutionary history of mlncRNAs is still largely uncharted territory. In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT), an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs). EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyze patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrate here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved, and thermodynamic stable secondary structures. Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element. PMID:22303364

  4. PERMANENT GENETIC RESOURCES: Consensus primers of cyp73 genes discriminate willow species and hybrids (Salix, Salicaceae).

    PubMed

    Trung, Le Quang; VAN Puyvelde, Karolien; Triest, Ludwig

    2008-03-01

    Consensus primers, based on exon sequences of the cyp73 gene family coding for cinnamate 4-hydroxylase (C4H) of the lignin biosynthesis pathway, were designed for the tetraploid willow species Salix alba and Salix fragilis. Diagnostic alleles at species level were observed among introns of three cyp73 genes and allowed unambiguous detection of the first generation and introgressed hybrids in populations. Progeny analysis of a female S. alba with a male introgressed hybrid confirmed the codominant inheritance of each intron. Sequences of the diagnostic alleles of both species were similar to those found in the hybrids. © 2007 The Authors.

  5. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    PubMed

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  6. Fractal landscapes in biological systems: long-range correlations in DNA and interbeat heart intervals

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Hausdorff, J. M.; Havlin, S.; Mietus, J.; Sciortino, F.; Simons, M.

    1992-01-01

    Here we discuss recent advances in applying ideas of fractals and disordered systems to two topics of biological interest, both topics having common the appearance of scale-free phenomena, i.e., correlations that have no characteristic length scale, typically exhibited by physical systems near a critical point and dynamical systems far from equilibrium. (i) DNA nucleotide sequences have traditionally been analyzed using models which incorporate the possibility of short-range nucleotide correlations. We found, instead, a remarkably long-range power law correlation. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences as well as intragenomic DNA, but not in cDNA sequences or intron-less genes. We also found that the myosin heavy chain family gene evolution increases the fractal complexity of the DNA landscapes, consistent with the intron-late hypothesis of gene evolution. (ii) The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis, whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state. We found, however, that under normal conditions, beat-to-beat fluctuations in heart rate display long-range power law correlations.

  7. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.

  8. Factor IX[sub Madrid 2]: A deletion/insertion in Facotr IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solera, J.; Magallon, M.; Martin-Villar, J.

    1992-02-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5[prime] end of intron d and the two last coding nucleotides located at the 3[prime] end of exon IV in the normal factor IX gene; this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends ofmore » the deleted DNA fragment.« less

  9. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: mitochondrial DNA sequence variation and allele frequencies of several nuclear genes.

    PubMed

    Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C

    1993-01-01

    DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. A Phylogenetic Analysis of the Genus Fragaria (Strawberry) Using Intron-Containing Sequence from the ADH-1 Gene

    PubMed Central

    DiMeglio, Laura M.; Yu, Hongrun; Davis, Thomas M.

    2014-01-01

    The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae. PMID:25078607

  11. Cloning of a CACTA transposon-like insertion in intron I of tomato invertase Lin5 gene and identification of transposase-like sequences of Solanaceae species.

    PubMed

    Proels, Reinhard K; Roitsch, Thomas

    2006-03-01

    Very few CACTA transposon-like sequences have been described in Solanaceae species. Sequence information has been restricted to partial transposase (TPase)-like fragments, and no target gene of CACTA-like transposon insertion has been described in tomato to date. In this manuscript, we report on a CACTA transposon-like insertion in intron I of tomato (Lycopersicon esculentum) invertase gene Lin5 and TPase-like sequences of several Solanaceae species. Consensus primers deduced from the TPase region of the tomato CACTA transposon-like element allowed the amplification of similar sequences from various Solanaceae species of different subfamilies including Solaneae (Solanum tuberosum), Cestreae (Nicotiana tabacum) and Datureae (Datura stramonium). This demonstrates the ubiquitous presence of CACTA-like elements in Solanaceae genomes. The obtained partial sequences are highly conserved, and allow further detection and detailed analysis of CACTA-like transposons throughout Solanaceae species. CACTA-like transposon sequences make possible the evaluation of their use for genome analysis, functional studies of genes and the evolutionary relationships between plant species.

  12. Biclustering as a method for RNA local multiple sequence alignment.

    PubMed

    Wang, Shu; Gutell, Robin R; Miranker, Daniel P

    2007-12-15

    Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/

  13. Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus.

    PubMed

    Harada, Taro; Murakoshi, Yuino; Torii, Yuka; Tanase, Koji; Onozaki, Takashi; Morita, Shigeto; Masumura, Takehiro; Satoh, Shigeru

    2011-04-01

    Carnation (Dianthus caryophyllus) flowers exhibit climacteric ethylene production followed by petal wilting, a senescence symptom. DcACS1, which encodes 1-aminocyclopropane-1-carboxylate synthase (ACS), is a gene involved in this phenomenon. We determined the genomic DNA structure of DcACS1 by genomic PCR. In the genome of 'Light Pink Barbara', we found two distinct nucleotide sequences: one corresponding to the gene previously shown as DcACS1, designated here as DcACS1a, and the other novel one designated as DcACS1b. It was revealed that both DcACS1a and DcACS1b have five exons and four introns. These two genes had almost identical nucleotide sequences in exons, but not in some introns and 3'-UTR. Analysis of transcript accumulation revealed that DcACS1b is expressed in senescing petals as well as DcACS1a. Genomic PCR analysis of 32 carnation cultivars showed that most cultivars have only DcACS1a and some have both DcACS1a and DcACS1b. Moreover, we found two DcACS1 orthologous genes with different nucleotide sequences from D. superbus var. longicalycinus, and designated them as DsuACS1a and DsuACS1b. Petals of D. superbus var. longicalycinus produced ethylene in response to exogenous ethylene, accompanying accumulation of DsuACS1 transcripts. These data suggest that climacteric ethylene production in flowers was genetically established before the cultivation of carnation.

  14. Linkage disequilibrium between polymorphisms at the 5{prime} untranslated region and intron 5 (Dde I) of the antithrombin III (ATIII) gene in the Chinese

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, J.S.H.; Liu, Y.; Low, P.S.

    A length polymorphism at the 5{prime} untranslated region of exon 1 and an RFLP (Dde I) in intron 5 (nt 160) of the ATIII gene were amplified by polymerase chain reaction with primers of published sequences. DNA fragments were size-fractionated by agarose gel electrophoresis (3% NuSieve and 1% Seakem GTG) and photographed over a UV transilluminator. A strong linkage disequilibrium was observed between these two polymorphisms of the ATIII gene in the Chinese ({chi}{sup 2} = 63.7; {triangle} 0.42, P < 0.001). The estimated frequencies of the three haplotypes were found to be 0.37 for SD+, 0.40 for LD+ andmore » 0.23 for LD-.« less

  15. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    PubMed

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  16. Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana)

    PubMed Central

    2012-01-01

    Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species. PMID:23083308

  17. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes

    PubMed Central

    Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded

    2016-01-01

    Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950

  18. A mutation in yeast mitochondrial DNA results in a precise excision of the terminal intron of the cytochrome b gene.

    PubMed

    Hill, J; McGraw, P; Tzagoloff, A

    1985-03-25

    The yeast nuclear gene CBP2 was previously proposed to code for a protein necessary for processing of the terminal intron in the cytochrome b pre-mRNA (McGraw, P., and Tzagoloff, A. (1983) J. Biol. Chem. 258, 9459-9468). In the present study we describe a mitochondrial mutation capable of suppressing the respiratory deficiency of cbp2 mutants. The mitochondrial suppressor mutation has been shown to be the result of a precise excision of the last intervening sequence from the cytochrome b gene. Strains with the altered mitochondrial DNA have normal levels of mature cytochrome b mRNA and of cytochrome b and exhibit wild type growth on glycerol. These results confirm that CBP2 codes for a protein specifically required for splicing of the cytochrome b intron and further suggest that absence of the intervening sequence does not noticeably affect the expression of respiratory function in mitochondria.

  19. Genomic organization and expression analysis of a farnesyl diphosphate synthase gene (FPPS2) in apples (Malus domestica Borkh.).

    PubMed

    Yuan, Kejun; Wang, Changjun; Xin, Li; Zhang, Anning; Ai, Chengxiang

    2013-07-25

    A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar "White Winter Pearmain". When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4°C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Clinical Course of Patients with Preschool Manifestation of Type 1 Diabetes Is Independent of the HLA DR-DQ Genotype

    PubMed Central

    Reinauer, Christina; Rosenbauer, Joachim; Bächle, Christina; Herder, Christian; Roden, Michael; Ellard, Sian; De Franco, Elisa; Karges, Beate; Holl, Reinhard W.; Enczmann, Jürgen; Meissner, Thomas

    2017-01-01

    Introduction: Major histocompatibility complex class II genes are considered major genetic risk factors for autoimmune diabetes. We analysed Human Leukocyte Antigen (HLA) DR and DQ haplotypes in a cohort with early-onset (age < 5 years), long term type 1 diabetes (T1D) and explored their influence on clinical and laboratory parameters. Methods: Intermediate resolution HLA-DRB1, DQA1 and DQB1 typing was performed in 233 samples from the German Paediatric Diabetes Biobank and compared with a local control cohort of 19,544 cases. Clinical follow-up data of 195 patients (diabetes duration 14.2 ± 2.9 years) and residual C-peptide levels were compared between three HLA risk groups using multiple linear regression analysis. Results: Genetic variability was low, 44.6% (104/233) of early-onset T1D patients carried the highest-risk genotype HLA-DRB1*03:01-DQA1*05:01-DQB1*02:01/DRB1*04-DQA1*03:01-DQB1*03:02 (HLA-DRB1*04 denoting 04:01/02/04/05), and 231 of 233 individuals carried at least one of six risk haplotypes. Comparing clinical data between the highest (n = 83), moderate (n = 106) and low risk (n = 6) genotypes, we found no difference in age at diagnosis (mean age 2.8 ± 1.1 vs. 2.8 ± 1.2 vs. 3.2 ± 1.5 years), metabolic control, or frequency of associated autoimmune diseases between HLA risk groups (each p > 0.05). Residual C-peptide was detectable in 23.5% and C-peptide levels in the highest-risk group were comparable to levels in moderate to high risk genotypes. Conclusion: In this study, we saw no evidence for a different clinical course of early-onset T1D based on the HLA genotype within the first ten years after manifestation. PMID:28534863

  1. Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders.

    PubMed

    Craig, Catherine L; Riekel, Christian

    2002-12-01

    The known silk fibroins and fibrous glues are thought to be encoded by members of the same gene family. All silk fibroins sequenced to date contain regions of long-range order (crystalline regions) and/or short-range order (non-crystalline regions). All of the sequenced fibroin silks (Flag or silk from flagelliform gland in spiders; Fhc or heavy chain fibroin silks produced by Lepidoptera larvae) are made up of hierarchically organized, repetitive arrays of amino acids. Fhc fibroin genes are characterized by a similar molecular genetic architecture of two exons and one intron, but the organization and size of these units differs. The Flag, Ser (sericin gene) and BR (Balbiani ring genes; both fibrous proteins) genes are made up of multiple exons and introns. Sequences coding for crystalline and non-crystalline protein domains are integrated in the repetitive regions of Fhc and MA exons, but not in the protein glues Ser1 and BR-1. Genetic 'hot-spots' promote recombination errors in Fhc, MA, and Flag. Codon bias, structural constraint, point mutations, and shortened coding arrays may be alternative means of stabilizing precursor mRNA transcripts. Differential regulation of gene expression and selective splicing of the mRNA transcript may allow rapid adaptation of silk functional properties to different physical environments.

  2. Functional Analyses of a Novel Splice Variant in the CHD7 Gene, Found by Next Generation Sequencing, Confirm Its Pathogenicity in a Spanish Patient and Diagnose Him with CHARGE Syndrome.

    PubMed

    Villate, Olatz; Ibarluzea, Nekane; Fraile-Bethencourt, Eugenia; Valenzuela, Alberto; Velasco, Eladio A; Grozeva, Detelina; Raymond, F L; Botella, María P; Tejada, María-Isabel

    2018-01-01

    Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD ® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.

  3. Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins

    PubMed Central

    Kalyna, Maria; Lopato, Sergiy; Voronin, Viktor; Barta, Andrea

    2006-01-01

    Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins. PMID:16936312

  4. In vitro mapping of Myotonic Dystrophy (DM) gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storbeck, C.J.; Sabourin, L.; Baird, S.

    1994-09-01

    The Myotonic Dystrophy Kinase (DMK) gene has been cloned and shared homology to serine/threonine protein kinases. Overexpression of this gene in stably transfected mouse myoblasts has been shown to inhibit fusion into myotubes while myoblasts stably transfected with an antisense construct show increased fusion potential. These experiments, along with data showing that the DM gene is highly expressed in muscle have highlighted the possibility of DMK being involved in myogenesis. The promoter region of the DM gene lacks a consensus TATA box and CAAT box, but harbours numerous transcription binding sites. Clones containing extended 5{prime} upstream sequences (UPS) of DMKmore » only weakly drive the reporter gene chloramphenicol acetyl transferase (CAT) when transfected into C2C12 mouse myoblasts. However, four E-boxes are present in the first intron of the DM gene and transient assays show increased expression of the CAT gene when the first intron is present downstream of these 5{prime} UPS in an orientation dependent manner. Comparison between mouse and human sequence reveals that the regions in the first intron where the E-boxes are located are highly conserved. The mapping of the promoter and the importance of the first intron in the control of DMK expression will be presented.« less

  5. Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus.

    PubMed Central

    Giardina, P; Cannio, R; Martirani, L; Marzullo, L; Palmieri, G; Sannia, G

    1995-01-01

    The gene (pox1) encoding a phenol oxidase from Pleurotus ostreatus, a lignin-degrading basidiomycete, was cloned and sequenced, and the corresponding pox1 cDNA was also synthesized and sequenced. The isolated gene consists of 2,592 bp, with the coding sequence being interrupted by 19 introns and flanked by an upstream region in which putative CAAT and TATA consensus sequences could be identified at positions -174 and -84, respectively. The isolation of a second cDNA (pox2 cDNA), showing 84% similarity, and of the corresponding truncated genomic clones demonstrated the existence of a multigene family coding for isoforms of laccase in P. ostreatus. PCR amplifications of specific regions on the DNA of isolated monokaryons proved that the two genes are not allelic forms. The POX1 amino acid sequence deduced was compared with those of other known laccases from different fungi. PMID:7793961

  6. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers

    PubMed Central

    Moretzsohn, Márcio C.; Gouvea, Ediene G.; Inglis, Peter W.; Leal-Bertioli, Soraya C. M.; Valls, José F. M.; Bertioli, David J.

    2013-01-01

    Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. Key Results Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3–2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. Conclusions The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis. PMID:23131301

  7. Evaluation of the arrestin gene in patients with retinitis pigmentosa or an allied disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeStefano, D.J.; Berson, E.L.; Dryja, T.P.

    1994-09-01

    Arrestin, also called 48K protein or S-antigen, plays a role in deactivating rhodopsin, the photosensitive, seven-helix, G-protein receptor found in rod photoreceptors. In Drosophila, null mutations in arrestin genes cause a light-dependent photoreceptor degeneration. It is possible that a comparable photoreceptor degeneration in humans is caused by defects in the rod arrestin gene. In order to evaluate this possibility, we are characterizing the human arrestin locus on chromosome 2q. We screened a genomic library (5 million plaques) using an arrestin cDNA clone. Sixty-eight hybridizing clones were identified; portions of 7 clones were sequenced to determine the intron sequence flanking themore » exons. We are using SSCP analysis and direct genomic sequencing to screen the entire coding region, splice donor and acceptor sites, and the promoter region of the arrestin gene in 188 patients with autosomal dominant and 104 patients with autosomal recessive retinitis pigmentosa. We have already obtained flanking intron sequences necessary for SSCP analysis for 13 of 16 exons. So far, we have identified 4 silent base changes at codons 67 (TGC-to-TGT), 107 (CTG-to-CTC), 163 (GCC-to-GCT), and 288 (CTG-to-TGT), all with allele frequencies at 1% or less. Several other variant bands detected by SSCP analysis are currently being sequenced.« less

  8. Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma.

    PubMed

    Davis, R J; Bennicelli, J L; Macina, R A; Nycum, L M; Biegel, J A; Barr, F G

    1995-12-01

    The FKHR gene, which contains a forkhead DNA-binding motif, is fused to either PAX3 or PAX7 by the t(2;13) or t(1;13) translocation in alveolar rhabdomyosarcoma,respectively. These tumors express chimeric transcripts encoding the N-terminal portion of either PAX protein fused to the C-terminal portion of FKHR. To understand the structural basis and functional consequences of these translocations, we characterized the wild-type FKHR gene and its rearrangement in alveolar rhabdomyosarcomas. By isolating and analyzing phage, cosmid and YAC clones, we determined that FKHR consists of three exons spanning 140 kb and that several highly similar loci are present in other genomic regions. Exon 1 encodes the N-terminus of the forkhead domain and is embedded within demethylated CpG island. RNA analyses reveal FKHR transcripts initiate from a TATA-less promoter within this island. Exon 2 encodes the C-terminus of the forkhead domain and a transcription activation domain, whereas exon 3 encodes a large 3' untranslated region. The intron 1-exon 2 boundary precisely matches the FHKR fusion point in the chimeric transcripts found in alveolar rhabdomyosarcomas. Using pulsed-field and fluorescence in situ hybridization analyses, we demonstrate that the 130kb FKHR intron 1 is rearranged in t(2;13)-containing alveolar rhabdomyosarcomas. Our findings indicate that FKHR intron 1 provides a large target for DNA rearrangemnt. Rearrangement of this intron with PAX3 produces two important functional consequences: in-frame fusion of N-terminal PAX3 sequences to the FKHR transcriptional activation domain and disruption of the FKHR DNA binding domain.

  9. Let's jump in: A phylogenetic study of the great basin springfishes and poolfishes, Crenichthys and Empetrichthys (Cyprinodontiformes: Goodeidae)

    PubMed Central

    2017-01-01

    North America’s Great Basin has long been of interest to biologists due to its high level of organismal endemicity throughout its endorheic watersheds. One example of such a group is the subfamily Empetricthyinae. In this paper, we analyzed the relationships of the Empetrichtyinae and assessed the validity of the subspecies designations given by Williams and Wilde within the group using concatenated phylogenetic tree estimation and species tree estimation. Samples from 19 populations were included covering the entire distribution of the three extant species of Empetricthyinae–Crenichthys nevadae, Crenichthys baileyi and Empetricthys latos. Three nuclear introns (S8 intron 4, S7 intron 1, and P0 intron 1) and one mitochondrial gene (Cytb) were sequenced for phylogenetic analysis. Using these sequences, we generated two separate hypotheses of the evolutionary relationships of Empetrichtyinae- one based on the mitochondrial data and one based on the nuclear data using Bayesian phylogenetics. Haplotype networks were also generated to look at the relationships of the populations within Empetrichthyinae. After comparing the two phylogenetic hypotheses, species trees were generated using *BEAST with the nuclear data to further test the validity of the subspecies within Empetrichthyinae. The mitochondrial analyses supported four lineages within C. baileyi and 2 within C. nevadae. The concatenated nuclear tree was more conserved, supporting one clade and an unresolved polytomy in both species. The species tree analysis supported the presence of two species within both C. baileyi and C. nevadae. Based on the results of these analyses, the subspecies designations of Williams and Wilde are not valid, rather a conservative approach suggests there are two species within C. nevadae and two species within C. baileyi. No structure was found for E. latos or the populations of Empetricthyinae. This study represents one of many demonstrating the invalidity of subspecies and their detriment to species identification, conservation, and understanding. PMID:29077708

  10. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene.

    PubMed

    Surendran, S; Sacksteder, K A; Gould, S J; Coldwell, J G; Rady, P L; Tyring, S K; Matalon, R

    2001-09-15

    Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a -5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency. Copyright 2001 Wiley-Liss, Inc.

  11. RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes.

    PubMed

    Wagner, Nicholas; Mroczka, Andrew; Roberts, Peter D; Schreckengost, William; Voelker, Toni

    2011-09-01

    Suppression of the microsomal ω6 oleate desaturase during the seed development of soybean (Glycine max) with the 420-bp soybean FAD2-1A intron as RNAi trigger shifts the conventional fatty acid composition of soybean oil from 20% oleic and 60% polyunsaturates to one containing greater than 80% oleic acid and less than 10% polyunsaturates. To determine whether RNAi could be attenuated by reducing the trigger fragment length, transgenic plants were generated to express successively shorter 5' or 3' deletion derivatives of the FAD2-1A intron. We observed a gradual reduction in transcript suppression with shorter trigger fragments. Fatty acid composition was less affected with shorter triggers, and triggers less than 60 bp had no phenotypic effect. No trigger sequences conferring significantly higher or lower suppression efficiencies were found, and the primary determinant of suppression effect was sequence length. The observed relationship of transcript suppression with the induced fatty acid phenotype indicates that RNAi is a saturation process and not a step change between suppressed and nonsuppressed states and intermediate suppression states can be achieved. © 2010 Monsanto. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.

  12. Open reading frames in a 4556 nucleotide sequence within MDV-1 BamHI-D DNA fragment: evidence for splicing of mRNA from a new viral glycoprotein gene.

    PubMed

    Becker, Y; Asher, Y; Tabor, E; Davidson, I; Malkinson, M

    1994-01-01

    A DNA segment of the MDV-1 BamHI-D fragment was sequenced, and the open reading frames (ORFs) present in the 4556 nucleotide fragment were analyzed by computer programs. Computer analysis identified 19 putative ORFs in the sequence ranging from a coding capacity of 37 amino acids (aa) (ORF-1a) to 684aa (ORF-1). The special properties of four ORFs (1a, 1, 2, and 3) were investigated. Two adjacent ORFs, ORF-1a and ORF-1, were found by computer analysis to have the properties of two introns encoding a glycoprotein: ORF-1a encodes an aa sequence with the properties of a signal peptide, and ORF-1 encodes a polypeptide with a membrane anchor domain and putative N-glycosylation sites in the aa sequence. ORF-1a and ORF-1 were found to be transcribed in MDV-1-infected cells. Two RNA transcripts were detected: a precursor RNA and its spliced form. Both are transcribed from a promoter located 5' to ORF-1a, and splice donor and acceptor sites are used to splice the mRNA after cleavage of a 71-nucleotide sequence. This finding suggest that ORF-1a and ORF-1 are two introns of a new MDV-1 glycoprotein gene. The DNA sequence containing ORF-1 was transiently expressed in COS-1 cells, and the viral protein produced in these cells was found to react with anti-MDV serotype-1 Antigen B-specific monoclonal antibodies. These studies indicate that the protein encoded by ORF-1 has antigenic properties resembling Antigen B of MDV-1. A gene homologous to ORF-1 was detected in the genome of both MDV-2(SB1) and MDV-3(HVT), which serve as commercial vaccine strains. Two additional ORFs were noted in the 4556 nucleotide sequence: ORF-2, which encodes a 333 aa polypeptide initiating in the UL and terminating in the TRL prior to the putative origin of replication, and ORF-3, which encodes a 155 aa polypeptide that is partly homologous to the phosphoprotein pp38 encoded by the BamHI-H sequence. The 65 N-terminal aa of the two gene products are identical, both being derived from the nucleotide sequences in the TRL and IRL, respectively. Additional homologous aa sequences are the hydrophobic aa domain in the middle of both proteins. The functions of ORF-2, ORF-3, and additional ORFs are under study.

  13. A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences.

    PubMed

    Lee, J; Hymowitz, T

    2001-11-01

    Phylogenetic relationships among 13 genera of the subtribe Glycininae, two genera of the allied subtribe Diocleinae that were included within Glycininae by Polhill, and two genera of the subtribe Erythrininae as outgroups were inferred from chloroplast DNA rps16 intron sequence variation. Pairwise sequence divergence values ranged from identity between Teramnus mollis and T. micans and between T. flexilis and T. labialis to 7.89% between Pueraria wallichii and Pseudeminia comosa across all accessions. Phylogenies estimated using parsimony and neighbor-joining methods revealed that (1) Glycininae is monophyletic if Pachyrhizus and Calopogonium (both Diocleinae) are included within Glycininae; (2) the genus Teramnus is closely related to Glycine, and Amphicarpaea showed a sister relationship to the clade comprising Teramnus and Glycine; (3) the expanded Glycininae including two genera of Diocleinae is divided into three branches, temporarily named I (comprising the rest of the examined taxa), II (Pueraria wallichii), and III (Mastersia), but their relationships are equivocal; and (4) the genus Pueraria, regarded as a closely related genus to Glycine, is not monophyletic and should be divided into at least four genera (a hypothesis supported previously by Lackey).

  14. Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication.

    PubMed

    Beauregard, Arthur; Chalamcharla, Venkata R; Piazza, Carol Lyn; Belfort, Marlene; Coros, Colin J

    2006-11-01

    Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.

  15. [Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].

    PubMed

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2017-01-01

    In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.

  16. Isolated familial somatotropinomas: clinical features and analysis of the MEN1 gene.

    PubMed

    De Menis, Ernesto; Prezant, Toni R

    2002-01-01

    Isolated familial somatotropinomas (IFS) rarely occurs in the absence of multiple endocrine neoplasia type I (MEN1) or the Carney complex. In the present study we report two Italian siblings affected by GH-secreting adenomas. There was no history of parental consanguinity. The sister presented at 18 years of age with secondary amenorrhea and acromegalic features and one of her two brothers presented with gigantism at the same age. Endocrinological investigations confirmed GH hypersecretion in both cases. Although a pituitary microadenoma was detected in both patients, transsphenoidal surgery was not successful. The sister received conventional radiotherapy and acromegaly is now considered controlled; the brother is being treated with octreotide LAR 30 mg monthly and the disease is considered clinically active. Patients, their parents and the unaffected brother underwent extensive evaluation, and no features of MEN1 or Carney complex were found. Analysis of polymorphic microsatellite markers from chromosome 11q13 (D11S599, D11S4945, D11S4939, D11S4938 and D11S987) showed that the acromegalic siblings had inherited different maternal chromosomes and shared the paternal chromosome. No pathogenic MEN1 sequence changes were detected by sequencing or dideoxy fingerprinting of the coding sequence (exons 2-10) and exon/intron junctions. Although mutations in the promoter, introns or untranslated regions of the MEN1 gene cannot be excluded, germline mutations within the coding region of this gene do not appear responsible for IFS in this family.

  17. Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primorac, D.; Stover, M.L.; McKinstry, M.B.

    Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or themore » donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.« less

  18. The presence of the NOS3 gene polymorphism for intron 4 mitigates the beneficial effects of exercise training on ambulatory blood pressure monitoring in adults.

    PubMed

    Sponton, Carlos H; Esposti, Rodrigo; Rodovalho, Cynara M; Ferreira, Maycon J; Jarrete, Aline P; Anaruma, Chadi P; Bacci, Mauricio; Zanesco, Angelina

    2014-06-15

    The number of studies that have evaluated exercise training (ET) and nitric oxide synthase (NOS)3 gene polymorphisms is scarce. The present study was designed to evaluate the relationship between exercise training and NOS3 polymorphisms at -786T>C, 894G>T, and intron 4b/a on blood pressure (BP) using 24-h ambulatory BP monitoring (ABPM), nitrate/nitrite levels (NOx), and redox state. Eighty-six volunteers (51 ± 0.6 yr old) were genotyped into nonpolymorphic and polymorphic groups for each of the three positions of NOS3 polymorphisms. Auscultatory BP, ABPM, SOD activity, catalase activity, NOx levels, and malondialdehyde levels were measured. DNA was extracted from leukocytes, and PCR followed by sequencing was applied for genotype analysis. Aerobic ET consisted of 24 sessions for 3 days/wk for 40 min at moderate intensity. This study was performed in a double-blind and crossover format. ET was effective in lowering office BP (systolic BP: 3.2% and diastolic BP: 3%) as well as ABPM (systolic BP: 2% and diastolic BP: 1.3%). Increased SOD and catalase activity (42.6% and 15.1%, respectively) were also observed. The NOS3 polymorphism for intron 4 mitigated the beneficial effect of ET for systolic BP (nonpolymorphic group: -3.0% and polymorphic group: -0.6%) and diastolic BP (nonpolymorphic group: -3.2% and polymorphic group: -0.5%), but it was not associated with NOx level and redox state. Paradoxical responses were found for positions T786-C and G894T for the NOS3 gene. Consistently, the presence of the polymorphism for intron 4 blunted the beneficial effects of ET in middle-aged adults. Possibly, this effect might be as consequence of intron 4 acting as a short intronic repeat RNA controlling endothelial NOS activity epigenetically. Copyright © 2014 the American Physiological Society.

  19. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    PubMed

    Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  20. Multi-Species Comparative Analysis of the Equine ACE Gene Identifies a Highly Conserved Potential Transcription Factor Binding Site in Intron 16

    PubMed Central

    Hamilton, Natasha A.; Tammen, Imke; Raadsma, Herman W.

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism. PMID:23408978

  1. A novel deletion/insertion mutation in the mRNA transcribed from one {alpha}1(I) collagen allele in a family with dominant type III OI and germline mosaicism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, O.; Masters, C.; Lewis, M.B.

    1994-09-01

    In an 8-year-old girl and her father, both of whom have severe type III OI, we have previously used RNA/RNA hybrid analysis to demonstrate a mismatch in the region of {alpha}1(I) mRNA coding for aa 558-861. We used SSCP to further localize the abnormality to a subregion coding for aa 579-679. This region was subcloned and sequenced. Each patient`s cDNA has a deletion of the sequences coding for the last residue of exon 34, and all of exons 35 and 36 (aa 604-639), followed by an insertion of 156 nt from the 3{prime}-end of intron 36. PCR amplification of leukocytemore » DNA from the patients and the clinically normal paternal grandmother yielded two fragments: a 1007 bp fragment predicted from normal genomic sequences and a 445 bp fragment. Subcloning and sequencing of the shorter genomic PCR product confirmed the presence of a 565 bp genomic deletion from the end of exon 34 to the middle of intron 36. The abnormal protein is apparently synthesized and incorporated into helix. The inserted nucleotides are in frame with the collagenous sequence and contain no stop codons. They encode a 52 aa non-collagenous region. The fibroblast procollagen of the patients has both normal and electrophoretically delayed pro{alpha}(I) bands. The electrophoretically delayed procollagen is very sensitive to pepsin or trypsin digestion, as predicted by its non-collagenous sequence, and cannot be visualized as collagen. This unique OI collagen mutation is an excellent candidate for molecular targeting to {open_quotes}turn off{close_quotes} a dominant mutant allele.« less

  2. Estrogen receptor alpha regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence.

    PubMed

    Creekmore, Amy L; Ziegler, Yvonne S; Bonéy, Jamie L; Nardulli, Ann M

    2007-03-15

    We have used a chromatin immunoprecipitation (ChIP)-based cloning strategy to isolate and identify genes associated with estrogen receptor alpha (ERalpha) in MCF-7 human breast cancer cells. One of the gene regions isolated was a 288bp fragment from the ninth intron of the breast cancer 1 associated ring domain (BARD1) gene. We demonstrated that ERalpha associated with this region of the endogenous BARD 1 gene in MCF-7 cells, that ERalpha bound to three of five ERE half sites located in the 288bp BARD1 region, and that this 288bp BARD1 region conferred estrogen responsiveness to a heterologous promoter. Importantly, treatment of MCF-7 cells with estrogen increased BARD1 mRNA and protein levels. These findings demonstrate that ChIP cloning strategies can be utilized to successfully isolate regulatory regions that are far removed from the transcription start site and assist in identifying cis elements involved in conferring estrogen responsiveness.

  3. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta)

    PubMed Central

    Leliaert, Frederik; Marcelino, Vanessa R

    2018-01-01

    Abstract Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss. PMID:29635329

  4. Widespread alternative and aberrant splicing revealed by lariat sequencing

    PubMed Central

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  5. Molecular Characterization of the Calvin Cycle Enzyme Phosphoribulokinase in the Stramenopile Alga Vaucheria litorea and the Plastid Hosting Mollusc Elysia chlorotica

    PubMed Central

    Rumpho, Mary E.; Pochareddy, Sirisha; Worful, Jared M.; Summer, Elizabeth J.; Bhattacharya, Debashish; Pelletreau, Karen N.; Tyler, Mary S.; Lee, Jungho; Manhart, James R.; Soule, Kara M.

    2009-01-01

    Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclear-encoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V. litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V. litorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months. PMID:19995736

  6. Deep sequencing with intronic capture enables identification of an APC exon 10 inversion in a patient with polyposis.

    PubMed

    Shirts, Brian H; Salipante, Stephen J; Casadei, Silvia; Ryan, Shawnia; Martin, Judith; Jacobson, Angela; Vlaskin, Tatyana; Koehler, Karen; Livingston, Robert J; King, Mary-Claire; Walsh, Tom; Pritchard, Colin C

    2014-10-01

    Single-exon inversions have rarely been described in clinical syndromes and are challenging to detect using Sanger sequencing. We report the case of a 40-year-old woman with adenomatous colon polyps too numerous to count and who had a complex inversion spanning the entire exon 10 in APC (the gene encoding for adenomatous polyposis coli), causing exon skipping and resulting in a frameshift and premature protein truncation. In this study, we employed complete APC gene sequencing using high-coverage next-generation sequencing by ColoSeq, analysis with BreakDancer and SLOPE software, and confirmatory transcript analysis. ColoSeq identified a complex small genomic rearrangement consisting of an inversion that results in translational skipping of exon 10 in the APC gene. This mutation would not have been detected by traditional sequencing or gene-dosage methods. We report a case of adenomatous polyposis resulting from a complex single-exon inversion. Our report highlights the benefits of large-scale sequencing methods that capture intronic sequences with high enough depth of coverage-as well as the use of informatics tools-to enable detection of small pathogenic structural rearrangements.

  7. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    PubMed

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant challenge to practical application.

  8. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs

    PubMed Central

    Dilthey, Alexander T.; Gourraud, Pierre-Antoine; McVean, Gil

    2016-01-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30–250 CPU hours per sample) remain a significant challenge to practical application. PMID:27792722

  9. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development.

    PubMed

    Rocchi, V; Janni, M; Bellincampi, D; Giardina, T; D'Ovidio, R

    2012-03-01

    Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).

    PubMed

    He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang

    2018-04-19

    Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.

  11. The genome sequence of the colonial chordate, Botryllus schlosseri

    PubMed Central

    Voskoboynik, Ayelet; Neff, Norma F; Sahoo, Debashis; Newman, Aaron M; Pushkarev, Dmitry; Koh, Winston; Passarelli, Benedetto; Fan, H Christina; Mantalas, Gary L; Palmeri, Karla J; Ishizuka, Katherine J; Gissi, Carmela; Griggio, Francesca; Ben-Shlomo, Rachel; Corey, Daniel M; Penland, Lolita; White, Richard A; Weissman, Irving L; Quake, Stephen R

    2013-01-01

    Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI: http://dx.doi.org/10.7554/eLife.00569.001 PMID:23840927

  12. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing

    DTIC Science & Technology

    2016-03-01

    recently, we identified several novel alterations in in ER+ breast tumors, including translocations in ESR1 , the gene that encodes the estrogen receptor...modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two papers from the Broad Institute published in...with PIK3CA mutations, 23% with ESR1 ligand-binding domain mutations, 9% with ERBB2 mutations, 9% with FGFR1/2 amplifications, and 1% with

  13. Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2.

    PubMed

    Tee, Meng Kian; Speek, Mart; Legeza, Balázs; Modi, Bhavi; Teves, Maria Eugenia; McAllister, Janette M; Strauss, Jerome F; Miller, Walter L

    2016-10-15

    Polycystic ovary syndrome (PCOS) is a common endocrinopathy characterized by hyperandrogenism and metabolic disorders. The excess androgens may be of both ovarian and adrenal origin. PCOS has a strong genetic component, and genome-wide association studies have identified several candidate genes, notably DENND1A, which encodes connecdenn 1, involved in trafficking of endosomes. DENND1A encodes two principal variants, V1 (1009 amino acids) and V2 (559 amino acids). The androgen-producing ovarian theca cells of PCOS women over-express V2. Knockdown of V2 in these cells reduces androgen production, and overexpression of V2 in normal theca cells confers upon them a PCOS phenotype of increased androgen synthesis. We report that human adrenal NCI-H295A cells express V1 and V2 mRNA and that the V2 isoform is produced by exonization of sequences in intron 20, which generates a unique exon 20A, encoding the C-terminus of V2. As in human theca cells from normal women, forced expression of V2 in NCI-H295A cells resulted in increased abundance of CYP17A1 and CYP11A1 mRNAs. We also found genetic variation in the intronic region 330 bp upstream from exon 20A, which could have the potential to drive the selective expression of V2. There was no clear association with these variants with PCOS when we analyzed genomc DNA from normal women and women with PCOS. Using minigene expression vectors in NCI-H295A cells, this variable region did not consistently favor splicing of the V2 transcript. These findings suggest increased V2 expression in PCOS theca cells is not the result of genomic sequence variation in intron 20. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing

    DTIC Science & Technology

    2014-01-01

    binding domain mutations in ESR1 ) were identified. Analysis is currently underway to further elucidate causes of resistance in those cases where the... ESR1 , the gene that encodes the estrogen receptor (Wagle, Garraway, and Arteaga, unpublished results). Given the potential importance of ESR...translocations in ER+ breast cancer, we have further modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two

  15. EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies.

    PubMed

    Li, Chenhong; Riethoven, Jean-Jack M; Naylor, Gavin J P

    2012-09-01

    Recent innovations in next-generation sequencing have lowered the cost of genome projects. Nevertheless, sequencing entire genomes for all representatives in a study remains expensive and unnecessary for most studies in ecology, evolution and conservation. It is still more cost-effective and efficient to target and sequence single-copy nuclear gene markers for such studies. Many tools have been developed for identifying nuclear markers, but most of these have focused on particular taxonomic groups. We have built a searchable database, EvolMarkers, for developing single-copy coding sequence (CDS) and exon-primed-intron-crossing (EPIC) markers that is designed to work across a broad range of phylogenetic divergences. The database is made up of single-copy CDS derived from BLAST searches of a variety of metazoan genomes. Users can search the database for different types of markers (CDS or EPIC) that are common to different sets of input species with different divergence characteristics. EvolMarkers can be applied to any taxonomic group for which genome data are available for two or more species. We included 82 genomes in the first version of EvolMarkers and have found the methods to be effective across Placozoa, Cnidaria, Arthropod, Nematoda, Annelida, Mollusca, Echinodermata, Hemichordata, Chordata and plants. We demonstrate the effectiveness of searching for CDS markers within annelids and show how to find potentially useful intronic markers within the lizard Anolis. © 2012 Blackwell Publishing Ltd.

  16. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs.

    PubMed

    Parekh, Swati; Ziegenhain, Christoph; Vieth, Beate; Enard, Wolfgang; Hellmann, Ines

    2018-06-01

    Single-cell RNA-sequencing (scRNA-seq) experiments typically analyze hundreds or thousands of cells after amplification of the cDNA. The high throughput is made possible by the early introduction of sample-specific bar codes (BCs), and the amplification bias is alleviated by unique molecular identifiers (UMIs). Thus, the ideal analysis pipeline for scRNA-seq data needs to efficiently tabulate reads according to both BC and UMI. zUMIs is a pipeline that can handle both known and random BCs and also efficiently collapse UMIs, either just for exon mapping reads or for both exon and intron mapping reads. If BC annotation is missing, zUMIs can accurately detect intact cells from the distribution of sequencing reads. Another unique feature of zUMIs is the adaptive downsampling function that facilitates dealing with hugely varying library sizes but also allows the user to evaluate whether the library has been sequenced to saturation. To illustrate the utility of zUMIs, we analyzed a single-nucleus RNA-seq dataset and show that more than 35% of all reads map to introns. Also, we show that these intronic reads are informative about expression levels, significantly increasing the number of detected genes and improving the cluster resolution. zUMIs flexibility makes if possible to accommodate data generated with any of the major scRNA-seq protocols that use BCs and UMIs and is the most feature-rich, fast, and user-friendly pipeline to process such scRNA-seq data.

  17. Partial androgen insensitivity syndrome caused by a deep intronic mutation creating an alternative splice acceptor site of the AR gene.

    PubMed

    Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu

    2018-02-02

    Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.

  18. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.

    PubMed

    Fernandez-Valverde, Selene L; Calcino, Andrew D; Degnan, Bernard M

    2015-05-15

    The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3' and 5' untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3' UTRs. The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.

  19. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae).

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-09-19

    To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G planctonica and 262,888-bp G sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae)

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    Abstract To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G. planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G. planctonica and 262,888-bp G. sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G. sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. PMID:27503298

Top