Science.gov

Sample records for draft tube fluidized

  1. Concentration multiplicity in a draft tube fluidized-bed bioreactor involving two limiting substrates.

    PubMed

    Tong, C C; Fan, L S

    1988-01-01

    Concentration multiplicity in a two-phase or three-phase draft tube fluidized-bed bioreactor containing biofloc particles is studied. The kinetics of biological reactions considered involve two limiting substrates. The necessary and sufficient conditions for concentration multiplicity in both the biofilm and bioreactor are examined in terms of effectiveness factor, inlet and bulk concentration of substrates, and liquid flow rate. Hysteresis behavior in both the biofilm and bioreactor and multiplicity of concentration profiles in the biofilm are also discussed. PMID:18581559

  2. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  3. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  4. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  5. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  6. Reduced order model of draft tube flow

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.

    2014-03-01

    Swirling flow with compact coherent structures is very good candidate for proper orthogonal decomposition (POD), i.e. for decomposition into eigenmodes, which are the cornerstones of the flow field. Present paper focuses on POD of steady flows, which correspond to different operating points of Francis turbine draft tube flow. Set of eigenmodes is built using a limited number of snapshots from computational simulations. Resulting reduced order model (ROM) describes whole operating range of the draft tube. ROM enables to interpolate in between the operating points exploiting the knowledge about significance of particular eigenmodes and thus reconstruct the velocity field in any operating point within the given range. Practical example, which employs axisymmetric simulations of the draft tube flow, illustrates accuracy of ROM in regions without vortex breakdown together with need for higher resolution of the snapshot database close to location of sudden flow changes (e.g. vortex breakdown). ROM based on POD interpolation is very suitable tool for insight into flow physics of the draft tube flows (especially energy transfers in between different operating points), for supply of data for subsequent stability analysis or as an initialization database for advanced flow simulations.

  7. CFD based draft tube hydraulic design optimization

    NASA Astrophysics Data System (ADS)

    McNabb, J.; Devals, C.; Kyriacou, S. A.; Murry, N.; Mullins, B. F.

    2014-03-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis, using a

  8. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo; Hosek, William

    1983-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  9. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo; Hosek, William S.

    1981-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  10. VIEW FROM DRAFT TUBE LOOKING UP TOWARDS THE GENERATOR FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM DRAFT TUBE LOOKING UP TOWARDS THE GENERATOR FLOOR, DRAFT CONE IN FOREGROUND. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  11. 73. photographer unknown 9 January 1936 TOP OF DRAFT TUBE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. photographer unknown 9 January 1936 TOP OF DRAFT TUBE LINER AND SPEED RING PIERS. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  12. 9. DETAIL VIEW WEST OF MIDDLE TURBINE DRAFT TUBE, SHAFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW WEST OF MIDDLE TURBINE DRAFT TUBE, SHAFT, AND PULLEY WHEEL - Willimantic Linen Company, Mill No. 2, South Main Street opposite Durham Street, North bank Willimantic River, Windham, Windham County, CT

  13. 7. DETAIL VIEW SOUTHWEST OF SOUTH TURBINE DRAFT TUBE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW SOUTHWEST OF SOUTH TURBINE DRAFT TUBE AND SHAFT - Willimantic Linen Company, Mill No. 2, South Main Street opposite Durham Street, North bank Willimantic River, Windham, Windham County, CT

  14. In-bed tube bank for a fluidized-bed combustor

    DOEpatents

    Hemenway, Jr., Lloyd F.

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  15. Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990

    SciTech Connect

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  16. Flow separation in a straight draft tube, particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Maciel, Y.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    As part of the BulbT project, led by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University), the efficiency and power break off in a bulb turbine has been investigated. Previous investigations correlated the break off to draft tube losses. Tuft visualizations confirmed the emergence of a flow separation zone at the wall of the diffuser. Opening the guide vanes tends to extend the recirculation zone. The flow separations were investigated with two-dimensional and two-component particle image velocimetry (PIV) measurements designed based on the information collected from tuft visualizations. Investigations were done for a high opening blade angle with a N11 of 170 rpm, at best efficiency point and at two points with a higher Q11. The second operating point is inside the efficiency curve break off and the last operating point corresponds to a lower efficiency and a larger recirculation region in the draft tube. The PIV measurements were made near the wall with two cameras in order to capture two measurement planes simultaneously. The instantaneous velocity fields were acquired at eight different planes. Two planes located near the bottom wall were parallel to the generatrix of the conical part of the diffuser, while two other bottom planes diverged more from the draft tube axis than the cone generatrix. The last four planes were located on the draft tube side and diverged more from the draft tube axis than the cone generatrix. By combining the results from the various planes, the separation zone is characterized using pseudo-streamlines of the mean velocity fields, maps of the Reynolds stresses and maps of the reverse-flow parameter. The analysis provides an estimation of the separation zone size, shape and unsteady character, and their evolution with the guide vanes opening.

  17. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S.; Garruto, Edward J.

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  18. Draft tube flow phenomena across the bulb turbine hill chart

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

    2014-03-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

  19. A statistical method for draft tube pressure pulsation analysis

    NASA Astrophysics Data System (ADS)

    Doerfler, P. K.; Ruchonnet, N.

    2012-11-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  20. Cartesian grid simulations of bubbling fluidized beds with a horizontal tube bundle

    SciTech Connect

    Li, Tingwen; Dietiker, Jean-Francois; Zhang, Yongmin; Shahnam, Mehrdad

    2011-12-01

    In this paper, the flow hydrodynamics in a bubbling fluidized bed with submerged horizontal tube bundle was numerically investigated with an open-source code: Multiphase Flow with Interphase eXchange (MFIX). A newly implemented cut-cell technique was employed to deal with the curved surface of submerged tubes. A series of 2D simulations were conducted to study the effects of gas velocity and tube arrangement on the flow pattern. Hydrodynamic heterogeneities on voidage, particle velocity, bubble fraction, and frequency near the tube circumferential surface were successfully predicted by this numerical method, which agrees qualitatively with previous experimental findings and contributes to a sounder understanding of the non-uniform heat transfer and erosion around a horizontal tube. A 3D simulation was also conducted. Significant differences between 2D and 3D simulations were observed with respect to bed expansion, bubble distribution, voidage, and solids velocity profiles. Hence, the 3D simulation is needed for quantitative prediction of flow hydrodynamics. On the other hand, the flow characteristics and bubble behavior at the tube surface are similar under both 2D and 3D simulations as far as the bubble frequency and bubble phase fraction are concerned. Comparison with experimental data showed that qualitative agreement was obtained in both 2D and 3D simulations for the bubble characteristics at the tube surface.

  1. The impact of bed temperature on heat transfer characteristic between fluidized bed and vertical rifled tubes

    NASA Astrophysics Data System (ADS)

    Blaszczuk, Artur; Nowak, Wojciech

    2016-10-01

    In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.

  2. Experimental investigation of a draft tube spouted bed for effects of geometric parameters on operation

    NASA Astrophysics Data System (ADS)

    Azizaddini, Seyednezamaddin; Lin, Weigang; Dam-Johansen, Kim

    2016-06-01

    Experiments are performed in a draft tube spouted bed (DTSB) to investigate effects of the operating conditions and the geometric parameters on the hydrodynamics. Geometry parameters, such as heights of the entrained zone, draft tube inner diameter, inner angle of the conical section were studied. Increasing the draft tube inner diameter, sharper inner angle of the conical section and higher height of entrained zone increase the internal solid circulation rate and the pressure drop. Even though, for all different configurations, higher gas feeding rate leads to higher internal solid circulation rate considering a maximum value.

  3. Effects of tangential velocity distribution on flow stability in a draft tube

    NASA Astrophysics Data System (ADS)

    Dou, Huashu; Niu, Lin; Cao, Shuliang

    2014-10-01

    Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability. Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube. It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section. Thus, the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity. However, the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.

  4. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  5. LDA measurements in the Francis-99 draft tube cone

    NASA Astrophysics Data System (ADS)

    Sundstrom, L. R. J.; Amiri, K.; Bergan, C.; Cervantes, M. J.; Dahlhaug, O. G.

    2014-03-01

    Velocity measurements were performed in the draft tube cone of a 1:5.1 scaled model of the Tokke hydropower plant, Norway; also known as the Francis-99 model. Results from the laser Doppler anemometry measurements undertaken at three operating points will be used as validation data for an upcoming workshop on the state of the art of Francis turbine numerical simulation. With the turbine operating at the best efficiency point, a sensitivity analysis of the flow parameters head, flow rate and runner rotational speed shows that the effects on the dimensionless velocity profiles are small as long as nED and QED are held constant. The results indicate a well-functioning turbine at the best efficiency point and high load. At the part load operating point, a vortex breakdown occurs which distorts the velocity profiles and significantly lowers the turbine's hydraulic efficiency. Frequency spectrums of each LDA signal at part load reveals a peak which is asynchronous to that of the runner angular speed. The peaks might be related to the precession of a rotating vortex rope but the characteristics of the LDA signals are different compared to previous studies involving rotating vortex ropes.

  6. The optimization of j-groove shape in the draft tube of a francis turbine to suppress the draft surge

    NASA Astrophysics Data System (ADS)

    Wei, Q. S.; Choi, Y. D.

    2013-12-01

    Suppression of draft surge caused by vortex and cavitation surge in the draft tube is very important to improve the turbine performance when the turbine is operated in the range of partial load condition. In present work, a series of CFD analysis have been conducted in the range of partial load, design condition and over load of a Francis turbine model with a kind of J-Grooves. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Grooves. Study results show that the J-Grooves can suppress the abnormal phenomena to some extents on the condition of maintaining the efficiency. In the second stage, the shape of J-Groove is optimized step by step considering the groove length, depth and width normalized by the diameter of outlet of turbine runner.

  7. Effects of draft tube on the hydraulic performance of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Jeon, J. H.; Byeon, S. S.; Kim, Y. J.

    2013-12-01

    The draft tube is an important component of a Francis turbine which influences the hydraulic performance. It is located just under the runner and allowed to decelerate the flow velocity exiting the runner, thereby converting the excess of kinetic energy into static pressure. In this study, we have numerically investigated the hydraulic performance of a Francis turbine on the 15MW hydropower generation with various design parameters (three types of draft tube, thickness of guide vane) through a three-dimensional numerical method with the SST turbulent model. The vortex rope characteristics of the draft tube were confirmed. The results of the vortex flow fields and flow characteristics were graphically depicted with different design parameters and operating conditions.

  8. Francis turbine draft tube modelling for prediction of pressure fluctuations on prototype

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Landry, C.; Favrel, A.; Nicolet, C.; Avellan, F.

    2015-12-01

    The prediction of pressure fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations measured on the reduced scale model to the prototype generating units. This paper presents this methodology which relies on an advanced modelling of the draft tube cavitation flow, and focuses on the transposition to the prototype of the draft tube model parameters identified on the reduced scale model. Different modelling assumptions of the draft tube are considered and their influence on the eigenmodes and the forced response of the system are presented.

  9. Numerical investigation of Francis turbine draft tubes with respect to geometry modification and turbulence treatment

    NASA Astrophysics Data System (ADS)

    Maiwald, M.; Jester-Zürker, R.; D'Agostini Neto, A.

    2010-08-01

    The design of draft tubes plays a significant role in the design process of modern hydro turbines as the possible pressure recovery realized within this component strongly influences the overall performance of the turbine. The draft tube flow field is characterized by swirling inflow, adverse pressure gradient due to a stream wise increasing cross sectional area and a strong curvature of the mean flow caused by the geometrical design. Depending on the operational conditions the flow field can be dominated by unsteady flow phenomena and recirculation zones. All together these complex flow features represent a challenging task when designing a draft tube for a specific turbine. But the same is valid for the use of current numerical methods when predicting draft tube flows. A description of draft tube design based on numerical steady state solutions with additional aspects from recently conducted turbine model testing is given. The influence and effect of the hydraulic section shaping on steady-state and dynamic operational behaviour in various operation conditions is investigated by state of the art measuring technique. For the laboratory investigations modern measurement technique and special modelling is applied to come to investigate the complex flow behaviour in selected operation conditions. Additionally the obtained measurement results are taken as basis for a study on numerical methods for draft tube calculations which focuses on transient methods and turbulence treatment. When solving the Reynolds-averaged Navier-Stokes equations the underlying modelling of turbulence is playing a substantial role. The assumptions made in the model development define the limitations of the turbulence model and therefore the capability of resolving physical flow phenomena. In the case unsteady phenomena dominate the flow as observed in part load conditions classical steady state solutions get more and more unreliable. For analysing part load conditions unsteady methods are

  10. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    SciTech Connect

    Devaru, C.B.; Kolar, A.K.

    1995-12-31

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  11. Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Nicolet, C.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.

  12. Bed hydrodynamics and heat transfer to tubes in the freeboard region of a pressurized fluidized-bed coal combustor

    SciTech Connect

    Sellakumar, K.M.

    1988-01-01

    Various modes of Pressurized Fluidized Bed Combustor part-load operation are analyzed. Bed change is considered to be the most effective of these methods. The need to understand the variation in heat absorption by exposed in-bed tubes immediately above the reducing or increasing bed height has resulted in the pursuit for a clearer understanding of the particle concentration profile and heat transfer mechanisms to the referred tubes. Bubble characteristics in a PFBC with internals are studied in depth. A model for gas flow through dense and bubble phases is developed. Model results are compared with the limited experimental results available in literature. For both atmospheric and pressurized fluidized bed combustors, the deviation from the two phase theory is highlighted; and this simple model approach has evolved a procedure to quantify gas flows in different streams which was thus far available only qualitatively. The dense phase velocity is found to be much more than the minimum fluidization velocity. A theoretical model for particle efflux from the bed top surface has been evolved. An empirical model has also been developed for elutriant flux above the Transport Disengagement Height, the concentration of fines in the efflux material, superficial velocity in the freeboard, and mean particle terminal velocity have appeared to be the major factors influencing the carry over. The model developed using the data form a smaller rectangular rest rig was tested satisfactorily with the limited data from a larger as well as a similar size circular unit. If the particulate loading profile above the bed surface is known, then the heat transfer to the heat exchanger surfaces may be obtained from the available correlations.

  13. Modelling complex draft-tube flows using near-wall turbulence closures

    SciTech Connect

    Ventikos, Y.; Sotiropoulos, F.; Patel, V.C.

    1996-12-31

    This paper presents a finite-volume method for simulating flows through complex hydroturbine draft-tube configurations using near-wall turbulence closures. The method employs the artificial-compressibility pressure-velocity coupling approach in conjunction with multigrid acceleration for fast convergence on very fine grids. Calculations are carried out for a draft tube with two downstream piers on a computational mesh consisting of 1.2x10{sup 6} nodes. Comparisons of the computed results with measurements demonstrate the ability of the method to capture most experimental trends with reasonable accuracy. Calculated three-dimensional particle traces reveal very complex flow features in the vicinity of the piers, including horse-shoe longitudinal vortices and and regions of flow reversal.

  14. Experimental and numerical investigation of a draft tube cone at lower runner speeds

    NASA Astrophysics Data System (ADS)

    Bosioc, Alin I.; Tanasa, Constantin

    2016-06-01

    The variable demand on the energy market enforces that hydraulic turbine to operate at different regimes, far from the best efficiency point. An experimental test rig was developed in our laboratory in order to reproduce these regimes. As a result, the investigated flow regimes allow us to quantify the flow behavior from part load operation to full load operation. The paper focuses on experimental and numerical investigations of mean velocity profiles and of stagnant region developed in the centre of draft tube cone. First the numerical results are validated against experimental results. At the end a qualitative analysis of the streamline pattern is complemented, giving us an evaluation of the stagnant region from the draft tube cone at different runner speeds.

  15. Experimental and numerical investigation of unsteady behavior of cavitating vortices in draft tube of low specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Tani, K.; Okamoto, N.

    2014-03-01

    At both partial and full load of Francis turbines, the unsteady behavior of cavitating draft tube vortices occurs and leads to undesirable matters such as power house vibration, noise and power swing in some cases. This paper presents the investigation of the interaction between the flow pattern at runner outlet and the unsteady behavior of cavitating vortices in draft tube with experimental and numerical approaches. On the experimental research, the pressure pulsation in the draft tube is measured and the unsteady behavior of cavitating vortices is taken pictures with a high speed camera in the model test. On the numerical research, by Computational Fluid Dynamics (CFD) adopting a two-phase unsteady analysis, the analysis domain from the guide vane to the draft tube is carried out for investigating the interaction between the runner outlet flow and the vortex pattern. The pressure pulsation at the upper draft tube and the unsteady behavior of cavitating vortices obtained from CFD results are similar to those obtained in the model test. Detailed analysis of CFD results at overload indicates the repeat of expansion and contraction of cavitating vortices, which were shaped helical vortices with opposite direction of runner rotation, and the corresponding flow pattern in every time step of the pressure pulsations.

  16. Experimental investigation of pressure fluctuations caused by a vortex rope in a draft tube

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2012-11-01

    In the last years hydro power plants have taken the task of power-frequency control for the electrical grid. Therefore turbines in storage hydro power plants often operate outside their optimum. If Francis-turbines and pump-turbines operate at off-design conditions, a vortex rope in the draft tube can develop. The vortex rope can cause pressure oscillations. In addition to low frequencies caused by the rotation of the vortex rope and the harmonics of these frequencies, pressure fluctuations with higher frequencies can be observed in some operating points too. In this experimental investigation the flow structure and behavior of the vortex rope movement in the draft tube of a model pump-turbine are analyzed. The investigation focuses on the correlation of the pressure fluctuation frequency measured at the draft tube wall with the movement of the vortex rope. The movement of the vortex rope is analyzed by the velocity field in the draft tube which was measured with particle image velocimetry. Additionally, the vortex rope movement has been analyzed with the captures of high-speed-movies from the cavitating vortex rope. Besides the rotation of the vortex rope due to pressure fluctuation with low frequencies the results of the measurement also show a correlation between the rotation of the elliptical or deformed rope cross-section and the higher frequency pressure pulsation. An approximation shows that the frequencies of the pressure fluctuation and the movement of the vortex rope are also connected with the velocity of the flow. Taking into account the size and position of the cavitating vortex core as well as the velocity at the position of the surface of the cavitating vortex core the time-period of the rotation of the vortex core can be approximated. The results show that both, the low frequency pressure fluctuation and the higher frequency pressure fluctuation are correlating with the vortex rope movement. With this estimation, the period of the higher frequency

  17. Draft tube pressure pulsation predictions in Francis turbines with transient Computational Fluid Dynamics methodology

    NASA Astrophysics Data System (ADS)

    Melot, M.; Nennemann, B.; Désy, N.

    2014-03-01

    An automatic Computational Fluid Dynamics (CFD) procedure that aims at predicting Draft Tube Pressure Pulsations (DTPP) at part load is presented. After a brief review of the physics involved, a description of the transient numerical setup is given. Next, the paper describes a post processing technique, namely the separation of pressure signals into synchronous, asynchronous and random pulsations. Combining the CFD calculation with the post-processing technique allows the quantification of the potential excitation of the mechanical system during the design phase. Consequently it provides the hydraulic designer with a tool to specifically target DTPP and thus helps in the development of more robust designs for part load operation of turbines.

  18. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Colorado, P E

    2009-03-01

    Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations. PMID:19135698

  19. Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    SciTech Connect

    N /A

    1999-08-27

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, which occupies a 400-acre industrial site along the north shore of the St. Johns River about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. JEA has indicated that construction may begin without DOE funding prior to the completion of the NEPA process in February 2000 and would continue until December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared funding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues

  20. Study on flow instability and countermeasure in a draft tube with swirling flow

    NASA Astrophysics Data System (ADS)

    Nakashima, T.; Matsuzaka, R.; Miyagawa, K.; Yonezawa, K.; Tsujimoto, Y.

    2014-03-01

    The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

  1. Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models

    SciTech Connect

    Paik, Joongcheol; Sotiropoulos, Fotis; Sale, Michael J

    2005-06-01

    A numerical method is developed for carrying out unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and detached-eddy simulations (DESs) in complex 3D geometries. The method is applied to simulate incompressible swirling flow in a typical hydroturbine draft tube, which consists of a strongly curved 90 degree elbow and two piers. The governing equations are solved with a second-order-accurate, finite-volume, dual-time-stepping artificial compressibility approach for a Reynolds number of 1.1 million on a mesh with 1.8 million nodes. The geometrical complexities of the draft tube are handled using domain decomposition with overset (chimera) grids. Numerical simulations show that unsteady statistical turbulence models can capture very complex 3D flow phenomena dominated by geometry-induced, large-scale instabilities and unsteady coherent structures such as the onset of vortex breakdown and the formation of the unsteady rope vortex downstream of the turbine runner. Both URANS and DES appear to yield the general shape and magnitude of mean velocity profiles in reasonable agreement with measurements. Significant discrepancies among the DES and URANS predictions of the turbulence statistics are also observed in the straight downstream diffuser.

  2. Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow

    NASA Astrophysics Data System (ADS)

    Müller, A.; Dreyer, M.; Andreini, N.; Avellan, F.

    2013-04-01

    Hydraulic machines play an increasingly important role in providing a secondary energy reserve for the integration of renewable energy sources in the existing power grid. This requires a significant extension of their usual operating range, involving the presence of cavitating flow regimes in the draft tube. At overload conditions, the self-sustained oscillation of a large cavity at the runner outlet, called vortex rope, generates violent periodic pressure pulsations. In an effort to better understand the nature of this unstable behavior and its interaction with the surrounding hydraulic and mechanical system, the flow leaving the runner is investigated by means of particle image velocimetry. The measurements are performed in the draft tube cone of a reduced scale model of a Francis turbine. A cost-effective method for the in-house production of fluorescent seeding material is developed and described, based on off-the-shelf polyamide particles and Rhodamine B dye. Velocity profiles are obtained at three streamwise positions in the draft tube cone, and the corresponding discharge variation in presence of the vortex rope is calculated. The results suggest that 5-10 % of the discharge in the draft tube cone is passing inside the vortex rope.

  3. Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model

    NASA Astrophysics Data System (ADS)

    Stefan, D.; Rudolf, P.

    2015-01-01

    The simulations of high head Francis turbine model (Tokke) are performed for three operating conditions - Part Load, Best Efficiency Point (BEP) and Full Load using software Ansys Fluent R15 and alternatively OpenFOAM 2.2.2. For both solvers the simulations employ Realizable k-e turbulence model. The unsteady pressure pulsations of pressure signal from two monitoring points situated in the draft tube cone and one behind the guide vanes are evaluated for all three operating conditions in order to compare frequencies and amplitudes with the experimental results. The computed velocity fields are compared with the experimental ones using LDA measurements in two locations situated in the draft tube cone. The proper orthogonal decomposition (POD) is applied on a longitudinal slice through the draft tube cone. The unsteady static pressure fields are decomposed and a spatio-temporal behavior of modes is correlated with amplitude-frequency results obtained from the pressure signal in monitoring points. The main application of POD is to describe which modes are related to an interaction between rotor (turbine runner) and stator (spiral casing and guide vanes) and cause dynamic flow behavior in the draft tube. The numerically computed efficiency is correlated with the experimental one in order to verify the simulation accuracy.

  4. Drafting.

    ERIC Educational Resources Information Center

    Hughes, Larry R.

    This guide to teaching drafting, one in a series of instructional materials for junior high industrial arts education, is designed to assist teachers as they plan and implement new courses of study and as they make revisions and improvements in existing courses in order to integrate classroom learning with real-life experiences. This drafting…

  5. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Kaznacheev, A.; Kuznetsov, I.

    2014-03-01

    The measurements and video observation of unsteady flow in the draft tube cone of the pump-turbine model were conducted in the Laboratory of Water Turbines, property of OJSC "Power machines" - "LMZ". The prototype head was about 250 m. The experiments were performed for the turbine mode of operation. Measurements were taken for the unit speed value n11 corresponding to rated head in the generating mode of operation, for a wide range of guide vanes openings at loads ranging from partial to maximum value. The researches of the velocity field in function of the Thoma number were carried out in some operating conditions. The mean values and RMS deviations of the velocity components were the results of laser measurements. The curves of the intensity of the vortex versus the guide vane opening and the Thoma number were plotted. The energy velocity spectra were presented for the points at which the most pronounced frequency precession of the helical axial vortex was observed. Video recording and laser Doppler anemometry were made in the operating conditions of the developed cavitation. Based on the results of video observations and energy spectra obtained via LDA, vortex frequencies were determined i.e. the frequencies of the vortex precession under the runner in the draft tube cone.

  6. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  7. The numerical research of runner cavitation effects on spiral vortex rope in draft tube of Francis turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhou, L. J.; Wang, Z. W.

    2015-12-01

    The spiral cavitating vortex rope developed in the draft tube of Francis turbine under part load condition maybe causes serious pressure fluctuations and power swings, which threatens the safety and stability of the power plant operations. Many works have been performed to explore the mechanisms of it. In this paper, the runner cavitation and spiral vortex rope under part load conditions were studied to investigate the relations of runner cavitation and the spiral vortex rope. The results proved the existence of obvious interaction between them. The swirl flow at the runner outlet plays an important role in the formation of vortex rope. And the periodic procession of vortex rope in turn intensifies the uneven pressure distribution near the runner outlet and causes the asymmetric cavitation on the runner blades, which then give rise to the modification of swirl flow at the runner blades and thereby affects the characteristics of vortex rope.

  8. Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2015-12-01

    Francis turbines operating at part-load experience the development of a precessing cavitation vortex rope at the runner outlet, which acts as an excitation source for the hydraulic system. In case of resonance, the resulting pressure pulsations seriously compromise the stability of the machine and of the electrical grid to which it is connected. As such off-design conditions are increasingly required for the integration of unsteady renewable energy sources into the existing power system, an accurate assessment of the hydropower plant stability is crucial. However, the physical mechanisms driving this excitation source remain largely unclear. It is for instance essential to establish the link between the draft tube flow characteristics and the intensity of the excitation source. In this study, a two-component particle image velocimetry system is used to investigate the flow field at the runner outlet of a reduced-scale physical model of a Francis turbine. The discharge value is varied from 55 to 81 % of the value at the best efficiency point. A particular set-up is designed to guarantee a proper optical access across the complex geometry of the draft tube elbow. Based on phase-averaged velocity fields, the evolution of the vortex parameters with the discharge, such as the trajectory and the circulation, is determined for the first time. It is shown that the rise in the excitation source intensity is induced by an enlargement of the vortex trajectory and a simultaneous increase in the precession frequency, as well as the vortex circulation. Below a certain value of discharge, the structure of the vortex abruptly changes and loses its coherence, leading to a drastic reduction in the intensity of the induced excitation source.

  9. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  10. Kinetic behavior of solid particles in fluidized beds

    SciTech Connect

    Kono, H.O.

    1990-06-01

    The overall objectives of this project are to develop experimental techniques for measuring the forces of fluidized particles, and to predict the solid-gas performance in fluidized beds by using data analysis system, and by elucidating the intrinsic mechanism of erosion and attrition phenomena in fluidized beds. The reduction of erosion and attrition rates is one of the critical engineering problems for the design and operation of fluidized bed combustors. Specifically, the objectives are to: (1) develop the experimental techniques to measure the forces of solid particles prevailing in fluidized beds: (2) measure and characterize the forces of solid particles in various types of fluidized beds with various configurations (conventional and spouted fluidized beds) and with different scales (10, 20, and 30cm) under various fluidization conditions (particle size, bed aspect ratio and gas velocity); (3) find and verify the mechanism of erosion rates of in-bed tubes and attrition rates of fluidized particles by forces of solid particles in fluidized beds. We developed three different kinds of measurement methods, i.e., fracture sensitive sensor, piezoelectric sensor and gas pressure fluctuation method. By using these methods the exact forces of solid particles, including the transient corporate in fluidized beds, were systematically measured. Simultaneously, the erosion rates of in-bed tubes and attrition rates of fluidized particles were measured. 69 figs., 9 tabs.

  11. Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures in the draft tube

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Morgut, M.; Mežnar, P.; Nobile, E.

    2015-01-01

    The paper presents numerical simulations of flow in a model of a high head Francis turbine and comparison of results to the measurements. Numerical simulations were done by two CFD (Computational Fluid Dynamics) codes, Ansys CFX and OpenFOAM. Steady-state simulations were performed by k-epsilon and SST model, while for transient simulations the SAS SST ZLES model was used. With proper grid refinement in distributor and runner and with taking into account losses in labyrinth seals very accurate prediction of torque on the shaft, head and efficiency was obtained. Calculated axial and circumferential velocity components on two planes in the draft tube matched well with experimental results.

  12. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed reactor system at Building 9212. Draft environmental assessment

    SciTech Connect

    1995-03-01

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is Iocated within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The current AHF supply and fluidized-bed reactor systems were designed and constructed more than 40 years ago. Because of their deteriorating condition, the corrosive nature of the materials processed, and the antiquated design philosophy upon which they are based, their long-term reliability cannot be assured. The current AHF supply system cannot mitigate an accidental release of AHF and vents fugitive AHF directly to the atmosphere during operations. the proposed action would reduce the risk of exposing the Y-12 Plant work force, the public, and the environment to an accidental release of AHF and would ensure the continuing ability of the Y-12 Plant to manufacture highly enriched uranium metal and process uranium from retired weapons for storage.

  13. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  14. Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load

    NASA Astrophysics Data System (ADS)

    Nilsson, H.

    2012-11-01

    This work presents an OpenFOAM case-study, based on the experimental studies of the swirling flow in the abrupt expansion by Dellenback et al.[1]. The case yields similar flow conditions as those of a helical vortex rope in a hydro turbine draft tube working at part-load. The case-study is set up similar to the ERCOFTAC Conical Diffuser and Centrifugal Pump OpenFOAM case-studies [2,3], making all the files available and the results fully reproducable using OpenSource software. The mesh generation is done using m4 scripting and the OpenFOAM built-in blockMesh mesh generator. The swirling inlet boundary condition is specified as an axi-symmetric profile. The outlet boundary condition uses the zeroGradient condition for all variables except for the pressure, which uses the fixed mean value boundary condition. The wall static pressure is probed at a number of locations during the simulations, and post-processing of the time-averaged solution is done using the OpenFOAM sample utility. Gnuplot scripts are provided for plotting the results. The computational results are compared to one of the operating conditions studied by Dellenback, and measurements for all the experimentally studied operating conditions are available in the case-study. Results from five cases are here presented, based on the kEpsilon model, the kOmegaSST model, and a filtered version of the same kOmegaSST model, named kOmegaSSTF [4,5]. Two different inlet boundary conditions are evaluated. It is shown that kEpsilon and kOmegaSST give steady solutions, while kOmegaSSTF gives a highly unsteady solution. The time-averaged solution of the kOmegaSSTF model is much more accurate than the other models. The kEpsilon and kOmegaSST models are thus unable to accurately model the effect of the large-scale unsteadiness, while kOmegaSSTF resolves those scales and models only the smaller scales. The use of two different boundary conditions shows that the boundary conditions are more important than the choice between

  15. Use of a packed-bed airlift reactor with net draft tube to study kinetics of naphthalene degradation by Ralstonia eutropha.

    PubMed

    Jalilnejad, Elham; Vahabzadeh, Farzaneh

    2014-03-01

    Biodegradation of naphthalene by Ralstonia eutropha (also known as Cupriavidus necator) in a packed-bed airlift reactor with net draft tube (PBALR-nd) was studied; the Kissiris pieces were the packing material. The reactor hydrodynamics has been characterized under abiotic conditions and the dependencies of the superficial gas velocity (U G) on the gas holdup (εG), liquid mixing time, and mass transfer coefficient were determined. The improving role of the net draft tube in this small column reactor (height 42 cm, ID 5 cm) was confirmed. The flow regime was described using the εG α U G (n) expression, and bubbly flow was observed in PBALR-nd at U G < 2.83 cm/s. In the second step of the present work, the kinetics of biodegradation was modeled using the Haldane and Aiba equations. The fitting of the experimental results to the models were done according to the nonlinear least square regression technique. The biokinetic constants (q m, K s, and K i) were estimated and q m as the specific biodegradation rate was equaled to 0.415 and 0.24 mgnaph./mgcell h for the Haldane and Aiba equations, respectively. The goodness of fit reported as R (2) and root-mean-square error (RMSE) showed the adequate fitness of the Haldane and Aiba models in predicting naphthalene biodegradation kinetics. On the basis of the HPLC results, a hypothetical pathway for the biodegradation was presented.

  16. Consider nonfouling fluidized bed exchangers

    SciTech Connect

    Klaren, D.G.; Baiiie, R.E. )

    1989-07-01

    Applications for fluidized bed heat exchangers in various industries, their operating principles and a detailed analysis of their suitability for replacing double-pipe scraped-surface heat exchangers in lube oil plants are discussed. Development of the fluidized bed heat exchanger started in the early 70s and was totally dedicated to improvement of the multistage flash evaporator for sea water desalination. This resulted in a demonstration plant with a fluidized bed heat exchanger with a total heat transfer surface of over 1,000 m/sup 2/. Over an operating period of more than 15,000 hours untreated sea water was heated to more than 120{sup 0}C without any fouling in the tubes due to scale deposits.

  17. Solids circulation around a jet in a fluidized bed gasifier. Final technical report, September 1, 1978-September 30, 1980

    SciTech Connect

    Gidaspow, D.; Ettehadieh, B.; Lin, C.; Goyal, A.; Lyczkowski, R.W.

    1980-01-01

    The object of this investigation was to develop an experimentally verified hydrodynamic model to predict solids circulation around a jet in a fluidized bed gasifier. Hydrodynamic models of fluidization use the principles of conservation of mass, momentum and energy. To account for unequal velocities of solid and fluid phases, separate phase momentum balances are developed. Other fluid bed models used in the scale-up of gasifiers do not employ the principles of conservation of momentum. Therefore, these models cannot predict fluid and particle motion. In such models solids mixing is described by means of empirical transfer coefficients. A two dimensional unsteady state computer code was developed to give gas and solid velocities, void fractions and pressure in a fluid bed with a jet. The growth, propagation and collapse of bubbles was calculated. Time-averaged void fractions were calculated that showed an agreement with void fractions measured with a gamma ray densitometer. Calculated gas and solid velocities in the jet appeared to be reasonable. Pressure and void oscillations also appear to be reasonable. A simple analytical formula for the rate of solids circulation was developed from the equations of change. It agrees with Westinghouse fluidization data in a bed with a draft tube. One dimensional hydrodynamic models were applied to modeling of entrained-flow coal gasification reactors and compared with data. Further development of the hydrodynamic models should make the scale-up and simulation of fluidized bed reactors a reality.

  18. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  19. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  20. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  1. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  2. Fluidized bed coal combustion reactor

    SciTech Connect

    Moynihan, P.I.; Young, D.L.

    1981-09-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor. Official Gazette of the U.S. Patent and Trademark Office

  3. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation.

    PubMed

    Jesús, A Gómez-De; Romano-Baez, F J; Leyva-Amezcua, L; Juárez-Ramírez, C; Ruiz-Ordaz, N; Galíndez-Mayer, J

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A(D)/A(R) ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values epsilon(G), and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ( approximately 95%), and by the stoichiometric release of chloride ions from the halogenated compound ( approximately 80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions). PMID:18539387

  4. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation.

    PubMed

    Jesús, A Gómez-De; Romano-Baez, F J; Leyva-Amezcua, L; Juárez-Ramírez, C; Ruiz-Ordaz, N; Galíndez-Mayer, J

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A(D)/A(R) ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values epsilon(G), and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ( approximately 95%), and by the stoichiometric release of chloride ions from the halogenated compound ( approximately 80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions).

  5. Solids fluidizer-injector

    DOEpatents

    Bulicz, Tytus R.

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  6. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  7. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  8. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  9. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  10. Solids fluidizer-injector

    DOEpatents

    Bulicz, T.R.

    1990-04-17

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  11. Laboratory experiments on simultaneous removal of K and P from synthetic and real urine for nutrient recycle by crystallization of magnesium-potassium-phosphate-hexahydrate in a draft tube and baffle reactor.

    PubMed

    Xu, Kangning; Wang, Chengwen; Wang, Xiaoxue; Qian, Yi

    2012-06-01

    The simultaneous removal of K and P from urine for nutrient recycling by crystallization of magnesium potassium phosphate hexahydrate (MPP) in a laboratory-scale draft tube and baffle reactor (DTBR) is investigated. Results show that mixing speed and hydraulic retention time are important operating factors that influence crystallization and crystal settlement. Slurry should be discharged at a crystal retention time of 11 h to maintain fluidity in the reactor. Further applications of the DTBR using real urine (pretreated by ammonia stripping and diluted five times) showed that 76% K and 68% P were recycled to multi-nutrient products. The crystals collected were characterized and confirmed mainly as a mixture of magnesium ammonium phosphate hexahydrate, MPP, and magnesium sodium phosphate heptahydrate. Results indicate that the DTBR effectively achieved the simultaneous recycling of K and P from urine to multi-nutrient products through MPP crystallization.

  12. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  13. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  14. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  15. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  16. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  17. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  18. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  19. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  20. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  1. Single-stage fluidized-bed gasification

    NASA Astrophysics Data System (ADS)

    Lau, F. S.; Rue, D. M.; Weil, S. A.; Punwani, D. V.

    1982-04-01

    The single-stage fluidized-bed gasification process, in addition to being a simple system, maximizes gas production and allows the economic exploitation of small peat deposits. The objective of this gasification project is to conduct experiments in order to obtain data for designing a single-stage fluidized-bed gasifier, and to evaluate the economics of converting peat to synthesis gas and to SNG by this process. An existing high-temperature and high-pressure process development unit (PDU) was modified to permit the direct feeding of peat to the fluidized bed. Peat flows by gravity from the feed hopper through a 6-inch line to the screw-feeder conveyor. From there, it is fed to the bottom tee section of the reactor and transported into the gasification zone. Oxygen and steam are fed through a distributing ring into the reactor. Gasification reactions occur in the annulus formed by the reactor tube and a central standpipe. Peat ash is discharged from the reactor by overflowing into the standpipe and is collected in a solids receiver.

  2. Evaluation of a main steam line break with induced, multiple tube ruptures: A comparison of NUREG 1477 (Draft) and transient methodologies Palo Verde Nuclear Generating Station

    SciTech Connect

    Parrish, K.R.

    1995-09-01

    This paper presents the approach taken to analyze the radiological consequences of a postulated main steam line break event, with one or more tube ruptures, for the Palo Verde Nuclear Generating Station. The analysis was required to support the restart of PVNGS Unit 2 following the steam generator tube rupture event on March 14, 1993 and to justify continued operation of Units 1 and 3. During the post-event evaluation, the NRC expressed concern that Unit 2 could have been operating with degraded tubes and that similar conditions could exist in Units 1 and 3. The NRC therefore directed that a safety assessment be performed to evaluate a worst case scenario in which a non-isolable main steam line break occurs inducing one or more tube failures in the faulted steam generator. This assessment was to use the generic approach described in NUREG 1477, Voltage-Based Interim Plugging Criteria for Steam Generator Tubes - Task Group Report. An analysis based on the NUREG approach was performed but produced unacceptable results for off-site and control room thyroid doses. The NUREG methodology, however, does not account for plant thermal-hydraulic transient effects, system performance, or operator actions which could be credited to mitigate dose consequences. To deal with these issues, a more detailed analysis methodology was developed using a modified version of the Combustion Engineering Plant Analysis Code, which examines the dose consequences for a main steam line break transient with induced tube failures for a spectrum equivalent to 1 to 4 double ended guillotine U-tube breaks. By incorporating transient plant system responses and operator actions, the analysis demonstrates that the off-site and control room does consequences for a MSLBGTR can be reduced to acceptable limits. This analysis, in combination with other corrective and recovery actions, provided sufficient justification for continued operation of PVNGS Units 1 and 3, and for the subsequent restart of Unit 2.

  3. Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report

    SciTech Connect

    Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M.

    1992-11-01

    These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

  4. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  5. Three-dimensional hydrodynamic and erosion modeling of fluidized beds using kinetic theory

    SciTech Connect

    Ding, J.; Lyczkowski, R.W. ); Burge, S.W. . Research Center)

    1992-05-01

    Three-dimensional hydrodynamic models for gas-solids flow are developed and used to compute bubble and solids motion in rectangular fluidized beds. Our computed results demonstrate the significance and necessity for three-dimensional models of hydrodynamics and erosion in fluidized-bed combustors. A kinetic theory model for erosion using Finnie's single-particle ductile erosion model was used to compute erosion in a rectangular fluidized bed containing a single tube. Comparison of two-dimensional and three-dimensional computed hydrodynamics, erosion rates, and patterns clearly show the superiority of three-dimensional modeling.

  6. Three-dimensional hydrodynamic and erosion modeling of fluidized beds using kinetic theory

    SciTech Connect

    Ding, J.; Lyczkowski, R.W.; Burge, S.W.

    1992-05-01

    Three-dimensional hydrodynamic models for gas-solids flow are developed and used to compute bubble and solids motion in rectangular fluidized beds. Our computed results demonstrate the significance and necessity for three-dimensional models of hydrodynamics and erosion in fluidized-bed combustors. A kinetic theory model for erosion using Finnie`s single-particle ductile erosion model was used to compute erosion in a rectangular fluidized bed containing a single tube. Comparison of two-dimensional and three-dimensional computed hydrodynamics, erosion rates, and patterns clearly show the superiority of three-dimensional modeling.

  7. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.

  8. Architectural Drafting.

    ERIC Educational Resources Information Center

    Davis, Ronald; Yancey, Bruce

    Designed to be used as a supplement to a two-book course in basic drafting, these instructional materials consisting of 14 units cover the process of drawing all working drawings necessary for residential buildings. The following topics are covered in the individual units: introduction to architectural drafting, lettering and tools, site…

  9. Civil Drafting.

    ERIC Educational Resources Information Center

    Schertz, Karen; Kellum, Mary, Ed.

    This curriculum guide contains a course in civil drafting to train entry-level workers for jobs in the field. The module contains 12 instructional units that cover the following topics: (1) introduction to civil drafting; (2) map scales and measurement; (3) standard symbols and abbreviations; (4) interpretation of surveyor's notations; (5) legal…

  10. Mechanical Drafting.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This publication, the third in a series on drafting, is intended to strengthen students' competence in the specialized field of mechanical drafting. The text consists of instructional materials for both teacher and students, written in terms of student performance using measurable objectives. The course includes 11 units. Each instructional unit…

  11. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  12. Heat transfer characteristics of the fluidized bed through the annulus

    NASA Astrophysics Data System (ADS)

    Shedid, Mohamed H.; Hassan, M. A. M.

    2016-09-01

    The annular fluidized bed can be regarded as a promising technique for waste heat recovery applications. This study investigates on the determination of steady state values of the average heat transfer on the surface of the inner tube under different operating conditions that include: (1) input heat flux ranging from 557 to 1671 W/m2, (2) superficial air velocity ranging between 0.12 and 0.36 m/s, (3) initial bed height ranging from 25 to 55 cm, (4) ratio of the inner to the outer diameters ranging from 1/6 to 1/2 and Kaolin particle diameters ranging between 282 and 550 µm. The average values of the heat transfer coefficient along the inner tube (consisting of the fluidized and free board sections) are also deduced. An empirical correlation for calculating the Nusselt number is obtained for the given parameters and ranges.

  13. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  14. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  15. Fluidized-bed sorbents

    SciTech Connect

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  16. Fluidization onset and expansion of gas-solid fluidized beds

    SciTech Connect

    Jones, O.C.; Shin, T.S.

    1984-08-01

    A simple, mass conservation-based, kinematic model is presented for accurately predicting both the onset of fluidization and the degree of (limit of) bed expansion in bubbling gas-solid fluidized beds. The model is consistant with inception correlations exisiting in the literature. Since the method has a sound physical basis, it might be expected to provide scaling between laboratory-scale fluidized beds and large-scale systems. This scaling ability, however, remains to be demonstrated as does the application to pressurized systems and where the terminal Reynolds numbers exceed 1000, (Archimedes numbers over about 3.2 x 10/sup 5/).

  17. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  18. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  19. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  20. POWERHOUSES, SOUTH ELEVATIONS SHOWING OIL HOUSE, FILER SUBSTATION, AND DRAFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POWERHOUSES, SOUTH ELEVATIONS SHOWING OIL HOUSE, FILER SUBSTATION, AND DRAFT TUBE OUTLET (TAILRACE), VERTICAL VIEW; FACING WEST - Shoshone Falls Hydroelectric Project, Canyon Road, North Bank of Snake River below Shoshone Falls, Tipperary Corner, Jerome County, ID

  1. Particle pressures in fluidized beds

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-01-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  2. Drafting Fundamentals. Drafting Module 1. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. The guide contains a cross-reference table of instructional materials. Ten units cover drafting fundamentals: (1) introduction to drafting; (2) general safety;…

  3. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  4. Turndown studies for utility fluidized-bed boilers. Final report

    SciTech Connect

    Divilio, R.J.; Reed, R.R.

    1984-01-01

    This report contains a series of analyses that evaluate the turndown potential of the EPRI 6 x 6 test facility and the TVA 20 MW FBC pilot plant by variation of the fluidization velocity. The basis of the analyses is a heat balance program that incorporates basic principles of thermodynamics and fluidization. The heat balance program is used to explain the interrelationship of operating variables of a fluidized-bed boiler and to predict the steady state operating conditions of the boilers over a range of loads. Turndown analyses were performed on two tube bundle designs for the EPRI 6 x 6 test unit including a nine drawer tube bundle designed for 8 ft/sec operation and a twelve drawer bundle for operation up to 12 ft/sec. This twelve drawer bundle was found to have reasonable turndown characteristics between 4 and 12 ft/sec. At a 20 inch static bed depth, for example, this bundle should operate between 1545 and 1620/sup 0/F at 3.2% O/sub 2/ for loads from 4 to 12 ft/sec. In addition to the two bundles studies, a tube bundle capable of a 3:1 turndown range with a minimum temperature variation was designed for the 6 x 6 test facility. The tube bundle for the TVA 20 MW pilot plant was found to have excellent turndown characteristics between 4 and 8 ft/sec. For example, a 21 inch static bed should allow operation between 1541 and 1575/sup 0/F bed temperature at 3% O/sub 2/.

  5. Reducing static charges in fluidized bed reactions

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Ballou, E. V.; Wood, P. C.; Spitze, L. A.

    1980-01-01

    Radio frequency glow discharge apparatus ionizes fluidizing gas, making it conductive enough to neutralize static charge on fluidized particles. Particles agglomerate less, and in one case reactant loading capacity was increased six fold.

  6. Feeding Tubes

    MedlinePlus

    ... administer the TPN. Tubes Used for Enteral Feeds NG (Nasogastric Tube) A flexible tube is placed via ... down through the esophagus into the stomach. The NG tube can be used to empty the stomach ...

  7. Ear Tubes

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  8. Novel fluidized bed reactor for integrated NOx adsorption-reduction with hydrocarbons

    SciTech Connect

    Terris T. Yang; Hsiaotao T. Bi

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NOx adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NOx molar ratio, flue gas oxygen concentration, and gas velocity on NOx conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NOx conversion decreased with an increasing flue gas flow velocity in the annulus U{sub A} but increased with an increasing reductant gas flow velocity in the draft tube U{sub D}. The NOx adsorption ratio decreased with increasing U{sub A}. In most cases, NOx conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O{sub 2} in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O{sub 2} in the flue gas using Fe/ZSM-5 as the deNOx catalyst. 22 refs., 10 figs.

  9. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    SciTech Connect

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  10. METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED

    DOEpatents

    Levey, R.P. Jr.; Fowler, A.H.

    1961-12-12

    A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)

  11. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  12. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  13. Drafting. Advanced Print Reading--Electronics.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This document is a workbook for drafting students learning the basics of reading and interpreting electronic drawings and diagrams. The workbook contains eight units covering the following material: basic symbols; circuit symbols; electron tube symbols; winding symbols; semiconductor symbols; miscellaneous symbols; schematic diagrams; and…

  14. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  15. Review: granulation and fluidized beds

    SciTech Connect

    Kono, H.

    1981-01-01

    The history of granulation techniques is very long; however, the systematic study of the granulation phenomenon began only after 1950. The first, distinguished paper treating the fundamental binding mechanism of granules was published by Rumpf in 1958. Although there are several binding forces, the discussion in this paper is confined to granulation involving the capillary energy of a liquid-particle system. This technique has been applied widely and successfully to various fields of powder technology because of its advantages of simplicity and economy (ref. 2). Granules with diameters larger than 5 mm can be prepared efficiently by rotating-type granulators, such as a pan or a trommel (ref. 3, 4, 5). On the other hand, the purpose of fluidized-bed granulators (hereafter abbreviated as FBG) is to produce small granules with diameters from 0.3 to 3 mm (ref. 6). Because it contains a small amount of liquid, a fluidized-bed granulator has a fluidization state differing significantly from that of an ordinary fluidized bed. The dispersion of liquid and powder in the bed plays an important role in the granulation mechanism. This mechanism is compared to that of pan granulators, and the differences in characteristics are discussed.

  16. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  17. Fluidizing device for solid particulates

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  18. Perspectives for Fluidized Bed Nuclear Reactor Technology using Rotating Fluidized Beds in a Static Geometry

    NASA Astrophysics Data System (ADS)

    Broqueville, Axel De; Wilde, Juray De

    The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.

  19. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-01-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved. Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  20. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  1. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1982-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  2. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  3. Fluidized-Bed Reactor With Zone Heating

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1989-01-01

    Deposition of silicon on wall suppressed. In new fluidized bed, silicon seed particles heated in uppermost zone of reactor. Hot particles gradually mix with lower particles and descend through fluidized bed. Lower wall of vessel kept relatively cool. Because silane enters at bottom and circulates through reactor pyrolized to silicon at high temperatures, silicon deposited on particles in preference wall. Design of fluidized bed for production of silicon greatly reduces tendency of silicon to deposit on wall of reaction vessel.

  4. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  5. Gas fluidized-bed stirred media mill

    DOEpatents

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  6. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  7. Minimum liquid fluidization velocity in gas-liquid-solid fluidized beds

    SciTech Connect

    Briens, L.A.; Briens, C.L.; Margaritis, A.; Hay, J.

    1997-05-01

    Accurate detection of minimum liquid fluidization is essential to the successful operation of gas-liquid-solid fluidized beds, especially when particle or liquid properties evolve. A gas-liquid-solid system of 3-mm glass beads exhibits three distinct flow regimes as the liquid velocity is increased: compacted, agitated and fluidized-bed regimes. Measurements showed that the bed is not fluidized in the agitated bed regime. Pressure gradient and bed height measurements do not provide the minimum liquid fluidization velocity; instead, they offer the velocity between the compacted and agitated bed regimes. Time-averaged signals are not reliable for determining the minimum liquid fluidization velocity. It can be obtained from the standard deviation, the average frequency, the Hurst exponent and the V statistic of the cross-sectional average conductivity, which can be measured under many industrial conditions. Examples of applications of gas-liquid-solid fluidized bed reactors include coal liquefaction and petroleum hydrotreating.

  8. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  9. Development of a simple fluidized-bed coal combustion model for the assessment of a pressurized fluidized-bed combustion system for electrical power generation

    SciTech Connect

    Saxena, S.C.; Turek, D.G.

    1980-07-01

    This report summarizes the state-of-the-art in the mathematical modeling of fluidized-bed coal combustors with the goal of evolving a general framework which will be appropriate for developing a system model for the fluidized-bed coal combustion and power generation technology. Consequently, no attempt is made to generate a functional model, but instead a very simple model is proposed as a first step. The model considers all the essential ingredients of coal combustion and sulfur absorption in fluidized-bed reactors. These are coal devolatilization, char combustion in a bed of dolomite or calcium carbonate, sulfur retention in the fluidized-bed elutriation from the bed, and heat removal by cooling tubes imbedded in the bed. The model is presented and a numerical scheme is proposed which will permit the calculation of bed temperature, coal combustion efficiency, sulfur retention, flue gas composition, and overflow from the bed. Numerical results are presented in which the dependence of the various combustion and operating parameters is examined.

  10. Stability of flows in fluidized beds

    SciTech Connect

    Rajagopal, C.

    1992-01-01

    In this paper we carry out a systematic linearized stability analysis of the state of uniform fluidization for a fluid infused with granular particles. We carry out an interesting optimization procedure which leads to bounds for certain parameters, within which the state of uniform fluidization is stable. We find that this stability depends critically on the structure of the pressure-like term. (VC)

  11. Modeling of fluidized bed silicon deposition process

    NASA Technical Reports Server (NTRS)

    Kim, K.; Hsu, G.; Lutwack, R.; PRATURI A. K.

    1977-01-01

    The model is intended for use as a means of improving fluidized bed reactor design and for the formulation of the research program in support of the contracts of Silicon Material Task for the development of the fluidized bed silicon deposition process. A computer program derived from the simple modeling is also described. Results of some sample calculations using the computer program are shown.

  12. Basic Drafting. Revised.

    ERIC Educational Resources Information Center

    Schertz, Karen

    This introductory module on drafting includes the technical content and tasks necessary for a student to be employed in an entry-level drafting occupation. The module contains 18 instructional units that cover the following topics: introduction to drafting; tools and equipment; supplies and materials; sketching; scales; drawing format; lettering;…

  13. General Drafting. Technical Manual.

    ERIC Educational Resources Information Center

    Department of the Army, Washington, DC.

    The manual provides instructional guidance and reference material in the principles and procedures of general drafting and constitutes the primary study text for personnel in drafting as a military occupational specialty. Included is information on drafting equipment and its use; line weights, conventions and formats; lettering; engineering charts…

  14. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  15. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect

    Srinivasan, M.N.

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  16. A fluidized bed enhances biotreatment

    SciTech Connect

    1996-03-01

    Chlorinated organics such as trichloroethylene (TCE) are often difficult to treat biologically because they degrade into intermediate compounds that are toxic to most microorganisms. But recent advances in fluidized bed biotreatment by Envirex, Inc. (Waukesha, Wis.) indicate that difficult-to-treat wastes like TCE can be successfully biodegraded. The key is to add chemicals (dubbed co-metabolic substrates), which promote the growth of microbes that preferentially degrade the unwanted intermediate compounds. Preliminary field tests using phenol, toluene and methane as the co-metabolic substrate show that TCE levels can be reduced by as much as 95%.

  17. Attrition resistant fluidizable reforming catalyst

    DOEpatents

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  18. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  19. CFD Analysis of Bubbling Fluidized Bed Using Rice Husk

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.

    Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.

  20. Modelling polymer draft gears

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Yang, Xiangjian; Cole, Colin; Luo, Shihui

    2016-09-01

    This paper developed a new and simple approach to model polymer draft gears. Two types of polymer draft gears were modelled and compared with experimental data. Impact characteristics, in-train characteristics and frequency responses of these polymer draft gears were studied and compared with those of a friction draft gear. The impact simulations show that polymer draft gears can withstand higher impact speeds than the friction draft gear. Longitudinal train dynamics simulations show that polymer draft gears have significantly longer deflections than friction draft gears in normal train operations. The maximum draft gear working velocities are lower than 0.2 m/s, which are significantly lower than the impact velocities during shunting operations. Draft gears' in-train characteristics are similar to their static characteristics but are very different from their impact characteristics; this conclusion has also been reached from frequency response simulations. An analysis of gangway bridge plate failures was also conducted and it was found that they were caused by coupler angling behaviour and long draft gear deflections.

  1. Spatiotemporal dynamics of a shallow fluidized bed.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Clark, D. K.

    2000-12-05

    An experimental and theoretical study of the dynamics of an air-fluidized thin granular layer is presented. Near the threshold of instability, the system exhibits critical behavior with remarkably long transient dynamics. Above the threshold of fluidization the system undergoes a Hopf bifurcation as the layer starts to oscillate at a certain frequency due to a feedback between the layer dilation and the airflow rate. Based on our experimental data, we formulate a the simple dynamical model which describes the transition in a shallow fluidized bed.

  2. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  3. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  4. Investigation of fluidized-bed biological denitrification

    SciTech Connect

    Acox, T.A.

    1982-12-16

    The performance of the fluidized-bed bioreactor was modelled for denitrification using a multiple linear regression. Reasonable accuracy was obtained; however, this type of analysis did not take into account the hydraulic characteristics of the fluidized-bed. The Mulcahy and LaMotta computer program previously used to model a fluidized-bed bioreactor cannot be used in this case due to the Michaelis-Menton constant k determined in this study, which was one to two orders of magnitude lower. With some additional bioreactor study and computer program modification, this may prove to be of some benefit.

  5. Fundamental Fluidization Research Project. Environmental Assessment

    SciTech Connect

    Not Available

    1994-01-01

    Morgantown Energy Technology Center proposes to conduct fundamental research on fluidization technology by designing, constructing, and operating a 2-foot diameter, 50-foot high, pressurized fluidized-bed unit. The anticipated result of the proposed project would be a better, understanding of fluidization phenomena under pressurized and high velocity conditions. This improved understanding would, provide a sound basis for design and scale-up of pressurized circulating fluidized-bed combustion (PCFBC) processes for fossil energy applications. Based on the analysis in the EA, DOE has determined that the proposed action is not a major, Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required and the Department is issuing this FONSI.

  6. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  7. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  8. Particle withdrawal from fluidized bed systems

    DOEpatents

    Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  9. Lipid encapsulated phenolic compounds by fluidization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds exhibit antioxidant and antimicrobial activities with applications as functional food and feed additives. Ferulic acid, a phenolic compound present in grain crops and lignocellulose biomass, was encapsulated with saturated triglycerides using a laboratory fluidizer. Stability of t...

  10. Fluidized bed heat treating system

    SciTech Connect

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  11. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  12. Fluidized bed for production of polycrystalline silicon

    SciTech Connect

    Flagella, R.N.

    1992-08-18

    This patent describes a method for removing silicon powder particles from a reactor that produces polycrystalline silicon by the pyrolysis of a silane containing gas in a fluidized bed reaction zone of silicon seed particles. It comprises introducing the silane containing gas stream into the reaction zone of fluidized silicon seed particles; heterogeneously decomposing the silane containing gas under conditions; collecting the silicon product particles from the collection zone; and removing silicon powder particles from the reactor.

  13. Fluidized-bed biological nitrogen removal

    SciTech Connect

    Hosaka, Yukihisa; Minami, Takeshi; Nasuno, Sai )

    1991-08-01

    This article describes a compact process for nitrogen removal developed in Japan. It does not require the large amounts of land of current denitrification processes. The process uses a three-phase fluidized bed of granular anthracite to which the nitrifying bacteria adhere and are fluidized by the activated sludge in the reactor. The process was developed in response to the need for nitrogen and phosphorus removal from waste water to prevent the eutrophication of Tokyo Bay, Japan.

  14. Combustion of hydrogen in a bubbling fluidized bed

    SciTech Connect

    Baron, J.; Bulewicz, E.M.; Zukowski, W.; Kandefer, S.; Pilawska, M.; Hayhurst, A.N.

    2009-05-15

    The combustion of hydrogen in a hot, bubbling bed of quartz sand fluidized by air has been studied for the first time, by injecting hydrogen just above the distributor, via six horizontal fine tubes of Cr/Ni. Overall the fluidizing gas was oxygen-rich, with the composition varying from nearly stoichiometric to very lean mixtures. With the bed initially fluidized at room temperature, combustion (after ignition by a pilot flame) occurs in a premixed flame sitting on top of the bed. When the sand warms up, combustion becomes explosive in bubbles leaving the bed, exactly as with a hydrocarbon as fuel. However, in contrast to hydrocarbons, it is clear that when the bed reaches 500-600 C, heat is produced both above the top of the bed (because of H{sub 2} bypassing the bed) and very low down in the bed. In fact, with hydrogen as fuel, the location of where bubbles ignite descends abruptly to low in the sand; furthermore, the descent occurs at {proportional_to}500 C, which is {proportional_to}100 K below the ignition temperature predicted by well-established kinetic models. However, the kinetic models do reproduce the observations, if it is assumed that the Cr/Ni hypodermic tubes, through which the fuel was injected, exert a catalytic effect, producing free H atoms, which then give rise to HO{sub 2} radicals. In this situation, kinetic modeling indicates that bubbles ignite when they become sufficiently large and few enough to have a lifetime (i.e. the interval between their collisions) longer than the ignition delay for the temperature of the sand. The amounts of NO found in the off-gases were at a maximum (24 ppm), when the bed was at {proportional_to}500 C for {lambda}=[O{sub 2}]/[O{sub 2}]{sub stoich}=1.05. The variations of [NO] with [air]/[H{sub 2}] and also temperature indicate that NO is produced, at least partly, via the intermediate N{sub 2}H. In addition, the air-afterglow emission of green light (from NO+O{yields}NO{sub 2}+h{nu}) was observed in the freeboard

  15. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... A nasogastric tube (NG tube) is a special tube that carries food and medicine to the stomach through the nose. It can be ...

  16. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  17. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  18. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.; Halow, J.S.

    1995-12-01

    Successful development of advanced coal-fired power conversion systems often require reliable and efficient cleanup devices which can remove particulate and gaseous pollutants from high-temperature high-pressure gas streams. A novel filtration concept for particulate cleanup has been developed at the Morgantown Energy Technology Center (METC) of the U.S. Department of Energy. The filtration system consists of a fine metal screen filter immersed in a fluidized bed of granular material. As the gas stream passes through the fluidized bed, a layer of the bed granular material is entrained and deposited at the screen surface. This material provides a natural granular filter to separate fine particles from the gas stream passing through the bed. Since the filtering media is the granular material supplied by the fluidized bed, the filter is not subjected to blinding like candle filters. Because only the inflowing gas, not fine particle cohesive forces, maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer is stabilized, it remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limits the thickness of the granular layer on the filter leading to a self-cleaning attribute of the filter. This paper presents work since then on a continuous filtration system. The continuous filtration testing system consisted of a filter, a two-dimensional fluidized-bed, a continuous powder feeder, a laser-based in-line particle counting, sizing, and velocimeter (PCSV), and a continuous solids feeding/bed material withdrawal system. The two-dimensional, transparent fluidized-bed allowed clear observation of the general fluidized state of the granular material and the conditions under which fines are captured by the granular layer.

  19. Basic Drafting: Book Two.

    ERIC Educational Resources Information Center

    Davis, Ronald; And Others

    The second of a two-book course in drafting, this manual consists of 12 topics in the following units: sketching techniques, geometric constructions, orthographic views, dimensioning procedures, basic tolerancing, auxiliary views, sectional views, inking tools and techniques, axonometrics, oblique, perspective, and computer-aided drafting.…

  20. Mathematics for Drafting.

    ERIC Educational Resources Information Center

    Clary, Joseph R.; Nery, Karen P.

    This set of three modules was designed for use primarily to help teach and reinforce the basic mathematics skills in drafting classes. The modules are based on the needs of drafting students in beginning courses as determined by a survey of teachers across North Carolina. Each module consists of basic information and examples and problem sheets…

  1. Basic Drafting: Book One.

    ERIC Educational Resources Information Center

    Davis, Ronald; And Others

    The first of a two-book course in drafting, this manual consists of 13 topics in the following units: introduction to drafting, general safety, basic tools and lines, major equipment, applying for a job, media, lettering, reproduction, drawing sheet layout, architect's scale usage, civil engineer's scale usage, mechanical engineer's scale usage,…

  2. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  3. Design of a Localized Fluidization Burrowing Robot

    NASA Astrophysics Data System (ADS)

    Dorsch, Daniel; Winter, Amos

    2014-11-01

    This presentation will focus on the critical fluid and granular mechanics principles that drove the design of RoboClam 2.0, a self-actuated, radially expanding underwater burrowing device. RoboClam 2.0 was inspired by the Atlantic razor clam, Ensis directus, which burrows by contracting its valves and fluidizing the surrounding soil to reduce burrowing drag. This contraction results in a localized fluidized region occurring 1-5 body radii away from the animal. Moving through a fluidized, rather than static, soil requires energy that scales linearly with depth, rather than depth squared. In addition to providing an advantage for the animal, localized fluidization may yield significant value to engineering applications such as subsea robot anchoring and pipe installation. RoboClam 2.0 is sized to be an anchoring platform for autonomous underwater vehicles. We will present the scaling relationships that can be used to design RoboClam derivatives for different size scales and applications. The critical speed, displacement and force with which the device must contract to create fluidization are calculated based on soil parameters. These parametric relationships allow for choosing actuators of appropriate size and power output for desired burrowing performance.

  4. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  5. Combustion of oil palm solid wastes in fluidized bed combustor

    SciTech Connect

    Shamsuddin, A.H.; Sopian, K.

    1995-12-31

    The palm oil industry of Malaysia is the largest in the world producing about 55% of the world production. The industry has approximately 270 mills throughout the country with processing sizes ranging from 10 tonnes/hour to 120 tonnes/hour. All mills produce solid wastes, about 50% of the fresh fruit bunches in terms of weight. The solid wastes produced are in the form of empty fruit bunches, fibers and shells. These wastes have high energy value, ranging from 14 to 18 MJ/kg. The industry is currently self-sufficient in terms of energy. Fibers and shell wastes are being used as boiler fuel to raise steam for electrical power production and process steam. However, the combustion technology currently being employed is obsolete with low efficiency and polluting. A fluidized bed combustor pilot plant is designed and constructed at Combustion Research Laboratory, Universiti Kebangsaan Malaysia. The combustor is made up of 600 mm {times} 900 mm rectangular bed filled with sand up to 400 mm height, static. A bank of heat transfer tubes is imbedded in the bed, designed to absorb 50% of heat released by the fuel in the bed. The remaining heat is transferred in tubes placed on the wall of the freeboard area. Experimental studies were carried out in the pilot plant using palm oil solid wastes. The combustion temperatures were maintained in the range 800--900 C. The performance of the combustor was evaluated in terms of combustion and boiler efficiencies and flue gas emissions monitored.

  6. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  7. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  8. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  9. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  10. Architectural Drafting, Drafting 2: 9255.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course covers the basic fundamentals of architectural drafting and is not intended to delve into the more advanced phases of architecture. The student is presented with standards and procedures, and will become proficient in layout of floor plans, electrical plans, roof construction, foundation plans, typical wall construction, plot plans, and…

  11. Cluster: Drafting. Course: Introduction to Technical Drafting.

    ERIC Educational Resources Information Center

    Sanford - Lee County Schools, NC.

    The set of 10 units is designed for use with an instructor as an introduction to technical drafting, and is also keyed to other texts. Each unit contains several task packages specifying prerequisites, rationale for learning, objectives, learning activities to be supervised by the instructor, and learning practice. The units cover: drafting…

  12. Aeronautical Drafting, Drafting 3: 9257.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Intended for students interested in the aircraft and missile field of engineering and drafting, the course covers fundamentals, working drawings, and auxiliary views and sections that are related to this field. Considered advanced training, a prerequisite for the course is mastery of the skills indicated in Electrical and Electronic…

  13. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  14. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  15. Ear tube insertion

    MedlinePlus

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  16. Characterizing the rheology of fluidized granular matter.

    PubMed

    Desmond, Kenneth W; Villa, Umberto; Newey, Mike; Losert, Wolfgang

    2013-09-01

    In this study we characterize the rheology of fluidized granular matter subject to secondary forcing. Our approach consists of first fluidizing granular matter in a drum half filled with grains via simple rotation and then superimposing oscillatory shear perpendicular to the downhill flow direction. The response of the system is mostly linear, with a phase lag between the grain motion and the oscillatory forcing. The rheology of the system can be well characterized by the GDR MiDi model if the system is forced with slow oscillations. The model breaks down when the forcing time scale becomes comparable to the characteristic time for energy dissipation in the flow. PMID:24125256

  17. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  18. Characterizing the rheology of fluidized granular matter

    NASA Astrophysics Data System (ADS)

    Desmond, Kenneth W.; Villa, Umberto; Newey, Mike; Losert, Wolfgang

    2013-09-01

    In this study we characterize the rheology of fluidized granular matter subject to secondary forcing. Our approach consists of first fluidizing granular matter in a drum half filled with grains via simple rotation and then superimposing oscillatory shear perpendicular to the downhill flow direction. The response of the system is mostly linear, with a phase lag between the grain motion and the oscillatory forcing. The rheology of the system can be well characterized by the GDR MiDi model if the system is forced with slow oscillations. The model breaks down when the forcing time scale becomes comparable to the characteristic time for energy dissipation in the flow.

  19. Fluidized-Bed Cleaning of Silicon Particles

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Hsu, George C.

    1987-01-01

    Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.

  20. Drafting: Current Trends and Future Practices

    ERIC Educational Resources Information Center

    Jensen, C.

    1976-01-01

    Various research findings are reported on drafting trends which the author feels should be incorporated into teaching drafting: (1) true position and geometric tolerancing, (2) decimal and metric dimensioning, (3) functional drafting, (4) automated drafting, and (5) drawing reproductions. (BP)

  1. Microfilming for Drafting Students

    ERIC Educational Resources Information Center

    Bass, Ronald E.

    1972-01-01

    If you have a 35mm camera, an enlarger or filmstrip projector, and developing equipment you can introduce your drafting students to one of the processes used in the newly emerging field of technical communication.'' (Editor)

  2. High temperature solar gas heating comparison between packed and fluidized bed receivers. I

    NASA Astrophysics Data System (ADS)

    Flamant, G.; Olalde, G.

    1983-01-01

    Experimental results are analyzed for packed and fluidized beds used as absorbers for solar thermal energy in conjunction with a heat engine. The packed bed was composed of porous material in the form of equally sized spheres, and a Runge-Kutta condition was used to solve a system of five first order differential equations and obtain the flux and temperature profiles. The solar receiver was configured as a spherical concentrator achieving magnification of up to 2000. The packed and fluidized beds were contained within quartz tubes. The thermal transport fluid was a gas, and ZrO2 and SiC were employed as the fluidized and packed materials. Attention was given to the mean penetration of solar radiation, the gas temperature level, and the system thermal efficiency. Temperatures of the beds ranged from 700-1500 K, with thermal efficiencies of 30-70 percent. Cavity receivers were found to yield the best efficiencies, and the packed bed receiver was considered to be a candidate for dispersed solar power systems equipped with Stirling engines.

  3. Fluidized bed electrowinning of copper. Final report

    SciTech Connect

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  4. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  5. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  6. Localized fluidization burrowing mechanics of Ensis directus.

    PubMed

    Winter, Amos G; Deits, Robin L H; Hosoi, A E

    2012-06-15

    Muscle measurements of Ensis directus, the Atlantic razor clam, indicate that the organism only has sufficient strength to burrow a few centimeters into the soil, yet razor clams burrow to over 70 cm. In this paper, we show that the animal uses the motions of its valves to locally fluidize the surrounding soil and reduce burrowing drag. Substrate deformations were measured using particle image velocimetry (PIV) in a novel visualization system that enabled us to see through the soil and watch E. directus burrow in situ. PIV data, supported by soil and fluid mechanics theory, show that contraction of the valves of E. directus locally fluidizes the surrounding soil. Particle and fluid mixtures can be modeled as a Newtonian fluid with an effective viscosity based on the local void fraction. Using these models, we demonstrate that E. directus is strong enough to reach full burrow depth in fluidized soil, but not in static soil. Furthermore, we show that the method of localized fluidization reduces the amount of energy required to reach burrow depth by an order of magnitude compared with penetrating static soil, and leads to a burrowing energy that scales linearly with depth rather than with depth squared. PMID:22623195

  7. FBC: Gaining acceptance. [Fluidized Bed Combustion

    SciTech Connect

    Gawlicki, S.M.

    1991-04-01

    This article addresses the growing acceptance of fluidized bed combustion as a technology appropriate for use in dual-purpose power plants. The article reviews projects for cogeneration in California, a demonstration plant sponsored by the US Department of Energy in Ohio (this plant also incorporates combined cycle operation), and an electric power/greenhouse project in Pennsylvania.

  8. Constitutive laws in liquid-fluidized beds

    NASA Astrophysics Data System (ADS)

    Duru, Paul; Nicolas, Maxime; Hinch, John; Guazzelli, Élisabeth

    2002-02-01

    The objective of the present work is to test experimentally the two-phase modelling approach which is widely used in fluidization. A difficulty of this way of modelling fluidized beds is the use of empirical relations in order to close the system of equations describing the fluidized bed as a two-phase continuum, especially concerning the description of the solid phase. We performed an experimental investigation of the primary wavy instability of liquid-fluidized beds. Experiments demonstrate that the wave amplitude saturates up the bed and we were able to measure the precise shape of this voidage wave. We then related this shape to the unknown solid phase viscosity and pressure functions of a simple two-phase model with a Newtonian stress-tensor for the solid phase. We found the scaling laws and the particle concentration dependence for these two quantities. It appears that this simplest model is quite satisfactory to describe the one-dimensional voidage waves in the limited range of parameters that we have studied. In our experimental conditions, the drag on the particles nearly balances their weight corrected for buoyancy, the small imbalance being mostly accounted for by solid phase viscous stress with a much smaller contribution from the solid phase pressure.

  9. Propagation of a fluidization - combustion wave

    SciTech Connect

    Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

    1994-05-01

    A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

  10. Particle pressures in fluidized beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  11. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  12. Fluidized-Bed Silane-Decomposition Reactor

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  13. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  14. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  15. Computer Assisted Drafting (CNC) Drawings. Drafting Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. This unit contains information on computer-assisted drafting drawings. The guide contains a cross-reference table of instructional materials and 20 worksheets.…

  16. Fundamental Combustion Characteristics of Sewage Sludge in Fluidized Bed Incinerator with Turbocharger

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi

    An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.

  17. Angular glass tubing drawn from round tubing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Round glass tubing softened in a furnace is drawn over a shaped plug or mandel to form shapes with other than a circular cross section. Irregularly shaped tubing is formed without limitations on tube length or wall thickness.

  18. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  19. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  20. Electron tube

    DOEpatents

    Suyama, Motohiro; Fukasawa, Atsuhito; Arisaka, Katsushi; Wang, Hanguo

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  1. Tube Feeding Troubleshooting Guide

    MedlinePlus

    ... profile tube also has a stem length). Note: NG and NJ tubes (that go through a person’s ... Immediate Action: • Discontinue feeding. • If you have an NG or NJ tube, and the tube is curled ...

  2. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your head. Sometimes, ...

  3. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules.

    PubMed

    Dawson, Elizabeth A; Parkes, Gareth M B; Bond, Gary; Mao, Runjie

    2009-03-01

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.

  4. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules

    SciTech Connect

    Dawson, Elizabeth A.; Parkes, Gareth M. B.; Bond, Gary; Mao, Runjie

    2009-03-15

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.

  5. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules

    NASA Astrophysics Data System (ADS)

    Dawson, Elizabeth A.; Parkes, Gareth M. B.; Bond, Gary; Mao, Runjie

    2009-03-01

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.

  6. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules.

    PubMed

    Dawson, Elizabeth A; Parkes, Gareth M B; Bond, Gary; Mao, Runjie

    2009-03-01

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration. PMID:19334935

  7. Experimental and theoretical investigation on the mechanism of transient bubble images in fluidized-bed combustors: Systematic interpretation and analysis. Final report, July 1992--July 1995

    SciTech Connect

    Hisashi O. Kono

    1995-08-01

    For the improvement of the design and operation of the FBC systems, the insight into the intrinsic transient bubbling phenomena in freely bubbling fluidized beds is of vital importance. The authors have found several basic new bubbling mechanisms in this work experimentally, and some of them have not been published in past literature. Using the two dimensional fluidized bed, the images of transient bubbling behavior were recorded by videos, and processed and analyzed by computers. As the results of experiments, the following new experimental facts were found: (1) transient bubbles change and fluctuate their size and shape over very short time intervals (on the order of 30 milliseconds); (2) bubble disappearance and reappearance occurred in the emulsion phase in addition to the known phenomena of coalescence and splitting. The bubble interaction occurred between the bubbles and adjacent emulsion phase and also among the transient bubbles; (3) bubble`s velocity fluctuated significantly, e.g., 0.6 to 3.0 m/s; (4) under one single specific fluidization condition, two different fluidization patterns appeared to occur randomly shifting from one pattern to the other or vice versa; (5) the erosion rates of in-bed tubes at ambient and elevated temperature could be predicted using material property data and transient behavior of bubbles. By introducing a new quantitative criterion which the authors call a gas stress index in the emulsion phase, the comparison of the fluidization quality between two and three dimensional fluidized beds was accomplished. They found reasonable correspondence between the two beds, and concluded that the new findings of transient bubble behavior should hold true for both types of fluidized beds. 32 refs., 85 figs., 13 tabs.

  8. The development of a 20-inch indirect fired fluidized bed gasifier

    SciTech Connect

    Flanigan, V.J.; Sitton, O.C.; Huang, W.E

    1988-03-01

    This report discusses the design, fabrication and operation of a 20'' I.D. fluidized bed gasifier producing medium Btu gas. The reactor is indirectly heated using 30 x 1-inch U-tubes inserted in the inert bed. The U-tubes are heated using flue gases produced from a propane burner system located at the bottom of the reactor. The feed material was dry wood chips fed into the bed with a 6in. auger. The reactor was fed both into the bed and at the top of the bed. The fluidizing medium was superheated steam which was superheated to 1000/degree/F. The gas produced from the reactor was passed through a cyclone for char removal and routed to the flare for combustion and disposal. The parameters measured during the experimental runs were wood feed rate, steam flow rate, steam temperatures, bed temperatures, free board temperatures, product gas temperatures, bed differential pressures, char production, gas production, gas analyses, and tar production. The parameters measured in the laboratory were moisture contents (wood and char), ash contents (wood and char), and tar content. 9 refs., 19 figs., 11 tabs.

  9. Characteristics of grid zone heat transfer in a gas-solid fluidized bed

    SciTech Connect

    Ho, T.C.; Wang, R.C.; Hopper, J.R.

    1987-05-01

    The grid zone in a gas-solid fluidized bed reactor has been observed to play a critical role in governing the reactor performance, particularly in shallow and large beds with fast reactions. However, despite its importance the grid zone behavior is far from completely understood, due mainly to its complexity and the few efforts to study it. One of the important aspects on the grid zone behavior is the heat transfer between the bed and immersed horizontal tubes. Although this subject has been under intensive study in the bubbling zone and freeboard area, no systematic work has been performed in the grid zone. Others examined the phenomenon and concluded that the existing heat transfer correlations for the bubbling zone give erroneous results when applied to the grid zone, especially at high velocities. The finding is expected since the two zones are significantly different in their hydrodynamic characteristics. An example of a process involving grid zone heat transfer is the shallow fluidized bed heat exchanger. The exchanger is operated at an extremely low bed height (6-10 cm) with horizontal fin tubes in the grid region. The authors reported a higher than expected heat transfer rate (compared to the bubbling bed heat transfer rate).

  10. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  11. Cold test with a benchtop set-up for fluidized bed reactor using quartz sand to simulate gasification of coal cokes by concentrated solar radiation

    NASA Astrophysics Data System (ADS)

    Gokon, Nobuyuki; Tanabe, Tomoaki; Shimizu, Tadaaki; Kodama, Tatsuya

    2016-05-01

    The impacts of internal circulation of a mixture of coal-coke particles and quartz sand on the fluidization state in a fluidized bed reactor are investigated by a cold test with a benchtop set-up in order to design 10-30 kWth scale prototype windowed fluidized-bed reactor. Firstly, a basic relationship between pressure loss of inlet gas and gas velocity was experimentally examined using quartz sand with different particle sizes by a small-scale quartz tube with a distributor at ambient pressure and temperature. Based on the results, an appropriate particle range of quartz sand and layer height/layer diameter ratio (L/D ratio) was determined for a design of the fluidized bed reactor. Secondly, a windowed reactor mock-up was designed and fabricated for solar coke gasification using quartz sand as a bed material. The pressure loss between the inlet and outlet gases was examined, and descending cokes and sand particles on the sidewall of the reactor was observed in the reactor mock-up. The moving velocity and distance of descending particles/sands from the top to bottom of fluidized bed were measured by the visual observation of the colored tracer particles on outside wall of the reactor.

  12. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  13. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  14. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  15. Fines in fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G.; Hogle, R.; Rohatgi, N.; Morrison, A.

    1984-01-01

    Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized-bed reactor is investigated as a low-cost, high-throughput method to produce high-purity polysilicon for solar-cell applications. Studies of fines, particles 0.1-10 microns diam, initiated from homogeneous decomposition in the reactor were conducted using 2 and 6-in-diam fluidized beds. The studies show functional dependences of fines elutriation on silane feed concentration, temperature, gas velocity, and bubble size. The observation that the fines elutriation is generally below 10 percent of the silicon-in-silane feed is attributed to scavenging by large particles in an environment of less free space for homogeneous nucleation. Preliminary results suggest that, with proper conditions and distributor design, high-silane-concentration (over 50 percent SiH4 in H2) feed may be used.

  16. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  17. Cluster Dynamics in a Circulating Fluidized Bed

    SciTech Connect

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  18. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  19. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  20. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  1. Particle pressures in fluidized beds. Annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.

    1994-03-01

    Campbell and Wang (1991) showed that the particle pressures in gas-fluidized beds were largely generated by the passage of bubbles. In particular, they showed that the average particle pressure exerted on the side walls scaled with the average size of the bubble. This immediately brings to mind two questions: (1) what is it about bubbles that leads to particle pressure generation and (2) would there be measurable particle pressures in liquid-fluidized beds which, while unstable, do not bubble? This project is largely aimed at answering these two questions. To attack the first problem, the authors have built a two-dimensional gas-fluidized bed into which bubbles may be injected and the distribution of particle-pressure measured. For the latter, other experiments are being performed in liquid fluidized beds. However, it soon became apparent that the particle pressures generated in the liquid beds are extremely small. This has pointed that phase of the research in two directions. The first is the design and construction of a third, and more sensitive, from of the particle pressure transducer. The second approach arose from reflection on what ultimately was the utility of the current research. This led to the development of a generic stability model, in which all modeled terms are left unspecified. From analyzing this model, they have developed an experimental plan that, by measuring the characteristics of voidage disturbances and comparing with the theory, will allow them to back out appropriate values for the modeled terms. The results will not only yield insight into the particle pressure, but also of the fluid drag. The latter results may be used to evaluate common models for these terms.

  2. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  3. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  4. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  5. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  6. Status of the fluidized bed unit

    SciTech Connect

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  7. Fermentation in a fluidized-bed reactor

    SciTech Connect

    Scott, C.D.

    1983-06-01

    A laboratory-scale fluidized-bed bioreactor system for the production of ethanol from a glucose solution using flocculating Zymomonas mobilis was studied. Although the results are preliminary, 2.5- to 3.8-cm-diameter systems were operated for more than 300 h using fluidized floc particles that are 1-2 mm in diameter. The ethanol production rate in the lower portion of the fluidized bed operating at 30/sup 0/C routinely exceeded 200 g/L x h and under some conditions was as high as 400 g/ L x h with a reactor residence time of a few minutes. This far surpasses the results obtained with a batch, stirred-tank reactor using yeast. Ethanol productivity based on the total reactor volume approached 100 g/L x h, and glucose conversion exceeded 95%. With continued research, even higher production rates will be possible as conditions are optimized and scale-up to larger systems will allow the establishment of technical feasibility.

  8. Pressurized Fluidized Bed Combustion of Sewage Sludge

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  9. Granular behavior in gas-fluidized beds

    NASA Astrophysics Data System (ADS)

    Ojha, Rajesh Prasad

    This work investigates the behavior of granular materials driven by a uniform upward flow of gas within a vertical container. This arrangement is referred to as a gas-fluidized bed. For a bed with a large number of spherical grains, bulk properties of the sample, such as solids volume fraction (the percent of space occupied by solids) and gas pressure drop, are found to obey simple scaling relations when the superficial air velocity, the container size, or the grain size are varied. These results stand in contrast to behavior observed in other granular systems, where non-trivial interaction between individual grains leads to complex behavior for the bulk. The results suggest that there is a unique quality to the forcing provided to individual grains by gas fluidization that results in relatively simple bulk behavior. To investigate this possibility, experiments were carried out in a gas-fluidized bed with only a single grain. A large grain, a ping pong ball, was chosen for ease of visual observation. The ball's behavior is found to be exactly that of a Brownian object harmonically bound to the center of its container. Its dynamics are found to be described by a Langevin Equation, with the random forcing on related to the dissipation of energy by the Fluctuation-Dissipation Theorem. We find that the separation statistics for a two-ball system are also described by a statistical mechanics approach. These results represent the first successful application of conventional statistical mechanics to a macroscopic system.

  10. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    SciTech Connect

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatial resolution of meso-scale clustering heterogeneities is sacrificed.

  11. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  12. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    SciTech Connect

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  13. Drafting Lab Management Guide.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This manual was developed to guide drafting instructors and vocational supervisors in sequencing laboratory instruction and controlling the flow of work for a 2-year machine trades training program. The first part of the guide provides information on program management (program description, safety concerns, academic issues, implementation…

  14. Drafting. Competency Based Curriculum.

    ERIC Educational Resources Information Center

    Everly, Al; And Others

    This competency based drafting curriculum is presented in seven specialization sections with units in each section containing a competency statement, performance objective, learning activities, evaluation, and quiz or problem sheets. Some units also contain answer sheets and/or handout sheets. Sections and number of units presented are (1) basic…

  15. Caught in the Draft

    ERIC Educational Resources Information Center

    Edge, Ron

    2007-01-01

    We've all seen (in movies, newscasts, or perhaps in person) the violent effect of the downwash that occurs when a helicopter hovers over the ground. Leaves, grass, and debris are dramatically blown about. We've also sat in front of circulating room fans and felt a large draft, whereas there seems to be very little air movement behind the fan. The…

  16. Drafting the Basics

    ERIC Educational Resources Information Center

    Lamb, Carol M.; Kurtanich, David G.

    2007-01-01

    This paper outlines the work in progress undertaken by the School of Engineering Technology faculty to identify, assess, and develop a course to address the depth and breadth of drafting/plan preparation and plan reading skills required by the various engineering technology programs offered at Youngstown State University. The methodology used to…

  17. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  18. Collapse Tubes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02154 Collapse Tubes

    The discontinuous channels in this image are collapsed lava tubes.

    Image information: VIS instrument. Latitude -19.7N, Longitude 317.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. A tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, J.; Campbell, B.; Depoy, D.

    1996-12-31

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  20. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  1. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  2. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  3. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  4. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  5. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  6. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  7. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  8. 46 CFR 131.220 - Drafts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Drafts. (a) Each vessel must have the drafts of the vessel plainly and legibly marked upon the stem and... stem or cutaway skeg, the keel does not extend forward or aft to the draft markings, the datum...

  9. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Dang, Sai-Chao; Ma, Qiang; Xia, Wei-Dong

    2015-07-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current Cms, air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005 and 11034010).

  10. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  11. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  12. Transients in a circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  13. Simulation of fluidized bed coal combustors

    NASA Technical Reports Server (NTRS)

    Rajan, R.

    1979-01-01

    The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.

  14. Archimedes' principle in fluidized granular systems.

    PubMed

    Huerta, D A; Sosa, Victor; Vargas, M C; Ruiz-Suárez, J C

    2005-09-01

    We fluidize a granular bed in a rectangular container by injecting energy through the lateral walls with high-frequency sinusoidal horizontal vibrations. In this way, the bed is brought to a steady state with no convection. We measured buoyancy forces on light spheres immersed in the bed and found that they obey Archimedes' principle. The buoyancy forces decrease when we reduce the injected energy. By measuring ascension velocities as a function of gamma, we can evaluate the frictional drag of the bed; its exponential dependence agrees very well with previous findings. Rising times of the intruders ascending through the bed were also measured, they increase monotonically as we increase the density.

  15. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  16. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  17. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  18. Repair boundary for parent tube indications within the upper joint zone of hybrid expansion joint (HEJ) sleeved tubes

    SciTech Connect

    Cullen, W.K.; Keating, R.F.

    1997-02-01

    In the Spring and Fall of 1994, and the Spring of 1995, crack-like indications were found in the upper hybrid expansion joint (HEJ) region of Steam Generator (S/G) tubes which had been sleeved using Westinghouse HEJ sleeves. As a result of these findings, analytic and test evaluations were performed to assess the effect of the degradation on the structural, and leakage, integrity of the sleeve/tube joint relative to the requirements of the United States Nuclear Regulatory Commission`s (NRC) draft Regulatory Guide (RG) 1.121. The results of these evaluations demonstrated that tubes with implied or known crack-like circumferential parent tube indications (PTIs) located 1.1 inches or farther below the bottom of the hardroll upper transition, have sufficient, and significant, integrity relative to the requirements of RG 1.121. Thus, the purpose of this report is to provide background information related to the justification of the modified tube repair boundary.

  19. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  20. Electrical and Electronic Drafting, Drafting 3: 9257.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course covers the standards used in the electronic field, electrical drawings, electronic drafting, and parts of functional drafting. The student will become familiar with symbols used in these fields and become proficient with tools and reference material used in drawing schematics and mechanical details and in electrical and electronic…

  1. Drafting--Basic, Drafting--Intermediate: 9255.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course has no prerequisites, offers instruction in basic drafting room techniques and procedures, and also covers job opportunities and industrial methods in engineering. The student is introduced to and asked to perform fundamental drafting problems with working drawings, using multiview and auxiliary views and sections. The course also…

  2. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time.

  3. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Songgeng Li; John T. Riley

    2005-10-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  4. Computer Aided Drafting. Instructor's Guide.

    ERIC Educational Resources Information Center

    Henry, Michael A.

    This guide is intended for use in introducing students to the operation and applications of computer-aided drafting (CAD) systems. The following topics are covered in the individual lessons: understanding CAD (CAD versus traditional manual drafting and care of software and hardware); using the components of a CAD system (primary and other input…

  5. Industrial Education. Drafting. [Grade 9].

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides a course on drafting to be used in the ninth grade. Thirteen goals are identified for the students to demonstrate: (1) a knowledge of the relationship between drafting and the work of designers, engineers, and architects; (2) an…

  6. Coal-feeding mechanism for a fluidized bed combustion chamber

    SciTech Connect

    Gall, R. L.

    1981-06-02

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, E.G. Coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  7. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  8. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is at... summary to the public with an attached list of locations (such as public libraries) where the entire draft... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of...

  9. Computer Aided Drafting Workshop. Workshop Booklet.

    ERIC Educational Resources Information Center

    Goetsch, David L.

    This mini-course and article are presentations from a workshop on computer-aided drafting. The purpose of the mini-course is to assist drafting instructors in updating their occupational knowledge to include computer-aided drafting (CAD). Topics covered in the course include general computer information, the computer in drafting, CAD terminology,…

  10. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    NASA Astrophysics Data System (ADS)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of

  11. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Songgeng Li

    2006-01-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  12. Thermomechanical CSM analysis of a superheater tube in transient state

    NASA Astrophysics Data System (ADS)

    Taler, Dawid; Madejski, Paweł

    2011-12-01

    The paper presents a thermomechanical computational solid mechanics analysis (CSM) of a pipe "double omega", used in the steam superheaters in circulating fluidized bed (CFB) boilers. The complex cross-section shape of the "double omega" tubes requires more precise analysis in order to prevent from failure as a result of the excessive temperature and thermal stresses. The results have been obtained using the finite volume method for transient state of superheater. The calculation was carried out for the section of pipe made of low-alloy steel.

  13. High viscosity gas fluidization of fine particles: An extended window of quasihomogeneous flow.

    PubMed

    Valverde, Jose Manuel; Castellanos, Antonio

    2006-08-01

    We explore the role of gas viscosity in the behavior of gas-fluidized beds of fine powders by means of experimental measurements using nitrogen and neon as fluidizing gases, and theoretical considerations. The existence of a nonbubbling fluidlike regime has been recently observed in beds of fine powders fluidized with nitrogen. Our experiments with neon reveal a discontinuous transition from heterogeneous fluidization to a highly expanded homogeneous fluidization state. We point out that increasing gas viscosity enhances the coherence of agglomerate swarms, which promotes a local void-splitting mechanism, thus improving the uniformity of fluidization. Our theoretical analysis predicts that further increase of gas viscosity would produce a full suppression of the bubbling regime, i.e., the uniformly fluidized bed would undergo a direct transition to a turbulent regime as seen in beds of nanoparticles fluidized by nitrogen and in liquid-fluidized beds of moderate-density beads.

  14. Operating experience with a fluidized bed test combustor

    SciTech Connect

    Hainley, D.C.; Haji-Sulaiman, M.Z.; Yavuzkurt, S.; Scaroni, A.W.

    1987-06-01

    This paper presents operating experience with a fluidized bed combustor burning various coals. The primary focus is on the effect of relevant coal properties on combustor performance. Tests were carried out using anthracite, HVB and HVC bituminous and sub-bituminous A coals, and petroleum coke. Comparisons of the performance of the combustion on the various fuels are made. A two-stage fluidized bed combustor operating in a single-stage mode without recycle was employed. Experimental measurements included temperature, fuel feed rate, fluidization velocity and bed height. For some of the coals, bed agglomeration was found to occur. The results indicate that coal properties have an important effect upon the operation of the fluidized bed combustor.

  15. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  16. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  17. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  18. Dynamics of gas-fluidized granular rods.

    PubMed

    Daniels, L J; Park, Y; Lubensky, T C; Durian, D J

    2009-04-01

    We study a quasi-two-dimensional monolayer of granular rods fluidized by a spatially and temporally homogeneous upflow of air. By tracking the position and orientation of the particles, we characterize the dynamics of the system with sufficient resolution to observe ballistic motion at the shortest time scales. Particle anisotropy gives rise to dynamical anisotropy and superdiffusive dynamics parallel to the rod's long axis, causing the parallel and perpendicular mean-square displacements to become diffusive on different time scales. The distributions of free times and free paths between collisions deviate from exponential behavior, underscoring the nonthermal character of the particle motion. The dynamics show evidence of rotational-translational coupling similar to that of an anisotropic Brownian particle. We model rotational-translational coupling in the single-particle dynamics with a modified Langevin model using nonthermal noise sources. This suggests a phenomenological approach to thinking about collections of self-propelling particles in terms of enhanced memory effects. PMID:19518218

  19. Dynamics of gas-fluidized granular rods

    NASA Astrophysics Data System (ADS)

    Daniels, L. J.; Park, Y.; Lubensky, T. C.; Durian, D. J.

    2009-04-01

    We study a quasi-two-dimensional monolayer of granular rods fluidized by a spatially and temporally homogeneous upflow of air. By tracking the position and orientation of the particles, we characterize the dynamics of the system with sufficient resolution to observe ballistic motion at the shortest time scales. Particle anisotropy gives rise to dynamical anisotropy and superdiffusive dynamics parallel to the rod’s long axis, causing the parallel and perpendicular mean-square displacements to become diffusive on different time scales. The distributions of free times and free paths between collisions deviate from exponential behavior, underscoring the nonthermal character of the particle motion. The dynamics show evidence of rotational-translational coupling similar to that of an anisotropic Brownian particle. We model rotational-translational coupling in the single-particle dynamics with a modified Langevin model using nonthermal noise sources. This suggests a phenomenological approach to thinking about collections of self-propelling particles in terms of enhanced memory effects.

  20. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  1. Active fluidization in dense glassy systems.

    PubMed

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells. PMID:27380935

  2. Fluidized bed boiler having a segmented grate

    DOEpatents

    Waryasz, Richard E.

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  3. Archimedes' principle in fluidized granular systems.

    PubMed

    Huerta, D A; Sosa, Victor; Vargas, M C; Ruiz-Suárez, J C

    2005-09-01

    We fluidize a granular bed in a rectangular container by injecting energy through the lateral walls with high-frequency sinusoidal horizontal vibrations. In this way, the bed is brought to a steady state with no convection. We measured buoyancy forces on light spheres immersed in the bed and found that they obey Archimedes' principle. The buoyancy forces decrease when we reduce the injected energy. By measuring ascension velocities as a function of gamma, we can evaluate the frictional drag of the bed; its exponential dependence agrees very well with previous findings. Rising times of the intruders ascending through the bed were also measured, they increase monotonically as we increase the density. PMID:16241426

  4. 46 CFR 169.755 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.755 Draft marks and... necessary for easy observance. The bottom of each mark must indicate the draft. (b) The draft must be...

  5. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place... of the draft marks, due to raked stem or cut—away skeg, the datum line from which the draft shal...

  6. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or... aft to the location of the draft marks, due to a raked stem or cut away skeg, the draft must...

  7. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place... of the draft marks, due to raked stem or cut—away skeg, the datum line from which the draft shal...

  8. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place... of the draft marks, due to raked stem or cut—away skeg, the datum line from which the draft shal...

  9. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  10. Detection of lateral non-uniformities in fluidized bed combustors

    SciTech Connect

    Ramayya, A.V.; Thiyagarajan, A.; Ahmed, S.A.

    1997-12-01

    This paper addresses the detection of lateral non-Uniformities in fluidized bed combustors by a novel probe technique not reported so far, by using the horizontal differential pressure fluctuations associated with bubble flow. The salient features of these fluctuations are highlighted utilizing the simulated records obtained by considering the Davidson`s pressure field around a bubble. The simulation approach is validated by a comparison with the measured vertical and horizontal differential fluctuations in a freely bubbling fluidized bed.

  11. Fluidized-bed calciner with combustion nozzle and shroud

    DOEpatents

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  12. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  13. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  14. Particle pressures in fluidized beds. First year annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-09-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  15. Fluidized catalyst process for production and hydration of olefins

    SciTech Connect

    Harandi, M.N.

    1993-08-03

    A continuous multi-stage process is described for increasing octane quality and yield of liquid hydrocarbons from an integrated fluidized catalytic cracking unit and hydration reaction zone comprising: contacting heavy hydrocarbon feedstock in a primary fluidized bed reaction stage with cracking catalyst comprising particulate solid large pore acid aluminosilicate zeolite catalyst at conversion conditions to produce a hydrocarbon effluent comprising gas containing C2-C6 olefins, intermediate hydrocarbons in the gasoline and distillate range, and cracked bottoms; regenerating primary stage zeolite cracking catalyst in a primary stage regeneration zone and returning at least a portion of regenerated zeolite cracking catalyst to the primary reaction stage; reacting an olefinic stream containing at least one iso-olefin with water in a secondary fluidized bed hydration reactor stage in contact with a closed fluidized bed of acid zeolite catalyst particles comprising solid acid zeolite under hydration reaction conditions to effectively convert said isoolefin to alkyl alkanol; adding fresh acid zeolite particles to the secondary stage reactor in an amount sufficient to maintain average equilibrium catalyst particle activity for effective alkanol synthesis reaction without regeneration of the secondary catalyst bed; withdrawing a portion of equilibrium catalyst from the secondary fluidized bed reactor stage; and passing said withdrawn catalyst portion to the primary fluidized bed reaction stage for contact with the petroleum feedstock.

  16. Torsion Tests of Tubes

    NASA Technical Reports Server (NTRS)

    Stang, Ambrose H; Ramberg, Walter; Back, Goldie

    1937-01-01

    This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.

  17. LOGO Manual. Draft.

    ERIC Educational Resources Information Center

    Abelson, Hal; And Others

    This manual describes the LOGO system implemented for the PDP 11/45 at the MIT Artificial Intelligence Laboratory. The "system" includes a LOGO evaluator, a dedicated time-sharing system, and various special devices related to output such as robot turtles, tone generators, and cathode ray tube displays. (Author/SD)

  18. The Onset of Channelling in a Fluidized Mud Layer

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.

    2012-12-01

    Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q

  19. Draft Wetlands Rule Released

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-04-01

    The U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers released on 28 March a draft of a new rule to guide compensatory mitigation for when wetlands are unavoidably lost due to development. However, whether the rule is successful in preventing a net loss in wetlands will depend largely on its implementation, according to two wetlands scientists who evaluated the issue for the U.S. National Research Council (NRC) in 2001. Under the federal Clean Water Act, developers who seek to build on wetlands must compensate for any wetlands loss if they are unable to avoid or minimize the loss. Such compensation is covered under the newly proposed compensatory mitigation rule. Benjamin Grumbles, EPA assistant administrator for water, called the rule an ``innovative new standard that will accelerate the pace of wetlands conservation and restoration.''

  20. Tracheostomy tube - speaking

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000465.htm Tracheostomy tube - speaking To use the sharing features on ... are even speaking devices that can help you. Tracheostomy Tubes and Speaking Air passing through vocal cords ( ...

  1. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  2. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  3. Eustachian tube (image)

    MedlinePlus

    ... are more common in children because their eustachian tubes are shorter, narrower, and more horizontal than in ... become trapped when the tissue of the eustachian tube becomes swollen from colds or allergies. Bacteria trapped ...

  4. Feeding tube - infants

    MedlinePlus

    ... tube is misplaced and not in the proper position, the baby may have problems with: An abnormally slow heart rate (bradycardia) Breathing Spitting up Rarely, the feeding tube can puncture the stomach.

  5. Heat transfer in pressurized circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1997-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was

  6. Current status of fluidization engineering and areas for future research needs

    NASA Astrophysics Data System (ADS)

    Wen, C. Y.

    1982-05-01

    The state-of-the-art of fluidization, particularly for design and scale-up of bed reactors, is reviewed. Particulate, bubbling, slugging, turbulent, and circulating fluidization are described and research needs in fluidization flow regimes are identified. Fluidized bed reactor models are examined and research needs are noted. Models are proposed for the heat transfer coefficients in fluidized beds and gas convective heat transfer, particle convective heat transfer, and radiative heat transfer are discussed. Three-phase fluidization and the phenomena and parameters important in the design of three-phase fluidized bed reactors are also analyzed including: bubble behavior, phase holds-ups, pressure drop, phase mixing, gas-liquid mass transfer, solid entrainment, and a flow regime map. The development of better instrumentation for studying conceptual and mechanistic pictures within fluidized beds is recommended.

  7. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  8. Control of quality of fluidization in a tall bed using variance of pressure fluctuations

    SciTech Connect

    Lee, P.L.; Chong, Y.O.; Leung, L.S.

    1985-01-01

    A quantitative relation was established experimentally between excess gas flow above minimum fluidization and the variance of differential pressure fluctuations in a bed. The variance was used as part of a computer control scheme to maintain the quality of fluidization in a tall bed constant. This was achieved by controlling the amount of gas bled from the fluidized bed at different bed levels. Successful demonstration of the control strategy in a 200mm diameter 2.7m tall fluidized bed is described.

  9. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  10. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

  11. Tapered fluidized bed bioreactor for environmental control and fuel production

    SciTech Connect

    Scott, C. D.; Hancher, C. W.; Arcuri, E. J.

    1980-01-01

    Fluidized bed bioreactors are under development for use in environmental control and energy production. The most effective systems utilize a tapered portion either throughout the column or at the top of the column. This taper allows a wide range of operating conditions without loss of the fluidized particulates, and in general, results in more stable operation. The system described here utilize fixed films of microorganisms that have attached themselves to the fluidized particles. Preliminary investigations of the attachment indicate that reactor performance is related to film thickness. The biological denitrification of aqueous waste streams is typical of processes under development that utilize fluidized bed bioreactors. This development has progressed to the pilot plant scale where two 20-cm-diam x 800-cm fluidized beds in series accept aqueous wastes with nitrate concentrations as high as 10,000 mg/l and denitrification rates greater than 50 g/l/day using residence times of less than 30 minutes in each reactor. Other applications include aerobic degradation of phenolic wastes at rates greater than 25 g/l/day and the conversion of glucose to ethanol.

  12. Kinetic behavior of solid particles in fluidized beds: Annual report

    SciTech Connect

    Kono, H.O.; Huang, C.C.

    1987-10-01

    This report summarizes technical accomplishments for the first year in a 3-year contract project for the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) under contract number AC21-86MC23249. The objectives of the project are (1) to develop experimental techniques for measuring the forces of fluidized particles, and (2) to predict solid particle performance in fluidized beds using data analysis and mathematical modeling. During the first year, the fracture-sensitive tracer-particle method was developed and applied to investigate the effects of fluidized particle size, superficial gas velocity, bed height, bed diameter, and bed configuration on the kinetic behavior of solid particles in fluidized beds. Quantitative data and comprehensive information were obtained. A piezoresistive strain-gauge sensor and a PC data-acquisition system were also developed; these are being used to measure the force distribution in fluidized beds. The pressure fluctuation method will also be investigated in the near future. 12 refs., 24 figs., 2 tabs.

  13. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  14. Application of sedimentation model to uniform and segregated fluidized beds

    SciTech Connect

    Shippy, J.L. III; Watson, J.S.

    1990-10-24

    This paper incorporates concepts of unimodal and bimodal sedimentation to develop a model that accurately predicts bed expansion during particulate fluidization. During bed expansion a particle is considered to be fluidized not by the pure fluid, but by a slurry consisting of the pure fluid and other surrounding particles. The contributions of the other surrounding particles to the additional buoyant and drag forces are accounted for with the use of effective fluid or slurry properties, density and viscosity. As bed expansion proceeds, influences of the surrounding particles decrease; therefore, these effective properties are functions of the changing void fraction of the suspension. Furthermore, the expansion index, which empirically represents the degree to which viscous and inertial forces are present, is traditionally a function of a constant terminal Reynold's number. Because the effective fluid properties are considered to be changing as fluidization proceeds, the degree to which viscous and inertial forces also changes; therefore, the expansion index is written as a function of a local or intermediate Reynold's number. These concepts are further extended to bimodal fluidization in which small or light particles aid in the fluidization of the large or heavy particles. The results indicate that the proposed model more accurately predicts particulate bed expansion for a wider range of systems (gas -- liquid, low Reynold's number -- high Reynold's number) than other analytical or empirical models.

  15. Gas-induced fluidization of mobile liquid-saturated grains.

    PubMed

    Ramos, Gabriel; Varas, Germán; Géminard, Jean-Christophe; Vidal, Valérie

    2015-12-01

    Gas invasion in liquid-saturated sands exhibits different morphologies and dynamics. For mobile beds, the repeated rise of gas through the layer leads to the growth of a fluidized zone, which reaches a stationary shape. Here, we present experimental results characterizing the evolution of the fluidized region as a function of the gas-flow rate and grain size. We introduce a new observable, the flow density, which quantifies the motion of the grains in the system. The growth of the fluidized zone is characterized by a spatiotemporal analysis, which provides the stabilization time, τ(s). In the stationary regime, we report two main contributions to motion in the fluidized region: the central gas rise and a convective granular motion. Interestingly, a static model with a fixed porous network accounts for the final shape of the invasion zone. We propose an explanation where the initial gas invasion weakens the system and fixes since the early stage the morphology of the fluidized zone.

  16. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. PMID:26896004

  17. Bubbles trapped in a fluidized bed: Trajectories and contact area

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Vidal, Valérie; Varas, Germán

    2016-03-01

    This work investigates the dynamics of bubbles in a confined, immersed granular layer submitted to an ascending gas flow. In the stationary regime, a central fluidized zone of parabolic shape is observed, and the bubbles follow different dynamics: either the bubbles are initially formed outside the fluidized zone and do not exhibit any significant motion over the experimental time or they are located inside the fluidized bed, where they are entrained downwards and are, finally, captured by the central air channel. The dependence of the air volume trapped inside the fluidized zone, the bubble size, and the three-phase contact area on the gas injection flow rate and grain diameter are quantified. We find that the volume fraction of air trapped inside the fluidized region is roughly constant and of the order of 2%-3% when the gas flow rate and the grain size are varied. Contrary to intuition, the gas-liquid-solid contact area, normalized by the air injected into the system, decreases when the flow rate is increased, which may have significant importance in industrial applications.

  18. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration.

  19. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  20. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  1. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  2. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  3. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  4. 31 CFR 500.406 - Drafts under irrevocable letters of credit; documentary drafts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... credit; documentary drafts. 500.406 Section 500.406 Money and Finance: Treasury Regulations Relating to...; documentary drafts. Section 500.201 prohibits the presentation, acceptance or payment of: (a) Drafts or other...) Documentary drafts in which any designated national has on or since the “effective date” had any interest....

  5. 76 FR 65744 - Draft Environmental Assessment and Draft Habitat Conservation Plan for Lower Colorado River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Fish and Wildlife Service Draft Environmental Assessment and Draft Habitat Conservation Plan for Lower... Species Act of 1973, as amended. The applicant has completed a draft Habitat Conservation Plan (DHCP) as... Transmission Services Corporation (LCRA; applicant); and 2. LCRA has developed a draft habitat...

  6. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  7. The interaction of rock and water during shock decompression: A hybrid model for fluidized ejecta formation

    NASA Astrophysics Data System (ADS)

    Rager, Audrey Hughes

    Crater and ejecta morphology provide insight into the composition and structure of the target material. Martian rampart craters, with their unusual single-layered (SLE), double-layered (DLE), and multi-layered ejecta (MLE), are the subject of particular interest among planetary geologists because these morphologies are thought to result from the presence of water in the target. Also of interest are radial lines extending from the crater rim to the distal rampart of DLE craters. Exactly how these layered ejecta morphologies and radial lines form is not known, but they are generally thought to result from interaction of the ejecta with the atmosphere, subsurface volatiles, or some combination of both. Using the shock tube at the University of Munich, this dissertation tests the hypothesis that the decompression of a rock-water mixture across the vaporization curve for water during the excavation stage of impact cratering results in an increased proportion of fines in the ejecta. This increase in fine material causes the ejecta to flow with little or no liquid water. Also tested are the effects of water on rock fragmentation during shock decompression when the vaporization curve for water is not crossed. Using results from these experiments, a hybrid model is proposed for the formation of fluidized ejecta and suggests that the existing atmospheric and subsurface volatile models are end members of a mechanism resulting in ejecta fluidization. Fluidized ejecta can be emplaced through interaction with an atmosphere (atmospheric model) or through addition of liquid water into the ejecta through shock melting of subsurface ice (subsurface volatile model). This dissertation proposes that these models are end members that explain the formation of fluidized ejecta on Mars. When the vaporization curve for water is crossed, the expanding water vapor increases the fragmentation of the ejecta as measured by a significant reduction in the median grain size of ejecta. Reducing the

  8. Teaching Legislative Drafting: A Simulation Approach.

    ERIC Educational Resources Information Center

    Stern, Barry Jeffrey

    1988-01-01

    An approach to teaching legislative drafting uses limited traditional classroom instruction and intensive exposure to the process of legislative drafting through a classroom simulation in which students revise the Massachusetts criminal code. (MSE)

  9. Intercostal drainage tube or intracardiac drainage tube?

    PubMed Central

    Anitha, N.; Kamath, S. Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure. PMID:27397467

  10. NEI You Tube Videos: Amblyopia

    MedlinePlus

    ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube NEI ...

  11. Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors.

    PubMed

    Arnaiz, C; Buffiere, P; Elmaleh, S; Lebrato, J; Moletta, R

    2003-11-01

    This paper describes the application of the inverse fluidization technology to the anaerobic digestion of dairy wastewater. Two reactors were investigated: the inverse fluidized bed reactor and the inverse turbulent reactor. In these reactors, a granular floating solid is expanded by a down-flow current of effluent or an up-flow current of gas, respectively. The carrier particles (Extendospheres) were chosen for their large specific surface area (20,000 m2m(-3)) and their low energy requirements for fluidization (gas velocity of 1.5 mm s(-1), 5.4 m h(-1)). Organic load was increased stepwise by reducing hydraulic retention time from more than 60 days to 3 days, while maintaining constant the feed COD concentration. Both reactors achieved more than 90% of COD removal, at an organic loading rate of 10-12 kgCOD m(-3) d(-1), respectively. The performances observed were similar or even higher than that of other previously tested fluidized bed technologies treating the same wastewater. It was found that the main advantages of this system are: low energy requirement, because of the low fluidization velocities required; there is no need of a settling device, because solids accumulate at the bottom of the reactor, so they can be easily drawn out and particles with high-biomass content can be easily recovered. Lipid phosphate concentration has been revealed as a good method for biomass estimation in biofilms since it only includes living biomass.

  12. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  13. Utilizing the fluidized bed to initiate water treatment on site

    SciTech Connect

    Ahmadvand, H.; Germann, G.; Gandee, J.P.; Buehler, V.T.

    1995-12-31

    Escalating wastewater disposal costs coupled with enforcement of stricter regulations push industrial sites previously without water treatment to treat on site. These sites, inexperienced in water treatment, require a treatment technology that is easily installed, operated, and maintained. The aerobic granular activated carbon (GAC) fluidized bed incorporates biological and adsorptive technologies into a simple, cost-effective process capable of meeting strict effluent requirements. Two case studies at industrial sites illustrate the installation and operation of the fluidized bed and emphasize the ability to use the fluidized bed singularly or as an integral component of a treatment system capable of achieving treatment levels that allow surface discharge and reinjection. Attention is focused on BTEX (benzene, toluene, ethylbenzene, and xylenes).

  14. Methods of forming a fluidized bed of circulating particles

    DOEpatents

    Marshall, Douglas W.

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  15. Torrefaction of sawdust in a fluidized bed reactor.

    PubMed

    Li, Hui; Liu, Xinhua; Legros, Robert; Bi, Xiaotao T; Lim, C J; Sokhansanj, Shahab

    2012-01-01

    In the present work, stable fluidization of sawdust was achieved in a bench fluidized bed with an inclined orifice distributor without inert bed materials. A solids circulation pattern was established in the bed without the presence of slugging and channeling. The effects of treatment severity and weight loss on the solid product properties were identified. The decomposition of hemicelluloses was found to be responsible for the significant changes of chemical, physical and mechanical properties of the torrefied sawdust, including energy content, particle size distribution and moisture absorption capacity. The hydrophobicity of the torrefied sawdust was improved over the raw sawdust with a reduction of around 40 wt.% in saturated water uptake rate, and enhanced with increasing the treatment severity due to the decomposition of hemicelluloses which are rich in hydroxyl groups. The results in this study provided the basis for torrefaction in fluidized bed reactors.

  16. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  17. 7 CFR 1488.13 - CCC drafts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Bank of New York discount rate from and including the date payment was originally made to CCC but not...) Bank Obligations and Repayment § 1488.13 CCC drafts. CCC will draw one draft for each payment due under bank obligations. If any portion of a CCC draft is dishonored, the U.S. bank or branch bank...

  18. 7 CFR 1488.13 - CCC drafts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Bank of New York discount rate from and including the date payment was originally made to CCC but not...) Bank Obligations and Repayment § 1488.13 CCC drafts. CCC will draw one draft for each payment due under bank obligations. If any portion of a CCC draft is dishonored, the U.S. bank or branch bank...

  19. Competency Reference for Computer Assisted Drafting.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Div. of Vocational Technical Education.

    This guide, developed in Oregon, lists competencies essential for students in computer-assisted drafting (CAD). Competencies are organized in eight categories: computer hardware, file usage and manipulation, basic drafting techniques, mechanical drafting, specialty disciplines, three dimensional drawing/design, plotting/printing, and advanced CAD.…

  20. Mechnical Drawing/Drafting Curriculum Guide.

    ERIC Educational Resources Information Center

    Gregory, Margaret R.; Benson, Robert T.

    This curriculum guide consists of materials for teaching a course in mechanical drawing and drafting. Addressed in the individual units of the guide are the following topics: the nature and scope of drawing and drafting, visualization and spatial relationships, drafting tools and materials, linework, freehand lettering, geometric construction,…

  1. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  2. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  3. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  4. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  5. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is

  6. Review of ash agglomeration in fluidized bed gasifiers

    SciTech Connect

    Matulevicius, E.S.; Golan, L.P.

    1984-07-01

    The purpose of this study is to review the data and mathematical models which describe the phenomena involved in the agglomeration of ash in fluidized bed coal gasifiers (FBG). Besides highlighting the data and theoretical models, this review lists areas where there is a lack of information regarding the actual mechanisms of agglomeration. Also, potential areas for further work are outlined. The work is directed at developing models of agglomeration which could be included in computer codes describing fluidized bed gasifier phenomena, e.g., FLAG and CHEMFLUB which have been developed for the US Department of Energy. 134 references, 24 figures, 13 tables.

  7. Boundary conditions for soft glassy flows: slippage and surface fluidization.

    PubMed

    Mansard, Vincent; Bocquet, Lydéric; Colin, Annie

    2014-09-28

    We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.

  8. Fluidized-Bed Deposition Of Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Hsu, George C.; Rohatgi, Naresh K.

    1988-01-01

    Uniformly thin single-crystal films of silicon produced by modification of fluidized-bed-reactor technique producing polysilicon by chemical vapor deposition. Proposed for silicon wafers for flat-plate solar arrays and results in different structural and electronic properties in deposition layer desirable for specific microelectronic or solar-cell processing. In process deposition occurs on silicon wafers, kept individually at temperatures above 1,000 degree C. Heated wafers held in unheated and minimally-agitated-fluidized bed of silicon particles and in low concentration of silane.

  9. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  10. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  11. Regeneration of lime from sulfates for fluidized-bed combustion

    DOEpatents

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  12. PMB-Waste: An analysis of fluidized bed thermal treatment

    SciTech Connect

    Gat, U.; Kass, M.D.; Lloyd, D.B.

    1995-07-01

    A fluidized bed treatment process was evaluated for solid waste from plastic media blasting of aircraft protective coating. The treatment objective is to decompose and oxidize all organic components, and concentrate all the hazardous metals in the ash. The reduced volume and mass are expected to reduce disposal cost. A pilot test treatment was done in an existing fluidized bed equipped with emissions monitors, and emissions within regulatory requirements were demonstrated. A economic analysis of the process is inconclusive due to lack of reliable cost data of disposal without thermal treatment.

  13. Volatiles combustion in fluidized beds. Technical progress report, 4 March 1993--3 June 1993

    SciTech Connect

    Hesketh, R.P.

    1993-09-01

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1993 through 3 June, 1993 is reported in this technical progress report. The work during this time period consists primarily of the startup and trouble shooting of the fluidized bed reactor and gas phase modeling of methane and propane.

  14. Description of emission control using fluidized-bed, heat-exchange technology

    SciTech Connect

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  15. Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis.

    PubMed

    Kim, Sung Won

    2015-01-01

    A predictive model was satisfactorily developed to describe the general trends of product distribution in fluidized beds of lignocellulosic biomass pyrolysis. The model was made of mass balance based on proximate analysis and an empirical relationship with operating parameters including fluidization hydrodynamics. The empirical relationships between product yields and fluidization conditions in fluidized bed pyrolyzers were derived from the data of this study and literature. The gas and char yields showed strong functions of temperature and vapor residence time in the pyrolyzer. The yields showed a good correlation with fluidization variables related with hydrodynamics and bed mixing. The predicted product yields based on the model well accorded well with the experimental data.

  16. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  17. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  18. Modification of heat transfer correlations in a liquid-solid fluidized bed heat exchanger with cylindrical particles in aggregative fluidization

    NASA Astrophysics Data System (ADS)

    Maddahi, M. H.; Hatamipour, M. S.; Jamialahmadi, M.

    2016-11-01

    Most correlations presented for the heat transfer coefficient of liquid-solid fluidized bed heat exchangers are based on experiments with glass bead particles in particulate fluidization which usually under-predict the heat transfer coefficient. The present study used experimental data from previous studies for the heat transfer coefficient in liquid-solid fluidized bed heating systems using cylindrical metal particles and five heat transfer correlations based on experiments with spherical glass beads to approximate the behavior of the cylindrical metal particles under aggregative conditions. The results show that modifying the correlations significantly improved the prediction of heat transfer coefficients and the average relative error decreased in comparison with those for the original correlations.

  19. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  20. Ruggedized electronographic tube development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1981-01-01

    Because of their glass components and lack of far ultraviolet sensitivity, currently available Spectracons are not suited for rocket launch. Technology developed for second generation image tubes and for magnetically focused image tubes can be applied to improve the optical and mechanical properties of these magnetically focused electronographic tubes whose 40 kilovolt signal electrons exit a 4-micrometer thick mica window and penetrate a photographic recording emulsion.

  1. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  2. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  3. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  4. Caught in the Draft

    NASA Astrophysics Data System (ADS)

    Edge, Ron

    2007-09-01

    We've all seen (in movies, newscasts, or perhaps in person) the violent effect of the downwash that occurs when a helicopter hovers over the ground. Leaves, grass, and debris are dramatically blown about. We've also sat in front of circulating room fans and felt a large draft, whereas there seems to be very little air movement behind the fan. The cause of this is a delightful manifestation of Bernoulli's principle. The fan blades, or helicopter rotor blades, produce a pressure differential as air passes through them—let us say p1 before and p2 after, as shown in Fig. 1, with p2 greater than p1. If p0 is the ambient pressure, Bernoulli's equation gives p0=p1 +(1/2)ρv12, where v1 is the velocity of the air entering the fan. Continuity requires that v2 leaving the fan must equal v1 entering the fan for an incompressible fluid, approximately true here (Av1 = Av2, where A is the area swept out by the blades, the "rotor disk area"). However, some distance below the rotor (or in front of the fan) the velocity is vd (vdowndraft in the figure) and the pressure again p0, so Bernoulli gives us p2 + (1/2)ρv22 = (p1 + Δp) + (1/2) ρv12 = [p1 + (p2 - p1)] +(1/2) ρv12 = p2 + (1/2)ρv12 = p0 + (1/2) ρvd2.

  5. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  6. Flared tube attachment fitting

    NASA Technical Reports Server (NTRS)

    Alkire, I. D.; King, J. P., Jr.

    1980-01-01

    Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

  7. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  8. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  9. Cluster: Drafting. Course: Basic Technical Drafting. Research Project.

    ERIC Educational Resources Information Center

    Sanford - Lee County Schools, NC.

    The set of six units is designed for use with an instructor in basic technical drafting and is also keyed to other texts. Each unit contains several task packages specifying prerequisites, rationale for learning, objectives, learning activities to be supervised by the instructor, and learning practice. The units cover: pictorial drawing; screw…

  10. Performance and electrochemical behavior of fluidized bed electrodes

    SciTech Connect

    Huh, T.

    1985-01-01

    The fluidized bed electrode was studied to characterize its behavior and evaluate its possible application to the electrowinning of precious metals and to the energy storage systems. Its performance and electrochemical behavior were analyzed in terms of various operating parameters. The first part of the study is concerned mainly with the overall performance of a fluidized-bed electrode for silver recovery from aqueous cyanide solution. The effects of applied current density, bed expansion, and electrode materials were considered, and its was found that the performance is free of operating problems and is superior to the Azadra-type cell, which is commonly used for precious metal recovery. The second part is concerned with the internal behavior of the fluidized bed electrode. The particle and electrolyte potentials and overpotentials in fluidized bed electrodes of two different types have been measured and analyzed by means of the probability density distribution and the power spectral density distribution. The resistance of such electrodes are also measured. The potential transients are observed to depend on current, bed expansion, and position in the bed (for copper particles) and each potential can be regarded as a time averaged value onto which two kinds of noise, low-frequency flicker noise and white noise, are added.

  11. Bottom pressure scaling of vibro-fluidized granular matter

    PubMed Central

    Katsuragi, Hiroaki

    2015-01-01

    Vibrated granular beds show various interesting phenomena such as convection, segregation, and so on. However, its fundamental physical properties (e.g., internal pressure structure) have not yet been understood well. Thus, in this study, the bottom wall pressure in a vertically vibrated granular column is experimentally measured and used to reveal the nature of granular fluidization. The scaling method allows us to elucidate the fluidization (softening) degree of a vibrated granular column. The peak value of the bottom pressure pm is scaled as Γ, where pJ, d, g, ω, H, and Γ are the Janssen pressure, grain diameter, gravitational acceleration, angular frequency, height of the column, and dimensionless vibrational acceleration, respectively. This scaling implies that the pressure of vibrated granular matter is quite different from the classical pressure forms: static and dynamic pressures. This scaling represents the importance of geometric factors for discussing the behavior of vibro-fluidized granular matter. The scaling is also useful to evaluate the dissipation degree in vibro-fluidized granular matter. PMID:26602973

  12. Biofilm detachment mechanisms in a liquid-fluidized bed.

    PubMed

    Chang, H T; Rittmann, B E; Amar, D; Heim, R; Ehlinger, O; Lesty, Y

    1991-08-20

    Bed fluidization offers the possibility of gaining the advantages of fixed-film biological processes without the disadvantage of pore clogging. However, the biofilm detachment rate, due to hydrodynamics and particle-to-particle attrition, is very poorly understood for fluidized-bed biofilm processes. In this work, a two-phase fluidized-bed biofilm was operated under a constant surface loading (0.09 mg total organic carbon/cm(2) day) and with a range of bed height (H), fluid velocities (U), and support-particle concentrations (C(p)). Direct measurements were made for the specific biofilm loss rate coefficient (b(s))and the total biofilm accumulation (X(f)L(f)). A hydrodynamic model allowed independent determination of the biofilm density (X(f)), biofilm thickness (L(f)), liquid shear stress (tau), and Reynolds number (Re). Multiple regression analysis of the results showed that increased particle-to-particle attrition, proportional to C(p) and increased turbulence, described by Re, caused the biofilms to be denser and thinner. The specific detachment rate coefficient (b(s)) increased as C(p) and Re increased. Almost all of the 6, values were larger than predicted by a previous model derived for smooth biofilms on a nonfluidized surface. Therefore, the turbulence and attrition of bed fluidization appear to be dominant detachment mechanisms.

  13. A staged fluidized-bed comubstion and filter system

    SciTech Connect

    Mei, J.S.; Halow, J.S.

    1993-12-31

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized- bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gasses into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  14. Effect of slugging phenomena on drag coefficient in fluidized beds

    SciTech Connect

    Bakhtiyarov, S.I.; Overfelt, R.A.

    1996-12-31

    Slugging is an abnormality in which gas bubbles increase to the diameter of the fluidization chamber. The slugs of solid particles will move upward in a pistonlike manner, reach a certain height, and then rain through the gas phase in the form of aggregates or as individual particles. The effect of slugging phenomenon on drag coefficient in fluidized beds is assessed by developing theoretical and experimental analyses of this problem. The theoretical analysis of the slugging in fluidized beds was based on a momentum balance equation for the axial flow of gas around a slug and Meshchersky`s differential equation of motion of a slug having variable mass. To predict the flow rate of the gas flow through the slug the authors used the Blake-Kozeny-Carman equation. From the analytical solution of the problem, the expressions for the pressure drop and the drag coefficient as functions of the Reynolds number, slug porosity, gas viscosity and chamber sizes have been developed. Experiments were run in a fluidization chamber with foundry sand of 2.593 g/cc average density and 30--270 mesh size at three different values of the fixed bed height. The results of simulations demonstrate that both the drag coefficient and the resistance factor decrease with increasing the Reynolds number and increasing the porosity of slug. A comparison of the results obtained in the experiments demonstrates a qualitative agreement with the theoretical model simulations.

  15. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  16. Method for using fast fluidized bed dry bottom coal gasification

    DOEpatents

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  17. Design and management of conventional fluidized-sand biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluidized sand biofilters (FSBs) are relatively compact, efficient, and cost-competitive biofilters, especially in recirculating systems that require maintaining consistently low levels of ammonia and nitrite. Filter sand is low cost (often $70-200/m3 of sand delivered) and has a high specific surf...

  18. Direct combustion of olive cake using fluidized bed combustor

    SciTech Connect

    Khraisha, Y.H.; Hamdan, M.A.; Qalalweh, H.S.

    1999-05-01

    A fluidized bed combustor of 0.146 m diameter and 1 m length was fabricated from stainless steel to burn olive cake. Initially, and in order to obtain fluidization, the system was operated under cold conditions using a sand with particle size in the range of 500 to 710 microns. The continuous combustion experiments were carried out under controlled conditions, such that the effects of bed temperature, olive cake feed rate, fluidization velocity, and particle size on combustion efficiency and flue gas composition were investigated. It was found that the combustion efficiency decreases with the bed temperature, fluidization velocity, and the feed rate, while it increases with the particle size used. Further, the gas products analysis carried out using a gas chromatography analyzer have shown a nonmeasured amount of SO{sub 2}, and small amounts of CO. Finally, the temperature distribution along the bed indicated that the temperature throughout the bed is fairly uniform, demonstrating a good mixing of reactants, which is important for efficient combustion.

  19. Computational and Experimental Studies of Fluidized Beds for Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Battaglia, Francine; Deza, Mirka; Franka, Nathan; Heindel, Theodore

    2007-11-01

    Fluidized bed gasifiers can convert feedstocks with low-carbon content into valuable products such as ethanol. Understanding fluidized bed hydrodynamics is important for reactor design and avoiding issues such as agglomeration or defluidization of the bed. In particular, biomass gasification is not well characterized and is the focus of this work. Glass beads or sand particles are typically used as bed materials due to their high sphericity and uniform properties. X-ray imaging will be used to visualize these complex flows and alternative bed materials will be considered to increase X-ray penetration and resolution to enhance flow visualization. Furthermore, computational modeling of fluidized beds can be used to predict operation of biomass gasifiers after extensive validation with experimental data. The hydrodynamics will be modeled assuming each phase behaves as interpenetrating continua using an Eulerian model and each solid phase is characterized by a particle diameter and density so that segregation and elutriation can be described. The simulations will model the cold-flow fluidized bed experiment, and consider factors such as sphericity of the particles, and calibration of drag coefficients. Hydrodynamic results from the simulations will be qualitatively and quantitatively compared to X-ray flow visualization studies of a similar bed.

  20. A fluidized-bed reactor for silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, S.

    1984-01-01

    The silane decomposition in a fluidized bed reactor was studied. The process feasibility and operating windows were determined. Long duration tests were conducted and silicon purity was demonstrated. A high purity linear was installed in the fluid bed reactor; the FBR product was melted and single crystallized. Product purity improvements are noted.

  1. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  2. Drafting with Design in Mind

    ERIC Educational Resources Information Center

    Daugherty, Michael K.; Carter, Vinson

    2011-01-01

    Design and drafting are subjects long taught in technology education, and subjects that retain high status in the profession. Admittedly, since the initial publication of Standards for Technological Literacy in 2000, design has taken on a larger role and meaning in the technology education profession. However, design continues to be delivered…

  3. Core Competencies for Basic Drafting.

    ERIC Educational Resources Information Center

    Werner, Claire; Calderon, Ray

    These competencies for drafting are designed to cover basic principles and practices for beginning drafters. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment, will establish competency for…

  4. Drafting Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in drafting. The tasks required to perform the duties of seven types of drafters (i.e., general, architectural, electronic, civil, structural, mechanical, and process pipe drafters) and technical illustrators are outlined. The following are among the duties…

  5. Mechanical Drafting. Student Learning Guides.

    ERIC Educational Resources Information Center

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These four learning guides are self-instructional packets for four tasks identified as essential for performance on an entry-level job in mechanical drafting. Each guide is based on a terminal performance objective (task) and 2-4 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps…

  6. Drafting. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Drafting Occupational Competency Analysis Profile (OCAP) is one of a series of competency lists, verified by expert workers, that have evolved from a modified DACUM (Developing a Curriculum) job analysis process involving business, industry, labor, and community agency representatives from throughout Ohio. This OCAP identifies the…

  7. Drafting. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Allen, Charles

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 12 terminal objectives for a basic drafting course. The materials were developed for a two-semester course (2 hours daily). The organized classroom and shop experiences are designed to enable the student to develop general competencies in the…

  8. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  9. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Your child has a gastrostomy tube (G-tube). This is a soft, plastic tube placed into your child's stomach. It delivers nutrition (food) and medicines until your ...

  10. Hologram recording tubes

    NASA Technical Reports Server (NTRS)

    Rajchman, J. H.

    1973-01-01

    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  11. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  12. Simulation of fluidized bed combustors. I - Combustion efficiency and temperature profile. [for coal-fired gas turbines

    NASA Technical Reports Server (NTRS)

    Horio, M.; Wen, C. Y.

    1976-01-01

    A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.

  13. Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying.

    PubMed

    Chayjan, Reza Amiri; Salari, Kamran; Abedi, Qasem; Sabziparvar, Ali Akbar

    2013-08-01

    This study investigated thin layer drying of squash seeds under semi fluidized and fluidized bed conditions with initial moisture content about 83.99% (d.b.). An experimental fluidized bed dryer was also used in this study. Air temperature levels of 50, 60, 70 and 80 °C were applied in drying samples. To estimate the drying kinetic of squash seed, seven mathematical models were used to fit the experimental data of thin layer drying. Among the applied models, Two-term model has the best performance to estimate the thin layer drying behavior of the squash seeds. Fick's second law in diffusion was used to determine the effective moisture diffusivity of squash seeds. The range of calculated values of effective moisture diffusivity for drying experiments were between 0.160 × 10(-9) and 0.551 × 10(-10) m(2)/s. Moisture diffusivity values decreased as the input air temperature decreased. Activation energy values were found to be between 31.94 and 34.49 kJ/mol for 50 °C to 80 °C, respectively. The specific energy consumption for squash seeds was calculated at the boundary of 0.783 × 10(6) and 2.303 × 10(6) kJ/kg. Increasing in drying air temperature in different bed conditions led to decrease in specific energy value. Results showed that applying the semi fluidized bed condition is more effective for convective drying of squash seeds. The aforesaid drying characteristics are useful to select the best operational point of fluidized bed dryer and to precise design of system.

  14. Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying.

    PubMed

    Chayjan, Reza Amiri; Salari, Kamran; Abedi, Qasem; Sabziparvar, Ali Akbar

    2013-08-01

    This study investigated thin layer drying of squash seeds under semi fluidized and fluidized bed conditions with initial moisture content about 83.99% (d.b.). An experimental fluidized bed dryer was also used in this study. Air temperature levels of 50, 60, 70 and 80 °C were applied in drying samples. To estimate the drying kinetic of squash seed, seven mathematical models were used to fit the experimental data of thin layer drying. Among the applied models, Two-term model has the best performance to estimate the thin layer drying behavior of the squash seeds. Fick's second law in diffusion was used to determine the effective moisture diffusivity of squash seeds. The range of calculated values of effective moisture diffusivity for drying experiments were between 0.160 × 10(-9) and 0.551 × 10(-10) m(2)/s. Moisture diffusivity values decreased as the input air temperature decreased. Activation energy values were found to be between 31.94 and 34.49 kJ/mol for 50 °C to 80 °C, respectively. The specific energy consumption for squash seeds was calculated at the boundary of 0.783 × 10(6) and 2.303 × 10(6) kJ/kg. Increasing in drying air temperature in different bed conditions led to decrease in specific energy value. Results showed that applying the semi fluidized bed condition is more effective for convective drying of squash seeds. The aforesaid drying characteristics are useful to select the best operational point of fluidized bed dryer and to precise design of system. PMID:24425968

  15. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    SciTech Connect

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B.

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  16. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  17. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  18. 77 FR 35688 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... HUMAN SERVICES Food and Drug Administration Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability...

  19. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... rudderpost or at any place at the stern of the vessel as may be necessary for easy observance. The bottom...

  20. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... rudderpost or at any place at the stern of the vessel as may be necessary for easy observance. The bottom...

  1. 46 CFR 32.05-1 - Draft marks and draft indicating systems-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or... aft to the location of the draft marks, due to raked stem or cutaway skeg, the datum line from...

  2. 46 CFR 32.05-1 - Draft marks and draft indicating systems-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or... aft to the location of the draft marks, due to raked stem or cutaway skeg, the datum line from...

  3. 46 CFR 97.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or... aft to the location of the draft marks, due to raked stem or cut away skeg, the datum line from...

  4. 46 CFR 196.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or... aft to the location of the draft marks, due to raked stem, or cutaway skeg, the datum line from...

  5. Nitrogenase: A Draft Mechanism

    PubMed Central

    Hoffman, Brian M.; Lukoyanov, Dmitriy; Dean, Dennis R.; Seefeldt, Lance C.

    2013-01-01

    consideration of previous studies, imply a pathway in which (i) N2 binds at E4 with liberation of H2, (ii) N2 is promptly reduced to N2H2, (iii) the two N’s are hydrogenated alternately to form hydrazine-bound FeMo-co, and (iv) two NH3 are liberated in two further steps of reduction. This proposal identifies nitrogenase as following a ‘Prompt-Alternating (P-A)’ reaction pathway, and unifies the catalytic pathway with the LT kinetic framework. However, it does not incorporate one of the most puzzling aspects of nitrogenase catalysis: obligatory generation of H2 upon N2 binding that apparently ‘wastes’ two reducing equivalents and thus 25% of the total energy supplied by the hydrolysis of ATP. The finding that E4 stores its four accumulated reducing equivalents as two bridging hydrides, considered in the context of the organometallic chemistries of hydrides and dihydrogen, leads us to propose an answer to this puzzle. Namely, that H2 release upon N2 binding involves reductive elimination of two hydrides to yield N2 bound to doubly reduced Fe. Coupled delivery of the two available electrons and two activating protons yields cofactor-bound diazene, in keeping with the P-A scheme. This keystone completes a draft mechanism for nitrogenase that organizes the vast body of data upon which it is formulated, and is intended to serve as a basis for future experiments. PMID:23289741

  6. [Enteral tube feeding].

    PubMed

    Haller, Alois

    2014-03-01

    Tube feeding is an integral part of medical therapies, and can be easily managed also in the outpatient setting. Tube feeding by the stomach or small intestine with nasogastral or nasojejunal tubes is common in clinical practice. Long-term nutrition is usually provided through a permanent tube, i. e. a percutaneous endoscopic gastrostomy (PEG). Modern portable nutrition pumps are used to cover the patient's nutritional needs. Enteral nutrition is always indicated if patients can not or should not eat or if nutritional requirements cannot be covered within 3 days after an intervention, e. g. after abdominal surgery. Industrially produced tube feedings with defined substrate concentrations are being used; different compositions of nutrients, such as glutamine fish oil etc., are used dependent on the the condition of the patient. Enteral nutrition may be associated with complications of the tube, e. g. dislocation, malposition or obstruction, as well as the feeding itself, e. g.hyperglycaemia, electrolyte disturbances, refeeding syndrome diarrhea or aspiration). However, the benefit of tube feeding usually exceeds the potential harm substantially.

  7. Eustachian Tube Function.

    PubMed

    Ars, Bernard; Dirckx, Joris

    2016-10-01

    The fibrocartilaginous eustachian tube is part of a system of contiguous organs including the nose, palate, rhinopharynx, and middle ear cleft. The middle ear cleft consists of the tympanic cavity, which includes the bony eustachian tube (protympanum) and the mastoid gas cells system. The tympanic cavity and mastoid gas cells are interconnected and allow gaseous exchange and pressure regulation. The fibrocartilaginous eustachian tube is a complex organ consisting of a dynamic conduit with its mucosa, cartilage, surrounding soft tissue, peritubal muscles (ie, tensor and levator veli palatine, salpingopharyngeus and tensor tympani), and superior bony support (the sphenoid sulcus). PMID:27468632

  8. Tube flare inspection tool

    NASA Technical Reports Server (NTRS)

    Meunier, G. E.

    1980-01-01

    Flare angle and symmetry of tube ends can be checked by simple tool that consists of two stainless steel pins bonded to rubber plug. Primary function of tool is to inspect tubes before they are installed, thereby eliminating expense and inconvenience of repairing leaks caused by imperfect flares. Measuring hole tapers, countersink angles, and bearing race angles are other possible uses. Tool is used with optical comparator. Axis of tool is alined with centerline of tube. Shadow of seated pins on comparator screen allows operator to verify flare angle is within tolerance.

  9. 76 FR 51394 - DRAFT General Management Plan and Draft Environmental Impact Statement, Biscayne National Park, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... National Park Service DRAFT General Management Plan and Draft Environmental Impact Statement, Biscayne National Park, FL AGENCY: National Park Service, Interior. ACTION: Notice of Availability of the Draft... Environmental Policy Act of 1969, 42 U.S.C. 4332(2)(C), the National Park Service (NPS) announces...

  10. 78 FR 19733 - Draft General Management Plan and Draft Environmental Impact Statement, Fort Raleigh National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... National Park Service Draft General Management Plan and Draft Environmental Impact Statement, Fort Raleigh National Historic Site, North Carolina AGENCY: National Park Service, Interior. ACTION: Notice of... National Park Service announces the availability of a Draft Environmental Impact Statement for the...

  11. Thermal modeling of microwave heated packed and fluidized bed catalytic reactors.

    PubMed

    Thomas, J R; Faucher, F

    2000-01-01

    Thermal models of small-scale, microwave-heated, packed-bed and fluidized-bed catalytic chemical reactors were developed to investigate the possibility of selectively heating the catalyst sites or the catalyst pellets with microwaves. Results indicate catalyst sites may be selectively heated under special conditions in a packed or fluidized bed, and catalyst pellets may be heated above the temperature of the cooling(and reacting) gas under certain conditions in a fluidized bed. PMID:11098441

  12. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  13. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOEpatents

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  14. Study on hydrogen isotopes permeation in fluidized state of liquid lithium-lead

    SciTech Connect

    Yoshimura, S.; Yoshimura, R.; Okada, M.; Fukada, S.; Edao, Y.

    2015-03-15

    Lithium-lead (Li-Pb) is one of the most promising candidate materials for the liquid blanket of fusion reactors. Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows inside a Ni tube in the experimental system, where H{sub 2} permeates into and out of the forced Li-Pb flow. The overall H{sub 2} permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H{sub 2} permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H{sub 2} transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H{sub 2} permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H{sub 2} permeation rate. When the flow velocity of Li-Pb increases, the thickness of the boundary layer becomes thin, and the driving force of H{sub 2} permeation through the Ni wall becomes bigger. (authors)

  15. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  16. Kinking of medical tubes.

    PubMed

    Ingles, David

    2004-05-01

    The phenomenon of kinking in medical tubing remains a problem for some applications, particularly critical ones such as transporting gasses or fluids. Design features are described to prevent its occurrence.

  17. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Update Date 8/ ...

  18. Tracheostomy tube - eating

    MedlinePlus

    Trach - eating ... take your first bites. Certain factors may make eating or swallowing harder, such as: Changes in the ... easier to swallow. Suction the tracheostomy tube before eating. This will keep you from coughing while eating, ...

  19. Tube-Forming Assays.

    PubMed

    Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy

    2016-01-01

    Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.

  20. Building with Tubes.

    ERIC Educational Resources Information Center

    D'Eugenio, Terrance, Ed.

    Text and illustrations show how to assemble furniture and toys out of cardboard tubes and sheets. Basic directions are provided, and the tools and materials necessary to the assembly of specific items are described. (MLF)

  1. Using a nasogastric tube.

    PubMed

    Candy, C

    1986-09-01

    This discussion of the use of a nasogastric tube covers the equipment needed, the method, rehydration and feeding, prolonged nasogastric feeding, and stopping nasogastric feeding. A nasogastric tube is useful when children are unable to drink safely and in sufficient amounts for any of the following reasons: severe dehydration; if intravenous (IV) therapy is unavailable; low birth weight infants; or the child is drowsy or vomiting. Severely malnourished children may be fed initially in this way if they are too weak or anorexic to eat or drink normally. The following equipment is needed: nasogastric tube; lubricating fluid; a syringe; blue litmus paper, if available; adhesive tape; stethoscope if available; and fluid to be given. Explain to the child's parents and the child, if old enough to understand, what will be done; lie infants flat; measure the approximate length from the child's nostril to the ear lobe and then to the top of the abdomen with the tube and mark the position; clean the nostrils to remove the mucus, and lubricate the tip of the tube and gently insert into the nostril; give the child a drink of water if he or she is conscious; continue to pass the tube down until the position marked reaches the nostril; use the syringe to suck up some fluid and test with blue litmus paper to check that the tube is in the stomach; and inject 5-10 ml of fluid (saline or oral rehydration solution, not milk formula) by syringe if satisfied the tube is in the correct position. Where possible, give a continuous drip of fluid. If this is not possible, give frequent small amounts using the syringe as a funnel. If feeding continues for more than 24 hours, clean the nostrils daily with warm water and change the tube to the other nostril every few days. Also keep the mouth very clean with a dilute solution of 8% sodium bicarbonate, if available, or citrus fruit juice. To remove the tube, remove the adhesive tape, take the tube out gently and smoothly, and offer the child a

  2. Tubing crimping pliers

    DOEpatents

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  3. Dynamic Weakening by Acoustic Fluidization during Stick-Slip Motion.

    PubMed

    Giacco, F; Saggese, L; de Arcangelis, L; Lippiello, E; Pica Ciamarra, M

    2015-09-18

    The unexpected weakness of some faults has been attributed to the emergence of acoustic waves that promote failure by reducing the confining pressure through a mechanism known as acoustic fluidization, also proposed to explain earthquake remote triggering. Here we validate this mechanism via the numerical investigation of a granular fault model system. We find that the stick-slip dynamics is affected only by perturbations applied at a characteristic frequency corresponding to oscillations normal to the fault, leading to gradual dynamical weakening as failure is approaching. Acoustic waves at the same frequency spontaneously emerge at the onset of failure in the absence of perturbations, supporting the relevance of acoustic fluidization in earthquake triggering. PMID:26431017

  4. A novel sorbent for transport reactors and fluidized bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Gershanovich, Y.; Sibold, J.; Windecker, B.

    1998-12-31

    Coal Fired Gasifier Combined Cycles (GCC) have both high efficiency and very low emissions. GCCs critically need a method of removing the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas cleanup systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). TDA Research, Inc. (TDA) is developing a novel sorbent with improved attrition resistance for transport reactors and fluidized bed reactors. The authors are testing sorbents at conditions simulating the operating conditions of the Pinon Pine clean coal technology plant. TDA sulfided several different formulations at 538 C and found several that have high sulfur capacity when tested in a fluidized bed reactor. TDA initiated sorbent regeneration at 538 C. The sorbents retained chemical activity with multiple cycles. Additional tests will be conducted to evaluate the best sorbent formulation.

  5. Element associations in ash from waste combustion in fluidized bed

    SciTech Connect

    Karlfeldt Fedje, K.; Rauch, S.; Cho, P.; Steenari, B.-M.

    2010-07-15

    The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

  6. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  7. Oil shale loss from a laboratory fluidized bed

    SciTech Connect

    Taylor, R.W.; Beavers, P.L. )

    1989-01-01

    The rate of loss of dust from a laboratory-scale fluidized bed of Greenriver oil shale has been measured. The rate of loss of dust form raw shale in the bed was approximately 1%/min for the first few minutes and then decreased. The loss rate for retorted or burnt shale was 5 to 10 times higher. The rates for retorted and burned shale were nearly the same. The time required for a 10 wt% loss of mass was approximately 3 min for processed shale and 1 hour for raw shale. Particles left in the bed during fluidization lost sharp corners, but kept the original elongation. Dust lost by the bed has a very wide range of sizes and demonstrated a strong bimodal distribution of sizes. The bimodal distribution of particles is interpreted as resulting from two mechanisms of dust generation; fracture and wear.

  8. Production of activated carbon from coconut shell char in a fluidized bed reactor

    SciTech Connect

    Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.

    1997-09-01

    Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters are identified.

  9. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982

    SciTech Connect

    Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

    1982-08-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  10. Probing density waves in fluidized granular media with diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Born, Philip; Reinhold, Steffen; Sperl, Matthias

    2016-09-01

    Density waves are characteristic for fluidized beds and affect measurements on liquidlike dynamics in fluidized granular media. Here the intensity autocorrelation function as obtainable with diffusing-wave spectroscopy is derived in the presence of density waves. The predictions by the derived form of the intensity autocorrelation function match experimental observations from a gas-fluidized bed. The model suggests separability of the contribution from density waves from the contribution by microscopic scatterer displacement to the decay of correlation and thus paves the way for characterizing microscopic particle motions using diffusing-wave spectroscopy as well as heterogeneities in fluidized granular media.

  11. The research on the fragmentation of coal particles in a fluidized bed

    SciTech Connect

    Zhang, H.; Heidbrink, J.; Cen, K.; Ni, M.; Yan, J.

    1995-12-31

    This paper reports the determination of fragmentation of coal particles in a fluidized bed, and the quantitative index put forward to describe the fragmentation of coal particles in the fluidized bed. The influences of a variety of factors such as bed temperature, the time the coal stays in the fluidized bed, size of coal, coal rank and fluidizing medium on the index of the fragmentation of coal were studied at Zhejiang University. From the research results, one can draw a conclusion: the fragmentation of coal particles has different characteristics for varieties of coal ranks, and the main reasons for the fragmentation of coal particles are the first class fragmentation and the heat stress.

  12. Aeronautical tubes and pipes

    NASA Astrophysics Data System (ADS)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  13. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length. PMID:2494372

  14. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length.

  15. Fluidized bed combustion offers replacement option for old boilers

    SciTech Connect

    1997-01-01

    As emission standards begin to tighten and existing boilers grow older, electric utilities are searching for cost-effective and environmentally sound replacements for aging boilers. In the past few years, fluidized bed combustion (FBC) has emerged as a viable replacement option for old, conventional boilers. The results of three case studies involving conversion of existing boilers to FBC are discussed in this paper. 1 ref., 3 tabs.

  16. Bed drain cover assembly for a fluidized bed

    DOEpatents

    Comparato, Joseph R.; Jacobs, Martin

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  17. Placing bigger bets on fluidized-bed boilers

    SciTech Connect

    Not Available

    1984-10-17

    The situation in the US where second-generation fluidized-bed technology is being introduced by manufacturers is described. Examples of the circulating bed and multiple bed are given. Installations of first-generation bubbling bed are quoted. The advantages of fluidised-bed combustion in terms of efficiency, ability to burn low-cost, high-sulphur coals, and low emissions are cited.

  18. Dynamic analysis of a circulating fluidized bed riser

    SciTech Connect

    Panday, Rupen; Shadle, Lawrence J.; Guenther, Chris

    2012-01-01

    A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solids fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.

  19. Wall-to-suspension heat transfer in circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1995-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. Experimental investigations of circulating fluidized beds of low dimensionless pressure gradients with different solid particles like bronze, glass and polystyrene at ambient temperatures showed no influence of the conductivity and the heat capacity of the solids on the heat transfer coefficient. Consequently the heat transfer coefficient in the form of the dimensionless Nusselt number can be described by the dimensionless numbers which characterize the gas-solid-flow near the wall. These numbers are the Archimedes number and the pressure drop-number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. With the aid of a model of segregated vertical gas-solid flow, the flow pattern in the wall region can be calculated and thus the wall heat transfer which depends only on heat conduction in the gas and on the convective heat transfer by the gas. With elevated suspension temperatures, radiation contributes additionally to the heat transfer. When the solids concentration is low, the effect of the radiation on the heat transfer is high. Increasing solids concentration results in a decrease of the radiation effect due to the wall being shielded from the radiation of the hot particles in the core region by the cold solids clusters moving down the wall. A simple correlation is presented for calculating the wall-to-suspension heat transfer in circulating fluidized beds.

  20. An option for aging boilers-fluidized bed combustion

    SciTech Connect

    Epelbaum, G.; Friedrich, J.L.

    1995-12-31

    Fossil fuel fired steam generators designed and built prior to 1970 generally incorporated a particulate reduction system as the sole emission control. This is because other gaseous and solid emissions were not a significant issue during the 50s and 60s. There are several trends that these boilers and the industry have experienced since then: (1) boilers have aged and their pressure parts and auxiliary equipment condition has deteriorated; (2) increased commercial competition calls for fuel flexibility, optimum performance, reliability and maintenance; (3) solid fuel quality has been deteriorating, gas and oil market and availability are volatile; (4) environmental awareness has risen dramatically, thus requiring more stringent and more comprehensive emission requirements that the operating boilers must comply with; (5) new combustion technologies have been developed. At the same time, the existing turbine generator equipment, if reasonably maintained, is capable of providing competitive and reliable electrical power production. Different approaches can be taken to provide a new steam generating source for the existing turbine cycle retirement of old boilers and building new ones; boiler modification and switching to different fuels and technologies boiler modernization and addition of emission control equipment (such as low-NOx burner, SCR, SNCR, FGD, etc.) This paper addresses an alternative solution: conversion of conventional boilers to fluidized bed technology. Foster Wheeler Energy Corporation (FWEC), which successfully competes worldwide with the two proven technologies (conventional boilers and fluidized bed), has accumulated substantial on-site experience indicating that the fluidized-bed option can provide a significant cost/benefit advantage. This article presents several site specific examples to demonstrate a FWEC approach to the fluidized bed conversion and its advantages.

  1. Method of feeding particulate material to a fluidized bed

    DOEpatents

    Borio, Richard W.; Goodstine, Stephen L.

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  2. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  3. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  4. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  5. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  6. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  7. Fluidized bed silicon deposition. [Si production via silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G.; Morrison, A.; Rohatgi, N.; Lutwack, R.; Macconnell, T.

    1984-01-01

    The growth of silicon on seed particles from the pyrolysis of silane in a fluidized bed reactor (FBR) was studied. The grown particles were shown to be crystalline and to have a structure which has been interpreted to indicate growth by chemical vapor deposition as well as by the collection (scavenging) of silicon clusters on seed particle surfaces. Scanning electron microscopy was used to study the product morphology.

  8. Spectral methods applied to fluidized bed combustors. Final report

    SciTech Connect

    Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

    1996-08-01

    The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

  9. Pulsed atmospheric fluidized-bed combustor development. Environmental Assessment

    SciTech Connect

    Not Available

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA`s have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International`s (MTCI) Baltimore, MD facility.

  10. An option for aging boilers -- Fluidized bed combustion

    SciTech Connect

    Epelbaum, G.; Friedrich, J.L.

    1996-12-31

    Fossil fuel fired steam generators designed and built prior to 1970 generally incorporated a particulate reduction system as the sole emission control. This is because other gaseous and solid emissions were not a significant issue during the 50s and 60s. There are several trends that these boilers and the industry have experienced since then: boilers have aged and their pressure parts and auxiliary equipment condition has deteriorated; increased commercial competition calls for fuel flexibility, optimum performance, reliability and maintenance; solid fuel quality has been deteriorating, gas and oil market and availability are volatile; environmental awareness has risen dramatically, thus requiring more stringent and more comprehensive emission requirements that the operating boilers must comply with; a new combustion technologies have been developed. At the same time, the existing turbine generator equipment, if reasonably maintained, is capable of providing competitive and reliable electrical power production. Different approaches can be taken to provide a new steam generating source for the existing turbine cycle: retirement of old boilers and building new ones; boiler modification and switching to different fuels and technologies; boiler modernization and addition of emission control equipment (such as low-NO{sub x} burner, SCR, SNCR, FGD, etc.). This paper addresses an alternative solution: conversion of conventional boilers to fluidized bed technology. Foster Wheeler Energy Corporation (FWEC), which successfully competes worldwide with the two proven technologies (conventional boilers and fluidized bed), has accumulated substantial on-site experience indicating that the fluidized-bed option can provide a significant cost/benefit advantage.

  11. Physicochemical characterizations of limestone for fluidized-bed coal combustion

    SciTech Connect

    Fuller, E.L. Jr.; Yoos, T.R. III; Walia, D.S.

    1981-05-01

    This study is an investigation of the physicochemical characteristics of three limestone samples, Quincy limestone (-20 + 60), Franklin limestone (-12 + 30), and Franklin limestone (-6 + 16), currently being tested at Oak Ridge National Laboratory for use in a fluidized-bed coal combustion unit. By correlating the chemistry, mineralogy, and surface area of these samples with empirical data obtained at Argonne National Laboratory, the sulfur capture ability and performance of these limestones can be loosely predicted. X-ray fluorescence and neutron activation analysis revealed a very high calcium content and very low concentrations of other elements in the three samples. X-ray diffraction patterns and petrographic examination of the limestone grains detected essentially no dolomite in the Quincy limestone or the fine Franklin limestone samples. The coarse Franklin limestone sample showed dolomite to be present in varying amounts up to maximum of 2.75%. Limited surface chemistry investigations of the samples were undertaken. Limestone and dolostone resources of the Tennessee Valley Authority region are widespread and abundant, and judged sufficient to meet industrial demand for many years. No problems are anticipated in securing limestone or dolostone supplies for a commercial fluidized-bed combustion plant in the Tennessee Valley Authority region. Transportation facilities and costs for limestone or dolostone will influence the siting of such a commercial fluidized-bed combustion plant. The most promising location in the Tennessee Valley Authority region at this time is Paducah, Kentucky.

  12. A Biomechanical Model for Fluidization of Cells under Dynamic Strain

    PubMed Central

    Wu, Tenghu; Feng, James J.

    2015-01-01

    Recent experiments have investigated the response of smooth muscle cells to transient stretch-compress (SC) and compress-stretch (CS) maneuvers. The results indicate that the transient SC maneuver causes a sudden fluidization of the cell while the CS maneuver does not. To understand this asymmetric behavior, we have built a biomechanical model to probe the response of stress fibers to the two maneuvers. The model couples the cross-bridge cycle of myosin motors with a viscoelastic Kelvin-Voigt element that represents the stress fiber. Simulation results point to the sensitivity of the myosin detachment rate to tension as the cause for the asymmetric response of the stress fiber to the CS and SC maneuvers. For the SC maneuver, the initial stretch increases the tension in the stress fiber and suppresses myosin detachment. The subsequent compression then causes a large proportion of the myosin population to disengage rapidly from actin filaments. This leads to the disassembly of the stress fibers and the observed fluidization. In contrast, the CS maneuver only produces a mild loss of myosin motors and no fluidization. PMID:25564851

  13. Fluidized bed layer-by-layer microcapsule formation.

    PubMed

    Richardson, Joseph J; Teng, Darwin; Björnmalm, Mattias; Gunawan, Sylvia T; Guo, Junling; Cui, Jiwei; Franks, George V; Caruso, Frank

    2014-08-26

    Polymer microcapsules can be used as bioreactors and artificial cells; however, preparation methods for cell-like microcapsules are typically time-consuming, low yielding, and/or involve custom microfluidics. Here, we introduce a rapid (∼30 min per batch, eight layers), scalable (up to 500 mg of templates), and efficient (98% yield) microcapsule preparation technique utilizing a fluidized bed for the layer-by-layer (LbL) assembly of polymers, and we investigate the parameters that govern the formation of robust capsules. Fluidization in water was possible for particles of comparable diameter to mammalian cells (>5 μm), with the experimental flow rates necessary for fluidization matching well with the theoretical values. Important variables for polymer film deposition and capsule formation were the concentration of polymer solution and the molecular weight of the polymer, while the volume of the polymer solution had a negligible impact. In combination, increasing the polymer molecular weight and polymer solution concentration resulted in improved film deposition and the formation of robust microcapsules. The resultant polymer microcapsules had a thickness of ∼5.5 nm per bilayer, which is in close agreement with conventionally prepared (quiescent (nonflow) adsorption/centrifugation/wash) LbL capsules. The technique reported herein provides a new way to rapidly generate microcapsules (approximately 8 times quicker than the conventional means), while being also amenable to scale-up and mass production. PMID:25113552

  14. Hydrolysis of particulate tributyrin in a fluidized lipase reactor.

    PubMed

    Lieberman, R B; Ollis, D F

    1975-10-01

    Pancreatic lipase has been immobilized onto stainless steel beads by adsorption followed by crosslinking, and onto polyacrylamide by covalent bonding. The activities of the two types of immobilized enzyme toward the particulate substrate, tributyrin emulsion droplets, were determined experimentally, and rate constants based on Michaelis-Menten kinetics were calculated. The activity of the stainless steel-lipase was determined for various flow conditions and for various support sizes by the use of a differential fluidized bed recycle reactor. The rate constants calculated indicate that the experimental reaction rate is free from mass transfer influences, since the observed Michaelis constant does not vary with the fluidization velocity or with the support particle size. In addition, the Michaelis constant of the stainless steel-lipase was found to be equal to that of the free enzyme, suggesting that adsorption and subsequent crosslinking does not alter the enzyme-substrate affinity. The emulsion substrate mass transfer rates, calculated from the filtration theory, indicate that each substrate particle which contact the immobilized enzyme is hydrolyzed to a significant extent. The experimentally determined kinetic rate constants may be used directly to predict the size of integral fluidized bed reactors.

  15. Fluidized bed layer-by-layer microcapsule formation.

    PubMed

    Richardson, Joseph J; Teng, Darwin; Björnmalm, Mattias; Gunawan, Sylvia T; Guo, Junling; Cui, Jiwei; Franks, George V; Caruso, Frank

    2014-08-26

    Polymer microcapsules can be used as bioreactors and artificial cells; however, preparation methods for cell-like microcapsules are typically time-consuming, low yielding, and/or involve custom microfluidics. Here, we introduce a rapid (∼30 min per batch, eight layers), scalable (up to 500 mg of templates), and efficient (98% yield) microcapsule preparation technique utilizing a fluidized bed for the layer-by-layer (LbL) assembly of polymers, and we investigate the parameters that govern the formation of robust capsules. Fluidization in water was possible for particles of comparable diameter to mammalian cells (>5 μm), with the experimental flow rates necessary for fluidization matching well with the theoretical values. Important variables for polymer film deposition and capsule formation were the concentration of polymer solution and the molecular weight of the polymer, while the volume of the polymer solution had a negligible impact. In combination, increasing the polymer molecular weight and polymer solution concentration resulted in improved film deposition and the formation of robust microcapsules. The resultant polymer microcapsules had a thickness of ∼5.5 nm per bilayer, which is in close agreement with conventionally prepared (quiescent (nonflow) adsorption/centrifugation/wash) LbL capsules. The technique reported herein provides a new way to rapidly generate microcapsules (approximately 8 times quicker than the conventional means), while being also amenable to scale-up and mass production.

  16. Teaching Drafting 101: What Comes First?

    ERIC Educational Resources Information Center

    Carkhuff, Don

    2006-01-01

    Employers require pristine drawings that convey clarity and precision for the production of goods. Can a change in sequence of instruction be expeditious and help teachers better prepare their students for the workplace? Research suggests that combining traditional drafting and computer-aided drafting (CAD) instruction makes sense. It is analogous…

  17. Solids modeller to drafting system transfer program

    SciTech Connect

    Robbins, D.

    1983-03-01

    A Solids Modeller in use at Sandia National Laboratories (Albuquerque), PADL2 has been interfaced to a Turnkey Drafting System, Applicon. This interface permits design at the high level of the Solids Modeller with dimensioning and drawing production at the turnkey drafting system.

  18. Model Machine Shop for Drafting Instruction.

    ERIC Educational Resources Information Center

    Jackson, Carl R.

    The development and implementation of a two-year interdisciplinary course integrating a machine shop and drafting curriculum are described in the report. The purpose of the course is to provide a learning process in industrial drafting featuring identifiable orientation in skills that will enable the student to develop competencies that are…

  19. Automated drafting system uses computer techniques

    NASA Technical Reports Server (NTRS)

    Millenson, D. H.

    1966-01-01

    Automated drafting system produces schematic and block diagrams from the design engineers freehand sketches. This system codes conventional drafting symbols and their coordinate locations on standard size drawings for entry on tapes that are used to drive a high speed photocomposition machine.

  20. Pipe Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  1. Construction Techniques. Drafting Module 2. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. The guide contains a cross-reference table of instructional materials. Four units cover construction techniques: (1) drawing sheet layout; (2) sketching; (3)…

  2. Normalized Legal Drafting and the Query Method.

    ERIC Educational Resources Information Center

    Allen, Layman E.; Engholm, C. Rudy

    1978-01-01

    Normalized legal drafting, a mode of expressing ideas in legal documents so that the syntax that relates the constituent propositions is simplified and standardized, and the query method, a question-asking activity that teaches normalized drafting and provides practice, are examined. Some examples are presented. (JMD)

  3. Data Element Dictionary: Facilities. Preliminary Draft.

    ERIC Educational Resources Information Center

    Thomas, Charles R.

    The draft includes--(1) comments on file structure, (2) descriptions of dictionary organization and format, (3) alphabetical lists of elements, and (4) facilities related elements in dictionary form. The data element definitions in this draft are compatible with the Higher Education Facilities Classification and Inventory Procedures Manual, which…

  4. 1 CFR 21.1 - Drafting.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Drafting. 21.1 Section 21.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General § 21.1 Drafting. (a) Each agency that prepares...

  5. 1 CFR 21.1 - Drafting.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Drafting. 21.1 Section 21.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General § 21.1 Drafting. (a) Each agency that prepares...

  6. 1 CFR 21.1 - Drafting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Drafting. 21.1 Section 21.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General § 21.1 Drafting. (a) Each agency that prepares...

  7. Mechanical Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This instructor's manual contains 13 units of instruction for a course on mechanical drafting with options for using computer-aided drafting (CAD). Each unit includes some or all of the following basic components of a unit of instruction: objective sheet, suggested activities for the teacher, assignment sheets and answers to assignment sheets,…

  8. The Draft National Curriculum for Primary Mathematics

    ERIC Educational Resources Information Center

    Thompson, Ian

    2012-01-01

    Draft curriculum documents offer a glimpse of the future. They demand a response as all too often the devil is in the detail. What are the devils and maybe demons that await primary mathematics? This forensic consideration of the content of the draft curriculum for primary mathematics catalogues a lack of evidence to underpin proposals. Is the…

  9. 1 CFR 21.1 - Drafting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Drafting. 21.1 Section 21.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General § 21.1 Drafting. (a) Each agency that prepares...

  10. 1 CFR 21.1 - Drafting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Drafting. 21.1 Section 21.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS PREPARATION OF DOCUMENTS SUBJECT TO CODIFICATION General § 21.1 Drafting. (a) Each agency that prepares...

  11. Tube plug inspection system

    SciTech Connect

    Pirl, W.E.; Ray, E.A.; Costlow, A.M.; Roth, C.H. Jr.; Gradich, F.X.; Chizmar, D.A.

    1992-03-31

    This patent describes a system for inspecting a tube plug defining a chamber therein and having an open end in communication with the chamber, the chamber having disposed therein an expander element having a bore therethrough. It comprises: probe means having a sensor probe connected thereto for inspecting the tube plug, the probe means capable of being connected to the tube plug for extending the sensor probe a predetermined distance into the chamber through the open end of the tube plug; means connected to the probe means for rotating and translating the sensor probe within the chamber to provide an inspection scan interiorly of the tube plug, the rotating and translating means including: a flexible hose connected to the probe means for translating and rotating the probe means, the hose having adjacent segments so that the hose is flexible; and a connector interposed between adjacent segments of the hose for maintaining the hose in a tangle-free state; and drive means engaging the rotating and translating means for driving the rotating and translating means.

  12. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  13. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of...

  14. Drafting. Criterion-Referenced Test (CRT) Item Bank.

    ERIC Educational Resources Information Center

    Mathew, Mary, Ed.

    This drafting criterion-referenced test item bank is keyed to the drafting competency profile developed by industry and education professionals in Missouri. The 12 references used for drafting the test items are listed. Test items are arranged under these categories: drafting room procedures; tools and equipment; basic drawing skills; geometric…

  15. CURRENT PRACTICES OBSERVED IN DESIGN AND DRAFTING OCCUPATIONS.

    ERIC Educational Resources Information Center

    SQUIRES, CARL E.

    DATA WHICH HAD SIGNIFICANCE FOR DESIGN AND DRAFTING CURRICULUMS WERE COLLECTED BY DIRECT OBSERVATION OF 21 DESIGN AND DRAFTING FACTORS WITHIN 16 SELECTED INDUSTRIAL COMPANIES EMPLOYING 869 DESIGNERS AND DRAFTSMEN. OBSERVATIONS COVERED (1) THE NUMBER OF DESIGN AND DRAFTING EMPLOYEES, (2) THE SYSTEM OF DRAFTING ROOM ORGANIZATION, (3) JOB…

  16. IRIS Toxicological Review of Ammonia (Revised External Review Draft)

    EPA Science Inventory

    In August 2013, EPA submitted a revised draft IRIS assessment of ammonia to the agency's Science Advisory Board (SAB) and posted this draft on the IRIS website. EPA had previously released a draft of the assessment for public comment, held a public meeting about the draft, and ...

  17. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Draw gear and draft systems. 230.92 Section 230.92... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and... condition for service. Driving Gear...

  18. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Draw gear and draft systems. 230.92 Section 230.92... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and... condition for service. Driving Gear...

  19. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Draw gear and draft systems. 230.92 Section 230.92... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and... condition for service. Driving Gear...

  20. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Draw gear and draft systems. 230.92 Section 230.92... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and... condition for service. Driving Gear...

  1. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear and draft systems. 230.92 Section 230.92... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and... condition for service. Driving Gear...

  2. Content and Strategies for Teaching Computer Aided Drafting.

    ERIC Educational Resources Information Center

    Becker, Kurt

    1991-01-01

    A Delphi panel of 15 experts determined that (1) computer-assisted drafting (CAD) and traditional drafting are complementary; (2) differences in teaching strategies related to use of computers versus traditional drafting instruments; and (3) traditional drafting knowledge and skills are very important for CAD. (SK)

  3. Stability of flows in fluidized beds. Technical status report, December 8, 1991--March 7, 1992

    SciTech Connect

    Rajagopal, C.

    1992-08-01

    In this paper we carry out a systematic linearized stability analysis of the state of uniform fluidization for a fluid infused with granular particles. We carry out an interesting optimization procedure which leads to bounds for certain parameters, within which the state of uniform fluidization is stable. We find that this stability depends critically on the structure of the pressure-like term. (VC)

  4. Pulsed atmospheric fluidized bed combustion. Technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  5. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  6. Fluidized bed boiler at the Royal Alexandra Hospital for Children, Camperdown.

    PubMed

    Ellis, J W

    1985-03-01

    A fluidized bed boiler has been installed at the Royal Alexandra Hospital for Children, Camperdown, N.S.W. This paper describes the reasons for developing a project to demonstrate that a fluidized bed coal fire combustor can be incorporated with a modern packaged steam boiler. The boiler and combustor are of Australian design as suitable proven designs from overseas were not available.

  7. PRODUCTION OF URANIUM TUBING

    DOEpatents

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  8. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    PubMed

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful.

  9. Design and Cold Mode Experiment of Dual Bubbling Fluidized Bed Reactors for Multiple CCR Cycles

    NASA Astrophysics Data System (ADS)

    Fang, F.; Li, Z. S.; Cai, N. S.

    The dual fluidized bed reactors are the key technology to fulfill the multiple CCR (calcination/carbonation reactions) cycles for CO2 capture from the flue gases. Firstly, the dual bubbling fluidized bed reactors were selected in this work based on analyzing different types of dual fluidized bed reactors. Secondly, the design method of dual fluidized bed reactors for CO2 capture with CCR concept was proposed. Thirdly, with the designed results, a cold mode of the dual bubbling fluidized bed reactors was built. The long-term stable operation and the continuous solid circulation between two reactors could be achieved successfully. The experimental results indicated that the solid circulation rate was increased with an increase of bed height, diameter of solid injection nozzle, and diameter of holes on the solid injection nozzle.

  10. Affinity separation in magnetically stabilized fluidized beds: synthesis and performance of packing materials

    SciTech Connect

    Lochmueller, C.H.; Wigman, L.S.

    1987-11-01

    A magnetically stabilized fluidized-bed separator designed to test the use of pellicular, ferromagnetic affinity chromatography packing materials has been developed. A wire wound solenoid was used to produce the magnetic field. The ferromagnetic packing material is comprised of a magnetite-containing, polyurethane gel coated onto polystyrene beads. The gel contains free carboxyl groups. These were carbodiimide-coupled to soy trypsin inhibitor and the material used for trypsin purification. Narrow-band affinity chromatography was carried out in packed-bed, fluidized-bed, and magnetically stabilized, fluidized-bed separators. Pressure drop, capacity, dilution, and peak asymmetry were evaluated for each type of separator. The three types provide comparable efficiency but the fluidized separators exhibit a much lower pressure drop. As might be expected, fluidized-bed separators perform well for affinity chromatography (large k') but poorly for size exclusion chromatography.

  11. Heat-shrink plastic tubing seals joints in glass tubing

    NASA Technical Reports Server (NTRS)

    Del Duca, B.; Downey, A.

    1968-01-01

    Small units of standard glass apparatus held together by short lengths of transparent heat-shrinkable polyolefin tubing. The tubing is shrunk over glass O-ring type connectors having O-rings but no lubricant.

  12. Tube Feeding Transition Plateaus

    ERIC Educational Resources Information Center

    Klein, Marsha Dunn

    2007-01-01

    The journey children make from tube feeding to oral feeding is personal for each child and family. There is a sequence of predictable plateaus that children climb as they move toward orally eating. By better understanding this sequence, parents and children can maximize the development, learning, enjoyment and confidence at each plateau. The…

  13. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  14. Business Plan in Brief : Draft.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-06-01

    Competition is revolutionizing the electricity industry, and utilities may never be the same. In the past two decades, government deregulation has transformed the airline, cable television, natural gas, and telecommunications industries. Now, with the passage of new laws which have spurred the growth of independent power and opened up transmission access, the electric utility industry has become the laboratory for change. Here in the Northwest, dramatic changes in the electric industry mean that the Bonneville Power Administration (BPA) is facing real competition. Our customers have more choices than they had in the past. BPA`s draft Business Plan is a direct response to this changing environment. The plan presents how we propose to adapt to the new competitive marketplace. This is a summary of the plan and some of the important issues it raises for regional discussion. The draft plan contains much more detail on all the topics mentioned here. Business Plan is BPA`s first attempt to integrate the long-term strategic plans of the various parts of the agency with a strategic financial plan. Change is evident throughout the plan--change in our operating environment, in our strategic direction, in our customer and constituent relationships, and in BPA itself as an organization.

  15. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  16. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  17. Sorbent performance in fluidized-bed coal combustion

    SciTech Connect

    Haji Sulaiman, M.Z.

    1988-01-01

    The sulfation behavior of natural limestones and dolomites has been assessed using a bench scale fluidized bed reactor under conditions which are applicable to bubbling atmospheric fluidized bed condition. By increasing the temperature or reducing the CO{sub 2} partial pressure in the calcining gas, both precalcined and uncalcined sorbents exhibited relatively similar behavior on sulfation. Under these conditions calcination was relatively fast and therefore did not influence the overall sulfation process. When preparing precalcined sorbents, their reactivities towards SO{sub 2} depended on the calcining conditions, in particular on the CO{sub 2} concentration in the calcining gas and the calcining temperature. The apparent effects of calcining conditions on the subsequent sulfation behavior were directly related to the physical structure of the solid, which changes as a consequence of sintering. For a particular sorbent there is an optimum pore size beyond which the sulfur uptake begins to decrease. The low sulfur uptake at high temperatures was due to early pore blockage which restricted the transport of SO{sub 2} into the particle. Higher calcium utilization was achieved using impure limestones. When distributed uniformly within the particles, impurities dilute the CaO concentration and help to delay pore blockage upon reaction with SO{sub 2}. In the sulfation of uncalcined sorbents, the presence of impurities will increase the overall rate of calcination. In addition, some impurities will affect the sintering process and ultimately produce a favorable solid structure for sulfation. It can be concluded that the chemical composition of a sorbent should be considered in addition to its physical properties in selecting suitable candidates for reducing SO{sub 2} emissions from fluidized bed combustion.

  18. Impulsive fluidization: A mechanism for particle segregation in dense suspensions

    SciTech Connect

    Schiaffino, S.; Kytoemaa, H.K.

    1994-12-31

    Unsteady fluidization is investigated as a method in obtain sizes-dependent particle segregation in concentrated suspensions. A uniformly mixed binary bed of spheres is impulsively fluidized in a rectangular test section. The fines are in the range of 200--400 {micro}m and the coarse particles are in the range of 2--4 mm. From rest, a positive displacement pump impose a constant fluid velocity that is greater than the fine particle minimum fluidization velocity, but smaller than that of the coarse particles. Different values of particle sizes, bed heights and liquid flow rates are studied. The dependence of the segregation velocity on the particle density is also assessed for different materials. This variable controls the segregation speed and is therefore of significant practical interest. This can be useful to evaluate the opportunity to improve particle separation at high solid loading by controlling induced body forces -- e.g. centrifugal forces in a rotating environment. The initial upward motion of the packed bed forms a void at the bottom of the bed, through which coarse particles rain down to form a fines-free region. The void progresses upward and the fines remain in this region until it comes close to the top of the bed and the fines suddenly break through to the surface. A bed of coarse particles that is free of fines is left behind. In this process, the formation and upward motion of the void is essential for segregation to occur. The quality of segregation is improved with larger liquid flows but it also results in higher bed expansions, and possible related difficulties confining the particle mixture.

  19. Thermofluid effect on energy storage in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  20. Linear system identification of a cold flow circulating fluidized bed

    SciTech Connect

    Panday, R; Woerner, B D; Ludlow, J C; Shadle, L J; Boyle, E J

    2009-02-01

    Knowledge of the solids circulation rate (SCR) is essential to the control and improved performance of a circulating fluidized bed system. In the present work, the noise model is derived using the prediction error method considering process and measurement noises acting on the cold flow circulating fluidized bed (CFCFB) with a cork particulate material. The outputs of the initial model are the total pressure drop across the riser, the pressure drop across the crossover, the pressure drop across the primary cyclone, the total pressure drop across the stand-pipe, the pressure drop across the loop seal, and the SCR. The stochastic estimate of SCR is determined from the noise model using the stochastic pressure drop estimates. The deterministic estimate is obtained through the inputs taken as move air flow, riser aeration, and loop seal fluidization air that are all independent variables of the given setup and under the control of the user. The theory has been developed to convert a complete blackbox model to a grey box model through the output-to-state transformation such that both the models of the CFCFB consists of all these output variables as the states of the system, and only pressure drops across the system as the output measurements. Thus, the final models do not include any fictitious terms and they are defined only in terms of physical parameters of the given system. Both components of SCR are separately analysed. The combined SCR response of both the noise model and deterministic model is compared with the validation data set of this state variable in terms of modelfit, and the results are shown.