Sample records for draft wet cooling

  1. Conceptual designs and cost estimates of mechanical draft wet/dry and natural draft dry cooling systems using Curtiss-Wright integral fin-tube heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haberski, R.J.; Bentz, J.C.

    1979-04-01

    This study was performed to establish a conceptual design and cost evaluation of an advanced technology mechanical draft wet/dry and natural draft dry cooling systems for large electric power plants using a high performance integral fin-tube heat transfer surface. This study was part of an overall DOE program to develop and demonstrate advanced concept cooling systems for large electric power plants. The results obtained show significant economic advantages compared to results previously published for conventional cooling systems. These advantages are due to the higher heat transfer and lower pressure loss which occur with the use of the selected multi-port integralmore » fin-tubes.« less

  2. Crosswinds Effect on the Thermal Performance of Wet Cooling Towers Under Variable Operating Conditions

    NASA Astrophysics Data System (ADS)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    In order to quantitatively analyze the influence of the variable operating parameters on the cooling performance of natural draft wet cooling towers (NDWCTs), a hot model test system was set up with adjustable ambient temperature and humidity, circulating water flowrate and temperature. In order to apply the hot model test results to the real tower, the crosswind Froude number is defined. The results show that the crosswind has a negative effect on the thermal performance of the cooling tower, and there is a critical crosswind velocity corresponding to the lowest cooling efficiency. According to the crosswind Froude number similarity, when the ambient temperature decreases, or the circulating water flowrate and temperature increase, the cooling tower draft force will increase, and the critical crosswind velocity will increase correspondingly.

  3. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  4. The influence and analysis of natural crosswind on cooling characteristics of the high level water collecting natural draft wet cooling tower

    NASA Astrophysics Data System (ADS)

    Ma, Libin; Ren, Jianxing

    2018-01-01

    Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.

  5. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  6. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-03-01

    The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  7. Parametric study of closed wet cooling tower thermal performance

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  8. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  9. Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.

  10. Solar tower enhanced natural draft dry cooling tower

    NASA Astrophysics Data System (ADS)

    Yang, Huiqiang; Xu, Yan; Acosta-Iborra, Alberto; Santana, Domingo

    2017-06-01

    Concentrating Solar Power (CSP) plants are located in desert areas where the Direct Normal Irradiance (DNI) value is very high. Since water resource is scarcely available, mechanical draft cooing technology is commonly used, with power consumption of mechanical fans being approximately 2% of the total power generated. Today, there is only one solar power plant (Khi Solar One in South Africa) uses a condenser installed in a Natural Draft Cooling (NDC) tower that avoids the windage loss of water occurring in wet cooling towers. Although, Khi Solar One is a cavity receiver power tower, the receivers can be hung onto the NDC tower. This paper looks at a novel integration of a NDC tower into an external molten salt receiver of a solar power plant, which is one of a largest commercial molten salt tower in China, with 100MWe power capacity. In this configuration study, the NDC tower surrounds the concrete tower of the receiver concentrically. In this way, the receiver concrete tower is the central support of the NDC tower, which consists of cable networks that are fixed to the concrete tower and suspended at a certain height over the floor. The cable networks support the shell of the NDC tower. To perform a preliminary analysis of the behavior of this novel configuration, two cases of numerical simulation in three dimensional (3D) models have been solved using the commercial Computational Fluid Dynamics (CFD) code, ANSYS Fluent 6.3. The results show that the integration of the NDC tower into an external central receiver tower is feasible. Additionally, the total heat transfer rate is not reduced but slightly increases when the molten salt receiver is in operation because of the additional natural draft induced by the high temperature of the receiver.

  11. Review on Water Distribution of Cooling Tower in Power Station

    NASA Astrophysics Data System (ADS)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  12. Counter-Flow Cooling Tower Test Cell

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Nožička, Jiří

    2014-03-01

    The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.

  13. Heat and Mass Transfer in the Over-Shower Zone of a Cooling Tower with Flow Rotation

    NASA Astrophysics Data System (ADS)

    Kashani, M. M. Hemmasian; Dobrego, K. V.

    2013-11-01

    The influence of flow rotation in the over-shower zone of a natural draft wet cooling tower (NDCT) on heat and mass transfer in this zone is investigated numerically. The 3D geometry of an actual NDCT and three models of the induced rotation velocity fields are utilized for calculations. Two phases (liquid and gaseous) and three components are taken into consideration. The interphase heat exchange, heat transfer to the walls, condensation-evaporation intensity field, and other parameters are investigated as functions of the induced rotation intensity (the inclination of the velocity vector at the periphery). It is shown that the induced flow rotation intensifies the heat and mass transfer in the over-shower zone of an NDCT. Flow rotation leads to specific redistribution of evaporation-condensation areas in an NDCT and stimulates water condensation near its walls.

  14. An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur

    2017-06-01

    The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.

  15. Wet cooling towers: rule-of-thumb design and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeper, Stephen A.

    1981-07-01

    A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature,more » power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.« less

  16. Performance Evaluation of a Mechanical Draft Cross Flow Cooling Towers Employed in a Subtropical Region

    NASA Astrophysics Data System (ADS)

    Muthukumar, Palanisamy; Naik, Bukke Kiran; Goswami, Amarendra

    2018-02-01

    Mechanical draft cross flow cooling towers are generally used in a large-scale water cooled condenser based air-conditioning plants for removing heat from warm water which comes out from the condensing unit. During this process considerable amount of water in the form of drift (droplets) and evaporation is carried away along with the circulated air. In this paper, the performance evaluation of a standard cross flow induced draft cooling tower in terms of water loss, range, approach and cooling tower efficiency are presented. Extensive experimental studies have been carried out in three cooling towers employed in a water cooled condenser based 1200 TR A/C plant over a period of time. Daily variation of average water loss and cooling tower performance parameters have been reported for some selected days. The reported average water loss from three cooling towers is 4080 l/h and the estimated average water loss per TR per h is about 3.1 l at an average relative humidity (RH) of 83%. The water loss during peak hours (2 pm) is about 3.4 l/h-TR corresponding to 88% of RH and the corresponding efficiency of cooling towers varied between 25% and 45%.

  17. Wet/dry cooling tower and method

    DOEpatents

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  18. The Cool Colors Project

    Science.gov Websites

    cool colored roofing for homes in California's 16 climates. Or, read our detailed draft report. To requirements for residential roofs in Title 24 [format: PDF]. Draft report presented at the California Energy presentation [format: PDF] summarizing this report. H. Akbari, C. Wray, T. Xu and R. Levinson. 2006. Inclusion

  19. 76 FR 32878 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ...-0129] Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory Guide, DG-1253, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors''. FOR FURTHER INFORMATION CONTACT: Mekonen M...

  20. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code ismore » a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.« less

  1. Investigation of flow characteristics of a single and two-adjacent natural draft dry cooling towers under cross wind condition

    NASA Astrophysics Data System (ADS)

    Mekanik, Abolghasem; Soleimani, Mohsen

    2007-11-01

    Wind effect on natural draught cooling towers has a very complex physics. The fluid flow and temperature distribution around and in a single and two adjacent (tandem and side by side) dry-cooling towers under cross wind are studied numerically in the present work. Cross-wind can significantly reduce cooling efficiency of natural-draft dry-cooling towers, and the adjacent towers can affect the cooling efficiency of both. In this paper we will present a complex computational model involving more than 750,000 finite volume cells under precisely defined boundary condition. Since the flow is turbulent, the standard k-ɛ turbulence model is used. The numerical results are used to estimate the heat transfer between radiators of the tower and air surrounding it. The numerical simulation explained the main reason for decline of the thermo-dynamical performance of dry-cooling tower under cross wind. In this paper, the incompressible fluid flow is simulated, and the flow is assumed steady and three-dimensional.

  2. Description and cost analysis of a deluge dry/wet cooling system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heatmore » exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)« less

  3. Cost analysis of an ammonia dry cooling system with a Chicago Bridge and Iron peak shaving system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drost, M.K.; Johnson, B.M.

    1980-12-01

    A study was performed to determine the potential for reducing the cost associated with dry cooling by using an ammonia dry cooling system augmented with the Chicago Bridge and Iron (CP and I) peak shaving system. The cost analysis of an all-dry ammonia cooling system operating in conjunction with a peak shaving system is documented. The peak shaving system utilizes the excess cooling capability available at night to cool water to be used for supplemental cooling during the following day. The analysis consisted of determining the incremental cost of cooling for the CB and I system and comparing this costmore » to the incremental cost of cooling for both dry and wet/dry systems for a consistent set of design conditions and assumptions. The wet/dry systems were analyzed over a range of water usages. The basis of the comparisons was a cooling system designed for installations with a 650 mWe (gross) coal-fired power plant. From results of the study it was concluded that: the CB and I system shows a substantial economic advantage when compared with an all-dry cooling system; the CB and I system appears to be competitive with wet/dry cooling systems using about 2 to 3% water; and the CB and I system demonstrates a clear economic advantage when compared to both dry and wet/dry concepts for a winter peaking utility where the excess generation is assumed to displace both base-loaded coal-fired power generation and oil-fired gas turbine peaking units.« less

  4. Main photoautotrophic components of biofilms in natural draft cooling towers.

    PubMed

    Hauer, Tomáš; Čapek, Petr; Böhmová, Petra

    2016-05-01

    While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.

  5. The nominal cooling tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1995-12-31

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can selectmore » the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.« less

  6. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  7. 76 FR 2725 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    .... The draft regulatory guide, entitled, ``Inspection of Water-Control Structures Associated with Nuclear... and surveillance program for dams, slopes, canals, and other water-control structures associated with emergency cooling water systems or flood protection of nuclear power plants. II. Further Information The NRC...

  8. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core... acceptable to implement with regard to initial testing features of emergency core cooling systems (ECCSs) for...

  9. Maisotsenko cycle applications for multistage compressors cooling

    NASA Astrophysics Data System (ADS)

    Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.

    2017-08-01

    The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.

  10. Forced heat loss from body surface reduces heat flow to body surface.

    PubMed

    Berman, A

    2010-01-01

    Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal temperature was 38.9+/-0.1 degrees C; it remained unchanged during first 5 cooling cycles, decreased by 0.1 degrees C after 7 cooling cycles, and decreased to 38.4+/-0.06 degrees C after 8 to 10 cooling cycles, with no additional subsequent decrease. The concomitant reduction in Ts in dry and wet areas suggests an immediate vasoconstrictor response associated with heat extraction and later development of a cooler body shell. The reduction in rectal temperature represents a response involving transfer of heat from the body core to the body shell. This response mode requires consideration in settings of heat stress relief. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Concentrating Solar Power Projects - Olivenza 1 | Concentrating Solar Power

    Science.gov Websites

    Manufacturer: Siemens Turbine Description: 5 extractions Output Type: Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: Wet cooling Cooling Method Description: Cooling Towers

  12. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  13. Hypotheses of calculation of the water flow rate evaporated in a wet cooling tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourillot, C.

    1983-08-01

    The method developed by Poppe at the University of Hannover to calculate the thermal performance of a wet cooling tower fill is presented. The formulation of Poppe is then validated using full-scale test data from a wet cooling tower at the power station at Neurath, Federal Republic of Germany. It is shown that the Poppe method predicts the evaporated water flow rate almost perfectly and the condensate content of the warm air with good accuracy over a wide range of ambient conditions. The simplifying assumptions of the Merkel theory are discussed, and the errors linked to these assumptions are systematicallymore » described, then illustrated with the test data.« less

  14. Cooling towers, the neglected energy conservations and money making machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1996-12-31

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95 {degrees}F, Hot Water temperature (HWT), Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies throughout the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can selectmore » the nominal cooling tower model recommended by the manufacturer. In the specification of cooling towers it is necessary to clearly understand the definition of nominal cooling tower, and to make sure the specification you need addressed can be met by the system you purchase. This should be tested prior to final acceptance.« less

  15. Free cooling of the one-dimensional wet granular gas.

    PubMed

    Zaburdaev, V Yu; Brinkmann, M; Herminghaus, S

    2006-07-07

    The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling properties which may shed light on earlier unexplained results for related systems.

  16. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Gu, Junjie; Liu, Jie

    2015-01-01

    An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

  17. Is Heterobasidion annosum Poorly Adapted to Incite Disease in Cool, Wet Environments?

    Treesearch

    Charles G. Shaw III

    1989-01-01

    An argument is advanced to suggest that infection and damage caused in coniferous forests by Heterobasidion annosum are markedly less severe, and survival of the fungus less common, under cool, wet conditions than in other climates. This premise is supported by the author's incisive insights, experience in southeastern Alaska, and data from this...

  18. ECOLOGICAL EFFECTS OF AEROSOL DRIFT FROM A SALTWATER COOLING SYSTEM

    EPA Science Inventory

    The local terrestrial effects of salt aerosol drift from powered spray modules and a mechanical draft cooling tower at Turkey Point, Florida were evaluated through field and controlled exposure studies. Indigenous vegetation, soil and fresh water were sampled over a year long per...

  19. Hydrological effects of tropical land use management incentives: Panama Canal Watershed

    Treesearch

    Fred Ogden; Jefferson S. Hall; Holly Barnard; Robert F. Stallard; Ell Fenichel; Vic Adamowicz; Brent Ewers; Ed Kempema; Julian Zhu

    2016-01-01

    Panama lies in the seasonal tropics and over 85 percent of annual precipitation falls during the May-December wet season. Extreme rainfall events near the end of the wet season can produce flooding that impact Panama Canal operations. During the December-April dry season, occasional water shortages limit the draft of ships passing through the Panama Canal, as well as...

  20. Liquid circulation in a stirred system with an axial flow impeller and a cylindrical draft tube

    NASA Astrophysics Data System (ADS)

    Fořt, Ivan; Vlček, Petr; Jirout, Tomáš

    2017-07-01

    This study deals with a CFD simulation of the turbulent flow of a homogeneous liquid in a cylindrical stirred system with a pitched-blade impeller and a cylindrical draft tube. Design of investigated pilot plant equipment corresponds to the shape of agitated crystallizer with a draft tube - additional cooling heat exchanger. The results of the computation are expressed by means of the circulation pattern of a stirred liquid and the main flow characteristics of the system - the flow rate numbers and the impeller power number.

  1. Concentrating Solar Power Projects - Enerstar | Concentrating Solar Power |

    Science.gov Websites

    Capacity (Net): 50.0 MW Turbine Manufacturer: Man-Turbo Turbine Description: 3 extractions Output Type : Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: Wet cooling Cooling Method Description

  2. Does wet hair in cold weather cause sinus headache and posterior eye pain? A possible mechanism through selective brain cooling system.

    PubMed

    Kaya, Abdullah; Calışkan, Halil

    2012-12-01

    As a general observation, wet hair in cold weather seems to be a predisposing factor for sinus headache and posterior eye pain. We offer a mechanism through selective brain cooling system for this observation. Selective brain cooling (SBC) is a mechanism to protect brain from hyperthermia. Components of SBC are head skin and upper respiratory tract (nose and paranasal sinuses). Cool venous blood from head skin and mucous membranes of nose and paranasal sinuses drains to intracranial dural sinuses and provide brain cooling. Brain will be cooled very much when head skin exposes to hypothermia such a condition like wet hair in cold weather. We suggest that, in order to reduce brain cooling activity, some alterations are being occurred within paranasal sinuses. For this purpose, sinus ostiums may close and mucus may accumulate to reduce air within sinuses. Also there may be some vasomotor changes to prevent heat loss. We hypothesize that this possible alterations may occur within paranasal sinuses as a control mechanism for brain temperature control during exposure of head skin to hypothermia. Paranasal sinuses may also cool brain directly by a very thin layer of bone separates the posterior ethmoid air sinus from the subarachnoid space and only thin plates of bone separate the sphenoidal sinuses from internal carotid artery and cavernous sinuses. Because of their critical role in the SBC, posterior ethmoid air sinus and sphenoidal sinuses may be affected from this alterations more than other paranasal sinuses. This situation may cause posterior eye pain. This mechanism can explain why a person who expose to hypothermia with wet hair or a person who don't use a beret or a hat during cold weather gets sinus headache and posterior eye pain. These symptoms could lead to an incorrect diagnosis of sinusitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  4. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  5. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  6. Vortex-augmented cooling tower-windmill combination

    DOEpatents

    McAllister, Jr., John E.

    1985-01-01

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  7. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  8. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makesmore » an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected.« less

  9. Seasonal variation in time budgets and milk yield for Jersey, Friesland and crossbred cows raised in a pasture-based system.

    PubMed

    Dodzi, Madodana S; Muchenje, Voster

    2012-10-01

    The time budgets and daily milk yield of Jersey and Friesland cows and their crosses were compared in a pasture-based system by recording the time spent grazing, drinking, lying, standing and walking in four seasons of the year (cool-dry, hot-dry, hot-wet and post-rainy). Observations were made from 0800 to 1400 hours on seven cows per breed. Seven observers monitored the cows at 10-min intervals for 6 h using stop watches. Time spent standing was higher (P < 0.05) for Friesland compared to Jersey cows and the crossbred cows during the hot-wet season. Time spent walking differed among the three genotypes with the Jersey spending more time (P < 0.05) in both hot-wet and cool-dry seasons. No differences were noted on time spent lying down (P > 0.05) across the genotypes in the hot-wet season. In the cool-dry season, differences in time spent grazing (P < 0.05) were noted with the Jersey cows spending more time. The Friesland and the crossbred spent more time lying down (P < 0.05) than the Jersey cows in the cool-dry season. No time differences were noted for time spent standing (P > 0.05) in the same season. The Jersey cows spent the longest time walking (P < 0.05) during the cool-dry period. There were seasonal differences in time spent in all activities (P < 0.05). Time spent on grazing was longest in post-rainy season and lowest in hot-wet season. Differences were observed in the time spent lying down (P < 0.05). The longest period was observed in the hot-dry season and lowest in the hot-wet season. Daily milk yield varied (P < 0.05) with breed with the Friesland and Jersey producing higher yields than the crosses. The highest amount was produced in hot-dry and the least in hot-wet season. Milk yield and lying down were positively correlated (P < 0.05) in Jersey and Friesland cows. Standing was negatively correlated with milk yield (P < 0.05) in both Friesland and Jersey cows. No significant relationship was observed for the crossbred cows. It was concluded that the genotypes show different levels of sensitivity to seasons and that a relationship exists between milk yield and time budgets.

  10. Evaluation of pavement markings under wet-night road conditions : best practices study : draft final report.

    DOT National Transportation Integrated Search

    2016-05-01

    This study was conducted on behalf of the Utah Department of Transportation (UDOT), to identify best practices by other governmental agencies in comparison to UDOTs current practices for the selection of pavement marking materials and produc...

  11. 75 FR 17970 - Nine Mile Point Nuclear Station, LLC; Nine Mile Point Nuclear Station, Unit No. 2; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... industrial use. Potable water in the area is supplied to residents either through the Scriba Water District... and drift losses from the cooling tower. NMP2 has its own cooling water intake and discharge... service water system and makeup to the circulating water system to replace evaporation and drift losses...

  12. Oyster resource zones of the Barataria and Terrebonne estuaries of Louisiana

    USGS Publications Warehouse

    Melancon, E.; Soniat, T.; Cheramie, V.; Dugas, R.; Barras, J.; Lagarde, M.

    1998-01-01

    A 1:100,000 scale map delineating the subtidal oyster resource zones within the Barataria and Terrebonne estuaries was developed. Strategies to accomplish the task included interviews with Louisiana oystermen and state biologists to develop a draft map, field sampling to document oyster (Crassostrea virginica), Dermo (Perkinsus marinus), and oyster drill (Stramonita haemastoma) abundances, use of historical salinity data to aid in map verification, and public meetings to allow comment on a draft before final map preparation. Four oyster resource zones were delineated on the final map: a dry zone where subtidal oysters may be found when salinities increase, a wet zone where subtidal oysters may be found when salinities are suppressed, a wet-dry zone where subtidal oysters may be consistently found due to favorable salinities, and a high-salinity zone where natural oyster populations are predominantly found in intertidal and shallow waters. The dry zone is largely coincident with the brackish-marsh habitat, with some intermediate-type marsh. The wet-dry zone is found at the interface of the brackish and saline marshes, but extends further seaward than up-estuary. The wet zone and the high salinity zones are areas of mostly open water fringed by salt marshes. The dry zone encompasses 91,775 hectares, of which 48,788 hectares are water (53%). The wet zone encompasses 83,525 hectares, of which 66,958 hectares are water (80%). The wet-dry zone encompasses 171,893 hectares, of which 104,733 hectares are water (61%). The high salinity zone encompasses 125,705 hectares, of which 113,369 hectares are water (90%). There is a clear trend of increasing water habitat in the four zones over the past 30 years, and oysters are now cultivated on bottoms that were once marsh. The map should be useful in managing the effects upon oysters of freshwater diversions into the estuaries. It provides a pre-diversion record of the location of oyster resource zones and should prove helpful in the seaward relocation of oysters leases.

  13. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  14. Predicted percentage dissatisfied with ankle draft.

    PubMed

    Liu, S; Schiavon, S; Kabanshi, A; Nazaroff, W W

    2017-07-01

    Draft is unwanted local convective cooling. The draft risk model of Fanger et al. (Energy and Buildings 12, 21-39, 1988) estimates the percentage of people dissatisfied with air movement due to overcooling at the neck. There is no model for predicting draft at ankles, which is more relevant to stratified air distribution systems such as underfloor air distribution (UFAD) and displacement ventilation (DV). We developed a model for predicted percentage dissatisfied with ankle draft (PPD AD ) based on laboratory experiments with 110 college students. We assessed the effect on ankle draft of various combinations of air speed (nominal range: 0.1-0.6 m/s), temperature (nominal range: 16.5-22.5°C), turbulence intensity (at ankles), sex, and clothing insulation (<0.7 clo; lower legs uncovered and covered). The results show that whole-body thermal sensation and air speed at ankles are the dominant parameters affecting draft. The seated subjects accepted a vertical temperature difference of up to 8°C between ankles (0.1 m) and head (1.1 m) at neutral whole-body thermal sensation, 5°C more than the maximum difference recommended in existing standards. The developed ankle draft model can be implemented in thermal comfort and air diffuser testing standards. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport.

    PubMed

    Miller, Thomas D; Maxwell, Andrew J; Lindquist, Thomas D; Requard, Jake

    2013-01-01

    To determine the cooling effect of generic insulated shipping containers in ambient and high-temperature environments. Twenty-seven shipping containers were packed with wet ice according to industry standards. The ice in each container was weighed. Ambient temperatures were recorded by data loggers affixed to the exterior. Internal temperatures were recorded by data loggers packed inside the containers, for as long as the data loggers remained at ≤8°C. The cooling effect, or minutes per gram of ice a data logger maintained a temperature of ≤8°C, was calculated using linear regression; 8 similar containers were subjected to elevated summer temperatures. Small, medium, and large containers held mean masses of wet ice of 685, 1929, and 4439 g, respectively. The linear regression equation for grams of ice to duration of time at ≤8°C was y = 0.1994x + 385.13 for small containers, y = 0.1854x + 1273.3 for medium, and y = 0.5892x + 1410.3 for large containers, resulting in a cooling effect of 25.1 hours for small, 58.9 hours for medium, and 85.7 hours for large containers at ambient temperature. The duration of cooling effect in the summer profile group was consistent with that of the ambient temperature group. All of the container sizes successfully maintained proper cooling when packed with the appropriate grams of wet ice for the needed time interval. This study validates current practice for the shipment of corneal tissue in inexpensive, generic containers that can maintain effective cooling for the duration required for local, national, and international shipment.

  16. Modeling Skin Injury from Hot Spills on Clothing.

    PubMed

    Log, Torgrim

    2017-11-11

    The present work analyzes scald burns from hot beverages, such as coffee and tea, spilled on the lap, i.e., an incident that may occur in daily life. The Pennes bioheat equation is solved numerically for small spills wetting the clothing, i.e., the fabric prevents the spilled liquid from draining away. Temperatures are analyzed in the wetted fabric and the skin layers and the resulting skin injury is calculated based on the basal layer temperature. Parameters influencing burn severity, such as clothing thickness, liquid temperature, removal of fabric and thermal effects of post scald water cooling are analyzed. The fabric cools the water some but represents a threat since the entrapped water results in a prolonged heat supply. The liquid temperature turned out to be the most important injury parameter, where liquid temperature of about 80-85 °C seems to be a limit for developing superficial partial-thickness burns in the present minimum case, i.e., where the liquid just wets the fabric. Spilling water in excess of just wetting the fabric, more severe burns will develop at lower liquid temperatures due to the prolonged heat supply. Higher liquid temperatures will nearly instantly develop more severe burns. It is demonstrated that removal of the clothing within the first seconds after the spill may significantly reduce the scalding severity. The general advice is therefore to avoid excessive heating of beverages and, if the beverage is spilled, to quickly remove the wetted clothing. Prolonged tempered water cooling is advised to improve the healing processes.

  17. Genome Sequence of Legionella massiliensis, Isolated from a Cooling Tower Water Sample.

    PubMed

    Pagnier, Isabelle; Croce, Olivier; Robert, Catherine; Raoult, Didier; La Scola, Bernard

    2014-10-16

    We present the draft genome sequence of Legionella massiliensis strain LegA(T), recovered from a cooling tower water sample, using an amoebal coculture procedure. The strain described here is composed of 4,387,007 bp, with a G+C content of 41.19%, and its genome has 3,767 protein-coding genes and 60 predicted RNA genes. Copyright © 2014 Pagnier et al.

  18. Engineering evaluation of magma cooling-tower demonstration at Nevada Power Company's Sunrise Station

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.

  19. Liquid cooled counter flow turbine bucket

    DOEpatents

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  20. Effect of air velocity and direction for indirect evaporative cooling in tropical area

    NASA Astrophysics Data System (ADS)

    Ayodha Ajiwiguna, Tri; Nugraha Rismi, Fadhlin; Ramdlan Kirom, Mukhammad

    2017-06-01

    In this research, experimental study of heat absorption rate caused by indirect evaporative cooling is performed by varying the velocity and direction of air. The ambient is at average temperature and relative humidity of 28.7 °C and 78% respectively. The experiment is conducted by attaching wet medium on the top of material reference plate with the dimension of 14 x 8 cm with 5 mm thickness. To get evaporative cooling effect, the air flow is directed to the wet medium with velocity from 1.6 m/s to 3.4 m/s with the increment of 0.2 m/s. The direction of air is set 0° (parallel), 45° (inclined), and 90° (perpendicular) to the wet medium surface. While the experiment is being performed, the air temperature, top and bottom of plate temperature are measured simultaneously after steady state condition is established. Based on the measurement result, heat absorption is calculated by analysing the heat conduction on the material reference. The result shows that the heat absorption rate is increased by higher velocity. Perpendicular direction of air flow results the highest cooling capacity compared with other direction. The maximum heat absorption rate is achieved at 13.9 Watt with 3.4 m/s velocity and perpendicular direction of air.

  1. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    NASA Astrophysics Data System (ADS)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  2. High-Performance Computing Data Center Water Usage Efficiency |

    Science.gov Websites

    cooler-an advanced dry cooler that uses refrigerant in a passive cycle to dissipate heat-was installed at efficiency-using wet cooling when it's hot and dry cooling when it's not. Learn more about NREL's partnership

  3. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  4. ­Assessing the causes of 20th century wetting in the eastern United States

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Williams, P.; Seager, R.; Fiore, A. M.; Cook, B.; Mankin, J. S.; Singh, D.; Smerdon, J. E.; Rao, M. P.

    2017-12-01

    During the 20th century, a large area of the eastern United States (US) experienced increases in precipitation and reduced warming, with seasonal cooling of daytime temperatures. These trends are in stark contrast with observed drying and warming globally, particularly with those in the western US. While the reduced temperature trends, termed the eastern US `warming hole,' are well documented and have been linked to reduced insolation from aerosols, evaporative cooling from increased precipitation, and natural climate variability, there is little research evaluating the timing, spatial extent, and physical origins of the historical eastern US precipitation trends. Here we investigate: (1) hydroclimate trends and variability across the continental US for 1895-2016 for all seasons, (2) mechanistic links between wetting and cooling trends in the Southeast US, and (3) dynamical links between wetting trends and large-scale atmospheric circulation changes. Our analyses of hydroclimatic trends indicate strong positive trends in fall precipitation in the Southeast and Northeast US, and positive trends in summer precipitation in the Northeast and Midwest US. The Southeast and Midwest wetting trends are coincident with negative trends in mean daily maximum temperatures (TMax), whereas the Northeast US wetting coincides with warming. Cross-wavelet analysis indicates low-frequency anti-phasing between summer precipitation and TMax, particularly in the Southeast US, but there is little coherence in the fall-season relationship. These results support a positive link between precipitation and evaporative cooling, as this mechanism is expected to be most focused in the boreal summer season. To investigate the shift to wetter conditions in the eastern US, we evaluate moisture transport across multiple reanalysis products, surface observations, and CMIP5 model runs. We find a step-shift toward enhanced southerly flow from the Gulf of Mexico into the Southeast and Midwest US that contributes to the observed wetting in the mid-20th century. Initial results indicate a fall-season westward intensification of the Bermuda High linked with southerly flow over the Southeast US. Further work will be needed to diagnose the dynamical drivers and possible role of anthropogenic forcing.

  5. 76 FR 35215 - Notice of EPA Workshop on Sanitary Sewer Overflows and Peak Wet Weather Discharges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... draft Peak Flows Policy. The workshop will include a facilitated discussion with representatives of organizations that represent POTWs, state NPDES permitting authorities, and non-for-profit environmental groups... maintained sanitary sewer systems are meant to collect and transport all of the sewage that flows into them...

  6. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    NASA Astrophysics Data System (ADS)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  7. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.

    1978-05-01

    This volume provides a listing of the BNW-II dry/wet ammonia heat rejection optimization code and is an appendix to Volume I which gives a narrative description of the code's algorithms as well as logic, input and output information.

  8. Modeling Skin Injury from Hot Spills on Clothing

    PubMed Central

    2017-01-01

    The present work analyzes scald burns from hot beverages, such as coffee and tea, spilled on the lap, i.e., an incident that may occur in daily life. The Pennes bioheat equation is solved numerically for small spills wetting the clothing, i.e., the fabric prevents the spilled liquid from draining away. Temperatures are analyzed in the wetted fabric and the skin layers and the resulting skin injury is calculated based on the basal layer temperature. Parameters influencing burn severity, such as clothing thickness, liquid temperature, removal of fabric and thermal effects of post scald water cooling are analyzed. The fabric cools the water some but represents a threat since the entrapped water results in a prolonged heat supply. The liquid temperature turned out to be the most important injury parameter, where liquid temperature of about 80–85 °C seems to be a limit for developing superficial partial-thickness burns in the present minimum case, i.e., where the liquid just wets the fabric. Spilling water in excess of just wetting the fabric, more severe burns will develop at lower liquid temperatures due to the prolonged heat supply. Higher liquid temperatures will nearly instantly develop more severe burns. It is demonstrated that removal of the clothing within the first seconds after the spill may significantly reduce the scalding severity. The general advice is therefore to avoid excessive heating of beverages and, if the beverage is spilled, to quickly remove the wetted clothing. Prolonged tempered water cooling is advised to improve the healing processes. PMID:29137118

  9. Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Flemming, Leslie; Mascaro, Stephen

    2013-01-01

    A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.

  10. Teaching Basic Science Environmentally.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1984-01-01

    Five activities on the concept of evaporation as a cooling process is presented. Activities include discovering which hand, the wet one or dry one, is cooler; reviving a wilted plant; measuring surface area of leaves; collecting water vapor from leaves; and finding out the cooling effect of trees. (ERB)

  11. Simulating the Water Use of Thermoelectric Power Plants in the United States: Model Development and Verification

    NASA Astrophysics Data System (ADS)

    Betrie, G.; Yan, E.; Clark, C.

    2016-12-01

    Thermoelectric power plants use the highest amount of freshwater second to the agriculture sector. However, there is scarcity of information that characterizes the freshwater use of these plants in the United States. This could be attributed to the lack of model and data that are required to conduct analysis and gain insights. The competition for freshwater among sectors will increase in the future as the amount of freshwater gets limited due climate change and population growth. A model that makes use of less data is urgently needed to conduct analysis and identify adaptation strategies. The objectives of this study are to develop a model and simulate the water use of thermoelectric power plants in the United States. The developed model has heat-balance, climate, cooling system, and optimization modules. It computes the amount of heat rejected to the environment, estimates the quantity of heat exchanged through latent and sensible heat to the environment, and computes the amount of water required per unit generation of electricity. To verify the model, we simulated a total of 876 fossil-fired, nuclear and gas-turbine power plants with different cooling systems (CS) using 2010-2014 data obtained from Energy Information Administration. The CS includes once-through with cooling pond, once-through without cooling ponds, recirculating with induced draft and recirculating with induced draft natural draft. The results show that the model reproduced the observed water use per unit generation of electricity for the most of the power plants. It is also noticed that the model slightly overestimates the water use during the summer period when the input water temperatures are higher. We are investigating the possible reasons for the overestimation and address it in the future work. The model could be used individually or coupled to regional models to analyze various adaptation strategies and improve the water use efficiency of thermoelectric power plants.

  12. Effective Disposal of Fuel Cell Polyurethane Foam

    DTIC Science & Technology

    1987-01-01

    devices. There are several types of Air Pollution Control Devices (APCD). Venturi scrubbers , wet scrubbers , packed towers, and cyclonic flow units all...emission gases to be subjected to high temperatures for a longer period of time or by scrubbing the gases with venturi or wet scrubbers . Packed towers...could be lowered if a chamber equipped with a water spray to cool the gases were used. Venturi or wet scrubbers could accomplish this effecti vely. Acid

  13. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  14. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing.

    PubMed

    Bröde, Peter; Havenith, George; Wang, Xiaoxin; Candas, Victor; den Hartog, Emiel A; Griefahn, Barbara; Holmér, Ingvar; Kuklane, Kalev; Meinander, Harriet; Nocker, Wolfgang; Richards, Mark

    2008-09-01

    In order to assess the non-evaporative components of the reduced thermal insulation of wet clothing, experiments were performed with a manikin and with human subjects in which two layers of underwear separated by an impermeable barrier were worn under an impermeable overgarment at 20 degrees C, 80% RH and 0.5 ms(-1) air velocity. By comparing manikin measurements with dry and wetted mid underwear layer, the increase in heat loss caused by a wet layer kept away from the skin was determined, which turned out to be small (5-6 W m(-2)), irrespective of the inner underwear layer being dry or wetted, and was only one third of the evaporative heat loss calculated from weight change, i.e. evaporative cooling efficiency was far below unity. In the experiments with eight males, each subject participated in two sessions with the mid underwear layer either dry or wetted, where they stood still for the first 30 min and then performed treadmill work for 60 min. Reduced heat strain due to lower insulation with the wetted mid layer was observed with decreased microclimate and skin temperatures, lowered sweat loss and cardiac strain. Accordingly, total clothing insulation calculated over the walking period from heat balance equations was reduced by 0.02 m(2) degrees C W(-1) (16%), while for the standing period the same decrease in insulation, representing 9% reduction only showed up after allowing for the lower evaporative cooling efficiency in the calculations. As evaporation to the environment and inside the clothing was restricted, the observed small alterations may be attributed to the wet mid layer's increased conductivity, which, however, appears to be of minor importance compared to the evaporative effects in the assessment of the thermal properties of wet clothing.

  15. An investigation of the accuracy of the Merkel equation for evaporative cooling tower calculations. Waste heat management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadigaroglu, G.; Pastor, E.J.

    1974-01-01

    The exact differential equations governing heat and mass transfer and air flow in an evaporative, natural-draft cooling tower are presented. The Merkel equation is then derived starting from this exact formulation and showing all the approximations involved. The Merkel formulation lumps the sensible and the latent heat transfer together and considers a single enthalpy-difference driving force for the total heat transfer. The effect of the approximations inherent in the Merkel equation is investigated and analyzed by a series of parametric numerical calculations of cooling tower performance under various ambient conditions and load conditions.

  16. Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling

    NASA Astrophysics Data System (ADS)

    Priego Quesada, Jose Ignacio; Martínez Guillamón, Natividad; Cibrián Ortiz de Anda, Rosa M.a.; Psikuta, Agnes; Annaheim, Simon; Rossi, René Michel; Corberán Salvador, José Miguel; Pérez-Soriano, Pedro; Salvador Palmer, Rosario

    2015-09-01

    The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.

  17. 75 FR 41241 - Draft Regulatory Guide; Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...: (301) 251-7404 or e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The U.S... analysis and testing applicable to Emergency Core Cooling System (ECCS) strainer performance and debris... provides text and image files of NRC's public documents. If you do not have access to ADAMS or if there are...

  18. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0296] Design, Inspection, and Testing Criteria for Air... for public comment draft regulatory guide (DG), DG-1274, ``Design, Inspection, and Testing Criteria... Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and...

  19. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  20. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  1. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  2. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  3. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  4. Concentrating Solar Power Projects - La Africana | Concentrating Solar

    Science.gov Websites

    : Posadas (Córdoba) Owner(s): Ortiz/TSK/Magtel (100%) Technology: Parabolic trough Turbine Capacity: Net -Field Outlet Temp: 393°C Solar-Field Temp Difference: 100°C Power Block Turbine Capacity (Gross): 50.0 MW Turbine Capacity (Net): 50.0 MW Output Type: Steam Rankine Cooling Method: Wet cooling Thermal

  5. Tips for Energy Savers.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    According to 1986 U.S. Department of Energy data, 48% of our residential energy is used to heat and cool our homes, 16% goes for heating water, 12% is used to refrigerators and freezers, and the remaining 24% goes into lighting, cooking, and running appliances. This booklet contains tips for saving energy, including sections on: (1) draft-proof…

  6. 7. Unit 3 Service Water System Valves, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Unit 3 Service Water System Valves, view to the east. These pipes and valves supply water from the draft chest for cooling the generator barrels. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  7. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  8. Interrelationships between the thyroid gland and adrenal cortex during fear, cold and restraint in the sheep.

    PubMed

    Falconer, I R

    1976-03-01

    To examine the relationship between the functioning of the adrenal and thyroid glands in sheep, plasma cortisol concentration, concentration of protein-bound 125I from thyroid vein plasma, heart rate and blood pressure were measured in ewes bearing exteriorized thyroid glands. During these measurements stresses were imposed on the animals: fear induced by pistol shots or by a barking dog, cold by cooling and wetting, and physical restraint by a loose harness. Increases in plasma cortisol concentration of 2-6 mug/100 ml were observed with each type of stressor, the response rapidly decreasing with habituation of the animal. Increases in the concentration of protein-bound 125I from thyroid vein plasma were also observed repeatedly during cooling and wetting, occasionally after the introduction of a barking dog, and during continued restraint. Cooling and wetting was the only stress causing consistent parallel activation of the adrenal cortex and thyroid gland; the other stressors resulted in independent fluctuations of secretions, as indicated by plasma cortisol concentration and concentration of protein-bound 125I from thyroid vein plasma. No reciprocal relationship between thyroid gland and adrenal cortex activity was detected. It was concluded taht these ewes, which had been accustomed to normal experimental procedures for a period of 2 years, demonstrated functional independence of thyroid and adrenal cortical secretions when subjected to stress.

  9. Mountain Warfare and Cold Weather Operations

    DTIC Science & Technology

    2016-04-29

    military purposes, cold regions are defined as any region where cold temperatures , unique terrain, and snowfall have a significant effect on military...because of the wind’s effect on the body’s perceived temperature . Wet cold leads to hypothermia, frost bite, and trench foot. Wet cold conditions are...combined cooling effect of ambient temperature and wind (wind chill) experienced by their troops (see Figure 1-5). The Environment ATP 3-90.97

  10. Moist air state above counterflow wet-cooling tower fill based on Merkel, generalised Merkel and Klimanek & Białecky models

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2017-09-01

    The article deals with an evaluation of moist air state above counterflow wet-cooling tower fill. The results based on Klimanek & Białecky model are compared with results of Merkel model and generalised Merkel model. Based on the numerical simulation it is shown that temperature is predicted correctly by using generalised Merkel model in the case of saturated or super-saturated air above the fill, but the temperature is underpredicted in the case of unsaturated moist air above the fill. The classical Merkel model always under predicts temperature above the fill. The density of moist air above the fill, which is calculated using generalised Merkel model, is strongly over predicted in the case of unsaturated moist air above the fill.

  11. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  12. Old-growth definition for wet pine forests, woodlands, and savannas. Forest Service general technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, W.R.

    1996-09-01

    All Forest Service Stations and Regions began developing old-growth definitions for specific forest types. Definitions will first be developed for broad forest types and based mainly on published information and so must be viewed accordingly. Refinements will be made by the Forest Service as new information becomes available. This document represents 1 of 35 forest types for which old-growth definition will be drafted.

  13. Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants

    NASA Astrophysics Data System (ADS)

    Prabhu, K. Narayan; Fernandes, Peter

    2007-08-01

    An investigation was conducted to study the suitability of vegetable oils such as sunflower, coconut, groundnut, castor, cashewnut shell (CNS), and palm oils as quench media (bioquenchants) for industrial heat treatment by assessing their wetting behavior and severity of quenching. The relaxation of contact angle was sharp during the initial stages, and it became gradual as the system approached equilibrium. The equilibrium contact angle decreased with increase in the temperature of the substrate and decrease in the viscosity of the quench medium. A comparison of the relaxation of the contact angle at various temperatures indicated the significant difference in spreading of oils having varying viscosity. The spread activation energy was determined using the Arrhenius type of equation. Oils with higher viscosity resulted in lower cooling rates. The quench severity of various oil media was determined by estimating heat-transfer coefficients using the lumped capacitance method. Activation energy for spreading determined using the wetting behavior of oils at various temperatures was in good agreement with the severity of quenching assessed by cooling curve analysis. A high quench severity is associated with oils having low spread activation energy.

  14. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    PubMed

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  15. Cooling efficiency of a spot-type personalized air-conditioner

    DOE PAGES

    Zhu, Shengwei; Dalgo, Daniel; Srebric, Jelena; ...

    2017-08-01

    Here, this study defined Cooling Efficiency ( CE) of a Spot-type Personalized Air-Conditioning (SPAC) device as the ratio of the additional sensible heat removal from human body induced by SPAC and the device's cooling capacity. CE enabled the investigation of SPAC performance on the occupant's sensible heat loss (Q s) and thermal sensation by its quantitative relation with the change of PMV level ( ΔPMV). Three round nozzles with the diameter of 0.08 m, 0.105 m, and 0.128 m, respectively, discharged air jets at airflow rates from 11.8 L s –1 to 59.0 L s –1, toward the chest ofmore » a seated or standing human body with a clothing of 0.48 clo. This study developed a validated CFD model coupled with the Fanger's thermoregulation model, to calculate Q s in a room of 26 °C ventilated at a rate of 3 ACH. According to the results, Q s, CE and draft risk ( DR) at face had significant positive linear correlation with the SPAC device's supply airflow rates (R2 >0.96), and a negative linear correlation for ΔPMV. With DR = 20% at face, CE was always under 0.3, and ΔPMV was around -1.0–1.1. Interestingly, both CE and ΔPMV had the least favorable values for the air jet produced by the nozzle with the diameter of 0.105 m independent of body posture. In conclusion, although SPAC could lead to additional Q s by sending air at a higher airflow rate from a smaller nozzle, the improvement in cooling efficiency and thermal sensation had a limit due to draft risk.« less

  16. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    NASA Astrophysics Data System (ADS)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.

  17. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    EPA Pesticide Factsheets

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  18. A Holistic Look at Minimizing Adverse Environmental Impact Under Section 316(b) of the Clean Water Act

    DOE PAGES

    Veil, John A.; Puder, Markus G.; Littleton, Debra J.; ...

    2002-01-01

    Section 316(b) of the Clean Water Act (CWA) requires that “the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.” As the U.S. Environmental Protection Agency (EPA) develops new regulations to implement Section 316(b), much of the debate has centered on adverse impingement and entrainment impacts of cooling-water intake structures. Depending on the specific location and intake layout, once-through cooling systems withdrawing many millions of gallons of water per day can, to a varying degree, harm fish and other aquatic organisms in the water bodies from which the coolingmore » water is withdrawn. Therefore, opponents of once-through cooling systems have encouraged the EPA to require wet or dry cooling tower systems as the best technology available (BTA), without considering site-specific conditions. However, within the context of the broader scope of the CWA mandate, this focus seems too narrow. Therefore, this article examines the phrase “minimizing adverse environmental impact” in a holistic light. Emphasis is placed on the analysis of the terms “environmental” and “minimizing.” Congress chose “environmental” in lieu of other more narrowly focused terms like “impingement and entrainment,” “water quality,” or “aquatic life.” In this light, BTA for cooling-water intake structures must minimize the entire suite of environmental impacts, as opposed to just those associated with impingement and entrainment. Wet and dry cooling tower systems work well to minimize entrainment and impingement, but they introduce other equally important impacts because they impose an energy penalty on the power output of the generating unit. The energy penalty results from a reduction in plant operating efficiency and an increase in internal power consumption. As a consequence of the energy penalty, power companies must generate additional electricity to achieve the same net output. This added production leads to additional environmental impacts associated with extraction and processing of the fuel, air emissions from burning the fuel, and additional evaporation of freshwater supplies during the cooling process. Wet towers also require the use of toxic biocides that are subsequently discharged or disposed. The other term under consideration, “minimizing,” does not equal “eliminating.” Technologies may be available to minimize but not totally eliminate adverse environmental impacts.« less

  19. CFD based draft tube hydraulic design optimization

    NASA Astrophysics Data System (ADS)

    McNabb, J.; Devals, C.; Kyriacou, S. A.; Murry, N.; Mullins, B. F.

    2014-03-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis, using a stage interface between them, must first be performed for each operating condition. Due to the computationally intensive nature of the evaluation process, the efficiency of the optimization algorithm becomes important. Therefore, a state-of-the-art hierarchical-metamodel-assisted evolutionary algorithm is used.

  20. Animal Identification

    PubMed Central

    Macpherson, J. W.; Penner, P.

    1967-01-01

    Five young seals and three mature seals were branded using liquid nitrogen cooled branding tools with xylol as a wetting agent. Preliminary results are encouraging as presented by photographic evidence. ImagesFig. 1.Fig. 2.Fig. 3. PMID:4229182

  1. A millennium of Mediterranean climate change and forest history in central Italy

    NASA Astrophysics Data System (ADS)

    Mensing, S. A.; Tunno, I.; Piovesan, G.

    2010-12-01

    A 1100 year sedimentary sequence from a lake in central Italy near Rome (Lago Lungo, Lazio, 379 m a.s.l.) was sampled for pollen and charcoal at an average interval of 26 years providing a high-resolution reconstruction of vegetation from 885 AD to the present. Pollen percentages support historical documents that describe periodic deforestation and agricultural expansion during the Medieval Climate Anomaly (MCA). Forests recovered about 1400 AD following depopulation associated with the black plague and socio-economic instability and a shift to cool wet climate during the Little Ice Age (LIA). Mixed deciduous forest reached a maximum in 1550 AD, approximately one century later than many sites across Western Europe. A less diverse less dense forest emerged after 1650 AD following the plague of 1656 AD. There is no evidence that excessive cutting, burning and erosion during the medieval period caused permanent degradation of the landscape. Forests appear to have recovered rapidly when land use declined and climate became favorable. Comparison of the pollen data with reconstructed Palmer Drought Severity Index (PDSI) of Morocco and North Atlantic Oscillation (NAO) indicate periods of deforestation and woodland regeneration coincide with climate change. During warm dry climate, deforestation accelerated and agriculture expanded, and during extended cool wet climate, conditions for cereal cultivation deteriorated, forests and wetland expanded, and the local agricultural system collapsed. These results show that in the Mediterranean, collapse of local agricultural systems may also occur during extended periods of cool/wet climate.

  2. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  3. Testing of heat exchanger systems for reheating flue gases from wet scrubbing desulfurization plants

    NASA Astrophysics Data System (ADS)

    Than, K.

    1982-09-01

    Two heat exchanger systems: the cyclic process of GEA and, the plate heat exchanger of Kablitz/Thyssen, for reheating flue gases, which have been cooled to about 50 to 55 C due to wet scrubbing, to the required temperature at the outlet of the stack by extracting the sensible heat of the hot flue gases were tested. The problem of building materials and on keeping clean the heat exchanger surface are emphasized.

  4. How changes in top water bother big turning packs of up-going wet air

    NASA Astrophysics Data System (ADS)

    Wood, K.

    2017-12-01

    Big turning packs of up-going wet air form near areas of warm water at the top of big bodies of water. After these turning packs form, they usually get stronger if the top water stays warm. If the top water becomes less warm, the turning packs usually get less strong. Other things can change how strong a turning pack gets, like how wet the air around it is and if that air moves faster higher up than lower down. When these turning packs hit land, their rain and winds can hurt people and the stuff they own, especially if the turning pack is really strong. But it's hard to know how much stronger or less strong it will become before it hits land. Warm top water gives a turning pack of up-going wet air a lot of power, but cool top water doesn't, so we need to know how warm the top water is. Because I can't go into every turning pack myself, flying computers in outer space tell me what the top water is doing. I look at the top water near turning packs that get strong and see how it's different from the top water near those that get less strong. Top water that changes from warm to cool in a small area bothers a turning pack of up-going wet air, which then gets less strong. If we see these top water changes ahead of time, that might help us know what a turning pack will do before it gets close to land.

  5. 78 FR 3458 - Florida Power Corporation, Crystal River Unit 3, Draft Environmental Assessment Related to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... design intake volume of 680,000 gpm [gallons per minute] (42,840 L/s), with a combined condenser flow... licensee in 2007 and the cooling tower design was subsequently modified to meet PM emission thresholds by reducing the flow rate through the tower. The predicted emissions from the modified design are 91.2 tons PM...

  6. Evaluation of the Efficiency of Liquid Cooling Garments using a Thermal Manikin

    DTIC Science & Technology

    2005-05-01

    temperatures. The software also calculates thermal resistances and evaporative resistances. TM tests were run dry (i.e. no sweating ) and wet (i.e...REPORT DOCUMENTATION PAGE Form ApprovedOMB No . 0704-0188 SECURITY CLASSIFICATION OF REPORT SECURITY CLASSIFICATION OF THIS PAGE SECURITY CLASSIFICATION...OF ABSTRACT 8. M05-17 1. AGENCY USE ONLY (Leave blank) 4. TITLE AND SUBTITLE EVALUATION OF THE EFFICIENCY OF LIQUID COOLING GARMENTS USING A THERMAL

  7. 40 CFR 471.34 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 156 69.2 (q) Annealing and solution heat treatment contact cooling water—Subpart C—PSES. There shall be no allowance for the discharge of wastewater pollutants. (r) Wet air pollution control scrubber...

  8. Droplet depinning in a wake

    NASA Astrophysics Data System (ADS)

    Hooshanginejad, Alireza; Lee, Sungyon

    2017-03-01

    Pinning and depinning of a windswept droplet on a surface is familiar yet deceptively complex for it depends on the interaction of the contact line with the microscopic features of the solid substrate. This physical picture is further compounded when wind of the Reynolds number greater than 100 blows over pinned drops, leading to the boundary layer separation and wake generation. In this Rapid Communication, we incorporate the well-developed ideas of the classical boundary layer to study partially wetting droplets in a wake created by a leader object. Depending on its distance from the leader, the droplet is observed to exhibit drafting, upstream motion, and splitting, due to the wake-induced hydrodynamic coupling that is analogous to drafting of moving bodies. We successfully rationalize the onset of the upstream motion regime using a reduced model that computes the droplet shape governed by the pressure field inside the wake.

  9. Impacts of Groundwater on the Atmospheric Convection in Amazon using Multi-GCM Simulations from I-GEM project

    NASA Astrophysics Data System (ADS)

    Lo, M. H.; Chien, R. Y.; Ducharne, A.; Decharme, B.; Lan, C. W.; Wang, F.; Cheruy, F.; Colin, J.

    2017-12-01

    Previous research indicated that groundwater plays an important role in hydrological cycle and is a major source of water vapor in climate models, which may result in modifications of atmospheric convection. For instance, our previous study showed that when considering the groundwater dynamics in a GCM, the wet soil induced surface cooling effect can further reduce the Amazon dry season convection and precipitation. However, the main mechanisms of the interaction among groundwater, soil moisture, and precipitation are still unclear, and they need to be examined in several climate models. In this study, we further examine the influence of the surface cooling effects due to the groundwater on the convection over the Amazon. To this end, we use idealized simulations of the IGEM (Impact of Groundwater in Earth system Models) project, with 3 GCMs (CESM, CNRM, and IPSL): in each of them, we prescribed a water table at a constant depth throughout all land areas, to create globally wet conditions. Preliminary analysis shows a contradict result of the tendency of precipitation in the three models with wet condition which indicates a great uncertainty of the groundwater's impacts in coupled GCMs.

  10. Evaporative cooling of air in an adiabatic channel with partially wetted zones

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Gorbachev, M. V.; Khafaji, H. Q.

    2016-03-01

    The paper deals with the numerical study of heat and mass transfer in the process of direct evaporation air cooling in the laminar flow of forced convection in a channel between two parallel insulated plates with alternating wet and dry zones along the length. The system of Navier-Stokes equations and equations of energy and steam diffusion are being solved in two-dimensional approximation. At the channel inlet, all thermal gas-dynamic parameters are constant over the cross section, and the channel walls are adiabatic. The studies were carried out with varying number of dry zones ( n = 0-16), their relative length ( s/l = 0-1) and Reynolds number Re = 50-1000 in the flow of dry air (φ0 = 0) with a constant temperature at the inlet (T 0 = 30 °C). The main attention is paid to optimization analysis of evaporation cell characteristics. It is shown that an increase in the number of alternating steps leads to an increase in the parameters of thermal and humid efficiency. With an increase in Re number and a decrease in the extent of wet areas, the efficiency parameter reduces.

  11. Operational cooling tower model (CTTOOL V1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleman, S.; LocalDomainServers, L.; Garrett, A.

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translatemore » the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).« less

  12. Wet/Dry Vacuum Cleaner

    NASA Technical Reports Server (NTRS)

    Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike

    1995-01-01

    Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.

  13. Regulated wet nursing: managed care or organized crime?

    PubMed

    Obladen, Michael

    2012-01-01

    Wet nursing was widely practiced from antiquity. For the wealthy, it was a way to overcome the burdens of breastfeeding and increase the number of offspring. For the poor, it was an organized industry ensuring regular payment, and in some parishes the major source of income. The abuse of wet nursing, especially the taking in of several nurslings, prompted legislation which became the basis of public health laws in the second half of the 19th century. The qualifications demanded from a mercenary nurse codified by Soran in the 2nd century CE remained unchanged for 1,700 years. When artificial feeding lost its threat thanks to sewage disposal, improved plumbing, the introduction of rubber teats, cooling facilities and commercial formula, wet nursing declined towards the end of the 19th century. Copyright © 2012 S. Karger AG, Basel.

  14. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  15. Aerodynamic and Acoustic Tests of a 1/15 Scale Model Dry Cooled Jet Aircraft Runup Noise Suppression System,

    DTIC Science & Technology

    1975-10-01

    sophisticated wet-cooled systems having scrubbers and their associated water treatment facilities . The United States Navy has recognized these Hush... venturi meter air inlet to measure the pumped air flow and the exhaust enclosure is provided with suitable ports for the flow to exit. The test program...constantan thermo- couple and venturi flow meters were used to measure the aerodynamic/thermo- dynamic information required from the tests (pressure

  16. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.

  17. Chalk Point cooling tower project native vegetation study. Final report 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, G.W.; Galloway, R.A.; Francis, B.A.

    1979-06-01

    The Potomac Electric Power Company generating station at Chalk Point, MD, utilizes brackish water in its natural draft cooling tower and, consequently, releases saline aerosol into the atmosphere. A research and monitoring project was established in 1974 to evaluate the effects of this drift on native perennial vegetation. Leaf samples have been collected form dogwood, Cornys florida, Virginia pine, Pinus virginiana, black locust, Robinia pseudoacacia, and sassafras, Sassafras albidum, located at 12 different sites in the vicinity of the power plant. Sampling was begun prior to the operation of the cooling tower, 1974, and continued through 1978. Complete results frommore » monthly monitoring of foliar chloride in the four native tree species is documented for May through September 1978. Results from salt spray experiments indicate chloride and sodium concentrations in the wood of dogwood trees increases with increased spraying levels.« less

  18. Thin-Film Evaporative Cooling for Side-Pumped Laser

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2010-01-01

    A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.

  19. Analysis of ORNL site temperature and humidity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, B.E.

    1989-08-01

    The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, B.L.; Briggs, S.F.; Johansen, J.H.

    Big sagebrush (Artemisia tridentata Nutt.) seeds were stored in three different environments; cool, constant temperature (refrigerator 10 degs. C); room temperature (14 to 24 degs. C); and a nonheated warehouse (-28 to +44 degs. C). In all three cases, humidity was held constant and equal. Significant drop in seed viability occurred first in the seed stored in the nonheated warehouse, followed by seed stored at room temperatures, and then seed stored at cool temperatures. It appeared from this study and studies by others that humidity control is more important to maintaining seed viability than temperature control. The old adage simplymore » states `store seeds in a cool and dry place` - but first make sure the seeds have been properly dried. Drying sagebrush seed during the cool, wet weather of the harvesting period creates special challenges to the producer.« less

  1. Seasonal reversal of temperature-moisture response of net carbon exchange of biocrusted soils in a cool desert ecosystem.

    NASA Astrophysics Data System (ADS)

    Tucker, C.; Reed, S.; Howell, A.

    2017-12-01

    Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust and soil wetting events. These patterns reflect both the low temperature sensitivity and slow initiation in response to wetting of photosynthesis compared to respiration by biocrust organisms. Our study highlights the importance of cool and cold periods for C uptake in biocrusted soils of the Colorado Plateau.

  2. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be builtmore » at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.« less

  3. The effects of temporal neck cooling on cognitive function during strenuous exercise in a hot environment: a pilot study.

    PubMed

    Ando, Soichi; Komiyama, Takaaki; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2015-05-30

    Heat stress potentially has detrimental effects on brain function. Hence, cognitive function may be impaired during physical activity in a hot environment. Skin cooling is often applied in a hot environment to counteract heat stress. However, it is unclear to what extent neck cooling is effective for cognitive impairment during exercise in a hot environment. The purpose of this study was to examine the effects of temporal neck cooling on cognitive function during strenuous exercise in a hot environment. Eight male young participants (mean ± SD, age = 26.1 ± 3.2 years; peak oxygen uptake = 45.6 ± 5.2 ml/kg/min) performed Spatial delayed response (DR) task (working memory) and Go/No-Go task (executive function) at rest and during exercise in the Hot and Hot + Cooling conditions. After the participants completed the cognitive tasks at rest, they cycled the ergometer until their heart rate (HR) reached 160 beats/min. Then, they cycled for 10 min while keeping their HR at 160 beats/min. The cognitive tasks were performed 3 min after their HR reached 160 beats/min. The air temperature was maintained at 35°C and the relative humidity was controlled at 70%. Neck cooling was applied to the backside of the neck by a wet towel and fanning. We used accuracy of the Spatial DR and Go/No-Go tasks and reaction time in the Go/No-Go task to assess cognitive function. Neck cooling temporarily decreased the skin temperature during exercise. The accuracy of the cognitive tasks was lower during exercise than that at rest in the Hot and Hot + Cooling condition (p < 0.05). There were no differences in the accuracy between the Hot and Hot + Cooling conditions (p = 0.98). Neither exercise (p = 0.40) nor cooling (p = 0.86) affected reaction time. These results indicate that temporal neck cooling did not alter cognitive function during strenuous exercise in a hot environment. The present study suggests that temporal neck cooling with a wet towel and fanning is not effective for attenuating impairment of working memory and executive function during strenuous exercise with a short duration in a warm and humid environment.

  4. Applicability of Hydrologic Modeling to Tactical Military Decision Making

    DTIC Science & Technology

    1991-03-01

    the continental United States. 111 DRAFT Table 4-4. Coefficient Ranges Location Range of Average Range of Average Ct Ct Cp Ct Appalachian 1.8-2.2 2.0... Mountainous --- 1.2 Watersheds Foothills --- 0.7 Areas Valley --- 0.4 Areas Eastern 0.4-1.0 0.8 0.5-1.0 0.8 Nebraska Corps of 0.4-8.0 0.3-0.9 --- Engineers...enemy to cover covert gorilla operations. b. Friendly Forces. Forces should be prepared to operate in a wet environment. c. Attachments and Detachments

  5. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Shengwei; Dalgo, Daniel; Srebric, Jelena

    Here, this study defined Cooling Efficiency ( CE) of a Spot-type Personalized Air-Conditioning (SPAC) device as the ratio of the additional sensible heat removal from human body induced by SPAC and the device's cooling capacity. CE enabled the investigation of SPAC performance on the occupant's sensible heat loss (Q s) and thermal sensation by its quantitative relation with the change of PMV level ( ΔPMV). Three round nozzles with the diameter of 0.08 m, 0.105 m, and 0.128 m, respectively, discharged air jets at airflow rates from 11.8 L s –1 to 59.0 L s –1, toward the chest ofmore » a seated or standing human body with a clothing of 0.48 clo. This study developed a validated CFD model coupled with the Fanger's thermoregulation model, to calculate Q s in a room of 26 °C ventilated at a rate of 3 ACH. According to the results, Q s, CE and draft risk ( DR) at face had significant positive linear correlation with the SPAC device's supply airflow rates (R2 >0.96), and a negative linear correlation for ΔPMV. With DR = 20% at face, CE was always under 0.3, and ΔPMV was around -1.0–1.1. Interestingly, both CE and ΔPMV had the least favorable values for the air jet produced by the nozzle with the diameter of 0.105 m independent of body posture. In conclusion, although SPAC could lead to additional Q s by sending air at a higher airflow rate from a smaller nozzle, the improvement in cooling efficiency and thermal sensation had a limit due to draft risk.« less

  7. Quantification of wet-work exposure in nurses using a newly developed wet-work exposure monitor.

    PubMed

    Visser, Maaike J; Behroozy, Ali; Verberk, Maarten M; Semple, Sean; Kezic, Sanja

    2011-08-01

    Occupational contact dermatitis (OCD) is an important work-related disease. A major cause of OCD is 'wet work': frequent contact of the skin with water, soap, detergents, or occlusive gloves. The German guidance TRGS 401 recommends that the duration of wet work (including use of occlusive gloves) should not exceed 2 h day(-1) and also the frequency of hand washing or hand disinfection should be taken into account. This highlights the need for a reliable method to assess duration and frequency of wet work. Recently, a wet-work sampler has been developed by the University of Aberdeen. The sampler uses the temperature difference (ΔT) generated by evaporative cooling between two sensors: one sensor on the skin and a second one placed 2 mm above the skin. We have evaluated the use of this sampler in a healthcare setting, using direct observation as reference. Twenty-six nurses wore the sampler on the volar side of the middle finger for ∼2 h during their regular daily tasks, while being observed by a researcher. Sampler results were evaluated using various threshold values for ΔT to identify wet events of the hands. The optimal ΔT to discern wet and dry skin differed considerably between individual nurses. Individual results yielded a median sensitivity of 78 and 62% and a median specificity of 79 and 68% for indicating wet skin and glove use, respectively. Overall, the sampler was moderately accurate for identifying wetness of the skin and less accurate for discerning glove use. In conclusion, agreement between observed wet work and device-reported wet events in healthcare settings was not high and further adaptations and developments may be required.

  8. 40 CFR 467.02 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...

  9. 40 CFR 467.02 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...

  10. 40 CFR 467.02 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...

  11. Commonalities of carbon dioxide exchange in semiarid regions with monsoon and Mediterranean climates

    USDA-ARS?s Scientific Manuscript database

    Semiarid ecosystems with monsoon climates receive precipitation during the warm season while Mediterranean systems are characteristically wet in the cool season and dry in the summer. Comparing biosphere-atmosphere carbon exchange across these two climate regimes can yield information about the int...

  12. Experimentally Identify the Effective Plume Chimney over a Natural Draft Chimney Model

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Chu, C. M.; Tahir, A. M.; Ismail, M. A. bin; Misran, M. S. bin; Ling, L. S.

    2017-07-01

    The demands of energy are in increasing order due to rapid industrialization and urbanization. The researchers and scientists are working hard to improve the performance of the industry so that the energy consumption can be reduced significantly. Industries like power plant, timber processing plant, oil refinery, etc. performance mainly depend on the cooling tower chimney’s performance, either natural draft or forced draft. Chimney is used to create sufficient draft, so that air can flow through it. Cold inflow or flow reversal at chimney exit is one of the main identified problems that may alter the overall plant performance. The presence Effective Plume Chimney (EPC) is an indication of cold inflow free operation of natural draft chimney. Different mathematical model equations are used to estimate the EPC height over the heat exchanger or hot surface. In this paper, it is aim to identify the EPC experimentally. In order to do that, horizontal temperature profiling is done at the exit of the chimneys of face area 0.56m2, 1.00m2 and 2.25m2. A wire mesh screen is installed at chimneys exit to ensure cold inflow chimney operation. It is found that EPC exists in all modified chimney models and the heights of EPC varied from 1 cm to 9 cm. The mathematical models indicate that the estimated heights of EPC varied from 1 cm to 2.3 cm. Smoke test is also conducted to ensure the existence of EPC and cold inflow free option of chimney. Smoke test results confirmed the presence of EPC and cold inflow free operation of chimney. The performance of the cold inflow free chimney is increased by 50% to 90% than normal chimney.

  13. Differences in CAPE between wet and dry spells of the monsoon over the southeastern peninsular India

    NASA Astrophysics Data System (ADS)

    Mohan, T. S.; Rao, T. N.; Rajeevan, M.

    2018-03-01

    In the present research we explored the variability of convective available potential energy (CAPE) during wet and dry spells over southeast India. Comparison between India Meteorological Department (IMD) observations and reanalysis products (NCEP, ERA-interim, and MERRA) reconfirms that gridded data sets can be utilized to fill the void of observations. Later, GPS radiosonde measurements made at Gadanki (13.5 N, 79.2 E) Andre analysis output are utilized to address key scientific issues related to CAPE over the southeastern peninsular region. They are: (1) How does CAPE vary between different spells of the Indian summer monsoon (i.e., from wet to dry spell)? (2) Does differences in CAPE and in the vertical structure of buoyancy between spells are localized features over Gadanki or observed all over southeastern peninsular region? (3) What physical/dynamical processes are responsible for the differences in CAPE between spells and how do they affect the convection growth in dry spell? Interestingly, CAPE is higher in wet spell than in dry spell, in contrast to the observations made elsewhere over land and warm oceans. Similar feature (high CAPE in wet spell) is observed at all grid points in the southeastern peninsular India. Furthermore, vertical buoyancy profiles show only one peak in the middle-upper troposphere in wet spell, while two peaks are observed in most of the profiles (66%) in dry spell over the entire study region in all the reanalysis products. Plausible mechanisms are discussed for the observed CAPE differences. They are, among others, timing of sounding with reference to rain occurrence, rapid buildup of surface instabilities, moistening of lower troposphere by evaporation of the surface moisture in wet spell, enhanced low-level moisture convergence, evaporation of rain in relatively warm and dry atmosphere, and reduction of positive buoyancy in dry spell. The omnipresence of stable layers and strong and deep shear in the presence of weak updrafts (buoyancy) limits the growth of convective draft cores in dry spell.

  14. Biophysical effects of water and synthetic urine on skin.

    PubMed

    Mayrovitz, H N; Sims, N

    2001-01-01

    Pressure ulcers often occur at sites subjected to pressure and wetness. Although skin wetness is a risk factor for pressure ulcers,the mechanisms and effects of wetness versus urine constituents on skin breakdown is unclear. The hypothesis that wetness reduces skin hardness and, thereby, increases vulnerability of underlying blood vessels to pressure-induced flow reductions was tested in this study. Pads saturated with water and with a water solution mixed with the main chemical constituents of urine (synthetic urine; s-urine) were applied to forearm skin of 10 healthy subjects for 5.5 hours. Skin hardness, blood flow change caused by 60 mm Hg of pressure, erythema, and temperature were compared among dry, water, and s-urine test sites. 10 healthy women. Research Center, Nova Southeastern University, Health Professions Division, Fort Lauderdale, FL. S-urine and water caused significant reductions in initial hardness and caused greater initial perfusion decreases during pressure load when compared with dry sites. Skin temperature and erythema were lower at wet sites when compared with dry sites. The findings of this study are consistent with the concept that sustained skin wetness increases vulnerability to pressure-induced blood flow reduction. The effect appears to be mainly dependent on wetness, but urine constituents may exacerbate the effect. In addition, wetness-related skin cooling may play a role. In the healthy subjects studied, the blood flow decrease was not sustained due to perfusion recovery under pressure. Skin wetness would likely have more sustained effects in patients with compromised recovery mechanisms. Measures to diminish skin exposure to wetness in these patients, whatever the wetness source, are an important consideration in a multifaceted strategy to reduce the risk of pressure ulcers.

  15. Water consumption by nuclear powerplants and some hydrological implications

    USGS Publications Warehouse

    Giusti, Ennio V.; Meyer, E.L.

    1977-01-01

    Published data show that estimated water consumption varies with the cooling system adopted, being least in once-through cooling (about 18 cubic feet per second per 1,000 megawatts electrical) and greatest in closed cooling with mechanical draft towers (about 30 cubic feet per second per 1,000 megawatts electrical). When freshwater is used at this magnitude, water-resources economy may be affected in a given region. The critical need for cooling water at all times by the nuclear powerplant industry, coupled with the knowledge that water withdrawal in the basin will generally increase with time and will be at a maximum during low-flow periods, indicates a need for reexamination of the design low flow currently adopted and the methods used to estimate it. The amount of power generated, the name of the cooling water source, and the cooling method adopted for all nuclear powerplants projected to be in operation by 1985 in the United States are tabulated and the estimated annual evaporation at each powerplant site is shown on a map of the conterminous United States. Another map is presented that shows all nuclear powerplants located on river sites as well as stream reaches in the United States where the 7-day, 10-year low flow is at least 300 cubic feet per second or where this amount of flow can be developed with storage. (Woodard-USGS)

  16. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    NASA Astrophysics Data System (ADS)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  17. [Radiofrequency ablation as a palliative therapy option in ENT tumors: in vivo and in vitro testing].

    PubMed

    Bucher, S; Hornung, J; Bonkowsky, V; Iro, H; Zenk, J

    2010-04-01

    High frequency thermotherapy (HFTT) is an established palliative therapy for hepatic malignancies. An in vivo and in vitro trial examined the preconditions for the application of HFTT with liquid-cooled wet electrodes for minimally invasive palliation of head and neck tumors. HFTT was applied with needle electrodes, cooled with isotonic saline solution, and a high-frequency generator (Elektrotom HiTT 106, Berchtold, Tuttlingen) to porcine tongue and narcotized, juvenile domestic pigs to the tongue and neck, and monitored in realtime by B-mode ultrasound. The direction of spread of the hyperthermic zone is well observed using ultrasound. Determining the direction of spread is not possible with cooled-tip electrode needles. Severe complications were not observed during the application. RFA with liquid-cooled needle applicators is not safely applicable for the therapy of head and neck tumors.

  18. Algor mortis: an erroneous measurement following postmortem refrigeration.

    PubMed

    Wardak, Khalil S; Cina, Stephen J

    2011-09-01

    Determination of the time of death is one goal of medicolegal death investigations. Algor mortis has been used as a measure of the postmortem interval (PMI). We prospectively recorded the core temperatures of 19 adult bodies entering our morgue cooler and at 3, 6, and 9 h of refrigeration. We then compared the cooling rate with the calculated body mass index (BMI). For each individual body, the rate of cooling was fairly linear with no evidence of a plateau. There was fair to moderate correlation between the BMI and the cooling rate: cooling rate = -0.052 (BMI) + 3.52. The probability of linearity in any given case was 36%. Variables affecting this correlation included the presence and the layers of clothing and if the clothing was wet. Our data confirm that algor mortis is of very limited utility in determining the PMI in bodies that have been refrigerated. © 2011 American Academy of Forensic Sciences.

  19. Pre-fired, refractory block slag dams for wet bottom furnace floors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vihnicka, R.S.; Meskimen, R.L.

    1998-12-31

    Slagging (wet bottom), utility boilers count on a refractory coating over the furnace floor tube structure for protection from corrosion damage from both the harsh, hot gas atmosphere from the burning fuel and the acidic coal slag. To protect and extend the life of this protective refractory coating the boiler original equipment manufacturers (OEMs) utilized a water-cooled monkey ring or slag chill ring (typically a 6--8 inch high ring of small diameter tubes) surrounding the slag tap locations on most wet bottom furnace floors (both utility and package boilers). The old water-cooled tube ring was such a high maintenance item,more » however, that it`s use has been discontinued in all but the most extreme environments throughout both utility and industrial applications. Where the use of the ring was discontinued, there has been a corresponding shortening of life on the protective floor refractory coatings (high maintenance cost), further aggravated by recent OSHA restrictions limiting the use of chrome oxide refractory materials in these types of boilers. This paper describes the developmental process and the final resultant product (a non-watercooled, slag dam made from pre-fired refractory shapes), undertaken by the inventors. Derived operational benefits a concept 2 project, with NO{sub x} Title 4 and Title 1 significance (which is currently underway) will also be detailed.« less

  20. Effect of Neutron Absorbers Mixed in or Coating the Fuel of a 1-MWt Lithium-Cooled Space Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Benjamin W.; Los Alamos National Laboratory, Los Alamos, NM 87545; Poston, David I.

    2005-02-06

    The goal of this study was to determine the effect of various neutron poisons (boron, dysprosium, erbium, and gadolinium) on a 1-MWt, lithium-cooled liquid-metal reactor. The isotopes were considered to be in-fuel poisons, as well as poisons coating the fuel. One way to quantify the effectiveness of a poison in meeting accident-condition requirements is by defining the safety margin as the difference between keff at the beginning of life and keff during the accident scenarios. The isotope that showed the most potential in increasing the safety margin for the wet-sand/water case was 157Gd. The safety margin was 10%-20% greater usingmore » 157Gd as an in-fuel poison as opposed to a coating, depending on the poison quantity. However, the most limiting condition (i.e., the accident scenario with the highest keff, thus the lowest safety margin) is when the reactor is submerged in wet sand. None of the isotopes considered significantly affected the safety margin for the dry-sand case. However, the poison isotopes considered may have applicability for meeting the wet-sand/water keff requirements or as burnable poisons in a moderated system. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.« less

  1. Wetting Behavior and Reactivity of Molten Silicon with h-BN Substrate at Ultrahigh Temperatures up to 1750 °C

    NASA Astrophysics Data System (ADS)

    Polkowski, Wojciech; Sobczak, Natalia; Nowak, Rafał; Kudyba, Artur; Bruzda, Grzegorz; Polkowska, Adelajda; Homa, Marta; Turalska, Patrycja; Tangstad, Merete; Safarian, Jafar; Moosavi-Khoonsari, Elmira; Datas, Alejandro

    2017-12-01

    For a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.

  2. Optimal cooling strategies for players in Australian Tennis Open conditions.

    PubMed

    Lynch, Grant P; Périard, Julien D; Pluim, Babette M; Brotherhood, John R; Jay, Ollie

    2018-03-01

    We compared the utility of four cooling interventions for reducing heat strain during simulated tennis match-play in an environment representative of the peak conditions possible at the Australian Open (45°C, <10% RH, 475W/m 2 solar radiation). Nine trained males undertook four trials in a climate chamber, each time completing 4 sets of simulated match-play. During ITF-mandated breaks (90-s between odd-numbered games; 120-s between sets), either iced towels (ICE), an electric fan (FAN dry ), a fan with moisture applied to the skin (FAN wet ), or ad libitum 10°C water ingestion only (CON) was administered. Rectal temperature (T re ), mean skin temperature (T sk ), heart rate (HR), thermal sensation (TS), perceived exertion (RPE) and whole body sweating (WBSR) were measured. After set 3, T re was lower in ICE (38.2±0.3°C) compared to FAN dry (38.7±0.5°C; p=0.02) and CON (38.5±0.5°C; p=0.05), while T re in FAN wet (38.2±0.3°C) was lower than FAN dry (p=0.05). End-exercise T re was lower in ICE (38.1±0.3°C) and FAN wet (38.2±0.4°C) than FAN dry (38.9±0.7°C; p<0.04) and CON (38.8±0.5°C; p<0.04).T sk for ICE (35.3±0.8°C) was lower than all conditions, and T sk for FAN wet (36.6±1.1°C) was lower than FAN dry (38.1±1.3°C; p<0.05). TS for ICE and FAN wet were lower than CON and FAN dry (p<0.05). HR was suppressed in ICE and FAN wet relative to CON and FAN dry (p<0.05). WBSR was greater in FAN dry compared to FAN wet (p<0.01) and ICE (p<0.001). Fan use must be used with skin wetting to be effective in hot/dry conditions. This strategy and the currently recommended ICE intervention both reduced T re by ∼0.5-0.6°C and T sk by ∼1.0-1.5°C while mitigating rises in HR and TS. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Heat exhaustion in a deep underground metalliferous mine

    PubMed Central

    Donoghue, A; Sinclair, M.; Bates, G.

    2000-01-01

    OBJECTIVES—To examine the incidence, clinical state, personal risk factors, haematology, and biochemistry of heat exhaustion occurring at a deep underground metalliferous mine. To describe the underground thermal conditions associated with the occurrence of heat exhaustion.
METHODS—A 1 year prospective case series of acute heat exhaustion was undertaken. A history was obtained with a structured questionnaire. Pulse rate, blood pressure, tympanic temperature, and specific gravity of urine were measured before treatment. Venous blood was analysed for haematological and biochemical variables, during the acute presentation and after recovery. Body mass index (BMI) and maximum O2 consumption (V̇O2 max) were measured after recovery. Psychrometric wet bulb temperature, dry bulb temperature, and air velocity were measured at the underground sites where heat exhaustion had occurred. Air cooling power and psychrometric wet bulb globe temperature were derived from these data.
RESULTS—106 Cases were studied. The incidence of heat exhaustion during the year was 43.0 cases / million man-hours. In February it was 147 cases / million man-hours. The incidence rate ratio for mines operating below 1200 m compared with those operating above 1200 m was 3.17. Mean estimated fluid intake was 0.64 l/h (SD 0.29, range 0.08-1.50). The following data were increased in acute presentation compared with recovery (p value, % of acute cases above the normal clinical range): neutrophils (p<0.001, 36%), anion gap (p<0.001, 63%), urea (p<0.001, 21%), creatinine (p<0.001, 30%), glucose (p<0.001, 15%), serum osmolality (p=0.030, 71%), creatine kinase (p=0.002, 45%), aspartate transaminase (p<0.001, 14%), lactate dehydrogenase (p<0.001, 9.5%), and ferritin (p<0.001, 26%). The following data were depressed in acute presentation compared with recovery (p value, % of acute cases below the normal clinical range): eosinophils (p=0.003, 38%) and bicarbonate (p=0.011, 32%). Urea and creatinine were significantly increased in miners with heat cramps compared with miners without this symptom (p<0.001), but there was no significant difference in sodium concentration (p=0.384). Mean psychrometric wet bulb temperature was 29.0°C (SD 2.2, range 21.0-34.0). Mean dry bulb temperature was 37.4°C (SD 2.4, range 31.0-43.0). Mean air velocity was 0.54 m/s (SD 0.57, range 0.00-4.00). Mean air cooling power was 148 W/m2 (SD 49, range 33-290) Mean psychrometric wet bulb globe temperature was 31.5°C (SD 2.0, range 25.2-35.3). Few cases (<5%) occurred at psychrometric wet bulb temperature <25.0°C, dry bulb temperature <33.8°C, air velocity >1.56 m/s, air cooling power >248 W/m2, or psychrometric wet bulb globe temperature <28.5°C.
CONCLUSION—Heat exhaustion in underground miners is associated with dehydration, neutrophil leukocytosis, eosinopenia, metabolic acidosis, increased glucose and ferritin, and a mild rise in creatine kinase, aspartate transaminase, and lactate dehydrogenase. Heat cramps are associated with dehydration but not hyponatraemia. The incidence of heat exhaustion increases during summer and at depth. An increased fluid intake is required. Heat exhaustion would be unlikely to occur if ventilation and refrigeration achieved air cooling power >250 W/m2 at all underground work sites.


Keywords: heat; mining; ventilation PMID:10810098

  4. Heat exhaustion in a deep underground metalliferous mine.

    PubMed

    Donoghue, A M; Sinclair, M J; Bates, G P

    2000-03-01

    To examine the incidence, clinical state, personal risk factors, haematology, and biochemistry of heat exhaustion occurring at a deep underground metalliferous mine. To describe the underground thermal conditions associated with the occurrence of heat exhaustion. A 1 year prospective case series of acute heat exhaustion was undertaken. A history was obtained with a structured questionnaire. Pulse rate, blood pressure, tympanic temperature, and specific gravity of urine were measured before treatment. Venous blood was analysed for haematological and biochemical variables, during the acute presentation and after recovery. Body mass index (BMI) and maximum O2 consumption (VO2 max) were measured after recovery. Psychrometric wet bulb temperature, dry bulb temperature, and air velocity were measured at the underground sites where heat exhaustion had occurred. Air cooling power and psychrometric wet bulb globe temperature were derived from these data. 106 Cases were studied. The incidence of heat exhaustion during the year was 43.0 cases/million man-hours. In February it was 147 cases/million man-hours. The incidence rate ratio for mines operating below 1200 m compared with those operating above 1200 m was 3.17. Mean estimated fluid intake was 0.64 l/h (SD 0.29, range 0.08-1.50). The following data were increased in acute presentation compared with recovery (p value, % of acute cases above the normal clinical range): neutrophils (p < 0.001, 36%), anion gap (p < 0.001, 63%), urea (p < 0.001, 21%), creatinine (p < 0.001, 30%), glucose (p < 0.001, 15%), serum osmolality (p = 0.030, 71%), creatine kinase (p = 0.002, 45%), aspartate transaminase (p < 0.001, 14%), lactate dehydrogenase (p < 0.001, 9.5%), and ferritin (p < 0.001, 26%). The following data were depressed in acute presentation compared with recovery (p value, % of acute cases below the normal clinical range): eosinophils (p = 0.003, 38%) and bicarbonate (p = 0.011, 32%). Urea and creatinine were significantly increased in miners with heat cramps compared with miners without this symptom (p < 0.001), but there was no significant difference in sodium concentration (p = 0.384). Mean psychrometric wet bulb temperature was 29.0 degrees C (SD 2.2, range 21.0-34.0). Mean dry bulb temperature was 37.4 degrees C (SD 2.4, range 31.0-43.0). Mean air velocity was 0.54 m/s (SD 0.57, range 0.00-4.00). Mean air cooling power was 148 W/m2 (SD 49, range 33-290) Mean psychrometric wet bulb globe temperature was 31.5 degrees C (SD 2.0, range 25.2-35.3). Few cases (< 5%) occurred at psychrometric wet bulb temperature < 25.0 degrees C, dry bulb temperature < 33.8 degrees C, air velocity > 1.56 m/s, air cooling power > 248 W/m2, or psychrometric wet bulb globe temperature < 28.5 degrees C. Heat exhaustion in underground miners is associated with dehydration, neutrophil leukocytosis, eosinopenia, metabolic acidosis, increased glucose and ferritin, and a mild rise in creatine kinase, aspartate transaminase, and lactate dehydrogenase. Heat cramps are associated with dehydration but not hyponatraemia. The incidence of heat exhaustion increases during summer and at depth. An increased fluid intake is required. Heat exhaustion would be unlikely to occur if ventilation and refrigeration achieved air cooling power > 250 W/m2 at all underground work sites.

  5. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness

    PubMed Central

    Fournet, Damien; Hodder, Simon; Havenith, George

    2015-01-01

    Humans sense the wetness of a wet surface through the somatosensory integration of thermal and tactile inputs generated by the interaction between skin and moisture. However, little is known on how wetness is sensed when moisture is produced via sweating. We tested the hypothesis that, in the absence of skin cooling, intermittent tactile cues, as coded by low-threshold skin mechanoreceptors, modulate the perception of sweat-induced skin wetness, independently of the level of physical wetness. Ten males (22 yr old) performed an incremental exercise protocol during two trials designed to induce the same physical skin wetness but to induce lower (TIGHT-FIT) and higher (LOOSE-FIT) wetness perception. In the TIGHT-FIT, a tight-fitting clothing ensemble limited intermittent skin-sweat-clothing tactile interactions. In the LOOSE-FIT, a loose-fitting ensemble allowed free skin-sweat-clothing interactions. Heart rate, core and skin temperature, galvanic skin conductance (GSC), and physical (wbody) and perceived skin wetness were recorded. Exercise-induced sweat production and physical wetness increased significantly [GSC: 3.1 μS, SD 0.3 to 18.8 μS, SD 1.3, P < 0.01; wbody: 0.26 no-dimension units (nd), SD 0.02, to 0.92 nd, SD 0.01, P < 0.01], with no differences between TIGHT-FIT and LOOSE-FIT (P > 0.05). However, the limited intermittent tactile inputs generated by the TIGHT-FIT ensemble reduced significantly whole-body and regional wetness perception (P < 0.01). This reduction was more pronounced when between 40 and 80% of the body was covered in sweat. We conclude that the central integration of intermittent mechanical interactions between skin, sweat, and clothing, as coded by low-threshold skin mechanoreceptors, significantly contributes to the ability to sense sweat-induced skin wetness. PMID:25878153

  6. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  7. Electrical imaging at the large block test—Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Ramirez, A.; Daily, W.

    2001-02-01

    A monolithic block of densely welded tuff was excavated from a site on Fran Ridge near Yucca Mountain, Nevada so that coupled thermohydrological processes could be studied in a controlled, in situ experiment. A series of heaters were placed in a horizontal plane about 3 m from the top of the 3 m×3 m×4.5-m high block. Temperatures were measured at many points within and on the block surface and a suite of other measurements were taken to define the thermal and hydrologic response. Electrical resistance tomography (ERT) was used to map two-dimensional images of moisture content changes along four planes in the block. The ERT images clearly delineate the drying and wetting of the rockmass during the 13 months of heating and subsequent 6 months of cool down. The main feature is a prominent dry zone that forms around the heaters then gradually disappears as the rock cools down. Other features include linear anomalies of decreasing moisture content, which are fractures dehydrating as the block heats up. There are also examples of compact anomalies of wetting. Some of these appear to be water accumulation in fractures, which are draining condensate from the block. Others may be rainwater entering a fracture at the top of the block. During cool-down, a general rewetting is observed although this is less certain because of poor data quality during this stage of the experiment.

  8. Analysis of Radiant Cooling System Configurations Integrated with Cooling Tower for Different Indian Climatic Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Jyotirmay; Bhandari, Mahabir S; Jain, Robin

    Radiant cooling system has proven to be a low energy consumption system for building cooling needs. This study describes the use of cooling tower in radiant cooling system to improve the overall system efficiency. A comprehensive simulation feasibility study of the application of cooling tower in radiant cooling system was performed for the fifteen cities in different climatic zones of India. It was found that in summer, the wet bulb temperature (WBT) of the different climatic zones except warm-humid is suitable for the integration of cooling tower with radiant cooling system. In these climates, cooling tower can provide on averagemore » 24 C to 27 C water In order to achieve the energy saving potential, three different configurations of radiant cooling system have been compared in terms of energy consumption. The different configurations of the radiant cooling system integrated with cooling tower are: (1) provide chilled water to the floor, wall and ceiling mounted tubular installation. (2) provide chilled water to the wall and ceiling mounted tabular installation. In this arrangement a separate chiller has also been used to provide chilled water at 16 C to the floor mounted tubular installation. (3) provide chilled water to the wall mounted tabular installation and a separate chiller is used to provide chilled water at 16 C to the floor and ceiling mounted tabular installation. A dedicated outdoor air system is also coupled for dehumidification and ventilation in all three configurations. A conventional all-air system was simulated as a baseline to compare these configurations for assessing the energy saving potential.« less

  9. Reason behind wet pack after steam sterilization and its consequences: An overview from Central Sterile Supply Department of a cancer center in eastern India.

    PubMed

    Basu, Debabrata

    Wet pack after steam sterilization process that means there are surely obtain millions of microorganisms that can breed and multiply rapidly and objects are unsterile and can never be used for further procedure. There are many reasons behind the wet pack occurrences after autoclaving like poor quality of wrapping materials, faulty valves of rigid container, faulty loading and packaging technique, poor steam quality, sterilizer malfunction and may be design related problems in CSSD sterile storage area. Cause of wet pack after steam sterilization processes may occur severe problems because of wasted time and effort, increased work load, increased cost, potentially contaminated instruments, infection risk to the patient, poor patient outcomes and delayed or cancellation of procedures. But such wet pack scenario can be avoided by various methods by using good steam (water) quality, performing periodic maintenance of the Autoclaves, avoidance of sterilizer overloading, allowing adequate post sterilization time to cool down the materials to room temperature, using good quality wrapping materials, properly maintain temperature and humidity of sterile storage area etc. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  10. Measuring water potential (activity) from free water to oven dryness.

    PubMed

    Wiebe, H H

    1981-12-01

    Water activities (potentials) in plant materials were measured over the range from free water to oven dryness with a Spanner thermocouple psychrometer. In a two-step procedure, water was first condensed on the thermocouple junction for several minutes. The sample was then inserted under the wet thermocouple and the maximum psychrometric cooling was measured in about 10 seconds. Calibration was with saturated salt slurries of known water activities. Psychrometric cooling was a nearly linear function of the water activity and of the negative log of the water potential. The psychrometric cooling to water activity relationship agreed with wetbulb temperature depression to relative humidity relationships given in tables. Water activities of wheat grains and leaves decreased sharply in a curvilinear fashion as their water contents decreased. Some problems of the procedure are discussed.

  11. Development and testing of thermal energy storage modules for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    The project development requirements and criteria are presented along with technical data for the modules. Performance tests included: ducting, temperature, pressure and air flow measurements, dry and wet bulb temperature; duct pressure measurements; and air conditioning apparatus checks; installation, operation, and maintenance instructions are included.

  12. Publications | Concentrating Solar Power | NREL

    Science.gov Websites

    -including technical reports, journal articles, and conference papers-about its research and development (R Block and Balance of Plant R&D Supercritical CO2 Water Cooling Wet Dry Solar Field R&D Reflector Absorber Receivers Durability Solar field Thermal Energy Storage and Heat Transfer Fluids R&D Storage

  13. Meteorological Instrumentation Support for an Adverse Weather Test Facility

    DTIC Science & Technology

    1991-05-01

    pressure sensor 12 8 Sling psychrometer 12 9 Relative humidity graph 13 10 Relative humidity graph 13 FIGURES (cont) Page 11 Cooled mirror dewpoint...80 -80 -50 -50 -32 .32 WET BULB DRY BULB Figure 8. Sling psychrometer 12 40 -. w 0 ARYBULAI TEMPERATURE Figure 1. Relative humidity graph 3013 L

  14. 40 CFR Appendix B to Subpart Hhhh... - Method for the Determination of Loss-on-Ignition

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Wet-Formed Fiberglass Mat...). 4.2Remove the test sample from the furnace and cool in the desiccator for 30 minutes in the standard...

  15. Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.

    2015-12-01

    We use GRACE-derived terrestrial water storage (TWS) and ERA-interim air temperature, as proxy for available water and temperature constraints on vegetation productivity, inferred from MODIS satellite normalized difference vegetation index (NDVI), in Northern Eurasia during 2002-2011. We investigate how changes in TWS affect the correlation between NDVI and temperature during the non-frozen season. We find that vegetation growth exhibits significant spatial and temporal variability associated with varying trend in TWS and temperature. The largest NDVI gains occur over boreal forests associated with warming and wetting. The largest NDVI losses occur over grasslands in the Southwestern Ob associated with regional drying and cooling, with dominant constraint from TWS. Over grasslands and temperate forests in the Southeast Ob and South Yenisei, wetting and cooling lead to a dominant temperature constraint due to the relaxation of TWS constraints. Overall, we find significant monthly correlation of NDVI with TWS and temperature over 35% and 50% of the domain, respectively. These results indicate that water availability (TWS) plays a major role in modulating Eurasia vegetation response to temperature changes.

  16. Animal Identification

    PubMed Central

    Macpherson, J. W.; Penner, P.

    1967-01-01

    A number of branding tools of various metals and various sizes in combination with several wetting agents were cooled with liquid nitrogen and applied for different lengths of time to calves and mature cattle. White hair appeared in the shape of the brand on the animals in place of dark hair when the application was properly carried out. Best results can be obtained by using metal irons at least 25 millimeters thick and 14 millimeters wide with xylol as a wetting agent for ten seconds in young or thin skinned animals and up to twenty seconds in mature or thick skinned animals. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 5. PMID:4229181

  17. Impacts of cooling intervention on the heat strain attenuation of construction workers

    NASA Astrophysics Data System (ADS)

    Zhao, Yijie; Yi, Wen; Chan, Albert P. C.; Wong, Del P.

    2018-05-01

    This study aimed to evaluate the effectiveness and practicality of a cooling intervention with a newly designed cooling vest on heat strain attenuation in the construction industry. Fourteen construction workers volunteered to participate in the field study. Each participant took part in two trials, i.e., cooling and control. Construction work included morning and afternoon sessions. Cooling intervention was implemented for 15 and 30 min during the morning and afternoon rest periods, respectively, between repeated bouts of work. Micrometeorological (wet-bulb globe temperature [WBGT]), physiological (tympanic temperature and heart rate), and perceptual (ratings of perceived exertion [RPE] and thermal sensation) measurements were taken during the test. Heat strain indices, including physiological strain index (PSIHR) and perceptual strain index (PeSI), were estimated accordingly. During the study, construction workers were exposed to a hot environment with a mean WBGT of 31.56 ± 1.87 °C. Compared with the control, physiological and perceptual strain were significantly reduced in the cooling condition during rest and subsequent work periods (p < 0.05; d = 0.24-1.07, small to large cooling effect). Cooling intervention significantly alleviates heat strain in the construction industry. The effectiveness and practicality of a proposed cooling intervention were tested in a field study. Results provide a reference for setting guidelines and promoting application on a range of construction sites.

  18. Impacts of cooling intervention on the heat strain attenuation of construction workers.

    PubMed

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Wong, Del P

    2018-05-25

    This study aimed to evaluate the effectiveness and practicality of a cooling intervention with a newly designed cooling vest on heat strain attenuation in the construction industry. Fourteen construction workers volunteered to participate in the field study. Each participant took part in two trials, i.e., cooling and control. Construction work included morning and afternoon sessions. Cooling intervention was implemented for 15 and 30 min during the morning and afternoon rest periods, respectively, between repeated bouts of work. Micrometeorological (wet-bulb globe temperature [WBGT]), physiological (tympanic temperature and heart rate), and perceptual (ratings of perceived exertion [RPE] and thermal sensation) measurements were taken during the test. Heat strain indices, including physiological strain index (PSI HR ) and perceptual strain index (PeSI), were estimated accordingly. During the study, construction workers were exposed to a hot environment with a mean WBGT of 31.56 ± 1.87 °C. Compared with the control, physiological and perceptual strain were significantly reduced in the cooling condition during rest and subsequent work periods (p < 0.05; d = 0.24-1.07, small to large cooling effect). Cooling intervention significantly alleviates heat strain in the construction industry. The effectiveness and practicality of a proposed cooling intervention were tested in a field study. Results provide a reference for setting guidelines and promoting application on a range of construction sites.

  19. Late-Holocene vegetation and climate change in Jeju Island, Korea and its implications for ENSO influences

    NASA Astrophysics Data System (ADS)

    Park, Jungjae; Shin, Young Ho; Byrne, Roger

    2016-12-01

    Several recent studies suggest the hypothesis that the El Niño-Southern Oscillation (ENSO) is an important factor controlling the Holocene East Asian Monsoon (EAM). However, the mechanism underlying this influence remains unclear due to the lack of high-resolution paleoclimate records from the coast of East Asia. Here, we provide a new record of late Holocene climate change in coastal East Asia based on multi-proxy evidence (pollen, organic content, magnetic susceptibility, grain size) obtained from a sediment core from Jeju Island, South Korea. As Jeju Island is strongly influenced by the Kuroshio flow, our sediment proxy records contain ENSO signals from the tropical Pacific. The study area was affected by dry/cool conditions in the western tropical Pacific (WTP) between 4350 and 1920 cal yr BP when El Niños were frequent, and by rapid warming/wetting and forestation since 1920 cal yr BP when La Niñas were more common. Jeju Island was relatively dry/cool between 2100 and 1600, 1300-1200, 1100-1000, 800-650, and 300-50 cal yr BP, as opposed to the Galápagos Islands, which were relatively wet/warm, reflecting the ENSO-related negative correlation between eastern and western margins of Pacific. Wet conditions may have prevailed during the early Little Ice Age (LIA) (620-280 cal yr BP) despite consistent cooling. This period of high precipitation may have been associated with the increased landfall of typhoons and with warmer Kuroshio currents under La Niña-like conditions. According to our results, EAM on the East Asian coastal margin was predominantly driven by ENSO activity, rather than by the precession effect. Paleoclimatic data from Jeju Island, with its insular position and closeness to warm Kuroshio currents, provide clear evidence of these ENSO influences.

  20. Analysis of isothiazolinone preservatives in polyvinyl alcohol cooling towels used in Japan.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2014-09-19

    Recently, cases of contact dermatitis that were related to the use of polyvinyl alcohol (PVA) cooling towels containing isothiazolinone preservatives were reported in Japan. The aim of this investigation was to analyze the concentrations of five different isothiazolinone compounds present in PVA towels and to assess the effectiveness of washing in removing the preservatives from new towels prior to being used for the first time. Twenty-seven PVA towels were used in this study. Two groups (i.e., laboratory-simulation and volunteer) of washing experiments were conducted to evaluate the effect of washing procedures. Qualitative and quantitative analyses were performed by LC/MS/MS, which detected 2-methyl-4-isothiazolin-3-one (MI) and 5-chloro-2-methyl-4-isothaizolin-3-one (CMI) in 23 samples (MI: 0.29-154 μg g-wet(-1), CMI: 2.2-467 μg g-wet(-1)), 2-n-octyl-4-isothiazolin-3-one (OIT) in one sample (478 μg g-wet(-1)). The compounds 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (2Cl-OIT) and 1,2-benzisothiazolin-3-one (BIT) were not detected in all samples. We confirmed the presence of residual MI, CMI, and OIT in the washed towels, and the residual-to-original content ratio of OIT was higher than that of MI and CMI in PVA towels, due to the higher hydrophobicity of OIT than MI and CMI. A concern has been raised about the occurrence of contact dermatitis being caused by the use of PVA towels. It is suggested that a detailed description of isothiazolinone preservatives in PVA towels and an effective washing procedure for the removal of these preservatives should be provided by the manufacturer. Further, alternative non-sensitizing preservatives might be considered for the manufacture of PVA cooling towels in the future.

  1. Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal Field Unit III)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Darmanto, P. S.

    2016-09-01

    Darajat unit III geothermal power plant is developed by PT. Chevron Geothermal Indonesia (CGI). The plant capacity is 121 MW and load 110%. The greatest utilization power is consumed by Hot Well Pump (HWP) and Cooling Tower Fan (CTF). Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modelling process is developed by using Engineering Equation Solver (EES) software version 9.430.The possibility of energy saving is indicated by Specific Steam Consumption (SSC) net in relation to wet bulb temperature fluctuation from 9°C up to 20.5°C. Result shows that the existing daily operation reaches its optimum condition. The installation of Variable Frequency Drive (VFD) could be applied to optimize both utility power of HWP and CTF. The highest gain is obtained by VFD HWP installation as much as 0.80% when wet bulb temperature 18.5 °C.

  2. Dry and wet granular shock waves.

    PubMed

    Zaburdaev, V Yu; Herminghaus, S

    2007-03-01

    The formation of a shock wave in one-dimensional granular gases is considered, for both the dry and the wet cases, and the results are compared with the analytical shock wave solution in a sticky gas. Numerical simulations show that the behavior of the shock wave in both cases tends asymptotically to the sticky limit. In the inelastic gas (dry case) there is a very close correspondence to the sticky gas, with one big cluster growing in the center of the shock wave, and a step-like stationary velocity profile. In the wet case, the shock wave has a nonzero width which is marked by two symmetric heavy clusters performing breathing oscillations with slowly increasing amplitude. All three models have the same asymptotic energy dissipation law, which is important in the context of the free cooling scenario. For the early stage of the shock formation and asymptotic oscillations we provide analytical results as well.

  3. Coolant effectiveness in dental cutting with air-turbine handpieces.

    PubMed

    Leung, Brian T W; Dyson, John E; Darvell, Brian W

    2012-03-01

    To establish a strategy for evaluating coolant effectiveness and to compare typical cooling conditions used in dental cutting. A test system comprising a resistive heat source and an array of four type K thermocouples was used to compare the cooling effectiveness of air alone, water stream alone, and an air-water spray, as delivered by representative air-turbine handpieces. Mean temperature change at the four sites was recorded for a range of water flow rates in the range 10 to 90 mL min(-1), with and without air, and with and without the turbine running. The thermal resistance of the system, R, was calculated as the temperature change per watt (KW(-1)). For wet cooling (water stream and air-water spray), R was 5.1 to 11.5 KW(-1), whereas for air coolant alone the range was 18.5 to 30.7 KW(-1). R for air-water spray was lower than for water stream cooling at the same flow rate. The thermal resistivity approach is a viable means of comparative testing of cooling efficacy in simulated dental cutting. It may provide a reliable means of testing handpiece nozzle design, thus enabling the development of more efficient cooling.

  4. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics

    PubMed Central

    Ackerley, Rochelle

    2017-01-01

    Our perception of skin wetness is generated readily, yet humans have no known receptor (hygroreceptor) to signal this directly. It is easy to imagine the sensation of water running over our hands or the feel of rain on our skin. The synthetic sensation of wetness is thought to be produced from a combination of specific skin thermal and tactile inputs, registered through thermoreceptors and mechanoreceptors, respectively. The present review explores how thermal and tactile afference from the periphery can generate the percept of wetness centrally. We propose that the main signals include information about skin cooling, signaled primarily by thinly myelinated thermoreceptors, and rapid changes in touch, through fast-conducting, myelinated mechanoreceptors. Potential central sites for integration of these signals, and thus the perception of skin wetness, include the primary and secondary somatosensory cortices and the insula cortex. The interactions underlying these processes can also be modeled to aid in understanding and engineering the mechanisms. Furthermore, we discuss the role that sensing wetness could play in precision grip and the dexterous manipulation of objects. We expand on these lines of inquiry to the application of the knowledge in designing and creating skin sensory feedback in prosthetics. The addition of real-time, complex sensory signals would mark a significant advance in the use and incorporation of prosthetic body parts for amputees in everyday life. PMID:28123008

  5. Manure and residue inputs maintained SOC in conservation production systems in the Upper Midwest

    USDA-ARS?s Scientific Manuscript database

    Conservation production systems are needed in the upper Midwest to slow down soil and nutrient loss through tillage-induced erosion. However, due to the cool, wet climate, producers are reluctant to adapt no-till strategies. With focus on strip-tillage (ST) and a diverse four-year crop rotation (4y...

  6. Leaf surface traits and water storage retention affect photosynthetic responses to leaf surface wetness among wet tropical forest and semiarid savanna plants.

    PubMed

    Aparecido, Luiza M T; Miller, Gretchen R; Cahill, Anthony T; Moore, Georgianne W

    2017-10-01

    While it is reasonable to predict that photosynthetic rates are inhibited while leaves are wet, leaf gas exchange measurements during wet conditions are challenging to obtain due to equipment limitations and the complexity of canopy-atmosphere interactions in forested environments. Thus, the objective of this study was to evaluate responses of seven tropical and three semiarid savanna plant species to simulated leaf wetness and test the hypotheses that (i) leaf wetness reduces photosynthetic rates (Anet), (ii) leaf traits explain different responses among species and (iii) leaves from wet environments are better adapted for wet leaf conditions than those from drier environments. The two sites were a tropical rainforest in northern Costa Rica with ~4200 mm annual rainfall and a savanna in central Texas with ~1100 mm. Gas exchange measurements were collected under dry and wet conditions on five sun-exposed leaf replicates from each species. Additional measurements included leaf wetness duration and stomatal density. We found that Anet responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf Anet was a significant percentage of total leaf Anet for amphistomatous species. Among tropical species, Anet responses immediately after wetting ranged from -31% (Senna alata (L.) Roxb.) to +21% (Zamia skinneri Warsz. Ex. A. Dietr.), while all savanna species declined (up to -48%). After 10 min of drying, most species recovered Anet towards the observed status prior to wetting or surpassed it, with the exception of Quercus stellata Wangenh., a savanna species, which remained 13% below Anet dry. The combination of leaf wetness duration and leaf traits, such as stomatal density, trichomes or wax, most likely influenced Anet responses positively or negatively. There was also overlap between leaf traits and Anet responses of savanna and tropical plants. It is possible that these species converge on a relatively conservative response to wetness, each for divergent purposes (cooling, avoiding stomatal occlusion, or by several unique means of rapid drying). A better understanding of leaf wetness inhibiting photosynthesis is vital for accurate modeling of growth in forested environments; however, species adapted for wet environments may possess compensatory traits that mitigate these effects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Measuring Water Potential (Activity) from Free Water to Oven Dryness 1

    PubMed Central

    Wiebe, Herman H.

    1981-01-01

    Water activities (potentials) in plant materials were measured over the range from free water to oven dryness with a Spanner thermocouple psychrometer. In a two-step procedure, water was first condensed on the thermocouple junction for several minutes. The sample was then inserted under the wet thermocouple and the maximum psychrometric cooling was measured in about 10 seconds. Calibration was with saturated salt slurries of known water activities. Psychrometric cooling was a nearly linear function of the water activity and of the negative log of the water potential. The psychrometric cooling to water activity relationship agreed with wetbulb temperature depression to relative humidity relationships given in tables. Water activities of wheat grains and leaves decreased sharply in a curvilinear fashion as their water contents decreased. Some problems of the procedure are discussed. Images PMID:16662081

  8. Design and Development of the Liquid Lithium Limiter (L3) for CDX-U

    NASA Astrophysics Data System (ADS)

    Seraydarian, R. P.; Chousal, L.; Doerner, R. P.; Luckhardt, S. C.; Lynch, T.

    2000-10-01

    --- This poster describes experiments with liquid Li that informed the design of a Liquid Lithium Limter (L3) built by UCSD for installation on the CDX-U spherical torus at PPPL. It was necessary to resort to wetting liquid Li to textured structures in order for the limiter to intercept 2-3 density e-folding lengths of the scrape off layer (3 cm) of the CDX-U plasma. Since Li is chemically active and corrodes rapidly in all but the driest air, we carried out wetting experiments in vacuum (10-7 - 10-8 torr) and also in Ar at near atmospheric pressure. Wetting of steel occurred reliably at substrate temperatures near 500 ^oC under all conditions, but this high temperature presented special problems of rapid material loss through evaporation, especially under vacuum. Once the surface is wetted, however, lost Li can be replenished at ~ 200 ^oC (just above the melting temperature) where evaporation is negligible. A wetted limiter can even be cooled to room temperature and then reheated many hours later as long as clean conditions are maintained. Surface textures, heating techniques, effective seal materials for piston-driven liquid Li reservoirs, and other aspects of the limiter system design will be presented. Work supported by US DOE grant DE-FG03-95ER54301

  9. Presence of pathogenic microorganisms in power-plant cooling waters. Final report, October 1, 1981-June 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyndall, R.L.

    1983-07-01

    Air was sampled at the point of discharge and at short distances downwind and upwind from industrial and power-plant cooling towers. Both high-volume electrostatic and impinger type samplers were used. Concentrates of the air samples were analyzed for Legionnaires' Disease Bacteria (LDB). In some cases, the samples were also tested for the presence of free-living amoebae. The concentrations of LDB in the air samples were well below the minimal infectious dose for guinea pigs and precluded testing of the samples for infectious LDB. Results of LDB analysis were related to the meteorological conditions at the time of sampling. Generally, themore » concentrations of LDB in the air at the discharge of the cooling towers were 1 x 10/sup -6/ to 1 x 10/sup -7/ of that found in comparable volumes of tower basin water. During periods of high humidity and wind speed, LDB was detected in a few downwind samples and one upwind sample. One site with extensive construction and excavation activity had higher LDB concentrations in air samples relative to other sites. Nonpathogenic Naegleria were present in one of two air samples taken in the mist at the base of a natural-draft cooling tower.« less

  10. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 5. Public comments and Nuclear Regulatory Commission responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-08-01

    Copies of 69 letters are presented commenting on the Draft Generic Environmental Statement (GESMO) WASH-1327 and the NRC's responses to the comments received from Federal, State and local agencies; environmental and public interest groups, members of the academic and industrial communities, and individual citizens. An index to these letters indicating the number assigned to each letter, the author, and organization represented, is provided in the Table of Contents.

  11. Database Assessment of Pollution Control in the Military Explosives and Propellants Production Industry.

    DTIC Science & Technology

    1986-02-01

    published by the Electric Power Research Institute (EPRI 1982ab). The status of spray-dryer flue gas desulfurization and the DOWA process developed by...cooled by spray aeration and recirculated to the quencher and scrubber. The gas flow through the system is controlled by an induced draft fan. All...Figure 9.6). The flue gas from the MHF is composed of SO C8,CO,ILRO, CHS and NO . It passes through an after- 2, 2 2 ’ 2 x burner where H S is

  12. Design of energy efficient building with radiant slab cooling

    NASA Astrophysics Data System (ADS)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The analysis showed that integrated architectural and mechanical design is required to achieve the potential benefits of radiant slab cooling, including: (1) reduction of peak solar gain via windows through (a) avoiding large window-to-wall ratios and/or (b) exterior shading of windows, (2) use of low-quality cooling sources such as cooling towers and ground water, especially in cold, dry climates, and (3) coordination of system control to avoid simultaneous heating and cooling.

  13. Aspen indicator species in lichen communities in the Bear River range of Idaho and Utah

    Treesearch

    Paul C. Rogers; Roger Rosentreter; Ronald J. Ryel

    2007-01-01

    Aspen are thought to be declining in this region due to a combination of fire suppression, grazing and wildlife management practices, and potentially cool/wet climates of the past century which favor advancing conifer succession. Many scientists are concerned that aspen's related species may also be losing habitat, thereby threatening the long-term local and...

  14. Standard for Ground Vehicle Mobility

    DTIC Science & Technology

    2005-02-01

    Zone Dry climates (2), humid mesothermal (3), See Appendix A humid microthermal (4), undifferentiated highland (6) Condition Dry, wet, snow See...represent the Dry, the Humid Mesothermal, and the Humid Microthermal climate zones, respectively. Scenarios ERDC-GSL was sponsored by WARSIM to...Coast D. Humid Microthermal Climates Humid Continental, Warm Summer, Humid Continental, Cool Summer, Sub-Arctic E. Polar Climates Tundra, Ice Caps F

  15. Evaluation of major ancestors of North American soybean cultivars for resistance to Pythium species that cause seedling blight

    USDA-ARS?s Scientific Manuscript database

    Pythium seedling blight, which is caused by a number of oomycete Pythium species, is a disease that affects soybeans (Glycine max (L.) Merrill) grown in the United States and Canada. Pythium ultimum var. ultimum, one of the most common species, is favored by cool, wet conditions that are most likely...

  16. Pliocene reversal of late Neogene aridification

    PubMed Central

    Sniderman, J. M. Kale; Woodhead, Jon D.; Jordan, Gregory J.; Drysdale, Russell N.; Tyler, Jonathan J.; Porch, Nicholas

    2016-01-01

    The Pliocene epoch (5.3–2.6 Ma) represents the most recent geological interval in which global temperatures were several degrees warmer than today and is therefore considered our best analog for a future anthropogenic greenhouse world. However, our understanding of Pliocene climates is limited by poor age control on existing terrestrial climate archives, especially in the Southern Hemisphere, and by persistent disagreement between paleo-data and models concerning the magnitude of regional warming and/or wetting that occurred in response to increased greenhouse forcing. To address these problems, here we document the evolution of Southern Hemisphere hydroclimate from the latest Miocene to the middle Pliocene using radiometrically-dated fossil pollen records preserved in speleothems from semiarid southern Australia. These data reveal an abrupt onset of warm and wet climates early within the Pliocene, driving complete biome turnover. Pliocene warmth thus clearly represents a discrete interval which reversed a long-term trend of late Neogene cooling and aridification, rather than being simply the most recent period of greater-than-modern warmth within a continuously cooling trajectory. These findings demonstrate the importance of high-resolution chronologies to accompany paleoclimate data and also highlight the question of what initiated the sustained interval of Pliocene warmth. PMID:26858429

  17. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-02-01

    Fluctuating environments can modulate host-pathogen interactions by providing a temporary advantage to one of the interacting organisms. However, we know very little about how environmental conditions facilitate beneficial interactions between hosts and their microbial communities, resulting in individual persistence with a particular pathogen. Here, we experimentally infected Eleutherodactylus coqui frogs with the fungal pathogen Batrachochytrium dendrobatidis (Bd) under environmental conditions known to confer the survival advantage to the host during the warm-wet season, or alternatively to the pathogen during the cool-dry season. We used 16S rRNA amplicon sequencing to quantify changes in bacterial richness and phylogenetic diversity, and identified operational taxonomic units (OTUs) that became overrepresented or suppressed as a consequence of Bd infection. During the warm-wet season, frogs limited Bd infections, recruited putatively beneficial bacteria and returned to pre-infection levels of richness and phylogenetic diversity. In contrast, during the cool-dry season, Bd infections kept increasing through time, and bacterial diversity remained constant. Our findings confirm that infection outcome not only depends on abiotic factors, but also on biotic interactions between hosts and their associated bacterial communities.

  18. Evolution of the magnetic properties of Co10Cu90 nanoparticles prepared by wet chemistry with thermal annealing.

    PubMed

    García, I; Echeberria, J; Kakazei, G N; Golub, V O; Saliuk, O Y; Ilyn, M; Guslienko, K Y; González, J M

    2012-09-01

    Nanoparticles of Co10Cu90 alloy have been prepared by sonochemical wet method. According to transmission electron microscopy, bimetallic particles with typical diameter of 50-100 nm consisting of nanocrystallites with average diameter of 15-20 nm were obtained. The samples were annealed at 300 degrees C and 450 degrees C. Zero field cooled and field cooled temperature dependences of magnetization in the temperature range of 5-400 K at 50 Oe, as well as magnetization hysteresis loops at 15, 100 and 305 K were measured by vibrating sample magnetometry. Presence of antiferromagnetic phase, most probably of the oxide Co3O4, was observed in as-prepared sample. The lowest coercivity was found for the CoCu sample annealed at-300 degrees C, whereas for as prepared sample and the one annealed at 450 degrees C it was significantly higher. The samples were additionally probed by continuous wave ferromagnetic resonance at room, temperature using a standard X-band electron spin resonance spectrometer. A good correspondence between evolution of the coercivity and the microwave resonance fields with annealing temperature was observed.

  19. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes

    PubMed Central

    Juliano, Steven A.; O’Meara, George F.; Morrill, Jeneen R.; Cutwa, Michele M.

    2009-01-01

    We tested the hypothesis that differences in temperature and desiccation tolerances of eggs of the container-dwelling mosquitoes Aedes albopictus and Aedes aegypti influence whether invading A. albopictus coexist with or exclude A. aegypti in Florida. In the laboratory, egg mortality through 30 days for A. albopictus was strongly temperature and humidity dependent, with low humidity and high temperature producing greatest mortality. In contrast, mortality through 30 days and through 60 days for A. aegypti was very low and independent of temperature and humidity. Mortality through 90 days for A. aegypti showed significant effects of both temperature and humidity. In the field, the proportion of vases occupied by A. albopictus was significantly lower at four of six sites at the start of the wet season (after a dry period) versus well into the wet season (after containers had held water for weeks). The proportion of vases occupied by A. aegypti was independent of when during the wet season vases were sampled. These results imply that dry periods cause disproportionately greater mortality of A. albopictus eggs compared to A. aegypti eggs. Container occupancy at tire and cemetery sites was significantly related to two principal components derived from longterm average climate data. Occupancy of containers by A. albopictus was greatest at cool sites with little or no dry season, and decreased significantly with increasing mean temperature and increasing number of dry months. In contrast, occupancy of containers by A. aegypti was lowest at cool sites with little or no dry season, and increased significantly with increasing mean temperature and increasing dry season length, and decreased significantly with total precipitation and number of wet months. We suggest that local coexistence of these species is possible because warm, dry climates favor A. aegypti and alleviate effects of competition from A. albopictus via differential mortality of A. albopictus eggs. PMID:20871747

  20. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.

    PubMed

    Kosugi, Yoshiko; Takanashi, Satoru; Matsuo, Naoko; Nik, Abdul Rahim

    2009-04-01

    We observed diurnal and seasonal patterns of leaf-scale gas exchange within the crown of a Dipterocarpus sublamellatus Foxw. tree growing in a lowland dipterocarp forest at Pasoh, Peninsular Malaysia. Observations were carried out nine times over 6 years, from September 2002 to December 2007. Observation periods included both wet and mild-dry periods, and natural and saturated photosynthetic photon flux density (PPFD) light conditions. In situ measurements of the diurnal change in net photosynthetic rate and in stomatal conductance were carried out on canopy leaves of a 40-m-tall D. sublamellatus tree, which was accessed from a canopy corridor. A diurnal change in electron transport rate was observed under saturated PPFD conditions. The maximum net assimilation rate was approximately 10 micromol m(-2) s(-1). There was a clear inhibition of the net assimilation rate coupled with stomatal closure after late morning and this inhibition occurred year-round. Although the electron transport rate decreased alongside this inhibition, it sometimes followed on. Numerical analysis showed that the main factor in the inhibition of the net assimilation rate was patchy bimodal stomatal closure, which occurred in both mild-dry and wet periods. The midday depression occurred year-round, though there are fluctuations in soil moisture during the mild-dry and wet periods. The magnitude of the inhibition was not related to soil water content but was related to vapor pressure deficit (VPD): that is, whether the days were sunny and hot or cloudy and cool. On cloudy, cool days in the wet period, the net photosynthesis was only moderately inhibited, but it still decreased in the afternoon and was coupled with patchy stomatal closure, even in quite moderate VPD, leaf temperature and PPFD conditions. Our results suggest that patchy stomatal closure signaled by the increase in VPD, in transpiration and by circadian rhythms, was the key factor in constraining midday leaf gas exchange of the D. sublamellatus canopy leaves.

  1. Energy conservation strategies, the ignored cooling towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1997-06-01

    Because of their apparent lack of sophistication, cooling towers are usually considered orphans of the facilities operation. Historically, cooling towers have been neglected in refrigeration air conditioning systems, electric power generating stations, manufacturing plants, and chemical process plants. Operators are aware of the importance of their sophisticated equipment but, they take the apparently simple cooling towers and cold water returning for granted, Since the box looks sturdy and the fans are rotating, the operators think all is well and ignore the quality of water coming off the tower. A cooling tower is purchased for Design Conditions of performance which aremore » specified. Design Conditions relate to the volume of circulating water (GPM), hot water temperature (HWT), cold water temperature (CWT) discharge, and wet bulb temperature (WBT). The WBT consisting of ambient temperature and relative humidity. After the tower is on line and the CWT becomes inadequate, many engineers look to solutions other than the obvious. All cooling towers are purchased to function at 100% of capability in accordance with Design Condition. In the real world of on-stream utilization, the level of operation is lower. It can be deficient as much as 30% due to a variety of reasons which are not necessarily due to the failure of the performance of the tower.« less

  2. Rewetting of hot vertical rod during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun

    2016-06-01

    A stainless steel (SS-316) vertical rod of 12 mm diameter at 800 ± 10 °C initial temperature was cooled by normal impinging round water jet. The surface rewetting phenomenon was investigated for a range of jet diameter 2.5-4.8 mm and jet Reynolds number 5000-24,000 using a straight tube type nozzle. The investigation were made from the stagnation point to maximum 40 mm downstream locations, simultaneously for both upside and downside directions. The cooling performance of the vertical rod was evaluated on the basis of rewetting parameters i.e. rewetting temperature, wetting delay, rewetting velocity and the maximum surface heat flux. Two separate Correlations have been proposed for the dimensionless rewetting velocity in terms of rewetting number and the maximum surface heat flux that predicts the experimental data within an error band of ±20 and ±15 % respectively.

  3. High-power closed-cycle 4He cryostat with top-loading sample exchange

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; van den Brandt, B.; Kirch, K.

    2017-10-01

    We report on the development of a versatile cryogen-free laboratory cryostat based upon a commercial pulse tube cryocooler. It provides enough cooling power for continuous recondensation of circulating 4He gas at a condensation pressure of approximately 250 mbar. Moreover, the cryostat allows for exchange of different cryostat-inserts as well as fast and easy ;wet; top-loading of samples directly into the 1 K pot with a turn-over time of less than 75 min. Starting from room temperature and using a 4He cryostat-insert, a base temperature of 1.0 K is reached within approximately seven hours and a cooling power of 250 mW is established at 1.24 K.

  4. IEA/SPS 500 kW distributed collector system

    NASA Technical Reports Server (NTRS)

    Neumann, T. W.; Hartman, C. D.

    1980-01-01

    Engineering studies for an International Energy Agency project for the design and construction of a 500 kW solar thermal electric power generation system of the distributed collector system (DCS) type are reviewed. The DCS system design consists of a mixed field of parabolic trough type solar collectors which are used to heat a thermal heat transfer oil. Heated oil is delivered to a thermocline storage tank from which heat is extracted and delivered to a boiler by a second heat transfer loop using the same heat transfer oil. Steam is generated in the boiler, expanded through a steam turbine, and recirculated through a condenser system cooled by a wet cooling tower.

  5. La 2-xSr xCuO 4-δ superconducting samples prepared by the wet-chemical method

    NASA Astrophysics Data System (ADS)

    Loose, A.; Gonzalez, J. L.; Lopez, A.; Borges, H. A.; Baggio-Saitovitch, E.

    2009-10-01

    In this work, we report on the physical properties of good-quality polycrystalline superconducting samples of La 2-xSr xCu 1-yZn yO 4-δ ( y=0, 0.02) prepared by a wet-chemical method, focusing on the temperature dependence of the critical current. Using the wet-chemical method, we were able to produce samples with improved homogeneity compared to the solid-state method. A complete set of samples with several carrier concentrations, ranging from the underdoped (strontium concentration x≈0.05) to the highly overdoped ( x≈0.25) region, were prepared and investigated. The X-ray diffraction analysis, zero-field cooling magnetization and electrical resistivity measurements were reported on earlier. The structural parameters of the prepared samples seem to be slightly modified by the preparation method and their critical temperatures were lower than reported in the literature. The temperature dependence of the critical current was explained by a theoretical model which took the granular structure of the samples into account.

  6. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics.

    PubMed

    Filingeri, Davide; Ackerley, Rochelle

    2017-04-01

    Our perception of skin wetness is generated readily, yet humans have no known receptor (hygroreceptor) to signal this directly. It is easy to imagine the sensation of water running over our hands or the feel of rain on our skin. The synthetic sensation of wetness is thought to be produced from a combination of specific skin thermal and tactile inputs, registered through thermoreceptors and mechanoreceptors, respectively. The present review explores how thermal and tactile afference from the periphery can generate the percept of wetness centrally. We propose that the main signals include information about skin cooling, signaled primarily by thinly myelinated thermoreceptors, and rapid changes in touch, through fast-conducting, myelinated mechanoreceptors. Potential central sites for integration of these signals, and thus the perception of skin wetness, include the primary and secondary somatosensory cortices and the insula cortex. The interactions underlying these processes can also be modeled to aid in understanding and engineering the mechanisms. Furthermore, we discuss the role that sensing wetness could play in precision grip and the dexterous manipulation of objects. We expand on these lines of inquiry to the application of the knowledge in designing and creating skin sensory feedback in prosthetics. The addition of real-time, complex sensory signals would mark a significant advance in the use and incorporation of prosthetic body parts for amputees in everyday life. NEW & NOTEWORTHY Little is known about the underlying mechanisms that generate the perception of skin wetness. Humans have no specific hygroreceptor, and thus temperature and touch information combine to produce wetness sensations. The present review covers the potential mechanisms leading to the perception of wetness, both peripherally and centrally, along with their implications for manual function. These insights are relevant to inform the design of neuroengineering interfaces, such as sensory prostheses for amputees. Copyright © 2017 the American Physiological Society.

  7. Effects of water suspension and wet-dry cycling on fertility of Douglas-fir pollen.

    Treesearch

    Donald L. Copes; Nan C. Vance

    2000-01-01

    Studies were made to determine how long Douglas-fir pollen remains viable after suspension in cool water form 0 to 34 days. Linear regression analysis of in vivo and in vitro tests indicated that filled seed efficiency and pollen viability, respectively, decreased about 3 percent per day. The relation may have been nonlinear the first 6 days, as little decrease...

  8. Forest fire danger in western Oregon and Washington during 1953.

    Treesearch

    Owen P. Cramer

    1953-01-01

    Following two successive fire seasons of record breaking severity, the 1953 season set new records for low fire danger in western Oregon and Washington. The low danger is reflected in the fire record—the U. S. Forest Service and forestry offices of both States all report the lowest acreage burned since fire records have been kept. A cool, wet spring, above...

  9. Manufacturing Chemical Equipment from Titanium - USSR

    DTIC Science & Technology

    1960-05-25

    hydrochloric, sulfuric and orthophosphoric, oxalic, trichlor- and tri-flour- acetic acids , and of boiling solutions of formic and citric acids . Nor...sulfofrezon and oleinic acid . Titanium dust is explosive , therefore only wet grinding is being used. The cooling is done either by a ten percent solution of...pumping ore of various organic acids , solutions of chlorides, and of moderately concentrated hydrochloric acid.are made of titanium. Such apparatus

  10. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-08-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  11. Comparison of switching bipolar ablation with multiple cooled wet electrodes and switching monopolar ablation with separable clustered electrode in treatment of small hepatocellular carcinoma: A randomized controlled trial

    PubMed Central

    Chang, Won; Lee, Dong Ho; Yoon, Jeong Hee; Kim, Yoon Jun; Yoon, Jung Hwan; Han, Joon Koo

    2018-01-01

    Objective A randomized controlled trial was conducted to prospectively compare the therapeutic effectiveness of switching bipolar (SB) radiofrequency ablation (RFA) using cooled-wet electrodes and switching monopolar (SM) RFA using separable clustered (SC) electrodes in patients with hepatocellular carcinomas (HCCs). Materials and methods This prospective study was approved by our Institutional Review Board. Between April 2014 and January 2015, sixty-nine patients with 74 HCCs were randomly treated with RFA using either internally cooled-wet (ICW) electrodes in SB mode (SB-RFA, n = 36) or SC electrodes in SM mode (SM-RFA, n = 38). Technical parameters including the number of ablations, ablation time, volume, energy delivery, and complications were evaluated. Thereafter, 1-year and 2-year local tumor progression (LTP) free survival rates were compared between the two groups using the Kaplan-Meier method. Results In the SB-RFA group, less number of ablations were required (1.72±0.70 vs. 2.31±1.37, P = 0.039), the ablation time was shorter (10.9±3.9 vs.14.3±5.0 min, p = 0.004), and energy delivery was smaller (13.1±6.3 vs.23.4±12.8 kcal, p<0.001) compared to SM-RFA. Ablation volume was not significantly different between SB-RFA and SM-RFA groups (61.8±24.3 vs.54.9±23.7 cm3, p = 0.229). Technical failure occurred in one patient in the SM-RFA group, and major complications occurred in one patient in each group. The 1-year and 2-year LTP free survival rates were 93.9% and 84.3% in the SB-RFA group and 94.4% and 88.4% in the SM-RFA group (p = 0.687). Conclusion Both SB-RFA using ICW electrodes and SM-RFA using SC electrodes provided comparable LTP free survival rates although SB-RFA required less ablations and shorter ablation time. PMID:29420589

  12. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  13. Laboratory exposure systems to simulate atmospheric degradation of building stone under dry and wet deposition conditions

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Haneef, S. J.; Hepburn, B. J.; Hutchinson, A. J.; Thompson, G. E.; Wood, G. C.

    The design philosophy, construction and use of two exposure test systems are described, in which the objective is to simulate the degradation of stone samples under, respectively, the 'dry' and 'wet' deposition of atmospheric pollutants. Some element of realistic acceleration is possible in certain experiments. Particular emphasis is placed upon using known presentation rates of the pollutants, both in respect of typical depositions of pollutants and their oxidation products appropriate for an industrial atmosphere. In the dry deposition rig, SO 2, NO 2, NO, HCl and the oxidant O 3 are presented individually or together at realistic deposition rates. In the wet deposition apparatus, SO 2-4, NO -3 and Cl - at a pH of 3.5, simulating 'acid rain' but in a more concentrated form, are deposited. The dry deposition chamber can be operated at constant relative humidity (typically 84%) with pre-dried or precisely wetted stones to simulate episodic rain wetting, or using other methods of wet/dry cycling, which are also a feature of the wet deposition chamber. Heating and cooling of the samples is also possible, as is the use of shaped or coupled stones of different kinds such as are found in a building facade. The results are illustrated in terms of data on the weight change, the anion content of stone and run-off, the pH change of run-off and the total calcium reacted, using Portland stone, as a prelude to later papers in which behaviour of a whole matrix of stone types and environments is presented and discussed. Such an approach permits the eventual production of 'pollutant-material response' relationships and damage functions for comparison with and prediction of external exposure results.

  14. Identification and characterization of a novel N-acyl-homoserine lactonase gene in Sphingomonas ursincola isolated from industrial cooling water systems.

    PubMed

    Morohoshi, Tomohiro; Sato, Niina; Iizumi, Taro; Tanaka, Airi; Ikeda, Tsukasa

    2017-05-01

    Biofilm formation by bacteria is one of the main causes of fouling in industrial cooling water systems. In many gram-negative bacteria, biofilm formation is regulated by N-acyl-homoserine lactone (AHL)-mediated quorum sensing. In this study, we isolated three AHL-degrading bacteria from cooling water systems and identified them as Sphingomonas ursincola. The draft genome sequence of S. ursincola A1 revealed the presence of an AHL-degrading gene homolog, designated qsdS. The qsdS region was also amplified by PCR from the genomes of the other two S. ursincola strains, SF1 and SF8. Escherichia coli DH5α harboring a QsdS-expressing plasmid showed high degradative activity against AHLs with short and 3-oxo-substituted acyl chains. High-performance liquid chromatography analysis revealed that QsdS is an AHL lactonase, an enzyme that catalyzes AHL ring opening. Furthermore, heterologous expression of QsdS in Pseudomonas aeruginosa PAO1 resulted in degradation of endogenous AHLs and interfered with the quorum-sensing-regulated phenotype. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Ice-Water Immersion and Cold-Water Immersion Provide Similar Cooling Rates in Runners With Exercise-Induced Hyperthermia

    PubMed Central

    Clements, Julie M.; Casa, Douglas J.; Knight, J. Chad; McClung, Joseph M.; Blake, Alan S.; Meenen, Paula M.; Gilmer, Allison M.; Caldwell, Kellie A.

    2002-01-01

    Objective: To assess whether ice-water immersion or cold-water immersion is the more effective treatment for rapidly cooling hyperthermic runners. Design and Setting: 17 heat-acclimated highly trained distance runners (age = 28 ± 2 years, height = 180 ± 2 cm, weight = 68.5 ± 2.1 kg, body fat = 11.2 ± 1.3%, training volume = 89 ± 10 km/wk) completed a hilly trail run (approximately 19 km and 86 minutes) in the heat (wet-bulb globe temperature = 27 ± 1°C) at an individually selected “comfortable” pace on 3 occasions 1 week apart. The random, crossover design included (1) distance run, then 12 minutes of ice-water immersion (5.15 ± 0.20°C), (2) distance run, then 12 minutes of cold-water immersion (14.03 ± 0.28°C), or (3) distance run, then 12 minutes of mock immersion (no water, air temperature = 28.88 ± 0.76°C). Measurements: Each subject was immersed from the shoulders to the hip joints for 12 minutes in a tub. Three minutes elapsed between the distance run and the start of immersion. Rectal temperature was recorded at the start of immersion, at each minute of immersion, and 3, 6, 10, and 15 minutes postimmersion. No rehydration occurred during any trial. Results: Length of distance run, time to complete distance run, rectal temperature, and percentage of dehydration after distance run were similar (P > .05) among all trials, as was the wet-bulb globe temperature. No differences (P > .05) for cooling rates were found when comparing ice-water immersion, cold-water immersion, and mock immersion at the start of immersion to 4 minutes, 4 to 8 minutes, and the start of immersion to 8 minutes. Ice-water immersion and cold-water immersion cooling rates were similar (P > .05) to each other and greater (P < .05) than mock immersion at 8 to 12 minutes, the start of immersion to 10 minutes, and the start of immersion to every other time point thereafter. Rectal temperatures were similar (P > .05) between ice-water immersion and cold-water immersion at the completion of immersion and 15 minutes postimmersion, but ice-water immersion rectal temperatures were less (P < .05) than cold-water immersion at 6 and 10 minutes postimmersion. Conclusions: Cooling rates were nearly identical between ice-water immersion and cold-water immersion, while both were 38% more effective in cooling after 12 minutes of immersion than the mock-immersion trial. Given the similarities in cooling rates and rectal temperatures between ice-water immersion and cold-water immersion, either mode of cooling is recommended for treating the hyperthermic individual. PMID:12937427

  16. Evaluating the Physiological and Perceptual Responses of Wearing a Newly Designed Cooling Vest for Construction Workers.

    PubMed

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Wong, Francis K W; Yam, Michael C H

    2017-08-01

    Construction workers are subjected to heat stress because of the hot environment, physically demanding tasks, and/or personal protective equipment. A tailor-made cooling vest that protects construction workers from heat-related injuries was developed. The purpose of the study is to examine a newly designed cooling vest's effectiveness in alleviating physiological and perceptual strain in a hot and humid environment. Twelve male participants performed two trials, i.e., cooling vest (VEST) and control (CON) in a climatic chamber controlled at 37°C temperature, 60% relative humidity, 0.3 m/s air velocity, and 450 W/m2 solar radiation to simulate the summer working environment of construction sites. Two bouts of treadmill exercise intermitted with 30-minute passive recovery were designed to simulate the practical work-rest schedule of the construction industry. The cooling vest was used during the passive recovery period in the VEST condition, and the results were compared with that of no cooling vest in the CON condition. The results revealed that the newly designed cooling vest can significantly alleviate heat strain and improve thermal comfort, based on the decrease in body temperature, heart rate, and subjective perceptions (including perceived exertion, thermal, wetness, and comfort sensation) of the participants. It can also prolong work duration in the subsequent exercise. The cooling countermeasures proposed in this study will be able to provide an effective solution in situations that involve repeated bouts of outdoor construction work. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion.

    PubMed

    Thain, Peter K; Bleakley, Christopher M; Mitchell, Andrew C S

    2015-07-01

    Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Randomized controlled clinical trial. University of Hertfordshire human performance laboratory. A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.

  18. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.

    PubMed

    Henriksson, Otto; Lundgren, Peter; Kuklane, Kalev; Holmér, Ingvar; Naredi, Peter; Bjornstig, Ulf

    2012-02-01

    In the prehospital care of a cold and wet person, early application of adequate insulation is of utmost importance to reduce cold stress, limit body core cooling, and prevent deterioration of the patient's condition. Most prehospital guidelines on protection against cold recommend the removal of wet clothing prior to insulation, and some also recommend the use of a waterproof vapor barrier to reduce evaporative heat loss. However, there is little scientific evidence of the effectiveness of these measures. Using a thermal manikin with wet clothing, this study was conducted to determine the effect of wet clothing removal or the addition of a vapor barrier on thermal insulation and evaporative heat loss using different amounts of insulation in both warm and cold ambient conditions. A thermal manikin dressed in wet clothing was set up in accordance with the European Standard for assessing requirements of sleeping bags, modified for wet heat loss determination, and the climatic chamber was set to -15 degrees Celsius (°C) for cold conditions and +10°C for warm conditions. Three different insulation ensembles, one, two or seven woollen blankets, were chosen to provide different levels of insulation. Five different test conditions were evaluated for all three levels of insulation ensembles: (1) dry underwear; (2) dry underwear with a vapor barrier; (3) wet underwear; (4) wet underwear with a vapor barrier; and (5) no underwear. Dry and wet heat loss and thermal resistance were determined from continuous monitoring of ambient air temperature, manikin surface temperature, heat flux and evaporative mass loss rate. Independent of insulation thickness or ambient temperature, the removal of wet clothing or the addition of a vapor barrier resulted in a reduction in total heat loss of 19-42%. The absolute heat loss reduction was greater, however, and thus clinically more important in cold environments when little insulation is available. A similar reduction in total heat loss was also achieved by increasing the insulation from one to two blankets or from two to seven blankets. Wet clothing removal or the addition of a vapor barrier effectively reduced evaporative heat loss and might thus be of great importance in prehospital rescue scenarios in cold environments with limited insulation available, such as in mass-casualty situations or during protracted evacuations in harsh conditions.

  19. On-Site Incineration of Contaminated Soil: A Study into U.S. Navy Applications

    DTIC Science & Technology

    1991-08-01

    venturi scrubber Minimum water flow rate and p1l to absorber Minimum water/alkaline reagent flow to dry scrubber Minimum particulate scrubber blowdown...remove hydrochloric acid and sulfur dioxide from flue gases using, for example, wet scrubbers and limestone adsorption towers, respectively. Modified...Reagent preparation 8) Bllending 26) Fugitive emission control 9) Pretreatment 27) Scrubber liquid cooling 10) Blended and pretreated solid waste

  20. Power MEMS Development

    DTIC Science & Technology

    2011-05-01

    wafer pair through further processing. Initial cracking issues were identified due to liquid penetration between the wafers during wet processing...free-standing MCD films we needed to address crack formation in the diamond and the Si substrate, which we observed during our initial growths due to...NCD film grown using the heated stage, and finally the thick MCD film grown on the cooled stage. We also found that the control of cracking in the

  1. Opposing Patterns of Seasonal Change in Functional and Phylogenetic Diversity of Tadpole Assemblages

    PubMed Central

    Strauß, Axel; Guilhaumon, François; Randrianiaina, Roger Daniel; Wollenberg Valero, Katharina C.; Vences, Miguel; Glos, Julian

    2016-01-01

    Assemblages that are exposed to recurring temporal environmental changes can show changes in their ecological properties. These can be expressed by differences in diversity and assembly rules. Both can be identified using two measures of diversity: functional (FD) and phylogenetic diversity (PD). Frog communities are understudied in this regard, especially during the tadpole life stage. We utilised tadpole assemblages from Madagascan rainforest streams to test predictions of seasonal changes on diversity and assemblage composition and on diversity measures. From the warm-wet to the cool-dry season, species richness (SR) of tadpole assemblages decreased. Also FD and PD decreased, but FD less and PD more than expected by chance. During the dry season, tadpole assemblages were characterised by functional redundancy (among assemblages—with increasing SR), high FD (compared to a null model), and low PD (phylogenetic clustering; compared to a null model). Although mutually contradictory at first glance, these results indicate competition as tadpole community assembly driving force. This is true during the limiting cool-dry season but not during the more suitable warm-wet season. We thereby show that assembly rules can strongly depend on season, that comparing FD and PD can reveal such forces, that FD and PD are not interchangeable, and that conclusions on assembly rules based on FD alone are critical. PMID:27014867

  2. Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers

    NASA Astrophysics Data System (ADS)

    Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.

    2018-05-01

    Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.

  3. Renesting by American woodcocks (Scolopax minor) in Maine

    USGS Publications Warehouse

    McAuley, D.G.; Longcore, J.R.; Sepik, G.F.

    1990-01-01

    The American Woodcock (Scolopax minor) is one of the earliest ground-nesting birds in the northeastern United States. In Maine, nesting begins in early April when temperatures can drop below freezing and significant snowfall can accumulate. Nests are usually in open woods, where eggs are laid on the ground in a shallow depression (Pettingill 1936, Mendall and Aldous 1943, Sheldon 1967). Peak hatching occurs in early May (Dwyer et al. 1982), when temperatures are cool and precipitation is common. Woodcock chicks are dependent on the female for most of their food for at least seven days after hatching (Gregg 1984). During cool, wet weather, chicks require constant brooding by females; prolonged periods of inclement weather may lead to substantial mortality of chicks (Dwyer et al. 1988).

  4. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis.

    PubMed

    Tyler, Christopher James; Sunderland, Caroline; Cheung, Stephen S

    2015-01-01

    Exercise is impaired in hot, compared with moderate, conditions. The development of hyperthermia is strongly linked to the impairment and as a result various strategies have been investigated to combat this condition. This meta-analysis focused on the most popular strategy: cooling. Precooling has received the most attention but recently cooling applied during the bout of exercise has been investigated and both were reviewed. We conducted a literature search and retrieved 28 articles which investigated the effect of cooling administered either prior to (n=23) or during (n=5) an exercise test in hot (wet bulb globe temperature >26°C) conditions. Mean and weighted effect size (Cohen's d) were calculated. Overall, precooling has a moderate (d=0.73) effect on subsequent performance but the magnitude of the effect is dependent on the nature of the test. Sprint performance is impaired (d=-0.26) but intermittent performance and prolonged exercise are both improved following cooling (d=0.47 and d=1.91, respectively). Cooling during exercise has a positive effect on performance and capacity (d=0.76). Improvements were observed in studies with and without cooling-induced physiological alterations, and the literature supports the suggestion of a dose-response relationship among cooling, thermal strain and improvements in performance and capacity. In summary, precooling can improve subsequent intermittent and prolonged exercise performance and capacity in a hot environment but sprint performance is impaired. Cooling during exercise also has a positive effect on exercise performance and capacity in a hot environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    PubMed

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators.

  6. Excavation multiple up drafting tunnels in coastal mountains: A simple solution to resist against the severe drought in sub tropical zones

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manizheh; Daei, Bijan

    2017-04-01

    At many sub tropical places in the globe, including the Persian Gulf in the south of Iran, there is continuously a tremendous amount of steam in the air, but it fails to transform to cloud because of the surrounding overheated lands. Reduction in precipitation in these regions has been extraordinary in recent years. The most probable reason is the global warming phenomena. Many dried forest remains, in these regions are referring to much more precipitations not long ago. All around the Persian Gulf, Oman Sea, Arab sea, and red sea there are enough steam to produce good precipitation nearly year round. The main missed requirement in this zone is the coldness. This fact can be well understand from a narrow green strip in Dhofar which is indebted to a cold oceanic stream that approaches to local shore during four months yearly. This natural cold stream helps a better condensation of water vapor and more precipitation but only in a narrow mountainous land. Based on this natural phenomenon, we hypothesize a different design to cool the water vapor with the same result. Prevention of close contact between the water vapors and hot lands by shooting the steam directly into the atmosphere may help to produce more cloud and rain. Making multiple vertical tunnels in mountains for upright conducting of humid air into the atmosphere can be a solution. Fortunately there are a few high mountain ranges alongside of the coastline in south part of Iran. So excavation of drafting tunnels in these mountains seems reasonable. These structures act passively, but for long term do their work without consuming energy, and making pollution. These earth tubes in some aspects resemble to Kariz, another innovative structure which invented by ancient Iranians, thousands of years ago in order to extract water from dry lands in deserts. Up drafting earth channels can be supposed as a wide vertical kariz which conduct water vapor into the atmosphere from the hot land near a warm sea, something like passive cooling towers in power plants. Many experiments and practices are indicating that these simple, cheap, and environmentally friendly structures can work continuously and effectively without an operator. We expect hundreds of these structures alongside the coastline in the south, will be able to change the local climate positively forever. Also upright earth tubes may have extra benefits if we choose the right points for drilling. Chasing escaping streams, finding precious minerals and stones, producing well ventilated area for recreation are among of the probable opportunities. Almost certainly, these by-products, in majority of cases will compensate the costs. Key words: up drafting tunnels, conducting water vapor, steam, cloud and rain production, hot lands. Global warming

  7. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less

  8. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    PubMed

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  9. Investigations on laser hard tissue ablation under various environments

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Oh, J.; Welch, A. J.

    2008-06-01

    The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perfluorocarbon) and spray environmental conditions. Energy loss by the application of liquid during laser irradiation was evaluated, and ablation performance for all conditions was quantitatively measured by optical coherence tomography (OCT). Microscope images were also used to estimate thermal side effects in tissue after multiple-pulse ablation. Wet using water and spray conditions equally attenuated the 2.79 µm wavelength laser beam. Higher transmission efficiency was obtained utilizing a layer of perfluorocarbon. Dry ablation exhibited severe carbonization due to excessive heat accumulation. Wet condition using water resulted in similar ablation volume to the dry case without carbonization. The perfluorocarbon layer produced the largest ablation volume but some carbonization due to the poor thermal conductivity. Spray induced clean cutting with slightly reduced efficiency. Liquid-assisted ablation provided significant beneficial effects such as augmented material removal and cooling/cleaning effects during laser osteotomy.

  10. Chromatic Dimensions Earthy, Watery, Airy, and Fiery.

    PubMed

    Albertazzi, Liliana; Koenderink, Jan J; van Doorn, Andrea

    2015-01-01

    In our study, for a small number of antonyms, we investigate whether they are cross-modally or ideaesthetically related to the space of colors. We analyze the affinities of seven antonyms (cold-hot, dull-radiant, dead-vivid, soft-hard, transparent-chalky, dry-wet, and acid-treacly) and their intermediate connotations (cool-warm, matt-shiny, numb-lively, mellow-firm, semi-transparent-opaque, semi-dry-moist, and sour-sweet) as a function of color. We find that some antonyms relate to chromatic dimensions, others to achromatic ones. The cold-hot antonym proves to be the most salient dimension. The dry-wet dimension coincides with the cold-hot dimension, with dry corresponding to hot and wet to cold. The acid-treacly dimension proves to be transversal to the cold-hot dimension; hence, the pairs mutually span the chromatic domain. The cold-hot and acid-treacly antonyms perhaps recall Hering's opponent color system. The dull-radiant, transparent-chalky, and dead-vivid pairs depend little upon chromaticity. Of all seven antonyms, only the soft-hard one turns out to be independent of the chromatic structure. © The Author(s) 2015.

  11. Effect of Convex Longitudinal Curvature on the Planing Characteristics of a Surface Without Dead Rise

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.

    1959-01-01

    A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.

  12. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator

    DTIC Science & Technology

    2012-09-01

    The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant...prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric

  13. Droplet-surface Impingement Dynamics for Intelligent Spray Design

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Kizito, John P.; Tryggvason, Gretar; Berger, Gordon M.; Mozes, Steven D.

    2004-01-01

    Spray cooling has high potential in thermal management and life support systems by overcoming the deleterious effect of microgravity upon two-phase heat transfer. In particular spray cooling offers several advantages in heat flux removal that include the following: 1. By maintaining a wetted surface, spray droplets impinge upon a thin fluid film rather than a dry solid surface 2. Most heat transfer surfaces will not be smooth but rough. Roughness can enhance conductive cooling, aid liquid removal by flow channeling. 3. Spray momentum can be used to a) substitute for gravity delivering fluid to the surface, b) prevent local dryout and potential thermal runaway and c) facilitate liquid and vapor removal. Yet high momentum results in high We and Re numbers characterizing the individual spray droplets. Beyond an impingement threshold, droplets splash rather than spread. Heat flux declines and spray cooling efficiency can markedly decrease. Accordingly we are investigating droplet impingement upon a) dry solid surfaces, b) fluid films, c) rough surfaces and determining splashing thresholds and relationships for both dry surfaces and those covered by fluid films. We are presently developing engineering correlations delineating the boundary between splashing and non-splashing regions.

  14. Size, diet, and condition of age-0 Pacific cod (Gadus macrocephalus) during warm and cool climate states in the eastern Bering sea

    NASA Astrophysics Data System (ADS)

    Farley, Edward V.; Heintz, Ron A.; Andrews, Alex G.; Hurst, Thomas P.

    2016-12-01

    The revised Oscillating Control Hypothesis for the Bering Sea suggests that recruitment of groundfish is linked to climatic processes affecting seasonal sea ice that, in turn, drives the quality and quantity of prey available to young fish for growth and energy storage during their critical life history stages. We test this notion for age-0 (juvenile) Pacific cod (Gadus macrocephalus) by examining the variability in size, diet, and energetic condition during warm (2003-2005), average (2006), and cool (2007-2011) climate states in the eastern Bering Sea. Juvenile cod stomachs contained high proportions of age-0 walleye pollock (by wet weight) during years with warm sea temperatures with a shift to euphausiids and large copepods during years with cool sea temperatures. Juvenile cod were largest during years with warm sea temperatures and smallest during years with cool sea temperatures. However, energetic status (condition) of juvenile cod was highest during years with cool sea temperatures. This result is likely linked to the shift to high quality, lipid-rich prey found in greater abundance on the shelf and in the stomach contents of juvenile cod during cool years. Our examination of juvenile cod size, diet, and energetic status provided results that are similar to those from studies on juvenile pollock, suggesting that the common mechanisms regulating gadid recruitment on the eastern Bering Sea shelf are climate state, prey quality and quantity, and caloric density of gadids prior to winter.

  15. Desalination of Impaired Water Using Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S; Akar, Sertac; Cath, Tzahi

    Membrane distillation (MD) and nanofiltration (NF) are explored as a means to provide high quality water for on-site use at the Tuscarora geothermal power plant in northern Nevada. The plant uses a wet cooling tower, but decreasing flow from the wells providing makeup water necessitates exploration for alternative water or alternative cooling sources. Scenarios are explored to extend cooling water by (1) extracting fresh water from the geothermal brine, (2) upgrading the makeup-water quality to allow for increased cycles of concentration in the cooling tower, or (3) recovering water from the cooling tower blowdown. The preliminary cost analysis indicates thatmore » applying NF to extract water from the injection brine is the most attractive option of the scenarios examined. This approach may be useful for other plants as well. The estimated cost for the NF treatment of the injection brine ranges from $0.63/m3 to $0.45/m3 and provides a reduction in the current makeup well flows of 35% to 71%. Savings from the reduction in makeup well pumping and chemical treatment do not fully offset the estimated cost of the proposed treatment systems; the site will have to weigh the cost of these water treatment options versus alternatives in light of the diminishing flows from the existing cooling-water wells. Testing is planned to quantify the performance of the proposed NF and MD technologies and help refine the estimated system costs.« less

  16. Evaluation of a teflon based ultraviolet light system on the disinfection of water in a textile air washer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.E.; Whisnant, R.B.

    The report provides an in-depth evaluation of an ultraviolet (UV) disinfection unit as applied to the treatment of cooling water in a textile air washer system. The UV unit tests used a teflon tube to transport the aquatic phase. The unit reduced microbial populations and maintained an average level of 10,000 Colony formed unites/mL for the 6-month testing period, without the addition of biocides. No cleaning or other maintenance was required of the wetted surfaces during the testing period. Slime deposits observed on walls of the air washer during chemical treatment were also eliminated. The UV unit can be utilizedmore » on both cooling towers and air washers without extensive installation.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, F.C.; Gray, D.D.; Hyndman, J.R.

    The thermal, ecological, and social impacts of a 40-reactor NEC are compared to impacts from four 10-reactor NECs and ten 4-reactor power plants. The comparison was made for surrogate sites in western Tennessee. The surrogate site for the 40-reactor NEC is located on Kentucky Lake. A layout is postulated for ten clusters of four reactors each with 2.5-mile spacing between clusters. The plants use natural-draft cooling towers. A transmission system is proposed for delivering the power (48,000 MW) to five load centers. Comparable transmission systems are proposed for the 10-reactor NECs and the 4-reactor dispersed sites delivering power to themore » same load centers. (auth)« less

  18. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    NASA Astrophysics Data System (ADS)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  19. How to Simulate the Interplate Domain in Thermo-mechanical Experiments of Subduction ? Critical Effects of Resolution and Rheology, and Consequences on Wet Mantle Melting

    NASA Astrophysics Data System (ADS)

    Arcay, D.

    2017-12-01

    Oceanic plate subduction implies tight interactions between converging lithospheres and surrounding mantle. Plate-mantle couplings can be modeled using thermo-chemical codes of mantle convection. But how to model correctly with a continuous fluid approach the subduction interface, characterised by strong and localised discontinuities? The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate, simply modeled by a weak crust layer, free to evolve. Pseudo-brittle and non-Newtonian behaviours are modelled. This study shows first that the numerical resolution is critical. If the subducting plate is 100 Myr old, subduction occurs for any crust strength. The stiffer the crust is, the shallower the interplate down-dip extent is and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel leads to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. If the incoming plate is 20 Myr old, subduction occurs only if the crust is either stiff and denser than the mantle, or weak and buoyant. These conditions lead notably to (1) fore-arc lithosphere cooling, and (2) partial or complete hindrance of wet mantle melting. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow: either focussed towards the mantle wedge tip and strongly warming the subduction plate, or, diffuse and favoring global cooling by the lengthening of the subduction plane. The thermal states simulated within the mantle wedge are compared with observations to decipher the best rheological ranges modelling the subduction channel. Two intervals of crustal activation energy are underlined: 345-385 kJ/mol to reproduce the slab surface temperature range inferred from geothermometry, and 415-455 kJ/mol to reproduce the hot mantle wedge core suggested by seismic tomographies. As these two intervals do not overlap, an extra process involved in subduction dynamics is needed. A moderate mantle viscosity reduction, caused by metasomatism in the mantle wedge, is proposed. From these results, it can be inferred that the subduction channel down-dip extent should vary with the subduction setting, consistently with the worldwide variability of sub-arc depths of the subducting plate surface.

  20. On Problem of Mathematical Modelling of Thermo-Physical Processes in Regenerative Water-Evaporating Coolers

    NASA Astrophysics Data System (ADS)

    Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.

    2018-03-01

    For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.

  1. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    NASA Astrophysics Data System (ADS)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-03-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  2. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    NASA Astrophysics Data System (ADS)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-06-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  3. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures

    NASA Astrophysics Data System (ADS)

    Fernandes, Kátia; Verchot, Louis; Baethgen, Walter; Gutierrez-Velez, Victor; Pinedo-Vasquez, Miguel; Martius, Christopher

    2017-05-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July-October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.

  4. Early formation of preferential flow in a homogeneous snowpack observed by micro-CT

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Petrucci, Giacomo; Matzl, Margret; Schneebeli, Martin; De Michele, Carlo

    2017-05-01

    We performed X-ray microtomographic observations of wet-snow metamorphism during controlled continuous melting and melt-freeze events in the laboratory. Three blocks of snow were sieved into boxes and subjected to cyclic, superficial heating or heating-cooling to reproduce vertical water infiltration patterns in snow similarly to natural conditions. Periodically, samples were taken at different heights and scanned. Results suggest that wet-snow metamorphism dynamics are highly heterogeneous even in an initially homogeneous snowpack. Consistent with previous work, we observed an increase with time in the thickness of the ice structure, which is a measure of grain size. However, this was coupled with large temporal scatter between consecutive measurements of the specific surface area and of the statistical moments of grain thickness distributions. Because of marked differences in the right tail, grain thickness distributions did not show shape invariance with time, contrary to previous analyses. In our experiments, wet-snow metamorphism showed two strikingly different patterns: homogeneous coarsening superimposed by faster heterogeneous coarsening in areas that were affected by preferential percolation of water. Liquid water movement in snow and fast structural evolution may be thus intrinsically coupled by early formation of preferential flow at local scale. These observations suggest that further experiments are highly needed to fully understand wet-snow metamorphism and infiltration patterns in a natural snowpack.

  5. Huddling Conserves Energy, Decreases Core Body Temperature, but Increases Activity in Brandt's Voles (Lasiopodomys brandtii)

    PubMed Central

    Sukhchuluun, Gansukh; Zhang, Xue-Ying; Chi, Qing-Sheng; Wang, De-Hua

    2018-01-01

    Huddling as social thermoregulatory behavior is commonly used by small mammals to reduce heat loss and energy expenditure in the cold. Our study aimed to determine the effect of huddling behavior on energy conservation, thermogenesis, core body temperature (Tb) regulation and body composition in Brandt's voles (Lasiopodomys brandtii). Adult captive-bred female Brandt's voles (n = 124) (~50 g) in 31 cages with 4 individuals each were exposed to cool (23 ± 1°C) and cold (4 ± 1°C) ambient temperatures (Ta) and were allowed to huddle or were physically separated. The cold huddling (Cold-H) groups significantly reduced food intake by 29% and saved digestible energy 156.99 kJ/day compared with cold separated groups (Cold-S); in cool huddling groups (Cool-H) the reduction in food intake was 26% and digestible energy was saved by 105.19 kJ/day in comparison to the separated groups (Cool-S). Resting metabolic rate (RMR) of huddling groups was 35.7 and 37.2% lower than in separated groups at cold and cool Tas, respectively. Maximum non-shivering thermogenesis (NSTmax) of huddling voles was not affected by Ta, but in Cold-S voles it was significantly increased in comparison to Cool-S. Huddling groups decreased wet thermal conductance by 39% compared with separated groups in the cold, but not in the cool Ta. Unexpectedly, huddling voles significantly decreased Tb by 0.25 – 0.50°C at each Ta. Nevertheless, activity of Cold-H voles was higher than in Cold-S voles. Thus, huddling is energetically highly effective because of reduced metabolic rate, thermogenic capacity and relaxed Tb regulation despite the increase of activity. Therefore, Brandt's voles can remain active and maintain their body condition without increased energetic costs during cold exposure. This study highlights the ecological significance of huddling behavior for maintenance of individual fitness at low costs, and thus survival of population during severe winter in small mammals. PMID:29867585

  6. The Water-Use Implications of a Changing Power Sector

    NASA Astrophysics Data System (ADS)

    Peer, R.; Sanders, K.

    2016-12-01

    Changing policies, declining natural gas prices due to shale production and, growing pressure for cleaner energy sources are causing significant shifts in the fuels and technologies utilized for US electricity generation. These shifts have already impacted the volumes of water required for cooling thermal power plants, imposing consequences for watersheds that have yet to be quantified. This research investigates how these regulatory, economic, and socially-driven changes in the power sector have impacted cooling water usage across the US, which currently represents nearly half of US water withdrawals. This study uses plant-specific fuel consumption, generation, and cooling water data to assess water usage trends in the power sector from 2008 to 2014 across HUC-8 hydrologic units. Over this period, transitions from steam-cycle coal and nuclear units towards combined-cycle natural gas units and renewables, as well as transitions from once-through cooling towards wet recirculating tower and dry cooling systems resulted in large shifts in water usage. Trends towards non-traditional cooling water sources such as recycled water reduced freshwater consumption in some watersheds. Although US cooling water withdrawals and consumption increased from 2008 to 2014 largely due to electricity demand growth, the average water withdrawn and consumed per unit of electricity generated decreased and remained similar in magnitude, respectively. Changes at the watershed scale were not uniform, with some experiencing significant water use reductions and environmental benefits, especially due to coal-fired power plant retirements. Results highlight the importance of evaluating both water withdrawals and consumption at local spatial scales, as these shifts have varying consequences on water availability and quality for downstream users and ecosystems. This analysis underscores the importance of prioritizing local water security in global climate change adaptation and mitigation efforts.

  7. Insulin storage in hot climates without refrigeration: temperature reduction efficacy of clay pots and other techniques.

    PubMed

    Ogle, G D; Abdullah, M; Mason, D; Januszewski, A S; Besançon, S

    2016-11-01

    Insulin loses potency when stored at high temperatures. Various clay pots part-filled with water, and other evaporative cooling devices, are used in less-resourced countries when home refrigeration is unavailable. This study examined the cooling efficacy of such devices. Thirteen devices used in Sudan, Ethiopia, Tanzania, Mali, India, Pakistan and Haiti (10 clay pots, a goat skin, a vegetable gourd and a bucket filled with wet sand), and two identical commercially manufactured cooling wallets were compared. Devices were maintained according to local instructions. Internal and ambient temperature and ambient humidity were measured by electronic loggers every 5 min in Khartoum (88 h), and, for the two Malian pots, in Bamako (84 h). Cooling efficacy was assessed by average absolute temperature difference (internal vs. ambient), and % maximal possible evaporative cooling (allowing for humidity). During the study period, mean ambient temperature and humidity were 31.0°C and 32.0% in Khartoum and 32.9°C and 39.8% in Bamako. All devices reduced the temperature (P < 0.001) with a mean (sd) reduction from 2.7 ± 0.5°C to 8.3 ± 1.0°C, depending on the device. When expressed as % maximal cooling, device efficacy ranged from 20.5% to 71.3%. On cluster analysis, the most efficacious devices were the goat skin, two clay pots (from Ethiopia and Sudan) and the suspended cooling wallet. Low-cost devices used in less-resourced countries reduce storage temperatures. With more efficacious devices, average temperatures at or close to standard room temperature (20-25°C) can be achieved, even in hot climates. All devices are more efficacious at lower humidity. Further studies are needed on insulin stability to determine when these devices are necessary. © 2016 Diabetes UK.

  8. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  9. Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio

    USGS Publications Warehouse

    Stoeckel, Donald M.; Covert, S. Alex

    2002-01-01

    The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill Creek sampling networks. E. coli concentrations increased during wet-weather flow and remained higher than dry-weather concentrations for 48 hours after peak flow. E. coli concentration criteria were more commonly exceeded during wet-weather flow than during dry-weather flow. Exceedances of nutrient-concentration criteria were not substantially more common during wet-weather flow. The fish and aquatic macroinvertebrate network included Mill Creek and its tributaries but did not include the main stem of the Mahoning River. Persistent exceedances of chemical water-quality standards in Mill Creek and the presence of nutrient concentrations in excess of draft criteria may have contributed to biotic index scores that on only one occasion met State criteria throughout the fish and aquatic macroinvertebrate sampling network. Monitored tributary streams did not contribute concentrations of E. coli, nitrate plus nitrite, or total phosphorus to the Mahoning River and Mill Creek that were higher than main-stem concentrations, but monitored WWTP and sewer-overflow discharges did contribute. Twenty-four hour load estimates of sewer-overflow discharge contributions during wet-weather flow indicated that sewer-overflow discharges contributed large loads of bacteria and inorganic nitrogen to the Mahoning River relative to the instream load. The sewer-overflow loads appeared to move as a slug of highly enriched water that passed through Youngstown on the rising limb of the storm hydrograph. The median estimated sewer-overflow load contribution of bacteria was greater than the estimated instream load by a factor of five or more; however, the median estimated sewer-overflow load of inorganic nitrogen was less than half of the estimated instream load. Sewer-overflow discharges contributed loads of E. coli and nutrients to the Mahoning River and Mill Creek at a point where the streams already did not meet State water-quality regulations. Improvement of water quality of

  10. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y.

    NASA Astrophysics Data System (ADS)

    Combourieu Nebout, N.; Turon, J. L.; Zahn, R.; Capotondi, L.; Londeix, L.; Pahnke, K.

    2002-10-01

    Multiproxy paleoenvironmental records (pollen and planktonic isotope) from Ocean Drilling Program Site 976 (Alboran Sea) document rapid ocean and climate variations during the last glacial that follow the Dansgaard-Oeschger climate oscillations seen in the Greenland ice core records, thus suggesting a close link of the Mediterranean climate swings with North Atlantic climates. Continental conditions rapidly oscillated through cold-arid and warm-wet conditions in the course of stadial-interstadial climate jumps. At the time of Heinrich events, i.e., maximum meltwater flux to the North Atlantic, western Mediterranean marine microflora and microfauna show rapid cooling correlated with increasing continental dryness. Enhanced aridity conceivably points to prolonged wintertime stability of atmospheric high-pressure systems over the southwestern Mediterranean in conjunction with cooling of the North Atlantic.

  11. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    PubMed

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  12. Drop Impingement on Highly Wetting Micro/Nano Porous Surfaces

    NASA Astrophysics Data System (ADS)

    Buie, Cullen; Joung, Youngsoo

    2011-11-01

    Recently, we developed a novel fabrication method using a combination of electrophoretic deposition (EPD) and break down anodization (BDA) to achieve highly wetting nanoporous surfaces with microscale features. In this study we investigate droplet impingement behavior on these surfaces as a function of impact velocity, droplet size, and liquid properties. We observe impingement modes we denote as ``necking'' (droplet breaks before full penetration in the porous surface), ``spreading'' (continuous wicking into the porous surface), and ``jetting'' (jets of liquid emanate from the edges of the wicking liquid). To predict the droplet impingement modes, we've developed a non-dimensional parameter that is a function of droplet velocity, dynamic viscosity, effective pore radius and contact angle. The novel dimensionless parameter successfully predicts drop impingement modes across multiple fluids. Results of this study will inform the design of spray impingement cooling systems for electronics applications where the ``spreading'' mode is preferred.

  13. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  15. Evaluation of Friction Stir Processing of HY-80 Steel Under Wet and Dry Conditions

    DTIC Science & Technology

    2012-03-01

    MS80. The tool design included a convex scroll shoulder with a step-spiral protruding pin (CS4). Figure 4. PCBN FSW/P threaded tool. 12 For...and cooling water was pumped through during the FSW/P process, Figure 7. Sea salt was added to distilled water to create a 3.5% salt content. 14... Vacuum hot extraction was used to determine the hydrogen concentration as specified by ASTM E 146–83. In addition, combustion infrared detection

  16. Recovering endemic plants of the Channel Islands

    USGS Publications Warehouse

    McEachern, A. Kathryn

    2008-01-01

    At the California Channel Islands, off the state’s southern coast, cold waters from the north mix with warmer waters from the south. Each of the eight Channel Islands, which were never connected to the mainland, developed unique floras as colonizing plants adapted to their new island homes. This part of California is one of only five Mediterranean climate regions in the world, characterized by hot, dry summers and cool, wet winters. Thus, the islands support a truly unusual assemblage of plants and animals found nowhere else.

  17. Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device

    NASA Astrophysics Data System (ADS)

    Veidenbergs, Ivars; Blumberga, Dagnija; Vigants, Edgars; Kozuhars, Grigorijs

    2010-01-01

    The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the Microsoft Office Excel environment is being developed.

  18. Two stage indirect evaporative cooling system

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  19. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion

    PubMed Central

    Thain, Peter K.; Bleakley, Christopher M.; Mitchell, Andrew C. S.

    2015-01-01

    Context Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. Objective To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Design Randomized controlled clinical trial. Setting University of Hertfordshire human performance laboratory. Patients or Other Participants A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Intervention(s) Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Main Outcome Measure(s) Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. Results We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Conclusions Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions. PMID:26067429

  20. The Relationship between Body Mass Index and Temperament, Based on the Knowledge of Traditional Persian Medicine

    PubMed Central

    Parvizi, Mohammad Mahdi; Salehi, Alireza; Nimroozi, Majid; Hajimonfarednejad, Mahdiyeh; Amini, Fatemeh; Parvizi, Zahra

    2016-01-01

    Background: Temperament is one of the key concepts in traditional Persian medicine (TPM), which is the quality that will be obtained by the reaction between the four elements of water, earth, fire and air, and its property is different from the component property. According to TPM, temperament is influenced by many factors and the bulk of the body is one of these factors. In this study, we aimed at determining the relationship between person’s temperament based on the knowledge of TPM and the body mass index (BMI). Methods: This study is a cross-sectional study that examines the relationship between person’s temperament and their BMI. For this purpose, 86 employees (20-40 years) of Shiraz Medical School were selected and their temperaments assessed using Dr. Mojahedi’s temperament questionnaire and visitation by a TPM specialist. SPSS 18 was used for statistical analysis. Results: In this study, 86 employees were evaluated including 18 (20.9%) male and 68 (79.1%) female. The mean age of the participants was 32.45±4.93 years old and the mean BMI was 23.75±2.94. Minimum and maximum BMI were related to people with temperament of cold and dry and cool temperament and more with the mean of 20.55±1.90 and 28.13±0.35, where the difference was statistically significant (P=0.0003). BMI in people with a temperament of hot and dry was significantly less than those with cool and wet temperament (P=0.01). Conclusion: Based on TPM, people with wet temperament are usually more obese and people with dry temperament are thinner. The results of this study confirm that obese people are cold and wet or have phlegmatic temperament whereas in comparison thin people are drier. This is in-line with the principles of TPM. PMID:27840480

  1. The Relationship between Body Mass Index and Temperament, Based on the Knowledge of Traditional Persian Medicine.

    PubMed

    Parvizi, Mohammad Mahdi; Salehi, Alireza; Nimroozi, Majid; Hajimonfarednejad, Mahdiyeh; Amini, Fatemeh; Parvizi, Zahra

    2016-05-01

    Temperament is one of the key concepts in traditional Persian medicine (TPM), which is the quality that will be obtained by the reaction between the four elements of water, earth, fire and air, and its property is different from the component property. According to TPM, temperament is influenced by many factors and the bulk of the body is one of these factors. In this study, we aimed at determining the relationship between person's temperament based on the knowledge of TPM and the body mass index (BMI). This study is a cross-sectional study that examines the relationship between person's temperament and their BMI. For this purpose, 86 employees (20-40 years) of Shiraz Medical School were selected and their temperaments assessed using Dr. Mojahedi's temperament questionnaire and visitation by a TPM specialist. SPSS 18 was used for statistical analysis. In this study, 86 employees were evaluated including 18 (20.9%) male and 68 (79.1%) female. The mean age of the participants was 32.45±4.93 years old and the mean BMI was 23.75±2.94. Minimum and maximum BMI were related to people with temperament of cold and dry and cool temperament and more with the mean of 20.55±1.90 and 28.13±0.35, where the difference was statistically significant (P=0.0003). BMI in people with a temperament of hot and dry was significantly less than those with cool and wet temperament (P=0.01). Based on TPM, people with wet temperament are usually more obese and people with dry temperament are thinner. The results of this study confirm that obese people are cold and wet or have phlegmatic temperament whereas in comparison thin people are drier. This is in-line with the principles of TPM.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Munk, Jeffrey D.; Gehl, Anthony C.

    The field study is planned to continue through the 2016 cooling season with the draft final project report due by September 30, 2016. This report provides a description of both installations and preliminary 2015 cooling and fall season performance results for the Knoxville site. For the August 18 through December 14 period, the Knoxville site GS-IHP provided 53.6% total source energy savings compared to a baseline electric RTU/heat pump and electric WH. Peak demand savings ranged from 33% to 59% per month. Energy cost savings of 53.1% have been achieved to date with more than half of that coming frommore » reduced demand charges. Data on installation and maintenance costs are being collected and will be combined with total test period energy savings data for a payback analysis to be included in the project final report. The GS-IHP also saved a significant amount of carbon emissions. The total emission savings for the Knoxville site for the August-December 2015 period were ~0.8 metric tons. If trading for carbon credits ever becomes a reality, additional cost savings would be realized.« less

  3. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  4. Fish debris in sediments of the upwelling zone off central Peru: a late Quaternary record

    NASA Astrophysics Data System (ADS)

    De Vries, Thomas J.; Pearcy, William G.

    1982-01-01

    Scales of the anchoveta were abundantly represented among fish remains preserved in partly laminated marine sediments on the upper continental slope of Peru. Hake scales were less common. Sardine scales occurred only sporadically. Recent accumulation rates of scales indicate that prior to exploitation the anchoveta standing stock off Peru was about five times that of northern anchovy off California. During glacial time, however, clupeoids were less abundant off Peru and were more evenly distributed among sardines and anchoveta. Evidence from fish scales and phytoplankton assemblages suggests that the coastal waters off Peru did not respond to continental glacial and neoglacial advances simply by cooling. High accumulation rates of scales from warm-water fishes and tests of cool-water phytoplankton preceded and succeeded an interval containing low numbers of dominantly warm-water taxa. This interval coincided with the second neoglacial advance (2000 to 2700 y B.P.). Similar but less well-defined warm-water and cool-water assemblages coincided with the third neoglacial advance (200 to 400 y B.P.) and the last glacial retreat. Upwelling intensity probably fluctuated more widely during early and late phases of glacial and neoglacial cooling episodes, accounting for the mix of distinctly warm-water and cool-water assemblages and perhaps for an enhanced productivity. A weakened Intertropical Convergence Zone or strengthened coastal countercurrent may explain the warm-water marine faunas and floras and wet climates on the mainland of Peru inferred by others for neoglacial or glacial time.

  5. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    NASA Astrophysics Data System (ADS)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  6. Investigation of wetting property between liquid lead lithium alloy and several structural materials for Chinese DEMO reactor

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli

    2017-10-01

    The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.

  7. Evaluation of 2 Heat-Mitigation Methods in Army Trainees.

    PubMed

    Sefton, JoEllen M; McAdam, J S; Pascoe, David D; Lohse, K R; Banda, Robert L; Henault, Corbin B; Cherrington, Andrew R; Adams, N E

    2016-11-01

     Heat injury is a significant threat to military trainees. Different methods of heat mitigation are in use across military units. Mist fans are 1 of several methods used in the hot and humid climate of Fort Benning, Georgia.  To determine if (1) the mist fan or the cooling towel effectively lowered participant core temperature in the humid environment found at Fort Benning and (2) the mist fan or the cooling towel presented additional physiologic or safety benefits or detriments when used in this environment.  Randomized controlled clinical trial.  Laboratory environmental chamber.  Thirty-five physically active men aged 19 to 35 years.  (1) Mist fan, (2) commercial cooling towel, (3) passive-cooling (no intervention) control. All treatments lasted 20 minutes. Participants ran on a treadmill at 60% V̇o 2 max.  Rectal core temperature, heart rate, thermal comfort, perceived temperature, perceived wetness, and blood pressure.  Average core temperature increased during 20 minutes of cooling (F 1,28 = 64.76, P < .001, η p 2 = 0.70), regardless of group (F 1,28 = 3.41, P = .08, η p 2 = 0.11) or condition (F 1,28 < 1.0). Core temperature, heart rate, and blood pressure did not differ among the 3 conditions. Perceived temperature during 20 minutes of cooling decreased (F 1,30 = 141.19, P < .001, η p 2 = 0.83) regardless of group or condition. Perceived temperature was lower with the mist-fan treatment than with the control treatment (F 1,15 = 7.38, P = .02, η p 2 = 0.32). The mist-fan group perceived themselves to be cooler even at elevated core temperatures.  The mist fan and cooling towel were both ineffective at lowering core temperature. Core temperature continued to increase after exercise in all groups. The mist fan produced feelings of coolness while the core temperature remained elevated, possibly increasing the risk of heat illness.

  8. Evaluation of 2 Heat-Mitigation Methods in Army Trainees

    PubMed Central

    Sefton, JoEllen M.; McAdam, J. S.; Pascoe, David D.; Lohse, K. R.; Banda, Robert L.; Henault, Corbin B.; Cherrington, Andrew R.; Adams, N. E.

    2016-01-01

    Context: Heat injury is a significant threat to military trainees. Different methods of heat mitigation are in use across military units. Mist fans are 1 of several methods used in the hot and humid climate of Fort Benning, Georgia. Objectives: To determine if (1) the mist fan or the cooling towel effectively lowered participant core temperature in the humid environment found at Fort Benning and (2) the mist fan or the cooling towel presented additional physiologic or safety benefits or detriments when used in this environment. Design: Randomized controlled clinical trial. Setting: Laboratory environmental chamber. Patients or Other Participants: Thirty-five physically active men aged 19 to 35 years. Intervention(s): (1) Mist fan, (2) commercial cooling towel, (3) passive-cooling (no intervention) control. All treatments lasted 20 minutes. Participants ran on a treadmill at 60% V̇o2max. Main Outcome Measure(s): Rectal core temperature, heart rate, thermal comfort, perceived temperature, perceived wetness, and blood pressure. Results: Average core temperature increased during 20 minutes of cooling (F1,28 = 64.76, P < .001, ηp2 = 0.70), regardless of group (F1,28 = 3.41, P = .08, ηp2 = 0.11) or condition (F1,28 < 1.0). Core temperature, heart rate, and blood pressure did not differ among the 3 conditions. Perceived temperature during 20 minutes of cooling decreased (F1,30 = 141.19, P < .001, ηp2 = 0.83) regardless of group or condition. Perceived temperature was lower with the mist-fan treatment than with the control treatment (F1,15 = 7.38, P = .02, ηp2 = 0.32). The mist-fan group perceived themselves to be cooler even at elevated core temperatures. Conclusions: The mist fan and cooling towel were both ineffective at lowering core temperature. Core temperature continued to increase after exercise in all groups. The mist fan produced feelings of coolness while the core temperature remained elevated, possibly increasing the risk of heat illness. PMID:27710091

  9. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti.

    PubMed

    Ahn, Do-Hwan; Shin, Seung Chul; Kim, Bo-Mi; Kang, Seunghyun; Kim, Jin-Hyoung; Ahn, Inhye; Park, Joonho; Park, Hyun

    2017-08-01

    The Antarctic bathydraconid dragonfish, Parachaenichthys charcoti, is an Antarctic notothenioid teleost endemic to the Southern Ocean. The Southern Ocean has cooled to -1.8ºC over the past 30 million years, and the seawater had retained this cold temperature and isolated oceanic environment because of the Antarctic Circumpolar Current. Notothenioids dominate Antarctic fish, making up 90% of the biomass, and all notothenioids have undergone molecular and ecological diversification to survive in this cold environment. Therefore, they are considered an attractive Antarctic fish model for evolutionary and ancestral genomic studies. Bathydraconidae is a speciose family of the Notothenioidei, the dominant taxonomic component of Antarctic teleosts. To understand the process of evolution of Antarctic fish, we select a typical Antarctic bathydraconid dragonfish, P. charcoti. Here, we have sequenced, de novo assembled, and annotated a comprehensive genome from P. charcoti. The draft genome of P. charcoti is 709 Mb in size. The N50 contig length is 6145 bp, and its N50 scaffold length 178 362 kb. The genome of P. charcoti is predicted to contain 32 712 genes, 18 455 of which have been assigned preliminary functions. A total of 8951 orthologous groups common to 7 species of fish were identified, while 333 genes were identified in P. charcoti only; 2519 orthologous groups were also identified in both P. charcoti and N. coriiceps, another Antarctic fish. Four gene ontology terms were statistically overrepresented among the 333 genes unique to P. charcoti, according to gene ontology enrichment analysis. The draft P. charcoti genome will broaden our understanding of the evolution of Antarctic fish in their extreme environment. It will provide a basis for further investigating the unusual characteristics of Antarctic fishes. © The Author 2017. Published by Oxford University Press.

  10. Numerical investigation of impact of relative humidity on droplet accumulation and film cooling on compressor blades

    NASA Astrophysics Data System (ADS)

    Bugarin, Luz Irene

    During the summer, high inlet temperatures affect the power output of gas turbine systems. Evaporative coolers have gained popularity as an inlet cooling method for these systems. Wet compression has been one of the common evaporative cooling methods implemented to increase power output of gas turbine systems due to its simple installation and low cost. This process involves injection of water droplets into the continuous phase of compressor to reduce the temperature of the flow entering the compressor and in turn increase the power output of the whole gas turbine system. This study focused on a single stage rotor-stator compressor model with varying inlet temperature between 300K and 320K, as well as relative humidity between 0% and 100%. The simulations are carried out using the commercial CFD tool ANSYS: FLUENT. The study modeled the interaction between the two phases including mass and heat transfer, given different inlet relative humidity (RH) and temperature conditions. The Reynolds Averaged Navier-Stokes (RANS) equations with k-epsilon turbulence model were applied as well as the droplet coalescence and droplet breakup model considered in the simulation. Sliding mesh theory was implemented to simulate the compressor movement in 2-D. The interaction between the blade and droplets were modeled to address all possible interactions; which include: stick spread, splash, or rebound and compared to an interaction of only reflect. The goal of this study is to quantify the relation between RH, inlet temperature, overall heat transfer coefficient, and the heat transferred from the droplets to the blades surface. The result of this study lead to further proof that wet compression yields higher pressure ratios and lower temperatures in the domain under all of the cases. Additionally, droplet-wall interaction has an interesting effect on the heat transfer coefficient at the compressor blades.

  11. Centennial and millennial-scale hydroclimate changes in northwestern Patagonia since 16,000 yr BP

    NASA Astrophysics Data System (ADS)

    Moreno, Patricio I.; Videla, Javiera

    2016-10-01

    We examine hydroclimate changes at centennial/millennial timescales since 16,000 yr BP in northwestern Patagonia based on the pollen and charcoal record from Lago El Salto, a small closed-basin lake located in the Chilean Lake District (41°38‧48.02″S, 73° 5‧48.42″W). We observe cold/wet conditions between 14,500-16,000 yr BP, followed by further cooling with increased precipitation until 13,000 yr BP, enhanced precipitation seasonality and/or variability between 11,600-13,000 yr BP, and an extended warm-and-dry interval between 7600 and 11,300 yr BP with peak paleofire activity. Colder-and-wetter than present conditions and muted paleofire activity prevail between 5300 and 7600 yr BP, followed by alternating cold/wet and centennial-scale warm/dry phases starting at 5300 yr BP with three conspicuous megadroughts since 2500 yr BP. The most recent megadrought occurred during the Medieval Climate Anomaly. We identify a cold reversal that spans the Antarctic Cold Reversal (ACR) and the Younger Dryas (YD) chrons with stronger-than-present westerly influence during the former and enhanced variability during the latter. These results extend the northern limit of strong cooling and increase in precipitation during the ACR and the southern limit of influence of strong hydrologic variations during the YD in terrestrial environments, suggesting an overlap in the spheres of influence of processes originating from southern and northern polar latitudes. An extended warm southern westerly wind (SWW)-minimum interval is evident between 7600 and 11,300 yr BP, followed by a rapid shift to cool-moist conditions between 5300 and 7600 yr BP brought by a mid-Holocene SWW maximum. Since then we observe centennial-scale hydroclimate variability, which has driven biodiversity and fire-regime shifts of evergreen temperate rainforests.

  12. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  13. Climatic impacts of the Middle Route of the South-to-North Water Transfer Project over the Haihe River basin in North China simulated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Zhan, Chesheng; Xie, Zhenghui; Qin, Peihua; Jiang, Shanshan

    2016-08-01

    The Middle Route of the South-to-North Water Transfer Project (MSWTP) was constructed to ease the water crisis over the North China Plain. In this study, we incorporated a water transfer scheme into the regional climate model RegCM4 and investigated the climatic impacts of the MSWTP over the Haihe River Basin in North China. Four 10 year simulation tests were conducted from 2001 to 2010 where different volumes of water were transferred. The results demonstrated that before the MSWTP was conducted the original groundwater exploitation and consumption over the Haihe River Basin led to wetting and cooling at the land surface with rapidly falling groundwater depth. The extra water input from the MSWTP slightly enhanced the wetting and cooling effects over the basin, as well as reduced the falling rate in the groundwater depth along the conveyance line. However, the weak climatic effects of the MSWTP were limited at a local scale and had no obvious interannual trends, because the transfer volume of the MSWTP was far lower than the total demand which has been conventionally satisfied through local water exploitation. In terms of seasonal variations, the greatest changes due to the MSWTP occurred in the summer for precipitation and soil moisture and in the spring for energy-related variables (heat fluxes and 2 m air temperature).

  14. Remote sensing of evapotranspiration using automated calibration: Development and testing in the state of Florida

    NASA Astrophysics Data System (ADS)

    Evans, Aaron H.

    Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel evapotranspiration. Data fusion techniques only slightly outperformed linear interpolation. Eddy covariance comparison and temporal interpolation produced acceptable bias error for most cases suggesting automated calibration and interpolation could be used to predict monthly or annual ET. Maps demonstrating spatial patterns of evapotranspiration at field scale were successfully produced, but only for limited spatial extents. A framework has been established for producing larger maps by creating a mosaic of smaller individual maps.

  15. Dynamics of Liquids in Edges and Corners (DYLCO): IML-2 Experiment for the BDPU

    NASA Technical Reports Server (NTRS)

    Langbein, D.; Weislogel, M.

    1998-01-01

    Knowledge of the behavior of fluids possessing free surfaces is important to many fluid systems, particularly in space, where the normally subtle effects of surface wettability play a more dramatic and often surprising role. DYLCO for the IML-2 mission was proposed as a simple experiment to probe the particular behavior of capillary surfaces in containers of irregular cross section. Temperature control was utilized to vary the fluid-solid contact angle, a questionable thermodynamic parameter of the system, small changes in which can dramatically influence the configuration, stability, and flow of a capillary surface. Container shapes, test fluid, and temperature ranges were selected for observing both local changes in interface curvature as well as a global change in fluid orientation due to a critical wetting phenomenon. The experiment hardware performed beyond what was expected and fluid interfaces could be readily digitized post flight to show the dependence of the interface curvature on temperature. For each of the containers tested surfaces were observed which did not satisfy the classic equations for the prediction of interface shape with constant contact angle boundary condition. This is explained by the presence of contact angle hysteresis arising from expansion and contraction of the liquid during the heating and cooling steps of the test procedure. More importantly, surfaces exceeding the critical surface curvature required for critical wetting were measured, yet no wetting was observed. These findings are indeed curious and pose key questions concerning the role of hysteresis for this critical wetting phenomena. The stability of such surfaces was determined numerically and it is shown that stability is enhance (reduced) when a surface is in its 'advancing' ('receding') state, The analysis shows complete instability as the critical wetting condition is reached. The case of ideal dynamic wetting is addressed analytically in detail with results of significant flow characteristics presented in closed form. The solutions indicate a square root of T dependence of the capillary 'rise' rate which is corroborated by drop tower tests. The analysis clearly shows that infinite time is necessary for surfaces to reorient at the critical wetting transition.

  16. A commercial building energy standard for Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.; Warner, J.L.; Wiel, S.

    1998-07-01

    Beginning in 1992, the Comission Nacional de Ahorro de Energia (CONAE), or Mexican National Commission for Energy Conservation, developed a national energy standard for commercial buildings, with assistance from USAID and LBNL. The first complete draft of the standard was released for public review in mid-1995. To promote public acceptance of the standard, CONAE held advisory meetings with architects, engineers, and utility representatives, and organized pubic workshops presented by the authors, with support from USAID. In response to industry comments, the standard was revised in late 1997 and is currently under review by CONAE. It is anticipated that the revisedmore » draft will be released again for final public comments in the summer of 1998. The standard will become law one year after it is finalized by CONAE and published in the federal government record. Since Mexico consists of cooling-dominated climates, the standard emphasizes energy-efficient envelope design to control solar and conductive heat gains. The authors extended DOE-2 simulation results for four climates to all of Mexico through regression analysis. Based on these results, they developed a simplified custom budget calculation approach. To facilitate the method's use, a calculation template was devised in a spreadsheet program and distributed to the public. CONAE anticipates that local engineering associations will use this spreadsheet to administer code compliance.« less

  17. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% overmore » the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.« less

  18. Phase change material thermal capacitor clothing

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  19. Phase change thermal control materials, method and apparatus

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  20. Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives.

    PubMed

    Burkhardt, John J; Heath, Garvin A; Turchi, Craig S

    2011-03-15

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrates salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically derived nitrate salt are evaluated. During its LC, the reference CSP plant is estimated to emit 26 g of CO(2eq) per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJ(eq)/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce LC water consumption by 77% but increase LC GHG emissions and CED by 8%. Synthetic nitrate salts may increase LC GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces LC GHG emissions, most significantly for plants using synthetically derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  1. Dry or wet in East Asia during North Atlantic cooling? New perspectives from multiproxy climate records and coupled model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Griffiths, M. L.; Wu, S.; Kong, W.; Chiang, J. C. H.; Atwood, A. R.; Cheng, H.; Huang, J.; Xie, S.

    2017-12-01

    Chinese speleothem δ18Oc records have revealed that the Asian summer monsoon underwent pronounced millennial-scale variability during the last deglaciation, yet there is still debate as to what the δ18Oc signals represent. Traditionally, these δ18Oc records were interpreted as a proxy for regional rainfall variability via the East Asian Summer Monsoon (EASM), however, recent isotope-enabled model simulations have suggested that precipitation δ18O over central China is more a reflection of rainfall in the upstream region of the Indian monsoon. Therefore, despite the increased number of speleothem records emerging from the EASM region, we still lack a robust understanding of how local monsoon rainfall variability fluctuated in central China during the last deglaciation. To address this, here we present two new multiproxy speleothem records from Haozhu Cave (HZ), central China, during the deglaciation. HZ δ18Oc time series largely parallel those from other distal cave sites in China and India, suggesting that the oxygen isotopes are indeed dominated by upstream rainout. To inspect the local hydrology, we also examined Sr-Mg-Ba/Ca ratios and d13C. Interestingly, results show that during Heinrich Stadial 1 and the Younger Dryas, the d13C and trace elements decrease significantly, which we interpret to reflect higher cave recharge. Thus, despite a weakened Indian monsoon during these cooling events (inferred from the δ18Oc), our results suggest that central China was in fact wetter. To test this hypothesis, we examined past rainfall variability in China using CESM1.0.5 imposed with 1Sv of North Atlantic (NA) fresh water forcing. Similar to the proxies, results from these simulations demonstrate that south-central China was wetter following NA cooling, whilst northern China was drier. This `dipole' pattern can best be explained by a seasonally-lagged onset of the mei-yu stage of monsoon evolution. A later onset of mei-yu to midsummer during NA cooling would have resulted in a shorter midsummer stage, leaving south-central China wet at the expense of dry conditions to the north. Our proxy and model results thus support a recent hypothesis, that paleoclimate changes over East Asia reflect the timing and duration of its intraseasonal stages, modulated by the position of the westerlies relative to the Tibetan Plateau.

  2. Water spray cooling during handling of feedlot cattle

    NASA Astrophysics Data System (ADS)

    Brown-Brandl, Tami M.; Eigenberg, Roger A.; Nienaber, John A.

    2010-11-01

    Activities involved in receiving or working (e.g., sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimental to the well-being and performance of the animals. Sprinkle cooling of animals has been successfully employed within the pen; however, added moisture to the pens' surface increases odor generation from the pen. A study was conducted to investigate the effectiveness of a single instance of wetting an animal within the working facility instead of in the pen, which could potentially provide extra evaporative cooling to offset the added heat produced by activity. Sixty-four cross-bred heifers were assigned to one of eight pens on the basis of weight. On four separate occasions during hot conditions (average temperature 28.2 ± 1.9°C, 29.1 ± 2.0°C, 28.9 ± 3.0°C, and 26.8 ± 1.6°C; with the temperature ranging from 22.6 to 32.5°C during the trials), the heifers were moved from their pens to and from the working facility (a building with a scale and squeeze chute located 160-200 m away). While in the squeeze chute, four of the pens of heifers were sprinkle cooled and the remaining four pens were worked as normal. The heifers that were treated had a body temperature that peaked sooner (31.9 ± 0.63 min compared to 37.6 ± 0.62) with a lower peak body temperature (39.55 ± 0.03°C compared to 39.74 ± 0.03°C), and recovered sooner (70.5 ± 2.4 min compared to 83.2 ± 2.4 min). The treated animals also had a lower panting score, a visual assessment of level of cattle heat stress (1.1 ± 0.2 compared to 1.16 ± 0.2). The behavior measurements that were taken did not indicate a change in behavior. It was concluded that while a single instance of wetting an animal within the working facility did not completely offset the increase in body temperature, it was beneficial to the animals without needing to add water to the pen surface, thus reducing the potential for odor generation.

  3. Cold Injuries in Korea During Winter of 1950-1951

    DTIC Science & Technology

    1951-11-01

    to be wet with perspiration (Table 7). Shoe! wAce were worn by 87.8 per cent nf patients with this condition. Am previouly irdic~tad, thii o’"ition 1...51. No informtion was available an the number of -nrr•t’ostbitten men in Korea who had a past history of cold injury. " • * k. Smoking. - Since the...inability to keep the feet warm. Cool or cold ambient t~eperatu.o% cavm.od stinging pain of the affected part. g,- B. A., a 24 year old • C, was frostbitten

  4. A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  5. Wet-Chemical Synthesis of Enhanced-Thermopower Bi1 -xSbx Nanowire Composites for Solid-State Active Cooling of Electronics

    NASA Astrophysics Data System (ADS)

    Vandaele, K.; He, Bin; Van Der Voort, P.; De Buysser, K.; Heremans, J. P.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. In 1993, Hicks and Dresselhaus [Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631 (1993)., 10.1103/PhysRevB.47.16631] suggested that Bi nanowires could result in values of the thermoelectric figure of merit z T >1 . The Dresselhaus group also calculated a ternary phase diagram for Bi1 -xSbx nanowires as a function of x and wire diameter. This manuscript reports a wet-chemical method to synthesize Bi1 -xSbx -silica nanowire composites. Resistivity, Hall electron concentration, electron mobility, Seebeck and Nernst coefficients, and thermal conductivity of composites are measured and compared to bulk polycrystalline Bi1 -xSbx samples prepared either by ingot casting or by the same wet chemistry but without nanostructuring. A clear increase of the thermopower in 20-nm Bi94Sb6 -silica is reported when compared to bulk samples, and the values are among the highest found in the literature from 300 to 380 K, even though the electron concentration is higher than in the bulk. This suggests that consistent with theory, size quantization is responsible for the thermopower increase.

  6. Dry coolers and air-condensing units (Review)

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that global trends have a significant influence on the application of dry coolers in Russia, in view of the fact that some TPP have a surface condensers arrangement. The reasons that these systems are currently less efficient than the direct steam condensation in an air-cooled condenser are explained. It is shown that, in some cases, it is more reasonable to use mixing-type condensers in combination with a dry cooler. Measures for a full import substitution of steam exhaust heat removal systems are mentioned.

  7. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the combined effects of soil temperature and soil moisture conditions. These results suggest that the response of vegetation distribution to shifts in precipitation and warmer climate conditions may have significant implications for release of soil carbon as CO2 in High Arctic tundra ecosystems in Northwest Greenland.

  8. Drought, multi-seasonal climate, and wildfire in northern New Mexico

    USGS Publications Warehouse

    Margolis, Ellis; Woodhouse, Connie A.; Swetnam, Thomas W.

    2017-01-01

    Wildfire is increasingly a concern in the USA, where 10 million acres burned in 2015. Climate is a primary driver of wildfire, and understanding fire-climate relationships is crucial for informing fire management and modeling the effects of climate change on fire. In the southwestern USA, fire-climate relationships have been informed by tree-ring data that extend centuries prior to the onset of fire exclusion in the late 1800s. Variability in cool-season precipitation has been linked to fire occurrence, but the effects of the summer North American monsoon on fire are less understood, as are the effects of climate on fire seasonality. We use a new set of reconstructions for cool-season (October–April) and monsoon-season (July–August) moisture conditions along with a large new fire scar dataset to examine relationships between multi-seasonal climate variability, fire extent, and fire seasonality in the Jemez Mountains, New Mexico (1599–1899 CE). Results suggest that large fires burning in all seasons are strongly influenced by the current year cool-season moisture, but fires burning mid-summer to fall are also influenced by monsoon moisture. Wet conditions several years prior to the fire year during the cool season, and to a lesser extent during the monsoon season, are also important for spring through late-summer fires. Persistent cool-season drought longer than 3 years may inhibit fires due to the lack of moisture to replenish surface fuels. This suggests that fuels may become increasingly limiting for fire occurrence in semi-arid regions that are projected to become drier with climate change.

  9. Scale Modelling of Nocturnal Cooling in Urban Parks

    NASA Astrophysics Data System (ADS)

    Spronken-Smith, R. A.; Oke, T. R.

    Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.

  10. 5-Fluorouracil:carnauba wax microspheres for chemoembolization: an in vitro evaluation.

    PubMed

    Benita, S; Zouai, O; Benoit, J P

    1986-09-01

    5-Fluorouracil:carnauba wax microspheres were prepared using a meltable dispersion process with the aid of a surfactant as a wetting agent. It was noted that only hydrophilic surfactants were able to wet the 5-fluorouracil and substantially increased its content in the microspheres. No marked effect was observed in the particle size distribution of the solid microspheres as a function of the nature of the surfactant. Increasing the stirring rate in the preparation process decreased, first, the mean droplet size of the emulsified melted dispersion in the vehicle during the heating process, and, consequently, the mean particle size of the solidified microspheres during the cooling process. 5-Fluorouracil cumulative release from the microspheres followed first-order kinetics, as shown by nonlinear regression analysis. Although the kinetic results were not indicative of the true release mechanism from a single microsphere, it was believed that 5-fluorouracil release from the microspheres was probably governed by a dissolution process, rather than by a leaching process through the carnauba wax microspheres.

  11. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    NASA Astrophysics Data System (ADS)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.

  12. Association of spring-summer hydrology and meteorology with human West Nile virus infection in West Texas, USA, 2002-2016.

    PubMed

    Ukawuba, Israel; Shaman, Jeffrey

    2018-04-04

    The emergence of West Nile virus (WNV) in the Western Hemisphere has motivated research into the processes contributing to the incidence and persistence of the disease in the region. Meteorology and hydrology are fundamental determinants of vector-borne disease transmission dynamics of a region. The availability of water influences the population dynamics of vector and host, while temperature impacts vector growth rates, feeding habits, and disease transmission potential. Characterization of the temporal pattern of environmental factors influencing WNV risk is crucial to broaden our understanding of local transmission dynamics and to inform efforts of control and surveillance. We used hydrologic, meteorological and WNV data from west Texas (2002-2016) to analyze the relationship between environmental conditions and annual human WNV infection. A Bayesian model averaging framework was used to evaluate the association of monthly environmental conditions with WNV infection. Findings indicate that wet conditions in the spring combined with dry and cool conditions in the summer are associated with increased annual WNV cases. Bayesian multi-model inference reveals monthly means of soil moisture, specific humidity and temperature to be the most important variables among predictors tested. Environmental conditions in March, June, July and August were the leading predictors in the best-fitting models. The results significantly link soil moisture and temperature in the spring and summer to WNV transmission risk. Wet spring in association with dry and cool summer was the temporal pattern best-describing WNV, regardless of year. Our findings also highlight that soil moisture may be a stronger predictor of annual WNV transmission than rainfall.

  13. Paleopedology plus TL, 10Be, and14C dating as tools in stratigraphic and paleoclimatic investigations, Mississippi River Valley, U.S.A.

    USGS Publications Warehouse

    Markewich, H.W.; Wysocki, D.A.; Pavich, M.J.; Rutledge, E.M.; Millard, H.T.; Rich, F.J.; Maat, P.B.; Rubin, M.; McGeehin, J.P.

    1998-01-01

    Thick ( ??? 35 m) loess deposits are present on ridges and high bluffs in the northern-half of the Lower Mississippi Valley (LMV), U.S.A. Detailed descriptions of the loess sections and pedologic, physiochemical, and mineralogic analyses and TL, 14C, and 10Be age determinations, allow preliminary paleoclimatic reconstructions for the late Quaternary of central North America. No age data are available for the oldest (Fifth) loess. 10Be and TL age data suggest a 250-200 ka age for the Fourth or Crowleys Ridge(?) Loess, and indicate that the Loveland or Third Loess is time equivalent to oxygen isotope stage 6, ??? 190-120 ka. A weakly developed paleosol is present in the basal-half of the Loveland. The Sangamon Geosol is present in the upper 5 m and represents all of oxygen isotope stage 5, ??? 130-60 ka. It formed in a climate as warm as, but drier and (or) with greater variation in precipitation, than the present. The Roxana Silt (second loess) was deposited during oxygen isotope stages 4 and 3, ??? 65-26 ka. The early Wisconsinan interglacial-glacial transition, represented by the Sangamon Geosol and the unnamed paleosol in the basal Roxana Silt, was slow. The paleoclimate during the 35 k yr of Roxana deposition was cool to cold and wet. Age and pedologic data indicate that deposition of the Peoria Loess (the youngest) began around 25 ka when the area's climate changed abruptly from cool or cold and wet to cold and dry, with periods of sustained high winds.

  14. Ecological correlates of ex situ seed longevity: a comparative study on 195 species.

    PubMed

    Probert, Robin J; Daws, Matthew I; Hay, Fiona R

    2009-07-01

    Extended seed longevity in the dry state is the basis for the ex situ conservation of 'orthodox' seeds. However, even under identical storage conditions there is wide variation in seed life-span between species. Here, the effects of seed traits and environmental conditions at the site of collection on seed longevity is explored for195 wild species from 71 families from environments ranging from cold deserts to tropical forests. Seeds were rapidly aged at elevated temperature and relative humidity (either 45 degrees C and 60% RH or 60 degrees C and 60% RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50% (p(50)) was determined using Probit analysis and used as a measure of relative seed longevity between species. Across species, p(50) at 45 degrees C and 60% RH varied from 0.1 d to 771 d. Endospermic seeds were, in general, shorter lived than non-endospermic seeds and seeds from hot, dry environments were longer lived than those from cool, wet conditions. These relationships remained significant when controlling for the effects of phylogenetic relatedness using phylogenetically independent contrasts. Seed mass and oil content were not correlated with p(50). The data suggest that the endospermic seeds of early angiosperms which evolved in forest understorey habitats are short-lived. Extended longevity presumably evolved as a response to climatic change or the invasion of drier areas. The apparent short-lived nature of endospermic seeds from cool wet environments may have implications for re-collection and re-testing strategies in ex situ conservation.

  15. Low flows and water temperature risks to Asian coal power plants in a warming world

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Byers, E.; Parkinson, S.; Wanders, N.; Wada, Y.; Bielicki, J. M.

    2017-12-01

    Thermoelectric power generation requires cooling, normally provided by wet cooling systems. The withdrawal and discharge of cooling water are subject to regulation. Therefore, operation of power plants may be vulnerable to changes in streamflow and rises in water temperatures. In Asia, about 489 GW of coal-fired power plants are currently under construction, permitted, or announced. Using a comprehensive dataset of these planned coal power plants (PCPPs) and cooling water use models, we investigated whether electricity generation at these power plants will be limited by streamflow and water temperature. Daily streamflow and water temperature time series are from the high-resolution (0.08ox0.08o) runs of the PCRGLOBWB hydrological model, driven by downscaled meteorological forcing from five global climate models. We compared three climate change scenarios (1.5oC, 2oC, and 3oC warming in global mean temperature) and three cooling system choice scenarios (freshwater once-through, freshwater cooling tower, and "business-as-usual" - where a PCPP uses the same cooling system as the nearest existing coal power plant). The potential available capacity of the PCPPs increase slightly from the 1.5oC to the 2oC and 3oC warming scenario due to increase in streamflow. The once-through cooling scenario results in virtually zero available capacity at the PCPPs. The other two cooling scenarios result in about 20% of the planned capacity being unavailable under all warming scenarios. Hotspots of the most water-limited PCPPs are in Pakistan, northwestern India, northwestern and north-central China, and northern Vietnam, where most of the PCPPs will face 30% to 90% unavailable nameplate capacity on annual average. Since coal power plants cannot operate effectively when the capacity factor falls below a minimum load level (about 20% to 50%), the actual limitation on generation capacity would be larger. In general, the PCPPs that will have the highest limitation on annual average capacity will also have the most frequent and longest periods of interrupted operation. These results suggest that to ensure security of energy supply and avoid over-withdrawing water resources, the water-limited PCPPs should implement adaptation measures such as dry-cooling, combined heat- and power, or using recycled wastewater.

  16. Processes Controlling the Seasonal Cycle of Arctic Aerosol Number and Size Distributions

    NASA Astrophysics Data System (ADS)

    Wentworth, G.; Croft, B.; Martin, R.; Leaitch, W. R.; Tunved, P.; Breider, T. J.; D'Andrea, S.; Pierce, J. R.; Murphy, J. G.; Kodros, J.; Abbatt, J.

    2015-12-01

    Measurements at high-Arctic sites show a strong seasonal cycle in aerosol number and size. The number of aerosols with diameters larger than 20 nm exhibits a maximum in late spring associated with a dominant accumulation mode, and a second maximum in the summer associated with a dominant Aitken mode. Seasonal-mean aerosol effective diameter ranges from about 160 nm in summer to 250 nm in winter. This study interprets these seasonal cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. We find improved agreement with in situ measurements (SMPS) of aerosol size at both Alert, Nunavut, and Mt. Zeppelin, Svalbard following model developments: 1) increase the efficiency of wet scavenging in the Arctic summer and 2) represent coagulation between interstitial aerosols and aerosols activated to form cloud droplets. Our simulations indicate that the dominant summer-time Aitken mode is associated with increased efficiency of wet removal, which limits the number of larger aerosols and promotes local new-aerosol formation. We also find an important role of interstitial coagulation in clouds in the Arctic, which limits the number of Aitken-mode aerosols in the non-summer seasons when direct wet removal of these aerosols is inefficient. The summertime Arctic atmosphere is particularly pristine and strongly influenced by natural regional emissions which have poorly understood climate impacts. Especially influenced are the climatic roles of atmospheric particles and clouds. Here we present evidence that ammonia (NH3) emissions from migratory-seabird guano (dung) are the primary contributor to summertime free ammonia levels recently measured in the Canadian Arctic atmosphere. These findings suggest that ammonia from seabird guano is a key factor contributing to bursts of new-particle formation, which are observed every summer in the near-surface atmosphere at Alert, Canada. Chemical transport model simulations show that these newly formed particles can grow by vapour condensation to diameters sufficiently large to influence Arctic cloud properties and lead to a pan-Arctic cooling over -0.1 W m-2 with local cooling exceeding -1 W m-2 near some bird colonies. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  17. Wetting a rail tanker behind a noise shield.

    PubMed

    Rosmuller, Nils

    2009-05-30

    In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, over more than 100 km noise shields are apparent. The question is to what extent this noise shield hinders the cooling of a rail tanker, carrying flammable liquid such as liquefied petroleum gas (LPG)? To answer this question, a full scale test was conducted on an already constructed part of the Betuweline [N. Rosmuller, D.W.G. Arentsen, (2005). Praktijkproeven Betuweroute: Instantane uitstroming en koeling 24 juni 2005, Nibra, Arnhem, The Netherlands]. Two railcars and a rail tanker were placed behind a 3m high noise shield. First, it was tested as to whether firemen or water canons should be used to deliver the water. Water canons were best next, four positions of the water canons to wet the rail tanker were tested. Three camera's and three observers recorded the locations and the extent of water that hit the rail tanker. The results indicate that the noise shield, to a large extent, prevents the water from hitting, and therefore cooling, the rail tanker. The upper parts of the rail tanker were minimally struck by the water canons and the small amount of water flowing down the rail tanker did not reach the lower parts of it because of the armatures at the rail tanker. Also, the amount of water in the ditches to be used for wetting was too small. The ditch nearby ran empty. These insights are both relevant to emergency responders for disaster abatement purposes and to water management organizations. The Ministry of Transport is examining the possible strategies to deal with these findings. The results are based upon one single full scale test near a 3m high noise shield. In addition, it would be valuable to determine what the influence would be of other heights of the noise shields.

  18. 46 CFR 97.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Draft marks and draft indicating systems. 97.40-10... VESSELS OPERATIONS Markings on Vessels § 97.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  19. 46 CFR 196.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Draft marks and draft indicating systems. 196.40-10... VESSELS OPERATIONS Markings on Vessels § 196.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  20. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Draft marks and draft indicating systems. 78.50-10... OPERATIONS Markings on Vessels § 78.50-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place...

  1. 46 CFR 97.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Draft marks and draft indicating systems. 97.40-10... VESSELS OPERATIONS Markings on Vessels § 97.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  2. 46 CFR 97.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Draft marks and draft indicating systems. 97.40-10... VESSELS OPERATIONS Markings on Vessels § 97.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  3. 46 CFR 196.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Draft marks and draft indicating systems. 196.40-10... VESSELS OPERATIONS Markings on Vessels § 196.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  4. 46 CFR 97.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Draft marks and draft indicating systems. 97.40-10... VESSELS OPERATIONS Markings on Vessels § 97.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  5. 46 CFR 196.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Draft marks and draft indicating systems. 196.40-10... VESSELS OPERATIONS Markings on Vessels § 196.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  6. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Draft marks and draft indicating systems. 78.50-10... OPERATIONS Markings on Vessels § 78.50-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place...

  7. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Draft marks and draft indicating systems. 78.50-10... OPERATIONS Markings on Vessels § 78.50-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place...

  8. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Draft marks and draft indicating systems. 78.50-10... OPERATIONS Markings on Vessels § 78.50-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place...

  9. 46 CFR 97.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Draft marks and draft indicating systems. 97.40-10... VESSELS OPERATIONS Markings on Vessels § 97.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  10. 46 CFR 196.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Draft marks and draft indicating systems. 196.40-10... VESSELS OPERATIONS Markings on Vessels § 196.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  11. 46 CFR 78.50-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Draft marks and draft indicating systems. 78.50-10... OPERATIONS Markings on Vessels § 78.50-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or rudderpost or any place...

  12. 46 CFR 196.40-10 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Draft marks and draft indicating systems. 196.40-10... VESSELS OPERATIONS Markings on Vessels § 196.40-10 Draft marks and draft indicating systems. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  13. Temporal Evolution of Water Use for Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.

    2013-12-01

    The long lifespan of power plants (30 - 50 yr) results in the current power plant fleet representing a legacy of past variations in fuel availability and costs, water availability and water rights, and advances in technologies, such as combined cycle plants, which impact trends in water consumption. The objective of this study was to reconstruct past water consumption and withdrawal of thermoelectric generation based on data on controls, including fuel types, generator technologies, and cooling systems, using Texas as a case study and comparing with the US. Fuel sources in Texas varied over time, from predominantly natural gas in the 1960s and early 1970s to coal and nuclear sources following the 1973 oil embargo and more recently to large increases in natural gas generation (85% increase 1998 - 2004) in response to hydraulic fracturing and low natural gas prices. The dominant generator technology in Texas was steam turbines until the early 1990s; however, combined cycle plants markedly increased in the late 1990s (400% increase 1998 - 2004). Proliferation of cooling ponds in Texas, mostly in the 1970s and 1980s (340% increase) reflects availability of large quantities of unappropriated surface water and increases in water rights permitting during this time and lower cost and higher cooling efficiency of ponds relative to wet cooling towers. Water consumption for thermoelectricity in Texas in 2010 totaled ~0.53 km3 (0.43 million acre feet, maf), accounting for ~4% of total state water consumption. High water withdrawals (32.3 km3, 26.2 maf) mostly reflect circulation between cooling ponds and power plants. About a third of the water withdrawals is not required for cooling and reflects circulation by idling plants being used as peaking plants. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system resulting in statewide consumption for natural gas combined cycle generators with mostly cooling towers being 60% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds. The primary control on water withdrawals is cooling system, with ~ two orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. A similar approach will be applied to thermoelectric generation throughout the US using information on fuel sources, generator technologies and cooling systems to better understand current water use for thermoelectric generation based on the legacy of past drivers and long lifespans of power plants. Understanding the historical evolution of water needs for thermoelectricity should allow us to better project future water needs.

  14. Influence of water on clumped-isotope bond reordering kinetics in calcite

    NASA Astrophysics Data System (ADS)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external fluids. We explore the mechanism(s) by which clumped isotope reordering rates may be modestly increased under wet, high-pressure conditions, including changes in defect concentrations in the near surface environment due to reactions at the water-mineral interface, and lattice deformation resulting from pressurization of samples.

  15. 46 CFR 32.05-1 - Draft marks and draft indicating systems-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Draft marks and draft indicating systems-TB/ALL. 32.05-1..., MACHINERY, AND HULL REQUIREMENTS Markings § 32.05-1 Draft marks and draft indicating systems—TB/ALL. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  16. 46 CFR 32.05-1 - Draft marks and draft indicating systems-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Draft marks and draft indicating systems-TB/ALL. 32.05-1..., MACHINERY, AND HULL REQUIREMENTS Markings § 32.05-1 Draft marks and draft indicating systems—TB/ALL. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  17. 46 CFR 32.05-1 - Draft marks and draft indicating systems-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Draft marks and draft indicating systems-TB/ALL. 32.05-1..., MACHINERY, AND HULL REQUIREMENTS Markings § 32.05-1 Draft marks and draft indicating systems—TB/ALL. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  18. 46 CFR 32.05-1 - Draft marks and draft indicating systems-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Draft marks and draft indicating systems-TB/ALL. 32.05-1..., MACHINERY, AND HULL REQUIREMENTS Markings § 32.05-1 Draft marks and draft indicating systems—TB/ALL. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  19. 46 CFR 32.05-1 - Draft marks and draft indicating systems-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Draft marks and draft indicating systems-TB/ALL. 32.05-1..., MACHINERY, AND HULL REQUIREMENTS Markings § 32.05-1 Draft marks and draft indicating systems—TB/ALL. (a) All vessels must have draft marks plainly and legibly visible upon the stem and upon the sternpost or...

  20. Effect of microstructure and surface features on wetting angle of a Fe-3.2 wt%C.E. cast iron with water

    NASA Astrophysics Data System (ADS)

    Riahi, Samira; Niroumand, Behzad; Dorri Moghadam, Afsaneh; Rohatgi, Pradeep K.

    2018-05-01

    In the present study, variation in surface wetting behavior of a hypoeutectic cast iron with its microstructural features and surface roughness was investigated. Samples with an identical composition, i.e. Fe-3.2 wt%C.E., and different microstructures (a gray cast iron with A-type flake graphite and a white cast iron) were fabricated by gravity casting of molten cast iron in a chill mold at different cooling rates. A variation of surface roughness was also developed by polishing, a four-stage electroetching and a four-stage mechanical abrading on the samples. Roughness and water contact angles of all surfaces were then measured. The surface roughness factor and the solid fraction in contact with water by the Wenzel and Cassie-Baxter contact models were also calculated and compared with the corresponding measured contact angles to find out which regime was active. Results indicated that the surface microstructure and the type of constituents present at the surface influenced the cast iron surface wettability and that it was possible to change the surface contact angle by modification of the surface microstructure. The mechanically abraded gray cast iron followed the Wenzel-type regime while the electroetched surfaces of gray cast iron exhibited a transition from Wenzel to Cassie-Baxter type regime. In white cast iron, the results indicated Wenzel type behavior in the electroetched samples while for the mechanically abraded samples, none of these two models could predict the wetting behavior. Furthermore, the wetting angles of both gray and white cast irons were measured after 1, 2, 3 and 4 weeks of air exposure. The results showed that the wetting angles of both samples increased to above 90° after one week of air exposure which was likely due to adsorption of low surface energy hydrocarbons on the surfaces.

  1. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb oxides of nitrogen.

  2. Thermal, physiological and perceptual strain mediate alterations in match-play tennis under heat stress.

    PubMed

    Périard, Julien D; Racinais, Sébastien; Knez, Wade L; Herrera, Christopher P; Christian, Ryan J; Girard, Olivier

    2014-04-01

    This study compared the thermal, physiological and perceptual responses associated with match-play tennis in HOT (∼34°C wet-bulb-globe temperature (WBGT)) and COOL (∼19°C WBGT) conditions, along with the accompanying alterations in match characteristics. 12 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼119 and ∼102 min of play in HOT and COOL conditions, respectively. Rectal and skin temperatures, heart rate, subjective ratings of thermal comfort, thermal sensation and perceived exertion were recorded, along with match characteristics. End-match rectal temperature increased to a greater extent in the HOT (∼39.4°C) compared with the COOL (∼38.7°C) condition (p<0.05). Thigh skin temperature was higher throughout the HOT match (p<0.001). Heart rate, thermal comfort, thermal sensation and perceived exertion were also higher during the HOT match (p<0.001). Total playing time was longer in the HOT compared with the COOL match (p<0.05). Point duration (∼7.1 s) was similar between conditions, while the time between points was ∼10 s longer in the HOT relative to the COOL match (p<0.05). This led to a ∼3.4% lower effective playing percentage in the heat (p<0.05). Although several thermal, physiological and perceptual variables were individually correlated to the adjustments in time between points and effective playing percentage, thermal sensation was the only predictor variable associated with both adjustments (p<0.005). These adjustments in match-play tennis characteristics under severe heat stress appear to represent a behavioural strategy adopted to minimise or offset the sensation of environmental conditions being rated as difficult.

  3. Artificial neural network analysis based on genetic algorithm to predict the performance characteristics of a cross flow cooling tower

    NASA Astrophysics Data System (ADS)

    Wu, Jiasheng; Cao, Lin; Zhang, Guoqiang

    2018-02-01

    Cooling tower of air conditioning has been widely used as cooling equipment, and there will be broad application prospect if it can be reversibly used as heat source under heat pump heating operation condition. In view of the complex non-linear relationship of each parameter in the process of heat and mass transfer inside tower, In this paper, the BP neural network model based on genetic algorithm optimization (GABP neural network model) is established for the reverse use of cross flow cooling tower. The model adopts the structure of 6 inputs, 13 hidden nodes and 8 outputs. With this model, the outlet air dry bulb temperature, wet bulb temperature, water temperature, heat, sensible heat ratio and heat absorbing efficiency, Lewis number, a total of 8 the proportion of main performance parameters were predicted. Furthermore, the established network model is used to predict the water temperature and heat absorption of the tower at different inlet temperatures. The mean relative error MRE between BP predicted value and experimental value are 4.47%, 3.63%, 2.38%, 3.71%, 6.35%,3.14%, 13.95% and 6.80% respectively; the mean relative error MRE between GABP predicted value and experimental value are 2.66%, 3.04%, 2.27%, 3.02%, 6.89%, 3.17%, 11.50% and 6.57% respectively. The results show that the prediction results of GABP network model are better than that of BP network model; the simulation results are basically consistent with the actual situation. The GABP network model can well predict the heat and mass transfer performance of the cross flow cooling tower.

  4. Undercooled water in basaltic regoliths and implications for fluidized debris flows on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1987-01-01

    Pursuant to the past attribution of many geomorphic features on Mars to the movements of water- or ice-lubricated debris, experiments have been conducted for water freezing in wet, sand-like basaltic substrates. It is found that substantial undercooling can be achieved under Martian conditions, independently of freezing-point depressions due to soluble salts. Attention is given to results for a clay-poor soil with negligible salinity from Mauna Kea, Hawaii, which demonstrate that the degree of undercooling is essentially independent of both soil particle size and water/soil mass ratio, albeit with cooling rate variations.

  5. Conference Proceedings on Effects of Adverse Weather on Aerodynamics Held in Toulouse, France on 29 April-1 May 1991 (Les Effets des Conditions Meteorologiques Adverses sur l’Aerodynamique)

    DTIC Science & Technology

    1991-12-01

    and a refrigeration system and of a large, free jet wind tunnel. A schematic of the facil- heat exchanger that cools the air to temperatures as low ity...rotor testing turers, but correlations for heat and mass transfer over would involve the use of simulated ice applied to the wet airfoil surfaces are not...and also has incidence. A transient heat conduction the ability to introduce a correction for analysis applied around the rotor azimuth viscous effects

  6. Drafting Fundamentals. Drafting Module 1. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. The guide contains a cross-reference table of instructional materials. Ten units cover drafting fundamentals: (1) introduction to drafting; (2) general safety;…

  7. Carbon and oxygen stable isotopes in large herbivore tooth enamel illustrate a mid-Miocene precipitation increase in the interior Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Drewicz, A.; Kohn, M. J.

    2017-12-01

    The mid-Miocene Climatic Optimum (MMCO; 13.75-16.9 Ma), represents the warmest period in Earth's history during the last 35 Ma, and is distinguished by low ice volume and high ocean water temperatures. The MMCO has been associated with high atmospheric CO2 (pCO2) similar to levels anticipated in the next century. Thus, understanding MMCO climate may help enlighten predictions of future climate change. Here, using new stable oxygen and carbon isotopes of fossil ungulate tooth enamel from before, during, and after the MMCO, we show that high pCO2 corresponds with warm-wet conditions, whereas low pCO2 corresponds with cool-dry conditions. We specifically show that mean annual precipitation (MAP), as inferred from tooth enamel δ13C values and corrected for atmospheric δ13C values (Δ13C), increased with increasing pCO2. Values of Δ13C > 19.5 ‰ in the lower John Day ( 27 Ma) and Mascall ( 15.3 Ma) localities imply relatively high mean annual precipitation (MAP = 550-850 mm/yr). Values of Δ 13C < 18.5 ‰ at 18 Ma and at four levels between 15 and 3 Ma imply low MAP (≤250 mm/yr), similar to modern climate. High MAP values generally correlate with high pCO2 levels, as inferred from marine records, implicating pCO2 as a principal driver of MAP in the Pacific Northwest. A climate oscillation model best explains our δ 13C data, such that warm-wet conditions during high pCO2 events alternated with cool-dry conditions during low pCO2 events on timescales of 100 kyr. The MMCO may have been more dynamic than originally considered, with wet-warm and cool-dry cycles reflecting Milankovitch cycles. High δ18O values in specimens from the John Day (21.8±0.6 ‰ V-SMOW) and Mascall (21.3±0.5 ‰) Formations may reflect lower elevations for the upwind Cascade Range prior to 7 Ma, or its proximity to the coast compared to more inland sites (δ18O = 17.7±0.9 to 19.6±1.1 ‰). Unusually high δ18O values of Dromomeryx sp. from Red Basin (27.4±0.6 ‰) most likely reflect drought tolerance. Climate models predict that as global atmospheric CO2 levels continue to increase, the Pacific Northwest will become wetter and warmer. Data collected in this study are from time periods geologically close to our own, and corroborate thes

  8. Method for sealing an oxygen transport membrane assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Javier E.; Grant, Arthur F.

    An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less

  9. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  10. US Power Production at Risk from Water Stress in a Changing Climate.

    PubMed

    Ganguli, Poulomi; Kumar, Devashish; Ganguly, Auroop R

    2017-09-20

    Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, power production in US remains particularly vulnerable to water scarcity and rising stream temperatures under climate change and variability. Previous studies on the climate-water-energy nexus have primarily focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate projections. Technology managers and energy policy makers are increasingly interested in the decadal time scales to understand adaptation challenges and investment strategies. Here we develop a new approach that relies on a novel multivariate water stress index, which considers the joint probability of warmer and scarcer water, and computes uncertainties arising from climate model imperfections and intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for power production with about 27% of the production severely impacted by 2030s.

  11. The potential contribution of geothermal energy to electricity supply in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Chandrasekharam, D.; Lashin, Aref; Al Arifi, Nassir

    2016-10-01

    With increase in demand for electricity at 7.5% per year, the major concern of Saudi Arabia is the amount of CO2 being emitted. The country has the potential of generating 200×106 kWh from hydrothermal sources and 120×106 terawatt hour from Enhanced Geothermal System (EGS) sources. In addition to electricity generation and desalination, the country has substantial source for direct application such as space cooling and heating, a sector that consumes 80% of the electricity generated from fossil fuels. Geothermal energy can offset easily 17 million kWh of electricity that is being used for desalination. At least a part of 181,000 Gg of CO2 emitted by conventional space cooling units can also be mitigated through ground-source heat pump technology immediately. Future development of EGS sources together with the wet geothermal systems will make the country stronger in terms of oil reserves saved and increase in exports.

  12. Graphene nanocomposites as thermal interface materials for cooling energy devices

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. S.; Valeev, A. R.

    2017-11-01

    The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.

  13. Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong

    2013-01-01

    Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.

  14. Heat adaptation of bioabsorbable craniofacial plates: a critical review of science and technology.

    PubMed

    Pietrzak, William S

    2009-11-01

    Bioabsorbable fixation plates often require adaptation to the bone. This is typically accomplished by heating the plates to above the glass transition temperature and placing the softened plates against the bone or a prebent template until cool. Upon cooling, the plates regain stiffness and can be attached to bone to obtain anatomic fixation. This procedure is both efficient and effective and has been used throughout the craniofacial skeleton. There are many types of equipment available to heat the plates, each with advantages and disadvantages. Although a conceptually simple process, there are several nuances that have been reported in the literature, including transient effects on plate mechanical properties, memory effects, differences between wet and dry heating, and others. Upon the backdrop of the overwhelming clinical success of heat adaptation, this review critically evaluates the method and provides a comprehensive examination and explanation of the basic science and technology involved. This should help give surgeons a better understanding of the process that can help improve their use and further advance the technology.

  15. Functional Drafting, Drafting--Intermediate: 9255.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course consists of six instructional blocks totaling 135 clock hours: (1) functional drafting, (2) threads and fasteners, (3) pictorial drawings, (4) introduction to electronic drafting, (5) introduction to piping drafting, and (6) Quinmester posttest. Mastery of skills indicated in Drafting-Basic--9255.01 is a prerequisite. In the functional…

  16. 76 FR 41808 - Draft Environmental Impact Statement and Draft Habitat Conservation Plan for Oncor Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...] Draft Environmental Impact Statement and Draft Habitat Conservation Plan for Oncor Electric Delivery..., announce the availability of the draft environmental impact statement and the draft Oncor Electric Delivery... Oncor Electric Delivery Company, LLC (Applicant; Oncor), and (2) That the Applicant has developed a...

  17. Paleoclimatic insights from mapping the global distribution of non-glacial cryogenic landforms in sub-humid montane environments.

    NASA Astrophysics Data System (ADS)

    Slee, Adrian; Shulmeister, James

    2015-04-01

    Much of the 'periglacial' literature is based on landforms and observations from either high mountains or continental environments dominated by strong winter cooling and/or permafrost conditions. Cryogenic conditions occur in many other settings and some of the most widespread are montane landscapes in mid- to low latitudes. In Australia observations of 'periglacial' landforms have traditionally been limited to higher elevation regions of the Australian Alps and central Tasmania. However, the distribution of relict cryogenic landforms is much wider and extends well into sub-tropical latitudes along the eastern highlands of Australia. Here we map the distribution of relict block deposits (block streams and block fields) of known cryogenic origin so as to delineate the limits of 'periglacial' climatic conditions during cold phases in the Late Quaternary. The mapping is based on image analyses supported by extensive and intensive ground truthing. Three distinct regimes are recognised - a high elevation winter wet regime (Mt Kosciuszko style); a temperate maritime westerly regime (Tasmania style) and, unexpectedly, an east coast (sub-tropical) regime (New England style). We utilise bio-climatic modelling to derive modern climate parameters from the distribution of the block deposits so as to map regions affected by cryogenic conditions in late Quaternary cold periods. We assumed that relative changes in mean cooling and precipitation would be shared by other mid-latitude climate locales worldwide and predicted the likely distribution of block deposits in these areas. A literature review confirms the presence of 'periglacial' style block deposits in the predicted regions, including part of the Iberian Peninsula, the Atlas and Drakensburg Mountains of Africa, the Mediterranean island of Sardinia, the higher volcanoes of Mexico and parts of China, all of which have mean annual precipitation similar to the New England area. However, we also note that many of these areas have winter wet (Mediterranean) climates and when seasonality of precipitation is included, winter dry New England becomes an anomaly. We conclude that in addition to significant cooling, winter moisture balance was more positive, in northern New South Wales during cooler climate periods.

  18. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    PubMed

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no significant difference when compared with Clearfil SE Bond adhesive in dry enamel. Single Bond 2 adhesive showed no significant difference in microshear bond strength as compared with self-etching adhesive systems (Clearfil SE Bond and Xeno-V), when the enamel was kept wet. From the findings of the results, it was concluded that self-etching adhesives were not negatively affected by the presence of water on the enamel surface. The all-in-one adhesive showed different behavior depending on whether the enamel surface was dry or wet. So the enamel surface should not be desiccated, when self-etching adhesives are used.

  19. A Computer Model of Drafting Effects on Collective Behavior in Elite 10,000-m Runners.

    PubMed

    Trenchard, Hugh; Renfree, Andrew; Peters, Derek M

    2017-03-01

    Drafting in cycling influences collective behavior of pelotons. Although evidence for collective behavior in competitive running events exists, it is not clear if this results from energetic savings conferred by drafting. This study modeled the effects of drafting on behavior in elite 10,000-m runners. Using performance data from a men's elite 10,000-m track running event, computer simulations were constructed using Netlogo 5.1 to test the effects of 3 different drafting quantities on collective behavior: no drafting, drafting to 3 m behind with up to ~8% energy savings (a realistic running draft), and drafting up to 3 m behind with up to 38% energy savings (a realistic cycling draft). Three measures of collective behavior were analyzed in each condition: mean speed, mean group stretch (distance between first- and last-placed runner), and runner-convergence ratio (RCR), which represents the degree of drafting benefit obtained by the follower in a pair of coupled runners. Mean speeds were 6.32 ± 0.28, 5.57 ± 0.18, and 5.51 ± 0.13 m/s in the cycling-draft, runner-draft, and no-draft conditions, respectively (all P < .001). RCR was lower in the cycling-draft condition but did not differ between the other 2. Mean stretch did not differ between conditions. Collective behaviors observed in running events cannot be fully explained through energetic savings conferred by realistic drafting benefits. They may therefore result from other, possibly psychological, processes. The benefits or otherwise of engaging in such behavior are as yet unclear.

  20. Calibration of thermocouple psychrometers and moisture measurements in porous materials

    NASA Astrophysics Data System (ADS)

    Guz, Łukasz; Sobczuk, Henryk; Połednik, Bernard; Guz, Ewa

    2016-07-01

    The paper presents in situ method of peltier psychrometric sensors calibration which allow to determine water potential. Water potential can be easily recalculated into moisture content of the porous material. In order to obtain correct results of water potential, each probe should be calibrated. NaCl salt solutions with molar concentration of 0.4M, 0.7M, 1.0M and 1.4M, were used for calibration which enabled to obtain osmotic potential in range: -1791 kPa to -6487 kPa. Traditionally, the value of voltage generated on thermocouples during wet-bulb temperature depression is calculated in order to determine the calibration function for psychrometric in situ sensors. In the new method of calibration, the field under psychrometric curve along with peltier cooling current and duration was taken into consideration. During calibration, different cooling currents were applied for each salt solution, i.e. 3, 5, 8 mA respectively, as well as different cooling duration for each current (from 2 to 100 sec with 2 sec step). Afterwards, the shape of each psychrometric curve was thoroughly examined and a value of field under psychrometric curve was computed. Results of experiment indicate that there is a robust correlation between field under psychrometric curve and water potential. Calibrations formulas were designated on the basis of these features.

  1. Hunted gazelles evidence cooling, but not drying, during the Younger Dryas in the southern Levant

    NASA Astrophysics Data System (ADS)

    Hartman, Gideon; Bar-Yosef, Ofer; Brittingham, Alex; Grosman, Leore; Munro, Natalie D.

    2016-04-01

    The climatic downturn known globally as the Younger Dryas (YD; ∼12,900-11,500 BP) has frequently been cited as a prime mover of agricultural origins and has thus inspired enthusiastic debate over its local impact. This study presents seasonal climatic data from the southern Levant obtained from the sequential sampling of gazelle tooth carbonates from the Early and Late Natufian archaeological sites of Hayonim and Hilazon Tachtit Caves (western Galilee, Israel). Our results challenge the entrenched model that assumes that warm temperatures and high precipitation are synonymous with climatic amelioration and cold and wet conditions are combined in climatic downturns. Enamel carbon isotope values from teeth of human-hunted gazelle dating before and during the YD provide a proxy measure for water availability during plant growth. They reveal that although the YD was cooler, it was not drier than the preceding Bølling-Allerød. In addition, the magnitude of the seasonal curve constructed from oxygen isotopes is significantly dampened during the YD, indicating that cooling was most pronounced in the growing season. Cool temperatures likely affected the productivity of staple wild cereal resources. We hypothesize that human groups responded by shifting settlement strategies-increasing population mobility and perhaps moving to the warmer Jordan Valley where wild cereals were more productive and stable.

  2. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  3. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1999-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  4. 46 CFR 131.220 - Drafts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Drafts. 131.220 Section 131.220 Shipping COAST GUARD... Drafts. (a) Each vessel must have the drafts of the vessel plainly and legibly marked upon the stem and... easy observance. The bottom of each mark must indicate the draft. (b) Each draft must be taken from the...

  5. 46 CFR 131.220 - Drafts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Drafts. 131.220 Section 131.220 Shipping COAST GUARD... Drafts. (a) Each vessel must have the drafts of the vessel plainly and legibly marked upon the stem and... easy observance. The bottom of each mark must indicate the draft. (b) Each draft must be taken from the...

  6. 33 CFR 401.29 - Maximum draft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) The draft...) The draft of a vessel shall not, in any case, exceed 79.2 dm or the maximum permissible draft...

  7. 46 CFR 131.220 - Drafts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Drafts. 131.220 Section 131.220 Shipping COAST GUARD... Drafts. (a) Each vessel must have the drafts of the vessel plainly and legibly marked upon the stem and... easy observance. The bottom of each mark must indicate the draft. (b) Each draft must be taken from the...

  8. 46 CFR 131.220 - Drafts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Drafts. 131.220 Section 131.220 Shipping COAST GUARD... Drafts. (a) Each vessel must have the drafts of the vessel plainly and legibly marked upon the stem and... easy observance. The bottom of each mark must indicate the draft. (b) Each draft must be taken from the...

  9. 33 CFR 401.29 - Maximum draft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) The draft...) The draft of a vessel shall not, in any case, exceed 79.2 dm or the maximum permissible draft...

  10. 46 CFR 131.220 - Drafts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Drafts. 131.220 Section 131.220 Shipping COAST GUARD... Drafts. (a) Each vessel must have the drafts of the vessel plainly and legibly marked upon the stem and... easy observance. The bottom of each mark must indicate the draft. (b) Each draft must be taken from the...

  11. 76 FR 57760 - Notice of Availability of Draft Resource Management Plan and Draft Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Availability of Draft Resource Management Plan and Draft Environmental Impact Statement for the Colorado River... prepared a Draft Resource Management Plan (RMP) and Draft Environmental Impact Statement (EIS) for the... alternative) seeks to allocate limited resources among competing human interests, land uses, and conservation...

  12. 33 CFR 401.29 - Maximum draft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) The draft...) The draft of a vessel shall not, in any case, exceed 79.2 dm or the maximum permissible draft...

  13. 76 FR 59732 - Draft Environmental Impact Statement and Draft Habitat Conservation Plan for Oncor Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ...] Draft Environmental Impact Statement and Draft Habitat Conservation Plan for Oncor Electric Delivery... availability of the draft environmental impact statement (DEIS) and the draft Oncor Electric Delivery Company... announced that Oncor Electric Delivery Company, LLC, has applied under section 10(a)(1)(B) of the Endangered...

  14. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs formore » off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.« less

  15. Pre- and Post-harvest Influences on Seed Dormancy Status of an Australian Goodeniaceae species, Goodenia fascicularis

    PubMed Central

    Hoyle, Gemma L.; Steadman, Kathryn J.; Daws, Matthew I.; Adkins, Steve W.

    2008-01-01

    Background and Aims The period during which seeds develop on the parent plant has been found to affect many seed characteristics, including dormancy, through interactions with the environment. Goodenia fascicularis (Goodeniaceae) seeds were used to investigate whether seeds of an Australian native forb, harvested from different environments and produced at different stages of the reproductive period, differ in dormancy status. Methods During the reproductive phase, plants were grown ex situ in warm (39/21 °C) or cool (26/13 °C) conditions, with adequate or limited water availability. The physiological dormancy of resulting seeds was measured in terms of the germination response to warm stratification (34/20 °C, 100 % RH, darkness). Key Results Plants in the cool environment were tall and had high above-ground biomass, yet yielded fewer seeds over a shorter, later harvest period when compared with plants in the warm environment. Seeds from the cool environment also had higher viability and greater mass, despite a significant proportion (7 % from the cool-wet environment) containing no obvious embryo. In the warm environment, the reproductive phase was accelerated and plants produced more seeds despite being shorter and having lower above-ground biomass than those in the cool environment. Ten weeks of warm stratification alleviated physiological dormancy in seeds from all treatments resulting in 80–100 % germination. Seeds that developed at warm temperatures were less dormant (i.e. germination percentages were higher) than seeds from the cool environment. Water availability had less effect on plant and seed traits than air temperature, although plants with reduced soil moisture were shorter, had lower biomass and produced fewer, less dormant seeds than plants watered regularly. Conclusions Goodenia fascicularis seeds are likely to exhibit physiological dormancy regardless of the maternal environment. However, seeds collected from warm, dry environments are likely to be more responsive to warm stratification than seeds from cooler, wetter environments. PMID:18430743

  16. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  17. A multi-model analysis of moisture changes during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Jiang, Dabang; Lang, Xianmei

    2018-07-01

    This study investigates terrestrial moisture changes and associated mechanisms during the last glacial maximum (LGM; approximately 21,000 calendar years ago) using multi-model simulations from the Paleoclimate Modelling Intercomparison Project phase 3 (PMIP3). Considering that terrestrial moisture is not determined solely by precipitation, an aridity index (AI) is employed for measuring the terrestrial moisture by combining the effects of both precipitation and potential evapotranspiration (PET), where the latter represents atmospheric water demand and is greatly decreased mainly by the intense cooling during the LGM. Compared to the preindustrial period, the magnitude of global mean terrestrial moisture change is small, as the wetness brought by decreased PET counteracts the dryness induced by decreased precipitation. Regionally, the moisture changes depend on the different combinations of changes in precipitation and PET: (i) drying occurs where precipitation deceases and PET hardly changes, such as the northern tropical Americas and Southeast Asia; (ii) wetting is found in regions with precipitation increases and PET decreases (e.g., northwestern Africa and the central Andes), and their contributions are comparable; (iii) in particular, wetting can also occur in regions of decreased precipitation if a sufficient decrease in PET also occurs (i.e., southeastern North America and the northern and southern parts of eastern Asia), with the latter wetting effect reversing the former drying effect. The multi-model median field is consistent with available paleo-records in southern North America, the northern tropical Americas, the Andes, northwestern Africa, the southern Iberian Peninsula, southwestern Africa, the central part of eastern Asia, and Java but disagrees with proxies in Australia, central Brazil, southeastern Africa, the northern Iberian Peninsula, and the southern part of eastern Asia.

  18. Substance P Antagonist CP-96345 Blocks Lung Vascular Leakage and Inflammation More Effectively than its Stereoisomer CP-96344 in a Mouse Model of Smoke Inhalation and Burn Injury

    PubMed Central

    Jacob, Sam; Deyo, Donald J.; Cox, Robert A.; Jacob, Reuben K; Herndon, David N.; Traber, Daniel L.; Hawkins, Hal K.

    2010-01-01

    The recently developed murine model of smoke inhalation and burn (SB) injury was used to study the effect of the substance-P antagonist CP96345. C57BL/6 mice were pretreated with an i.v. dose of a specific NK-1 receptor antagonist, CP9635, or its inactive enantiomer, CP96344, (10 mg/Kg) 1 hr prior to SB injury per protocol (n = 5). Mice were anesthetized and exposed to cooled cotton smoke, 2X 30 sec, followed by a 40% total body surface area flame burn per protocol. At 48 hr after SB injury Evans Blue (EB) dye and myeloperoxidase (MPO) were measured in lung after vascular perfusion. Lungs were also analyzed for hemoglobin (Hb) and wet/dry weight ratio. In the current study, CP96345 pretreatment caused a significant decrease in wet/dry weight ratio (23%, *p = 0.048), EB (31%, *p = 0.047), Hb (46%, *p = 0.002) and MPO (54%, *p = 0.037) levels following SB injury compared to animals with SB injury alone. CP-96344 pretreatment caused an insignificant decrease in wet/dry weight ratio (14%, p=0.18), EB (16%, p = 0.134), Hb (9%, p = 0.39) and an insignificant increase in MPO (4%, p =0.79) as compared to mice that received SB injury alone. As expected, levels of EB, Hb, MPO, and wet/dry weight ratios were all significantly (p < 0.05) increased 48 hr following SB injury alone compared to respective sham animals. In conclusion, the current study indicates that pretreatment with specific NK-1R antagonist CP-96345 attenuates the lung injury and inflammation induced by SB injury in mice. PMID:20201741

  19. Wet season water distribution in a tropical Andean cloud forest of Boyacá (Colombia) during the dry climate of El Niño

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, G.; Berdugo, M. B.

    2010-07-01

    Fog has been demonstrated as the only source of moisture during the dry climate of El Niño in the tropical Andean cloud forest of Boyacá region in Colombia, yet its importance for the forest is virtually unknown. We assessed fog water distribution during the wet season inside the forest and outside in a practically deforested area. Water intercepted by plant was measured at different vertical stratus. Soil moisture in the first centimetres was also measured. During the anomalous drier wet season there was lack of rainfall and the total recorded cloud water was lower compared with the same period during the previous year. Our results indicated that the upper part of the forest mass intercepts most of the fog water compared with lower stratus when the fog event starts. However upper most stratus became rapidly drier after the event, which is explained because water is released to the atmosphere due to high heat atmosphere-leaves interface fluctuations caused by wind and solar radiation, flows towards a different water potential and drips from the leaves. Low amount of fog dripped from tree foliage into the soil, indicating a large water storage capacity of the epiphyte and bryophyte vegetation. Despite the small amount of throughfall, understory vegetation and litter remained wet, which might be explained by the water flowing through the epiphyte vegetation or the high capacity of the understory to absorb moisture from the air. Soil water did not infiltrate in depth, which underlines the importance of fog as water and cool source for seedling growth and shallow rooted understory species, especially during drier conditions.

  20. Optimizing the Utility Power of a Geothermal Power Plant using Variable Frequency Drive (VFD) (Case Study: Sibayak Geothermal Power Plant)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Manik, Y.

    2018-03-01

    Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.

  1. Automatic draft reading based on image processing

    NASA Astrophysics Data System (ADS)

    Tsujii, Takahiro; Yoshida, Hiromi; Iiguni, Youji

    2016-10-01

    In marine transportation, a draft survey is a means to determine the quantity of bulk cargo. Automatic draft reading based on computer image processing has been proposed. However, the conventional draft mark segmentation may fail when the video sequence has many other regions than draft marks and a hull, and the estimated waterline is inherently higher than the true one. To solve these problems, we propose an automatic draft reading method that uses morphological operations to detect draft marks and estimate the waterline for every frame with Canny edge detection and a robust estimation. Moreover, we emulate surveyors' draft reading process for getting the understanding of a shipper and a receiver. In an experiment in a towing tank, the draft reading error of the proposed method was <1 cm, showing the advantage of the proposed method. It is also shown that accurate draft reading has been achieved in a real-world scene.

  2. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoidmore » overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety system components such as the safety relief valve (SRV), the RCIC system, the wet well, and the dry well. The results show reasonable system behaviors while exhibiting rich dynamics such as variable flow rates through RCIC turbine and pump during the SBO transient. The model has the potential to resolve the Fukushima RCIC mystery after adding the off-design two-phase turbine operation model and other additional improvements.« less

  3. Drafting: Current Trends and Future Practices

    ERIC Educational Resources Information Center

    Jensen, C.

    1976-01-01

    Various research findings are reported on drafting trends which the author feels should be incorporated into teaching drafting: (1) true position and geometric tolerancing, (2) decimal and metric dimensioning, (3) functional drafting, (4) automated drafting, and (5) drawing reproductions. (BP)

  4. Mississippi Curriculum Framework for Drafting and Design Technology (Program CIP: 48.0102--Architectural Drafting Technology) (Program CIP: 48.0101--General Drafting). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the two course sequences of the state's postsecondary-level drafting and design technology program: architectural drafting technology and drafting and design technology. Presented first are a program description and…

  5. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird

    PubMed Central

    Soukup, Sheryl Swartz; Drilling, Nancy E.; Eckerle, Kevin P.; Sakaluk, Scott K.; Thompson, Charles F.

    2016-01-01

    Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might, therefore, influence selection on breeding date remain unresolved. Here, we use a 36-year dataset from a long-term, individual-based study of House Wrens (Troglodytes aedon) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment. PMID:27859132

  6. The 2016 southeastern US drought: an extreme departure from centennial wetting and cooling

    NASA Astrophysics Data System (ADS)

    Williams, P.; Cook, B. I.; Smerdon, J. E.; Bishop, D. A.; Seager, R.; Mankin, J. S.

    2017-12-01

    The southeastern United States (SE US) drought in fall 2016 appeared exceptional based on its wildfire and water-supply impacts but the current monitoring framework does not readily facilitate evaluation of moisture-balance anomalies in a centennial context. A new method to extend modeled soil-moisture records back to 1895 is developed using monthly climate data. Since 1895, October-November 2016 soil moisture (0-200 cm) in the SE US was likely the second lowest on record, behind 1954. This severe drought developed rapidly and was brought on by near record-low September-November precipitation and record-high September-November daily maximum temperatures (Tmax). Record Tmax drove record-high atmospheric moisture demand, accounting for 28% of the October-November 2016 soil-moisture anomaly. Drought and heat in fall 2016 contrasted strongly with 20th-century wetting and cooling trends, with few analogs after the mid-1950s. Dynamically, the exceptional drying in fall 2016 was driven by anomalous ridging over the central United States that reduced south-southwesterly moisture transports into the SE US by approximately 75%. These circulation anomalies were promoted by moderate La Niña conditions and warmth in the tropical North Atlantic, but these processes did not account for a majority of the SE US drying in fall 2016 and therefore imply a large role for internal atmospheric variability. The extended analysis back to 1895 indicates that SE US droughts as strong as the 2016 event are more likely than indicated from a shorter 60-year perspective, and continued multi-decadal swings in precipitation may combine with future warming to further enhance the likelihood of such events.

  7. Selection of a Representative Subset of Global Climate Models that Captures the Profile of Regional Changes for Integrated Climate Impacts Assessment

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Mcdermid, Sonali P.

    2017-01-01

    We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  8. Millennial-scale variability in vegetation records from the East Asian Islands: Taiwan, Japan and Sakhalin

    NASA Astrophysics Data System (ADS)

    Takahara, Hikaru; Igarashi, Yaeko; Hayashi, Ryoma; Kumon, Fujio; Liew, Ping-Mei; Yamamoto, Masanobu; Kawai, Sayuri; Oba, Tadamichi; Irino, Tomohisa

    2010-10-01

    High-resolution pollen records from Taiwan, Japan and Sakhalin document regional vegetation changes during Dansgaard-Oeschger (D-O) cycles during the last glacial. During the period from the cold phase (GS 18/19) to warm phase (D-O 19), the biome shift from temperate conifer forest to cold/cool conifer forest in Japan and from subtropical forest to temperate deciduous/conifer forest in Taiwan. The vegetation in D-O 17, cool mixed forest in central Japan, temperate deciduous broadleaf forest in western Japan and subtropical forest in Taiwan, indicates warm condition but not wet in all area. These vegetation changes lead to biome shift from MIS (Marine Isotope Stage) 4 to MIS 3. The abundance of Cryptomeria japonica and Fagus crenata in D-O 12 and D-O 8 indicates wet conditions brought by the strong summer monsoon through the Islands and high snowfall brought by the inflow of the Tsushima Warm Current into the Sea of Japan. The registration of other D-O warming events in MIS 3, although reflected by shifts in the abundance of key species, is not sufficient to produce changes in biomes. Development of cold deciduous forest in HS (Heinrich events) 1 in Sakhalin, Hokkaido and central Japan was conspicuous and was much larger than that in YD. Vegetation response in YD was small scale and within the same biome in the East Asian Islands. In D-O 1 at the termination of the last glacial, the same taxa that developed in the early Holocene, cold evergreen needleleaf trees in northern region, temperate deciduous broadleaf trees in central and western Japan, and warm-temperate evergreen trees in Taiwan, increased.

  9. A cool-temperate young larch plantation as a net methane source - A 4-year continuous hyperbolic relaxed eddy accumulation and chamber measurements

    NASA Astrophysics Data System (ADS)

    Ueyama, Masahito; Yoshikawa, Kota; Takagi, Kentaro

    2018-07-01

    Upland forests are thought to be methane (CH4) sinks due to oxidation by methanotrophs in aerobic soils. However, CH4 budget for upland forests are not well quantified at the ecosystem scale, when possible CH4 sources, such as small wet areas, exists in the ecosystem. Here, we quantified CH4 fluxes in a cool-temperate larch plantation based on four-year continuous measurements using the hyperbolic relaxed eddy accumulation (HREA) method and dynamic closed chambers with a laser-based analyzer. After filling data gaps for half-hourly data using machine-learning-based regressions, we found that the forest acted as a net CH4 source at the canopy scale: 30 ± 11 mg CH4 m-2 yr-1 in 2014, 56 ± 8 mg CH4 m-2 yr-1 in 2015, 154 ± 5 mg CH4 m-2 yr-1 in 2016, and 132 ± 6 mg CH4 m-2 yr-1 in 2017. Hotspot emissions from the edge of the pond could strongly contribute to the canopy-scale emissions. The magnitude of the hotspot emissions was 10-100 times greater than the order of the canopy-scale and chamber-based CH4 fluxes at the dry soils. The high temperatures with wet conditions stimulated the hotspot emissions, and thus induced canopy-scale CH4 emissions in the summer. Understanding and modeling the dynamics of hotspot emissions are important for quantifying CH4 budgets of upland forests. Micrometeorological measurements at various forests are required for revisiting CH4 budget of upland forests.

  10. Ecological correlates of ex situ seed longevity: a comparative study on 195 species

    PubMed Central

    Probert, Robin J.; Daws, Matthew I.; Hay, Fiona R.

    2009-01-01

    Background and Aims Extended seed longevity in the dry state is the basis for the ex situ conservation of ‘orthodox’ seeds. However, even under identical storage conditions there is wide variation in seed life-span between species. Here, the effects of seed traits and environmental conditions at the site of collection on seed longevity is explored for195 wild species from 71 families from environments ranging from cold deserts to tropical forests. Methods Seeds were rapidly aged at elevated temperature and relative humidity (either 45°C and 60% RH or 60°C and 60% RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50% (p50) was determined using Probit analysis and used as a measure of relative seed longevity between species. Key Results Across species, p50 at 45°C and 60% RH varied from 0·1 d to 771 d. Endospermic seeds were, in general, shorter lived than non-endospermic seeds and seeds from hot, dry environments were longer lived than those from cool, wet conditions. These relationships remained significant when controlling for the effects of phylogenetic relatedness using phylogenetically independent contrasts. Seed mass and oil content were not correlated with p50. Conclusions The data suggest that the endospermic seeds of early angiosperms which evolved in forest understorey habitats are short-lived. Extended longevity presumably evolved as a response to climatic change or the invasion of drier areas. The apparent short-lived nature of endospermic seeds from cool wet environments may have implications for re-collection and re-testing strategies in ex situ conservation. PMID:19359301

  11. Silica dust exposures during selected construction activities.

    PubMed

    Flanagan, Mary Ellen; Seixas, Noah; Majar, Maria; Camp, Janice; Morgan, Michael

    2003-01-01

    This study characterized exposure for dust-producing construction tasks. Eight common construction tasks were evaluated for quartz and respirable dust exposure by collecting 113 personal task period samples for cleanup; demolition with handheld tools; concrete cutting; concrete mixing; tuck-point grinding; surface grinding; sacking and patching concrete; and concrete floor sanding using both time-integrating filter samples and direct-reading respirable dust monitors. The geometric mean quartz concentration was 0.10 mg/m(3) (geometric standard deviation [GSD]=4.88) for all run time samples, with 71% exceeding the threshold limit value. Activities with the highest exposures were surface grinding, tuck-point grinding, and concrete demolition (GM[GSD] of 0.63[4.12], 0.22[1.94], and 0.10[2.60], respectively). Factors recorded each minute were task, tool, work area, respiratory protection and controls used, estimated cross draft, and whether anyone nearby was making dust. Factors important to exposure included tool used, work area configuration, controls employed, cross draft, and in some cases nearby dust. More protective respirators were employed as quartz concentration increased, although respiratory protection was found to be inadequate for 42% of exposures. Controls were employed for only 12% of samples. Exposures were reduced with three controls: box fan for surface grinding and floor sanding, and vacuum/shroud for surface grinding, with reductions of 57, 50, and 71%, respectively. Exposures were higher for sweeping compound, box fan for cleanup, ducted fan dilution, and wetted substrate. Construction masons and laborers are frequently overexposed to silica. The usual protection method, respirators, was not always adequate, and engineering control use was infrequent and often ineffective.

  12. Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail

    NASA Astrophysics Data System (ADS)

    Michael, R. A.; Stuart, A. L.

    2007-12-01

    Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.

  13. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, O.T.; Deri, R.J.; Pocha, M.D.

    1998-12-08

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  14. Moderated, Water-Based, Condensational Particle Growth in a Laminar Flow

    PubMed Central

    Hering, Susanne V.; Spielman, Steven R.; Lewis, Gregory S.

    2014-01-01

    Presented is a new approach for laminar-flow water condensation that produces saturations above 1.5 while maintaining temperatures of less than 30°C in the majority of the flow and providing an exiting dew point below 15°C. With the original laminar flow water condensation method, the particle activation and growth occurs in a region with warm, wetted walls throughout, which has the side-effect of heating the flow. The “moderated” approach presented here replaces this warm region with a two sections – a short, warm, wet-walled “initiator”, followed by a cool-walled “moderator”. The initiator provides the water vapor that creates the supersaturation, while the moderator provides the time for particle growth. The combined length of the initiator and moderator sections is the same as that of the original, warm-walled growth section. Model results show that this new approach reduces the added heat and water vapor while achieving the same peak supersaturation and similar droplet growth. Experimental measurements confirm the trends predicted by the modeling. PMID:24839342

  15. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.

    1998-01-01

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  16. Thermoregulatory, cardiovascular, and perceptual responses to intermittent cooling during exercise in a hot, humid outdoor environment.

    PubMed

    Cleary, Michelle A; Toy, Michelle G; Lopez, Rebecca M

    2014-03-01

    Decreasing core body temperature during exercise may improve exercise tolerance, facilitate acclimatization, and prevent heat illness during summer training. We sought to evaluate the effectiveness of intermittent superficial cooling on thermoregulatory, cardiovascular, and perceptual responses during exercise in a hot humid environment. We used a randomized, counterbalanced, repeated measures investigation with 2 conditions (control and cooling) during exercise and recovery outdoors on artificial turf in a hot, humid tropical climate in the sun (wet bulb globe temperature outdoors [WBGTo], 27.0 ± 0.8° C; range, 25.8-28.1° C) and in the shade (WBGTo, 25.4 ± 0.9° C; range, 24.3-26.8° C). Participants were 10 healthy males (age, 22.6 ± 1.6 years; height, 176.0 ± 6.9 cm; mass, 76.5 ± 7.8 kg; body fat, 15.6 ± 5.4%) who wore shorts and T-shirt (control) or "phase change cooling" vest (cooling) during 5-minute rest breaks during 60 minutes of intense American football training and conditioning exercises in the heat and 30 minutes of recovery in the shade. Throughout, we measured core (Tgi) and skin (Tchest) temperature, heart rate (HR), thermal and thirst sensations, and rating of perceived exertion. We found significant (p ≤ 0.001) hypohydration (-2.1%); for Tgi, we found no significant differences between conditions (p = 0.674) during exercise and progressive decreases during recovery (p < 0.001). For [INCREMENT]Tg,i we found no significant (p = 0.090) differences. For Tchest, we found significantly (p < 0.001) decreased skin temperature in the cooling condition (Tchest, 31.85 ± 0.43° C) compared with the control condition (Tchest, 34.38 ± 0.43° C) during exercise and significantly (p < 0.001) lower skin temperature in the cooling condition (Tchest, 31.24 ± 0.47° C) compared with the control condition (Tchest, 33.48 ± 0.47° C) during recovery. For HR, we found no significant difference (p = 0.586) between the conditions during exercise; however, we did find significantly (p < 0.001) lower HR during recovery. Thermal sensations were significantly (p = 0.026) decreased in the cooling (4.4 ± 0.2 points) compared with the control (5.0 ± 0.2 points) condition but not for other perceptual responses. The cooling effects of "phase change cooling" material were effective in reducing skin temperature but did not sufficiently reduce core body temperature or cardiovascular strain.

  17. The use of player physical and technical skill match activity profiles to predict position in the Australian Football League draft.

    PubMed

    Woods, Carl T; Veale, James P; Collier, Neil; Robertson, Sam

    2017-02-01

    This study investigated the extent to which position in the Australian Football League (AFL) national draft is associated with individual game performance metrics. Physical/technical skill performance metrics were collated from all participants in the 2014 national under 18 (U18) championships (18 games) drafted into the AFL (n = 65; 17.8 ± 0.5 y); 232 observations. Players were subdivided into draft position (ranked 1-65) and then draft round (1-4). Here, earlier draft selection (i.e., closer to 1) reflects a more desirable player. Microtechnology and a commercial provider facilitated the quantification of individual game performance metrics (n = 16). Linear mixed models were fitted to data, modelling the extent to which draft position was associated with these metrics. Draft position in the first/second round was negatively associated with "contested possessions" and "contested marks", respectively. Physical performance metrics were positively associated with draft position in these rounds. Correlations weakened for the third/fourth rounds. Contested possessions/marks were associated with an earlier draft selection. Physical performance metrics were associated with a later draft selection. Recruiters change the type of U18 player they draft as the selection pool reduces. juniors with contested skill appear prioritised.

  18. Comments from the Developmental Neurotoxicology Committee of the Japanese Teratology Society on the OECD Guideline for the Testing of Chemicals, Proposal for a New Guideline 426, Developmental Neurotoxicity Study, Draft Document (October 2006 version), and on the Draft Document of the Retrospective Performance Assessment of the Draft Test Guideline 426 on Developmental Neurotoxicity.

    PubMed

    Ema, Makoto; Fukui, Yoshihiro; Aoyama, Hiroaki; Fujiwara, Michio; Fuji, Junichiro; Inouye, Minoru; Iwase, Takayuki; Kihara, Takahide; Oi, Akihide; Otani, Hiroki; Shinomiya, Mitsuhiro; Sugioka, Kozo; Yamano, Tsunekazu; Yamashita, Keisuke H; Tanimura, Takashi

    2007-06-01

    In October 2006, a new revision of the draft guideline (OECD Guideline for the Testing of Chemicals, Proposal for a New Guideline 426. Developmental Neurotoxicity Study) and Draft Document of the Retrospective Performance Assessment (RPA) of the Draft Test Guideline 426 on Developmental Neurotoxicity were distributed following incorporation of the results of the Expert Consultation Meeting in Tokyo on May 24-26, 2005. The draft guideline consists of 50 paragraphs and an appendix with 102 references; and the draft RPA consists of 37 paragraphs with 109 references. National coordinators were requested to arrange for national expert reviews of these draft documents in their member countries. Members of the Developmental Neurotoxicology (DNT) Committee of the Japanese Teratology Society (JTS) reviewed, discussed, and commented on the draft Test Guideline Proposal. The DNT Committee of the JTS also commented on the draft document of the RPA. These comments were sent to the OECD Secretariat. The DNT Committee of the JTS expects the comments to be useful for the finalization of these draft documents.

  19. 10 CFR 51.86 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.86 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and any...

  20. 10 CFR 51.86 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.86 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and any...

  1. 10 CFR 51.81 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.81 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and...

  2. 10 CFR 51.81 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.81 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and...

  3. 10 CFR 51.81 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.81 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and...

  4. 10 CFR 51.81 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.81 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and...

  5. 10 CFR 51.86 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.86 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and any...

  6. 10 CFR 51.86 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.86 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and any...

  7. 10 CFR 51.86 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.86 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and any...

  8. 10 CFR 51.81 - Distribution of draft environmental impact statement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Distribution of draft environmental impact statement. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.81 Distribution of draft environmental impact statement. Copies of the draft environmental impact statement and...

  9. 76 FR 57759 - Notice of Availability of Draft Resource Management Plan and Draft Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Availability of Draft Resource Management Plan and Draft Environmental Impact Statement for the Kremmling Field... Management Act of 1976 (FLPMA), as amended, the Bureau of Land Management (BLM) has prepared a Draft Resource... alternatives for future [[Page 57760

  10. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute tomore » reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.« less

  11. Multi-scale forcing and the formation of subtropical desert and monsoon

    NASA Astrophysics Data System (ADS)

    Wu, G. X.; Liu, Y.; Zhu, X.; Li, W.; Ren, R.; Duan, A.; Liang, X.

    2009-09-01

    This study investigates three types of atmospheric forcing across the summertime subtropics that are shown to contribute in various ways to the occurrence of dry and wet climates in the subtropics. To explain the formation of desert over the western parts of continents and monsoon over the eastern parts, we propose a new mechanism of positive feedback between diabatic heating and vorticity generation that occurs via meridional advection of planetary vorticity and temperature. Monsoon and desert are demonstrated to coexist as twin features of multi-scale forcing, as follows. First, continent-scale heating over land and cooling over ocean induce the ascent of air over the eastern parts of continents and western parts of oceans, and descent over eastern parts of oceans and western parts of continents. Second, local-scale sea-breeze forcing along coastal regions enhances air descent over eastern parts of oceans and ascent over eastern parts of continents. This leads to the formation of the well-defined summertime subtropical LOSECOD quadruplet-heating pattern across each continent and adjacent oceans, with long-wave radiative cooling (LO) over eastern parts of oceans, sensible heating (SE) over western parts of continents, condensation heating (CO) over eastern parts of continents, and double dominant heating (D: LO+CO) over western parts of oceans. Such a quadruplet heating pattern corresponds to a dry climate over the western parts of continents and a wet climate over eastern parts. Third, regional-scale orographic-uplift-heating generates poleward ascending flow to the east of orography and equatorward descending flow to the west. The Tibetan Plateau (TP) is located over the eastern Eurasian continent. The TP-forced circulation pattern is in phase with that produced by continental-scale forcing, and the strongest monsoon and largest deserts are formed over the Afro-Eurasian Continent. In contrast, the Rockies and the Andes are located over the western parts of their respective continents, and orography-induced ascent is separated from ascent due to continental-scale forcing. Accordingly, the deserts and monsoon climate over these continents are not as strongly developed as those over the Eurasian Continent. A new mechanism of positive feedback between diabatic heating and vorticity generation, which occurs via meridional transfer of heat and planetary vorticity, is proposed as a means of explaining the formation of subtropical desert and monsoon. Strong low-level longwave radiative cooling over eastern parts of oceans and strong surface sensible heating on western parts of continents generate negative vorticity that is balanced by positive planetary vorticity advection from high latitudes. The equatorward flow generated over eastern parts of oceans produces cold sea-surface temperature and stable stratification, leading in turn to the formation of low stratus clouds and the maintenance of strong in situ longwave radiative cooling. The equatorward flow over western parts of continents carries cold, dry air, thereby enhancing local sensible heating as well as moisture release from the underlying soil. These factors result in a dry desert climate. Over the eastern parts of continents, condensation heating generates positive vorticity in the lower troposphere, which is balanced by negative planetary vorticity advection of the meridional flow from low latitudes. The flow brings warm and moist air, thereby enhancing local convective instability and condensation heating associated with rainfall. These factors produce a wet monsoonal climate. Overall, our results demonstrate that subtropical desert and monsoon coexist as a consequence of multi-scale forcing along the subtropics.

  12. Low-frequency electrical stimulation combined with a cooling vest improves recovery of elite kayakers following a simulated 1000-m race in a hot environment.

    PubMed

    Borne, R; Hausswirth, C; Costello, J T; Bieuzen, F

    2015-06-01

    This study compared the effects of a low-frequency electrical stimulation (LFES; Veinoplus(®) Sport, Ad Rem Technology, Paris, France), a low-frequency electrical stimulation combined with a cooling vest (LFESCR ) and an active recovery combined with a cooling vest (ACTCR ) as recovery strategies on performance (racing time and pacing strategies), physiologic and perceptual responses between two sprint kayak simulated races, in a hot environment (∼32 wet-bulb-globe temperature). Eight elite male kayakers performed two successive 1000-m kayak time trials (TT1 and TT2), separated by a short-term recovery period, including a 30-min of the respective recovery intervention protocol, in a randomized crossover design. Racing time, power output, and stroke rate were recorded for each time trial. Blood lactate concentration, pH, core, skin and body temperatures were measured before and after both TT1 and TT2 and at mid- and post-recovery intervention. Perceptual ratings of thermal sensation were also collected. LFESCR was associated with a very likely effect in performance restoration compared with ACTCR (99/0/1%) and LFES conditions (98/0/2%). LFESCR induced a significant decrease in body temperature and thermal sensation at post-recovery intervention, which is not observed in ACTCR condition. In conclusion, the combination of LFES and wearing a cooling vest (LFESCR ) improves performance restoration between two 1000-m kayak time trials achieved by elite athletes, in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Computer Assisted Drafting (CNC) Drawings. Drafting Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. This unit contains information on computer-assisted drafting drawings. The guide contains a cross-reference table of instructional materials and 20 worksheets.…

  14. 49 CFR 229.61 - Draft system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Draft system. 229.61 Section 229.61 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Draft System § 229.61 Draft system. (a) A... absorbed by friction devices or draft gears that exceeds one-half inches. (5) A broken or cracked coupler...

  15. 10 CFR 51.80 - Draft environmental impact statement-materials license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Draft environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.80 Draft environmental impact statement—materials license. (a) The NRC staff will either prepare a draft environmental...

  16. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  17. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  18. 10 CFR 51.80 - Draft environmental impact statement-materials license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Draft environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.80 Draft environmental impact statement—materials license. (a) The NRC staff will either prepare a draft environmental...

  19. 10 CFR 51.80 - Draft environmental impact statement-materials license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Draft environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.80 Draft environmental impact statement—materials license. (a) The NRC staff will either prepare a draft environmental...

  20. 49 CFR 229.61 - Draft system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Draft system. 229.61 Section 229.61 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Draft System § 229.61 Draft system. (a) A... absorbed by friction devices or draft gears that exceeds one-half inches. (5) A broken or cracked coupler...

  1. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  2. 10 CFR 51.80 - Draft environmental impact statement-materials license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Draft environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.80 Draft environmental impact statement—materials license. (a) The NRC staff will either prepare a draft environmental...

  3. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  4. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  5. 49 CFR 229.61 - Draft system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Draft system. 229.61 Section 229.61 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Draft System § 229.61 Draft system. (a) A... absorbed by friction devices or draft gears that exceeds one-half inches. (5) A broken or cracked coupler...

  6. 77 FR 46518 - Draft Resource Management Plan/General Plan Draft Environmental Impact Statement/Revised Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Draft Resource Management Plan/General Plan Draft... Recreation Area, Merced County, California AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of... California Department of Parks and Recreation was given the responsibility to plan, design, construct...

  7. IRIS Toxicological Review of Ammonia (Revised External Review Draft)

    EPA Science Inventory

    In August 2013, EPA submitted a revised draft IRIS assessment of ammonia to the agency's Science Advisory Board (SAB) and posted this draft on the IRIS website. EPA had previously released a draft of the assessment for public comment, held a public meeting about the draft, and ...

  8. CURRENT PRACTICES OBSERVED IN DESIGN AND DRAFTING OCCUPATIONS.

    ERIC Educational Resources Information Center

    SQUIRES, CARL E.

    DATA WHICH HAD SIGNIFICANCE FOR DESIGN AND DRAFTING CURRICULUMS WERE COLLECTED BY DIRECT OBSERVATION OF 21 DESIGN AND DRAFTING FACTORS WITHIN 16 SELECTED INDUSTRIAL COMPANIES EMPLOYING 869 DESIGNERS AND DRAFTSMEN. OBSERVATIONS COVERED (1) THE NUMBER OF DESIGN AND DRAFTING EMPLOYEES, (2) THE SYSTEM OF DRAFTING ROOM ORGANIZATION, (3) JOB…

  9. 10 CFR 51.80 - Draft environmental impact statement-materials license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Draft environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.80 Draft environmental impact statement—materials license. (a) The NRC staff will either prepare a draft environmental...

  10. Development of inverted metamorphic isograds in the western metamorphic belt, Juneau, Alaska

    USGS Publications Warehouse

    Himmelberg, G.R.; Brew, D.A.; Ford, A.B.

    1991-01-01

    An inverted metamorphic gradient is preserved in the western metamorphic belt near Juneau, Alaska. Detailed mapping of pelitic single-mineral isograds, systematic changes in mineral assemblages, and silicate geothermometry indicate that thermal peak metamorphic conditions increase structurally upward over a distance of about 8 km. Silicate geobarometry suggests that the thermal peak metamorphism occurred under pressures of 9-11 kbar. Our preferred interpretation of the cause of the inverted gradient is that it formed during compression of a thickened wedge of relatively wet and cool rocks in response to heat flow associated with the formation and emplacement of tonalite sill magma. -from Authors

  11. Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1997-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  12. A detection of the evolutionary time scale of the DA white dwarf G117 - B15A with the Whole Earth Telescope

    NASA Technical Reports Server (NTRS)

    Kepler, S. O.; Fontaine, G.; Bergeron, P.; Winget, D. E.; Nather, R. E.; Bradley, P. A.; Claver, C. F.; Grauer, A. D.; Vauclair, G.; Marar, T. M. K.

    1991-01-01

    The time rate of change for the main pulsation period of the 13,000 K DA white dwarf G117 - B15A has been detected using the Whole Earth Telescope (WET). The observed rate of period change, P(dot) = (12.0 + or - 3.5) x 10 to the -15th s/s, is somewhat larger than the published theoretical calculations of the rate of period change due to cooling, based on carbon core white dwarf models. Other effects that could contribute to the observed rate of period change are discussed.

  13. Managing the Drafting Process: Creating a New Model for the Workplace.

    ERIC Educational Resources Information Center

    Shwom, Barbara L.; Hirsch, Penny L.

    1994-01-01

    Discusses the development of a pragmatic model of the writing process in the workplace, focusing on the importance of "drafting" as part of that process. Discusses writers' attitudes about drafting and the structures of the workplace that drafting has to accommodate. Introduces a drafting model and discusses results of using this model…

  14. 76 FR 65722 - Notification of Two Public Teleconferences; Clean Air Scientific Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... EPA's Integrated Science Assessment for Lead (First External Review Draft, May 2011) and EPA's draft... Science Assessment for Lead (First External Review Draft, May 2011) should be directed to Dr. Ellen... Integrated Science Assessment for Lead (First External Review Draft, May 2011) and EPA's draft Near-Road NO 2...

  15. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  16. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Draft EIS. 989.19 Section 989.19 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.19 Draft EIS. (a) Preliminary draft. The EPF supports the proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues...

  17. 18 CFR 281.212 - Draft tariff and index of entitlements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Draft tariff and index... Rule § 281.212 Draft tariff and index of entitlements. (a) Each interstate pipeline shall prepare draft tariff sheets or sections and a draft index of entitlements in accordance with this subpart. (b) The...

  18. 18 CFR 281.212 - Draft tariff and index of entitlements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Draft tariff and index... Rule § 281.212 Draft tariff and index of entitlements. (a) Each interstate pipeline shall prepare draft tariff sheets or sections and a draft index of entitlements in accordance with this subpart. (b) The...

  19. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  20. 18 CFR 281.212 - Draft tariff and index of entitlements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Draft tariff and index... Rule § 281.212 Draft tariff and index of entitlements. (a) Each interstate pipeline shall prepare draft tariff sheets or sections and a draft index of entitlements in accordance with this subpart. (b) The...

  1. 18 CFR 281.212 - Draft tariff and index of entitlements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Draft tariff and index... Rule § 281.212 Draft tariff and index of entitlements. (a) Each interstate pipeline shall prepare draft tariff sheets or sections and a draft index of entitlements in accordance with this subpart. (b) The...

  2. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Draft EIS. 989.19 Section 989.19 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.19 Draft EIS. (a) Preliminary draft. The EPF supports the proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues...

  3. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  4. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  5. 18 CFR 281.212 - Draft tariff and index of entitlements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Draft tariff and index... Rule § 281.212 Draft tariff and index of entitlements. (a) Each interstate pipeline shall prepare draft tariff sheets or sections and a draft index of entitlements in accordance with this subpart. (b) The...

  6. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  7. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Draft EIS. 989.19 Section 989.19 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.19 Draft EIS. (a) Preliminary draft. The EPF supports the proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues...

  8. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 167.55-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... are of uniform height equal to the vertical spacing between consecutive marks. (f) Draft marks must be...

  9. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 167.55-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... are of uniform height equal to the vertical spacing between consecutive marks. (f) Draft marks must be...

  10. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 167.55-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... are of uniform height equal to the vertical spacing between consecutive marks. (f) Draft marks must be...

  11. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 167.55-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... are of uniform height equal to the vertical spacing between consecutive marks. (f) Draft marks must be...

  12. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 167.55-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... are of uniform height equal to the vertical spacing between consecutive marks. (f) Draft marks must be...

  13. 77 FR 21772 - Notification of Two Public Teleconferences of the Science Advisory Board Biogenic Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... the Panel's draft report on EPA's draft Accounting Framework for Biogenic CO2 Emissions from...'s draft report on EPA's draft Accounting Framework for Biogenic CO2 Emissions from Stationary... Radiation requested SAB review of EPA's draft accounting framework. As noticed in 76 FR 61100-61101, the SAB...

  14. Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods subject to influence from cross draft.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Peng, Kuan-Lin

    2012-01-01

    The effects of draft on the flow and spillage characteristics of wall-mounted and jet-isolated range hoods were investigated. A specially designed draft generator that could supply low-swirl air current was used to provide "cross draft" from three directions, lateral (θ = 0(o)), oblique (θ = 45(o)), and front (θ = 90(o)), with respect to the center point of the range hoods. Flow characteristics of oil mist were inspected through visualization of smoke flows with light scattering (laser light sheet-assisted visualization of smoke flow). The leakage mechanisms, which were closely related to the flow features, were studied by examining both movies and still pictures showing smoke-flow evolution. The sulfur hexafluoride tracer gas concentration detection method was employed to measure the capture indices. The results showed that the lateral draft pushed the pollutants generated under the hood in the opposite direction and induced serious spillage. The oblique draft pushed the pollutants toward both the rear wall and opposite side and induced more serious spillage than did the lateral draft. The frontal draft forced the pollutants to bifurcate into streams moving toward the left and the right, and induced the most serious pollutant spillage among the three tested drafts. Pollutant spillage became critically significant as the cross draft velocity was increased to greater than 0.2 m/sec. Spillage of pollutants increased as the velocity of the cross draft was increased. Increasing the suction flow rate of the range hood may increase resistance to the draft, but the benefits were limited at draft velocities greater than 0.2 m/sec. Both range hoods had a similarly low capture index under the influence of the lateral draft. For the oblique and frontal drafts, the jet-isolated range hood demonstrated a higher capture index than did the wall-mounted range hood.

  15. Upper-tropospheric inversion and easterly jet in the tropics

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Xie, S.-P.; Shiotani, M.; Hashizume, H.; Hasebe, F.; VöMel, H.; Oltmans, S. J.; Watanabe, T.

    2003-12-01

    Shipboard radiosonde measurements revealed a persistent temperature inversion layer with a thickness of ˜200 m at 12-13 km in a nonconvective region over the tropical eastern Pacific, along 2°N, in September 1999. Simultaneous relative humidity measurements indicated that the thin inversion layer was located at the top of a very wet layer with a thickness of 3-4 km, which was found to originate from the intertropical convergence zone (ITCZ) to the north. Radiative transfer calculations suggested that this upper tropospheric inversion (UTI) was produced and maintained by strong longwave cooling in this wet layer. A strong easterly jet stream was also observed at 12-13 km, centered around 4°-5°N. This easterly jet was in the thermal wind balance, with meridional temperature gradients produced by the cloud and radiative processes in the ITCZ and the wet outflow. Furthermore, the jet, in turn, acted to spread inversions further downstream through the transport of radiatively active water vapor. This feedback mechanism may explain the omnipresence of temperature inversions and layering structures in trace gases in the tropical troposphere. Examination of high-resolution radiosonde data at other sites in the tropical Pacific indicates that similar UTIs often appear around 12-15 km. The UTI around 12-15 km may thus be characterized as one of the "climatological" inversions in the tropical troposphere, forming the lower boundary of the so-called tropical tropopause layer, where the tropospheric air is processed photochemically and microphysically before entering the stratosphere.

  16. A North American Hydroclimate Synthesis (NAHS) of the Common Era

    NASA Astrophysics Data System (ADS)

    Rodysill, Jessica R.; Anderson, Lesleigh; Cronin, Thomas M.; Jones, Miriam C.; Thompson, Robert S.; Wahl, David B.; Willard, Debra A.; Addison, Jason A.; Alder, Jay R.; Anderson, Katherine H.; Anderson, Lysanna; Barron, John A.; Bernhardt, Christopher E.; Hostetler, Steven W.; Kehrwald, Natalie M.; Khan, Nicole S.; Richey, Julie N.; Starratt, Scott W.; Strickland, Laura E.; Toomey, Michael R.; Treat, Claire C.; Wingard, G. Lynn

    2018-03-01

    This study presents a synthesis of century-scale hydroclimate variations in North America for the Common Era (last 2000 years) using new age models of previously published multiple proxy-based paleoclimate data. This North American Hydroclimate Synthesis (NAHS) examines regional hydroclimate patterns and related environmental indicators, including vegetation, lake water elevation, stream flow and runoff, cave drip rates, biological productivity, assemblages of living organisms, and salinity. Centennial-scale hydroclimate anomalies are obtained by iteratively sampling the proxy data on each of thousands of age model realizations and determining the fractions of possible time series indicating that the century-smoothed data was anomalously wet or dry relative to the 100 BCE to 1900 CE mean. Results suggest regionally asynchronous wet and dry periods over multidecadal to centennial timescales and frequent periods of extended regional drought. Most sites indicate drying during previously documented multicentennial periods of warmer Northern Hemisphere temperatures, particularly in the western U.S., central U.S., and Canada. Two widespread droughts were documented by the NAHS: from 50 BCE to 450 CE and from 800 to 1100 CE. Major hydroclimate reorganizations occurred out of sync with Northern Hemisphere temperature variations and widespread wet and dry anomalies occurred during both warm and cool periods. We present a broad assessment of paleoclimate relationships that highlights the potential influences of internal variability and external forcing and supports a prominent role for Pacific and Atlantic Ocean dynamics on century-scale continental hydroclimate.

  17. 76 FR 50729 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Chartered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... SAB report, Peer Review of EPA's Draft National-Scale Mercury Risk Assessment (08/04/11) Draft. DATES... SAB draft report entitled Peer Review of EPA's Draft National-Scale Mercury Risk Assessment (08/04/1...)(1)(A) of the Clean Air Act (CAA). EPA developed a draft risk assessment for mercury, entitled...

  18. 12 CFR 516.20 - What information must I include in my draft business plan?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true What information must I include in my draft... What information must I include in my draft business plan? If you must submit a draft business plan... described in the savings association's draft business plan; and (d) Demonstrate how applicable requirements...

  19. 12 CFR 516.20 - What information must I include in my draft business plan?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false What information must I include in my draft... What information must I include in my draft business plan? If you must submit a draft business plan... described in the savings association's draft business plan; and (d) Demonstrate how applicable requirements...

  20. 12 CFR 116.20 - What information must I include in my draft business plan?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false What information must I include in my draft... What information must I include in my draft business plan? If you must submit a draft business plan... described in the savings association's draft business plan; and (d) Demonstrate how applicable requirements...

  1. 12 CFR 116.20 - What information must I include in my draft business plan?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false What information must I include in my draft... What information must I include in my draft business plan? If you must submit a draft business plan... described in the savings association's draft business plan; and (d) Demonstrate how applicable requirements...

  2. 12 CFR 116.20 - What information must I include in my draft business plan?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false What information must I include in my draft... What information must I include in my draft business plan? If you must submit a draft business plan... described in the savings association's draft business plan; and (d) Demonstrate how applicable requirements...

  3. 12 CFR 516.20 - What information must I include in my draft business plan?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true What information must I include in my draft... What information must I include in my draft business plan? If you must submit a draft business plan... described in the savings association's draft business plan; and (d) Demonstrate how applicable requirements...

  4. 12 CFR 516.20 - What information must I include in my draft business plan?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false What information must I include in my draft... What information must I include in my draft business plan? If you must submit a draft business plan... described in the savings association's draft business plan; and (d) Demonstrate how applicable requirements...

  5. Comparison of Conventional and Computer-Aided Drafting Methods from the View of Time and Drafting Quality

    ERIC Educational Resources Information Center

    Ozkan, Aysen; Yildirim, Kemal

    2016-01-01

    Problem Statement: Drafting course is essential for students in the design disciplines for becoming more organized and for complying with standards in the educational system. Drafting knowledge is crucial, both for comprehension of the issues and for the implementation phase. In any design project, drafting performance and success are as important…

  6. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... environmental impact statement; news releases. (a) A copy of the draft environmental impact statement will be...

  7. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... environmental impact statement; news releases. (a) A copy of the draft environmental impact statement will be...

  8. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... environmental impact statement; news releases. (a) A copy of the draft environmental impact statement will be...

  9. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... environmental impact statement; news releases. (a) A copy of the draft environmental impact statement will be...

  10. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... environmental impact statement; news releases. (a) A copy of the draft environmental impact statement will be...

  11. 78 FR 19733 - Draft General Management Plan and Draft Environmental Impact Statement, Fort Raleigh National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Management Plan (EIS/GMP) for Fort Raleigh National Historic Site, North Carolina. The draft describes and... announce the dates, times, and locations of public meetings on the draft EIS/GMP through the NPS Planning... delivery to the above address. Electronic copies of the Draft EIS/GMP will be available online at http...

  12. 76 FR 72718 - Notice of Availability of the Draft Baker Resource Management Plan and Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ....HAG11-0127] Notice of Availability of the Draft Baker Resource Management Plan and Environmental Impact... Draft Resource Management Plan (RMP) and Draft Environmental Impact Statement (EIS) for the Baker... conditions, and changes in resource management practices since the Baker RMP of 1989. The Draft RMP/EIS was...

  13. 46 CFR 174.040 - Stability requirements: general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... metacentric height in the upright equilibrium position for the full range of drafts, whether at the operating draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...

  14. 46 CFR 174.040 - Stability requirements: general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... metacentric height in the upright equilibrium position for the full range of drafts, whether at the operating draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...

  15. The 400W at 1.8K Test Facility at CEA-Grenoble

    NASA Astrophysics Data System (ADS)

    Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.

    2006-04-01

    A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.

  16. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    PubMed

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sensitivity of Net Ecosystem Exchange to Climate Variability Depends on Plant Functional Type in Boreal Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Welp, L. R.; Liu, H.; Randerson, J. T.

    2005-12-01

    Recent increases in growing season length at high northern latitudes may allow for greater rates of photosynthesis and carbon accumulation during spring and summer. However, warmer air and soil temperatures may also stimulate higher rates of respiration in boreal and arctic ecosystems. The net effect of these different processes on biome-level carbon fluxes remains challenging to predict. We measured carbon fluxes in three interior Alaskan stands for three years (2002-2004) to test the hypothesis that NEE in early and mid successional ecosystems is more sensitive to climate variability than NEE of older, mature ecosystems. The stands represented a chronosequence of recovery after fire with burn events in 1920 (black spruce and moss), 1987 (aspen and willow) and 1999 (grasses and deciduous shrubs). In 2002, the region experienced a cool, moderately wet spring and wet summer. In contrast, 2003 had a warm, dry spring and dry summer. In 2004, the spring was the warmest and wettest of all three years and a severe summer drought followed. Spring air temperature increased during each year of the study with April-May means of 6.4°C in 2002, 7.7°C in 2003 and 9.9°C in 2004. In each stand, warmer spring temperatures increased spring GPP, as has been reported for other northern forests, and also led to increased carbon uptake at the aspen stand with May-June NEE values of -72, -106 and -138 g C m-2. In contrast, May-June NEE at the black spruce stand increased from -94 g C m-2 in 2002 to -110 g C m-2 in 2003, but returned to -96 g C m-2 in 2004 as Re increased in response to warmer soil temperatures during that year. Sensitivity of spring NEE to climate variability was greatest at the intermediate aged aspen stand. Using a simple atmospheric model, we also found that the amplitude of the seasonal cycle of atmospheric CO2 was more sensitive to climate variability when forced with fluxes from the aspen stand than from the black spruce stand. During each year, we observed mid-summer depressions of carbon uptake rates at the black spruce stand. Despite the 2004 summer drought, Jul-Aug GPP and Re both increased in 2004, resulting in Jul-Aug NEE values comparable to 2003 (-57 and -59 g C m-2 for the black spruce in 2003 and 2004 respectively and -124 and -120 g C m-2 for the aspen), both of which were less than the wet cool summer of 2002 (-76 g C m-2 for the black spruce and -156 g C m-2 for the aspen). Warm springs and cool summers tended to promote carbon uptake in these ecosystems.

  18. Study on the Control Strategy of Ground Source Heat Pump of Complex Buildings

    NASA Astrophysics Data System (ADS)

    Dandan, Zhang; Wei, Li; Siyi, Tang

    2018-05-01

    The complex building group is a building group which integrates residential, business and office. Study on the operation of buried tube heat exchanger (BHE) with 30%, 50%, 70% and 100% occupancy rate by numerical simulation under the condition of full operation of the business and office, the optimal operation control strategy of a hybrid ground-source heat pump (HGSHP) system with different occupancy rates can be obtained. The results show that: at low occupancy rate the optimal operation control of the heat pump system is to use the cooling tower in the valley load period (June and September) and the heat absorption of the buried tube in winter; While at high occupancy rates, opening the cooling tower when the temperature of the outlet of the BHE is 2 degrees centigrade higher than the temperature of the wet bulb at the corresponding time is the optimal operating strategy. This paper is based on the annual energy consumption and optimization of soil temperature rise, which has an important guideline value for the design and operation of HGSHP system in complex buildings.

  19. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  20. Flow characteristics of an inclined air-curtain range hood in a draft.

    PubMed

    Chen, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.

  1. Scaling analysis for the direct reactor auxiliary cooling system for FHRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Q.; Kim, I. H.; Sun, X.

    2015-04-01

    The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and tomore » activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from both the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a scientific design of a scaled-down high-temperature DRACS test facility.« less

  2. 75 FR 21145 - Availability of the Draft Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Availability of the Draft... availability of the Draft Environmental Impact Statement. SUMMARY: The FHWA, on behalf of the California Department of Transportation (Caltrans), announces the availability of the Draft Environmental Impact...

  3. Thermal, physiological and perceptual strain mediate alterations in match-play tennis under heat stress

    PubMed Central

    Périard, Julien D; Racinais, Sébastien; Knez, Wade L; Herrera, Christopher P; Christian, Ryan J; Girard, Olivier

    2014-01-01

    Objectives This study compared the thermal, physiological and perceptual responses associated with match-play tennis in HOT (∼34°C wet-bulb-globe temperature (WBGT)) and COOL (∼19°C WBGT) conditions, along with the accompanying alterations in match characteristics. Methods 12 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼119 and ∼102 min of play in HOT and COOL conditions, respectively. Rectal and skin temperatures, heart rate, subjective ratings of thermal comfort, thermal sensation and perceived exertion were recorded, along with match characteristics. Results End-match rectal temperature increased to a greater extent in the HOT (∼39.4°C) compared with the COOL (∼38.7°C) condition (p<0.05). Thigh skin temperature was higher throughout the HOT match (p<0.001). Heart rate, thermal comfort, thermal sensation and perceived exertion were also higher during the HOT match (p<0.001). Total playing time was longer in the HOT compared with the COOL match (p<0.05). Point duration (∼7.1 s) was similar between conditions, while the time between points was ∼10 s longer in the HOT relative to the COOL match (p<0.05). This led to a ∼3.4% lower effective playing percentage in the heat (p<0.05). Although several thermal, physiological and perceptual variables were individually correlated to the adjustments in time between points and effective playing percentage, thermal sensation was the only predictor variable associated with both adjustments (p<0.005). Conclusions These adjustments in match-play tennis characteristics under severe heat stress appear to represent a behavioural strategy adopted to minimise or offset the sensation of environmental conditions being rated as difficult. PMID:24668377

  4. 75 FR 3760 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0018] Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory...) is issuing for public comment a draft guide in the agency's ``Regulatory Guide'' series. This series...

  5. 75 FR 20645 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0158] Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory... draft guide in the agency's ``Regulatory Guide'' series. This series was developed to describe and make...

  6. 77 FR 33489 - Draft Offender Tracking System Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Tracking System Standard AGENCY: National Institute of Justice. ACTION: Notice of Draft Offender Tracking System Standard, Selection and Application Guide, and Certification Program Requirements. SUMMARY: In an...) A draft standard entitled, ``Offender Tracking System Standard'' (2) a draft companion document...

  7. Environmental history and tephrostratigraphy at Carp Lake, southwestern Columbia Basin, Washington, USA

    USGS Publications Warehouse

    Whitlock, C.; Sarna-Wojcicki, A. M.; Bartlein, P.J.; Nickmann, R.J.

    2000-01-01

    Sediment cores from Carp Lake provide a pollen record of the last ca. 125,000 years that helps disclose vegetational and climatic conditions from the present day to the previous interglaciation (120-133 ka). The core also contained 15 tephra layers, which were characterised by electron-microprobe analysis of volcanic glass shards. Identified tephra include Mount St. Helens Ye, 3.69 ka; Mazama ash bed, 7.54 ka; Mount St. Helens layer C, 35-50 ka; an unnamed Mount St. Helens tephra, 75-150 ka; the tephra equivalent of layer E at Pringle Falls, Oregon, <218 ka; and an andesitic tephra layer similar to that at Tulelake, California, 174 ka. Ten calibrated radiocarbon ages and the ages of Mount St. Helens Ye, Mazama ash, and the unnamed Mount St. Helens tephra were used to develop an age-depth model. This model was refined by also incorporating the age of marine oxygen isotope stage (IS) boundary 4/5 (73.9 ka) and the age of IS-5e (125 ka). The justification for this age-model is based on an analysis of the pollen record and lithologic data. The pollen record is divided into 11 assemblage zones that describe alternations between periods of montane conifer forest, pine forest, and steppe. The previous interglacial period (IS-5e) supported temperate xerothermic forests of pine and oak and a northward and westward expansion of steppe and juniper woodland, compared to their present occurrence. The period from 83 to 117 ka contains intervals of pine forest and parkland alternating with pine-spruce forest, suggesting shifts from cold humid to cool temperate conditions. Between 73 and 83 ka, a forest of oak, hemlock, Douglas-fir, and fir was present that has no modem analogue. It suggests warm wet summers and cool wet winters. Cool humid conditions during the mid-Wisconsin interval supported mixed conifer forest with Douglas-fir and spruce. The glacial interval featured cold dry steppe, with an expansion of spruce in the late-glacial. Xerothermic communities prevailed in the early Holocene, when temperate steppe was widespread and the lake dried intermittently. The middle Holocene was characterised by ponderosa pine forest, and the modem vegetation was established in the last 3900 yr, when ponderosa pine, Douglas-fir, fir, and oak were part of the local vegetation.

  8. Holocene climate dynamics in the central part of the East European plain (Russia)

    NASA Astrophysics Data System (ADS)

    Novenko, Elena

    2013-04-01

    The Holocene climate and vegetation dynamics in the broad-leaved forest zone of the central part of the East European plain have been reconstructed on the base of pollen, plant macrofossil, testate amoebae and radiocarbon data from the mire Klukva (N 53.834812, E 36.252488), located in the kast depression in the Upper Oka River basin (Tula region, European Russia). The reconstruction of main parameters of past climate (the mean annual temperature precipitation) was carried out by the "Best Modern Analog" approach. Reconstructions of vegetation show that in the early Holocene the territory was occupied mainly by birch and pine-birch forests. Significant changes in the plant cover of the Upper Oka River basin are attributed to the 7.5 cal kyr BP). The climatic conditions were favorable for development of the broad-leaved forests those persisted in this area up to industrial period. In the 17th century, when the population density greatly increased and watersheds were ploughed, natural vegetation communities were gradually destroyed and transformed into agricultural landscapes. According to obtained climatic reconstructions the period 10-8.5 cal kyr BP was relatively cold and wet, when the mean annual temperature was in 3°C lower and precipitation was in 50-100 mm higher then nowadays. The significant climate warming occurred in about 7.0-5.0 cal kyr BP (The Holocene thermal maximum): the mean annual temperature in 2°C exceeded the modern value and precipitation was close to that. The environment conditions were drier due to decrease of effective moisture. In the second part of the Holocene the sequence of second-, and even third-order climatic oscillations expressed against the background of the overall slight trend towards cooling have been determined. The most pronounced cool and wet intervals were reconstructed in 2.5-2.0 cal kyr BP and 1.5-1.3 cal kyr BP. The mean annual temperature decreased in 1.5-2 °C and precipitation rose in 200 mm in compare to modern ones. During the last millennium the warming of the Medieval Climatic Anomaly and cooling of the Little Ice Age were clearly determined. This work was supported by RFBR grant 11-05-00557.

  9. Lead us not into tanktation: a simulation modelling approach to gain insights into incentives for sporting teams to tank.

    PubMed

    Tuck, Geoffrey N; Whitten, Athol R

    2013-01-01

    Annual draft systems are the principal method used by teams in major sporting leagues to recruit amateur players. These draft systems frequently take one of three forms: a lottery style draft, a weighted draft, or a reverse-order draft. Reverse-order drafts can create incentives for teams to deliberately under-perform, or tank, due to the perceived gain from obtaining quality players at higher draft picks. This paper uses a dynamic simulation model that captures the key components of a win-maximising sporting league, including the amateur player draft, draft choice error, player productivity, and between-team competition, to explore how competitive balance and incentives to under-perform vary according to league characteristics. We find reverse-order drafts can lead to some teams cycling between success and failure and to other teams being stuck in mid-ranking positions for extended periods of time. We also find that an incentive for teams to tank exists, but that this incentive decreases (i) as uncertainty in the ability to determine quality players in the draft increases, (ii) as the number of teams in the league reduces, (iii) as team size decreases, and (iv) as the number of teams adopting a tanking strategy increases. Simulation models can be used to explore complex stochastic dynamic systems such as sports leagues, where managers face difficult decisions regarding the structure of their league and the desire to maintain competitive balance.

  10. Lead Us Not into Tanktation: A Simulation Modelling Approach to Gain Insights into Incentives for Sporting Teams to Tank

    PubMed Central

    Tuck, Geoffrey N.; Whitten, Athol R.

    2013-01-01

    Annual draft systems are the principal method used by teams in major sporting leagues to recruit amateur players. These draft systems frequently take one of three forms: a lottery style draft, a weighted draft, or a reverse-order draft. Reverse-order drafts can create incentives for teams to deliberately under-perform, or tank, due to the perceived gain from obtaining quality players at higher draft picks. This paper uses a dynamic simulation model that captures the key components of a win-maximising sporting league, including the amateur player draft, draft choice error, player productivity, and between-team competition, to explore how competitive balance and incentives to under-perform vary according to league characteristics. We find reverse-order drafts can lead to some teams cycling between success and failure and to other teams being stuck in mid-ranking positions for extended periods of time. We also find that an incentive for teams to tank exists, but that this incentive decreases (i) as uncertainty in the ability to determine quality players in the draft increases, (ii) as the number of teams in the league reduces, (iii) as team size decreases, and (iv) as the number of teams adopting a tanking strategy increases. Simulation models can be used to explore complex stochastic dynamic systems such as sports leagues, where managers face difficult decisions regarding the structure of their league and the desire to maintain competitive balance. PMID:24312243

  11. IRIS Toxicological Review of Methanol (Noncancer) (Interagency Science Discussion Draft)

    EPA Science Inventory

    On May 3, 2013, the Toxicological Review of Methanol (noncancer) (Revised External Review Draft) was posted for public review and comment. Subsequently, the draft Toxicological Review, Appendices, and draft IRIS Summary were reviewed internally by EPA and by other federal agenci...

  12. 75 FR 48973 - Draft Guidance for Industry: Prevention of Salmonella

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ...] Draft Guidance for Industry: Prevention of Salmonella Enteritidis in Shell Eggs During Production... entitled ``Prevention of Salmonella Enteritidis in Shell Eggs During Production, Storage, and Transportation'' (the draft guidance). The draft guidance, when finalized, will provide guidance to egg producers...

  13. Competency Reference for Computer Assisted Drafting.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Div. of Vocational Technical Education.

    This guide, developed in Oregon, lists competencies essential for students in computer-assisted drafting (CAD). Competencies are organized in eight categories: computer hardware, file usage and manipulation, basic drafting techniques, mechanical drafting, specialty disciplines, three dimensional drawing/design, plotting/printing, and advanced CAD.…

  14. 31 CFR 515.405 - Exportation of securities, currency, checks, drafts and promissory notes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., checks, drafts and promissory notes. 515.405 Section 515.405 Money and Finance: Treasury Regulations..., drafts and promissory notes. Section 515.201 prohibits the exportation of securities, currency, checks, drafts and promissory notes to a designated foreign country. ...

  15. 31 CFR 515.405 - Exportation of securities, currency, checks, drafts and promissory notes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., checks, drafts and promissory notes. 515.405 Section 515.405 Money and Finance: Treasury Regulations..., drafts and promissory notes. Section 515.201 prohibits the exportation of securities, currency, checks, drafts and promissory notes to a designated foreign country. ...

  16. 75 FR 18241 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0148] Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory.... Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a draft guide in the...

  17. 31 CFR 515.405 - Exportation of securities, currency, checks, drafts and promissory notes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., checks, drafts and promissory notes. 515.405 Section 515.405 Money and Finance: Treasury Regulations..., drafts and promissory notes. Section 515.201 prohibits the exportation of securities, currency, checks, drafts and promissory notes to a designated foreign country. ...

  18. 31 CFR 515.405 - Exportation of securities, currency, checks, drafts and promissory notes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., checks, drafts and promissory notes. 515.405 Section 515.405 Money and Finance: Treasury Regulations..., drafts and promissory notes. Section 515.201 prohibits the exportation of securities, currency, checks, drafts and promissory notes to a designated foreign country. ...

  19. 31 CFR 515.405 - Exportation of securities, currency, checks, drafts and promissory notes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., checks, drafts and promissory notes. 515.405 Section 515.405 Money and Finance: Treasury Regulations..., drafts and promissory notes. Section 515.201 prohibits the exportation of securities, currency, checks, drafts and promissory notes to a designated foreign country. ...

  20. 75 FR 45166 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0265] Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Draft Regulatory.... Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a draft guide in the...

  1. 76 FR 6086 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [NRC-2011-0015] RIN 3150-AI49 Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Availability of Draft... comment Draft Regulatory Guide, DG-5020, ``Applying for Enhanced Weapons Authority, Applying for...

  2. 76 FR 13436 - NIJ Request for Comments on Draft Vehicular Digital Multimedia Evidence Recording System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... Comments on Draft Vehicular Digital Multimedia Evidence Recording System Certification Program Requirements for Law Enforcement and Draft Law Enforcement Vehicular Digital Multimedia Evidence Recording System... two draft documents: ``Vehicular Digital Multimedia Evidence Recording System Certification Program...

  3. 78 FR 77027 - Overhead Clearance (Air-Draft) Accidents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... No. USCG-2013-0466] Overhead Clearance (Air-Draft) Accidents AGENCY: Coast Guard, DHS. ACTION... clearance (air-draft) accidents. In its petition, which calls for vessel masters to be provided with accurate vertical air draft information, a maritime organization has described 16 overhead clearance...

  4. 75 FR 63188 - Draft Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...] Draft Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance provides... Products: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance...

  5. 10 CFR 51.85 - Draft environmental impact statement-rulemaking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Draft environmental impact statement-rulemaking. 51.85... Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.85 Draft environmental impact... Commission has determined to prepare an environmental impact statement. ...

  6. Climate Impacts on Extreme Energy Consumption of Different Types of Buildings

    PubMed Central

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  7. Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa

    2003-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.

  8. Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing

    NASA Technical Reports Server (NTRS)

    Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.

    2002-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.

  9. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  10. The cooling time of fertile chicken eggs at different stages of incubation.

    PubMed

    Mortola, Jacopo P; Gaonac'h-Lovejoy, Vanda

    2016-01-01

    We asked whether or not the thermal characteristics of fertile avian eggs changed throughout incubation. The cooling and warming times, expressed by the time constant τ of the egg temperature response to a rapid change in ambient temperature, were measured in fertile chicken eggs at early (E7), intermediate (E11) and late (E20) stages of embryonic development. Same measurements were conducted on eggs emptied of their content and refilled with water by various amounts. The results indicated that (1) the τ of a freshly laid egg was ~50 min; (2) τ decreased linearly with the drop in egg water volume; (3) the dry eggshell had almost no thermal resistance but its wet inner membrane contributed about one-third to the stability of egg temperature; (4) the egg constituents (yolk, albumen and embryonic tissues) and the chorioallantoic circulation had no measurable effect on τ; (5) the presence of an air pocket equivalent in volume to the air cell of fertile eggs reduced τ by about 3 min (E7), 5 min (E11) and 11 min (E20). Hence, in response to warming the egg τ at E20 was slightly shorter than at E7. In response to cooling, the egg τ at E20 was similar to, or longer than, E7 because embryonic thermogenesis (evaluated by measurements of oxygen consumption during cold) offset the reduction in τ introduced by the air cell. In conclusion, until the onset of thermogenesis the thermal behavior of a fertile egg is closely approximated by that of a water-filled egg with an air volume equivalent to the air cell. It is possible to estimate the cooling τ of avian eggs of different species from their weight and incubation time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comparison between the treatment area of electrode used for radiofrequency ablation of liver cancer focusing on 15G cooled-tip and CWT electrode.

    PubMed

    Kim, Hyun-Jin; Lee, Hae-Kag; Cho, Jae-Hwan

    2016-01-01

    To analyze the comparison between the treatment area of 15Gage internally cooled electrodes and 17 Gage Cool Wet-tip(CWT) electrodes. They are manufactured to broaden treatment area of the tumor in the radiofrequency ablation of hepatocellular carcinoma(HCC). The study was designed for 62 patients with a mean age of 61, ranging from 44 to 87 years. The sample comprised of patients who used 15 G internally cooled electrodes and 17 G CWT electrodes respectively. Computed tomography (CT) images obtained after the procedure were observed, however, for the ablation lesion, the volume was determined by measuring complete necrotic tissue that did not contrast enhancement in the image. The treatment area of the tumor after radiofrequency ablation was 17.26±6.02 in the CWT, which was bigger than 15G. The treatment area ratio of the treatment before or after was significant at 581.85±339.56 in the CWT. After radiofrequency ablation, the treatment area got bigger, as 15G electrodes went toward CWT electrodes. Treatment area per electrode was 1.34 times higher in CWT than in 15G while the treatment area ratio of the treatment before or after was 1.001 times higher in the CWT than 15G. Ablation is more common for the safety margin in stable tumor and CWT type electrodes that can make larger ablation to reduce the number of times ablation is required for residual tumor and it decreases recurrence, ablation time and reoperation. Therefore it is considered t useful to reduce patients' pain.

  12. Comparison between the treatment area of electrode used for radiofrequency ablation of liver cancer focusing on 15G cooled-tip and CWT electrode

    PubMed Central

    Kim, Hyun-Jin; Lee, Hae-Kag; Cho, Jae-Hwan

    2016-01-01

    Objectives: To analyze the comparison between the treatment area of 15Gage internally cooled electrodes and 17 Gage Cool Wet-tip(CWT) electrodes. They are manufactured to broaden treatment area of the tumor in the radiofrequency ablation of hepatocellular carcinoma(HCC). Methods: The study was designed for 62 patients with a mean age of 61, ranging from 44 to 87 years. The sample comprised of patients who used 15 G internally cooled electrodes and 17 G CWT electrodes respectively. Computed tomography (CT) images obtained after the procedure were observed, however, for the ablation lesion, the volume was determined by measuring complete necrotic tissue that did not contrast enhancement in the image. Results: The treatment area of the tumor after radiofrequency ablation was 17.26±6.02 in the CWT, which was bigger than 15G. The treatment area ratio of the treatment before or after was significant at 581.85±339.56 in the CWT. After radiofrequency ablation, the treatment area got bigger, as 15G electrodes went toward CWT electrodes. Treatment area per electrode was 1.34 times higher in CWT than in 15G while the treatment area ratio of the treatment before or after was 1.001 times higher in the CWT than 15G. Conclusions: Ablation is more common for the safety margin in stable tumor and CWT type electrodes that can make larger ablation to reduce the number of times ablation is required for residual tumor and it decreases recurrence, ablation time and reoperation. Therefore it is considered t useful to reduce patients’ pain. PMID:27375688

  13. Withdrawal of ground water and pond water on Long Island from 1904 to 1949

    USGS Publications Warehouse

    Lusczynski, Norbert J.

    1950-01-01

    For more than 50 years the highly productive and readily replenishable water-bearing sands and gravels on Long Island -- capable of yielding an average of at least 1,000 million gallons a day -- and also some surface streams and ponds have been utilized on a large scale of public water supply and industrial, agricultural and domestic uses. During the drought months of 1949, when many surface and groundwater supplied were being depleted at an alarming rate in many localities in the Northeast, the abundant water resources of Long Island provided sufficient water for public water supply for a large number of private companies and municipalities, as well as for large emergency drafts by the City of New York. In addition they kept industrial concerns from curtailing production, saved millions of dollars of potato, cauliflower, and other Long Island crops, and even furnished, during the summer heat, comfort cooling and theatergoers.

  14. A State Articulated Instructional Objectives Guide for Occupational Education Programs. State Pilot Model for Drafting (Graphic Communications). Part I--Basic. Part II--Specialty Programs. Section A (Mechanical Drafting and Design). Section B (Architectural Drafting and Design).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    A two-part articulation instructional objective guide for drafting (graphic communications) is provided. Part I contains summary information on seven blocks (courses) of instruction. They are as follow: introduction; basic technical drafting; problem solving in graphics; reproduction processes; freehand drawing and sketching; graphics composition;…

  15. 78 FR 56718 - Draft Guidance for Industry on Bioanalytical Method Validation; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ...] Draft Guidance for Industry on Bioanalytical Method Validation; Availability AGENCY: Food and Drug... availability of a draft guidance for industry entitled ``Bioanalytical Method Validation.'' The draft guidance is intended to provide recommendations regarding analytical method development and validation for the...

  16. General Drafting. Technical Manual.

    ERIC Educational Resources Information Center

    Department of the Army, Washington, DC.

    The manual provides instructional guidance and reference material in the principles and procedures of general drafting and constitutes the primary study text for personnel in drafting as a military occupational specialty. Included is information on drafting equipment and its use; line weights, conventions and formats; lettering; engineering charts…

  17. Basic Drafting. Revised.

    ERIC Educational Resources Information Center

    Schertz, Karen

    This introductory module on drafting includes the technical content and tasks necessary for a student to be employed in an entry-level drafting occupation. The module contains 18 instructional units that cover the following topics: introduction to drafting; tools and equipment; supplies and materials; sketching; scales; drawing format; lettering;…

  18. 10 CFR 51.85 - Draft environmental impact statement-rulemaking.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Draft environmental impact statement-rulemaking. 51.85 Section 51.85 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR... Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.85 Draft environmental impact...

  19. 10 CFR 51.85 - Draft environmental impact statement-rulemaking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Draft environmental impact statement-rulemaking. 51.85 Section 51.85 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR... Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.85 Draft environmental impact...

  20. 10 CFR 51.85 - Draft environmental impact statement-rulemaking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Draft environmental impact statement-rulemaking. 51.85 Section 51.85 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR... Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.85 Draft environmental impact...

  1. 10 CFR 51.85 - Draft environmental impact statement-rulemaking.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Draft environmental impact statement-rulemaking. 51.85 Section 51.85 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR... Implementing Section 102(2) Draft Environmental Impact Statements-Rulemaking § 51.85 Draft environmental impact...

  2. 76 FR 6085 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ...-2011-0014] RIN 3150-AI49 Draft Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice Availability of Draft Regulatory Guide. SUMMARY: The U.S. Nuclear Regulatory Commission (Commission or NRC) is issuing for public comment Draft Regulatory Guide, DG-5019, ``Reporting and...

  3. 78 FR 17653 - Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... infrastructure development, including siting wind turbines, access roads, underground collector lines, overhead... Wildlife Service Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS... Plains Wind Energy Draft Programmatic Environmental Impact Statement (Draft [[Page 17654

  4. EPA scientific integrity policy draft

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The U.S. Environmental Protection Agency (EPA) issued its draft scientific integrity policy on 5 August. The draft policy addresses scientific ethical standards, communications with the public, the use of advisory committees and peer review, and professional development. The draft policy was developed by an ad hoc group of EPA senior staff and scientists in response to a December 2010 memorandum on scientific integrity from the White House Office of Science and Technology Policy. The agency is accepting public comments on the draft through 6 September; comments should be sent to osa.staff@epa.gov. For more information, see http://www.epa.gov/stpc/pdfs/draft-scientific-integrity-policy-aug2011.pdf.

  5. Method of casting silicon into thin sheets

    DOEpatents

    Sanjurjo, Angel; Rowcliffe, David J.; Bartlett, Robert W.

    1982-10-26

    Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

  6. Glycol leak detection system

    NASA Astrophysics Data System (ADS)

    Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.

    2016-07-01

    MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.

  7. Road guide to geological points of interest on the island of Hawaii

    NASA Technical Reports Server (NTRS)

    Stearns, H. T.; Macdonald, G. A.; Greeley, R.

    1974-01-01

    This road guide briefly describes the points of geologic interest along the main roads on Hawaii. It begins at Hilo and proceeds around the island in a clockwise direction on State Route 11 to Kailua, then returns to Hilo on State Route 19 to Hilo via Waimea, with side excursions on the other principal roads. Minimum excursion time is two days, allowing only very brief time for the various stops. The return to Hilo from Waimea can be made via Route 19 along the Hamakua Coast (wet, leeward side of island, displaying typical tropical erosion) or via Route 20 over the Humuula Saddle (high, relatively dry and cool; young volcanic features).

  8. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE PAGES

    Drager, Aryeh J.; van den Heever, Susan C.

    2017-05-09

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  9. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drager, Aryeh J.; van den Heever, Susan C.

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  10. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  11. Heat exchanges in wet suits.

    PubMed

    Wolff, A H; Coleshaw, S R; Newstead, C G; Keatinge, W R

    1985-03-01

    Flow of water under foam neoprene wet suits could halve insulation that the suits provided, even at rest in cold water. On the trunk conductance of this flow was approximately 6.6 at rest and 11.4 W . m-2 . C-1 exercising; on the limbs, it was only 3.4 at rest and 5.8 W . m-2 . degrees C-1 exercising; but during vasoconstriction in the cold, skin temperatures on distal parts of limbs were lower than were those of the trunk, allowing adequate metabolic responses. In warm water, minor postural changes and movement made flow under suits much higher, approximately 60 on trunk and 30 W . m-2 . degrees C-1 on limbs, both at rest and at work. These changes in flow allowed for a wide range of water temperatures at which people could stabilize body temperature in any given suit, neither overheating when exercising nor cooling below 35 degrees C when still. Even thin people with 4- or 7- mm suits covering the whole body could stabilize their body temperatures in water near 10 degrees C in spite of cold vasodilatation. Equations to predict limits of water temperature for stability with various suits and fat thicknesses are given.

  12. Effects of water vapor on protectiveness of Cr2O3 scale at 1073 K

    NASA Astrophysics Data System (ADS)

    Arifin, S. K.; Hamid, M.; Berahim, A. N.; Ani, M. H.

    2018-01-01

    Fe-Cr alloy is commonly being used as boiler tube’s material. It is subjected to prolonged exposure to water vapor oxidation. The ability to withstand high temperature corrosion can normally be attributed to the formation of a dense and slow growing Cr-rich-oxide scale known as chromia, Cr2O3 scale. However, oxidation may limit the alloy’s service lifetime due to decreasing of its protectiveness capability. This paper is to presents an experimental study of thermo gravimetric and Fourier transform infrared analysis of Cr2O3 at 1073 K in dry and humid environment. Samples were used from commercially available Cr2O3 powder. It was cold-pressed into pellet shape of 12 mm diameter and 3 mm thick with hydraulic press for 40 min at 48 MPa. It then sintered at 1173 K in inert gas environment for 8 h. The samples are cooled and placed in 5 mm diameter platinum pan. It is subjected to reaction in dry and wet environment at 1073 K by applying 100%-Ar and Ar-5%H2 gas. Each reaction period is 48 h utilizing Thermo Gravimetric Analyzer, TGA to quantify the mass changes. After the reaction, the samples then characterized with Fourier Transform Infrared Spectroscopy, FT-IR and Field Emission Electron Scanning Microscopy, FE-SEM. The TGA result shows mass decreasing ratio of Cr2O3 in wet (PH2O = 9.5x105Pa) and dry environment is at a factor of 1.2 while parabolic rate at 1.4. FT-IR results confirmed that water vapor significantly broaden the peaks, thus promotes the volatilization of Cr2O3 in wet sample. FESEM shows mostly packed and intact in dry while in wet sample, slightly porous particle arrangement compare to dry. It is concluded that water vapor species decreased Cr2O3 protectiveness capability.

  13. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates.

    PubMed

    Staunton, Kyran M; Robson, Simon K A; Burwell, Chris J; Reside, April E; Williams, Stephen E

    2014-01-01

    With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.

  14. Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates

    PubMed Central

    Staunton, Kyran M.; Robson, Simon K. A.; Burwell, Chris J.; Reside, April E.; Williams, Stephen E.

    2014-01-01

    With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region. PMID:24586362

  15. IRIS Toxicological Review of Dichloromethane (Methylene Chloride) (Interagency Science Consultation Draft)

    EPA Science Inventory

    On March 31, 2010, the draft IRIS Toxicological Review of Dichloromethane (Methylene Chloride) external review draft document and the charge to external peer reviewers were released for public review and comment. The draft document and the charge to external peer reviewers were r...

  16. Drafting--Basic, Drafting--Intermediate: 9255.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course has no prerequisites, offers instruction in basic drafting room techniques and procedures, and also covers job opportunities and industrial methods in engineering. The student is introduced to and asked to perform fundamental drafting problems with working drawings, using multiview and auxiliary views and sections. The course also…

  17. IRIS Toxicological Review of Trimethylbenzenes (Revised External Review Draft)

    EPA Science Inventory

    In August 2013, EPA submitted a revised draft IRIS assessment of trimethylbenzenes to the agency's Science Advisory Board (SAB) and posted this draft on the IRIS website. EPA had previously released a draft of the assessment for public comment, held a public meeting about the dr...

  18. Mechnical Drawing/Drafting Curriculum Guide.

    ERIC Educational Resources Information Center

    Gregory, Margaret R.; Benson, Robert T.

    This curriculum guide consists of materials for teaching a course in mechanical drawing and drafting. Addressed in the individual units of the guide are the following topics: the nature and scope of drawing and drafting, visualization and spatial relationships, drafting tools and materials, linework, freehand lettering, geometric construction,…

  19. 75 FR 51838 - Public Review of Draft Coastal and Marine Ecological Classification Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... DEPARTMENT OF THE INTERIOR Geological Survey Public Review of Draft Coastal and Marine Ecological... comments on draft Coastal and Marine Ecological Classification Standard. SUMMARY: The Federal Geographic Data Committee (FGDC) is conducting a public review of the draft Coastal and Marine Ecological...

  20. 10 CFR 51.76 - Draft environmental impact statement-limited work authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Draft environmental impact statement-limited work...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Production and Utilization Facilities § 51.76 Draft environmental impact statement—limited work authorization. The NRC will prepare a...

Top