Sample records for drag reducing additives

  1. Invariant Type-B characteristics of drag-reducing microalgal biopolymer solutions

    NASA Astrophysics Data System (ADS)

    Gasljevic, K.; Hall, K.; Chapman, D.; Matthys, E. F.

    2017-05-01

    The drag-reducing properties of polysaccharides from marine microalgae were investigated. They were compared to two drag-reducing additives studied extensively in the past, synthetic poly(ethylene) oxide, one of the most effective drag-reducing additives; and Xanthan Gum, another biopolymer often considered a model polymer for chemical and rheological research. Compared to Xanthan Gum, the most effective polymers from our microalgae show a higher drag-reducing efficiency in terms of necessary concentration to achieve a given level of drag reduction. In addition, they show a striking Type-B drag reduction behavior, which may be a very useful quality in most drag reduction applications, thanks to the independence of the drag reduction level on flow conditions such as velocity, shear stress, and tube diameter. With these polymers from microalgae we did not see evidence of Type-A behavior over the wide range of conditions studied (including pipe diameters up to 52 mm). Importantly, this suggests that the Drag Reduction coefficient in pipe flow for ideal drag-reducing solutions such as the polysaccharides investigated here is invariant at a given additive concentration of flow or solution parameters like ionic strength and can be used as a solution property to predict its drag reduction effectiveness over a wide range of conditions. On the contrary, Xanthan Gum showed evidence of both Type-A behavior in large diameter pipes and Type-B behavior in smaller ones. The polymers from microalgae also showed high resistance to degradation. Considering that these microalgae are very effective producers of polysaccharides (both extracellular and intracellular), they appear to be very promising additives for drag reduction applications.

  2. Drag reduction of nata de coco suspensions in circular pipe flow

    NASA Astrophysics Data System (ADS)

    Warashina, J.; Ogata, S.

    2015-04-01

    Reducing pipe friction by adding a drag-reducing agent has attracted interest as a means to reduce energy consumption. In addition to reducing drag, these agents are required to have a low environmental load and conserve natural resources. However, no drag-reducing agent currently satisfies both these conditions. We focused on nata de coco and found that the nata de coco fiber reduced drag by up to 25%. With respect to the mechanism of drag reduction by nata de coco fiber, the relationship between drag-reduction phenomena and the fiber form of nata de coco was investigated by visualization. We also found that the drag-reduction effect appeared to be due to the formation of networks of tangled fibers of nata de coco. However, drag reduction did not occur in the case in which fibers of nata de coco did not form networks.

  3. Drag reduction in nature

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Moore, K. J.

    1991-01-01

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  4. Longhorn Business Jets

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Developed in NASA's Aircraft Energy Efficiency program and manufactured by Gates Learjet Corporation, the winglet is an aerodynamic innovation designed to reduce fuel consumption and improve airplane performance. Winglets are lifting surfaces designed to operate in the "vortex" or air whirlpool which occurs at an airplane's wingtip. Complex flow of air around wingtip creates drag which retards the plane's progress. Winglet reduces strength of vortex and thereby reduces strength of drag. Additionally, winglet generates its own lift, producing forward thrust in the manner of a boat's sail. Combination of reduced drag and additional thrust adds up to significant improvement in fuel efficiency.

  5. Business Jets

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Learjet Inc.'s Learjet 31 and Learjet 55C both feature NASA developed winglets, nearly vertical extensions of the wing designed to reduce fuel consumption and generally improve airplane's performance. Winglets are lifting surfaces designed to operate in the vortex or air whirlpool that occurs at an airplanes wingtip. This complex flow of air creates air drag; the winglets job is to reduce the strength of the vortex and thereby substantially reduce drag, additionally the winglet generates its own lift producing forward thrust in the manner of a sailboat's sail. Combination of reduced drag and additional thrust adds up to improvement in fuel efficiency.

  6. A Wind-Tunnel Investigation of a Transonic-Transport Configuration Utilizing Drag-Reducing Devices at Mach Numbers from 0.20 to 1.03

    NASA Technical Reports Server (NTRS)

    Loving, Donald L.

    1961-01-01

    The static longitudinal stability and control and lateral characteristics of a transonic-transport model, incorporating recent drag-reducing devices, has been investigated in the Langley 8-foot transonic pressure tunnel. The wing was cambered, had a thickened root and a taper ratio of 0.3. Wing sweepback angles of 45 degrees and 40 degrees were investigated with corresponding aspect ratios of 7 and 8, respectively. Modifications to the model for reducing the drag were: a forward fuselage addition and special bodies (four big enough to house jet engines) added to the upper surface of the wing. Other components and changes investigated included an empennage, a wing-tip body, wing fences, wing trailing-edge flaps, horizontal-tail settings, and wing dihedral angle. The investigation covered the Mach number range from 0.20 to 1.03 for the angle-of-attack range from -5 degrees to 15.4 degrees, and a sideslip angle of -5 degrees, in the Reynolds number range from 0.52 times 10(exp 6) to 1.94 times 10(exp 6) based on the wing mean aerodynamic chord. The various fuselage and wing additions delayed the drag-rise Mach number and greatly reduced the drag beyond the drag rise. The wing bodies markedly alleviated unstable pitch tendencies throughout the test Mach number range. At low landing speeds, the wing bodies exhibited little interference with the ability of trailing-edge flaps to increase the lift near maximum lift coefficient; and the use of fences greatly reduced the severe longitudinal instability trend at landing attitudes. The model with a 6 degree dihedral angle exhibited positive lateral and directional stability characteristics in the presence of the fuselage and wing additions. An increase in drag-rise Mach number associated with the fuselage and wing additions on the 40 degree sweptback wing combination was similar to that for the comparable 45 degree combination. These additions did, however, reduce the drag of the 40 degree sweptback configurations more than the 45 degree configurations in the transonic speed range.

  7. Drag reduction by polymer additives from turbulent spectra.

    PubMed

    Calzetta, Esteban

    2010-12-01

    We extend the analysis of the friction factor for turbulent pipe flow reported by G. Gioia and P. Chakraborty [Phys. Rev. Lett. 96, 044502 (2006)] to the case where drag is reduced by polymer additives.

  8. Recent National Transonic Facility Test Process Improvements (Invited)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.

    2001-01-01

    This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feed-forward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.

  9. Recent National Transonic Facility Test Process Improvements (Invited)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.

    2001-01-01

    This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feedforward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.

  10. Fairing Well: Aerodynamic Truck Research at NASA Dryden Flight Research Center. From Shoebox to Bat Truck and Beyond

    NASA Technical Reports Server (NTRS)

    Gelzer, Christian

    2011-01-01

    In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared.

  11. Drag reduction - Jet breakup correlation with kerosene-based additives

    NASA Technical Reports Server (NTRS)

    Hoyt, J. W.; Altman, R. L.; Taylor, J. J.

    1980-01-01

    The drag-reduction effectiveness of a number of high-polymer additives dissolved in aircraft fuel has been measured in a turbulent-flow rheometer. These solutions were further subjected to high elongational stress and breakup forces in a jet discharging in air. The jet was photographed using a high-resolution camera with special lighting. The object of the work was to study the possible spray-suppression ability of high-polymer additives to aircraft fuel and to correlate this with the drag-reducing properties of the additives. It was found, in fact, that the rheometer results indicate the most effective spray-suppressing additives. Using as a measure the minimum polymer concentration to give a maximum friction-reducing effect, the order of effectiveness of eight different polymer additives as spray-suppressing agents was predicted. These results may find application in the development of antimisting additives for aircraft fuel which may increase fire safety in case of crash or accident.

  12. Impact of drag reducing polymers on the onset of instability in a pipe with reverse flow

    NASA Astrophysics Data System (ADS)

    Shashank, H. J.; Sreenivas, K. R.

    2014-11-01

    The objective of this study is to understand the mechanism by which drag reducing polymer (DRP) additives modify turbulent flow, so as to reduce turbulent drag. Reverse flow in a pipe occurs when the fluid close to the wall moves in an opposite direction to that of the core fluid. Reverse flow is established by using a piston-cylinder mechanism, the programmed motion of which imparts a known impulse to the fluid. When the piston is stopped at the end of the stroke, fluid inertia makes the core of the flow to continue in the same direction. In order to conserve mass, reverse flow is established close to the wall. An inflection point is thus formed, leading to flow instability above a critical Reynolds number. Dye and streak flow visualization experiments are performed to highlight the impact of DRP additives (polyethylene oxide, PEO, dissolved in water). The time of onset of the instability and the wavelength of the observed instability are studied in systems with and without DRP additives. This study will provide further insight into the phenomenon of turbulent polymer drag reduction.

  13. Why fibers are better turbulent drag reducing agents than polymers

    NASA Astrophysics Data System (ADS)

    Boelens, Arnout; Muthukumar, Murugappan

    2016-11-01

    It is typically found in literature that fibers are not as effective as drag reducing agents as polymers. However, for low concentrations, when adding charged polymers to either distilled or salt water, it is found that polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. In this study, using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we are able to explain why charged polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. Additionally, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers. This research was supported by NSF Grant No. DMR-1404940 and AFOSR Grant No. FA9550-14-1-0164.

  14. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  15. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths

    PubMed Central

    Zhou, Dan; Niu, Jiqiang

    2017-01-01

    Trains with different numbers of cars running in the open air were simulated using the delayed detached-eddy simulation (DDES). The numbers of cars included in the simulation are 3, 4, 5 and 8. The aim of this study was to investigate how train length influences the boundary layer, the wake flow, the surface pressure, the aerodynamic drag and the friction drag. To certify the accuracy of the mesh and methods, the drag coefficients from numerical simulation of trains with 3 cars were compared with those from the wind tunnel test, and agreement was obtained. The results show that the boundary layer is thicker and the wake vortices are less symmetric as the train length increases. As a result, train length greatly affects pressure. The upper surface pressure of the tail car reduced by 2.9%, the side surface pressure of the tail car reduced by 8.3% and the underneath surface pressure of the tail car reduced by 19.7% in trains that included 3 cars to those including 8 cars. In addition, train length also has a significant effect on the friction drag coefficient and the drag coefficient. The friction drag coefficient of each car in a configuration decreases along the length of the train. In a comparison between trains consisting of 3 cars to those consisting of 8 cars, the friction drag coefficient of the tail car reduced by 8.6% and the drag coefficient of the tail car reduced by 3.7%. PMID:29261758

  16. Applications of a direct/iterative design method to complex transonic configurations

    NASA Technical Reports Server (NTRS)

    Smith, Leigh Ann; Campbell, Richard L.

    1992-01-01

    The current study explores the use of an automated direct/iterative design method for the reduction of drag in transport configurations, including configurations with engine nacelles. The method requires the user to choose a proper target-pressure distribution and then develops a corresponding airfoil section. The method can be applied to two-dimensional airfoil sections or to three-dimensional wings. The three cases that are presented show successful application of the method for reducing drag from various sources. The first two cases demonstrate the use of the method to reduce induced drag by designing to an elliptic span-load distribution and to reduce wave drag by decreasing the shock strength for a given lift. In the second case, a body-mounted nacelle is added and the method is successfully used to eliminate increases in wing drag associated with the nacelle addition by designing to an arbitrary pressure distribution as a result of the redesigning of a wing in combination with a given underwing nacelle to clean-wing, target-pressure distributions. These cases illustrate several possible uses of the method for reducing different types of drag. The magnitude of the obtainable drag reduction varies with the constraints of the problem and the configuration to be modified.

  17. Experiment Evaluation of Skin Friction Drag by Surface Tailoring

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gopal krishna, K.; Gagan Kumar, K.; Gunasekar, P.; Nithya, S.

    2017-08-01

    Reduction of drag is an important role of aerodynamic specialist in real time world. The performance of forward moving object improved when the drag is reduced. Skin friction drag caused when the fluid tending to shear along the surface of the body and it is dependent on energy expenditure. Initial research concluded that nearly 20 to 40% of total drag is skin friction drag, based on flight forward velocity. This means a lot of fuel burned. In this paper we investigate a methodology to reduce the skin friction drag by implementing different kinds of exterior treatments. The ideology inspired from the world fastest moving oceanic creature. Structures are fabricated based on the replica of scales of the oceanic creature. The outer skin of the aerofoil NACA0012 is modified like shark scales. Then it is tested using open type sub sonic wind tunnel. In addition to that, the leading edge thickness effect also studied. The turbulent flow phenomenon is validated at different velocities and compared with numerical results using STAR CCM+. From the plots and graphical results, it is found that the skin friction drag is generated less due to reduction of transverse shear stress present in turbulent flow and skin friction drag depends on boundary layer thickness and on the percentage of chord of flow separation. In addition to this, the result delivers that the ordinary polished surface produces more drag than the modified scales. The outlook of this technology is excrescence for different applications. This open section wind tunnel testing produces 10-15% reduction in drag and can be turn to high values when the experiment is conducted in closed section wind tunnel with real time atmospheric conditions, which can be done as a future work.

  18. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua

    2015-07-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

  19. Drag reducing properties of microalgal exopolymers.

    PubMed

    Ramus, J; Kenney, B E; Shaughnessy, E J

    1989-01-25

    Dilute aqueous solutions of polymers released by marine phytoplankton (microalgae) were shown to effectively reduce drag in capillary pipe flow. Tests were performed in a capillary turbulent flow viscometer which extruded small samples under high pressures. In all, 22 species were screened, and the products of one chlorophyte and four rhodophyte species proved especially effective. The viscoelastic polymers produced by these species delayed the transition from laminar to turbulent flow to significantly higher Re. In general, polymeric regime segments come off the maximum drag reduction asymptote at characteristic retro-onset points, and come to lie approximately parallel to, but displaced upwards from the Prandtl-von Karman line. The delay to transition was shown to be dependent on additive polymer concentration, capillary diameter, and temperature. Ionic concentration, ionic composition, or pH had little effect on drag reducing properties.

  20. Drag reduction in plane Couette flow of dilute polymer solutions

    NASA Astrophysics Data System (ADS)

    Liu, Nansheng; Teng, Hao; Lu, Xiyun; Khomami, Bamin

    2017-11-01

    Drag reduction (DR) in the plane Couette flow (PCF) by the addition of flexible polymers has been studied by direct numerical simulation (DNS) in this work. Special interest has been directed to explore the similarity and difference in the DR features between the PCF and the plane Poiseuille flow (PPF), and to clarify the effects of large-scale structures (LSSs) on the near-wall turbulence. It has been demonstrated that in the near-wall region the drag-reduced PCF shares typical DR features similar to those reported for the drag-reduced PPF (White & Mungal 2008; Graham 2014), however in the core region intriguing differences are found between these two DR shear flows of polymeric solution. Specifically, in the core region of the drag-reduced PCF, the polymer chains are stretched substantial and absorb kinetic energy from the turbulent fluctuations. In commensurate, peak values of conformation tensor components Cyy and Czz occur in the core region. This finding is strikingly different from that of the drag-reduced PPF. For the drag-reduced PCF, the LSSs are found to have monotonically increasing effects on the near-wall flow as the Weissenberg number increases, and have their spanwise length scale unchanged. This work is supported by the NSFC Grants 11272306 and 11472268 and the NSF Grant CBET0755269. This research was also supported in part by allocation of advanced computational resources on DARTER by the National Institute for Computational Sciences (NICS).

  1. Discovery of riblets in a bird beak (Rynchops) for low fluid drag

    PubMed Central

    2016-01-01

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354734

  2. Shell model for drag reduction with polymer additives in homogeneous turbulence.

    PubMed

    Benzi, Roberto; De Angelis, Elisabetta; Govindarajan, Rama; Procaccia, Itamar

    2003-07-01

    Recent direct numerical simulations of the finite-extensibility nonlinear elastic dumbbell model with the Peterlin approximation of non-Newtonian hydrodynamics revealed that the phenomenon of drag reduction by polymer additives exists (albeit in reduced form) also in homogeneous turbulence. We use here a simple shell model for homogeneous viscoelastic flows, which recaptures the essential observations of the full simulations. The simplicity of the shell model allows us to offer a transparent explanation of the main observations. It is shown that the mechanism for drag reduction operates mainly on large scales. Understanding the mechanism allows us to predict how the amount of drag reduction depends on the various parameters in the model. The main conclusion is that drag reduction is not a universal phenomenon; it peaks in a window of parameters such as the Reynolds number and the relaxation rate of the polymer.

  3. Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives

    NASA Technical Reports Server (NTRS)

    Dubief, Yves

    2003-01-01

    The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non-linear extensibility-Peterlin) model which was used for the first LDR simulation by Sureshkumar et al. (1997). Flow and polymer parameters are close to realistic polymer drag reducing conditions. High drag reductions are achieved by using finite differences and a robust time stepping technique. A minimal channel flow is also used as a numerical experiment to investigate the effect of the outer region turbulent structures on the overall drag at HDR. The drag reducing action of the model is finally studied through the structure of energy transfers from the polymers to the velocity components. This investigation sheds some light on the details of polymer drag reduction.

  4. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2017-02-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  5. Drag reduction and the dynamics of turbulence in simple and complex fluidsa)

    NASA Astrophysics Data System (ADS)

    Graham, Michael D.

    2014-10-01

    Addition of a small amount of very large polymer molecules or micelle-forming surfactants to a liquid can dramatically reduce the energy dissipation it exhibits in the turbulent flow regime. This rheological drag reduction phenomenon is widely used, for example, in the Alaska pipeline, but it is not well-understood, and no comparable technology exists to reduce turbulent energy consumption in flows of gases, in which polymers or surfactants cannot be dissolved. The most striking feature of this phenomenon is the existence of a so-called maximum drag reduction (MDR) asymptote: for a given geometry and driving force, there is a maximum level of drag reduction that can be achieved through addition of polymers. Changing the concentration, molecular weight or even the chemical structure of the additives has little to no effect on this asymptotic value. This universality is the major puzzle of drag reduction. We describe direct numerical simulations of turbulent minimal channel flow of Newtonian fluids and viscoelastic polymer solutions. Even in the absence of polymers, we show that there are intervals of "hibernating" turbulence that display very low drag as well as many other features of the MDR asymptote observed in polymer solutions. As Weissenberg number increases to moderate values the frequency of these intervals also increases, and a simple theory captures key features of the intermittent dynamics observed in the simulations. At higher Weissenberg number, these intervals are altered - for example, their duration becomes substantially longer and the instantaneous Reynolds shear stress during them becomes very small. Additionally, simulations of "edge states," dynamical trajectories that lie on the boundary between turbulent and laminar flow, display characteristics that are similar to those of hibernating turbulence and thus to the MDR asymptote, again even in the absence of polymer additives. Based on these observations, we propose a tentative unified description of rheological drag reduction. The existence of MDR-like intervals even in the absence of additives sheds light on the observed universality of MDR and may ultimately lead to new flow control approaches for improving energy efficiency in a wide range of processes.

  6. An investigation of the linear mechanisms in polymer drag-reduced turbulence using resolvent analysis

    NASA Astrophysics Data System (ADS)

    McMullen, Ryan; McKeon, Beverley

    2017-11-01

    It is well-known that small amounts of high-molecular weight polymers can drastically reduce turbulent drag in a liquid (Toms, 1948). Furthermore, recent work has shown that studying polymers in turbulence can shed light on the nature of the self-sustaining mechanisms of wall turbulence (White and Mungal, 2008; Graham, 2014). The focus of this talk is an investigation of the linear mechanisms at play in polymer drag-reduced turbulent channel flow. The resolvent framework introduced by McKeon and Sharma (2010) for Newtonian turbulence is extended to the viscoelastic case in order to study the most-amplified velocity and polymer stretching modes, explored in the case of creeping flow by Jovanović and coworkers (Jovanović and Kumar, 2010; Lieu et al., 2013). Particular attention is given to the role of critical layers, which have been shown to be important in the dynamics of Newtonian turbulence (McKeon and Sharma, 2010). Additionally, comparisons will be made with the lower branch of the P4 family of exact coherent states, which closely reproduce statistical features of polymer drag-reduced turbulence close to maximum drag reduction (Park and Graham, 2015). The support of the Dow Corporation is gratefully acknowledged.

  7. Approach and Landing Investigation at Lift-Drag Ratios of 2 to 4 Utilizing a Straight-Wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Matranga, Gene J.; Armstrong, Neil A.

    1959-01-01

    A series of landings was performed with a straight-wing airplane to evaluate the effect of low lift-drag ratios on approach and landing characteristics. Landings with a peak lift-drag ratio as low as 3 were performed by altering the airplane configuration (extending speed brakes, flaps, and gear and reducing throttle setting). As lift-drag ratio was reduced, it was necessary either to make the landing pattern tighter or to increase initial altitude, or both. At the lowest lift-drag ratio the pilots believed a 270 deg overhead pattern was advisable because of the greater ease afforded in visually positioning the airplane. The values of the pertinent flare parameters increased with the reduction of lift-drag ratio. These parameters included time required for final flare; speed change during final flare; and altitude, glide slope, indicated airspeed, and vertical velocity at initiation of final flare. The pilots believed that the tolerable limit was reached with this airplane in the present configuration, and that if, because of a further reduction in lift-drag ratio, more severe approaches than those experienced in this program were attempted, additional aids would be required to determine the flare-initiation point.

  8. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.

    PubMed

    Martin, Samuel; Bhushan, Bharat

    2016-08-06

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  9. Polymer flexibility and turbulent drag reduction.

    PubMed

    Gillissen, J J J

    2008-10-01

    Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag reduction is positively correlated to viscous stresses, which are generated by extended polymers. Rodlike polymers always assume this favorable conformation, while randomly coiling chains need to be unraveled by fluid strain rate in order to become effective. The coiling and stretching of flexible polymers in turbulent flow produce an additional elastic component in the polymer stress. The effect of the elastic stresses on drag reduction is unclear. To study this issue, we compare direct numerical simulations of turbulent drag reduction in channel flow using constitutive equations describing solutions of rigid and flexible polymers. When compared at constant phi r2, both simulations predict the same amount of drag reduction. Here phi is the polymer volume fraction and r is the polymer aspect ratio, which for flexible polymers is based on average polymer extension at the channel wall. This demonstrates that polymer elasticity plays a marginal role in the mechanism for drag reduction.

  10. Utilising flags to reduce drag around a short finite circular cylinder

    NASA Astrophysics Data System (ADS)

    Javadi, Kh.; Kiani, F.; Tahaye Abadi, M.

    2018-03-01

    This paper utilises flags to decrease the drag around a short finite circular cylinder. Wall-adapted large eddy simulation and two-way fluid-structure interaction methods were applied to resolve unsteady turbulent flow structure. The far-field Reynolds number of the current configuration based on the cylinder diameter was chosen to be 20,000. In addition, the length-to-diameter ratio of the cylinder was assumed to be L/D = 2 whereas the flexible flag had a width-to-diameter ratio of W/D = 1.5. The results were compared with the regular short finite circular cylinder and the rigid flagged cylinder in our previous work. The results indicate that utilising flags inside the near-wake region of the cylinder reduces the pressure drag. The physical mechanism of this drag reduction is presented.

  11. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  12. Reducing drag of a commuter train, using engine exhaust momentum

    NASA Astrophysics Data System (ADS)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  13. Influence of polymer-surfactant aggregates on fluid flow.

    PubMed

    Malcher, Tadeusz; Gzyl-Malcher, Barbara

    2012-10-01

    This paper describes the influence of interactions of poly(ethylene oxide) (PEO) with cationic cetyltrimethylammonium bromide (CTAB) micelles on drag reduction. Since the interactions between PEO and CTAB micelles alone are weak, salicylate ions were used as CTAB counterions. They facilitate formation of polymer-micelle aggregates by screening the electrostatic repulsions between the charged surfactant headgroups. The influence of polymer-surfactant interactions on drag reduction is of biomedical engineering importance. Drag reducing additives introduced to blood produce beneficial effects on blood circulation, representing a novel way to treat cardiovascular disorders. PEO is a blood-compatible polymer. However, it quickly mechanically degrades when subjected to high shear stresses. Thus, there is a need to search for other additives able to reduce drag, which would be more mechanically stable, e.g. polymer-surfactant aggregates. Numerical simulations of the flow were performed using the CFX software. Based on the internal structure of the polymer-surfactant solution, a hypothesis explaining the reason of increase of drag reduction and decrease in dynamic viscosity with increasing shear rate was proposed. It was suggested that the probable reason for the abrupt increase in friction factor, observed when the critical Reynolds number was exceeded, was the disappearance of the difference in the dynamic viscosity. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The ‘W’ Prawn-Trawl with Emphasised Drag-Force Transfer to Its Centre Line to Reduce Overall System Drag

    PubMed Central

    Balash, Cheslav; Sterling, David; Binns, Jonathan; Thomas, Giles; Bose, Neil

    2015-01-01

    For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new ‘W’ trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and ‘W’ trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed ‘W’ trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated ‘W’ trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin ‘W’ trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow. PMID:25751251

  15. Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Rajappan, Anoop; McKinley, Gareth H.

    2017-11-01

    We use a custom-built Taylor-Couette apparatus (radius ratio η = 0.75) to study frictional drag reduction by dilute polymer solutions and superhydrophobic (SH) surfaces in turbulent flows for 15000 < Re < 86000 . By monitoring the torque-speed scaling we show that the swirling flow becomes fully turbulent above Re = 15000 and we focus on measurements in this regime. By applying SH coatings on the inner cylinder, we can evaluate the drag reducing performance of the coating and calculate the effective slip length in turbulent flow using a suitably modified Prandtl-von Kármán analysis. We also investigate drag reduction by dilute polymer solutions, and show that natural biopolymers from plant mucilage can be an inexpensive and effective alternative to synthetic polymers in drag reduction applications, approaching the same maximum drag reduction asymptote. Finally we explore combinations of the two methods - one arising from wall slip and the other due to changes in turbulence dynamics in the bulk flow - and find that the two effects are not additive; interestingly, the effectiveness of polymer drag reduction is drastically reduced in the presence of an SH coating on the wall. This study was financially supported by the Office of Naval Research (ONR) through Contract No. 3002453814.

  16. Bioinspired surfaces for turbulent drag reduction

    PubMed Central

    Golovin, Kevin B.; Gose, James W.; Perlin, Marc; Ceccio, Steven L.; Tuteja, Anish

    2016-01-01

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354731

  17. Bioinspired surfaces for turbulent drag reduction.

    PubMed

    Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish

    2016-08-06

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  18. The Aerodynamic Drag of Five Models of Side Floats N.A.C.A. Models 51-E, 51-F, 51-G, 51-H, 51-J

    NASA Technical Reports Server (NTRS)

    House, R O

    1938-01-01

    The drag of five models of side floats was measured in the N.A.C.A. 7- by 10-foot wind tunnel. The most promising method of reducing the drag of floats indicated by these tests is lowering the angle at which the floats are rigged. The addition of a step to a float does not always increase the drag in the flying range, floats with steps sometimes having lower drag than similar floats without steps. Making the bow chine no higher than necessary might result in a reduction in air drag because of the lower angle of pitch of the chines. Since side floats are used formally to obtain lateral stability when the seaplane is operating on the water at slow speeds or at rest, greater consideration can be given to factors affecting aerodynamic drag than is possible for other types of floats and hulls.

  19. The maximum drag reduction asymptote

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  20. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.

    PubMed

    Wang, Gang; Zeng, Zhixiang; Wang, He; Zhang, Lin; Sun, Xiaodong; He, Yi; Li, Longyang; Wu, Xuedong; Ren, Tianhui; Xue, Qunji

    2015-12-02

    To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 μm. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets.

  1. Vertical variations of coral reef drag forces

    NASA Astrophysics Data System (ADS)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri; LWI Collaboration; Technion Collaboration

    2017-11-01

    Corals rely on water flow for the supply of nutrients, particles and energy. Therefore, modeling of processes that take place inside the reef, such as respiration and photosynthesis, relies on models that describe the flow and concentration fields. Due to the high spatial heterogeneity of branched coral reefs, depth average models are usually applied. Such an average approach is insufficient when the flow spatial variation inside the reef is of interest. We report on measurements of vertical variations of drag force that are needed for developing 3D flow models. Coral skeletons were densely arranged along a laboratory flume. Two corals were CT-scanned and replaced with horizontally sliced 3D printed replicates. Drag profiles were measured by connecting the slices to costume drag sensors and velocity profiles were measured using a LDV. The measured drag of whole colonies was in excellent agreement with previous studies; however, these studies never showed how drag varies inside the reef. In addition, these distributions of drag force showed an excellent agreement with momentum balance calculations. Based on the results, we propose a new drag model that includes the dispersive stresses, and consequently displays reduced vertical variations of the drag coefficient.

  2. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  3. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    1999-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25% of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust-drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  4. Hub and pylon fairing integration for helicopter drag reduction

    NASA Technical Reports Server (NTRS)

    Martin, D. M.; Mort, R. W.; Squires, P. K.; Young, L. A.

    1991-01-01

    The results of testing hub and pylon fairings mounted on a one-fifth scale helicopter with the goal of reducing parasite drag are presented. Lift, drag, and pitching moment, as well as side force and yawing moment, were measured. The primary objective of the test was to validate the drag reduction capability of integrated hub and pylon configurations in the aerodynamic environment produced by a rotating hub in forward flight. In addition to the baseline helicopter without fairings, three hub fairings and three pylon fairings were tested in various combinations. The three hub fairings tested reflect two different conceptual design approaches to implementing an integrated fairing configuration on an actual aircraft. The design philosophy is discussed in detail and comparisons are made between the wind tunnel models and potential full-scale prototypes. The data show that model drag can be reduced by as much as 20.8 percent by combining a small hub fairing with circular arc upper and flat lower surfaces and a nontapered 34-percent thick pylon fairing. Aerodynamic effects caused by the fairings, which may have a significant impact on static longitudinal and directional stability, were observed. The results support previous research which showed that the greatest reduction in model drag is achieved if the hub and pylon fairings are integrated with minimum gap between the two.

  5. Wind-Tunnel Investigations of Blunt-Body Drag Reduction Using Forebody Surface Roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Sprague, Stephanie; Naughton, Jonathan W.; Curry, Robert E. (Technical Monitor)

    2001-01-01

    This paper presents results of wind-tunnel tests that demonstrate a novel drag reduction technique for blunt-based vehicles. For these tests, the forebody roughness of a blunt-based model was modified using micomachined surface overlays. As forebody roughness increases, boundary layer at the model aft thickens and reduces the shearing effect of external flow on the separated flow behind the base region, resulting in reduced base drag. For vehicle configurations with large base drag, existing data predict that a small increment in forebody friction drag will result in a relatively large decrease in base drag. If the added increment in forebody skin drag is optimized with respect to base drag, reducing the total drag of the configuration is possible. The wind-tunnel tests results conclusively demonstrate the existence of a forebody dragbase drag optimal point. The data demonstrate that the base drag coefficient corresponding to the drag minimum lies between 0.225 and 0.275, referenced to the base area. Most importantly, the data show a drag reduction of approximately 15% when the drag optimum is reached. When this drag reduction is scaled to the X-33 base area, drag savings approaching 45,000 N (10,000 lbf) can be realized.

  6. Analysis and evaluation of an integrated laminar flow control propulsion system

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dewitt, Kenneth J.

    1993-01-01

    Reduction of drag has been a major goal of the aircraft industry as no other single quantity influences the operating costs of transport aircraft more than aerodynamic drag. It has been estimated that even modest reduction of frictional drag could reduce fuel costs by anywhere from 2 to 5 percent. Current research on boundary layer drag reduction deals with various approaches to reduce turbulent skin friction drag as a means of improving aircraft performance. One of the techniques belonging to this category is laminar flow control in which extensive regions of laminar flow are maintained over aircraft surfaces by delaying transition to turbulence through the ingestion of boundary layer air. While problems of laminar flow control have been studied in some detail, the prospect of improving the propulsion system of an aircraft by the use of ingested boundary layer air has received very little attention. An initial study for the purpose of reducing propulsion system requirements by utilizing the kinetic energy of boundary layer air was performed in the mid-1970's at LeRC. This study which was based on ingesting the boundary layer air at a single location, did not yield any significant overall propulsion benefits; therefore, the concept was not pursued further. However, since then it has been proposed that if the boundary layer air were ingested at various locations on the aircraft surface instead of just at one site, an improvement in the propulsion system might be realized. The present report provides a review of laminar flow control by suction and focuses on the problems of reducing skin friction drag by maintaining extensive regions of laminar flow over the aircraft surfaces. In addition, it includes an evaluation of an aircraft propulsion system that is augmented by ingested boundary layer air.

  7. Method for reducing the drag of blunt-based vehicles by adaptively increasing forebody roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)

    2005-01-01

    A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.

  8. A Reassessment of Heavy-Duty Truck Aerodynamic Design Features and Priorities

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Meyer, Robert R., Jr.

    1999-01-01

    Between 1973 and 1982, the NASA Dryden Flight Research Center conducted "coast-down" tests demonstrating means for reducing the drag of trucks, buses, and motor homes. Numerous configurations were evaluated using a box-shaped test van, a two-axle truck, and a tractor-semitrailer combination. Results from three configurations of the test van are of interest now in view of a trucking industry goal of a 0.25 drag coefficient for tractor-semitrailer combinations. Two test van configurations with blunt-base geometry, similar to present day trucks (one configuration has square front comers and the other has rounded front comers), quantify the base drag increase associated with reduced forebody drag. Hoemer's equations predict this trend; however, test van results, reinforced by large-scale air vehicle data, indicate that Hoemer's formula greatly underestimates this dependence of base drag on forebody efficiency. The demonstrated increase in base drag associated with forebody refinement indicates that the goal of a 0.25 drag coefficient will not be achieved without also reducing afterbody drag. A third configuration of the test van had a truncated boattail to reduce afterbody drag and achieved a drag coefficient of 0.242. These results are included here and references are identified for other means of reducing afterbody drag.

  9. Drag of a Cottrell atmosphere by an edge dislocation in a smectic-A liquid crystal.

    PubMed

    Oswald, P; Lejček, L

    2017-10-01

    In a recent letter (P. Oswald et al., EPL 103, 46004 (2013)), we have shown that a smectic-A phase hardens in compression normal to the layers when the liquid crystal is doped with gold nanoparticles. This is due to the formation of Cottrell clouds nearby the core of the edge dislocations and the appearance of an additional drag force that reduces their mobility. We theoretically calculate the shape of the Cottrell cloud and the associated drag force as a function of the climb velocity of the dislocations. The main result is that the drag force depends on velocity and vanishes when the temperature tends to the smectic-A-to-nematic transition temperature. The role of the diffusion anisotropy is also evaluated.

  10. Method for Reducing the Drag of Increasing Forebody Roughness Blunt-Based Vehicles by Adaptively Increasing Forebody Roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)

    2005-01-01

    A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.

  11. Reducing cylinder drag by adding a plate

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir A.; Kozlova, Anna S.

    2017-10-01

    Reducing the drag of bodies is a central problem of modern aerohydrodynamics. The paper presents theoretical and experimental studies of a new method for reducing the drag of a circular cylinder. To reduce the drag we propose to install a flat plate along the flow in front of the cylinder. The theoretical investigation of the drag was carried out using FlowSimulation software. An experimental study of the body drag was performed in an open wind tunnel. The drag coefficient results of the cylinder depended on the different locations of the flat plate relative to the cylinder. The following geometric characteristics of the cylinder/plate are studied: the width of the gap between the cylinder and the plate and the meridional angle of the plate with respect to the cylinder. On the basis of Numerical and Physical Modeling, the values of the drag coefficient for the cylinder/plate are presented. The results included establishment the locations of the cylinder/plate which give the value of the drag coefficient for the combination of the two bodies. That total drag coefficient of the cylinder/plate can be less than the cylinder alone.

  12. Concentrated energy addition for active drag reduction in hypersonic flow regime

    NASA Astrophysics Data System (ADS)

    Ashwin Ganesh, M.; John, Bibin

    2018-01-01

    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  13. Lift, Drag, and Pressure Distribution Effects Accompanying Drag-Reducing Polymer Injection on Two-Dimensional Hydrofoil

    DTIC Science & Technology

    1975-10-01

    associated with drag- reducing polymers since Wu’s discovery of pump effects in 1969(16) Some of the research has involved tests on propellers finite span...AD-A022 433 LIFT, DRAG, AND PRESSURE DISTRIBUTION EFFECTS ACCOMPANYING DRAG- REDUCING POLYMER INJECTION ON TWO-DIMENSIONAL HYDROFOIL Daniel H. Fruman...et al Hydronautits, IncorponAted "Prepared f’or: Office of Naval Research October 197’ .!. S.IIE KA NTO CmaY - t 093103 A pprove!- for p~thic relpsa

  14. Aerodynamics of cyclist posture, bicycle and helmet characteristics in time trial stage.

    PubMed

    Chabroux, Vincent; Barelle, Caroline; Favier, Daniel

    2012-07-01

    The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist's upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.

  15. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Straussfogel, Dennis M.; Maughmer, Mark D.

    1991-01-01

    Improvements in the aerodynamic efficiency of commercial transport aircraft will reduce fuel usage with subsequent reduced cost, both monetary and environmental. To this end, the current research is aimed at reducing the overall drag of these aircraft with specific emphasis on reducing the drag generated by the lifting surfaces. The ultimate goal of this program is to create a wing design methodology which optimizes the geometry of the wing for lowest total drag within the constraints of a particular design specification. The components of drag which must be considered include profile drag, and wave drag. Profile drag is dependent upon, among other things, the airfoil section and the total wetted area. Induced drag, which is manifested as energy left in the wake by the trailing vortex system is mostly a function of wing span, but also depends on other geometric wing parameters. Wave drag of the wing, important in the transonic flight regime, is largely affected by the airfoil section, wing sweep, and so forth. The optimization problem is that of assessing the various parameters which contribute to the different components of wing drag, and determining the wing geometry which generates the best overall performance for a given aircraft mission. The primary thrust of the research effort to date was in the study of induced drag. Results from the study are presented.

  16. Use of DES in mildly separated internal flow: dimples in a turbulent channel

    NASA Astrophysics Data System (ADS)

    Tay, Chien Ming Jonathan; Khoo, Boo Cheong; Chew, Yong Tian

    2017-12-01

    Detached eddy simulation (DES) is investigated as a means to study an array of shallow dimples with depth to diameter ratios of 1.5% and 5% in a turbulent channel. The DES captures large-scale flow features relatively well, but is unable to predict skin friction accurately due to flow modelling near the wall. The current work instead relies on the accuracy of DES to predict large-scale flow features, as well as its well-documented reliability in predicting flow separation regions to support the proposed mechanism that dimples reduce drag by introducing spanwise flow components near the wall through the addition of streamwise vorticity. Profiles of the turbulent energy budget show the stabilising effect of the dimples on the flow. The presence of flow separation however modulates the net drag reduction. Increasing the Reynolds number can reduce the size of the separated region and experiments show that this increases the overall drag reduction.

  17. An Examination of Drag Reduction Mechanisms in Marine Animals, with Potential Applications to Uninhabited Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.

    2002-01-01

    Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.

  18. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  19. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.

    PubMed

    Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng

    2015-02-25

    The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.

  20. Turbulent structure in low-concentration drag-reducing channel flows

    NASA Technical Reports Server (NTRS)

    Luchik, T. S.; Tiederman, W. G.

    1988-01-01

    A two-component laser-Doppler velocimeter was used to obtain simultaneous measurements of the velocity components parallel and normal to the wall in two fully developed well-mixed low-concentration drag-reducing channel flows and one turbulent channel flow. For the drag-reducing flows, the average time between bursts was found to increase. Although the basic structure of the fundamental momentum transport event is shown to be the same in these drag-reducing flows, the lower-threshold Reynolds-stress-producing motions were found to be damped, while the higher-threshold motions were not. It is suggested that some strong turbulent motions are needed to maintain extended polymer molecules, which produce a solution with properties that can damp lower threshold turbulence and thereby reduce viscous drag.

  1. Statistical comparison of coherent structures in fully developed turbulent pipe flow with and without drag reduction

    NASA Astrophysics Data System (ADS)

    Sogaro, Francesca; Poole, Robert; Dennis, David

    2014-11-01

    High-speed stereoscopic particle image velocimetry has been performed in fully developed turbulent pipe flow at moderate Reynolds numbers with and without a drag-reducing additive (an aqueous solution of high molecular weight polyacrylamide). Three-dimensional large and very large-scale motions (LSM and VLSM) are extracted from the flow fields by a detection algorithm and the characteristics for each case are statistically compared. The results show that the three-dimensional extent of VLSMs in drag reduced (DR) flow appears to increase significantly compared to their Newtonian counterparts. A statistical increase in azimuthal extent of DR VLSM is observed by means of two-point spatial autocorrelation of the streamwise velocity fluctuation in the radial-azimuthal plane. Furthermore, a remarkable increase in length of these structures is observed by three-dimensional two-point spatial autocorrelation. These results are accompanied by an analysis of the swirling strength in the flow field that shows a significant reduction in strength and number of the vortices for the DR flow. The findings suggest that the damping of the small scales due to polymer addition results in the undisturbed development of longer flow structures.

  2. Flight tests of external modifications used to reduce blunt base drag

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke

    1988-01-01

    The effectiveness of a trailing disk (the trapped vortex concept) in reducing the blunt base drag of an 8-in diameter body of revolution was studied from measurements made both in flight and in full-scale wind-tunnel tests. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93. The maximum base drag reduction obtained from a cavity tested on the flight body of revolution was not significant. The effectiveness of a splitter plate and a vented-wall cavity in reducing the base drag of a quasi-two-dimensional fuselage closure was studied from base pressure measurements made in flight. The fuselage closure was between the two engines of the F-111 airplane; therefore, the base pressures were in the presence of jet engine exhaust. For Mach numbers from 1.10 to 1.51, significant base drag reduction was provided by the vented-wall cavity configuration. The splitter plate was not considered effective in reducing base drag at any Mach number tested.

  3. Drag reduction in hydrocarbon-aluminum soap polymer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakin, J.L.; Lee, K.C.

    1972-01-01

    While the drag-reducing capability of solutions of aluminum soap in hydrocarbons in turbulent flow has been known for over 20 yr, investigations of the effects of concentration, soap type, and aging on drag reduction have only recently begun. The effects of aging, shear stress, and the presence of peptizers on drag reduction of hydrocarbon dispersions of aluminum soaps at relatively low concentrations were studied. These systems showed an apparent upper critical shear stress above which drag reduction was gradually lost. Degradation of the soap micelle structure occurred relatively rapidly above this point and recovery was slow. The effect of peptizersmore » is complex. In some situations, it enhanced and in others reduced the drag-reducing ability of the soap polymers. (13 refs.)« less

  4. Shock Tunnel Studies of the Hypersonic Flowfield around the Hypervelocity Ballistic Models with Aerospikes

    NASA Astrophysics Data System (ADS)

    Balakalyani, G.; Saravanan, S.; Jagadeesh, G.

    Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.

  5. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    NASA Astrophysics Data System (ADS)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  6. Drag reduction by Acinetobacter calcoaceticus BD4.

    PubMed

    Sar, N; Rosenberg, E

    1987-09-01

    The encapsulated bacterium Acinetobacter calcoaceticus BD4 at a density of 3.6 X 10(9) cells per ml reduced the friction of turbulent water in a narrow pipe by 55%. This drag reduction was due to the tightly bound polysaccharide capsules (0.4 mg per ml) of culture. Capsule-deficient mutants of BD4 failed to reduce drag. The cell-bound polysaccharide demonstrated a threefold-higher drag-reducing activity than the polymer which was free in solution.

  7. NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2010-01-01

    This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.

  8. Properties of the Mean Momentum Balance in Polymer Drag Reduced Channel Flow

    NASA Astrophysics Data System (ADS)

    White, Christopher; Dubief, Yves; Klewicki, Joseph

    2014-11-01

    The redistribution of mean momentum and the underlying mechanisms of the redistribution process in polymer drag reduced channel flow are investigated by employing a mean momentum equation based analysis. The work is motivated by recent studies that showed (contrary to long-held views) that polymers modify the von Karman coefficient, κ, at low drag reduction, and at some relatively high drag reduction eradicate the inertially dominated logarithmic region. Since κ is a manifestation of the underlying dynamical behaviors of wall-bounded flow, understanding how polymers modify κ is inherently important to understanding the dynamics of polymer drag reduced flow, and, consequently, the phenomenon of polymer drag reduction. The goal of the present study is to explore and quantify these effects within the framework of a mean momentum based analysis.

  9. Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows.

    PubMed

    Stone, Philip A; Waleffe, Fabian; Graham, Michael D

    2002-11-11

    Nontrivial steady flows have recently been found that capture the main structures of the turbulent buffer layer. We study the effects of polymer addition on these "exact coherent states" (ECS) in plane Couette flow. Despite the simplicity of the ECS flows, these effects closely mirror those observed experimentally: Structures shift to larger length scales, wall-normal fluctuations are suppressed while streamwise ones are enhanced, and drag is reduced. The mechanism underlying these effects is elucidated. These results suggest that the ECS are closely related to buffer layer turbulence.

  10. Drag reduction by a linear viscosity profile.

    PubMed

    De Angelis, Elisabetta; Casciola, Carlo M; L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil

    2004-11-01

    Drag reduction by polymers in turbulent flows raises an apparent contradiction: the stretching of the polymers must increase the viscosity, so why is the drag reduced? A recent theory proposed that drag reduction, in agreement with experiments, is consistent with the effective viscosity growing linearly with the distance from the wall. With this self-consistent solution the reduction in the Reynolds stress overwhelms the increase in viscous drag. In this Rapid Communication we show, using direct numerical simulations, that a linear viscosity profile indeed reduces the drag in agreement with the theory and in close correspondence with direct simulations of the FENE-P model at the same flow conditions.

  11. Drag reduction of a hairy disk

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Hu, David L.

    2011-10-01

    We investigate experimentally the hydrodynamics of a hairy disk immersed in a two-dimensional flowing soap film. Drag force is measured as a function of hair length, density, and coating area. An optimum combination of these parameters yields a drag reduction of 17%, which confirms previous numerical predictions (15%). Flow visualization indicates the primary mechanism for drag reduction is the bending, adhesion, and reinforcement of hairs trailing the disk, which reduces wake width and traps "dead water." Thus, the use of hairy coatings can substantially reduce an object's drag while negligibly increasing its weight.

  12. Underwater drag-reducing effect of superhydrophobic submarine model.

    PubMed

    Zhang, Songsong; Ouyang, Xiao; Li, Jie; Gao, Shan; Han, Shihui; Liu, Lianhe; Wei, Hao

    2015-01-01

    To address the debates on whether superhydrophobic coatings can reduce fluid drag for underwater motions, we have achieved an underwater drag-reducing effect of large superhydrophobic submarine models with a feature size of 3.5 cm × 3.7 cm × 33.0 cm through sailing experiments of submarine models, modified with and without superhydrophobic surface under similar power supply and experimental conditions. The drag reduction rate reached as high as 15%. The fabrication of superhydrophobic coatings on a large area of submarine model surfaces was realized by immobilizing hydrophobic copper particles onto a precross-linked polydimethylsiloxane (PDMS) surface. The pre-cross-linking time was optimized at 20 min to obtain good superhydrophobicity for the underwater drag reduction effect by investigating the effect of pre-cross-linking on surface wettability and water adhesive property. We do believe that superhydrophobic coatings may provide a promising application in the field of drag-reducing of vehicle motions on or under the water surface.

  13. A Ground-Based Research Vehicle for Base Drag Studies at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Diebler, Corey; Smith, Mark

    2002-01-01

    A ground research vehicle (GRV) has been developed to study the base drag on large-scale vehicles at subsonic speeds. Existing models suggest that base drag is dependent upon vehicle forebody drag, and for certain configurations, the total drag of a vehicle can be reduced by increasing its forebody drag. Although these models work well for small projectile shapes, studies have shown that they do not provide accurate predictions when applied to large-scale vehicles. Experiments are underway at the NASA Dryden Flight Research Center to collect data at Reynolds numbers to a maximum of 3 x 10(exp 7), and to formulate a new model for predicting the base drag of trucks, buses, motor homes, reentry vehicles, and other large-scale vehicles. Preliminary tests have shown errors as great as 70 percent compared to Hoerner's two-dimensional base drag prediction. This report describes the GRV and its capabilities, details the studies currently underway at NASA Dryden, and presents preliminary results of both the effort to formulate a new base drag model and the investigation into a method of reducing total drag by manipulating forebody drag.

  14. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  15. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.

    PubMed

    Luo, Yuehao; Song, Wen; Wang, Xudong

    2016-03-01

    It is well-known that the bio-inspired sharkskin covering the original pattern has the apparent drag reduction function in the turbulent flowing stations, which can be regarded as "sharkskin effect", and it has progressively been put application into the fluid engineering with obtaining great profits. In this paper, the anisotropic wetting phenomena on sharkskin are discovered, the contact angles and rolling angles on different orientations are not the same. In addition, the hydrodynamic experiments on different sharkskin surfaces are conducted, and the experimental results illustrate that the super-hydrophobic and drag-reducing properties on deformed biological surfaces are improved to some extent compared to the original morphology, which has important significance to expand its practical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The effect of sodium hydroxide on drag reduction using banana peel as a drag reduction agent

    NASA Astrophysics Data System (ADS)

    Kaur, H.; Jaafar, A.

    2018-02-01

    Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions. Drag reduction agent such as polymers can be introduced to increase the flowrate of water flowing and reduce the water accumulation in the system. Currently used polymers are synthetic polymers, which will harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime was explored and assessed in this study using a rheometer, where a reduced a torque produced was perceived as a reduction of drag. This method proposed is less time consuming and is more practical which is producing carboxymethylcellulose from the banana peel. The cellulose powder was converted to carboxymethylcellulose (CMC) by etherification process. The carboxymethylation reaction during the synthesizing process was then optimized against the reaction temperature, reaction time and solubility. The biopolymers were then rheologically characterized, where the viscoelastic effects and the normal stresses produced by these biopolymers were utilized to further relate and explain the drag reduction phenomena. The research was structured to focus on producing the biopolymer and to assess the drag reduction ability of the biopolymer produced. The rheological behavior of the biopolymers was then analyzed based on the ability of reducing drag. The results are intended to expand the currently extremely limited experimental database. Based on the results, the biopolymer works as a good DRA.

  17. Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.

    2010-04-01

    The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.

  18. Reconfiguration of broad leaves into cones

    NASA Astrophysics Data System (ADS)

    Miller, Laura

    2013-11-01

    Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.

  19. Coherent structure dynamics and identification during the multistage transitions of polymeric turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhu, Lu; Xi, Li

    2018-04-01

    Drag reduction induced by polymer additives in wall-bounded turbulence has been studied for decades. A small dosage of polymer additives can drastically reduce the energy dissipation in turbulent flows and alter the flow structures at the same time. As the polymer-induced fluid elasticity increases, drag reduction goes through several stages of transition with drastically different flow statistics. While much attention in the area of polymer-turbulence interactions has been focused on the onset and the asymptotic stage of maximum drag reduction, the transition between the two intermediate stages – low-extent drag reduction (LDR) and high-extent drag reduction (HDR) – likely reflects a qualitative change in the underlying vortex dynamics according to our recent study [1]. In particular, we proposed that polymers start to suppress the lift-up and bursting of vortices at HDR, leading to the localization of turbulent structures. To test our hypothesis, a statistically robust conditional sampling algorithm, based on Jenong and Hussain [2]’s work, was adopted in this study. The comparison of conditional eddies between the Newtonian and the highly elastic turbulence shows that (i) the lifting “strength” of vortices is suppressed by polymers as reflected by the decreasing lifting angle of the conditional eddy and (ii) the curvature of vortices is also eliminated as the orientation of the head of the conditional eddy changes. In summary, the results of conditional sampling support our hypothesis of polymer-turbulence interactions during the LDR-HDR transition.

  20. Kevlar/PMR-15 reduced drag DC-9 reverser stang fairing

    NASA Technical Reports Server (NTRS)

    Kawai, R. T.

    1982-01-01

    A reduced drag fairing for the afterbody enclosing the thrust reverser actuators on the DC-9 has been developed with Kevlar-49/PMR-15 advanced composite material. The improved fairing reduces airplane drag 1% compared to the production baseline. Use of composites reduces weight 40% compared to an equivalent metal fairing. The Kevlar-49/PMR-15 advanced composite is an organic matrix material system that can be used at temperatures up to 500 F.

  1. The Effect of Volumetric Porosity on Roughness Element Drag

    NASA Astrophysics Data System (ADS)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for the cubes and 0.525 for the mesh forms. Results from the study indicate that as volumetric porosity increases, the force of drag on an element increases although the 2-dimensional porosity remains unchanged for the case of the cube forms. The mesh forms show a similar result that with increasing number of internal forms present, drag increases, but the drag curves are different, suggesting the kind of porosity has an effect on drag. An important scaling parameter that controls drag on the cubes is the permeability (K) of the element, which is a function of the diameter of the tubes and the porosity. K seems to be of lesser importance for controlling drag on the mesh forms. We hypothesize that the drag force data do not universally collapse as a function of permeability due to Reynolds number dependency on flow conditions within the elements that can be laminar, transitional, or turbulent even though flow exterior to the forms is fully turbulent. For the mesh forms, the greatest effect on drag occurs with the addition of the first internal form with subsequent additions showing very little additional effect.

  2. Turbulent Flow Enhancement by Polyelectrolyte Additives: Mechanistic Implications for Drag Reduction.

    NASA Astrophysics Data System (ADS)

    Wagger, David Leonard

    1992-01-01

    The drag reduction phenomenon was experimentally studied in two pipes, of diameters 1.46 and 1.02 cm, using seven polyelectrolytic HPAM additives, with molecular weights from 1 to 20 times 10^6 g/mole and degree of backbone hydrolysis from 8 to 60%, at concentrations from 1 to 1000 wppm, in saline solutions containing from 0.3 to 0.00001 N NaCl. Both laminar and turbulent flow behavior were greatly influenced by salinity-induced changes in the initial conformation of the HPAM additives. Initially collapsed, random-coiling conformations exhibited Newtonian laminar flow and Type-A turbulent drag reduction, while initially extended conformations exhibited shear-thinning in laminar flow and Type-B turbulent drag reduction. The gross-flow physics of Type-B drag reduction were delineated. A characteristic "ladder" structure prevailed, with polymeric regime segments that were roughly parallel to, but shifted upward from, the Prandtl-Karman line. In the polymeric regime, both Type-A fan and Type -B ladder structures were essentially independent of pipe diameter, and were scaled by the wall shear stress. The wall shear stress also scaled degradation during drag reduction. New onset and slope increment correlations were presented for Type-A drag reduction by HPAM additives. In Type-B drag reduction, flow enhancement was found proportional to additive concentration, and the intrinsic slip, Sigma = S^'/(c/M _{rm w}), varied roughly as the third power of backbone chain links N_ {rm bb}. New intrinsic slip and retro-onset correlations were presented for Type-B drag reduction by HPAM additives. Analysis of Type-B literature revealed a wide range of additive efficacies, with specific slips S^'/c from 0.0001 to 4. For the most effective additives, HPAM and asbestos fibers, the additive-pervaded volume fraction per unit flow enhancement, X_{rm v} /S^' ~ 3000, implied that these additives align during drag reduction. The slip ratio R_{rm sc}, which is the relative flow enhancement induced in Type-A and Type-B drag reduction at constant additive concentration, was found to be a universal function of the normalized turbulent flow strength (Re_ {rm s}sqrtf/Re_ {rm s}sqrtf*). The extension of initially collapsed, random-coiling, HPAM macromolecules by the turbulent flow field thus seems independent of additive parameters and absolute wall shear stress levels. Gross flow additive equivalence was detected at iso-slip points, where different polymer solutions induced equal flow enhancements. At numerous such points, the collapsed to extended slip ratio at constant concentration, R_{rm sc}, was essentially equal to the extended to collapsed concentration ratio at constant slip, R _{rm cs}. Thus, for fixed total additive concentration, the R_{ rm sc} observed at any Re_ {rm s}sqrtf simply represents the fraction of originally collapsed macromolecules that have become extended in the flow, and thence effective in drag reduction. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  3. Drag Reduction On Multiscale Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Jenner, Elliot; Barbier, Charlotte; D'Urso, Brian

    2013-11-01

    Fluid drag reduction is of great interest in a variety of fields, including hull engineering, microfluidics, and drug delivery. We fabricated samples with multi-scale superhydrophobic surfaces, which consist of hexagonally self-ordered microscopic spikes grown via anodization on macroscopic grooves cut in aluminum. The hydrodynamic drag properties were studied with a cone-and-plate rheometer, showing significant drag reduction near 15% in turbulent flow and near 30% in laminar flow. In addition to these experiments, numerical simulations were performed in order to estimate the slip length at high speeds. Furthermore, we will report on the progress of experiments with a new type of surface combining superhydrophobic surfaces like those discussed above with Slippery Liquid Infused Porous Surfaces (SLIPS), which utilize an oil layer to create a hydrophobic self-repairing surface. These ``Super-SLIPS'' may combine the best properties of both superhydrophobic surfaces and SLIPS, by combining a drag reducing air-layer and an oil layer which may improve durability and biofouling resistance. This research was supported by the ORNL Seed Money Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  4. The Effects of Propulsive Jetting on Drag of a Streamlined body

    NASA Astrophysics Data System (ADS)

    Krieg, Michael; Mohseni, Kamran

    2017-11-01

    Recently an abundance of bioinspired underwater vehicles have emerged to leverage eons of evolution. Our group has developed a propulsion technique inspired by jellyfish and squid. Propulsive jets are generated by ingesting and expelling water from a flexible internal cavity. We have demonstrated thruster capabilities for maneuvering on AUV platforms, where the internal thruster geometry minimized forward drag; however, such a setup cannot characterize propulsive efficiency. Therefore, we created a new streamlined vehicle platform that produces unsteady jets for forward propulsion rather than maneuvering. The streamlined jetting body is placed in a water tunnel and held stationary while jetting frequency and background flow velocity are varied. For each frequency/velocity pair the flow field is measured around the surface and in the wake using PIV. Using the zero jetting frequency as a baseline for each background velocity, the passive body drag is related to the velocity distribution. For cases with active jetting the drag and jetting forces are estimated from the velocity field and compared to the passive case. For this streamlined body, the entrainment of surrounding flow into the propulsive jet can reduce drag forces in addition to the momentum transfer of the jet itself. Office of Naval Research.

  5. Development of Drag Reducing Polymer of FDR-SPC

    NASA Astrophysics Data System (ADS)

    Lee, Inwon; Park, Hyun; Chun, Ho Hwan

    2015-11-01

    In this study, a novel FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer) is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The release mechanism of drag reducing radical is accounted for the hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. A significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface for PRD3-1.

  6. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  7. The drag force on a subsonic projectile in a fluid complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivlev, A. V.; Zhukhovitskii, D. I.

    2012-09-15

    The incompressible Navier-Stokes equation is employed to describe a subsonic particle flow induced in complex plasmas by a moving projectile. Drag forces acting on the projectile in different flow regimes are calculated. It is shown that, along with the regular neutral gas drag, there is an additional force exerted on the projectile due to dissipation in the surrounding particle fluid. This additional force provides significant contribution to the total drag.

  8. Exceeding the Asymptotic Limit of Polymer Drag Reduction.

    PubMed

    Choueiri, George H; Lopez, Jose M; Hof, Björn

    2018-03-23

    The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.

  9. Exceeding the Asymptotic Limit of Polymer Drag Reduction

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Lopez, Jose M.; Hof, Björn

    2018-03-01

    The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.

  10. Performance study of winglets on tapered wing with curved trailing edge

    NASA Astrophysics Data System (ADS)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  11. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  12. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  13. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  14. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  15. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  16. Modification of near-wall coherent structures in polymer drag reduced flow: simulation

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva

    2002-11-01

    Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.

  17. Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1984-01-01

    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number.

  18. Theoretical Calculations of Supersonic Wave Drag at Zero Lift for a Particular Store Arrangement

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Malvestuto, Frank S , Jr; Maxie, Peter J , Jr

    1958-01-01

    An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.

  19. Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Morrison, J. H.

    2004-01-01

    In June 2001, the first AIAA Drag Prediction Workshop was held to evaluate results obtained from extensive N-Version testing of a series of RANS CFD codes. The geometry used for the computations was the DLR-F4 wing-body combination which resembles a medium-range subsonic transport. The cases reported include the design cruise point, drag polars at eight Mach numbers, and drag rise at three values of lift. Although comparisons of the code-to-code medians with available experimental data were similar to those obtained in previous studies, the code-to-code scatter was more than an order-of-magnitude larger than expected and far larger than desired for design and for experimental validation. The second Drag Prediction Workshop was held in June 2003 with emphasis on the determination of installed pylon-nacelle drag increments and on grid refinement studies. The geometry used was the DLR-F6 wing-body-pylon-nacelle combination for which the design cruise point and the cases run were similar to the first workshop except for additional runs on coarse and fine grids to complement the runs on medium grids. The code-to-code scatter was significantly reduced for the wing-body configuration compared to the first workshop, although still much larger than desired. However, the grid refinement studies showed no sign$cant improvement in code-to-code scatter with increasing grid refinement.

  20. Experiments and analysis concerning the use of external burning to reduce aerospace vehicle transonic drag. Ph.D. Thesis - Maryland Univ., 1991

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1992-01-01

    The external combustion of hydrogen to reduce transonic drag was investigated. A control volume analysis is developed and indicates that the specific impulse performance of external burning is competitive with other forms of airbreathing propulsion and depends on the fuel-air ratio, freestream Mach number, and the severity of the base drag. A method is presented for sizing fuel injectors for a desired fuel-air ratio in the unconfined stream. A two-dimensional Euler analysis is also presented which indicates that the total axial force generated by external burning depends on the total amount of energy input and is independent of the transverse and streamwise distribution of heat addition. Good agreement between the Euler and control volume analysis is demonstrated. Features of the inviscid external burning flowfield are discussed. Most notably, a strong compression forms at the sonic line within the burning stream which may induce separation of the plume and prevent realization of the full performance potential. An experimental program was conducted in a Mach 1.26 free-jet to demonstrate drag reduction on a simple expansion ramp geometry, and verify hydrogen-air stability limits at external burning conditions. Stable combustion appears feasible to Mach number of between 1.4 and 2 depending on the vehicle flight trajectory. Drag reduction is demonstrated on the expansion ramp at Mach 1.26; however, force levels showed little dependence on fuel pressure or altitude in contrast to control volume analysis predictions. Various facility interference mechanisms and scaling issues were studied and are discussed.

  1. Turbulent drag reduction and degradation of DNA.

    PubMed

    Choi, H J; Lim, S T; Lai, Pik-Yin; Chan, C K

    2002-08-19

    Turbulent drag reduction induced by lambda-DNA is studied. The double-stranded DNA is found to be a good drag reducer when compared with the other normal linear polymers. However, this drag reducing power disappears when the DNA denatures to form two single-strand molecules. Mechanical degradation of DNA is also different from that of the normal linear-chain polymers: DNA is always cut in half by the turbulence. Our results suggest that the mechanism for turbulent degradation of DNA is different from that of the normal flexible long-chain polymers.

  2. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    NASA Astrophysics Data System (ADS)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  3. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  4. Analog VLSI system for active drag reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, B.; Goodman, R.; Jiang, F.

    1996-10-01

    In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuatorsmore » in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.« less

  5. Endplate effect on aerodynamic characteristics of threedimensional wings in close free surface proximity

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hwan; Kim, Mi Jeong; Yoon, Hyun Sik; Hung, Pham Anh; Chun, Ho Hwan; Park, Dong Woo

    2012-12-01

    We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  6. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  7. An Experimental Investigation of the Effect of a Canard Control on the Lift, Drag, and Pitching Moment of an Aspect-Ratio 2.0 Triangular Wing Incorporating a Form of Conical Camber

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Boyd, John W.

    1959-01-01

    The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.

  8. Extension of suboptimal control theory for flow around a square cylinder

    NASA Astrophysics Data System (ADS)

    Fujita, Yosuke; Fukagata, Koji

    2017-11-01

    We extend the suboptimal control theory to control of flow around a square cylinder, which has no point symmetry on the impulse response from the wall in contrast to circular cylinders and spheres previously studied. The cost functions examined are the pressure drag (J1), the friction drag (J2), the squared difference between target pressure and wall pressure (J3) and the time-averaged dissipation (J4). The control input is assumed to be continuous blowing and suction on the cylinder wall and the feedback sensors are assumued on the entire wall surface. The control law is derived so as to minimize the cost function under the constraint of linearized Navier-Stokes equation, and the impulse response field to be convolved with the instantaneous flow quanties are numerically obtained. The amplitide of control input is fixed so that the maximum blowing/suction velocity is 40% of the freestream velocity. When J2 is used as the cost function, the friction drag is reduced as expected but the mean drag is found to increase. In constast, when J1, J3, and J4 were used, the mean drag was found to decrease by 21%, 12%, and 22%, respectively; in addition, vortex shedding is suppressed, which leads to reduction of lift fluctuations.

  9. RotCFD Analysis of the AH-56 Cheyenne Hub Drag

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen

    2016-01-01

    In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.

  10. Development of a Kevlar/PMR-15 reduced drag DC-9 nacelle fairing

    NASA Technical Reports Server (NTRS)

    Kawai, R. T.; Hrach, F. J.

    1980-01-01

    The paper describes an advanced composite fairing designed to reduce drag on DC-9 nacelles as a part of the NASA Engine Component Improvement Program. This fairing is the aft enclosure for the thrust reverser actuator system on JT8D engine nacelles and is subjected to a 500 F exhaust flow during the reverse thrust. A reduced-drag configuration was developed by using in-flight tuft surveys for flow visualization in order to identify areas with low-quality flow, and then modifying the aerodynamic lines to improve the flow. A fabrication method for molding the part in an autoclave was developed; this material system is suitable for 500 F. The resultant composite fairing reduces the overall aircraft drag 1% with a weight reduction of 40% when compared with a metal component.

  11. Two-dimensional homogeneous isotropic fluid turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Gupta, Anupam; Perlekar, Prasad; Pandit, Rahul

    2015-03-01

    We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum in both inverse- and forward-cascade régimes; (c) reduce small-scale intermittency; (d) suppress regions of high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies and propose new experiments.

  12. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-08

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bis-urea-based supramolecular polymer: the first self-assembled drag reducer for hydrocarbon solvents.

    PubMed

    Sabadini, Edvaldo; Francisco, Kelly R; Bouteiller, Laurent

    2010-02-02

    The hydrodynamic drag reduction phenomenon, also termed the Toms effect, is an unusual case involving macromolecules in solution in which the resistance to flow is reduced comparatively to that of the pure solvent. Although the effect is relatively well characterized, it is still unclear from the molecular viewpoint. The presence of some amount of a polymer with high molecular weight can produce large levels of drag reduction in turbulent flow as a result of the interactions of the long structures with the small vortices developed during the flow. For this reason, the effect is very attractive in the pumping process because a significant amount of energy can be saved. In aqueous systems, giant micelles can be spontaneously formed, driven by the hydrophobic effect, and are effective drag reducers. Giant micelles are interesting in promoting drag reduction because the noncovalent and reversible aggregation of the surfactant molecules avoids mechanical degradation, which typically occurs with classical polymers, due to irreversible scission of the backbone. In this letter, we present the first hydrodynamic drag reducer for hydrocarbons based on a self-assembled polymer formed from the reversible aggregation of bis-urea monomers. This system forms two competitive polymeric structures--the tube (T) and the filament (F) forms--which are in equilibrium with each other. Our rheology results in octane and toluene are fully consistent with calorimetry data and show that only the longest form, T, is able to promote the drag reduction effect.

  14. Uncovering changes in spider orb-web topology owing to aerodynamic effects

    PubMed Central

    Zaera, Ramón; Soler, Alejandro; Teus, Jaime

    2014-01-01

    An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater—and not negligible—advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs. PMID:24966235

  15. Uncovering changes in spider orb-web topology owing to aerodynamic effects.

    PubMed

    Zaera, Ramón; Soler, Alejandro; Teus, Jaime

    2014-09-06

    An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater-and not negligible-advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Comparison of box-wing and conventional aircraft mission performance using multidisciplinary analysis and optimization

    DOE PAGES

    Andrews, Stephen A.; Perez, Ruben E.

    2018-06-04

    Box-wing aircraft designs have the potential to achieve significant reductions in fuel consumption. Closed non-planar wing designs have been shown to reduce induced drag and the statically indeterminate wing structure can lead to reduced wing weight. In addition, the streamwise separation of the two main wings can provide the moments necessary for static stability and control, eliminating the weight and aerodynamic drag of a horizontal tail. Proper assessment of the disciplinary interactions in box-wing designs is essential to determine any realistic performance benefits arising from the use of such a configuration. This study analyzes both box-wing and conventional aircraft designedmore » for representative regional-jet missions. A preliminary parametric investigation shows a lift-to-drag ratio advantage for box-wing designs, while a more detailed multidisciplinary study indicates that the requirement to carry the mission fuel in the wings leads to an increase of between 5% and 1% in total fuel burn compared to conventional designs. Furthermore, the multidisciplinary study identified operating conditions where the box-wing can have superior performance to conventional aircraft despite the fuel volume constraint.« less

  17. Comparison of box-wing and conventional aircraft mission performance using multidisciplinary analysis and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Stephen A.; Perez, Ruben E.

    Box-wing aircraft designs have the potential to achieve significant reductions in fuel consumption. Closed non-planar wing designs have been shown to reduce induced drag and the statically indeterminate wing structure can lead to reduced wing weight. In addition, the streamwise separation of the two main wings can provide the moments necessary for static stability and control, eliminating the weight and aerodynamic drag of a horizontal tail. Proper assessment of the disciplinary interactions in box-wing designs is essential to determine any realistic performance benefits arising from the use of such a configuration. This study analyzes both box-wing and conventional aircraft designedmore » for representative regional-jet missions. A preliminary parametric investigation shows a lift-to-drag ratio advantage for box-wing designs, while a more detailed multidisciplinary study indicates that the requirement to carry the mission fuel in the wings leads to an increase of between 5% and 1% in total fuel burn compared to conventional designs. Furthermore, the multidisciplinary study identified operating conditions where the box-wing can have superior performance to conventional aircraft despite the fuel volume constraint.« less

  18. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  19. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  20. Supersonic Cruise/Transonic Maneuver Wing Section Development Study.

    DTIC Science & Technology

    1980-06-01

    duct. The inlet is contoured to fit the blended forebody and results in a high-aspect-ratio, minimum height duct which facilitates clearance of the...following. Most of the changes were directed toward reducing the supersonic wave drag. The winglet was removed to reduce supersonic volume and camber...drag and skin friction drag. The primary function of the winglet was to provide directional stability at high angles of attack. Analysis of the HiMAT

  1. Drag and heat flux reduction mechanism of blunted cone with aerodisks

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Lang-quan; Yan, Li; Zhang, Tian-tian

    2017-09-01

    The major challenge among a number of design requirements for hypersonic vehicles is the reduction of drag and aerodynamic heating. Of all these techniques of drag and heat flux reduction, application of forward facing aerospike conceived in 1950s is an effective and simpler technique to reduce the drag as well as the heat transfer rate for blunt nosed bodies at hypersonic Mach numbers. In this paper, the flow fields around a blunt cone with and without aerodisk flying at hypersonic Mach numbers are computed numerically, and the numerical simulations are conducted by specifying the freestream velocity, static pressure and static temperatures at the inlet of the computational domain with a three-dimensional, steady, Reynolds-averaged Navier-Stokes equation. An aerodisk is attached to the tip of the rod to reduce the drag and heat flux further. The influences of the length of rod and the diameter of aerodisk on the drag and heat flux reduction mechanism are analyzed comprehensively, and eight configurations are taken into consideration in the current study. The obtained results show that for all aerodisks, the reduction in drag of the blunt body is proportional to the extent of the recirculation dead air region. For long rods, the aerodisk is found not that beneficial in reducing the drag, and an aerodisk is more effective than an aerospike. The spike produces a region of recirculation separated flow that shields the blunt-nosed body from the incoming flow, and the recirculation region is formed around the root of the spike up to the reattachment point of the flow at the shoulder of the blunt body. The dynamic pressure in the recirculation area is highly reduced and thus leads to the decrease in drag and heat load on the surface of the blunt body. Because of the reattachment of the shear layer on the shoulder of the blunt body, the pressure near that point becomes large.

  2. Decreased poststenotic flow disturbance during drag reduction by polyacrylamide infusion without increased aortic blood flow.

    PubMed

    Hutchison, K J; Campbell, J D; Karpinski, E

    1989-07-01

    The infusion of polyacrylamide in open chest rats has been reported to increase aortic blood flow and the effect has been ascribed to the "drag reduction" properties of these compounds. In six anesthetized dogs the infusion of polyacrylamide to a total dose of 2 mg/kg caused a reduction in midline and separation zone Doppler spectral broadening in the common carotid artery poststenotic velocity field. This apparent reduction in poststenotic turbulence was interpreted as indicating the presence of a drag reducing effect. Despite this demonstration that polyacrylamide was present in the blood in drag reducing concentrations no increase in aortic blood flow was produced.

  3. Drag reducing polymers improve tissue perfusion via modification of the RBC traffic in microvessels.

    PubMed

    Marhefka, J N; Zhao, R; Wu, Z J; Velankar, S S; Antaki, J F; Kameneva, M V

    2009-01-01

    This paper reports a novel, physiologically significant, microfluidic phenomenon generated by nanomolar concentrations of drag-reducing polymers (DRP) dissolved in flowing blood, which may explain previously demonstrated beneficial effects of DRP on tissue perfusion. In microfluidic systems used in this study, DRP additives were found to significantly modify traffic of red blood cells (RBC) into microchannel branches as well as reduce the near-wall cell-free layer, which normally is found in microvessels with a diameter smaller than 0.3 mm. The reduction in plasma layer size led to attenuation of the so-called "plasma skimming" effect at microchannel bifurcations, increasing the number of RBC entering branches. In vivo, these changes in RBC traffic may facilitate gas transport by increasing the near vessel wall concentration of RBC and capillary hematocrit. In addition, an increase in near-wall viscosity due to the redirection of RBC in this region may potentially decrease vascular resistance as a result of increased wall shear stress, which promotes endothelium mediated vasodilation. These microcirculatory phenomena can explain the previously reported beneficial effects of DRP on hemodynamics in vivo observed in many animal studies. We also report here our finding that DRP additives reduce flow separations at microchannel expansions, deflecting RBC closer to the wall and eliminating the plasma recirculation zone. Although the exact mechanism of the DRP effects on RBC traffic in microchannels is yet to be elucidated, these findings may further DRP progress toward clinical use.

  4. Drag reducing polymers improve tissue perfusion via modification of the RBC traffic in microvessels

    PubMed Central

    Marhefka, J.N.; Zhao, R.; Wu, Z.; Velankar, S.S.; Antaki, J.F.; Kameneva, M.V.

    2011-01-01

    This paper reports a novel, physiologically significant, microfluidic phenomenon generated by nanomolar concentrations of drag-reducing polymers (DRP) dissolved in flowing blood, which may explain previously demonstrated beneficial effects of DRP on tissue perfusion. In microfluidic systems used in this study, DRP additives were found to significantly modify traffic of red blood cells (RBC) into microchannel branches as well as reduce the near-wall cell-free layer, which normally is found in microvessels with a diameter smaller than 0.3 mm. The reduction in plasma layer size led to attenuation of the so-called “plasma skimming” effect at microchannel bifurcations, increasing the number of RBC entering branches. In vivo, these changes in RBC traffic may facilitate gas transport by increasing the near vessel wall concentration of RBC and capillary hematocrit. In addition, an increase in near-wall viscosity due to the redirection of RBC in this region may potentially decrease vascular resistance as a result of increased wall shear stress, which promotes endothelium mediated vasodilation. These microcirculatory phenomena may explain the previously reported beneficial effects of DRP on hemodynamics in vivo observed in many animal studies. We also report here our finding that DRP additives reduce flow separations at microchannel expansions, deflecting RBC closer to the wall and eliminating the plasma recirculation zone. Although the exact mechanism of the DRP effects on RBC traffic in microchannels is yet to be elucidated, these findings may further DRP progress toward clinical use. PMID:19721190

  5. Effect of Tail Surfaces on the Base Drag of a Body of Revolution at Mach Numbers of 1.5 and 2.0

    NASA Technical Reports Server (NTRS)

    Spahr, J Richard; Dickey, Robert R

    1951-01-01

    Wind-tunnel tests were performed at Mach numbers of 1.5 and 2.0 to investigate the influence of tail surfaces on the base drag of a body of revolution without boattailing and having a turbulent boundary layer. The tail surfaces were of rectangular plan form of aspect ratio 2.33 and has symmetrical, circular-arc airfoil section. The results of the investigation showed that the addition of these tail surfaces with the trailing edges at or near the body base incurred a large increase in the base-drag coefficient. For a cruciform tail having a 10-percent-thick airfoil section, this increase was about 70 percent at a Mach number of 1.5 and 35 percent at a Mach number of 2.0. As the trailing edge of the tail was moved forward or rearward of the base by about one tail-chord length, the base-drag increment was reduced to nearly zero. The increments in base-drag coefficient due to the presence of 10-percent-thick tail surfaces were generally twice those for 5-percent-thick surfaces. The base-drag increments due to the presence of a cruciform tail were less than twice those for a plane tail. An estimate of the change in base pressure due to the tail surfaces was made, based on a simple superposition of the airfoil-pressure field onto the base-pressure field behind the body. A comparison of the results with the experimental values indicated that in most cases the trend in the variation of the base-drag increment with changes in tail position could be predicted by this approximate method but that the quantitative agreement at most tail locations was poor.

  6. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Beljaars, A.; Wang, Y.; Huang, B.; Lin, C.; Chen, Y.; Wu, H.

    2017-09-01

    Weather Research and Forecasting (WRF) simulations with different selections of subgrid orographic drag over the Tibetan Plateau have been evaluated with observation and ERA-Interim reanalysis. Results show that the subgrid orographic drag schemes, especially the turbulent orographic form drag (TOFD) scheme, efficiently reduce the 10 m wind speed bias and RMS error with respect to station measurements. With the combination of gravity wave, flow blocking and TOFD schemes, wind speed is simulated more realistically than with the individual schemes only. Improvements are also seen in the 2 m air temperature and surface pressure. The gravity wave drag, flow blocking drag, and TOFD schemes combined have the smallest station mean bias (-2.05°C in 2 m air temperature and 1.27 hPa in surface pressure) and RMS error (3.59°C in 2 m air temperature and 2.37 hPa in surface pressure). Meanwhile, the TOFD scheme contributes more to the improvements than the gravity wave drag and flow blocking schemes. The improvements are more pronounced at low levels of the atmosphere than at high levels due to the stronger drag enhancement on the low-level flow. The reduced near-surface cold bias and high-pressure bias over the Tibetan Plateau are the result of changes in the low-level wind components associated with the geostrophic balance. The enhanced drag directly leads to weakened westerlies but also enhances the a-geostrophic flow in this case reducing (enhancing) the northerlies (southerlies), which bring more warm air across the Himalaya Mountain ranges from South Asia (bring less cold air from the north) to the interior Tibetan Plateau.

  7. Negative effects of commercial mussel dragging on eelgrass beds in Maine

    USGS Publications Warehouse

    Neckles, H.A.; Short, F.T.; Barker, S.; Kopp, B.S.

    2005-01-01

    A study by the US Geological Survey, the University of New Hampshire, and the Maine Department of Marine Resources showed that commercial mussel dragging poses a severe and long-lasting threat to eelgrass (Zostera marina). Dragging can damage large areas, with individual drag scars up to 79 acres in size found in Maine eelgrass beds. Dragging activity uproots eelgrass plants completely, removing leaves, rhizomes, and roots. Two independent methods were used to predict the rate of eelgrass recovery in heavily dragged areas. Under the best environmental conditions, complete revegetation of a dragged area would require an average of 11 years. Under conditions less favorable for eelgrass growth, such as reduced water quality, dragged areas could require more than 20 years to recover. Protection of eelgrass from commercial shellfish dragging will preserve important coastal habitat.

  8. Simultaneous determination of micellar structure and drag reduction in a surfactant solution flow using the fluorescence probe method

    NASA Astrophysics Data System (ADS)

    Wakimoto, Tatsuro; Araga, Koichi; Katoh, Kenji

    2018-03-01

    As widely known, the addition of a specific type of surfactant to water reduces drag in a pipe flow. This effect is considered to be a result of the suppression of turbulent transition caused by the ordered structure of rod-like micelles that is referred to as a shear-induced structure (SIS). However, it is typically difficult to determine the SIS since it is necessary to noninvasively detect the SIS with several hundred nanometers in the actual moving flow. In this study, we used the fluorescence probe method to locally determine the SIS in a pipe flow. When hydrophobic fluorescence molecules are added to the surfactant solution, the fluorescence molecules are trapped in micelles. Thus, fluorescence intensity varies based on the change in the micellar structure. We verified the applicability of the fluorescence probe method to the SIS detection and determined the relationship between the micellar structure and the drag reduction in the pipe flow by simultaneously measuring the fluorescence intensity and pipe friction factor. The experimental result demonstrates that the SIS formation in the near-wall region is closely correlated with the drag reduction and suggests that the near-wall SIS suppresses the turbulent transition.

  9. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  10. Hydrodynamic characteristics of sailfish and swordfish

    NASA Astrophysics Data System (ADS)

    Sagong, Woong; Jeon, Woo-Pyung; Choi, Haecheon

    2009-11-01

    The sailfish and swordfish are known as fastest sea animals, reaching their maximum speeds of more than 100km/h. Recently, Sagong et al. (2008, Phys. Fluids) investigated the role of V- shaped protrusions existing on the sailfish skin in the skin-friction reduction but those protrusions did not make a direct role in reducing drag. On the other hand, the long bill has been regarded as a device of reducing drag by separation delay through turbulence generation. In the present study, we investigate the hydrodynamic characteristics of sailfish and swordfish by installing the stuffed ones in a wind tunnel and measuring the drag on their bodies and boundary-layer velocities above the body surfaces. The drag coefficients of sailfish and swordfish are 0.0075 and 0.009 based on the free-stream velocity and wetted area, respectively. They are comparable to or smaller than those of other kinds of fish such as the dogfish, tuna and trout. Next, the role of bill on the drag is studied. The drag without bill or with an artificial short bill is lower than that with the original long bill, indicating that the bill does not reduce the drag at all. From the velocity measurement near the body surfaces, we found that flow separation does not occur even without bill, and thus the conjecture that the flow separation is delayed through turbulence generation by the bill is not valid.

  11. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: Implications for flow resistance and sediment transport

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Brun, Fanny; Fuller, Brian M.

    2017-09-01

    Steep mountain streams have higher resistance to flow and lower sediment transport rates than expected by comparison with low gradient rivers, and often these differences are attributed to reduced near-bed flow velocities and stresses associated with form drag on channel forms and immobile boulders. However, few studies have directly measured drag and lift forces acting on bed sediment for shallow flows over coarse sediment, which ultimately control sediment transport rates and grain-scale flow resistance. Here we report on particle lift and drag force measurements in flume experiments using a planar, fixed cobble bed over a wide range of channel slopes (0.004 < S < 0.3) and water discharges. Drag coefficients are similar to previous findings for submerged particles (CD ˜ 0.7) but increase significantly for partially submerged particles. In contrast, lift coefficients decrease from near unity to zero as the flow shallows and are strongly negative for partially submerged particles, indicating a downward force that pulls particles toward the bed. Fluctuating forces in lift and drag decrease with increasing relative roughness, and they scale with the depth-averaged velocity squared rather than the bed shear stress. We find that, even in the absence of complex bed topography, shallow flows over coarse sediment are characterized by high flow resistance because of grain drag within a roughness layer that occupies a significant fraction of the total flow depth, and by heightened critical Shields numbers and reduced sediment fluxes because of reduced lift forces and reduced turbulent fluctuations.

  12. Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence.

    PubMed

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2006-12-31

    The existence of drag reduction by polymer additives, well established for wall-bounded turbulent flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy, we carry out a high-resolution direct numerical simulation of decaying, homogeneous, isotropic turbulence with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy-dissipation rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.

  13. Effect of Drag Reducing Polymer and Suspended Solid on the Rate of Diffusion Controlled Corrosion in 90° Copper Elbow

    NASA Astrophysics Data System (ADS)

    Fouad, Mohamed Ahmed; Zewail, Taghreed Mohamed; Amine, Nieven Kamal Abbes

    2017-06-01

    Rate of diffusion controlled corrosion in 90° Copper Elbow acidified dichromate has been investigated in relation to the following parameters: effect of solution velocity in the absence and presence of drag- reducing polymer on the rate of diffusion controlled corrosion, and effect of the presence of suspended solids on the rate of diffusion controlled corrosion. It was found that the presence of drag reducing polymer inhibited the rate of mass transfer, while the presence of suspended solid increased significantly the rate of mass transfer.

  14. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets

    NASA Astrophysics Data System (ADS)

    Yang, Shao-Qiong; Li, Shan; Tian, Hai-Ping; Wang, Qing-Yi; Jiang, Nan

    2016-04-01

    Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect. In the present study, the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer (TBL) is investigated. This is done by means of tomographic particle image velocimetry (TPIV) measurements in channel flows over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190. The turbulent flows over drag-reducing riblets are verified by a planar time-resolved particle image velocimetry (TRPIV) system initially, and then the TPIV measurements are performed. Two-dimensional (2D) experimental results with a drag-reduction rate of around 4.81 % are clearly visible over triangle riblets with a peak-to-peak spacing s+ of 14, indicating from the drag-reducing performance that the buffer layer within the TBL has thickened; the logarithmic law region has shifted upward and the Reynolds shear stress decreased. A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudes of the spanwise vorticity when ejection (Q2) and sweep (Q4) events occur at the near wall, having the greatest effect on Q4 events in particular. The so-called quadrupole statistical model for coherent structures in the whole TBL is verified. Meanwhile, their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent flow over riblets are changed, suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events (Q2 and Q4), thereby reducing the skin friction drag.

  15. Augmentation of maneuver performance by spanwise blowing

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1977-01-01

    A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.

  16. Aerodynamic characteristics and heat radiation performance of sportswear fabrics

    NASA Astrophysics Data System (ADS)

    Koga, H.; Hiratsuka, M.; Ito, S.; Konno, A.

    2017-10-01

    Sports such as swimming, speed skating, and marathon are sports competing for time. In recent years, reduction of the fluid drag of sportswear is required for these competitions in order to improve the record. In addition, sweating and discomfort due to body temperature rise during competition are thought to affect competitor performance, and heat radiation performance is also an important factor for sportswear. The authors have measured fluid force drag by wrapping cloth around a cylinder and have confirmed their differences due to the roughness of the fabric surface, differences in sewing. The authors could be verified the drag can be reduced by the position of the wear stitch. This time, we measured the heat radiation performance of 14 types of cloths whose aero dynamic properties are known using cylinders which are regarded as human fuselages, and found elements of cloth with heat radiation performance. It was found to be important for raising the heat radiation performance of sportswear that the fabric is thin and flat surface processing.

  17. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  18. Roles of size and kinematics in drag reduction for two tandem flexible foils

    NASA Astrophysics Data System (ADS)

    Chao, Li-Ming; Zhang, Dong; Pan, Guang

    2017-11-01

    The effect of size and kinematics difference between two tandem flexible foils on drag reduction have been numerically studied. Compared with single foil, it is found that the kinematics difference between two foils would not play a significant role in reducing drag, while the size difference between two foils significantly affects the drag reduction in this two foil system. For leading foil, it always enjoys drag reduction and the highest drag reduction can be observed at bigger size difference and gap distance between two foil as 22%. For trailing foil, it suffers drag increase when the gap distance between two foils is smaller, while it enjoys drag decrease when the size difference between two foils is bigger enough. The hydrodynamic interaction between such actively undulated foils also has been uncovered and used to explain the mechanisms of drag reduction.

  19. On the theory of compliant wall drag reduction in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Ash, R. L.

    1974-01-01

    A theoretical model has been developed which can explain how the motion of a compliant wall reduces turbulent skin friction drag. Available experimental evidence at low speeds has been used to infer that a compliant surface selectively removes energy from the upper frequency range of the energy containing eddies and through resulting surface motions can produce locally negative Reynolds stresses at the wall. The theory establishes a preliminary amplitude and frequency criterion as the basis for designing effective drag reducing compliant surfaces.

  20. Biomimetic spiroid winglets for lift and drag control

    NASA Astrophysics Data System (ADS)

    Guerrero, Joel E.; Maestro, Dario; Bottaro, Alessandro

    2012-01-01

    In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80-90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a bird's wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.

  1. Drag De-Orbit Device: A New Standard Re-Entry Actuator for CubeSats

    NASA Technical Reports Server (NTRS)

    Guglielmo, David; Omar, Sanny; Bevilacqua, Riccardo

    2017-01-01

    With the advent of CubeSats, research in Low Earth Orbit (LEO) becomes possible for universities and small research groups. Only a handful of launch sites can be used, due to geographical and political restrictions. As a result, common orbits in LEO are becoming crowded due to the additional launches made possible by low-cost access to space. CubeSat design principles require a maximum of a 25-year orbital lifetime in an effort to reduce the total number of spacecraft in orbit at any time. Additionally, since debris may survive re-entry, it is ideal to de-orbit spacecraft over unpopulated areas to prevent casualties. The Drag Deorbit Device (D3) is a self-contained targeted re-entry subsystem intended for CubeSats. By varying the cross-wind area, the atmospheric drag can be varied in such a way as to produce desired maneuvers. The D3 is intended to be used to remove spacecraft from orbit to reach a desired target interface point. Additionally, attitude stabilization is performed by the D3 prior to deployment and can replace a traditional ADACS on many missions.This paper presents the hardware used in the D3 and operation details. Four stepper-driven, repeatedly retractable booms are used to modify the cross-wind area of the D3 and attached spacecraft. Five magnetorquers (solenoids) over three axes are used to damp rotational velocity. This system is expected to be used to improve mission flexibility and allow additional launches by reducing the orbital lifetime of spacecraft.The D3 can be used to effect a re-entry to any target interface point, with the orbital inclination limiting the maximum latitude. In the chance that the main spacecraft fails, a timer will automatically deploy the booms fully, ensuring the spacecraft will at the minimum reenter the atmosphere in the minimum possible time, although not necessarily at the desired target interface point. Although this does not reduce the risk of casualties, the 25-year lifetime limit is still respected, allowing a reduction of the risk associated with a hardware failure.

  2. PIV Measurements of Turbulent Pipe Flow with Drag-Reducing Megasupramolecules

    NASA Astrophysics Data System (ADS)

    Huynh, David; McMullen, Ryan; McKeon, Beverley; Lhota, Redmond; Wei, Ming-Hsin; Kornfield, Julia

    2016-11-01

    Toms (1948) was the first to observe that dissolving small amounts of high-molecular weight (HMW) polymers into a liquid can drastically reduce turbulent drag. Ever since, studying polymers in turbulence has been of great fundamental interest, as it can potentially provide insight into the self-sustaining mechanisms of wall turbulence. HMW polymers commonly employed for drag-reduction studies are plagued by chain scission due to the high shear rates accompanying turbulent flow at practical Reynolds numbers (Re); this shear degradation reduces the length of the polymer molecules, diminishing their effectiveness for drag-reduction. However, Wei et al. (2015) have recently developed "megasupramolecules" that perform comparably to traditional HMW polymers and circumvent the shear degradation problem by using end-associating polymers that can break and reassociate reversibly. Particle image velocimetry is used in specialized turbulent pipe flow experiments in the range Re 7.5x104-1.2x105 to investigate and compare the drag and turbulence characteristics of the (Newtonian) baseline, traditional HMW polymer solutions, and megrasupramolecules. The support of The Dow Corporation is gratefully acknowledged.

  3. On the Effect of Rigid Swept Surface Waves on Turbulent Drag

    NASA Technical Reports Server (NTRS)

    Denison, M.; Wilkinson, S. P.; Balakumar, P.

    2015-01-01

    Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.

  4. A Computational and Experimental Study of Nonlinear Aspects of Induced Drag

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.

    1996-01-01

    Despite the 80-year history of classical wing theory, considerable research has recently been directed toward planform and wake effects on induced drag. Nonlinear interactions between the trailing wake and the wing offer the possibility of reducing drag. The nonlinear effect of compressibility on induced drag characteristics may also influence wing design. This thesis deals with the prediction of these nonlinear aspects of induced drag and ways to exploit them. A potential benefit of only a few percent of the drag represents a large fuel savings for the world's commercial transport fleet. Computational methods must be applied carefully to obtain accurate induced drag predictions. Trefftz-plane drag integration is far more reliable than surface pressure integration, but is very sensitive to the accuracy of the force-free wake model. The practical use of Trefftz plane drag integration was extended to transonic flow with the Tranair full-potential code. The induced drag characteristics of a typical transport wing were studied with Tranair, a full-potential method, and A502, a high-order linear panel method to investigate changes in lift distribution and span efficiency due to compressibility. Modeling the force-free wake is a nonlinear problem, even when the flow governing equation is linear. A novel method was developed for computing the force-free wake shape. This hybrid wake-relaxation scheme couples the well-behaved nature of the discrete vortex wake with viscous-core modeling and the high-accuracy velocity prediction of the high-order panel method. The hybrid scheme produced converged wake shapes that allowed accurate Trefftz-plane integration. An unusual split-tip wing concept was studied for exploiting nonlinear wake interaction to reduced induced drag. This design exhibits significant nonlinear interactions between the wing and wake that produced a 12% reduction in induced drag compared to an equivalent elliptical wing at a lift coefficient of 0.7. The performance of the split-tip wing was also investigated by wing tunnel experiments. Induced drag was determined from force measurements by subtracting the estimated viscous drag, and from an analytical drag-decomposition method using a wake survey. The experimental results confirm the computational prediction.

  5. Additive equivalence in turbulent drag reduction by flexible and rodlike polymers.

    PubMed

    Benzi, Roberto; Ching, Emily S C; Lo, T S; L'vov, Victor S; Procaccia, Itamar

    2005-07-01

    We address the additive equivalence discovered by Virk and co-workers: drag reduction affected by flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very similar maximum drag reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.

  6. An Investigation of the Drag and Pressure Recovery of a Submerged Inlet and a Nose Inlet in the Transonic Flight Range with Free-fall Models

    NASA Technical Reports Server (NTRS)

    Selna, James; Schlaff, Bernard A

    1951-01-01

    The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.

  7. Parasite-Drag Measurements of Five Helicopter Rotor Hubs

    NASA Technical Reports Server (NTRS)

    Churchill, Gary B.; Harrington, Robert D.

    1959-01-01

    An investigation has been conducted in the Langley full-scale tunnel to determine the parasite drag of five production-type helicopter rotor hubs. Some simple fairing arrangements were attempted in an effort to reduce the hub drag. The results indicate that, within the range of the tests, changes in angle of attack, hub rotational speed, and forward speed generally had only a small effect on the equivalent flat-plate area representing parasite drag. The drag coefficients of the basic hubs, based on projected hub frontal area, increased with hub area and varied from 0.5 to 0.76 for the hubs tested.

  8. Outer-layer manipulators for turbulent drag reduction

    NASA Technical Reports Server (NTRS)

    Anders, J. B., Jr.

    1990-01-01

    The last ten years have yielded intriguing research results on aerodynamic boundary outer-layer manipulators as local skin friction reduction devices at low Reynolds numbers; net drag reduction device systems for entire aerodynamic configurations are nevertheless noted to remain elusive. Evidence has emerged for dramatic alterations of the structure of a turbulent boundary layer which persist for long distances downstream and reduce wall shear as a results of any one of several theoretically possible mechanisms. Reduced effectiveness at high Reynolds numbers may, however, limit the applicability of outer-layer manipulators to practical aircraft drag reduction.

  9. Collisions and drag in debris discs with eccentric parent belts

    NASA Astrophysics Data System (ADS)

    Löhne, T.; Krivov, A. V.; Kirchschlager, F.; Sende, J. A.; Wolf, S.

    2017-08-01

    Context. High-resolution images of circumstellar debris discs reveal off-centred rings that indicate past or ongoing perturbation, possibly caused by secular gravitational interaction with unseen stellar or substellar companions. The purely dynamical aspects of this departure from radial symmetry are well understood. However, the observed dust is subject to additional forces and effects, most notably collisions and drag. Aims: To complement the studies of dynamics, we therefore aim to understand how the addition of collisional evolution and drag forces creates new asymmetries and strengthens or overrides existing ones. Methods: We augmented our existing numerical code Analysis of Collisional Evolution (ACE) by an azimuthal dimension, the longitude of periapse. A set of fiducial discs with global eccentricities ranging from 0 to 0.4 was evolved over gigayear timescales. Size distribution and spatial variation of dust were analysed and interpreted. We discuss the basic impact of belt eccentricity on spectral energy distributions and images. Results: We find features imposed on characteristic timescales. First, radiation pressure defines size cut-offs that differ between periapse and apoapse, resulting in an asymmetric halo. The differences in size distribution make the observable asymmetry of the halo depend on wavelength. Second, collisional equilibrium prefers smaller grains on the apastron side of the parent belt, reducing the effect of pericentre glow and the overall asymmetry. Third, Poynting-Robertson drag fills the region interior to an eccentric belt such that the apastron side is more tenuous. Interpretation and prediction of the appearance in scattered light is problematic when spatial and size distribution are coupled.

  10. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    PubMed Central

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-01-01

    ABSTRACT Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. PMID:26941105

  11. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.

    PubMed

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-04-15

    Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. © 2016. Published by The Company of Biologists Ltd.

  12. Summary of the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.

    2007-01-01

    The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.

  13. Tapping the Brake for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Thompson, Kyle; Korzun, Ashley

    2016-01-01

    A matrix of simulations of hypersonic flow over blunt entry vehicles with steady and pulsing retropropulsion jets is presented. Retropropulsion in the supersonic domain is primarily designed to reduce vehicle velocity directly with thrust. Retropropulsion in the hypersonic domain may enable significant pressure recovery through unsteady, oblique shocks while providing a buffer of reactant gases with relatively low total temperature. Improved pressure recovery, a function of Mach number squared and oblique shock angle, could potentially serve to increase aerodynamic drag in this domain. Pulsing jets are studied to include an additional degree of freedom to search for resonances in an already unsteady flow domain with an objective to maximize the time-averaged drag coefficient. In this paradigm, small jets with minimal footprints of the nozzle exit on the vehicle forebody may be capable of delivering the requisite perturbations to the flow. Simulations are executed assuming inviscid, symmetric flow of a perfect gas to enable a rapid assessment of the parameter space (nozzle geometry, plenum conditions, jet pulse frequency). The pulsed-jet configuration produces moderately larger drag than the constant jet configuration but smaller drag than the jet-off case in this preliminary examination of a single design point. The fundamentals of a new algorithm for this challenging application with time dependent, interacting discontinuities using the feature detection capabilities of Walsh functions are introduced.

  14. Effect of Ground Proximity on the Aerodynamic Characteristics of Aspect-Ratio-1 Airfoils With and Without End Plates

    NASA Technical Reports Server (NTRS)

    Carter, Arthur W.

    1961-01-01

    An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.

  15. A Base Drag Reduction Experiment on the X-33 Linear Aerospike SR-71 Experiment (LASRE) Flight Program

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.

    1999-01-01

    Drag reduction tests were conducted on the LASRE/X-33 flight experiment. The LASRE experiment is a flight test of a roughly 20% scale model of an X-33 forebody with a single aerospike engine at the rear. The experiment apparatus is mounted on top of an SR-71 aircraft. This paper suggests a method for reducing base drag by adding surface roughness along the forebody. Calculations show a potential for base drag reductions of 8-14%. Flight results corroborate the base drag reduction, with actual reductions of 15% in the high-subsonic flight regime. An unexpected result of this experiment is that drag benefits were shown to persist well into the supersonic flight regime. Flight results show no overall net drag reduction. Applied surface roughness causes forebody pressures to rise and offset base drag reductions. Apparently the grit displaced streamlines outward, causing forebody compression. Results of the LASRE drag experiments are inconclusive and more work is needed. Clearly, however, the forebody grit application works as a viable drag reduction tool.

  16. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  17. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE PAGES

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; ...

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  18. Drag of Clean and Fouled Net Panels – Measurements and Parameterization of Fouling

    PubMed Central

    Gansel, Lars Christian; Plew, David R.; Endresen, Per Christian; Olsen, Anna Ivanova; Misimi, Ekrem; Guenther, Jana; Jensen, Østen

    2015-01-01

    Biofouling is a serious problem in marine aquaculture and it has a number of negative impacts including increased forces on aquaculture structures and reduced water exchange across nets. This in turn affects the behavior of fish cages in waves and currents and has an impact on the water volume and quality inside net pens. Even though these negative effects are acknowledged by the research community and governmental institutions, there is limited knowledge about fouling related effects on the flow past nets, and more detailed investigations distinguishing between different fouling types have been called for. This study evaluates the effect of hydroids, an important fouling organism in Norwegian aquaculture, on the forces acting on net panels. Drag forces on clean and fouled nets were measured in a flume tank, and net solidity including effect of fouling were determined using image analysis. The relationship between net solidity and drag was assessed, and it was found that a solidity increase due to hydroids caused less additional drag than a similar increase caused by change in clean net parameters. For solidities tested in this study, the difference in drag force increase could be as high as 43% between fouled and clean nets with same solidity. The relationship between solidity and drag force is well described by exponential functions for clean as well as for fouled nets. A method is proposed to parameterize the effect of fouling in terms of an increase in net solidity. This allows existing numerical methods developed for clean nets to be used to model the effects of biofouling on nets. Measurements with other types of fouling can be added to build a database on effects of the accumulation of different fouling organisms on aquaculture nets. PMID:26151907

  19. The influence of gravity and wind on land plant evolution.

    PubMed

    Niklas, K J

    1998-07-01

    Aspects of the engineering theory treating the elastic stability of vertical stems and cantilevered leaves supporting their own weight and additional wind-induced forces (drag) are reviewed in light of biomechanical studies of living and fossil terrestrial plant species. The maximum height to which arborescent species can grow before their stems elastically buckle under their own weight is estimated by means of the Euler-Greenhill formula which states that the critical buckling height scales as the 1/3 power of plant tissue-stiffness normalized with respect to tissue bulk density and as the 2/3 power of stem diameter. Data drawn from living plants indicate that progressively taller plant species employ stiffer and lighter-weight plant tissues as the principal stiffening agent in their vertical stems. The elastic stability of plants subjected to high lateral wind-loadings is governed by the drag torque (the product of the drag force and the height above ground at which this force is applied), which cannot exceed the gravitational bending moment (the product of the weight of aerial organs and the lever arm measured at the base of the plant). Data from living plants indicate that the largest arborescent plant species rely on massive trunks and broad, horizontally expansive root crowns to resist drag torques. The drag on the canopies of these plants is also reduced by highly flexible stems and leaves composed of tissues that twist and bend more easily than tissues used to stiffen older, more proximal stems. A brief review of the fossil record suggests that modifications in stem, leaf, and root morphology and anatomy capable of simultaneously coping with self-weight and wind-induced drag forces evolved by Devonian times, suggesting that natural selection acting on the elastic stability of sporophytes occurred early in the history of terrestrial plants.

  20. Drag Prediction for the DLR-F4 Wing/Body using OVERFLOW and CFL3D on an Overset Mesh

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Buning, Pieter G.; Rumsey, Christopher L.

    2002-01-01

    This paper reviews the importance of numerical drag prediction in an aircraft design environment. A chronicle of collaborations between the authors and colleagues is discussed. This retrospective provides a road-map which illustrates some of the actions taken in the past seven years in pursuit of accurate drag prediction. The advances made possible through these collaborations have changed the manner in which business is conducted during the design of all-new aircraft. The subject of this study is the DLR-F4 wing/body transonic model. Specifically, the work conducted herein was in support of the 1st CFD Drag Prediction Workshop, which was held in conjunction with the 19th Applied Aerodynamics Conference in Anaheim, CA during June, 2001. Comprehensive sets of OVERFLOW simulations were independently performed by several users on a variety of computational platforms. CFL3D was used on a limited basis for additional comparison on the same overset mesh. Drag polars based on this database were constructed with a CFD-to-Test correction applied and compared with test data from three facilities. These comparisons show that the predicted drag polars fall inside the scatter band of the test data, at least for pre-buffet conditions. This places the corrected drag levels within 1% of the averaged experimental values. At the design point, the OVERFLOW and CFL3D drag predictions are within 1-2% of each other. In addition, drag-rise characteristics and a boundary of drag-divergence Mach number are presented.

  1. The Effects of Streamwise-Deflected Wing Tips on the Aerodynamic Characteristics of an Aspect Ratio-2 Triangular Wing, Body, and Tail Combination

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.

    1959-01-01

    An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.

  2. Wave drag as the objective function in transonic fighter wing optimization

    NASA Technical Reports Server (NTRS)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  3. Active aerodynamic drag reduction on morphable cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  4. Full-Scale Wind-Tunnel Investigation of the Drag Characteristics of an HU2K Helicopter Fuselage

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1963-01-01

    An investigation was conducted in the Langley full-scale tunnel to determine the drag characteristics of the HU2K helicopter fuselage. The effects of body shape, engine operation, appendages, and leakage on the model drag were determined. The results of the tests showed that the largest single contribution to the parasite drag was that of the rotor hub installation which produced about 80 percent of the drag of the sealed and faired production body. Fairings on the rotor hub and blade retentions, or a cleaned-up hub and retentions, appeared to be the most effective single modifications tested. The total drag of all protuberances and air leakage also contributed a major part of the drag - an 83-percent increase over the drag of the sealed and faired production body. An additional increment of drag was caused by the basic shape of the fuselage - 19 percent more than the drag obtained when the fuselage shape was extensively refaired. Another sizable increment of drag was caused by the engine oil-cooler exit which gave a drag of 8 percent of that of the sealed and faired production body.

  5. An investigation of the feasibility of active boundary layer thickening for aircraft drag reduction

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Koodalattupuram, C.

    1986-01-01

    The feasibility of using a forward mounted windmilling propeller to extract momentum from the flow around an axisymmetric body to reduce total drag has been studied. Numerical calculations indicate that a net drag reduction is possible when the energy extracted is returned to an aft mounted pusher propeller. However, net drag reduction requires very high device efficiencies. Results of an experimental program to study the coupling between a propeller wake and a turbulent boundary layer are also reported. The experiments showed that a complex coupling exists and simple modes for the flow field are not sufficiently accurate to predict total drag.

  6. Effect of Jet-nozzle-expansion Ratio on Drag of Parabolic Afterbodies

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W; Vargo, Donald J; Cubbison, Robert W

    1954-01-01

    The interaction of the flow from one convergent and two convergent-divergent nozzles on parabolic afterbodies was studied at free-stream Mach numbers of 2.0, 1.6, and 0.6 over a range of jet pressure ratio. The influence of the jet on boattail and base drag was very pronounced. Study of the total external afterbody drag values at supersonic speeds indicated that, over most of the high-pressure-ratio range, increasing the nozzle design expansion ratio increased the drag even though the boattail area was reduced. Increasing the pressure ratio tended to increase slightly the total-drag increment caused by angle-of-attack operation.

  7. Analysis of Drag Reduction Methods and Mechanisms of Turbulent.

    PubMed

    Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  8. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    PubMed Central

    Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425

  9. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  10. Incorporating geometrically complex vegetation in a computational fluid dynamic framework

    NASA Astrophysics Data System (ADS)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Rosser, Nick

    2015-04-01

    Vegetation is known to have a significant influence on the hydraulic, geomorphological, and ecological functioning of river systems. Vegetation acts as a blockage to flow, thereby causing additional flow resistance and influencing flow dynamics, in particular flow conveyance. These processes need to be incorporated into flood models to improve predictions used in river management. However, the current practice in representing vegetation in hydraulic models is either through roughness parameterisation or process understanding derived experimentally from flow through highly simplified configurations of fixed, rigid cylinders. It is suggested that such simplifications inadequately describe the geometric complexity that characterises vegetation, and therefore the modelled flow dynamics may be oversimplified. This paper addresses this issue by using an approach combining field and numerical modelling techniques. Terrestrial Laser Scanning (TLS) with waveform processing has been applied to collect a sub-mm, 3-dimensional representation of Prunus laurocerasus, an invasive species to the UK that has been increasingly recorded in riparian zones. Multiple scan perspectives produce a highly detailed point cloud (>5,000,000 individual data points) which is reduced in post processing using an octree-based voxelisation technique. The method retains the geometric complexity of the vegetation by subdividing the point cloud into 0.01 m3 cubic voxels. The voxelised representation is subsequently read into a computational fluid dynamic (CFD) model using a Mass Flux Scaling Algorithm, allowing the vegetation to be directly represented in the modelling framework. Results demonstrate the development of a complex flow field around the vegetation. The downstream velocity profile is characterised by two distinct inflection points. A high velocity zone in the near-bed (plant-stem) region is apparent due to the lack of significant near-bed foliage. Above this, a zone of reduced velocity is found where the bulk of the vegetation blockage is more evenly distributed. Finally, flow rapidly recovers towards the free-stream region. Analysis of the pressure field demonstrates that drag force is non-linearly distributed over the vegetation. In the downstream direction, the drag force decreases through the vegetation. The experiment is extended to emulate vegetation reconfiguration in the flow, and is achieved through rotation of the vegetation about a fixed position (roots) on the bed. The experiment demonstrates a reduction in the total drag force and a shift in the contribution of different drag mechanisms as the degree of rotation increases. In the upright state, form drag dominates, but with additional rotation, the contribution of viscous drag increases. Consequently, the total drag force is found to decrease by approximately one third between the upright and fully rotated states of reconfiguration. Explicit representation of vegetation geometry therefore enables a re-evaluation of vegetative flow resistance. This presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, i.e. roughness parameterisation, in favour of a more physically determined approach.

  11. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.

    2013-08-01

    The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the profile slope in the HDR regime. There was significant scatter in the observed slope in the HDR regime, but the scatter did not appear to be Reynolds number dependent. Finally, the ultimate profiles for flows at maximum drag reduction were examined and did not exhibit a logarithmic functional relationship, which is the classical empirical relationship suggested by Virk [J. Am. Inst. Chem. Eng. 21, 625-656 (1975)], 10.1002/aic.690210402.

  12. Effect of polymer additives on characteristics of direct-current motor with liquid dielectric filler

    NASA Astrophysics Data System (ADS)

    Ivanov, V. I.; Bashkatova, S. T.; Lubsanova, A. A.; Tokarev, S. B.; Zadaroshnaya, G. N.; Pastukhova, I. N.

    1984-11-01

    In d.c. motors filled with dielectric of the hydrocarbon kind hydrodynamic losses can constitute up to 40% of the total losses. Consequently, a study was made to determine the proper additive and amount to reduce the hydraulic drag without dehomogenizing the liquid filler over long operating periods. Two polymethacrylates, never before used for this application were selected. Two motors of different size, a 0.8 kW DPK and a 6 kW DPK, were tested in kerosene with 0.005-1.0 wt% of these additives. An evaluation of the data, including the hydraulic drag coefficient as a function of the Reynolds number and the temperature rise at critical motor components (armature winding in slots, armature endturns on drive side, armature teeth, liquid in interpolar space, field winding, pole pieces) with or without additive, has yielded the optimum range of additive concentration for each motor size. An evaluation of the heat transfer at critical surfaces, with the aid of dimensional analysis, has yielded the semiempirical relation Nu=CRe0.65Pr0.4Km (C- constant factor different for each surface, Km- constant factor with exponent different for each additive polymer materials). The results can be extended to transformer oil and diesel oil as liquid motor-filling medium.

  13. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    NASA Technical Reports Server (NTRS)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  14. Skin friction drag reduction in turbulent flow using spanwise traveling surface waves

    NASA Astrophysics Data System (ADS)

    Musgrave, Patrick F.; Tarazaga, Pablo A.

    2017-04-01

    A major technological driver in current aircraft and other vehicles is the improvement of fuel efficiency. One way to increase the efficiency is to reduce the skin friction drag on these vehicles. This experimental study presents an active drag reduction technique which decreases the skin friction using spanwise traveling waves. A novel method is introduced for generating traveling waves which is low-profile, non-intrusive, and operates under various flow conditions. This wave generation method is discussed and the resulting traveling waves are presented. These waves are then tested in a low-speed wind tunnel to determine their drag reduction potential. To calculate the drag reduction, the momentum integral method is applied to turbulent boundary layer data collected using a pitot tube and traversing system. The skin friction coefficients are then calculated and the drag reduction determined. Preliminary results yielded a drag reduction of ≍ 5% for 244Hz traveling waves. Thus, this novel wave generation method possesses the potential to yield an easily implementable, non-invasive drag reduction technology.

  15. A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.

    2007-01-01

    Design of Experiments (DOE) techniques were applied to the Launch Abort System (LAS) of the NASA Crew Exploration Vehicle (CEV) parametric geometry Computational Fluid Dynamics (CFD) study to efficiently identify and rank the primary contributors to the integrated drag over the vehicles ascent trajectory. Typical approaches to these types of activities involve developing all possible combinations of geometries changing one variable at a time, analyzing them with CFD, and predicting the main effects on an aerodynamic parameter, which in this application is integrated drag. The original plan for the LAS study team was to generate and analyze more than1000 geometry configurations to study 7 geometric parameters. By utilizing DOE techniques the number of geometries was strategically reduced to 84. In addition, critical information on interaction effects among the geometric factors were identified that would not have been possible with the traditional technique. Therefore, the study was performed in less time and provided more information on the geometric main effects and interactions impacting drag generated by the LAS. This paper discusses the methods utilized to develop the experimental design, execution, and data analysis.

  16. Influence of polymer additive on flow past a hydrofoil: A numerical study

    NASA Astrophysics Data System (ADS)

    Xiong, Yongliang; Peng, Sai; Yang, Dan; Duan, Juan; Wang, Limin

    2018-01-01

    Flows of dilute polymer solutions past a hydrofoil (NACA0012) are examined by direct numerical simulation to investigate the modification of the wake pattern due to the addition of polymer. The influence of polymer additive is modeled by the FENE-P model in order to simulate a non-linear modulus of elasticity and a finite extendibility of the polymer macromolecules. Simulations were carried out at a Reynolds number of 1000 with the angle of attack varying from 0° to 20°. The results show that the influence of polymer on the flow behavior of the flow past a hydrofoil exhibits different flow regimes. In general, the addition of polymer modifies the wake patterns for all angles of attack in this study. Consequently, both drag and lift forces are changed as the Weissenberg number increases while the drag of the hydrofoil is enhanced at small angles of attack and reduced at large angles of attack. As the Weissenberg number increases, two attached recirculation bubbles or two columns of shedding vortices downstream tend to be symmetric, and the polymer tends to make the flow less sensitive to the variation of the angle of attack.

  17. Aircraft drag prediction and reduction. Addendum 1: Computational drag analyses and minimization; mission impossible?

    NASA Technical Reports Server (NTRS)

    Slooff, J. W.

    1986-01-01

    The Special Course on Aircraft Drag Prediction was sponsored by the AGARD Fluid Dynamics Panel and the von Karman Institute and presented at the von Karman Institute, Rhode-Saint-Genese, Belgium, on 20 to 23 May 1985 and at the NASA Langley Research Center, Hampton, Virginia, USA, 5 to 6 August 1985. The course began with a general review of drag reduction technology. Then the possibility of reduction of skin friction through control of laminar flow and through modification of the structure of the turbulence in the boundary layer were discussed. Methods for predicting and reducing the drag of external stores, of nacelles, of fuselage protuberances, and of fuselage afterbodies were then presented followed by discussion of transonic drag rise. The prediction of viscous and wave drag by a method matching inviscid flow calculations and boundary layer integral calculations, and the reduction of transonic drag through boundary layer control are also discussed. This volume comprises Paper No. 9 Computational Drag Analyses and Minimization: Mission Impossible, which was not included in AGARD Report 723 (main volume).

  18. High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Winkel, Eric S.; Ceccio, Steven L.; Perlin, Marc; Dowling, David R.

    2010-08-01

    Wall-pressure fluctuations were investigated within a high-Reynolds-number turbulent boundary layer (TBL) modified by the addition of dilute friction-drag-reducing polymer solutions. The experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model with the surface hydraulically smooth (k+<0.2) and achieving downstream-distance-based Reynolds numbers to 220×106. The polymer (polyethylene oxide) solution was injected into the TBL through a slot in the surface. The primary flow diagnostics were skin-friction drag balances and an array of flush-mounted dynamic pressure transducers 9.8 m from the model leading edge. Parameters varied included the free-stream speed (6.7, 13.4, and 20.2 m s-1) and the injection condition (polymer molecular weight, injection concentration, and volumetric injection flux). The behavior of the pressure spectra, convection velocity, and coherence, regardless of the injection condition, were determined primarily based on the level of drag reduction. Results were divided into two regimes dependent on the level of polymer drag reduction (PDR), nominally separated at a PDR of 40%. The low-PDR regime is characterized by decreasing mean-square pressure fluctuations and increasing convection velocity with increasing drag reduction. This shows that the decrease in the pressure spectra with increasing drag reduction is due in part to the moving of the turbulent structures from the wall. Conversely, with further increases in drag reduction, the high-PDR regime has negligible variation in the mean-squared pressure fluctuations and convection velocity. The convection velocity remains constant at approximately 10% above the baseline-flow convection velocity, which suggests that the turbulent structures no longer move farther from the wall with increasing drag reduction. In light of recent numerical work, the coherence results indicate that in the low-PDR regime, the turbulent structures are being elongated in the streamwise direction and occurring at decreasing frequency. In the high-PDR regime, the rate of occurrence continues to decrease until large-scale coherent turbulent structures are potentially no longer present.

  19. The effect of atmospheric drag on the design of solar-cell power systems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Kyser, A. C.

    1983-01-01

    The feasibility of reducing the atmospheric drag of low orbit solar powered satellites by operating the solar-cell array in a minimum-drag attitude, rather than in the conventional Sun pointing attitude was determined. The weights of the solar array, the energy storage batteries, and the fuel required to overcome the drag of the solar array for a range of design life times in orbit were considered. The drag of the array was estimated by free molecule flow theory, and the system weights were calculated from unit weight estimates for 1990 technology. The trailing, minimum drag system was found to require 80% more solar array area, and 30% more battery capacity, the system weights for reasonable life times were dominated by the thruster fuel requirements.

  20. The economic impact of drag in general aviation

    NASA Technical Reports Server (NTRS)

    Neal, R. D.

    1975-01-01

    General aviation aircraft fuel consumption and operating costs are closely linked to drag reduction methods. Improvements in airplane drag are envisioned for new models; their effects will be in the 5 to 10% range. Major improvements in fuel consumption over existing turbofan airplanes will be the combined results of improved aerodynamics plus additional effects from advanced turbofan engine designs.

  1. Drag reduction of turbulent pipe flows by circular-wall oscillation

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So; Graham, Mark

    1998-01-01

    An experimental study on turbulent pipe flows was conducted with a view to reduce their friction drag by oscillating a section of the pipe in a circumferential direction. The results indicated that the friction factor of the pipe is reduced by as much as 25% as a result of active manipulation of near-wall turbulence structure by circular-wall oscillation. An increase in the bulk velocity was clearly shown when the pipe was oscillated at a constant head, supporting the measured drag reduction in the present experiment. The percentage reduction in pipe friction was found to be better scaled with the nondimensional velocity of the oscillating wall than with its nondimensional period, confirming a suggestion that the drag reduction seem to be resulted from the realignment of longitudinal vortices into a circumferential direction by the wall oscillation.

  2. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats.

    PubMed

    Bessa, K L; Belletati, J F; Santos, L; Rossoni, L V; Ortiz, J P

    2011-08-01

    This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.

  3. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  4. Drag Reduction by Riblets & Sharkskin Denticles: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron

    Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s + (riblet width in wall units), similarly to many experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction. Another turbulent roughness of similar shape and size to riblets is sharkskin. The hydrodynamic function of sharkskin has been under investigation for the past 30 years. Current literature conflicts on whether sharkskin is able to reduce skin friction similarly to riblets. To contribute insights toward reconciling these conflicting views, Direct Numerical Simulations (DNS) are carried out to obtain detailed flow fields around realistic denticles. A sharp interface immersed boundary method is employed to simulate two arrangements of actual sharkskin denticles (from Isurus oxyrinchus) in a turbulent boundary layer at Retau ≈ 180. For comparison, turbulent flow over drag-reducing scalloped riblets is also simulated with similar flow conditions and with the same numerical method. Although the denticles resemble riblets, both sharkskin arrangements increase total drag by 44-50%, while the riblets reduce drag by 5%. Analysis of the simulated flow fields shows that the turbulent flow around denticles is highly three-dimensional and separated, with 25% of the total drag being form drag. The complex three-dimensional shape of the denticles gives rise to a mean flow dominated by strong secondary flows in sharp contrast with the mean flow generated by riblets, which is largely two-dimensional. The so resulting three-dimensionality of sharkskin flows leads to an increase in the magnitude of the turbulence statistics near the denticles, which further contributes to increasing the total drag. The simulations also show that, at least for the simulated arrangements, sharkskin, in sharp contrast with drag-reducing riblets, is unable to isolate high shear stress near denticle ridges causing a significant portion of the denticle surface to be exposed to high mean shear. Lastly, it has been theorized that sharkskin might act similarly to vortex generators and prevent separation. In order to test this theory, we have conducted simulations with and without sharkskin upstream of a steady separation bubble. Using large eddy simulation, our study shows that sharkskin worsened the weak separation region and enlarged the separation bubble's boundaries. The cause was shown to originate due to the denticles acting as blockages, rather than vortex generators. In fact, our results showed that separation occurred just after the second row of denticles and that the turbulent flow was unable to recover its lost momentum. Streamwise turbulence intensities were decreased compared to the baseline case. Finally, in the present case, the sharkskin induced reversed flow within the denticles---something that was not observed with sharkskin in channel flow.

  5. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  6. Analytic Development of a Reference Profile for the First Entry in a Skip Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo

    2010-01-01

    This note shows that a feasible reference drag profile for the first entry portion of a skip entry can be generated as a polynomial expression of the velocity. The coefficients of that polynomial are found through the resolution of a system composed of m + 1 equations, where m is the degree of the drag polynomial. It has been shown that a minimum of five equations (m = 4) are required to establish the range and the initial and final conditions on velocity and flight path angle. It has been shown that at least one constraint on the trajectory can be imposed through the addition of one extra equation in the system, which must be accompanied by the increase in the degree of the drag polynomial. In order to simplify the resolution of the system of equations, the drag was considered as being a probability density function of the velocity, with the velocity as a distribution function of the drag. Combining this notion with the introduction of empirically derived constants, it has been shown that the system of equations required to generate the drag profile can be successfully reduced to a system of linear algebraic equations. For completeness, the resulting drag profiles have been flown using the feedback linearization method of differential geometric control as a guidance law with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. Satisfactory results were achieved when the gains in the error dynamics were changed at a certain point along the trajectory that is dependent on the velocity and the curvature of the drag as a function of the velocity. Future work should study the capacity to update the drag profile in flight when dispersions are introduced. Also, future studies should attempt to link the first entry, as presented and controlled in this note, with a more standard control concept for the second entry, such as the Apollo entry guidance, to try to assess the overall skip entry performance. A guidance law that includes an integral feedback term, as is the case in the actual Space Shuttle entry guidance and as is proposed in Ref 29, could be tried in future studies to assess whether its use results in an improvement of the tracking performance, and to evaluate the design needs when determining the control gains.

  7. The effects on cruise drag of installing long-duct refan-engine nacelles on the McDonnell Douglas DC-8-50 and -61

    NASA Technical Reports Server (NTRS)

    Callaghan, J. T.; Donelson, J. E.; Morelli, J. P.

    1973-01-01

    A high-speed wind tunnel test was conducted to determine the effect on cruise performance of installing long-duct refan-engine nacelles on the DC-8-50 and -61 models. Drag data and wing/pylon/nacelle channel pressure data are presented. At a typical cruise condition there exists a very small interference drag penalty of less than one-percent of total cruise data for the Refan installation. Pressure data indicate that some supersonic flow is present in the inboard channel of the inboard refan nacelle installation, but it is not sufficient to cause any wave drag on boundary layer separation. One pylon modification, which takes the form of pylon bumps, was tested. It resulted in a drag penalty, because its design goal of eliminating shock-related interference drag was not required and the bump thus became a source of additional parasite drag.

  8. Transonic aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 31

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    Refinements in a 10 percent thick supercritical airfoil (airfoil 31) have produced significant improvements in the drag characteristics compared with those for an earlier supercritical airfoil (airfoil 12) designed for the same normal force coefficient of 0.7. Drag creep was practically eliminated at normal force coefficients between about 0.4 and 0.7 and was greatly reduced at other normal force coefficients. Substantial reductions in the drag levels preceding drag divergence were also achieved at all normal force coefficients. The Mach numbers at which drag diverges were delayed for airfoil 31 at normal force coefficients up to about 0.6 (by approximately 0.01 and 0.02 at normal force coefficients of 0.4 and 0.6, respectively) but drag divergence occurred at slightly lower Mach numbers at higher normal force coefficients.

  9. Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Tung, C.

    1993-01-01

    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

  10. Drag measurements on a laminar-flow body of revolution in the 13-inch magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1989-01-01

    Low speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 in. Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 in. MSBS. The drag force calibrations and wind-on repeatability data provide a means of assessing these capabilities. Additional investigations include: (1) the effects of fixing transition; (2) the effects of fins installed in the tail; and (3) surface flow visualization using both liquid crystals and oil flow. Also two simple drag prediction codes were used to assess their usefulness in estimating overall body drag.

  11. Drag reduction using slippery liquid infused surfaces

    NASA Astrophysics Data System (ADS)

    Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang

    2013-11-01

    A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  12. The potential of hybrid micro-vortex generators to control flow separation of NACA 4415 airfoil in subsonic flow

    NASA Astrophysics Data System (ADS)

    Jumahadi, Muhammad Taufiq; Saad, Mohd Rashdan; Idris, Azam Che; Sujipto, Suriyadi; Rahman, Mohd Rosdzimin Abdul

    2018-02-01

    Boundary layer separation is detrimental to the lift and drag of most aeronautical applications. Many vortex generators (VG), both passive and active have been designed to reduce these drawbacks. This study targets to investigate the effectiveness of hybrid micro-VGs, which combine both active and passive micro-VGs in controlling separation under subsonic conditions. NACA 4415 airfoils installed with passive, active and hybrid micro-VGs each are designed, 3D printed, and tested in a wind tunnel at 26.19 m/s under Re = 2.5x105. The lift and drag measurements from a 3-component force balance prove that hybrid micro-VGs increase lift by up to 21.2%, increase drag by more than 11.3% and improve lift-to-drag ratio by at least 8.6% until up to 33.7%. From this research, it is believed that hybrid micro-VGs are competitive to the performance of active VGs and a better configuration is to be considered to reduce parasitic drag and outstand active VGs.

  13. Development of FDR-AF (Frictional Drag Reduction Anti-Fouling) Marine Coating

    NASA Astrophysics Data System (ADS)

    Lee, Inwon; Park, Hyun; Chun, Ho Hwan; GCRC-SOP Team

    2013-11-01

    In this study, a novel skin-friction reducing marine paint has been developed by mixing fine powder of PEO(PolyEthyleneOxide) with SPC (Self-Polishing Copolymer) AF (Anti-Fouling) paint. The PEO is well known as one of drag reducing agent to exhibit Toms effect, the attenuation of turbulent flows by long chain polymer molecules in the near wall region. The frictional drag reduction has been implemented by injecting such polymer solutions to liquid flows. However, the injection holes have been a significant obstacle to marine application. The present PEO-containing marine paint is proposed as an alternative to realize Toms effect without any hole on the ship surface. The erosion mechanism of SPC paint resin and the subsequent dissolution of PEO enable the controlled release of PEO solution from the coating. Various tests such as towing tank drag measurement of flat plate and turbulence measurement in circulating water tunnel demonstrated over 10% frictional drag reduction compared with conventional AF paint. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP(No. 2011-0030013).

  14. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface

    PubMed Central

    Saranadhi, Dhananjai; Chen, Dayong; Kleingartner, Justin A.; Srinivasan, Siddarth; Cohen, Robert E.; McKinley, Gareth H.

    2016-01-01

    Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or “plastron” trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or “Leidenfrost” state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface. PMID:27757417

  15. Numerical Simulations for Turbulent Drag Reduction Using Liquid Infused Surfaces

    NASA Astrophysics Data System (ADS)

    Arenas-Navarro, Isnardo

    Numerical simulations of the turbulent flow over Super Hydrophobic and Liquid Infused Surfaces have been performed in this work. Three different textured surfaces have been considered: longitudinal square bars, transversal square bars and staggered cubes. The numerical code combines an immersed boundary method to mimic the substrate and a level set method to track the interface. Liquid Infused Surfaces reduce the drag by locking a lubricant within structured roughness to facilitate a slip velocity at the surface interface. The conceptual idea is similar to Super Hydrophobic Surfaces, which rely on a lubricant air layer, whereas liquid-infused surfaces use a preferentially wetting liquid lubricant to create a fluid-fluid interface. This slipping interface has been shown to be an effective method of passively reducing skin friction drag in turbulent flows. Details are given on the effect of the viscosity ratio between the two fluids and the dynamics of the interface on drag reduction. An attempt has been made to reconcile Super-Hydrophobic, Liquid Infused and rough wall under the same framework by correlating the drag to the wall normal velocity fluctuations.

  16. Drag Reducing and Cavitation Resistant Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economicmore » and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).« less

  17. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    NASA Astrophysics Data System (ADS)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  18. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants

    PubMed Central

    Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145

  19. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants.

    PubMed

    Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.

  20. Reconfiguration parameters for drag of flexible cylindrical elements

    NASA Astrophysics Data System (ADS)

    John, Chapman; Wilson, Bruce; Gulliver, John

    2015-11-01

    This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.

  1. The drive for Aircraft Energy Efficiency

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  2. Over-the-wing propeller

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr. (Inventor); White, E. Richard (Inventor)

    1986-01-01

    This invention is an aircraft with a system for increasing the lift drag ratio over a broad range of operating conditions. The system positions the engines and nacelles over the wing in such a position that gains in propeller efficiency is achieved simultaneously with increases in wing lift and a reduction in wing drag. Adverse structural and torsional effects on the wings are avoided by fuselage mounted pylons which attach to the upper portion of the fuselage aft of the wings. Similarly, pylon-wing interference is eliminated by moving the pylons to the fuselage. Further gains are achieved by locating the pylon surface area aft of the aircraft center of gravity, thereby augmenting both directional and longitudinal stability. This augmentation has the further effect of reducing the size, weight and drag of empennage components. The combination of design changes results in improved cruise performance and increased climb performance while reducing fuel consumption and drag and weight penalties.

  3. An Investigation of the Drag of Windshields in the 8-Foot High-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G.; Delano, James B.

    1939-01-01

    The drag of closed-cockpit and transport-type windshields was determined from tests made at speeds from 200 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. This speed range corresponds to a test Reynolds number range of 2,510,000 to 4,830,000 based on the mean aerodynamic chord of the full-span model (17.29 inches). The shapes of the windshield proper, the hood, and the tail fairing were systematically varied to include common types and a refined design. Transport types varied from a reproduction of a current type to a completely faired windshield. The results show that the drag of windshields of the same frontal area, on airplanes of small to medium size, may account for 15% of the airplane drag or may be reduced to 1%. Optimum values are given for windshield and tail-fairing lengths; the effect, at various radii is shown. The longitudinal profile of a windshield is shown to be most important and the transverse profile, to be much less important. The effects of retaining strips, of steps for telescoping hoods, and of recessed windows are determined. The results show that the drag of transport-type windshields may account for 21% of the fuselage drag or may be reduced to 2%.

  4. Experimental study of microbubble drag reduction on an axisymmetric body

    NASA Astrophysics Data System (ADS)

    Song, Wuchao; Wang, Cong; Wei, Yingjie; Zhang, Xiaoshi; Wang, Wei

    2018-01-01

    Microbubble drag reduction on the axisymmetric body is experimentally investigated in the turbulent water tunnel. Microbubbles are created by injecting compressed air through the porous medium with various average pore sizes. The morphology of microbubble flow and the size distribution of microbubble are observed by the high-speed visualization system. Drag measurements are obtained by the balance which is presented as the function of void ratio. The results show that when the air injection flow rate is high, uniformly dispersed microbubble flow is coalesced into an air layer with the larger increment rate of drag reduction ratio. The diameter distributions of microbubble under various conditions are submitted to normal distribution. Microbubble drag reduction can be divided into three distinguishable regions in which the drag reduction ratio experiences increase stage, rapid increase stage and stability stage, respectively, corresponding to the various morphologies of microbubble flow. Moreover, drag reduction ratio increases with the decreasing pore sizes of porous medium at the identical void ratio in the area of low speeds, while the effect of pore sizes on drag reduction is reduced gradually until it disappears with the increasing free stream speeds, which indicates that smaller microbubbles have better efficiency in drag reduction. This research results help to improve the understanding of microbubble drag reduction and provides helpful references for practical applications.

  5. Longitudinal afterbody grooves and shoulder radiusing for low-speed bluff body drag reduction

    NASA Technical Reports Server (NTRS)

    Howard, F. G.; Quass, B. F.; Weinstein, L. M.; Bushnell, D. M.

    1981-01-01

    A new low-speed drag reduction approach is proposed which employs longitudinal surface V-shaped grooves cutting through the afterbody shoulder region. The test Reynolds number range was from 20,000 to 200,000 based on undisturbed free-stream flow and a body diameter of 6.08 cm. The V-grooves are shown to be most effective in reducing drag when the afterbody shoulder radius is zero. Reductions in drag of up to 33% have been measured for this condition. For large shoulder radius, the grooves are only effective at the lower Reynolds numbers of the test.

  6. The Zero-Lift Drag of Several Configurations of the XAAM-N-2 Pilotless Aircraft. TED No. NACA DE332

    NASA Technical Reports Server (NTRS)

    Hall, James R.; Sandahl, Carl A.

    1950-01-01

    Free-flight tests have been made to determine the zero-lift drag of several configurations of the XAAM-N-2 pilotless aircraft. Base-pressure measurements were also obtained for some of the configurations. The results show that increasing the wing-thickness ratio from 4 to 6 percent increased the wing drag by about 100 percent at M = 1.3 and by about 30 percent at M = 1.8. Increasing the nose fineness ratio from 5.00 to 6.25 reduced the drag coefficient of the wingless models a maximum of about 0.030 (10 percent) at M = 2.0. A corresponding change in nose shape for the winged models decreased the drag coefficient by about 0.05 in the Mach number range from 1.1 to 1.4; at Mach numbers greater than 1.6 no measurable reduction in drag coefficient was obtained. The drag of the present Sparrow fuselage is less than that of a parabolic fuselage which could contain the same equipment.

  7. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Zhang, Jun

    2008-11-01

    In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.

  8. The Effect of Surface Irregularities on Wing Drag. II - Lap Joints. 2; Lap Joints

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.

  9. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    NASA Astrophysics Data System (ADS)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  10. Experimental Investigation of Convoluted Contouring for Aircraft Afterbody Drag Reduction

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Hunter, Craig A.

    1999-01-01

    An experimental investigation was performed in the NASA Langley 16-Foot Transonic Tunnel to determine the aerodynamic effects of external convolutions, placed on the boattail of a nonaxisymmetric nozzle for drag reduction. Boattail angles of 15 and 22 were tested with convolutions placed at a forward location upstream of the boattail curvature, at a mid location along the curvature and at a full location that spanned the entire boattail flap. Each of the baseline nozzle afterbodies (no convolutions) had a parabolic, converging contour with a parabolically decreasing corner radius. Data were obtained at several Mach numbers from static conditions to 1.2 for a range of nozzle pressure ratios and angles of attack. An oil paint flow visualization technique was used to qualitatively assess the effect of the convolutions. Results indicate that afterbody drag reduction by convoluted contouring is convolution location, Mach number, boattail angle, and NPR dependent. The forward convolution location was the most effective contouring geometry for drag reduction on the 22 afterbody, but was only effective for M < 0.95. At M = 0.8, drag was reduced 20 and 36 percent at NPRs of 5.4 and 7, respectively, but drag was increased 10 percent for M = 0.95 at NPR = 7. Convoluted contouring along the 15 boattail angle afterbody was not effective at reducing drag because the flow was minimally separated from the baseline afterbody, unlike the massive separation along the 22 boattail angle baseline afterbody.

  11. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  12. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  13. A method for the reduction of aerodynamic drag of road vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Larry W.; Leary, Terrance O.

    1990-01-01

    A method is proposed for the reduction of the aerodynamic drag of bluff bodies, particularly for application to road transport vehicles. This technique consists of installation of panels on the forward surface of the vehicle facing the airstream. With the help of road tests, it was demonstrated that the attachment of proposed panels can reduce aerodynamic drag of road vehicles and result in significant fuel cost savings and conservation of energy resources.

  14. Identifying and analyzing methods for reducing the energy consumption of helicopters

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Rosenstein, H. J.

    1976-01-01

    Reductions in helicopter energy consumption can be accomplished through the use of advanced technology in the areas of powerplant design, improved rotor efficiency, reduced parasite drag, and reduced structural empty weight. Baseline helicopters incorporating technology were designed for a short range (200 n mi) and a very short haul (100 n mi) mission scenario. Parametric analyses were then conducted to determine the impact of technology improvement. Many of the parameters varied are interrelated. A summary of such interactions is presented, and some additional sensitivity values were added so that energy reduction and DOC as affected by the major technological factors or operational modes are clearly defined.

  15. Aerodynamic characteristics of a high-wing transport configuration with a over-the-wing nacelle-pylon arrangement

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Abeyounis, W. K.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on the aerodynamic characteristics of a high-wing transport configuration of installing an over-the-wing nacelle-pylon arrangement. The tests are conducted at Mach numbers from 0.70 to 0.82 and at angles of attack from -2 deg to 4 deg. The configurational variables under study include symmetrical and contoured nacelles and pylons, pylon size, and wing leading-edge extensions. The symmetrical nacelles and pylons reduce the lift coefficient, increase the drag coefficient, and cause a nose-up pitching-moment coefficient. The contoured nacelles significantly reduce the interference drag, though it is still excessive. Increasing the pylon size reduces the drag, whereas adding wing leading-edge extension does not affect the aerodynamic characteristics significantly.

  16. Drag reducing polymers decrease hepatic injury and metastases after liver ischemia-reperfusion

    PubMed Central

    Yazdani, Hamza O.; Sud, Vikas; Goswami, Julie; Loughran, Patricia; Huang, Hai; Simmons, Richard L.; Tsung, Allan

    2017-01-01

    Introduction Surgery, a crucial therapeutic modality in the treatment of solid tumors, can induce sterile inflammatory processes which can result in metastatic progression. Liver ischemia and reperfusion (I/R) injury, an inevitable consequence of hepatic resection of metastases, has been shown to foster hepatic capture of circulating cancer cells and accelerate metastatic growth. Efforts to reduce these negative consequences have not been thoroughly investigated. Drag reducing polymers (DRPs) are blood-soluble macromolecules that can, in nanomolar concentrations, increase tissue perfusion, decrease vascular resistance and decrease near-wall microvascular concentration of neutrophils and platelets thereby possibly reducing the inflammatory microenvironment. We hypothesize that DRP can potentially be used to ameliorate metastatic capture of tumor cells and tumor growth within the I/R liver. Methods Experiments were performed utilizing a segmental ischemia model of mice livers. Five days prior or immediately prior to ischemia, murine colon adenocarcinoma cells (MC38) were injected into the spleen. DRP (polyethylene oxide) or a control of low-molecular-weight polyethylene glycol without drag reducing properties were administered intraperitoneally at the onset of reperfusion. Results After three weeks from I/R, we observed that liver I/R resulted in an increased ability to capture and foster growth of circulating tumor cells; in addition, the growth of pre-existing micrometastases was accelerated three weeks later. These effects were significantly curtailed when mice were treated with DRPs at the time of I/R. Mechanistic investigations in vivo indicated that DRPs protected the livers from I/R injury as evidenced by significant decreases in hepatocellular damage, neutrophil recruitment into the liver, formation of neutrophil extracellular traps, deposition of platelets, formation of microthrombi within the liver sinusoids and release of inflammatory cytokines. Conclusions DRPs significantly attenuated metastatic tumor development and growth. DRPs warrant further investigation as a potential treatment for liver I/R injury in the clinical setting to improve cancer-specific outcomes. PMID:28938688

  17. Drag measurements on a laminar flow body of revolution in Langley's 13 inch magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    Low-speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 inch MSBS. A secondary objective was to obtain support interference free drag measurements on an axisymmetric body of interest. Both objectives were met. The drag force calibrations and wind-on repeatability data provide a means of assessing the drag force measuring capabilities of the 13 inch MSBS. The measured drag coefficients for this body are of interest to researchers actively involved in designing minimum drag fuselage shapes. Additional investigations included: the effects of fixing transition; the effects of fins installed in the tail; surface flow visualizations using both liquid crystals and oil flow; and base pressure measurements using a one-channel telemetry system. Two drag prediction codes were used to assess their usefulness in estimating overall body drag. These theoretical results did not compare well with the measured values because of the following: incorrect or non-existent modeling of a laminar separation bubble on the body and incorrect of non-existent estimates of base pressure drag.

  18. Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, A; Chatelain, P; Heineck, J

    2004-04-13

    Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive needmore » to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.« less

  19. A simplified analysis of propulsion installation losses for computerized aircraft design

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.; Nelms, W. P., Jr.; Bailey, R. O.

    1976-01-01

    A simplified method is presented for computing the installation losses of aircraft gas turbine propulsion systems. The method has been programmed for use in computer aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the F-5A and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.

  20. New Insights into the Microvascular Mechanisms of Drag Reducing Polymers: Effect on the Cell-Free Layer

    PubMed Central

    Brands, Judith; Kliner, Dustin; Lipowsky, Herbert H.; Kameneva, Marina V.; Villanueva, Flordeliza S.; Pacella, John J.

    2013-01-01

    Drag-reducing polymers (DRPs) significantly increase blood flow, tissue perfusion, and tissue oxygenation in various animal models. In rectangular channel microfluidic systems, DRPs were found to significantly reduce the near-wall cell-free layer (CFL) as well as modify traffic of red blood cells (RBC) into microchannel branches. In the current study we further investigated the mechanism by which DRP enhances microvascular perfusion. We studied the effect of various concentrations of DRP on RBC distribution in more relevant round microchannels and the effect of DRP on CFL in the rat cremaster muscle in vivo. In round microchannels hematocrit was measured in parent and daughter branch at baseline and after addition of DRP. At DRP concentrations of 5 and 10 ppm, the plasma skimming effect in the daughter branch was eliminated, as parent and daughter branch hematocrit were equivalent, compared to a significantly lowered hematocrit in the daughter branch without DRPs. In anesthetized rats (N=11) CFL was measured in the cremaster muscle tissue in arterioles with a diameter of 32.6 ± 1.7 µm. In the control group (saline, N=6) there was a significant increase in CFL in time compared to corresponding baseline. Addition of DRP at 1 ppm (N=5) reduced CFL significantly compared to corresponding baseline and the control group. After DRP administration the CFL reduced to about 85% of baseline at 5, 15, 25 and 35 minutes after DRP infusion was complete. These in vivo and in vitro findings demonstrate that DRPs induce a reduction in CFL width and plasma skimming in the microvasculature. This may lead to an increase of RBC flux into the capillary bed, and thus explain previous observations of a DRP mediated enhancement of capillary perfusion. PMID:24124610

  1. New insights into the microvascular mechanisms of drag reducing polymers: effect on the cell-free layer.

    PubMed

    Brands, Judith; Kliner, Dustin; Lipowsky, Herbert H; Kameneva, Marina V; Villanueva, Flordeliza S; Pacella, John J

    2013-01-01

    Drag-reducing polymers (DRPs) significantly increase blood flow, tissue perfusion, and tissue oxygenation in various animal models. In rectangular channel microfluidic systems, DRPs were found to significantly reduce the near-wall cell-free layer (CFL) as well as modify traffic of red blood cells (RBC) into microchannel branches. In the current study we further investigated the mechanism by which DRP enhances microvascular perfusion. We studied the effect of various concentrations of DRP on RBC distribution in more relevant round microchannels and the effect of DRP on CFL in the rat cremaster muscle in vivo. In round microchannels hematocrit was measured in parent and daughter branch at baseline and after addition of DRP. At DRP concentrations of 5 and 10 ppm, the plasma skimming effect in the daughter branch was eliminated, as parent and daughter branch hematocrit were equivalent, compared to a significantly lowered hematocrit in the daughter branch without DRPs. In anesthetized rats (N=11) CFL was measured in the cremaster muscle tissue in arterioles with a diameter of 32.6 ± 1.7 µm. In the control group (saline, N=6) there was a significant increase in CFL in time compared to corresponding baseline. Addition of DRP at 1 ppm (N=5) reduced CFL significantly compared to corresponding baseline and the control group. After DRP administration the CFL reduced to about 85% of baseline at 5, 15, 25 and 35 minutes after DRP infusion was complete. These in vivo and in vitro findings demonstrate that DRPs induce a reduction in CFL width and plasma skimming in the microvasculature. This may lead to an increase of RBC flux into the capillary bed, and thus explain previous observations of a DRP mediated enhancement of capillary perfusion.

  2. Effects of polymer stresses on analogy between momentum and heat transfer in drag-reduced turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2018-03-01

    The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.

  3. Aerodynamic Improvements of an Empty Timber Truck can Have the Potential of Significantly Reducing Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts

    2012-11-01

    In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.

  4. The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs.

    PubMed

    Zepeda, Rene; Chan, Franco; Sawatzky, Bonita

    2016-01-01

    This study proposes a way to reduce energy losses in the form of rolling resistance friction during manual wheelchair propulsion by increasing the size of the front caster wheels and adjusting the weight distribution. Drag tests were conducted using a treadmill and a force transducer. Three different casters diameter (4 in., 5 in., and 6 in.) and six different mass distribution combinations (based on percentage of total weight on the caster wheels) were studied. A two-way analysis of variance test was performed to compare caster size and weight distribution contribution with drag force of an ultralight wheelchair. The 4 in. caster contributed significantly more drag, but only when weight was 40% or greater over the casters. Weight distribution contributed more to drag regardless of the casters used.

  5. Research into the propeller strut for high speed outboard motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takashi; Sunayama, Yoshihiko

    1995-12-31

    For better performance of outboard motors for high speed craft, improvement in the performance of the propeller strut located ahead of the propeller is indispensable in addition to ameliorating the performance of the screw propeller itself. Thus, it is extremely important to reduce the drag of the propeller strut, which accounts for the predominant portion of the submerged parts of the motor and hull when the craft is running at high speed and to improve the propeller efficiency in the wake of the propeller strut. This paper, taking up two different shapes of the propeller strut, compares the performances ofmore » the propeller placed in the wake of the propeller strut in tank tests, and discusses the drag of the propeller strut. The two propeller strut shapes are that of a 70% scaled down model of the propeller strut Suzuki`s 200 PS outboard motor and its improved version. The propeller used in the experiment is one having super cavitating blades with the Pseudo-Kirchhoff nose, whose performance the authors have been analyzing systematically. Detailed comparison was further made of the drags of the differently shaped propeller struts by means of computational fluid dynamics.« less

  6. Investigation of new radar-data-reduction techniques used to determine drag characteristics of a free-flight vehicle

    NASA Technical Reports Server (NTRS)

    Woodbury, G. E.; Wallace, J. W.

    1974-01-01

    An investigation was conducted of new techniques used to determine the complete transonic drag characteristics of a series of free-flight drop-test models using principally radar tracking data. The full capabilities of the radar tracking and meteorological measurement systems were utilized. In addition, preflight trajectory design, exact kinematic equations, and visual-analytical filtering procedures were employed. The results of this study were compared with the results obtained from analysis of the onboard, accelerometer and pressure sensor data of the only drop-test model that was instrumented. The accelerometer-pressure drag curve was approximated by the radar-data drag curve. However, a small amplitude oscillation on the latter curve precluded a precise definition of its drag rise.

  7. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  8. Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse streams

    NASA Astrophysics Data System (ADS)

    Mulholland, J. A.; Srivastava, R. K.; Wendt, J. O. L.

    1988-10-01

    Trajectory measurements on single, monodisperse, nonevaporating droplet streams whose droplet size, velocity, and spacing were varied to yield initial Re numbers in the 90-290 range are presently used to ascertain the influence of droplet spacing on the drag coefficient of individual drops injected into a quiescent environment. A trajectory model containing the local drag coefficient was fitted to the experimental data by a nonlinear regression; over 40 additional trajectories were predicted with acceptable accuracy. This formulation will aid the computation of waste-droplet drag in flames for improved combustion-generated pollutant predictions.

  9. Coulomb drag as a probe of the nature of compressible States in a magnetic field.

    PubMed

    Muraki, K; Lok, J G S; Kraus, S; Dietsche, W; von Klitzing, K; Schuh, D; Bichler, M; Wegscheider, W

    2004-06-18

    Magnetodrag reveals the nature of compressible states and the underlying interplay of disorder and interactions. At nu=3/2 clear T(4/3) dependence is observed, which signifies the metallic nature of the N=0 Landau level. In contrast, drag in higher Landau levels reveals an additional contribution, which anomalously grows with decreasing T before turning to zero following a thermal activation law. The anomalous drag is discussed in terms of electron-hole asymmetry arising from disorder and localization, and the crossover to normal drag at high fields as due to screening of disorder.

  10. Simple framework for understanding the universality of the maximum drag reduction asymptote in turbulent flow of polymer solutions

    NASA Astrophysics Data System (ADS)

    Li, Chang-Feng; Sureshkumar, Radhakrishna; Khomami, Bamin

    2015-10-01

    Self-consistent direct numerical simulations of turbulent channel flows of dilute polymer solutions exhibiting friction drag reduction (DR) show that an effective Deborah number defined as the ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction remains O (1) from the onset of DR to the maximum drag reduction (MDR) asymptote. However, the ratio of the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time decreases with increasing DR, and the maximum drag reduction asymptote is achieved when these two time scales become nearly equal. Based on these observations, a simple framework is proposed that adequately describes the influence of polymer additives on the extent of DR from the onset of DR to MDR as well as the universality of the MDR in wall-bounded turbulent flows with polymer additives.

  11. Simple framework for understanding the universality of the maximum drag reduction asymptote in turbulent flow of polymer solutions.

    PubMed

    Li, Chang-Feng; Sureshkumar, Radhakrishna; Khomami, Bamin

    2015-10-01

    Self-consistent direct numerical simulations of turbulent channel flows of dilute polymer solutions exhibiting friction drag reduction (DR) show that an effective Deborah number defined as the ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction remains O(1) from the onset of DR to the maximum drag reduction (MDR) asymptote. However, the ratio of the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time decreases with increasing DR, and the maximum drag reduction asymptote is achieved when these two time scales become nearly equal. Based on these observations, a simple framework is proposed that adequately describes the influence of polymer additives on the extent of DR from the onset of DR to MDR as well as the universality of the MDR in wall-bounded turbulent flows with polymer additives.

  12. Drag reduction through self-texturing compliant bionic materials

    PubMed Central

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction. PMID:28053309

  13. Drag reduction through self-texturing compliant bionic materials.

    PubMed

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-05

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  14. Drag reduction through self-texturing compliant bionic materials

    NASA Astrophysics Data System (ADS)

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  15. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  16. Finding the optimal shape of the leading-and-trailing car of a high-speed train using design-by-morphing

    NASA Astrophysics Data System (ADS)

    Oh, Sahuck; Jiang, Chung-Hsiang; Jiang, Chiyu; Marcus, Philip S.

    2017-10-01

    We present a new, general design method, called design-by-morphing for an object whose performance is determined by its shape due to hydrodynamic, aerodynamic, structural, or thermal requirements. To illustrate the method, we design a new leading-and-trailing car of a train by morphing existing, baseline leading-and-trailing cars to minimize the drag. In design-by-morphing, the morphing is done by representing the shapes with polygonal meshes and spectrally with a truncated series of spherical harmonics. The optimal design is found by computing the optimal weights of each of the baseline shapes so that the morphed shape has minimum drag. As a result of optimization, we found that with only two baseline trains that mimic current high-speed trains with low drag that the drag of the optimal train is reduced by 8.04% with respect to the baseline train with the smaller drag. When we repeat the optimization by adding a third baseline train that under-performs compared to the other baseline train, the drag of the new optimal train is reduced by 13.46% . This finding shows that bad examples of design are as useful as good examples in determining an optimal design. We show that design-by-morphing can be extended to many engineering problems in which the performance of an object depends on its shape.

  17. Finding the optimal shape of the leading-and-trailing car of a high-speed train using design-by-morphing

    NASA Astrophysics Data System (ADS)

    Oh, Sahuck; Jiang, Chung-Hsiang; Jiang, Chiyu; Marcus, Philip S.

    2018-07-01

    We present a new, general design method, called design-by-morphing for an object whose performance is determined by its shape due to hydrodynamic, aerodynamic, structural, or thermal requirements. To illustrate the method, we design a new leading-and-trailing car of a train by morphing existing, baseline leading-and-trailing cars to minimize the drag. In design-by-morphing, the morphing is done by representing the shapes with polygonal meshes and spectrally with a truncated series of spherical harmonics. The optimal design is found by computing the optimal weights of each of the baseline shapes so that the morphed shape has minimum drag. As a result of optimization, we found that with only two baseline trains that mimic current high-speed trains with low drag that the drag of the optimal train is reduced by 8.04% with respect to the baseline train with the smaller drag. When we repeat the optimization by adding a third baseline train that under-performs compared to the other baseline train, the drag of the new optimal train is reduced by 13.46%. This finding shows that bad examples of design are as useful as good examples in determining an optimal design. We show that design-by-morphing can be extended to many engineering problems in which the performance of an object depends on its shape.

  18. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    NASA Astrophysics Data System (ADS)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  19. Effect of fastskin suits on performance, drag, and energy cost of swimming.

    PubMed

    Chatard, Jean-Claude; Wilson, Barry

    2008-06-01

    To investigate the effect of fastskin suits on 25- to 800-m performances, drag, and energy cost of swimming. The performances, stroke rate and distance per stroke, were measured for 14 competitive swimmers in a 25-m pool, when wearing a normal suit (N) and when wearing a full-body suit (FB) or a waist-to-ankle suit (L). Passive drag, oxygen uptake, blood lactate, and the perceived exertion were measured in a flume. There was a 3.2% +/- 2.4% performance benefit for all subjects over the six distances covered at maximal speed wearing FB and L when compared with N. When wearing L, the gain was significantly lower (1.8% +/- 2.5%, P < 0.01) than when wearing FB compared with N. The exercise perception was significantly lower when wearing FB than N, whereas there was no statistical difference when wearing L. The distance per stroke was significantly higher when wearing FB and L, whereas the differences in stroke rate were not statistically significant. There was a significant reduction in drag when wearing FB and L of 6.2% +/- 7.9% and 4.7% +/- 4.4%, respectively (P < 0.01), whereas the energy cost of swimming was significantly reduced when wearing FB and L by 4.5% +/- 5.4% and 5.5% +/- 3.1%, respectively (P < 0.01). However, the differences between FB and L were not statistically significant for drag and oxygen uptake. FB and L significantly reduced passive drag, and this was associated with a decreased energy cost of submaximal swimming and an increased distance per stroke, at the same stroke rates, and reduced freestyle performance time.

  20. An Aerodynamic Assessment of Micro-Drag Generators (MDGs)

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.

    1998-01-01

    Commercial transports as well as fighter aircraft of the future are being designed with very low drag (friction and pressure). Concurrently, commuter airports are being built or envisioned to be built in the centers of metropolitan areas where shorter runways and/or reduced noise footprints on takeoff and landing are required. These requirements and the fact that drag is lower on new vehicles than on older aircraft have resulted in vehicles that require a large amount of braking force (from landing-gear brakes, spoilers, high-lift flaps, thrust reversers, etc.). Micro-drag generators (MDGs) were envisioned to create a uniformly distributed drag force along a vehicle by forcing the flow to separate on the aft-facing surface of a series of deployable devices, thus, generating drag. The devices are intended to work at any speed and for any type of vehicle (aircraft, ground vehicles, sea-faring vehicles). MDGs were applied to a general aviation wing and a representative fuselage shape and tested in two subsonic wind tunnels. The results showed increases in drag of 2 to 6 times that of a "clean" configuration.

  1. Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.

    2017-12-01

    Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.

  2. Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann

    2017-01-01

    This project is to develop antennas which enable beyond line of sight (BLOS) command and control for UAVs. We will take advantage of newly assigned provisional Ku-band spectrum for UAVs and use unique antenna designs to avoid interference with ground systems. This will involve designing antennas with high isotropic effective radiated power (EIRP) and ultra-low sidelobes. The antennas will be made with polymer aerogel as a substrate to both reduce weight and improve performance, as demonstrated in an Aero Seedling. In addition, designing the antennas to be conformal to the aircraft fuselage will reduce drag.

  3. On the use of external burning to reduce aerospace vehicle transonic drag

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1990-01-01

    The external combustion of hydrogen to reduce the transonic drag of aerospace vehicles is currently being investigated. A preliminary analysis based on a constant pressure control volume is discussed. Results indicate that the specific impulse of the external burning process rivals that of a turbojet and depends on the severity of the initial base drag as well as on the Mach flight number and the equivalence ratio. A test program was conducted to investigate hydrogen-air flame stability at the conditions of interest and to demonstrate drag reduction on a simple expansion ramp. Initial test results are presented and compared with the control-volume analysis. The expansion ramp surface pressure coefficient showed little variation with fuel pressure and altitude, in disagreement with the analysis. Flame stability results were encouraging and indicate that stable combustion is possible over an adequate range of conditions. Facility interference and chemical kinetics phenomena that make interpretation of subscale ground test data difficult are discussed.

  4. Space Age Swimsuit Reduces Drag, Breaks Records

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A space shuttle and a competitive swimmer have a lot more in common than people might realize: Among other forces, both have to contend with the slowing influence of drag. NASA s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and generally on fluid dynamics, especially the forces of pressure and viscous drag, which are the same for bodies moving through air as for bodies moving through water. Viscous drag is the force of friction that slows down a moving object through a substance, like air or water. NASA uses wind tunnels for fluid dynamics research, studying the forces of friction in gasses and liquids. Pressure forces, according to Langley Research Center s Stephen Wilkinson, dictate the optimal shape and performance of an airplane or other aero/hydro-dynamic body. In both high-speed flight and swimming, says Wilkinson, a thin boundary layer of reduced velocity fluid surrounds the moving body; this layer is about 2 centimeters thick for a swimmer.

  5. Towards Petascale DNS of High Reynolds-Number Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Webster, Keegan R.

    In flight vehicles, a large portion of fuel consumption is due to skin-friction drag. Reduction of this drag will significantly reduce the fuel consumption of flight vehicles and help our nation to reduce CO 2 emissions. In order to reduce skin-friction drag, an increased understanding of wall-turbulence is needed. Direct numerical simulation (DNS) of spatially developing turbulent boundary layers (SDTBL) can provide the fundamental understanding of wall-turbulence in order to produce models for Reynolds averaged Navier-Stokes (RANS) and large-eddy simulations (LES). DNS of SDTBL over a flat plate at Retheta = 1430 - 2900 were performed. Improvements were made to the DNS code allowing for higher Reynolds number simulations towards petascale DNS of turbulent boundary layers. Mesh refinement and improvements to the inflow and outflow boundary conditions have resulted in turbulence statistics that match more closely to experimental results. The Reynolds stresses and the terms of their evolution equations are reported.

  6. Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads

    NASA Technical Reports Server (NTRS)

    Gangwani, S. T.

    1983-01-01

    A detailed analysis of dynamic stall experiments has led to a set of relatively compact analytical expressions, called synthesized unsteady airfoil data, which accurately describe in the time-domain the unsteady aerodynamic characteristics of stalled airfoils. An analytical research program was conducted to expand and improve this synthesized unsteady airfoil data method using additional available sets of unsteady airfoil data. The primary objectives were to reduce these data to synthesized form for use in rotor airload prediction analyses and to generalize the results. Unsteady drag data were synthesized which provided the basis for successful expansion of the formulation to include computation of the unsteady pressure drag of airfoils and rotor blades. Also, an improved prediction model for airfoil flow reattachment was incorporated in the method. Application of this improved unsteady aerodynamics model has resulted in an improved correlation between analytic predictions and measured full scale helicopter blade loads and stress data.

  7. Wind-Tunnel Investigation of a Balloon as a Towed Decelerator at Mach Numbers from 1.47 to 2.50

    NASA Technical Reports Server (NTRS)

    McShera, John T.; Keyes, J. Wayne

    1961-01-01

    A wind-tunnel investigation has been conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 deg. Towed spherical balloons were found to be stable at supersonic speeds. The drag coefficient of the balloon is reduced by the presence of a tow cable and a further reduction occurs with the addition of a payload. The balloon inflation pressure required to maintain an almost spherical shape is about equal to the free-stream dynamic pressure. Measured pressure and temperature distribution around the balloon alone were in fair agreement with predicted values. There was a pronounced decrease in the pressure coefficients on the balloon when attached to a tow cable behind a payload.

  8. A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices

    NASA Astrophysics Data System (ADS)

    Yates, J. E.; Donald, C. D.

    1986-09-01

    The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.

  9. A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices

    NASA Technical Reports Server (NTRS)

    Yates, J. E.; Donald, C. D.

    1986-01-01

    The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.

  10. Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids.

    PubMed

    Xi, Li; Graham, Michael D

    2010-05-28

    Turbulent channel flow of drag-reducing polymer solutions is simulated in minimal flow geometries. Even in the Newtonian limit, we find intervals of "hibernating" turbulence that display many features of the universal maximum drag reduction asymptote observed in polymer solutions: weak streamwise vortices, nearly nonexistent streamwise variations, and a mean velocity gradient that quantitatively matches experiments. As viscoelasticity increases, the frequency of these intervals also increases, while the intervals themselves are unchanged, leading to flows that increasingly resemble maximum drag reduction.

  11. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  12. The Effect of Lift-Drag Ratio and Speed on the Ability to Position a Gliding Aircraft for a Landing on a 5,000-Foot Runway

    NASA Technical Reports Server (NTRS)

    Reeder, John P.

    1959-01-01

    Flight tests were made to determine the capability of positioning a gliding airplane for a landing on a 5,000-foot runway with special reference to the gliding flight of a satellite vehicle of fixed configuration upon reentry into the earth's atmosphere. The lift-drag ratio and speed of the airplane in the glides were varied through as large a range as possible. The results showed a marked tendency to undershoot the runway when the lift-drag ratios were below certain values, depending upon the speed in the glide. A straight line dividing the successful approaches from the undershoots could be drawn through a lift-drag ratio of about 3 at 100 knots and through a lift-drag ratio of about 7 at 185 knots. Provision of a drag device would be very beneficial, particularly in reducing the tendency toward undershooting at the higher speeds.

  13. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.

    PubMed

    Dean, Brian; Bhushan, Bharat

    2010-10-28

    The skin of fast-swimming sharks exhibits riblet structures aligned in the direction of flow that are known to reduce skin friction drag in the turbulent-flow regime. Structures have been fabricated for study and application that replicate and improve upon the natural shape of the shark-skin riblets, providing a maximum drag reduction of nearly 10 per cent. Mechanisms of fluid drag in turbulent flow and riblet-drag reduction theories from experiment and simulation are discussed. A review of riblet-performance studies is given, and optimal riblet geometries are defined. A survey of studies experimenting with riblet-topped shark-scale replicas is also given. A method for selecting optimal riblet dimensions based on fluid-flow characteristics is detailed, and current manufacturing techniques are outlined. Due to the presence of small amounts of mucus on the skin of a shark, it is expected that the localized application of hydrophobic materials will alter the flow field around the riblets in some way beneficial to the goals of increased drag reduction.

  14. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    PubMed Central

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-01-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. PMID:27095674

  15. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  16. Relativistic Gas Drag on Dust Grains and Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr; Korea University of Science and Technology, Daejeon, 34113

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative duemore » to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.« less

  17. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-08-21

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.

  18. Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; hide

    2008-01-01

    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.

  19. Quantitative three-dimensional low-speed wake surveys

    NASA Technical Reports Server (NTRS)

    Brune, G. W.

    1992-01-01

    Theoretical and practical aspects of conducting three-dimensional wake measurements in large wind tunnels are reviewed with emphasis on applications in low-speed aerodynamics. Such quantitative wake surveys furnish separate values for the components of drag, such as profile drag and induced drag, but also measure lift without the use of a balance. In addition to global data, details of the wake flowfield as well as spanwise distributions of lift and drag are obtained. The paper demonstrates the value of this measurement technique using data from wake measurements conducted by Boeing on a variety of low-speed configurations including the complex high-lift system of a transport aircraft.

  20. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  1. Experimental investigation on the flow around a simplified geometry of automotive engine compartment

    NASA Astrophysics Data System (ADS)

    D'Hondt, Marion; Gilliéron, Patrick; Devinant, Philippe

    2011-05-01

    In the current sustainable development context, car manufacturers have to keep doing efforts to reduce the aerodynamic drag of automotive vehicle in order to decrease their CO2 and greenhouse gas emissions. The cooling airflow, through the engine compartment of vehicles, contributes from 5 to 10% to the total aerodynamic drag. By means of simplified car geometry, equipped with an engine compartment, the configurations that favor a low contribution to total drag are identified. PIV (particle image velocimetry) velocity measurements in the wake of the geometry allow explaining these drag reductions. Besides, the cooling flow rate is also assessed and gives indications on the configurations that favor the engine cooling.

  2. High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane

    NASA Technical Reports Server (NTRS)

    Becker, John V; LEONARD LLOYD H

    1942-01-01

    Report presents the results of force tests made of a 1/8-scale model of a twin-engine low-wing transport airplane in the NACA 8-foot high-speed tunnel to investigate compressibility and interference effects of speeds up to 450 miles per hour. In addition to tests of the standard arrangement of the model, tests were made with several modifications designed to reduce the drag and to increase the critical speed.

  3. Modulation of Pre-capillary Arteriolar Pressure with Drag Reducing Polymers: A Novel Method for Enhancing Microvascular Perfusion

    PubMed Central

    Pacella, John J.; Kameneva, Marina V.; Brands, Judith; Lipowsky, Herbert H.; Vink, Hans; Lavery, Linda L.; Villanueva, Flordeliza S.

    2012-01-01

    Objective We have shown that drag reducing polymers (DRP) enhance capillary perfusion during severe coronary stenosis and increase RBC velocity in capillaries, through uncertain mechanisms. We hypothesize that DRP decreases pressure loss from the aorta to the arteriolar compartment. Methods Intravital microscopy of the rat cremaster muscle and measurement of pressure in arterioles (diameters 20–132 µm) was performed in 24 rats. DRP (polyethylene oxide, 1 ppm) was infused i.v. and measurements were made at baseline and 20 minutes after completion of DRP infusion. In a 10 rat subset, additional measurements were made 3 minutes after the start, and 1–5 and 10 minutes after completion of DRP. Results Twenty minutes after the completion of DRP mean arteriolar pressure was 22% higher than baseline (from 42±3 to 49±3 mmHg, p<0.005, n=24). DRP decreased the pressure loss from the aorta to the arterioles by 24% (from 35±6 to 27±5 mmHg, p=0.001, n=10). In addition, there was a strong trend towards an increase in pressure at 10 minutes after the completion of DRP (n=10). Conclusions DRP diminishes pressure loss between the aorta and the arterioles. This results in a higher pre-capillary pressure and likely explains the observed DRP enhancement in capillary perfusion. PMID:22578102

  4. The effect of radiation pressure on spatial distribution of dust inside H II regions

    NASA Astrophysics Data System (ADS)

    Ishiki, Shohei; Okamoto, Takashi; Inoue, Akio K.

    2018-02-01

    We investigate the impact of radiation pressure on spatial dust distribution inside H II regions using one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. In order to investigate grain-size effects as well, we introduce two additional fluid components describing large and small dust grains in the simulations. Relative velocity between dust and gas strongly depends on the drag force. We include collisional drag force and coulomb drag force. We find that, in a compact H II region, a dust cavity region is formed by radiation pressure. Resulting dust cavity sizes (˜0.2 pc) agree with observational estimates reasonably well. Since dust inside an H II region is strongly charged, relative velocity between dust and gas is mainly determined by the coulomb drag force. Strength of the coulomb drag force is about 2 order of magnitude larger than that of the collisional drag force. In addition, in a cloud of mass 105 M⊙, we find that the radiation pressure changes the grain-size distribution inside H II regions. Since large (0.1 μm) dust grains are accelerated more efficiently than small (0.01 μm) grains, the large-to-small grain mass ratio becomes smaller by an order of magnitude compared with the initial one. Resulting dust-size distributions depend on the luminosity of the radiation source. The large and small grain segregation becomes weaker when we assume stronger radiation source, since dust grain charges become larger under stronger radiation and hence coulomb drag force becomes stronger.

  5. Reducing Aerodynamic Drag on Empty Open Cargo Vehicles

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Dzoan, Dan

    2009-01-01

    Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.

  6. Phenomena of drag reduction on saltating sediment in shallow, supercritical flows

    USDA-ARS?s Scientific Manuscript database

    ABSTRACT: When a group of objects move through a fluid, it often exhibits coordinated behavior in which bodies in the wake of a leader generally experience reduced drag. Locomotion provides well known examples including the maneuvering and clustering of racing automobiles and bicyclists and queuing...

  7. An investigation into the mechanisms of drag reduction of a boat tailed base cavity on a blunt based body

    NASA Astrophysics Data System (ADS)

    Kehs, Joshua Paul

    It is well documented in the literature that boat-tailed base cavities reduce the drag on blunt based bodies. The majority of the previous work has been focused on the final result, namely reporting the resulting drag reduction or base pressure increase without examining the methods in which such a device changes the fluid flow to enact such end results. The current work investigates the underlying physical means in which these devices change the flow around the body so as to reduce the overall drag. A canonical model with square cross section was developed for the purpose of studying the flow field around a blunt based body. The boat-tailed base cavity tested consisted of 4 panels of length equal to half the width of the body extending from the edges of the base at an angle towards the models center axis of 12°. Drag and surface pressure measurements were made at Reynolds numbers based on width from 2.3x105 to 3.6x10 5 in the Clarkson University high-speed wind tunnel over a range of pitch and yaw angles. Cross-stream hotwire wake surveys were used to identify wake width and turbulence intensities aft of the body at Reynolds numbers of 2.3x105 to 3.0x105. Particle Image Velocimetry (PIV) was used to quantify the flow field in the wake of the body, including the mean flow, vorticity, and turbulence measurements. The results indicated that the boat-tailed aft cavity decreases the drag significantly due to increased pressure on the base. Hotwire measurements indicated a reduction in wake width as well as a reduction in turbulence in the wake. PIV measurements indicated a significant reduction in wake turbulence and revealed that there exists a co-flowing stream that exits the cavity parallel to the free stream, reducing the shear in the flow at the flow separation point. The reduction in shear at the separation point indicated the method by which the turbulence was reduced. The reduction in turbulence combined with the reduction in wake size provided the mechanism of drag reduction by limiting the rate of entrainment of fluid in the recirculating wake to the free stream and by limiting the area over which this entrainment occurs.

  8. Possibilities for drag reduction by boundary layer control

    NASA Technical Reports Server (NTRS)

    Naiman, I.

    1946-01-01

    The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.

  9. Comparison of four sampling methods for the detection of Salmonella in broiler litter.

    PubMed

    Buhr, R J; Richardson, L J; Cason, J A; Cox, N A; Fairchild, B D

    2007-01-01

    Experiments were conducted to compare litter sampling methods for the detection of Salmonella. In experiment 1, chicks were challenged orally with a suspension of naladixic acid-resistant Salmonella and wing banded, and additional nonchallenged chicks were placed into each of 2 challenge pens. Nonchallenged chicks were placed into each nonchallenge pen located adjacent to the challenge pens. At 7, 8, 10, and 11 wk of age the litter was sampled using 4 methods: fecal droppings, litter grab, drag swab, and sock. For the challenge pens, Salmonella-positive samples were detected in 3 of 16 fecal samples, 6 of 16 litter grab samples, 7 of 16 drag swabs samples, and 7 of 16 sock samples. Samples from the nonchallenge pens were Salmonella positive in 2 of 16 litter grab samples, 9 of 16 drag swab samples, and 9 of 16 sock samples. In experiment 2, chicks were challenged with Salmonella, and the litter in the challenge and adjacent nonchallenge pens were sampled at 4, 6, and 8 wk of age with broilers remaining in all pens. For the challenge pens, Salmonella was detected in 10 of 36 fecal samples, 20 of 36 litter grab samples, 14 of 36 drag swab samples, and 26 of 36 sock samples. Samples from the adjacent nonchallenge pens were positive for Salmonella in 6 of 36 fecal droppings samples, 4 of 36 litter grab samples, 7 of 36 drag swab samples, and 19 of 36 sock samples. Sock samples had the highest rates of Salmonella detection. In experiment 3, the litter from a Salmonella-challenged flock was sampled at 7, 8, and 9 wk by socks and drag swabs. In addition, comparisons with drag swabs that were stepped on during sampling were made. Both socks (24 of 36, 67%) and drag swabs that were stepped on (25 of 36, 69%) showed significantly more Salmonella-positive samples than the traditional drag swab method (16 of 36, 44%). Drag swabs that were stepped on had comparable Salmonella detection level to that for socks. Litter sampling methods that incorporate stepping on the sample material while in contact with the litter appear to detect Salmonella in greater incidence than traditional sampling methods of dragging swabs over the litter surface.

  10. Testing Small CPAS Parachutes Using HIVAS

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Hennings, Elsa; Bernatovich, Michael A.

    2013-01-01

    The High Velocity Airflow System (HIVAS) facility at the Naval Air Warfare Center (NAWC) at China Lake was successfully used as an alternative to flight test to determine parachute drag performance of two small Capsule Parachute Assembly System (CPAS) canopies. A similar parachute with known performance was also tested as a control. Realtime computations of drag coefficient were unrealistically low. This is because HIVAS produces a non-uniform flow which rapidly decays from a high central core flow. Additional calibration runs were performed to characterize this flow assuming radial symmetry from the centerline. The flow field was used to post-process effective flow velocities at each throttle setting and parachute diameter using the definition of the momentum flux factor. Because one parachute had significant oscillations, additional calculations were required to estimate the projected flow at off-axis angles. The resulting drag data from HIVAS compared favorably to previously estimated parachute performance based on scaled data from analogous CPAS parachutes. The data will improve drag area distributions in the next version of the CPAS Model Memo.

  11. Wave drag reduction with a self-aligning aerodisk on a missile configuration

    NASA Astrophysics Data System (ADS)

    Schnepf, C.; Wysocki, O.; Schülein, E.

    2017-06-01

    A self-aligning aerodisk to reduce the wave drag on a pitching missile is numerically investigated. The motion and the Mach number were chosen to match a maneuver flight of an actual missile: pitching frequency f = 7.5 Hz, Mach number M = 2.2, and range of angle of attack 0° < < 21° . The self-alignment was realized with a coupling of the §ow solver with a 6DoF (6 degrees of freedom) tool. In the entire range of angle of attack, the drag could be reduced with the self-aligning aerodisk. A comparison with experimental data showed in parts a quite good agreement in the aerodynamic coe©cients, in the shock structure, and in the alignment of the aerodisk.

  12. Drag coefficients for loose reactor parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L.; Doster, J.M.; Mayo, C.W.

    1997-12-01

    Loose-part monitoring systems are capable of providing estimates of loose-part mass and energy as well as impact location. Additional information regarding potentially damaging loose parts can be obtained by estimating loose-part velocity on the basis of free motion dynamics within the flow. To estimate the loose-part velocity, the drag coefficient of the part must be known. Traditionally, drag coefficients of three-dimensional bodies are measured in wind tunnels, by towing in free air or liquids, and with drop tests. These methods have disadvantages with respect to measuring drag coefficients for loose parts in that they require a fixed orientation, or themore » flow field is inconsistent with the turbulent flow conditions found in reactor systems. Though drag coefficients for some regularly shaped objects can be found in the literature, many shapes representative of typical loose parts have not been investigated. In this work, drag coefficients are measured for typical loose-part shapes, including bolts, nuts, pins, and hand tools within the flow conditions expected in reactor coolant systems.« less

  13. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  14. Uncertainty Analysis for the Evaluation of a Passive Runway Arresting System

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Marlowe, Jill M.; Yager, Thomas J.

    2009-01-01

    This paper considers the stopping distance of an aircraft involved in a runway overrun incident when the runway has been provided with an extension comprised of a material engineered to induce high levels of rolling friction and drag. A formula for stopping distance is derived that is shown to be the product of a known formula for the case of friction without drag, and a dimensionless constant between 0 and 1 that quantifies the further reduction in stopping distance when drag is introduced. This additional quantity, identified as the Drag Reduction Factor, D, is shown to depend on the ratio of drag force to friction force experienced by the aircraft as it enters the overrun area. The specific functional form of D is shown to depend on how drag varies with speed. A detailed uncertainty analysis is presented which reveals how the uncertainty in estimates of stopping distance are influenced by experimental error in the force measurements that are acquired in a typical evaluation experiment conducted to assess candidate overrun materials.

  15. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces

    NASA Astrophysics Data System (ADS)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-08-01

    Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.

  16. Population dynamics of American dog ticks (Acari: Ixodidae) along park trails

    USGS Publications Warehouse

    Carroll, J.F.; Russek-Cohen, E.; Nichols, J.D.; Hines, J.E.

    1991-01-01

    We conclude a mark-recapture study in which drag-collected ticks were removed from some park trails weekly from April to July. Weekly survival rates (probability of surviving and remaining on the trails) were significantly lower on trials used heavily by hikers, horses, and pets than on trails used less frequently. Although usage was the only obvious difference among these trails, differences in weekly survival rate estimates may be attributable to differential success in acquiring hosts. The estimated probability of capturing a host-seeking tick located along a trail on a single drag was 0.20 on the drag alone, and 0.25 including the person dragging. When routes parallel to the trails and of equal lengths were dragged immediately after sampling the trails, only .apprxeq. 5% as many ticks (including ticks on the person dragging) were found off the trails as on them. We found no evidence of reduced tick numbers on removal trails, but this result should be considered inconclusive because the power of the discerning test was low. However, the data reported here provide insights into turnover rates of the adult Dermacentor variabilis population and effectiveness of the drag as a sampling device.

  17. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Winkel, Eric S.; Lay, Keary A.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    To investigate the phenomena of skin-friction drag reduction in a turbulent boundary layer (TBL) at large scales and high Reynolds numbers, a set of experiments has been conducted at the US Navy's William B. Morgan Large Cavitation Channel (LCC). Drag reduction was achieved by injecting gas (air) from a line source through the wall of a nearly zero-pressure-gradient TBL that formed on a flat-plate test model that was either hydraulically smooth or fully rough. Two distinct drag-reduction phenomena were investigated; bubble drag reduction (BDR) and air-layer drag reduction (ALDR).The streamwise distribution of skin-friction drag reduction was monitored with six skin-friction balances at downstream-distance-based Reynolds numbers to 220 million and at test speeds to 20.0msinitial zone1. These results indicated that there are three distinct regions associated with drag reduction with air injection: Region I, BDR; Region II, transition between BDR and ALDR; and Region III, ALDR. In addition, once ALDR was established: friction drag reduction in excess of 80% was observed over the entire smooth model for speeds to 15.3ms1 with the surface fully roughened (though approximately 50% greater volumetric air flux was required); and ALDR was sensitive to the inflow conditions. The sensitivity to the inflow conditions can be mitigated by employing a small faired step (10mm height in the experiment) that helps to create a fixed separation line.

  18. Absence of solute drag in solidification

    NASA Astrophysics Data System (ADS)

    Kittl, J. A.; Aziz, M. J.; Brunco, D. P.; Thompson, M. O.

    1994-05-01

    The interface response functions for alloy solidification were measured in the nondegenerate regime of partial solute trapping. We used a new technique to measure temperatures and velocities simultaneously during rapid solidification of Si-As alloys induced by pulsed laser melting. In addition, partition coefficients were determined using Rutherford backscattering. The results are in good agreement with predictions of the Continuous Growth Model without solute drag of M. J. Aziz and T. Kaplan [Acta Metall. 36, 1335 (1988)] and are inconsistent with all solute drag models.

  19. Nonuniform concentration - A mechanism for drag reduction.

    NASA Technical Reports Server (NTRS)

    Rivard, W. C.; Kulinski, E. S.

    1972-01-01

    A large reduction in drag coefficient has been observed in certain external flows of aqueous solutions with high molecular weight polymer additives. A change in the near wake configuration is phenomenologically responsible for the drag reduction, but the underlying mechanism is presently unknown. An analogy to known phenomena in particulate suspensions is drawn which suggests nonuniform concentration of the polymer additive as an explanation. An analysis of the boundary layer on a sphere with varying viscosity was made to investigate the effect. The results indicate early transition to turbulence for concentration variations whose length scale is small compared with the momentum boundary layer thickness. Stabilization and delayed transition are indicated for thicker concentration layers. Observations are suggested for the thin concentration layers.

  20. Base Passive Porosity for Vehicle Drag Reduction

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S. (Inventor); Wood, Richard M. (Inventor)

    2003-01-01

    A device for controlling drag on a ground vehicle. The device consists of a porous skin or skins mounted on the trailing surface and/or aft portions of the ground vehicle. The porous skin is separated from the vehicle surface by a distance of at least the thickness of the porous skin. Alternately, the trailing surface, sides, and/or top surfaces of the ground vehicle may be porous. The device minimizes the strength of the separation in the base and wake regions of the ground vehicle, thus reducing drag.

  1. KC-135A in flight - winglet study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The KC-135 with the winglets in flight over the San Gabriel mountains, south of Edwards AFB. While wind tunnel tests suggested that winglets - developed by NASA Langley's Richard Whitcomb - would significantly reduce drag, flight research proved their usefulness. Winglets were installed on an Air Force KC-135 and research flights were made in 1979 and 1980. These showed drag in flight was reduced by as much as 7 percent. Winglets soon appeared on production aircraft, although these were smaller than those mounted on the KC-135.

  2. EC79-11484

    NASA Image and Video Library

    1979-08-20

    The KC-135 with the winglets in flight over the San Gabriel mountains, south of Edwards AFB. While wind tunnel tests suggested that winglets - developed by NASA Langley's Richard Whitcomb - would significantly reduce drag, flight research proved their usefulness. Winglets were installed on an Air Force KC-135 and research flights were made in 1979 and 1980. These showed drag in flight was reduced by as much as 7 percent. Winglets soon appeared on production aircraft, although these were smaller than those mounted on the KC-135.

  3. Installed nacelle drag-improvement tests of an M = 0.8 turboprop transport configuration

    NASA Technical Reports Server (NTRS)

    Levin, A. D.; Smith, R. C.

    1983-01-01

    An unpowered semispan model of a representative turboprop configuration was tested to determine the effect of configuration modifications on the the nonmetric body and wing juncture. It is indicated that the jet off nacelle-installation drag can be approximately 25% of the cruise drag. However, the losses can be reduced to 17% by changes to the wing leading edge and nacelle intersection. Comparison of test results from a semispan nonmetric fuselage model with those from a full span metric fuselage show differences in angles of attack produced the same lift. It is found that the constant lift drag rise of the semispan model is higher because of the increased angle of attack to achieve the same lift.

  4. Experimental investigation of turbulent flow in smooth and longitudinal grooved tubes

    NASA Technical Reports Server (NTRS)

    Nitschke, P.

    1984-01-01

    Turbulent flow in tubes with and without longitudinal grooves is examined. The discovery of fine grooves forming a sort of streamline pattern on the body of sharks led to the expectation that the grooves on a surface reduce the momentum change, and thus the drag. To test this thesis, drag law, velocity profile and the profile of the velocity fluctuation were determined. Results show that for moderate Reynolds numbers the drag coefficient for grooved tubes is about 3 percent smaller than that of the smooth tubes. At higher Reynolds numbers, however, the drag coefficient for grooved tubes becomes larger than that for smooth tubes. No significant differences in the velocity profiles between grooved tubes and smooth tubes are found.

  5. Documenting helicopter operations from an energy standpoint

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Stepniewski, W. Z.

    1974-01-01

    Results are presented of a study of the relative and absolute energy consumption of helicopters, including limited comparisons with fixed-wing aircraft, and selected surface transportation vehicles. Additional comparisons were made to determine the level of reduction in energy consumption expected from the application of advanced technologies to the helicopter design and sizing process. It was found that improvements in helicopter consumption characteristics can be accomplished through the utilization of advanced technology to reduce drag, structures weight, and powerplant fuel consumption.

  6. Investigation into the Mechanism of Polymer Thread Drag Reduction

    DTIC Science & Technology

    1990-01-01

    They conducted experiments in a 3.75 cm diameter pipe, Re = 85,000, where they injected drag reducing solutions of guar gum and polyacrylamide, P-295 a...manufactured by Dow Chemical. Concentrations of 5000 ppm and 466 ppm based on weight were used in the experiments. The dry powder was suspended in 300

  7. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips

    PubMed Central

    Hu, Haibao; Wen, Jun; Bao, Luyao; Jia, Laibing; Song, Dong; Song, Baowei; Pan, Guang; Scaraggi, Michele; Dini, Daniele; Xue, Qunji; Zhou, Feng

    2017-01-01

    Superhydrophobic surfaces have the potential to reduce the viscous drag of liquids by significantly decreasing friction at a solid-liquid interface due to the formation of air layers between solid walls and interacting liquids. However, the trapped air usually becomes unstable due to the finite nature of the domain over which it forms. We demonstrate for the first time that a large surface energy barrier can be formed to strongly pin the three-phase contact line of air/water/solid by covering the inner rotor of a Taylor-Couette flow apparatus with alternating superhydrophobic and hydrophilic circumferential strips. This prevents the disruption of the air layer, which forms stable and continuous air rings. The drag reduction measured at the inner rotor could be as much as 77.2%. Moreover, the air layers not only significantly reduce the strength of Taylor vortexes but also influence the number and position of the Taylor vortex pairs. This has strong implications in terms of energy efficiency maximization for marine applications and reduction of drag losses in, for example, fluid transport in pipelines and carriers. PMID:28879234

  8. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion.

    PubMed

    Zhou, Jiawei; Liao, Bolin; Qiu, Bo; Huberman, Samuel; Esfarjani, Keivan; Dresselhaus, Mildred S; Chen, Gang

    2015-12-01

    Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect--a coupling phenomenon between electrons and nonequilibrium phonons--in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼ 0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons.

  9. Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Hemsch, Michael J.

    2007-01-01

    The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.

  10. Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Hemsch, Michael J.

    2007-01-01

    The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.

  11. High Altitude Towed Glider

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1996-01-01

    The concept of using an unmanned towed glider for high altitude scientific research had been previously proposed. This paper examines the feasibility of this concept by determining what impact the various characteristics of the tow line, glider and tow aircraft have on tow line drag. A description of the analysis and computer code used to generate the results is given. The parameters examined were glider altitude, tow aircraft glider separation distance, velocity, tow line drag coefficient and tow line material properties. The results from the analysis show that the tow line drag increases significantly with tow aircraft/glider separation. The drag increased from 940 N (211 lb) with a tow aircraft/glider separation of 3 km to 11,970 N (2691 lb) with a tow aircraft/glider separation of 10 km. The results also show that by varying some of the initial assumptions significant reductions in tow line drag and weight can be obtained. The variables which had the greatest effect on reducing the tow line drag were the decrease in tow aircraft/glider separation distance, the increase in tow line strength and the decrease in glider Mach number.

  12. Drag reduction in channel flow using nonlinear control

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.

    1993-01-01

    Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.

  13. RSRA vertical drag test report. [rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Flemming, R. J.

    1981-01-01

    The Rotor Systems Research Aircraft (RSRA), because of its ability to measure rotor loads, was used to conduct an experiment to determine vertical drag, tail rotor blockage, and thrust augmentation as affected by ground clearance and flight velocity. The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, were generally confirmed. The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predicted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots. The test data show the effect of wheel height and forward speed on thrust, gross weight capability, and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings.

  14. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    PubMed

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  15. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting

    NASA Astrophysics Data System (ADS)

    Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf

    2017-01-01

    Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.

  16. Optimal design of UAV's pod shape

    NASA Astrophysics Data System (ADS)

    Wei, Qun; Jia, Hong-guang

    2011-08-01

    In the modern war, UAV(unmanned aircraft system) plays a more and more important role in the army. UAVs always carry electrical-optical reconnaissance systems. These systems are used to accomplish the missions of observing and reconnaissance the battlefield. For traditional UAV, the shape of the pod on UAV is sphericity. In addition, the pod of UAV not only has the job of observing and reconnaissance the battlefield, but its shape also has impact on the UAV's drag when it flies in the air. In this paper, two different kinds of pod models are set up, one is the traditional sphericity model, the other is a new model. Unstructured grid is used on the flow field. Using CFD(computational fluid dynamic) method, the results of the drags of the different kinds of pod are got. The drag's relationship between the pod and the UAV is obtained by comparing the results of simulations. After analyzing the results we can get: when UAV flies at low speed(0.3Ma{0.7Ma), the drag's difference between the two kinds of pod is little, the pod's drag takes a small part of the UAV's whole drag which is only about 14%. At transonic speed(0.8Ma{1.2Ma), the drag's difference between these two kinds of pod is getting bigger and bigger along with the speed goes higher. The traditional pod's drag is 1/3 of the UAV's whole drag value, but for the new pod, it is only 1/5. At supersonic speed(1.3Ma{2.0Ma), the traditional pod's drag goes up rapidly, but the new kind of pod's drag goes up slowly. This makes the difference between the two kinds of UAVs' total drag comes greater. For example, at 2Ma, the total drag of new UAV is only 2/3 of the traditional UAV. These results show: when the UAV flies at low speed, these two kinds of pod have little difference in drag. But if it flies at supersonic speed, the pod has great impact on the UAV's total drag, so the designer of UAV's pod should pay more attention on the out shape.

  17. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  18. An analysis of the impact of cabin floor angle restrictions on L/D for a typical supersonic transport

    NASA Technical Reports Server (NTRS)

    Radkey, R. L.

    1974-01-01

    High floor angles at cruise have been identified as a significant problem facing airline and public acceptance of a supersonic transport. In order to explore the relationship between cruise performances and floor angle, four related wing-fuselage design and integration studies have been conducted. The studies were: (1) a fuselage camber study in which perturbations in the fuselage camber distribution were examined with a baseline wing, (2) a wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L. These wings were optimized as wing planform camber surfaces alone and evaluated with a baseline fuselage, (3) a second wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L but for this study the wings were optimized in the presence of the baseline fuselage, and (4) a third wing optimization study in which wings were optimized for minmum drag subject to C sub M constraints designed to produce more positive C sub MO's, thereby reducing trim drag. The studies indicated that it was not possible to both improve the aircraft cruise L/D and substantially reduce the cruise floor angle. The studies did indicate that the cruise floor angle could be reduced by reducing the fuselage incidence relative to the wing, but the reduction in floor angle was accompanied by a substantial reduction in L/D.

  19. Aerodynamic drag reduction by vertical splitter plates

    NASA Astrophysics Data System (ADS)

    Gilliéron, Patrick; Kourta, Azeddine

    2010-01-01

    The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 × 106 and 1.6 × 106. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles.

  20. Concurrent field measurements of turbulent velocities, plant reconfiguration and drag forces on Ranunculus penicillatus

    NASA Astrophysics Data System (ADS)

    Paul, Maike; Thomas, Robert E.; Keevil, Gareth M.

    2013-04-01

    In lowland rivers, seasonal patterns of in-stream macrophyte growth and decay have significant implications for flood risk. For a given discharge, flood risk is increased when dense macrophyte canopies reduce flow areas, increase blockage ratios and alter reach-scale roughness values. These factors combine and can increase the flow depth. Conversely, submerged vegetation is exposed to drag forces exerted by the flow, which may be sufficient to damage limbs or dislodge plants. The classical drag equation suggests that the force exerted by fluid flows upon submerged vegetation is a function of the fluid properties, the projected area of the vegetation, and the square of the flow velocity. However, very few studies have simultaneously monitored all of these parameters, resulting in significant uncertainty in the estimation of the coefficient that relates these parameters to the drag force and also the related roughness parameters that control the flow depth for a given discharge. To our knowledge, this study presents the first concurrent field measurements of turbulent velocities, plant reconfigurations and drag forces acting on Ranunculus penicillatus ssp. pseudofluitans (Syme) S.D.Webster. Measurements were undertaken in an artificially straightened reach of the chalk-bed River Wylye, near Longbridge Deverill, Wiltshire, UK. The reach is 5.7 m wide and during measurements there was a mean flow depth of 0.28 m and an average discharge of 0.28 m³s-1. The reach is cleared of vegetation up to three times a year for flood defence purposes, but Ranunculus p. grows back within several weeks. Measurements were carried out after re-growth, when plants were fully developed with a mean length of 0.75 m and on average 6 nodes along the stem. The distances between the nodes increased from the base towards the tip and each node produced a capillary leaf, sometimes in conjunction with a branch. Floating leaves and flowers were not present. Plants were attached to a custom-made drag sensor that was deployed flush with the streambed. Simultaneously, a profiling Acoustic Doppler Velocimeter (Nortek Vectrino-II) was deployed 0.5 m upstream of the plants. Also, a video camera was installed with its field of view perpendicular to the mean flow direction, in order to record plant motion and reconfiguration associated with turbulent velocity and drag fluctuations. Measurements were repeated while the Vectrino-II was consecutively deployed at four vertical positions to: 1. obtain a velocity profile through the entire water column and 2. study which vertical position correlated most strongly to the drag force. Velocity measurements confirmed that turbulent structures were present throughout the water column and a response to these fluctuations was observed in the drag measurements. Responses lagged in time due to the horizontal distance between Vectrino-II and drag sensor position. Additionally, spectral analysis showed that the drag fluctuates with a frequency of 0.5 Hz which corresponds well with the undulating, quasi-sinusoidal, plant motion observed on the video footage. This motion was associated with the downstream propagation of coherent eddies.

  1. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    PubMed

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Considerations of Methods of Improving Helicopter Efficiency

    NASA Technical Reports Server (NTRS)

    Dingeldein, Richard C.

    1961-01-01

    Recent NASA helicopter research indicates that significant improvements in hovering efficiency, up to 7 percent, are available from the use of a special airfoil section formed by combining an NACA 632A015 thickness distribution with an NACA 230 mean line. This airfoil should be considered for flying-crane-type helicopters. Application of standard leading-edge roughness causes a large drop in efficiency; however, the cambered rotor is shown to retain its superiority over a rotor having a symmetrical airfoil when both rotors have leading-edge roughness. A simple analysis of available rotor static-thrust data indicates a greatly reduced effect of compressibility effects on the rotor profile-drag power than predicted from calculations. Preliminary results of an experimental study of helicopter parasite drag indicate the practicability of achieving an equivalent flat-plate parasite-drag area of less than 4 square feet for a rotor-head-pylon-fuselage configuration (landing gear retracted) in the 2,000-pound minimum-flying-weight class. The large drag penalty of a conventional skid-type landing (3.6 square feet) can be reduced by two-thirds by careful design. Clean, fair, and smooth fuselages that tend to have narrow, deep cross sections are shown to have advantages from the standpoint of drag and download. A ferry range of the order of 1,500 miles is indicated to be practicable for the small helicopter considered.

  3. Comparison of theory and direct numerical simulations of drag reduction by rodlike polymers in turbulent channel flows.

    PubMed

    Benzi, Roberto; Ching, Emily S C; De Angelis, Elisabetta; Procaccia, Itamar

    2008-04-01

    Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number (Re) and Deborah number (De). The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.

  4. Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Patten, R.A.; Everitt, C.W.F.

    1976-03-22

    In 1918, Lense and Thirring calculated that a moon orbiting a rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect to 1% with two counter-orbiting drag-free satellites in polar earth orbit. In addition to tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken near the poles. New geophysical information is inherent in the polar data. (AIP)

  5. Influence of base modifications on in-flight base drag in the presence of jet exhaust for Mach numbers from 0.7 to 1.5

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke

    1988-01-01

    The use of external modifications in the base region to reduce the base drag of a blunt-base body in the presence of jet engine exhaust was investigated in flight. Base pressure data were obtained for the following configurations: (1) blunt base; (2) blunt base modified with splitter plate; and (3) blunt base modified with two variations of a vented cavity. Reynolds number based on the length of the aircraft ranged from 1.2 to 3.1 x 10 to the 8th. Mach number M ranges were 0.71 less than or = M less than or = 0.95 and 1.10 less than or = M less than or = 1.51. The data were analyzed using the blunt base for a reference, or baseline condition. For 1.10 less than or = M less than or = 1.51, the reduction in base drag coefficient provided by the vented cavity configuration ranged from 0.07 to 0.05. These increments in base drag coefficient at M = 1.31 and 1.51 result in base drag reductions of 27 and 24 percent, respectively, when compared to the blunt base drag. For M less than 1, the drag increment between the blunt base and the modification is not significant.

  6. Computational Fluid Dynamics (CFD) Simulation of Drag Reduction by Riblets on Automobile

    NASA Astrophysics Data System (ADS)

    Ghazali, N. N. N.; Yau, Y. H.; Badarudin, A.; Lim, Y. C.

    2010-05-01

    One of the ongoing automotive technological developments is the reduction of aerodynamic drag because this has a direct impact on fuel reduction, which is a major topic due to the influence on many other requirements. Passive drag reduction techniques stand as the most portable and feasible way to be implemented in real applications. One of the passive techniques is the longitudinal microgrooves aligned in the flow direction, known as riblets. In this study, the simulation of turbulent flows over an automobile in a virtual wind tunnel has been conducted by computational fluid dynamics (CFD). Three important aspects of this study are: the drag reduction effect of riblets on smooth surface automobile, the position and geometry of the riblets on drag reduction. The simulation involves three stages: geometry modeling, meshing, solving and analysis. The simulation results show that the attachment of riblets on the rear roof surface reduces the drag coefficient by 2.74%. By adjusting the attachment position of the riblets film, reduction rates between the range 0.5%-9.51% are obtained, in which the position of the top middle roof optimizes the effect. Four riblet geometries are investigated, among them the semi-hexagon trapezoidally shaped riblets is considered the most effective. Reduction rate of drag is found ranging from -3.34% to 6.36%.

  7. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  8. Drag De-Orbit Device (D3): A Retractable Device for CubeSat Attitude and Orbit Control using Aerodynamic Forces

    NASA Technical Reports Server (NTRS)

    Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The increasing number of CubeSats being launched has raised concerns about orbital debris since most of these satellites have no means of active orbit control. Some technologies exist to increase the surface area of a CubeSat and expedite de-orbit due to aerodynamic drag in low Earth orbit, but most of these devices cannot be retracted and hence cannot be used for orbital maneuvering. This paper discusses the De-Orbit Drag Device (D3) module that is capable of de-orbiting a 12U, 15kg CubeSat from a 700 km circular orbit in under 25 years and can be deployed and retracted to modulate the aerodynamic drag force experienced by the satellite. This facilitates orbital maneuvering using aerodynamic drag and the active targeting of a de-orbit location. In addition, the geometry of this drag device provides 3-axis attitude stabilization of the host CubeSat using aerodynamic and gravity gradient torques which is useful for many missions and provides a predictable aerodynamic profile for use in orbital maneuvering algorithms.

  9. Systems analysis of Mars solar electric propulsion vehicles

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, H. B.; Kenny, B. H.; Sefcik, R. J.

    1990-01-01

    Mission performance, mass, initial power, and cost are determined for solar electric propulsion vehicles across a range of payload masses, reference powers, and mission trajectories. Thick radiation shielding is added to arrays using indium phosphide or III-V multijunction solar cells to reduce the damage incurred through the radiation belts. Special assessments of power management and distribution systems, atmospheric drag, and energy storage are made. It is determined that atmospheric drag is of no great concern and that the energy storage used in countering drag is unnecessary. A scheme to package the arrays, masts, and ion thrusters into a single fairing is presented.

  10. Influence of Nose Radius of Blunt Cones on Drag in Supersonic and Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Hemateja, A.; Teja, B. Ravi; Dileep Kumar, A.; Rakesh, S. G.

    2017-08-01

    The objects moving at high speeds encounter forces which tend to decelerate the objects. This resistance in the medium is termed as drag which is one of the major concerns while designing high speed aircrafts. Another key factor which influences the design is the heat transfer. The main challenge faced by aerospace industries is to design the shape of the flying object that travels at high speeds with optimum values of heat generation and drag. This study deals with computational analysis of sharp and blunt cones with varying cone angles and nose radii. The effect of nose radius on the drag is studied at supersonic and hypersonic flows and at various angles of attack. It is observed that as the nose radius is increased, the heat transfer reduces & the drag increases and vice-versa. Looking at the results, the optimum value of nose radius can be chosen depending on the need of the problem.

  11. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane

    2017-06-02

    Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less

  12. Measurements of long-range enhanced collisional velocity drag through plasma wave damping

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2018-05-01

    We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.

  13. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... each lift or drag device having a separate control in the cockpit to adjust its position. In addition... controls must be clearly marked to identify this range of extension. [Amdt. 25-23, 35 FR 5675, Apr. 8, 1970] ...

  14. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... each lift or drag device having a separate control in the cockpit to adjust its position. In addition... controls must be clearly marked to identify this range of extension. [Amdt. 25-23, 35 FR 5675, Apr. 8, 1970] ...

  15. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... each lift or drag device having a separate control in the cockpit to adjust its position. In addition... controls must be clearly marked to identify this range of extension. [Amdt. 25-23, 35 FR 5675, Apr. 8, 1970] ...

  16. The effects of radiation drag on radial, relativistic hydromagnetic winds

    NASA Technical Reports Server (NTRS)

    Li, Zhi-Yun; Begelman, Mitchell C.; Chiueh, Tzihong

    1992-01-01

    The effects of drag on an idealized relativistic MHD wind of radial geometry are studied. The astrophysical motivation is to understand the effects of radiation drag on the dynamics of a jet or wind passing through the intense radiation field of an accreting compact object. From a critical point analysis, it is found that a slow magnetosonic point can appear in a dragged flow even in the absence of gravitational force, as a result of a balance between the drag force and the combination of thermal pressure and centrifugal forces. As in the undragged case, the Alfven point does not impose any constraints on the flow. Although it is formally possible for a dragged flow to possess more than one fast magnetosonic point, it is shown that this is unlikely in practice. In the limit of a 'cold', centrifugally driven flow, it is shown that the fast magnetosonic point moves to infinite radius, just as in the drag-free case. For a given mass flux, the total energy output carried to infinity, and the final partition between the kinetic energy and the Poynting flux, are the same for the dragged and the drag-free flows. The main effects of radiation drag are to increase the amount of energy and angular momentum extracted from the source and to redistribute the regions where acceleration occurs in the flow. This is accomplished through the storage and release of magnetic energy, as a result of additional winding and compression of the field caused by the action of the drag. For a relativistic wind, the dissipated energy can exceed the final kinetic energy of the flow and may be comparable to the total flow energy (which is dominated by Poynting flux). The energy lost to radiation drag will appear as a Doppler-boosted beam of scattered radiation, which could dominate the background radiation if the flow is well-collimated.

  17. Aerodynamic analysis of seamless horizontal stabilizer

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Kanimozhi, S.

    2017-05-01

    This project presents an investigative view into the concept of seamless aeroelastic wing and hingeless flexible trailing edge. Wings are designed to provide maximum lift and minimal drag and weight. But with conventional wings where rivets are used and the control surfaces are separately hinged, parasite drag comes into play. This project is about analysing a smooth seamless wing with hinge-less flexible trailing edge. This type of wing reduces the drag considerably and the hinge-less trailing edge leads to a minimal control demand and reduces the noise produced when the aircraft comes for landing. Seamless aeroelastic wing will function as an integrated one piece lifting and control surface. It has been designed to enhance a desirable wing camber for control by deflecting a hinge-less flexible trailing edge part instead of a traditional hinged control surface. This kind of flexible wing can be achieved either by a curved beam and disc actuation mechanism or by piezo-electric materials, whose shape change can be achieved by electricity. The intent of this project is to analyze the effects of introducing the concept of Seamless Wing to the horizontal stabilizer. While the removal of rivets and serrations that hinge the elevators to the stabilizer reduces the overall drag by a reasonable value, the overall concept of a control surface-less stabilizer where the maneuvers are done by deflecting the trailing edge offers better maneuverability.

  18. Implement a Sub-grid Turbulent Orographic Form Drag in WRF and its application to Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Yang, K.; Wang, Y.; Huang, B.

    2017-12-01

    Sub-grid-scale orographic variation exerts turbulent form drag on atmospheric flows. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the stress to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag on each model layer. To investigate the effect of the new scheme, WRF with the old and new one was used to simulate the climate over the complex terrain of the Tibetan Plateau. The two schemes were evaluated in terms of the direct impact (on wind) and the indirect impact (on air temperature, surface pressure and precipitation). Both in winter and summer, the new TOFD scheme reduces the mean bias in the surface wind, and clearly reduces the root mean square error (RMSEs) in comparisons with the station measurements (Figure 1). Meanwhile, the 2-m air temperature and surface pressure is also improved (Figure 2) due to the more warm air northward transport across south boundary of TP in winter. The 2-m air temperature is hardly improved in summer but the precipitation improvement is more obvious, with reduced mean bias and RMSEs. This is due to the weakening of water vapor flux (at low-level flow with the new scheme) crossing the Himalayan Mountains from South Asia.

  19. Heat, mass and force flows in supersonic shockwave interaction

    NASA Astrophysics Data System (ADS)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  20. Analysis of Nonplanar Wing-tip-mounted Lifting Surfaces on Low-speed Airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.; Roskam, J.

    1983-01-01

    Nonplanar wing tip mounted lifting surfaces reduce lift induced drag substantially. Winglets, which are small, nearly vertical, winglike surfaces, are an example of these devices. To achieve reduction in lift induced drag, winglets produce significant side forces. Consequently, these surfaces can seriously affect airplane lateral directional aerodynamic characteristics. Therefore, the effects of nonplanar wing tip mounted surfaces on the lateral directional stability and control of low speed general aviation airplanes were studied. The study consists of a theoretical and an experimental, in flight investigation. The experimental investigation involves flight tests of winglets on an agricultural airplane. Results of these tests demonstrate the significant influence of winglets on airplane lateral directional aerodynamic characteristics. It is shown that good correlations exist between experimental data and theoretically predicted results. In addition, a lifting surface method was used to perform a parametric study of the effects of various winglet parameters on lateral directional stability derivatives of general aviation type wings.

  1. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  2. Locomotion of bluefish.

    PubMed

    DuBois, A B; Cavagna, G A; Fox, R S

    1976-02-01

    1. Pressure previously measured on the body surface of swimming bluefish were resolved into their backward vectorial components to allow calculation of profile drag. It was 0.18 kg at a speed of 1.8 m/sec. Tangential drag was calculated as if for a thin plate of an area equal to that of the fish. It was 0.08 kg at 1.8 m/sec. Net drag, 0.26 kg, was the sum of profile and tangential drag. 2. Thrust and drag also were calculated from the changes of acceleration measured during steady swimming, assuming that thrust took place only during the acceleration phase, whereas drag occurred during both acceleration and deceleration. This drag was 0.08 kg at a speed of 1.1 m/sec. It is compatible with the drag of 0.26 at 1.8 m/sec calculated from profile and tangential drag provided drag varies as the square of velocity. 3. The force required to produced maximal acceleration was measured during a scare. It was calculated to be 6.9 kg at a peak acceleration of 3 g. 4. The compression strength of th vertebrae was found to be approximately 20 kg per cm2, or roughly three times the force encountered during maximal acceleration. This safety factor of 3 would be reduced when the back was curved, or if opposing groups of muscles were under tension. 5. The finding that a bluefish can accelerate at 3 g and that the vertebral column is strongg enough to withstand this force indicates that the muscles and body structure of a bluefish would be able to withstand the force of gravity if the fish were otherwise equipped for terrestrial life. This fish may have evolved these strengths simultaneously with land animals. It is speculated that other fish may have evolved some degree of strength to overcome inertia and drag during aquatic locomotion, and this evolution may have been a prelude to terrestrial locomotion.

  3. Study of Theoretical and Numerical Fluid Characteristics of Plain Wing with Winglets

    NASA Astrophysics Data System (ADS)

    Nabhan, Mohamed B. W.

    2018-05-01

    Aerodynamic characteristics of plain wing designed for Light Sport Aircraft has been studied. The fluid characteristics include induced drag and lift to drag ratio. Then, winglets are added to reduce the induced drag and increase the lift to drag ratio which are affected by the wing tip vortices. The theoretical and numerical approaches are used to verify the results. A rectangular untwisted 9.528 m wing spans with an Airfoil NACA 4412 was used for the basic design. Winglets are added with a tip airfoil of NACA 0012, side angle of 65° and new projected area of 10.328 m2. Lift and drag coefficients are used as means to measure the improvement of the aerodynamic characteristics. The wing tip vortices increase the induced drag and spoil the lift over the wing's surface. The winglets design main objectives are to decrease the induced drag, decrease the fuel consumption, and increase the flight safety, especially in take-off condition. The wing with winglets model was simulated first using 3-D Fluent ANSYS version 14 at 50 m/s velocity and (0°, 5°, and 10°) angles of attack with laminar flow and standard atmospheric conditions at 15°C, and 101 kPa and all other flow parameters as well. The second verification method was to simulate the 3-D model using the 3-D Foil Multi-Surfaces code again with the same flow parameters. Finally, the last verification method was to solve the problem theoretically using the theoretical governing equations. The theoretical solutions were used as a base line for all other results. The total drag reduction observed from the calculation is about 2% to 14.5% during the takeoff regime, where the induced drag contributes about 60% of total drag of the wings. The lift to drag ratio improved also in our designed model wing with winglets by a maximum of 18.6% from the plain wing design.

  4. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  5. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2005-12-27

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  6. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2005-08-09

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  7. Gravitational mass attraction measurement for drag-free references

    NASA Astrophysics Data System (ADS)

    Swank, Aaron J.

    Exciting new experiments in gravitational physics are among the proposed future space science missions around the world. Such future space science experiments include gravitational wave observatories, which require extraordinarily precise instruments for gravitational wave detection. In fact, future space-based gravitational wave observatories require the use of a drag free reference sensor, which is several orders of magnitude more precise than any drag free satellite launched to date. With the analysis methods and measurement techniques described in this work, there is one less challenge associated with achieving the high-precision drag-free satellite performance levels required by gravitational wave observatories. One disturbance critical to the drag-free performance is an acceleration from the mass attraction between the spacecraft and drag-free reference mass. A direct measurement of the gravitational mass attraction force is not easily performed. Historically for drag-free satellite design, the gravitational attraction properties were estimated by using idealized equations between a point mass and objects of regular geometric shape with homogeneous density. Stringent requirements are then placed on the density distribution and fabrication tolerances for the drag-free reference mass and satellite components in order to ensure that the allocated gravitational mass attraction disturbance budget is not exceeded due to the associated uncertainty in geometry and mass properties. Yet, the uncertainty associated with mass properties and geometry generate an unacceptable uncertainty in the mass attraction calculation, which make it difficult to meet the demanding drag-free performance requirements of future gravitational wave observatories. The density homogeneity and geometrical tolerances required to meet the overall drag-free performance can easily force the use of special materials or manufacturing processes, which are impractical or not feasible. The focus of this research is therefore to develop the necessary equations for the gravitational mass attraction force and gradients between two general distributed bodies. Assuming the drag-free reference mass to be a single point mass object is no longer necessary for the gravitational attraction calculations. Furthermore, the developed equations are coupled with physical measurements in order to eliminate the mass attraction uncertainty associated with mass properties. The mass attraction formula through a second order expansion consists of the measurable quantifies of mass, mass center, and moment of inertia about the mass center. Thus, the gravitational self-attraction force on the drag free reference due to the satellite can be indirectly measured. By incorporating physical measurements into the mass attraction calculation, the uncertainty in the density distribution as well as geometrical variations due to the manufacturing process are included in the analysis. For indirect gravitational mass attraction measurements, the corresponding properties of mass, mass center, and moment of inertia must be precisely determined for the proof mass and satellite components. This work focuses on the precision measurement of the moment of inertia for the drag-free test mass. Presented here is the design of a new moment of inertia measurement apparatus utilizing a five-wire torsion pendulum design. The torsion pendulum is utilized to measure the moment of inertia tensor for a prospective drag-free test mass geometry. The measurement results presented indicate the prototype five-wire torsion has matched current state of the art precision. With only minimal work to reduce laboratory environmental disturbances, the apparatus has the prospect of exceeding state of the art precision by almost an order of magnitude. In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center to a level better than typical measurement devices. Although the pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.

  8. Reducing the wave drag of wing airfoils in transonic flow regimes by the force action of airfoil surface elements on the flow

    NASA Astrophysics Data System (ADS)

    Aul'chenko, S. M.; Zamuraev, V. P.

    2012-11-01

    Mathematical modeling of the influence of forced oscillations of surface elements of a wing airfoil on the shock-wave structure of transonic flow past it has been carried out. The qualitative and quantitative influence of the oscillation parameters on the wave drag of the airfoil has been investigated.

  9. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics.

    PubMed

    Chunbao, Liu; Li, Li; Yulong, Lei; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  10. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas)

    PubMed

    Watson; Granger

    1998-09-01

    Wind tunnel tests were performed to measure the effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). A full-scale turtle model was constructed from an 11.5 kg specimen with a 48 cm carapace length, and a transmitter model was constructed from a Telonics ST-6. The turtle model was tested in a wind tunnel with and without the transmitter, which was mounted on the forward, topmost part of the carapace. Drag, lift and pitch moment were measured for several speeds and flow angles, and the data were scaled for application to the marine environment. At small flow angles representative of straight-line swimming, the transmitter increased drag by 27-30 %, reduced lift by less than 10 % and increased the pitch moment by 11-42 %. On the basis of the drag data at zero angle of attack, it is estimated that the backpack will reduce swimming speed by 11 %, assuming that the turtle produces the same thrust with the unit attached. The drag data are also used to estimate the effect of a transmitter on the swimming energetics of an adult green turtle. Design guidelines are included to minimize the adverse forces and moments caused by the transmitter.

  11. Flow around a helically twisted elliptic cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woojin; Lee, Jungil; Choi, Haecheon, E-mail: choi@snu.ac.kr

    In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio (AR) of the elliptic cross section and the helical spanwise wavelength (λ). Depending on the values of AR and λ, the flow in the wake contains the characteristic wavelengths of λ, 2λ, 6λ, or even longer than 60λ, showing amore » wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder (AR = 1.3 and λ = 3.5d) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.« less

  12. A study of optimum cowl shapes and flow port locations for minimum drag with effective engine cooling, volume 2

    NASA Technical Reports Server (NTRS)

    Fox, S. R.; Smetana, F. O.

    1980-01-01

    The listings, user's instructions, sample inputs, and sample outputs of two computer programs which are especially useful in obtaining an approximate solution of the viscous flow over an arbitrary nonlifting three dimensional body are provided. The first program performs a potential flow solution by a well known panel method and readjusts this initial solution to account for the effects of the boundary layer displacement thickness, a nonuniform but unidirectional onset flow field, and the presence of air intakes and exhausts. The second program is effectually a geometry package which allows the user to change or refine the shape of a body to satisfy particular needs without a significant amount of human intervention. An effort to reduce the cruise drag of light aircraft through an analytical study of the contributions to the drag arising from the engine cowl shape and the foward fuselage area and also that resulting from the cooling air mass flowing through intake and exhaust sites on the nacelle is presented. The programs may be effectively used to determine the appropriate body modifications or flow port locations to reduce the cruise drag as well as to provide sufficient air flow for cooling the engine.

  13. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    PubMed Central

    Chunbao, Liu; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220

  14. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.

    PubMed

    Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe

    2015-12-01

    Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Numerical studies of porous airfoils in transonic flow. Ph.D. Thesis. Final Report, 1 Jun. 1985 - 31 Aug. 1986

    NASA Technical Reports Server (NTRS)

    Chow, C. Y.

    1986-01-01

    A numerical tool is constructed to examine the effects of a porous surface on transonic airfoil performance and to help understand the flow structure of passive shockwave/boundary layer interactions. The porous region is located near the shock with a cavity underneath it. This study is composed of two parts. Solved in the first part, with an inviscid-flow approach, is the transonic full-potential equation associated with transpiration boundary conditions which are obtained from porosity modeling. The numerical results indicate that a porous airfoil has a wave drag lower than that of a solid airfoil. The observed lambda-shock structure in the wind-tunnel testing can be predicted. Furthermore, the lift could be increased with an appropriate porosity distribution. In the second part of this work, the modified version of either an interactive boundary layer (IBL) algorithm or a thin-layer Navier-Stokes (TLNS) algorithm is used to study the outer flow, while a stream-function formulation is used to model the inner flow in the shallow cavity. The coupling procedure at the porous surface is based on Darcy's law and the assumption of a constant total pressure in the cavity. In addition, a modified Baldwin-Lomax turbulence model is used to describe the transpired turbulent boundary layer in the TLNS approach, while the Cebeci turbulence model is used in the IBL approach. According to the present analysis, a porous surface can reduce the wave drag appreciably, but can also increase the viscous losses. As has been observed experimentally, the numerical results indicate that the total drag is reduced at higher Mach numbers and increased at lower Mach numbers when the angles of attack are small. Furthermore, the streamline pattern of passive shock/boundary layer interaction are revealed.

  16. Wall turbulence control

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.

    1986-01-01

    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.

  17. Loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes with imposed pressure

    NASA Astrophysics Data System (ADS)

    Soares, Edson J.; Sandoval, Gustavo A. B.; Silveira, Lucas; Pereira, Anselmo S.; Trevelin, Renata; Thomaz, Fabricio

    2015-12-01

    This paper studies the loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes. The overall pressure was fixed and the apparatus was built so as to minimize the polymer degradation. We used three kinds of polymers: two flexible and one rigid. We conducted our tests to take into account the drag reduction (DR) for a wide range of concentrations of each polymer. The main results are displayed for the DR as a function of the number of passes through the apparatus. The mechanism of the loss of efficiency for the Xanthan Gum (XG) solutions (the rigid one) seems to be completely different from that observed for Poly (ethylene oxide) (PEO) and Polyacrylamide (PAM) (the flexible materials). While the PEO and PAM mechanically degrade by the action of the turbulent flow, the XG seems to remain intact, even after many passes through the pipe flow apparatus. From the practical point of view, it is worth noting that the PAM solutions are clearly more efficient than the PEO and XG. Another practical point that deserves attention is concerned with the asymptotic drag reduction found for XG. Although its maximum DR was significantly smaller than that found for PEO, the final value for both polymers were quite the same, which is obviously related to the intensified mechanical molecule scission in the PEO solutions. Our results for the relative drag reduction (the current value of DR divided by its maximum obtained at the first pass) was quite well fitted by the decay function proposed in our previous paper [A. S. Pereira and E. J. Soares, "Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device," J. Non-Newtonian Fluid Mech. 179, 9-22 (2012)], in which a rotating apparatus was used. This strongly suggests that the physical mechanism that governs the degradation phenomenon is independent of the geometry. We also used a degradation model for PEO proposed by Vonlanthen and Monkewitz ["Grid turbulence in dilute polymer solution: Peo in water," J. Fluid Mech. 730, 76-98 (2013)] to fit our data of relative drag reduction for PEO and PAM.

  18. Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe.

    PubMed

    Sokhal, Kamaljit Singh; Gangacharyulu, Dasaroju; Bulasara, Vijaya Kumar

    2018-02-01

    Concentrated solutions of guar gum in water (1000-3000ppm) with and without KCl salt (1000-4000ppm) were injected near the wall for a short period (2.5min) to investigate their effect on drag reduction in turbulent flow of water through a pipe (Re≈17000-45000). Relative to bulk solution, the concentrations of polymer and salt were 50-150ppm and 50-200ppm, respectively. A drag reduction of 71.45% was observed for 3000ppm of biopolymer without salt. Guar gum experienced mechanical degradation under high shear conditions and addition of KCl improved shear stability up to 47% (for Re≈45000). A polymer concentration of 3000ppm and salt concentration of 2000ppm in the injection fluid were found to be optimum for achieving the highest drag reduction with better shear stability. Results indicated that boundary layer injection shows better drag reduction ability than pre-mixed solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote.

    PubMed

    Xi, Li; Graham, Michael D

    2012-01-13

    Dynamical trajectories on the boundary in state space between laminar and turbulent plane channel flow-edge states-are computed for Newtonian and viscoelastic fluids. Viscoelasticity has a negligible effect on the properties of these solutions, and, at least at a low Reynolds number, their mean velocity profiles correspond closely to experimental observations for polymer solutions in the maximum drag reduction regime. These results confirm the existence of weak turbulence states that cannot be suppressed by polymer additives, explaining the fact that there is an upper limit for polymer-induced drag reduction.

  20. Air Layer Drag Reduction

    NASA Astrophysics Data System (ADS)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  1. Theoretical-Numerical Study of Feasibility of Use of Winglets on Low Aspect Ration Wings at Subsonic and Transonic Mach Numbers to Reduce Drag

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Liaw, Paul; Cerney, Michael J.

    1988-01-01

    A numerical design study was conducted to assess the drag reduction potential of winglets installed on a series of low aspect ratio wings at a design point of M=0.8, C sub L=0.3. Wing-winglet and wing-alone design geometries were obtained for wings of aspect ratios between 1.75 and 2.67, having leading edge sweep angles between 45 and 60 deg. Winglet length was fixed at 15% of wing semispan. To assess the relative performance between wing-winglet and wing-alone configurations, the PPW nonlinear extended small disturbance potential flow code was utilized. This model has proven to yield plausible transonic flow field simulations for the series of low aspect ratio configurations selected. Predicted decreases in pressure drag coefficient for the wing-winglet configurations relative to the corresponding wing-alone planform are about 15% at the design point. Predicted decreases in wing-winglet total drag coefficient are about 12%, relative to the corresponding wing-alone design. Longer winglets (25% of the wing semispan) yielded decreases in the pressure drag of up to 22% and total drag of up to 16.4%. These predicted drag coefficient reductions are comparable to reductions already demonstrated by actual winglet designs installed on higher aspect ratio transport type aircraft.

  2. Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan, M.

    2014-01-01

    Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.

  3. Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds

    NASA Astrophysics Data System (ADS)

    Goodsell, Aga Myung

    The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not sufficient to warrant the resulting drag penalty at supersonic cruise. Furthermore, if maintaining laminar flow is critical to the design and some bluntness is necessary for manufacturing purposes, then the leading-edge diameter should be minimized to prevent transition and to reduce wave drag.

  4. Electric filter with movable belt electrode

    DOEpatents

    Bergman, W.

    1983-09-20

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

  5. Electric filter with movable belt electrode

    DOEpatents

    Bergman, Werner

    1983-01-01

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched therebetween. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants.

  6. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  7. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

  8. A Study on the Effects of J2 Perturbations on a Drag-Free Control System for Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Vess, Melissa Fleck; Starin, Scott R.

    2003-01-01

    Low Earth Orbit (LEO) missions provide a unique means of gathering information about many of Earth s aspects such as climate, atmosphere, and gravitational field. Among the greatest challenges of LEO missions are designing, predicting, and maintaining the spacecraft orbit. The predominant perturbative forces acting on a spacecraft in LEO are J2 and higher order gravitational components, the effects of which are fairly easy to predict, and atmospheric drag, which causes the greatest uncertainty in predicting spacecraft ephemeris. The continuously varying atmospheric drag requires increased spacecraft tracking in order to accurately predict spacecraft location. In addition, periodic propulsive maneuvers typically must be planned and performed to counteract the effects of drag on the spacecraft orbit. If the effects of drag could be continuously and autonomously counteracted, the uncertainty in ephemeris due to atmospheric drag would essentially be eliminated from the spacecraft dynamics. One method of autonomous drag compensation that has been implemented on some missions is drag-free control. Drag-free control of a spacecraft was initially proposed in the 1960's and is discussed extensively by Lange. His drag-free control architecture consists of a free-floating proof mass enclosed within a spacecraft, isolating it from external disturbance forces such as atmospheric drag and solar radiation pressure. Under ideal conditions, internal disturbance forces can be ignored or mitigated, and the orbit of the proof mass depends only on gravitational forces. A sensor associated with the proof mass senses the movement of the spacecraft relative to the proof mass. Using the sensor measurements, the spacecraft is forced to follow the orbit of the proof mass by using low thrust propulsion, thus counteracting any non-gravitational disturbance forces. If the non-gravitational disturbance forces are successfully removed, the spacecraft s orbit will be affected only by well-known gravitational forces and will thus be easier to predict.

  9. Radiation drag in the field of a non-spherical source

    NASA Astrophysics Data System (ADS)

    Bini, D.; Geralico, A.; Passamonti, A.

    2015-01-01

    The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.

  10. Aeroelastic deformation of a perforated strip

    NASA Astrophysics Data System (ADS)

    Guttag, M.; Karimi, H. H.; Falcón, C.; Reis, P. M.

    2018-01-01

    We perform a combined experimental and numerical investigation into the static deformation of perforated elastic strips under uniform aerodynamic loading at high-Reynolds-number conditions. The static shape of the porous strips, clamped either horizontally or vertically, is quantified as they are deformed by wind loading, induced by a horizontal flow. The experimental profiles are compared to numerical simulations using a reduced model that takes into account the normal drag force on the deformed surface. For both configurations (vertical and horizontal clamping), we compute the drag coefficient of the strip, by fitting the experimental data to the model, and find that it decreases as a function of porosity. Surprisingly, we find that, for every value of porosity, the drag coefficients for the horizontal configuration are larger than those of the vertical configuration. For all data in both configurations, with the exception of the continuous strip clamped vertically, a linear relation is found between the porosity and drag. Making use of this linearity, we can rescale the drag coefficient in a way that it becomes constant as a function of the Cauchy number, which relates the force due to fluid loading on the elastic strip to its bending rigidity, independently of the material properties and porosity of the strip and the flow speed. Our findings on flexible strips are contrasted to previous work on rigid perforated plates. These results highlight some open questions regarding the usage of reduced models to describe the deformation of flexible structures subjected to aerodynamic loading.

  11. Thermal lift generation and drag reduction in rarefied aerodynamics

    NASA Astrophysics Data System (ADS)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  12. Investigation of installation effects of single-engine convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Burley, J. R., II; Berrier, B. L.

    1982-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine installation effects on single-engine convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft. Tests were conducted at Mach numbers from 0.50 to 1.20, at angles of attack from -3 degrees to 9 degrees, and at nozzle pressure ratios from 1.0 (jet off) to 8.0. The effects of empennage arrangement, nozzle length, a cusp fairing, and afterbody closure on total aft-end drag coefficient and component drag coefficients were investigated. Basic lift- and drag-coefficient data and external static-pressure distributions on the nozzle and afterbody are presented and discussed.

  13. Performance Impact of Deflagration to Detonation Transition Enhancing Obstacles

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Schauer, Frederick; Hopper, David

    2012-01-01

    A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.

  14. An investigation of several NACA 1-series nose inlets with and without protruding central bodies at high-subsonic Mach numbers and at a Mach number of 1.2

    NASA Technical Reports Server (NTRS)

    Pendley, Robert E; Robinson, Harold L

    1950-01-01

    An investigation of three NACA 1-series nose inlets, two of which were fitted with protruded central bodies, was conducted in the Langley 8-foot high-speed tunnel. An elliptical-nose body, which had a critical Mach number approximately equal to that of one of the nose inlets, was also tested. Tests were made near zero angle of attack for a Mach number range from 0.4 to 0.925 and for the supersonic Mach number of 1.2. The inlet-velocity-ratio range extended from zero to a maximum value of 1.34. Measurements included pressure distribution, external drag, and total-pressure loss of the internal flow near the inlet. Drag was not measured for the tests at the supersonic Mach number. Over the range of inlet-velocity ratio investigated, the calculated external pressure-drag coefficient at a Mach number of 1.2 was consecutively lower for the nose inlets of higher critical Mach number, and the pressure-drag coefficient of the longest nose inlet was in the range of pressure-drag coefficient for two solid noses of fineness ratio 2.4 and 6.0. For Mach numbers below the Mach number of the supercritical drag rise, extrapolation of the test data indicated that the external drag of the nose inlets was little affected by the addition of central bodies at or slightly below the minimum inlet-velocity ratio for unseparated central-body flow. The addition of central bodies to the nose inlets also led to no appreciable effects on either the Mach number of the supercritical drag rise, or, for inlet-velocity ratios high enough to avoid a pressure peak at the inlet lip, on the critical Mach number. The total-pressure recovery of the inlets tested, which were of a subsonic type, was sensibly unimpaired at the supersonic Mach number of 1.2 Low-speed measurements of the minimum inlet-velocity ratio for unseparated central-body flow appear to be applicable for Mach numbers extending to 1.2.

  15. Reducing Water/Hull Drag By Injecting Air Into Grooves

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Bushnell, Dennis M.; Weinstein, Leonard M.

    1991-01-01

    Proposed technique for reduction of friction drag on hydrodynamic body involves use of grooves and combinations of surfactants to control motion of layer on surface of such body. Surface contains many rows of side-by-side, evenly spaced, longitudinal grooves. Dimensions of grooves and sharpnesses of tips in specific case depends on conditions of flow about vessel. Requires much less air than does microbubble-injection method.

  16. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary layer ingestion (BLI) to reduce inlet drag on the propulsion system, and reduces the wake drag of the vehicle.

  17. Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Chen, Xiong; Li, Yingkun; Musa, Omer; Zhou, Changsheng

    2018-01-01

    When flying at supersonic or hypersonic speeds through the air, the drag and severe heating have a great impact on the vehicles, thus the drag reduction and thermal protection studies have attracted worldwide attention. In the current study, the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the shear stress transport (SST) k - ω turbulence model have been employed to investigate the flow behavior induced by a novel combinational lateral jet and spike concept in supersonic flows. A coupling conjugate heat transfer (CHT) approach has been applied to investigate the thermal protection, which takes the heat transfer of structure into consideration. After the code was validated by the available experimental results and the gird independency analysis was carried out, the influences of the spike length ratio, lateral jet pressure ratio and lateral jet location on the drag and heat reduction performance are analyzed comprehensively. The obtained results show that a remarkable reduction in the drag and heat flux is achieved when a lateral jet is added to the spike. This implies that the combinational lateral jet and spike concept in supersonic flows have a great benefit to the drag and heat reduction. Both the drag and heat reduction decrease with the increase of the lateral jet pressure ratio, and the heat flux is more sensitive to the lateral jet pressure ratio. The lateral jet should not be located in the bottom of the spike in order to realize better drag and heat reduction performance. The drag and heat flux could be reduced by about 45% by reasonable lateral jet location. The drag decreases with the increase of the spike length ratio whereas the heat flux is affected by the spike length ratio just in a certain range.

  18. Reduction of granular drag inspired by self-burrowing rotary seeds

    NASA Astrophysics Data System (ADS)

    Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young

    2017-04-01

    We present quantitative measurements and mat hematical analysis of the granular drag reduction by rotation, as motivated by the digging of Erodium and Pelargonium seeds. The seeds create a motion to dig into soil before germination using their moisture-responsive awns, which are originally helical shaped but reversibly deform to a linear configuration in a humid environment. We show that the rotation greatly lowers the resistance of soil against penetration because grain rearrangements near the intruder change the force chain network. We find a general correlation for the drag reduction by relative slip, leading to a mathematical model for the granular drag of a rotating intruder. In addition to shedding light on the mechanics of a rotating body in granular media, this work can guide us to design robots working in granular media with enhanced maneuverability.

  19. Selected winglet and mixed flow long duct nacelle development for DC-10 derivative aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, A. B.

    1980-01-01

    The high speed cruise drag effects of the installation of winglets and a wing tip extension and a mixed flow long duct nacelle are investigated. The winglet program utilized a 4.7 percent semispan model in an eight foot transonic wind tunnel. Winglets provided approximately twice the cruise drag reduction of wing tip extensions for about the same increase in bending moment at the wing-fuselage juncture. The long duct nacelle interference drag program utilized the same model, without the winglets, in the 11 foot transonic wind tunnel. The long duct nacelle, installed in the same position as the current short duct nacelle and with the current production symmetric pylon, was a relatively low risk installation. A pylon with an addition small rearward fairing was also tested and showed some drag reduction potential over the current pylon.

  20. A preliminary investigation of the drag and ventilation characteristics of livestock haulers

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.; Sandin, D. R.

    1983-01-01

    A wind tunnel evaluation of the drag and ventilation characteristics of a conventional (unmodified) and five modified subscale model livestock haulers at 0 deg yaw angle has been made. The unmodified livestock hauler has a relatively high drag coefficient, and a low velocity recirculation region exists in the forward portion of the hauler. The use of a streamlined forebody and enclosed gap reduced the drag coefficient of one model by 42% and improved the rate at which contaminants can be flushed from the cargo compartment by a factor of 2.5. From the limited data obtained, any increase in the fraction of open area of the trailer sides was found to improve the trailer ventilation. The use of a ram air inlet can improve the ventilation within the hauler and remove the low velocity recirculation region at the expense of a modest increase in the truck's drag coefficient. A mathematical model for vehicles with ram air or NACA submerged inlets was developed and appears to adequately predict the ventilation characteristics of livestock haulers.

  1. A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T

    1956-01-01

    Comparisons have been made of the shock phenomena and drag-rise increments for representative wing and central-body combinations with those for bodies of revolution having the same axial developments of cross-sectional areas normal to the airstream. On the basis of these comparisons, it is concluded that near the speed of sound the zero-lift drag rise of a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-sectional areas normal to the airstream. It follows that the drag rise for any such configuration is approximately the same as that for any other with the same development of cross-sectional areas. Investigations have also been made of representative wing-body combinations with the body so indented that the axial developments of cross-sectional areas for the combinations were the same as that for the original body alone. Such indentations greatly reduced or eliminated the zero-lift drag-rise increments associated with the wings near the speed of sound.

  2. Model of skin friction enhancement in undulatory swimming

    NASA Astrophysics Data System (ADS)

    Ehrenstein, Uwe; Eloy, Christophe

    2012-11-01

    To estimate the energetic cost of undulatory swimming, it is crucial to evaluate the drag forces originating from skin friction. This topic has been controversial for decades, some claiming that animals use ingenious mechanisms to reduce the drag and others hypothesizing that the undulatory motion induces a drag increase because of the compression of the boundary layers. In this paper, we examine this latter hypothesis, known as the ``Bone-Lighthill boundary-layer thinning hypothesis''. Considering a plate of section s moving perpendicular to itself at velocity U⊥ and applying the boundary-layer approximation for the incoming flow, the drag force per unit surface is shown to scale as √{U⊥ / s }. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 to 100%, depending on the geometry and the motion. M.J. Lighthill, Proc. R. Soc. Lond. B 179, 125 (1971).

  3. USM3D Analysis of Low Boom Configuration

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Campbell, Richard L.; Nayani, Sudheer N.

    2011-01-01

    In the past few years considerable improvement was made in NASA's in house boom prediction capability. As part of this improved capability, the USM3D Navier-Stokes flow solver, when combined with a suitable unstructured grid, went from accurately predicting boom signatures at 1 body length to 10 body lengths. Since that time, the research emphasis has shifted from analysis to the design of supersonic configurations with boom signature mitigation In order to design an aircraft, the techniques for accurately predicting boom and drag need to be determined. This paper compares CFD results with the wind tunnel experimental results conducted on a Gulfstream reduced boom and drag configuration. Two different wind-tunnel models were designed and tested for drag and boom data. The goal of this study was to assess USM3D capability for predicting both boom and drag characteristics. Overall, USM3D coupled with a grid that was sheared and stretched was able to reasonably predict boom signature. The computational drag polar matched the experimental results for a lift coefficient above 0.1 despite some mismatch in the predicted lift-curve slope.

  4. Assessment of a Conceptual Flap System Intended for Enhanced General Aviation Safety

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Carter, Melissa B.

    2017-01-01

    A novel multielement trailing-edge flap system for light general aviation airplanes was conceived for enhanced safety during normal and emergency landings. The system is designed to significantly reduce stall speed, and thus approach speed, with the goal of reducing maneuveringflight accidents and enhancing pilot survivability in the event of an accident. The research objectives were to assess the aerodynamic performance characteristics of the system and to evaluate the extent to which it provided both increased lift and increased drag required for the low-speed landing goal. The flap system was applied to a model of a light general aviation, high-wing trainer and tested in the Langley 12- Foot Low-Speed Wind Tunnel. Data were obtained for several device deflection angles, and component combinations at a dynamic pressure of 4 pounds per square foot. The force and moment data supports the achievement of the desired increase in lift with substantially increased drag, all at relatively shallow angles of attack. The levels of lift and drag can be varied through device deflection angles and inboard/outboard differential deflections. As such, it appears that this flap system may provide an enabling technology to allow steep, controllable glide slopes for safe rapid descent to landing with reduced stall speed. However, a simple flat-plate lower surface spoiler (LSS) provided either similar or superior lift with little impact on pitch or drag as compared to the proposed system. Higher-fidelity studies are suggested prior to use of the proposed system.

  5. Deconstructing Hub Drag. Part 2. Computational Development and Anaysis

    DTIC Science & Technology

    2013-09-30

    leveraged a Vertical Lift Consortium ( VLC )-funded hub drag scaling research effort. To confirm this objective, correlations are performed with the...Technology™ Demonstrator aircraft using an unstructured computational solver. These simpler faired elliptical geome- tries can prove to be challenging ...possible. However, additional funding was obtained from the Vertical Lift Consortium ( VLC ) to perform this study. This analysis is documented in

  6. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers

    NASA Astrophysics Data System (ADS)

    Hruschka, R.; Klatt, D.

    2018-03-01

    The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.

  7. Wingtip vortex turbine investigation for vortex energy recovery

    NASA Technical Reports Server (NTRS)

    Abeyounis, William K.; Patterson, James C., Jr.; Stough, H. P., III; Wunschel, Alfred J.; Curran, Patrick D.

    1990-01-01

    A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15' twist (washin) and one with no twist. Th power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.

  8. An investigation of drag reduction fairings on the space shuttle vehicle 5 configuration (model 74-OTS) in the MSFC 14 inch trisonic wind tunnel (FA14)

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1976-01-01

    An experimental investigation was conducted in the MSFC 14-inch TWT (FA14, TWT 600) to determine the static stability and drag on a 0.004 scale model of the shuttle ascent configuration. The primary objective was to study the possibility of reducing the launch vehicle drag by using Orbiter/ET/SRB fairings, streamlined orbiter fore and aft attach structures, SRB and ET alternative nose configurations, and devices for modifying the flow between the orbiter and ET. The secondary objective was to determine the longitudinal and directional characteristics of the ascent configuration with the most promising of the drag reduction devices installed. Data were obtained for a Mach number range of 0.6 through 4.96 and angles of attack from -5 through 5 degrees at zero degrees side slip angle.

  9. Nonlinear Aerodynamics and the Design of Wing Tips

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan

    1991-01-01

    The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.

  10. Effects of Fineness Ratio and Reynolds Number on the Low-Speed Crosswind Drag Characteristics of Circular and Modified-Square Cylinders

    NASA Technical Reports Server (NTRS)

    McKinney, Linwood W.

    1960-01-01

    A wind-tunnel investigation has been made on modified-square and circular cylinders to determine the effects of fineness ratio and Reynolds numbers on the crosswind drag characteristics. Fineness ratios from 2 to 14 were investigated over a Reynolds number range from approximately 300,000 to 1,650,000 which corresponded to Mach numbers from 0.057 to 0.377.The result of the investigation show that at supercraft Reynolds numbers the drag coefficient of the circular cylinder increases with increasing Reynolds number for all fineness ratios but at low fineness ratios this effect is considerably less than at higher fineness ratios. For circular cylinders in the high fineness-ratio range there is a reduction in drag as the fineness ratio is decreased except for Reynolds numbers of 900,000 and 1,000,000, whereas at low fineness ratios the opposite trend generally occurs. The addition of hemispherical ends to the circular cylinder gave a substantial decrease in drag at a fineness ratio of 3.27 but the effect was negligible at fineness ratios of 5.27 and 10. The finite-length modified-square cylinder gave the reduction in drag over the two-dimensional modified-square cylinder for the complete range of test Reynolds numbers with the lowest fineness ratio giving the lowest drag at Reynolds numbers above 3O0,OOO.

  11. Active skin for turbulent drag reduction

    NASA Astrophysics Data System (ADS)

    Rediniotis, Othon K.; Lagoudas, Dimitris C.; Mani, Raghavendran; Karniadakis, George

    2002-07-01

    Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption with the associated economic and environmental consequences, larger flight range and endurance and higher achievable flight speeds. This work capitalizes on recent advances in active turbulent drag reduction and active material based actuation to develop an active or 'smart' skin for turbulent drag reduction in realistic flight conditions. The skin operation principle is based on computational evidence that spanwise traveling waves of the right amplitude, wavelength and frequency can result in significant turbulent drag reduction. Such traveling waves can be induced in the smart skin via active-material actuation. The flow control technique pursued is 'micro' in the sense that only micro-scale wave amplitudes (order of 30mm) and energy inputs are sufficient to produce significant benefits. Two actuation principles have been proposed and analyzed. Different skin designs based on these two actuation principles have been discussed. The feasibility of these different actuation possibilities (such as Shape Memory Alloys and Piezoelectric material based actuators) and relative merits of different skin designs are discussed. The realization of a mechanically actuated prototype skin capable of generating a traveling wave, using a rapid prototyping machine, for the purpose of validating the proposed drag reduction technique is also presented.

  12. A mechanism of wave drag reduction in the thermal energy deposition experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markhotok, A., E-mail: amarhotk@phys.washington.edu

    2015-06-15

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressuremore » and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.« less

  13. Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Deere, Karen A.

    2015-01-01

    An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary

  14. Aerodynamic study of state transport bus using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.

  15. Sensitivity of forces to wall transpiration in flow past an aerofoil

    PubMed Central

    Mao, X.

    2015-01-01

    The adjoint-based sensitivity analyses well explored in hydrodynamic stability studies are extended to calculate the sensitivity of forces acting on an aerofoil with respect to wall transpiration. The magnitude of the sensitivity quantifies the controllability of the force, and the distribution of the sensitivity represents a most effective control when the control magnitude is small enough. Since the sensitivity to streamwise control is one order smaller than that to the surface-normal one, the work is concentrated on the normal control. In direct numerical simulations of flow around a NACA0024 aerofoil, the unsteady controls are far less effective than the steady control owing to the lock-in effect. At a momentum coefficient of 0.0008 and a maximum control velocity of 3.6% of the free-stream velocity, the steady surface-normal control reduces drag by 20% or enhances lift by up to 140% at Re=1000. A suction around the low-pressure region on the upper surface upstream of the separation point is found to reduce drag and enhance lift. At higher Reynolds numbers, the uncontrolled flow becomes three dimensional and the sensitivity diverges owing to the chaotic dynamics of the flow. Then the mechanism identified at lower Reynolds numbers is exploited to obtain the control, which is localized and can be generated by a limited number of actuators. The control to reduce drag or enhance lift is found to suppress unsteadiness, e.g. vortex shedding and three-dimensional developments. For example, at Re=2000 and α=10°, the control with a momentum coefficient of 0.0001 reduces drag by 20%, enhances lift by up to 200% and leads to a steady controlled flow. PMID:26807041

  16. Relativity mission with two counter-orbiting polar satellites. [nodal dragging effect on earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Van Patten, R. A.; Everitt, C. W. F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit. For a 2 1/2 year experiment, the measurement accuracy should approach 1%. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data.

  17. Flight Software Development for the Liberdade Flying Wing Glider

    DTIC Science & Technology

    2013-12-24

    gliders. Bigger gliders are more efficient at horizontal transport. Surveys of natural and man-made flyers ( McMasters , 1974) confirm this relation...The other benefit of a large wing area is that it reduces the coefficient of lift and the associated induced drag (the largest component of drag at...greater reduction in specific energy consumption than does a proportionally smaller lift coefficient . Increases in aspect ratio, in turn, must be

  18. Electro-Osmosis and Water Uptake in Polymer Electrolytes in Equilibrium with Water Vapor at Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.

    2009-01-01

    Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonatedmore » poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.« less

  19. NCV Flow Diagnostic Test Results

    NASA Technical Reports Server (NTRS)

    Cappuccio, Mina

    1999-01-01

    There were two objectives for this test. First, was to assess the reasons why there is approximately 1.5 drag counts (cts) discrepancy between measured and computed drag improvement of the Non-linear Cruise Validation (NCV) over the Technology Concept Airplane (TCA) wing body (WB) configurations. The Navier-Stokes (N-S) pre-test predictions from Boeing Commercial Airplane Group (BCAG) show 4.5 drag cts of improvement for NCV over TCA at a lift coefficient (CL) of 0. I at Mach 2.4. The pre-test predictions from Boeing Phantom Works - Long Beach, BPW-LB, show 3.75 drag cts of improvement. BCAG used OVERFLOW and BPW-LB used CFL3D. The first test entry to validate the improvement was held at the NASA Langley Research Center (LARC) UPV;T, test number 1687. The experimental results showed that the drag improvement was only 2.6 cts, not accounting for laminar run and trip drag. This is approximately 1.5 cts less than predicted computationally. In addition to the low Reynolds Number (RN) test, there was a high RN test in the Boeing Supersonic Wind Tunnel (BSWT) of NCV and TCA. BSV@T test 647 showed that the drag improvement of NCV over TCA was also 2.6 cts, but this did account for laminar run and trip drag. Every effort needed to be done to assess if the improvement measured in LaRC UPWT and BSWT was correct. The second objective, once the first objective was met, was to assess the performance increment of NCV over TCA accounting for the associated laminar run and trip drag corrections in LaRC UPWT. We know that the configurations tested have laminar flow on portions of the wing and have trip drag due to the mechanisms used to force the flow to go from laminar to turbulent aft of the transition location.

  20. A methodology for reduced order modeling and calibration of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush M.; Linares, Richard

    2017-10-01

    Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.

  1. Smart vortex generator transformed by change in ambient temperature and aerodynamic force

    NASA Astrophysics Data System (ADS)

    Ikeda, Tadashige; Masuda, Shinya; Ueda, Tetsuhiko

    2007-04-01

    A Smart Vortex Generator (SVG) concept has been proposed, where the SVG is autonomously transformed between an upright vortex-generating position in take-off and landing and a flat drag-reducing position in a cruise. This SVG is made of a Shape Memory Alloy (SMA), which is in the austenite phase and memorizes the upright position at high temperatures of the take-off and landing. At low temperatures during ascent the SVG is transformed into a martensite phase, and it lies flat against a base structure due to external or/and internal forces. In this paper, we examine whether the SVG can be transformed into the drag-reducing position by an aerodynamic force. To this end, numerical simulations are carried out with a simple line element model. The aerodynamic force applied on the SVG is calculated by a commercial CFD program. Result reveals that this SVG can be transformed from the upright vortex-generating position into the drag-reducing position by just an airplane climbing, and vice versa, if the SMA applied to the SVG has the two-way shape memory effect. If the SMA has the one-way shape memory effect, it is necessary to reduce the stiffness of the SVG or/and use a counter spring.

  2. A drag-free Lo-Lo satellite system for improved gravity field measurements

    NASA Technical Reports Server (NTRS)

    Fischell, R. E.; Pisacane, V. L.

    1978-01-01

    At very low altitudes, the effect of atmospheric drag results in drastically reduced orbit lifetimes and considerable uncertainty in satellite motions. The concept suggested herein employs a DISturbance COmpensation System (DISCOS) on each of a pair of satellites at very low altitudes to provide refined measurements of the earth's gravitational field. The DISCOS maintains the satellites in orbit and essentially eliminates motion uncertainties due mostly to drag and to a lesser extent from solar radiation pressure. By a closed-loop measurement of the relative rangerate between the two low satellites, one can determine the earth's gravitational field with a considerably greater accuracy than could be obtained by tracking a single satellite.

  3. Rotational relaxation time as unifying time scale for polymer and fiber drag reduction

    NASA Astrophysics Data System (ADS)

    Boelens, A. M. P.; Muthukumar, M.

    2016-05-01

    Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.

  4. Rotational relaxation time as unifying time scale for polymer and fiber drag reduction.

    PubMed

    Boelens, A M P; Muthukumar, M

    2016-05-01

    Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.

  5. An investigation of drag reduction on box-shaped ground vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1976-01-01

    A wind tunnel investigation was conducted to determine the reduction in drag which could be obtained by making various configuration changes to a box-shaped ground vehicle. Tests were conducted at yaw (relative wind) angles of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 300,000 to 850,000. The power required to overcome the aerodynamic drag was reduced by a maximum of 73% for a head wind for the best configuration relative to the smooth bottom box-shape, or 75% relative to the rough bottom box-shape. The reduction for a 20 MPH wind at 30 deg to the vehicle path was, respectively, 77% and 79%.

  6. Optimal feedback control of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz

    1993-01-01

    Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.

  7. A novel explicit equation for the friction factor prediction in the annular flow with drag-reducing polymer

    NASA Astrophysics Data System (ADS)

    Lakzian, Esmail; Masoudifar, Amir; Saghi, Hassan

    2017-03-01

    In this paper, a novel explicit equation is presented for the friction factor prediction in the annular flow with drag reducing polymer (DRP). By using dimensional analyses and curve fitting on the published experimental data, the suggested equation is derived based on the logarithmic velocity profiles and power law in boundary layers. In the next step, a least squares method is used to calibrate the presented equation. Then, the equation is used to friction factor prediction of the gas-liquid mixture with DRP and the results are compared with the experimental data and the Al-Sarkhi ones. Finally, drag reduction (DR) is applied as the ratio of the friction factor reduction using DRP to the friction factor without DRP. The DR results show that the suggested equation has a better agreement with the experimental data in comparison with the pervious equations. The results also show that DR prediction decreases with the increase of the gas superficial velocity.

  8. Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Yang, Kun; Wang, Yan

    2018-04-01

    Sub-grid-scale orographic variation (smaller than 5 km) exerts turbulent form drag on atmospheric flows and significantly retards the wind speed. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the drag to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag from the surface layer to upper layers. To investigate the effect of the new scheme, WRF with the old scheme and with the new one was used to simulate the climate over the complex terrain of the Tibetan Plateau from May to October 2010. The two schemes were evaluated in terms of the direct impact (on wind fields) and the indirect impact (on air temperature and precipitation). The new TOFD scheme alleviates the mean bias in the surface wind components, and clearly reduces the root mean square error (RMSEs) in seasonal mean wind speed (from 1.10 to 0.76 m s-1), when referring to the station observations. Furthermore, the new TOFD scheme also generally improves the simulation of wind profile, as characterized by smaller biases and RMSEs than the old one when referring to radio sounding data. Meanwhile, the simulated precipitation with the new scheme is improved, with reduced mean bias (from 1.34 to 1.12 mm day-1) and RMSEs, which is due to the weakening of water vapor flux at low-level atmosphere with the new scheme when crossing the Himalayan Mountains. However, the simulation of 2-m air temperature is little improved.

  9. The absolutely fabulous but flawlessly customary world of female impersonators.

    PubMed

    Schacht, Steven P; Underwood, Lisa

    2004-01-01

    Our editorial introduction to this volume on drag queens highlights what we believe are some of the most prominent and important themes of female impersonation in the past and today. Building on contributors' articles, a substantial body of literature on female impersonators/drag queens and the social construction of gender, and our own extensive ethnographic experiences in a multitude of drag settings, we first suggest that such individuals can be seen as symbolic representatives of the cultural ideals associated with the feminine and women and how they have changed over time. We next argue that the notion of the effeminate drag queen is more a myth than a reality with the contextual benefits many performers receive-status and power-being indicative of the hegemony of masculinity in male-dominated societies. We next explore how additional social identities, such as race, class, nation, and religion, often impact drag performances and how others interpret them. We end our introduction by offering a model that delineates what are some of the present transgressive limits and subversive possibilities of female impersonation.

  10. Measurements of drag and flow over biofilm

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  11. Effects of Winglets on the Drag of a Low-Aspect-Ratio Configuration

    NASA Technical Reports Server (NTRS)

    Smith, Leigh Ann; Campbell, Richard L.

    1996-01-01

    A wind-tunnel investigation has been performed to determine the effect of winglets on the induced drag of a low-aspect-ratio wing configuration at Mach numbers between 0.30 and 0.85 and a nominal angle-of-attack range from -2 deg to 20 deg. Results of the tests at the cruise lift coefficient showed significant increases in lift-drag ratio for the winglet configuration relative to a wing-alone configuration designed for the same lift coefficient and Mach number. Further, even larger increases in lift-drag ratio were observed at lift coefficients above the design value at all Mach numbers tested. The addition of these winglets had a negligible effect on the static lateral-directional stability characteristics of the configuration. No tests were made to determine the effect of these winglets at supersonic Mach numbers, where increases in drag caused by winglets might be more significant. Computational analyses were also performed for the two configurations studied. Linear and small-disturbance formulations were used. The codes were found to give reasonable performance estimates sufficient for predicting changes of this magnitude.

  12. Drag-reducing polymers diminish near-wall concentration of platelets in microchannel blood flow

    PubMed Central

    Zhao, R.; Marhefka, J.N.; Antaki, J.F.; Kameneva, M.V.

    2011-01-01

    The accumulation of platelets near the blood vessel wall or artificial surface is an important factor in the cascade of events responsible for coagulation and/or thrombosis. In small blood vessels and flow channels this phenomenon has been attributed to the blood phase separation that creates a red blood cell (RBC)-poor layer near the wall. We hypothesized that blood soluble drag-reducing polymers (DRP), which were previously shown to lessen the near-wall RBC depletion layer in small channels, may consequently reduce the near-wall platelet excess. This study investigated the effects of DRP on the lateral distribution of platelet-sized fluorescent particles (diam. = 2 µm, 2.5 × 108/ml) in a glass square microchannel (width and depth = 100 µm). RBC suspensions in PBS were mixed with particles and driven through the microchannel at flow rates of 6–18 ml/h with and without added DRP (10 ppm of PEO, MW = 4500 kDa). Microscopic flow visualization revealed an elevated concentration of particles in the near-wall region for the control samples at all tested flow rates (between 2.4 ± 0.8 times at 6 ml/h and 3.3 ± 0.3 times at 18 ml/h). The addition of a minute concentration of DRP virtually eliminated the near-wall particle excess, effectively resulting in their even distribution across the channel, suggesting a potentially significant role of DRP in managing and mitigating thrombosis. PMID:21084744

  13. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  14. Buoyancy increase and drag-reduction through a simple superhydrophobic coating.

    PubMed

    Hwang, Gi Byoung; Patir, Adnan; Page, Kristopher; Lu, Yao; Allan, Elaine; Parkin, Ivan P

    2017-06-08

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO 2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown that the low energy surface treatment decreased the adhesion of water molecules to the surface of the boat resulting in a reduction of the drag force. Additionally, a robust superhydrophobic surface was fabricated through layer-by-layer coating using adhesive double side tape and the paint, and after a 100 cm abrasion test with sand paper, the surface still retained its water repellency, enhanced buoyancy and drag reduction.

  15. How should Fitts' Law be applied to human-computer interaction?

    NASA Technical Reports Server (NTRS)

    Gillan, D. J.; Holden, K.; Adam, S.; Rudisill, M.; Magee, L.

    1992-01-01

    The paper challenges the notion that any Fitts' Law model can be applied generally to human-computer interaction, and proposes instead that applying Fitts' Law requires knowledge of the users' sequence of movements, direction of movement, and typical movement amplitudes as well as target sizes. Two experiments examined a text selection task with sequences of controlled movements (point-click and point-drag). For the point-click sequence, a Fitts' Law model that used the diagonal across the text object in the direction of pointing (rather than the horizontal extent of the text object) as the target size provided the best fit for the pointing time data, whereas for the point-drag sequence, a Fitts' Law model that used the vertical size of the text object as the target size gave the best fit. Dragging times were fitted well by Fitts' Law models that used either the vertical or horizontal size of the terminal character in the text object. Additional results of note were that pointing in the point-click sequence was consistently faster than in the point-drag sequence, and that pointing in either sequence was consistently faster than dragging. The discussion centres around the need to define task characteristics before applying Fitts' Law to an interface design or analysis, analyses of pointing and of dragging, and implications for interface design.

  16. Polymer/riblet combination for hydrodynamic skin friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor)

    1995-01-01

    A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g. a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.

  17. Polymer/riblet combination for hydrodynamic skin friction reduction

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Inventor); Reed, Jason C. (Inventor)

    1990-01-01

    A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g., a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.

  18. Turbulent Boundary Layer Drag Reduction by Spanwise Wall Oscillation

    NASA Astrophysics Data System (ADS)

    Trujillo, S. M.; Bogard, D. G.; Ball, K. S.

    1997-11-01

    Changes in turbulence structure were investigated in a turbulent water boundary layer flow for which wall shear had been reduced 25 percent by spanwise wall oscillations. LDV and hot film measurements were made of streamwise and wall-normal velocities. For all wall oscillations examined, drag reduction was found to scale best with the peak velocity of the wall oscillation. Burst and sweep strength and duration were all reduced by the wall oscillation, with the greatest effects seen for the strongest events. The pdf of the velocity in the near-wall region showed greatly increased periods of low velocities, but little change was observed in the streamwise velocity autocorrelation.

  19. Active and hibernating turbulence in drag-reducing plane Couette flows

    NASA Astrophysics Data System (ADS)

    Pereira, Anselmo S.; Mompean, Gilmar; Thais, Laurent; Soares, Edson J.; Thompson, Roney L.

    2017-08-01

    In this paper we analyze the active and hibernating turbulence in drag-reducing plane Couette flows using direct numerical simulations of the viscoelastic finitely extensible nonlinear elastic model with the Peterlin approximation fluids. The polymer-turbulence interactions are studied from an energetic standpoint for a range of Weissenberg numbers (from 2 up to 30), fixing the Reynolds number based on the plate velocities at 4000, the viscosity ratio at 0.9, and the maximum polymer molecule extensibility at 100. The qualitative picture that emerges from this investigation is a cyclic mechanism of energy exchange between the polymers and turbulence that drives the flow through an oscillatory behavior.

  20. Trim drag reduction concepts for horizontal takeoff single-stage-to-Orbit vehicles

    NASA Technical Reports Server (NTRS)

    Shaughnessy, John D.; Gregory, Irene M.

    1991-01-01

    The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical configuration was used as the subject aircraft. The investigation indicates that extreme forward migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe aerodynamic instability and trim moments that must be counteracted. Adequate stability can be provided by active control of elevons and rudder, but use of elevons to produce trim moments results in excessive trim drag and fuel consumption. To alleviate this problem, two solution concepts are examined. Active control of the center of gravity (COG) location to track the aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to significant fuel savings. Active control of the direction of the thrust vector produces required trim moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded that the combination of active flight control to provide stabilization, (COG) position control to minimize trim moment requirements, and thrust vectoring to generate required trim moments has the potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO vehicles.

  1. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Mortara, Karl W.; Straussfogel, Dennis M.; Maughmer, Mark D.

    1992-01-01

    The goal of the work reported herein is to develop and validate computational tools to be used for the design of planar and non-planar wing geometries for minimum induced drag. Because of the iterative nature of the design problem, it is important that, in addition to being sufficiently accurate for the problem at hand, these tools need to be reasonably fast and computationally efficient. Toward this end, a method of predicting induced drag in the presence of a free wake has been coupled with a panel method. The induced drag prediction technique is based on the application of the Kutta-Joukowski law at the trailing edge. Until now, the use of this method has not been fully explored and pressure integration and Trefftz-plane calculations favored. As is shown in this report, however, the Kutta-Joukowski method is able to give better results for a given amount of effort than the more commonly used techniques, particularly when relaxed wakes and non-planar wing geometries are considered. Using these methods, it is demonstrated that a reduction in induced drag can be achieved through non-planar wing geometries. It remains to determine what overall drag reductions are possible when the induced drag reduction is traded-off against increased wetted area. With the design methodology that is described herein, such trade studies can be performed in which the non-linear effects of the free wake are taken into account.

  2. Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences

    USGS Publications Warehouse

    Kean, J.W.; Smith, J.D.

    2006-01-01

    Small-scale topographic features are commonly found on the boundaries of natural rivers, streams, and floodplains. A simple method for determining the form drag on these features is presented, and the results of this model are compared to laboratory measurements. The roughness elements are modeled as Gaussian-shaped features defined in terms of three parameters: a protrusion height, H; a streamwise length scale, ??; and a spacing between crests, ??. This shape is shown to be a good approximation to a wide variety of natural topographic bank features. The form drag on an individual roughness element embedded in a series of identical elements is determined using the drag coefficient of the individual element and a reference velocity that includes the effects of roughness elements further upstream. In addition to calculating the drag on each element, the model determines the spatially averaged total stress, skin friction stress, and roughness height of the boundary. The effects of bank roughness on patterns of velocity and boundary shear stress are determined by combining the form drag model with a channel flow model. The combined model shows that drag on small-scale topographic features substantially alters the near-bank flow field. These methods can be used to improve predictions of flow resistance in rivers and to form the basis for fully predictive (no empirically adjusted parameters) channel flow models. They also provide a foundation for calculating the near-bank boundary shear stress fields necessary for determining rates of sediment transport and lateral erosion.

  3. Summary of Data from the First AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.

    2002-01-01

    The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.

  4. Fluidic Actuation and Control of Munition Aerodynamics

    DTIC Science & Technology

    2009-08-31

    downstream of a sharp-edged blunt face. Acoustic actuation control was applied at the point of separation in order to decrease drag through reducing...a novel approach, Higuchi et. al. (2006) levitated a blunt faced cylinder using a magnetic field support in a wind tunnel to measure drag without...Simulation, Modeling, and Active Control of Flow/ Acoustic Resonance in Open Cavities”, AIAA Paper, 2001-0076, 2001. Corke, T., Tillotson, D., Patel, M., Su

  5. Static Longitudinal Stability and Control Characteristics At A Mach Number of 1.99 of a Lenticular-Shaped Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Jackson, Charles M., Jr.; Harris, Roy V., Jr.

    1960-01-01

    An investigation has been made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.99 to determine the longitudinal stability and control characteristics of a reentry model consisting of a lenticular-shaped body with two fin configurations (horizontal fins with end plates). Effects of deflecting the larger size fins as pitch-control surfaces were also investigated. The results indicate that the body alone was unstable from an angle of attack of 0 deg to about 55 deg where it became stable and remained so to 90 deg. The addition of fins provided positive longitudinal stability throughout the angle-of-attack range and increased the lift-drag ratio of the configuration. Reducing the horizontal-fin area at the inboard trailing edge of the fin had only a small effect on the aerodynamic characteristics of the vehicle for the condition of no fin deflection. Deflecting the fins, appeared to be an effective means of pitch control and had only a small effect on lift-drag ratio.

  6. DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Carlson, Jan-Renee; Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Park, Michael A.

    2017-01-01

    The Common Research Model wing-body configuration is investigated with the k-kL-MEAH2015 turbulence model implemented in FUN3D. This includes results presented at the Sixth Drag Prediction Workshop and additional results generated after the workshop with a nonlinear Quadratic Constitutive Relation (QCR) variant of the same turbulence model. The workshop provided grids are used, and a uniform grid refinement study is performed at the design condition. A large variation between results with and without a reconstruction limiter is exhibited on "medium" grid sizes, indicating that the medium grid size is too coarse for drawing conclusions in comparison with experiment. This variation is reduced with grid refinement. At a fixed angle of attack near design conditions, the QCR variant yielded decreased lift and drag compared with the linear eddy-viscosity model by an amount that was approximately constant with grid refinement. The k-kL-MEAH2015 turbulence model produced wing root junction flow behavior consistent with wind tunnel observations.

  7. [The action of high-molecular linear polymers on the circulatory system].

    PubMed

    Grigorian, S S; Sokolova, I A; Shakhnazarov, A A

    1995-01-01

    An analysis of the hemodynamic consequences of the injections of long linear polymers with high molecular weight is introduced. These injections lead to an increase of the cardiac output, to a decrease of the blood pressure, and hence cause a reduction of the resistance to blood flow. It follows that such kind of polymers is able to normalize hemodynamics under some pathophysiological conditions, e.g., during experimental atherosclerosis, ischemic state, hemorrhagic shock. An addition of drag-reducing polymers into the blood system is associated with a modification of the blood flow microstructure itself.

  8. Study of Potential for Motor Vehicle Fuel Economy Improvement : Technology Panel Report

    DOT National Transportation Integrated Search

    1975-01-01

    The authors evaluate individual technologies which could produce improved automobile fuel economy in the areas of vehicle improvement (reduced weight and aerodynamic drag), transmission improvement, engine improvements and reduced performance acceler...

  9. Flight and wind-tunnel measurements showing base drag reduction provided by a trailing disk for high Reynolds number turbulent flow for subsonic and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.

    1986-01-01

    The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.

  10. Thermodynamic analysis of shark skin texture surfaces for microchannel flow

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Yan; Zhang, Hao-Chun; Guo, Yang-Yu; Tan, He-Ping; Li, Yao; Xie, Gong-Nan

    2016-09-01

    The studies of shark skin textured surfaces in flow drag reduction provide inspiration to researchers overcoming technical challenges from actual production application. In this paper, three kinds of infinite parallel plate flow models with microstructure inspired by shark skin were established, namely blade model, wedge model and the smooth model, according to cross-sectional shape of microstructure. Simulation was carried out by using FLUENT, which simplified the computation process associated with direct numeric simulations. To get the best performance from simulation results, shear-stress transport k-omega turbulence model was chosen during the simulation. Since drag reduction mechanism is generally discussed from kinetics point of view, which cannot interpret the cause of these losses directly, a drag reduction rate was established based on the second law of thermodynamics. Considering abrasion and fabrication precision in practical applications, three kinds of abraded geometry models were constructed and tested, and the ideal microstructure was found to achieve best performance suited to manufacturing production on the basis of drag reduction rate. It was also believed that bionic shark skin surfaces with mechanical abrasion may draw more attention from industrial designers and gain wide applications with drag-reducing characteristics.

  11. Predicted Performance of a Thrust-Enhanced SR-71 Aircraft with an External Payload

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1997-01-01

    NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.

  12. Bioinspired Surface for Low Drag, Self-Cleaning, and Antifouling: Shark Skin, Butterfly and Rice Leaf Effects

    NASA Astrophysics Data System (ADS)

    Bixler, Gregroy D.

    In this thesis, first presented is an overview of inorganic-fouling and biofouling which is generally undesirable for many medical, marine, and industrial applications. A survey of nature's flora and fauna are studied in order to discover new antifouling methods that could be mimicked for engineering applications. New antifouling methods will presumably incorporate a combination of physical and chemical controls. Presented are mechanisms and experimental results focusing on laminar and turbulent drag reducing shark skin inspired riblet surfaces. This includes new laser etched and riblet film samples for closed channel drag using water, oil, and air as well as in wind tunnel. Also presented are mechanisms and experimental results focusing on the newly discovered rice and butterfly wing effect surfaces. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions, wettability, viscosity, and velocity. Hierarchical liquid repellent coatings combining nano- and micro-sized features and particles are utilized to recreate or combine various effects. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Discussion is provided along with new conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for medical, marine, and industrial applications.

  13. Seagrass blade motion under waves and its impact on wave decay

    NASA Astrophysics Data System (ADS)

    Luhar, M.; Infantes, E.; Nepf, H.

    2017-05-01

    The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).

  14. Determination of the drag resistance coefficients of different vehicles

    NASA Astrophysics Data System (ADS)

    Fahsl, Christoph; Vogt, Patrik

    2018-05-01

    While it has been demonstrated how air resistance could be analyzed by using mobile devices, this paper demonstrates a method of how to determine the drag resistance coefficient c of a commercial automobile by using the acceleration sensor of a smartphone or tablet. In an academic context, the drag resistance is often mentioned, but little attention is paid to quantitative measurements. This experiment was driven by the fact that this physical value is most certainly neglected because of its difficult measurability. In addition to that, this experiment gives insights on how the aerodynamic factor of an automobile affects the energy dissipation and thus how much power is required by automobile transportation.

  15. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote vorticities which result in drag rises as well as noise sources. The variable camber trailing edge flap concept could provide a substantial drag reduction benefit over a conventional discrete flap system. Aerodynamic simulations show a drag reduction of over 50% could be achieved with the flap concept over a conventional discrete flap system.

  16. NLF technology is ready to go

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    1988-01-01

    Natural laminar flow (NLF) can reduce drag on aircraft developed using modern structural design methods. Modern metal and composite construction methods can meet NLF requirements for subsonic commuter and business airframes. NLF research at NASA concentrates on expanding the practical application of NLF drag reduction technology; payoffs include progress with liquid-crystal flow visualization, NLF on three-dimensional bodies, and the effects of acoustics on laminar stability. Fuel savings from 2 to 4 percent are expected if laminar flow could be achieved over the forward 50 percent of engine nacelles on large transports depending on the configuration. It is concluded that the skill required to use NLF for drag reduction depends on understanding the conservative design corridors within which laminar flow is durable and reliable.

  17. A new method to calculate unsteady particle kinematics and drag coefficient in a subsonic post-shock flow

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.; Prestridge, Katherine; Adrian, Ronald J.

    2018-07-01

    We introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficient for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. We apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.

  18. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  19. On the Application of Contour Bumps for Transonic Drag Reduction(Invited)

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Owens, Lewis R.

    2005-01-01

    The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.

  20. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  1. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  2. Base drag prediction on missile configurations

    NASA Technical Reports Server (NTRS)

    Moore, F. G.; Hymer, T.; Wilcox, F.

    1993-01-01

    New wind tunnel data have been taken, and a new empirical model has been developed for predicting base drag on missile configurations. The new wind tunnel data were taken at NASA-Langley in the Unitary Wind Tunnel at Mach numbers from 2.0 to 4.5, angles of attack to 16 deg, fin control deflections up to 20 deg, fin thickness/chord of 0.05 to 0.15, and fin locations from 'flush with the base' to two chord-lengths upstream of the base. The empirical model uses these data along with previous wind tunnel data, estimating base drag as a function of all these variables as well as boat-tail and power-on/power-off effects. The new model yields improved accuracy, compared to wind tunnel data. The new model also is more robust due to inclusion of additional variables. On the other hand, additional wind tunnel data are needed to validate or modify the current empirical model in areas where data are not available.

  3. Summary of Low-Lift Drag and Directional Stability Data from Rocket Models of the Douglas XF4D-1 Airplane with and without External Stores and Rocket Packets at Mach Numbers from 0.8 to 1.38 TED No. NACA DE-349

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.; Blanchard, Willard S.; Hastings, Earl C., Jr.

    1952-01-01

    At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.

  4. On the diverse roles of fluid dynamic drag in animal swimming and flying

    PubMed Central

    2018-01-01

    Questions of energy dissipation or friction appear immediately when addressing the problem of a body moving in a fluid. For the most simple problems, involving a constant steady propulsive force on the body, a straightforward relation can be established balancing this driving force with a skin friction or form drag, depending on the Reynolds number and body geometry. This elementary relation closes the full dynamical problem and sets, for instance, average cruising velocity or energy cost. In the case of finite-sized and time-deformable bodies though, such as flapping flyers or undulatory swimmers, the comprehension of driving/dissipation interactions is not straightforward. The intrinsic unsteadiness of the flapping and deforming animal bodies complicates the usual application of classical fluid dynamic forces balance. One of the complications is because the shape of the body is indeed changing in time, accelerating and decelerating perpetually, but also because the role of drag (more specifically the role of the local drag) has two different facets, contributing at the same time to global dissipation and to driving forces. This causes situations where a strong drag is not necessarily equivalent to inefficient systems. A lot of living systems are precisely using strong sources of drag to optimize their performance. In addition to revisiting classical results under the light of recent research on these questions, we discuss in this review the crucial role of drag from another point of view that concerns the fluid–structure interaction problem of animal locomotion. We consider, in particular, the dynamic subtleties brought by the quadratic drag that resists transverse motions of a flexible body or appendage performing complex kinematics, such as the phase dynamics of a flexible flapping wing, the propagative nature of the bending wave in undulatory swimmers, or the surprising relevance of drag-based resistive thrust in inertial swimmers. PMID:29445037

  5. A Study of the Drag Characteristics and Polymer Diffusion in the Boundary Layer of an Axisymmetric Body

    DTIC Science & Technology

    1976-03-12

    Reduction in Pipe Flow at R =14xl03 (from Hoyt (1972)) Guar Gum Karaya Polyox WSR 301 400 850 10 Polyacrylamide, Polyhall-250 20 21 ■.I...shown to be effec- tive drag reducers. Polysaccharides ( Guar ), polyethylene oxide, polyacrylamides, and sodium carboxymethyl...sifting the premeasured polyox powder onto the surface of the carefully weighed water which was being slowly stirred by a magnetic mixing bar. After a

  6. Method and apparatus for reducing the drag of flows over surfaces

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R. (Inventor)

    1998-01-01

    An apparatus, and its accompanying method, for reducing the drag of flows over a surface includes arrays of small disks and sensors. The arrays are embedded in the surface and may extend above, or be depressed below, the surface, provided they remain hydraulically smooth either when operating or when inactive. The disks are arranged in arrays of various shapes, and spaced according to the cruising speed of the vehicle on which the arrays are installed. For drag reduction at speeds of the order of 30 meters/second, preferred embodiments include disks that are 0.2 millimeter in diameter and spaced 0.4 millimeter apart. For drag reduction at speeds of the order of 300 meters/second, preferred embodiments include disks that are 0.045 millimeter in diameter and spaced 0.09 millimeter apart. Smaller and larger dimensions for diameter and spacing are also possible. The disks rotate in the plane of the surface, with their rotation axis substantially perpendicular to the surface. The rotating disks produce velocity perturbations parallel to the surface in the overlying boundary layer. The sensors sense the flow at the surface and connect to control circuitry that adjusts the rotation rates and duty cycles of the disks accordingly. Suction and blowing holes can be interspersed among, or made coaxial with, the disks for creating general three-component velocity perturbations in the near-surface region. The surface can be a flat, planar surface or a nonplanar surface, such as a triangular riblet surface. The present apparatus and method have potential applications in the field of aeronautics for improving performance and efficiency of commercial and military aircraft, and in other industries where drag is an obstacle, including gas and oil delivery through long-haul pipelines.

  7. Application of two procedures for dual-point design of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.

    1994-01-01

    Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.

  8. High-Fidelity Aerostructural Optimization of Nonplanar Wings for Commercial Transport Aircraft

    NASA Astrophysics Data System (ADS)

    Khosravi, Shahriar

    Although the aerospace sector is currently responsible for a relatively small portion of global anthropogenic greenhouse gas emissions, the growth of the airline industry raises serious concerns about the future of commercial aviation. As a result, the development of new aircraft design concepts with the potential to improve fuel efficiency remains an important priority. Numerical optimization based on high-fidelity physics has become an increasingly attractive tool over the past fifteen years in the search for environmentally friendly aircraft designs that reduce fuel consumption. This approach is able to discover novel design concepts and features that may never be considered without optimization. This can help reduce the economic costs and risks associated with developing new aircraft concepts by providing a more realistic assessment early in the design process. This thesis provides an assessment of the potential efficiency improvements obtained from nonplanar wings through the application of fully coupled high-fidelity aerostructural optimization. In this work, we conduct aerostructural optimization using the Euler equations to model the flow along with a viscous drag estimate based on the surface area. A major focus of the thesis is on finding the optimal shape and performance benefits of nonplanar wingtip devices. Two winglet configurations are considered: winglet-up and winglet-down. These are compared to optimized planar wings of the same projected span in order to quantify the possible drag reductions offered by winglets. In addition, the drooped wing is studied in the context of exploratory optimization. The main results show that the winglet-down configuration is the most efficient winglet shape, reducing the drag by approximately 2% at the same weight in comparison to a planar wing. There are two reasons for the superior performance of this design. First, this configuration moves the tip vortex further away from the wing. Second, the winglet-down concept has a higher projected span at the deflected state due to the structural deflections. Finally, the exploratory optimization studies lead to a drooped wing with the potential to increase range by 4.9% relative to a planar wing.

  9. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  10. A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings

    NASA Technical Reports Server (NTRS)

    Yates, John E.

    1991-01-01

    A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.

  11. Nanosatellite constellation deployment using on-board magnetic torquer interaction with space plasma

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Matsuzawa, Shinji; Inamori, Takaya; Jeung, In-Seuck

    2018-04-01

    One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3 U (1-3 kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.

  12. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    PubMed

    Tucker, V A

    2000-12-01

    Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously used for calculating the gliding performance of a peregrine. The accuracy with which drag coefficients measured on wingless bird bodies in a wind tunnel represent the C(D,par) of a living bird is unknown. Another method for determining C(D,par) selects values that improve the fit between speeds predicted by mathematical models and those observed in living birds. This method yields lower values for C(D,par) (0.05-0.07) than wind tunnel measurements, and the present study suggests a value of 0.1 for raptors as a compromise.

  13. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  14. Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing

    NASA Technical Reports Server (NTRS)

    Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.

    1982-01-01

    The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.

  15. Drag Characteristics of Several Towed Decelerator Models at Mach 3

    NASA Technical Reports Server (NTRS)

    Miserentino, Robert; Bohon, Herman L.

    1970-01-01

    An investigation has been made to determine the possibility of using toroid-membrane and wide-angle conical shapes as towed decelerators. Parameter variations were investigated which might render toroid-membrane models and wide-angle- cone models stable without loss of the high drag coefficients obtainable with sting-mounted models. The parameters varied included location of center of gravity, location of the pivot between the towline and the model, and configuration modifications of the aft end as the addition of a corner radius and the addition of a skirt. The toroid membrane can be made into a stable towed decelerator with a suitable configuration modification of the aft end.

  16. Comparisons of subsonic drag estimates derived from Pioneer Venus probes flight data with wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Phillips, W. P.; Kelly, G. M.; Findlay, J. T.

    1980-01-01

    Subsonic drag coefficients have been obtained from flight data for the Pioneer Venus multiprobes. The technique used to extract the information from the data consisted of utilizing in situ pressure and temperature measurements. Analysis of the major model parameter error sources indicates overall error levels of five percent or less in the flight values of the drag coefficient. Comparisons of the flight coefficients with preflight wind-tunnel test data showed generally good agreement except for the Sounder descent probe configuration. To preclude atmospheric phenomena as a possible explanation of this difference, additional wind-tunnel tests were performed on the Sounder descent probe. Special attempts were made to duplicate the probe geometry for tests in a high Reynolds number environment in order to achieve as realistic model and flight conditions as practical. Preliminary results from this testing in the NASA LaRC Low Turbulence Pressure Tunnel produced a drag coefficient of 0.68 at 0 deg angle of attack which is within the expected accuracy limits of the flight derived drag coefficient value of 0.72 + or - 0.04, thus eliminating atmospheric phenomena as the explanation for the initial difference.

  17. Comparison of gimbal approaches to decrease drag force and radar cross sectional area in missile application

    NASA Astrophysics Data System (ADS)

    Sakarya, Doǧan Uǧur

    2017-05-01

    Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.

  18. Reduction of turbulent skin-friction drag by oscillating discs

    NASA Astrophysics Data System (ADS)

    Wise, Daniel; Ricco, Pierre

    2013-11-01

    A new drag-reduction method, based on the active technique proposed by Ricco & Hahn (2013), i.e. steadily rotating flush-mounted discs, is studied by DNS. The effect of sinusoidally oscillating discs on the turbulent channel-flow drag is investigated at Reτ = 180 , based on the friction velocity of the stationary-wall case and the half channel height. A parametric investigation on the disc diameter, tip velocity and oscillation period yielded a maximum drag reduction of 18.5%. Regions of net power saved, calculated by considering the power spent to enforce the disc motion against the viscous resistance of the fluid, are found to reach up to 6.5% for low disc tip velocities. Significantly, the characteristic time-scale for the oscillating disc forcing is double that for the steadily rotating discs, representing a further step towards industrial implementation. The oscillating disc forcing, similar to the steadily rotating disc forcing, creates streamwise-elongated structures between the discs. These structures - largely unaffected by the periodic wall forcing and persisting throughout the entire period of the oscillation - are the main contributor to the additional Reynolds stresses term created by the disc forcing, and are important for the drag reduction mechanism.

  19. Kinematics of the field hockey penalty corner push-in.

    PubMed

    Kerr, Rebecca; Ness, Kevin

    2006-01-01

    The aims of the study were to determine those variables that significantly affect push-in execution and thereby formulate coaching recommendations specific to the push-in. Two 50 Hz video cameras recorded transverse and longitudinal views of push-in trials performed by eight experienced and nine inexperienced male push-in performers. Video footage was digitized for data analysis of ball speed, stance width, drag distance, drag time, drag speed, centre of massy displacement and segment and stick displacements and velocities. Experienced push-in performers demonstrated a significantly greater (p < 0.05) stance width, a significantly greater distance between the ball and the front foot at the start of the push-in and a significantly faster ball speed than inexperienced performers. In addition, the experienced performers showed a significant positive correlation between ball speed and playing experience and tended to adopt a combination of simultaneous and sequential segment rotation to achieve accuracy and fast ball speed. The study yielded the following coaching recommendations for enhanced push-in performance: maximize drag distance by maximizing front foot-ball distance at the start of the push-in; use a combination of simultaneous and sequential segment rotations to optimise both accuracy and ball speed and maximize drag speed.

  20. Separation efficiency of free-solution conjugated electrophoresis with drag-tags incorporating a synthetic amino acid.

    PubMed

    Seo, Kyung-Ho; Chu, Hun-Su; Yoo, Tae Hyeon; Lee, Sun-Gu; Won, Jong-In

    2016-03-01

    DNA sequencing or separation by conventional capillary electrophoresis with a polymer matrix has some inherent drawbacks, such as the expense of polymer matrix and limitations in sequencing read length. As DNA fragments have a linear charge-to-friction ratio in free solution, DNA fragments cannot be separated by size. However, size-based separation of DNA is possible in free-solution conjugate electrophoresis (FSCE) if a "drag-tag" is attached to DNA fragments because the tag breaks the linear charge-to-friction scaling. Although several previous studies have demonstrated the feasibility of DNA separation by free-solution conjugated electrophoresis, generation of a monodisperse drag-tag and identification of a strong, site-specific conjugation method between a DNA fragment and a drag-tag are challenges that still remain. In this study, we demonstrate an efficient FSCE method by conjugating a biologically synthesized elastin-like polypeptide (ELP) and green fluorescent protein (GFP) to DNA fragments. In addition, to produce strong and site-specific conjugation, a methionine residue in drag-tags is replaced with homopropargylglycine (Hpg), which can be conjugated specifically to a DNA fragment with an azide site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss - Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth, and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data/analyses. Recommendations are made for future work.

  2. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max. radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data analyses.

  3. Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission performance (drag, weight, etc.). Examples are presented which show how performance can be maximized while maintaining a desired level of handling quality.

  4. Flow over gravel beds with clusters

    NASA Astrophysics Data System (ADS)

    Little, M.; Venditti, J. G.

    2014-12-01

    The structure of a gravel bed has been shown to alter the entrainment threshold. Structures such as clusters, reticulate stone cells and other discrete structures lock grains together, making it more difficult for them to be mobilized. These structures also generate form drag, reducing the shear stress available for mobilization. Form drag over gravel beds is often assumed to be negligible, but this assumption is not well supported. Here, we explore how cluster density and arrangement affect flow resistance and the flow structure over a fixed gravel bed in a flume experiment. Cluster density was varied from 6 to 68.3 clusters per square meter which corresponds to areal bed coverages of 2 to 17%. We used regular, irregular and random arrangements of the clusters. Our results show that flow resistance over a planar gravel bed initially declines, then increases with flow depth. The addition of clusters increases flow resistance, but the effect is dependent on cluster density, flow depth and arrangement. At the highest density, clusters can increase flow resistance as by as much as 8 times when compared to flat planar bed with no grain-related form drag. Spatially resolved observations of flow over the clusters indicate that a well-defined wake forms in the lee of each cluster. At low cluster density, the wakes are isolated and weak. As cluster density increases, the wakes become stronger. At the highest density, the wakes interact and the within cluster flow field detaches from the overlying flow. This generates a distinct shear layer at the height of the clusters. In spite of this change in the flow field at high density, our results suggest that flow resistance simply increases with cluster density. Our results suggest that the form drag associated with a gravel bed can be substantial and that it depends on the arrangement of the grains on the bed.

  5. A Sweeping Jet Application on a High Reynolds Number Semispan Supercritical Wing Configuration

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Melton, Latunia; Goodliff, Scott L.; Cagle, C. Mark

    2017-01-01

    The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center. Two types of sweeping jet actuators were fabricated using rapid prototype techniques, and directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 deg and 60 deg, and a transonic cruise configuration having a 0 deg flap deflection. For the 30 deg flap high-lift configuration, the sweeping jets achieved comparable lift performance in the separation control regime, while reducing the mass flow by 54% as compared to steady blowing. The sweeping jets however were not effective for the 60 deg flap. For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off-design condition. The drag reduction for the design lift coefficient for the sweeping jets offer is only half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% reduction in mass flow.

  6. Mach Stability Improvements Using an Existing Second Throat Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Balakrishna, Sundareswara; Walker, Eric L.; Goodliff, Scott L.

    2015-01-01

    Recent data quality improvements at the National Transonic Facility have an intended goal of reducing the Mach number variation in a data point to within plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented and the correlation between Mach number and drag will also be examined. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.

  7. Hydrodynamics of fossil fishes

    PubMed Central

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-01-01

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377

  8. Predicting lethal entanglements as a consequence of drag from fishing gear.

    PubMed

    van der Hoop, Julie M; Corkeron, Peter; Henry, Allison G; Knowlton, Amy R; Moore, Michael J

    2017-02-15

    Large whales are frequently entangled in fishing gear and sometimes swim while carrying gear for days to years. Entangled whales are subject to additional drag forces requiring increased thrust power and energy expenditure over time. To classify entanglement cases and aid potential disentanglement efforts, it is useful to know how long an entangled whale might survive, given the unique configurations of the gear they are towing. This study establishes an approach to predict drag forces on fishing gear that entangles whales, and applies this method to ten North Atlantic right whale cases to estimate the resulting increase in energy expenditure and the critical entanglement duration that could lead to death. Estimated gear drag ranged 11-275N. Most entanglements were resolved before critical entanglement durations (mean±SD 216±260days) were reached. These estimates can assist real-time development of disentanglement action plans and U.S. Federal Serious Injury assessments required for protected species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating.

    PubMed

    Hunsucker, Kelli Z; Vora, Gary J; Hunsucker, J Travis; Gardner, Harrison; Leary, Dagmar H; Kim, Seongwon; Lin, Baochuan; Swain, Geoffrey

    2018-02-01

    Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.

  10. Unsteady translational motion of a slip sphere in a viscous fluid using the fractional Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Ashmawy, E. A.

    2017-03-01

    In this paper, we investigate the translational motion of a slip sphere with time-dependent velocity in an incompressible viscous fluid. The modified Navier-Stokes equation with fractional order time derivative is used. The linear slip boundary condition is applied on the spherical boundary. The integral Laplace transform technique is employed to solve the problem. The solution in the physical domain is obtained analytically by inverting the Laplace transform using the complex inversion formula together with contour integration. An exact formula for the drag force exerted by the fluid on the spherical object is deduced. This formula is applied to some flows, namely damping oscillation, sine oscillation and sudden motion. The numerical results showed that the order of the fractional derivative contributes considerably to the drag force. The increase in this parameter resulted in an increase in the drag force. In addition, the values of the drag force increased with the increase in the slip parameter.

  11. An approach for drag correction based on the local heterogeneity for gas-solid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Wang, Limin; Rogers, William

    2016-09-22

    The drag models typically used for gas-solids interaction are mainly developed based on homogeneous systems of flow passing fixed particle assembly. It has been shown that the heterogeneous structures, i.e., clusters and bubbles in fluidized beds, need to be resolved to account for their effect in the numerical simulations. Since the heterogeneity is essentially captured through the local concentration gradient in the computational cells, this study proposes a simple approach to account for the non-uniformity of solids spatial distribution inside a computational cell and its effect on the interaction between gas and solid phases. Finally, to validate this approach, themore » predicted drag coefficient has been compared to the results from direct numerical simulations. In addition, the need to account for this type of heterogeneity is discussed for a periodic riser flow simulation with highly resolved numerical grids and the impact of the proposed correction for drag is demonstrated.« less

  12. Thickened boundary layer theory for air film drag reduction on a van body surface

    NASA Astrophysics Data System (ADS)

    Xie, Xiaopeng; Cao, Lifeng; Huang, Heng

    2018-05-01

    To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.

  13. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis.

    PubMed

    Flores-Flores, E; Torres-Hurtado, S A; Páez, R; Ruiz, U; Beltrán-Pérez, G; Neale, S L; Ramirez-San-Juan, J C; Ramos-García, R

    2015-10-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters.

  14. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis

    PubMed Central

    Flores-Flores, E.; Torres-Hurtado, S. A.; Páez, R.; Ruiz, U.; Beltrán-Pérez, G.; Neale, S. L.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2015-01-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters. PMID:26504655

  15. Accounting for Laminar Run & Trip Drag in Supersonic Cruise Performance Testing

    NASA Technical Reports Server (NTRS)

    Goodsell, Aga M.; Kennelly, Robert A.

    1999-01-01

    An improved laminar run and trip drag correction methodology for supersonic cruise performance testing was derived. This method required more careful analysis of the flow visualization images which revealed delayed transition particularly on the inboard upper surface, even for the largest trip disks. In addition, a new code was developed to estimate the laminar run correction. Once the data were corrected for laminar run, the correct approach to the analysis of the trip drag became evident. Although the data originally appeared confusing, the corrected data are consistent with previous results. Furthermore, the modified approach, which was described in this presentation, extends prior historical work by taking into account the delayed transition caused by the blunt leading edges.

  16. A catalog of atmospheric densities from the drag on five balloon satellites

    NASA Technical Reports Server (NTRS)

    Jacchia, L. G.; Slowey, J. W.

    1975-01-01

    A catalog of atmospheric densities derived for the drag on five balloon satellites is presented. Much of the catalog was based on precisely reduced Baker-Nunn observations and, for that reason, provides much improved time resolution. The effect of direct solar radiation pressure was precisely evaluated, and that of terrestrial radiation pressure was included in every case. The interval covered for each satellite varies between 3.1 and 7.6 years, with the data extending from early 1961 to early 1973.

  17. Transonic low aspect ratio wing-winglet designs

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Cerney, Michael J.; Liaw, Paul

    1988-01-01

    A numerical design study has been conducted to ascertain the potential of winglets as a drag-reducing measure at high subsonic Mach numbers for low aspect ratio wings. The four variants of the winglet concept studied are a 'detuned' winglet with decreased incidence at the wing-winglet juncture; a steerable winglet; more gradual pressure recovery at the wing and winglet trailing edges; and the application of supercritical airfoil technology. A further study is conducted to assess the accuracy of the numerical code's predicted pressure drag values.

  18. Aerodynamic Drag Scoping Work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskuilen, Tyler; Erickson, Lindsay Crowl; Knaus, Robert C.

    This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined bymore » Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.« less

  19. Flow visualisation of downhill skiers using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Asai, Takeshi; Hong, Sungchan; Ijuin, Koichi

    2017-03-01

    In downhill alpine skiing, skiers often exceed speeds of 120 km h-1, with air resistance substantially affecting the overall race times. To date, studies on air resistance in alpine skiing have used wind tunnels and actual skiers to examine the relationship between the gliding posture and magnitude of drag and for the design of skiing equipment. However, these studies have not revealed the flow velocity distribution and vortex structure around the skier. In the present study, computational fluid dynamics are employed with the lattice Boltzmann method to derive the relationship between total drag and the flow velocity around a downhill skier in the full-tuck position. Furthermore, the flow around the downhill skier is visualised, and its vortex structure is examined. The results show that the total drag force in the downhill skier model is 27.0 N at a flow velocity of 15 m s-1, increasing to 185.8 N at 40 m s-1. From analysis of the drag distribution and the flow profile, the head, upper arms, lower legs, and thighs (including buttocks) are identified as the major sources of drag on a downhill skier. Based on these results, the design of suits and equipment for reducing the drag from each location should be the focus of research and development in ski equipment. This paper describes a pilot study that introduces undergraduate students of physics or engineering into this research field. The results of this study are easy to understand for undergraduate students.

  20. Velocity and Drag Evolution From the Leading Edge of a Model Mangrove Forest

    NASA Astrophysics Data System (ADS)

    Maza, Maria; Adler, Katherine; Ramos, Diogo; Garcia, Adrian Mikhail; Nepf, Heidi

    2017-11-01

    An experimental study of unidirectional flow through a model mangrove forest measured both velocity and forces on individual trees. The individual trees were 1/12th scale models of mature Rhizophora, including 24 prop roots distributed in a three-dimensional layout. Thirty-two model trees were distributed in a staggered array producing a 2.5 m long forest. The velocity evolved from a boundary layer profile at the forest leading edge to a vertical profile determined by the vertical distribution of frontal area, with significantly higher velocity above the prop roots. Fully developed conditions were reached at the fifth tree row from the leading edge. Within the root zone the velocity was reduced by up to 50% and the TKE was increased by as much as fivefold, relative to the upstream conditions. TKE in the root zone was mainly produced by root and trunk wakes, and it agreed in magnitude with the estimation obtained using the Tanino and Nepf (2008) formulation. Maximum TKE occurred at the top of the roots, where a strong shear region was associated with the change in frontal area. The drag measured on individual trees decreased from the leading edge and reached a constant value at the fifth row and beyond, i.e., in the fully developed region. The drag exhibited a quadratic dependence on velocity, which justified the definition of a quadratic drag coefficient. Once the correct drag length-scale was defined, the measured drag coefficients collapsed to a single function of Reynolds number.

  1. Nanomolar concentration of blood-soluble drag-reducing polymer inhibits experimental metastasis of human breast cancer cells

    PubMed Central

    Ding, Zhijie; Joy, Marion; Kameneva, Marina V; Roy, Partha

    2017-01-01

    Metastasis is the leading cause of cancer mortality. Extravasation of cancer cells is a critical step of metastasis. We report a novel proof-of-concept study that investigated whether non-toxic blood-soluble chemical agents capable of rheological modification of the near-vessel-wall blood flow can reduce extravasation of tumor cells and subsequent development of metastasis. Using an experimental metastasis model, we demonstrated that systemic administration of nanomolar concentrations of so-called drag-reducing polymer dramatically impeded extravasation and development of pulmonary metastasis of breast cancer cells in mice. This is the first proof-of-principle study to directly demonstrate physical/rheological, as opposed to chemical, way to prevent cancer cells from extravasation and developing metastasis and, thus, it opens the possibility of a new direction of adjuvant interventional approach in cancer. PMID:28280386

  2. The Triton: Design concepts and methods

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Singer, Michael; Vanryn, Percy; Brown, Rhonda; Tella, Gustavo; Harvey, Bob

    1992-01-01

    During the design of the C & P Aerospace Triton, a few problems were encountered that necessitated changes in the configuration. After the initial concept phase, the aspect ratio was increased from 7 to 7.6 to produce a greater lift to drag ratio (L/D = 13) which satisfied the horsepower requirements (118 hp using the Lycoming O-235 engine). The initial concept had a wing planform area of 134 sq. ft. Detailed wing sizing analysis enlarged the planform area to 150 sq. ft., without changing its layout or location. The most significant changes, however, were made just prior to inboard profile design. The fuselage external diameter was reduced from 54 to 50 inches to reduce drag to meet the desired cruise speed of 120 knots. Also, the nose was extended 6 inches to accommodate landing gear placement. Without the extension, the nosewheel received an unacceptable percentage (25 percent) of the landing weight. The final change in the configuration was made in accordance with the stability and control analysis. In order to reduce the static margin from 20 to 13 percent, the horizontal tail area was reduced from 32.02 to 25.0 sq. ft. The Triton meets all the specifications set forth in the design criteria. If time permitted another iteration of the calculations, two significant changes would be made. The vertical stabilizer area would be reduced to decrease the aircraft lateral stability slope since the current value was too high in relation to the directional stability slope. Also, the aileron size would be decreased to reduce the roll rate below the current 106 deg/second. Doing so would allow greater flap area (increasing CL(sub max)) and thus reduce the overall wing area. C & P would also recalculate the horsepower and drag values to further validate the 120 knot cruising speed.

  3. The Aerodynamic Optimization of Wings at Subsonic Speeds and the Influence of Wingtip Design. Thesis

    NASA Technical Reports Server (NTRS)

    Zimmer, H.

    1987-01-01

    Some of the objectives of modern aircraft development are related to the achievement of reduced fuel consumption and aircraft noise. This investigation is mainly concerned with the aerodynamic aspects of aircraft development, i.e., reduction of induced drag. New studies of wing design, and in particular wing tips, are considered. Induced drag is important since, in cruising flight, it accounts for approximately one-third of the entire drag for the aircraft, and one-half while climbing. A survey is presented for the wing geometries and wing tip designs studied, and theoretical investigations of different planar wings with systematically varied wing tip forms are conducted. Attention is also paid to a theoretical study of some planar and nonplanar wings and their comparison with experimental data.

  4. Riblets for aircraft skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Walsh, Michael J.

    1986-01-01

    Energy conservation and aerodynamic efficiency are the driving forces behind research into methods to reduce turbulent skin friction drag on aircraft fuselages. Fuselage skin friction reductions as small as 10 percent provide the potential for a 250 million dollar per year fuel savings for the commercial airline fleet. One passive drag reduction concept which is relatively simple to implement and retrofit is that of longitudinally grooved surfaces aligned with the stream velocity. These grooves (riblets) have heights and spacings on the order of the turbulent wall streak and burst dimensions. The riblet performance (8 percent net drag reduction thus far), sensitivity to operational/application considerations such as yaw and Reynolds number variation, an alternative fabrication technique, results of extensive parametric experiments for geometrical optimization, and flight test applications are summarized.

  5. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.

  6. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.

    PubMed

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.

  7. Numerical investigation of cylinder wake flow with a rear stagnation jet

    NASA Astrophysics Data System (ADS)

    Mo, J. D.; Duke, M. R., Jr.

    1994-05-01

    Upon visualization of the flow past a cylinder with a rear stagnation jet (RSJ), the flow appears fully attached as conventional inviscid flow does. Therefore, at first glance, it would be suspected that the form drag on the cylinder has been reduced to zero as predicted by inviscid flow theory. However, a detailed numerical simulation reveals that the form drag coefficient increases as the jet velocity increases. The mechanics of the increasing form drag are addressed. The following conclusions were drawn: (1) flow behind a cylinder can be effectively influenced by a RSJ; (2) the unsymmetric wake flow becomes symmetric when the RSI is in operation with a velocity ratio as low as 1; the size of the symmetric recirculation region becomes smaller as the jet speed increases; (3) a RSJ forces a symmetrical wake flow pattern, thus eliminating the lateral force; (4) the pressure on the cylinder surface decreases over the entire surface, but significantly more on the downstream side of the cylinder, as the jet velocity increases, causing an increase in form drag as jet velocity ratio increases; and (5) the RSJ to significantly increase form drag on a bluff body has direct applications in aerodynamic controls of reentry or fligths at high angles of attack.

  8. Study of potential aerodynamic benefits from spanwise blowing at wingtip. Ph.D. Thesis - George Washington Univ., 1992

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1995-01-01

    Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.

  9. Ligase Detection Reaction for the Analysis of Point Mutations using Free Solution Conjugate Electrophoresis in a Polymer Microfluidic Device

    PubMed Central

    Sinville, Rondedrick; Coyne, Jennifer; Meagher, Robert J.; Cheng, Yu-Wei; Barany, Francis; Barron, Annelise; Soper, Steven A.

    2010-01-01

    We have developed a new method for the analysis of low abundant point mutations in genomic DNA using a combination of an allele-specific ligase detection reaction (LDR) with free-solution conjugate electrophoresis (FSCE) to generate and analyze the genetic products. FSCE eliminates the need for a polymer sieving matrix by conjugating chemically synthesized polyamide “drag-tags” onto the LDR primers. The additional drag of the charge-neutral drag-tag breaks the linear scaling of the charge-to-friction ratio of DNA and enables size-based separations of DNA in free solution using electrophoresis with no sieving matrix. We successfully demonstrate the conjugation of polyamide drag-tags onto a set of four LDR primers designed to probe the K-ras oncogene for mutations highly associated with colorectal cancer, the simultaneous generation of fluorescently-labeled LDR/drag-tagged (LDR-dt) products in a multiplexed, single-tube format with mutant:wild-type ratios as low as 1:100, respectively, and the single-base, high-resolution separation of all four LDR-dt products. Separations were conducted in free solution with no polymer network using both a commercial capillary array electrophoresis (CAE) system and a poly(methylmethacrylate), PMMA, microchip replicated via hot-embossing with only a Tris-based running buffer containing additives to suppress the electroosmotic flow (EOF). Typical analysis times for LDR-dt conjugates were 11 min using the CAE system and as low as 85 s for the PMMA microchips. With resolution comparable to traditional gel-based CAE, FSCE along with microchip electrophoresis decreased the separation time by more than a factor of 40. PMID:19053073

  10. Experimental investigation of gravity effects on sediment sorting on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2016-04-01

    Introduction: Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment in water is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is more uniform on Mars than on Earth for runoff of identical depth. In reality, such considerations have to be applied with great caution because the shape of a particle strongly influences drag. Drag itself can only be calculated directly for an irregularly shaped particle with great computational effort, if at all. Therefore, even for terrestrial applications, sediment settling velocities are often determined directly, e.g. by measurements using settling tubes. Experiments: In this study the results of settling tube tests conducted under reduced gravity during three Mars Sedimentation Experiment (MarsSedEx I, II and III) flights, conducted between 2012 and 2015, are presented. Ten types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Results: The experiments conducted during the MarsSedEx reduced gravity experiments showed that the violation of fluid dynamics caused by using empirical models and parameter values developed for sediment transport on Earth lead to significant miscalculations for Mars, specifically an underetsimation of settling velcoity because of an overestimation of turbulant drag. The error is caused by the flawed representation of particle drag on Mars. Drag coefficients are not a property of a sediment particle, but a property of the flow around the particle, and thus strongly affected by gravity. Conlcusions: The observed errors in settling velocity when using terrestrial models and parameter values on Mars have implications for sediment movement and sorting, in particular for sandstones and conglomerates, and thus analogies drawn between Earth and Mars. Most significantly, sorting on Mars is less pronounced for given flow conditions than on Earth. References: [1] Kuhn N. J. (2014) Experiments in Reduced Gravity - Sediment Settling on Mars, Elsevier.

  11. Flow visualization techniques in the Airborne Laser Laboratory program

    NASA Technical Reports Server (NTRS)

    Walterick, R. E.; Vankuren, J. T.

    1980-01-01

    A turret/fairing assembly for laser applications was designed and tested. Wind tunnel testing was conducted using flow visualization techniques. The techniques used have included the methods of tufting, encapsulated liquid crystals, oil flow, sublimation and schlieren and shadowgraph photography. The results were directly applied to the design of fairing shapes for minimum drag and reduced turret buffet. In addition, the results are of primary importance to the study of light propagation paths in the near flow field of the turret cavity. Results indicate that the flow in the vicinity of the turret is an important factor for consideration in the design of suitable turret/fairing or aero-optic assemblies.

  12. The simulation and experimental validation on gas-solid two phase flow in the riser of a dense fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Yao; Jiang, Fan; Xu, Xiang; Wang, Sheng-Dian; Fan, Bao-Guo; Xiao, Yun-Han

    2009-06-01

    Gas-solid flow in dense CFB (circulating fluidized bed)) riser under the operating condition, superficial gas 15.5 m/s and solid flux 140 kg/m2s using Geldart B particles (sand) was investigated by experiments and CFD (computational fluid dynamics) simulation. The overall and local flow characteristics are determined using the axial pressure profiles and solid concentration profiles. The cold experimental results indicate that the axial solid concentration distribution contains a dilute region towards the up-middle zone and a dense region near the bottom and the top exit zones. The typical core-annulus structure and the back-mixing phenomenon near the wall of the riser can be observed. In addition, owing to the key role of the drag force of gas-solid phase, a revised drag force coefficient, based on the EMMS (energy-minimization multi-scale) model which can depict the heterogeneous character of gas-solid two phase flow, was proposed and coupled into the CFD control equations. In order to find an appropriate drag force model for the simulation of dense CFB riser, not only the revised drag force model but some other kinds of drag force model were used in the CFD. The flow structure, solid concentration, clusters phenomenon, fluctuation of two phases and axial pressure drop were analyzed. By comparing the experiment with the simulation, the results predicted by the EMMS drag model showed a better agreement with the experimental axial average pressure drop and apparent solid volume fraction, which proves that the revised drag force based on the EMMS model is an appropriate model for the dense CFB simulation.

  13. Flight trajectory of a rotating golf ball with grooves

    NASA Astrophysics Data System (ADS)

    Baek, Moonheum; Kim, Jooha; Choi, Haecheon

    2014-11-01

    Dimples are known to reduce drag on a sphere by the amount of 50% as compared to a smooth surface. Despite the advantage of reducing drag, dimples deteriorate the putting accuracy owing to their sharp edges. To minimize this putting error but maintain the same flight distance, we have devised a grooved golf ball (called G ball hereafter) for several years. In this study, we modify the shape and pattern of grooves, and investigate the flow characteristics of the G ball by performing wind-tunnel experiments at the Reynolds numbers of 0 . 5 ×105 - 2 . 5 ×105 and the spin ratios (ratio of surface velocity to the free-stream velocity) of 0 - 0.6 that include the real golf-ball velocity and rotational speed. We measure the drag and lift forces on the rotating G ball and compare them with those of a smooth ball and two well-known dimpled balls. The lift-to-drag ratio of the G ball is much higher than that of a smooth ball and is in between those of the two dimpled balls. The trajectories of flying golf balls are computed. The flight distance of G ball is almost the same as that of one dimpled ball but slightly shorter than that of the other dimpled ball. The fluid-dynamic aspects of these differences will be discussed at the talk. Supported by 2011-0028032, 2014M3C1B1033980.

  14. Gliding Swifts Attain Laminar Flow over Rough Wings

    PubMed Central

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089

  15. Relevance of detail in basal topography for basal slipperiness inversions: a case study on Pine Island Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2018-04-01

    Given high-resolution satellite-derived surface elevation and velocity data, ice-sheet models generally estimate mechanical basal boundary conditions using surface-to-bed inversion methods. In this work, we address the sensitivity of results from inversion methods to the accuracy of the bed elevation data on Pine Island Glacier. We show that misfit between observations and model output is reduced when high-resolution bed topography is used in the inverse model. By looking at results with a range of detail included in the bed elevation, we consider the separation of basal drag due to the bed topography (form drag) and that due to inherent bed properties (skin drag). The mean value of basal shear stress is reduced when more detailed topography is included in the model. This suggests that without a fully resolved bed a significant amount of the basal shear stress recovered from inversion methods may be due to the unresolved bed topography. However, the spatial structure of the retrieved fields is robust as the bed accuracy is varied; the fields are instead sensitive to the degree of regularisation applied to the inversion. While the implications for the future temporal evolution of PIG are not quantified here directly, our work raises the possibility that skin drag may be overestimated in the current generation of numerical ice-sheet models of this area. These shortcomings could be overcome by inverting simultaneously for both bed topography and basal slipperiness.

  16. The Effect of Drag and Attachment Site of External Tags on Swimming Eels: Experimental Quantification and Evaluation Tool

    PubMed Central

    Tudorache, Christian; Burgerhout, Erik; Brittijn, Sebastiaan; van den Thillart, Guido

    2014-01-01

    Telemetry studies on aquatic animals often use external tags to monitor migration patterns and help to inform conservation effort. However, external tags are known to impair swimming energetics dramatically in a variety of species, including the endangered European eel. Due to their high swimming efficiency, anguilliform swimmers are very susceptibility for added drag. Using an integration of swimming physiology, behaviour and kinematics, we investigated the effect of additional drag and site of externally attached tags on swimming mode and costs. The results show a significant effect of a) attachment site and b) drag on multiple energetic parameters, such as Cost Of Transport (COT), critical swimming speed (Ucrit) and optimal swimming speed (Uopt), possibly due to changes in swimming kinematics. Attachment at 0.125 bl from the tip of the snout is a better choice than at the Centre Of Mass (0.35 bl), as it is the case in current telemetry studies. Quantification of added drag effect on COT and Ucrit show a (limited) correlation, suggesting that the Ucrit test can be used for evaluating external tags for telemetry studies until a certain threshold value. Uopt is not affected by added drag, validating previous findings of telemetry studies. The integrative methodology and the evaluation tool presented here can be used for the design of new studies using external telemetry tags, and the (re-) evaluation of relevant studies on anguilliform swimmers. PMID:25409179

  17. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  18. The effect of drag and attachment site of external tags on swimming eels: experimental quantification and evaluation tool.

    PubMed

    Tudorache, Christian; Burgerhout, Erik; Brittijn, Sebastiaan; van den Thillart, Guido

    2014-01-01

    Telemetry studies on aquatic animals often use external tags to monitor migration patterns and help to inform conservation effort. However, external tags are known to impair swimming energetics dramatically in a variety of species, including the endangered European eel. Due to their high swimming efficiency, anguilliform swimmers are very susceptibility for added drag. Using an integration of swimming physiology, behaviour and kinematics, we investigated the effect of additional drag and site of externally attached tags on swimming mode and costs. The results show a significant effect of a) attachment site and b) drag on multiple energetic parameters, such as Cost Of Transport (COT), critical swimming speed (Ucrit) and optimal swimming speed (Uopt), possibly due to changes in swimming kinematics. Attachment at 0.125 bl from the tip of the snout is a better choice than at the Centre Of Mass (0.35 bl), as it is the case in current telemetry studies. Quantification of added drag effect on COT and Ucrit show a (limited) correlation, suggesting that the Ucrit test can be used for evaluating external tags for telemetry studies until a certain threshold value. Uopt is not affected by added drag, validating previous findings of telemetry studies. The integrative methodology and the evaluation tool presented here can be used for the design of new studies using external telemetry tags, and the (re-) evaluation of relevant studies on anguilliform swimmers.

  19. Full-scale Wind-tunnel Research on Tail Buffeting and Wing-fuselage Interference of a Low-wing Monoplane

    NASA Technical Reports Server (NTRS)

    Hood, Manley J; White, James A

    1933-01-01

    Some preliminary results of full scale wind tunnel testing to determine the best means of reducing the tail buffeting and wing-fuselage interference of a low-wing monoplane are given. Data indicating the effects of an engine cowling, fillets, auxiliary airfoils of short span, reflexes trailing edge, propeller slipstream, and various combinations of these features are included. The best all-round results were obtained by the use of fillets together with the National Advisory Committee for Aeronautics (NACA) cowling. This combination reduced the tail buffeting oscillations to one-fourth of their original amplitudes, increased the maximum lift 11 percent, decreased the minimum drag 9 percent, and increased the maximum ratio of lift to drag 19 percent.

  20. Reducing the pressure drag of a D-shaped bluff body using linear feedback control

    NASA Astrophysics Data System (ADS)

    Dalla Longa, L.; Morgans, A. S.; Dahan, J. A.

    2017-12-01

    The pressure drag of blunt bluff bodies is highly relevant in many practical applications, including to the aerodynamic drag of road vehicles. This paper presents theory revealing that a mean drag reduction can be achieved by manipulating wake flow fluctuations. A linear feedback control strategy then exploits this idea, targeting attenuation of the spatially integrated base (back face) pressure fluctuations. Large-eddy simulations of the flow over a D-shaped blunt bluff body are used as a test-bed for this control strategy. The flow response to synthetic jet actuation is characterised using system identification, and controller design is via shaping of the frequency response to achieve fluctuation attenuation. The designed controller successfully attenuates integrated base pressure fluctuations, increasing the time-averaged pressure on the body base by 38%. The effect on the flow field is to push the roll-up of vortices further downstream and increase the extent of the recirculation bubble. This control approach uses only body-mounted sensing/actuation and input-output model identification, meaning that it could be applied experimentally.

  1. A new method to calculate unsteady particle kinematics and drag coefficient in a subsonic post-shock flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.

    In this paper, we introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (>>1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficientmore » for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. Finally, we apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.« less

  2. A new method to calculate unsteady particle kinematics and drag coefficient in a subsonic post-shock flow

    DOE PAGES

    Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.; ...

    2018-04-26

    In this paper, we introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (>>1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficientmore » for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. Finally, we apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.« less

  3. The mechanism of the polymer-induced drag reduction in blood.

    PubMed

    Pribush, Alexander; Hatzkelzon, Lev; Meyerstein, Dan; Meyerstein, Naomi

    2013-03-01

    Literature reports provide evidence that nanomolar concentrations of spaghetti-like, high molecular weight polymers decrease the hydrodynamic resistance of blood thereby improving impaired blood circulation. It has been suggested that the polymer-induced drag reduction is caused by the corralling of red blood cells (RBCs) among extended macromolecules aligned in the flow direction. This mechanism predicts that drag-reducing polymers must affect the conductivity of completely dispersed blood, time-dependent and steady state structural organization of aggregated RBCs at rest. However, experimental results obtained at the concentration of poly(ethylene oxide) (PEO, MW=4 × 10(6)) of 35 ppm show that neither the conductivity of completely dispersed blood, nor the kinetics of RBC aggregation occurring after the stoppage of flow, nor the structural organization of aggregated RBCs in the quiescent blood are affected by PEO. As these results are at odds with the "corralling" hypothesis, it is assumed that the effect of these polymers on the drag is associated with their interactions with local irregularities of disturbed laminar blood flow. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Blended Wing Body (BWB) Boundary Layer Ingestion (BLI) Inlet Configuration and System Studies

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T.; Friedman, Douglas M.; Serrano, Leonel

    2006-01-01

    A study was conducted to determine the potential reduction in fuel burned for BLI (boundary layer ingestion) inlets on a BWB (blended wing body) airplane employing AFC (active flow control). The BWB is a revolutionary type airplane configuration with engines on the aft upper surface where thick boundary layer offers the greatest opportunity for ram drag reduction. AFC is an emerging technology for boundary layer control. Several BLI inlet configurations were analyzed in the NASA-developed RANS Overflow CFD code. The study determined that, while large reductions in ram drag result from BLI, lower inlet pressure recovery produces engine performance penalties that largely offset this ram drag reduction. AFC could, however, enable a short BLI inlet that allows surface mounting of the engine which, when coupled with a short diffuser, would significantly reduce drag and weight for a potential 10% reduction in fuel burned. Continuing studies are therefore recommended to achieve this reduction in fuel burned considering the use of more modest amounts of BLI coupled with both AFC and PFC (Passive Flow Control) to produce a fail-operational system.

  5. Passive damping in EDS maglev systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D. M.

    2002-05-03

    There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped.more » Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.« less

  6. The Drag Penalty of Lateral Asymmetries in Formation Flight

    NASA Astrophysics Data System (ADS)

    Weihs, Daniel; Gabbay, Karen

    2006-11-01

    It has long been known that formation flight of birds and aircraft results in a significant energy saving due to reduction in induced drag. However measured gains have consistently been lower, usually explained by viscous effects neglected by the potential flow model for lift and induced drag. We show that the inherent asymmetry of the flow-field in the general case results in rolling and yawing moments, which need to be corrected by control surface reflection. This deflection results in an increase in drag, which partially cancels the gains mentioned above. Using classical lifting line theory and elliptical lift distributions on two or more wings flying in formation we show that the penalty incurred by these corrections can reduce the expected gains by up to 25%. We also show that the gains for an individual in formation flight grow with the number of members of the formation, up to about 7 members, the added gains becoming negligible beyond that number. The present results are relevant for large aspect-ratio, fixed wing aircraft, and gliding bird flocks.

  7. Coordination of multiple appendages in drag-based swimming.

    PubMed

    Alben, Silas; Spears, Kevin; Garth, Stephen; Murphy, David; Yen, Jeannette

    2010-11-06

    Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor kinematics for tethered and freely swimming krill in experiments, and find kinematics that are very nearly metachronal. We then formulate a drag coefficient model which compares metachronal, synchronous and intermediate motions for a freely swimming body with two legs. With fixed leg velocity amplitude, metachronal kinematics give the highest average body speed for both linear and quadratic drag laws. The same result holds for five legs with the quadratic drag law. When metachronal kinematics is perturbed towards synchronous kinematics, an analysis shows that the velocity increase on the power stroke is outweighed by the velocity decrease on the recovery stroke. With fixed time-averaged work done by the legs, metachronal kinematics again gives the highest average body speed, although the advantage over synchronous kinematics is reduced.

  8. Evaluation of a long-endurance-surveillance remotely-piloted vehicle with and without laminar flow control

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.; Lovell, W. A.; Price, J. E.; Quartero, C. B.; Washburn, S. F.

    1979-01-01

    Two aircraft were evaluated, using a derated TF34-GE-100 turbofan engine one with laminar flow control (LFC) and one without. The mission of the remotely piloted vehicles (RPV) is one of high-altitude loiter at maximum endurance. With the LFC system maximum mission time increased by 6.7 percent, L/D in the loiter phase improved 14.2 percent, and the minimum parasite drag of the wing was reduced by 65 percent resulting in a 37 percent reduction for the total airplane. Except for the minimum parasite drag of the wing, the preceding benefits include the offsetting effects of weight increase, suction power requirements, and drag of the wing-mounted suction pods. In a supplementary study using a scaled-down, rather than derated, version of the engine, on the LFC configuration, a 17.6 percent increase in mission time over the airplane without LFC and an incremental time increase of 10.2 percent over the LFC airplane with derated engine were attained. This improvement was due principally to reductions in both weight and drag of the scaled engine.

  9. Temporal and spatial intermittencies within Newtonian turbulence

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anubhav; Graham, Michael

    2015-11-01

    Direct numerical simulations of a pressure driven turbulent flow are performed in a large rectangular channel. Intermittent high- and low-drag regimes within turbulence that have earlier been found to exist temporally in minimal channels have been observed both spatially and temporally in full-size turbulent flows. These intermittent regimes, namely, ''active'' and ''hibernating'' turbulence, display very different structural and statistical features. We adopt a very simple sampling technique to identify these intermittent intervals, both temporally and spatially, and present differences between them in terms of simple quantities like mean-velocity, wall-shear stress and flow structures. By conditionally sampling of the low wall-shear stress events in particular, we show that the Maximum Drag Reduction (MDR) velocity profile, that occurs in viscoelastic flows, can also be approached in a Newtonian-fluid flow in the absence of any additives. This suggests that the properties of polymer drag reduction are inherent to all flows and their occurrence is just enhanced by the addition of polymers. We also show how the intermittencies within turbulence vary with Reynolds number. The work was supported by AFOSR grant FA9550-15-1-0062.

  10. Wind-Tunnel Investigation of the Effects on the Aerodynamic Characteristics of Modifications to a Model of a Bomb Mounted on a Wing-Fuselage Model and to a Model of the Bomb Alone

    NASA Technical Reports Server (NTRS)

    King, Thomas J., Jr.

    1954-01-01

    An investigation was conducted in the Langley high-speed 7- by 10-foot tunnel to determine effects of modifications to a bomb model (particularly with regard to drag) when mounted on a wing-fuselage model and tested at Mach numbers from 0.70 to 1.10. In addition, the static longitudinal stability characteristics of several configurations of a larger scale model of the bomb alone were obtained over a Mach number range from 0.50 to 0.95. The results obtained for the wing-fuselage-bomb model indicate that large reductions in installation drag were obtained for the wing-fuselage-bomb model when the flat nose of the basic bomb was replaced by rounded or pointed noses of various calibers. Shortening the mounting pylon gave further decreases in the installation drag. The tests of the bomb alone indicated that only the flat-nose configurations were stable over the greater part of the Mach number range. Nose-shape modifications which improved the drag also caused the bombs to become unstable at low angles of attack. The stability of the low-drag bomb configurations could be improved by lengthening the cylindrical portion of the body behind the center of gravity.

  11. Drag effects and vortex states in binary superfluids in optical lattices

    NASA Astrophysics Data System (ADS)

    Meyerovich, Alexander; Kuklov, Anatoly

    2005-03-01

    Drag effects in two-condensate superfluids (A and B) in optical lattices are explored in strongly interacting limit. Mutual drag changes circulation quanta of vortices depending on the component concentration and interaction. This is a lattice analog of ^3He-HeII mixtures, in which the drag, proportional to the difference between bare and effective masses of quasiparticles, causes pressure-driven transitions in vortex charges [1]. The vortex binding in the hard-core boson limit relies, in contrast to the soft-core case studied in Monte Carlo simulations [2], on the vacancy-assisted tunneling. The model lattice for study of such effects is introduced. The variational and Monte Carlo calculations for the system, in which the tunneling for component A depends on the concentration of B, show the possibility of formation of the quasi-molecular condensate ABm in addition to the condensates of A and B. A strong drag, leading to the composite vortices with multiple quanta, also becomes possible. The work is supported by NSF grants DMR-0077266 and ITR-405460001 and PSC-CUNY- 665560035. 1. A. E. Meyerovich, Phys. Rev. A 68, 05162 (2003); Sov. Phys.-JETP 60, 41 (1984) 2. A. Kuklov, N. Prokof'ev, and B. Svistunov, Phys. Rev. Lett. 92, 030403 (2004)

  12. Turbulence scalings in pipe flows exhibiting polymer-induced drag reduction

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Markides, Christos

    2014-11-01

    Non-intrusive laser based diagnostics technique, namely Particle Image Velocimetry, was used to in detail characterise polymer induced drag reduction in a turbulent pipe flow. The effect of polymer additives was investigated in a pneumatically-driven flow facility featuring a horizontal pipe test section of inner diameter 25.3 mm and length 8 m. Three high molecular weight polymers (2, 4 and 8 MDa) at concentrations of 5 - 250 wppm were used at Reynolds numbers from 35000 to 210000. The PIV derived results show that the level of drag reduction scales with different normalised turbulence parameters, e.g. streamwise and spanwise velocity fluctuations, vorticity or Reynolds stresses. These scalings are dependent of the distance from the wall, however, are independent of the Reynolds numbers range investigated.

  13. Features of the Drag-Free-Simulator demonstrated for the Microscope-mission

    NASA Astrophysics Data System (ADS)

    List, Meike; Bremer, Stefanie; Dittus, Hansjoerg; Selig, Hanns

    The ZARM Drag-Free-Simulator is being developed as a tool for comprehensive mission modeling. Environmental disturbances like solar radiation pressure, atmospheric drag, interactions between the satellite and the Earth's magnetic field can be taken into account via several models. Besides the gravitational field of the Earth, the influence of Sun, Moon and the planets including Pluto can be considered for aimed simulations, too. Methods of modeling and implementation will be presented. At the moment, effort is made to adapt this simulation tool for the french mission MICRO- SCOPE which is designed for testing the equivalence principle up to an accuracy of η=10-15 . Additionally, detailed modeling of on-board capacitive sensors is necessary for a better understanding of the real system. The actual status of mission modeling will be reported.

  14. Space Shuttle Orbital Drag Parachute Design

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E.

    2001-01-01

    The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.

  15. Effects of deflected thrust on the longitudinal aerodynamic characteristics of a close-coupled wing-canard configuration. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Paulson, J. W., Jr.

    1977-01-01

    The effects of power on the longitudinal aerodynamic characteristics of a close-coupled wing-canard fighter configuration with partial-span rectangular nozzles at the trailing edge of the wing were investigated. Data were obtained on a basic wing-strake configuration for nozzle and flap deflections from 0 deg to 30 deg and for nominal thrust coefficients from 0 to 0.30. The model was tested over an angle-of-attack range from -2 deg to 40 deg at Mach numbers of 0.15 and 0.18. Results show substantial improvements in lift-curve slope, in maximum lift, and in drag-due-to-lift efficiency when the canard and strakes have been added to the basic wing-fuselage (wing-alone) configuration. Addition of power increased both lift-curve slope and maximum lift, improved longitudinal stability, and reduced drag due to lift on both the wing-canard and wing-canard-strake configurations. These beneficial effects are primarily derived from boundary-layer control due to moderate thrust coefficients which delay flow separation on the nozzle and inboard portion of the wing flaps.

  16. Direct numerical simulation of turbulence in a bent pipe

    NASA Astrophysics Data System (ADS)

    Schlatter, Philipp; Noorani, Azad

    2013-11-01

    A series of direct numerical simulations of turbulent flow in a bent pipe is presented. The setup employs periodic (cyclic) boundary conditions in the axial direction, leading to a nominally infinitely long pipe. The discretisation is based on the high-order spectral element method, using the code Nek5000. Four different curvatures, defined as the ratio between pipe radius and coil radius, are considered: κ = 0 (straight), 0.01 (mild curvature), 0.1 and 0.3 (strong curvature), at bulk Reynolds numbers of up to 11700 (corresponding to Reτ = 360 in the straight pipe case). The result show the turbulence-reducing effect of the curvature (similar to rotation), leading close to relaminarisation in the inner side; the outer side, however, remains fully turbulent. Prpoer orthogonal decomposition (POD) is used to extract the dominant modes, in an effort to explain low-frequency switching of sides inside the pipe. A number of additional interesting features are explored, which include sub-straight and sub-laminar drag for specific choices of curvature and Reynolds number: In particular the case with sub-laminar drag is investigated further, and our analysis shows the existence of a spanwise wave in the bent pipe, which in fact leads to lower overall pressure drop.

  17. Propulsion integration for military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1989-01-01

    The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.

  18. Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Peng, Yuming

    2012-01-01

    In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.

  19. Status of ERA Airframe Technology Demonstrators

    NASA Technical Reports Server (NTRS)

    Davis, Pamela; Jegley, Dawn; Rigney, Tom

    2015-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. The Airframe Technology subproject contains two elements. Under the Damage Arresting Composite Demonstration an advanced material system is being explored which will lead to lighter airframes that are more structural efficient than the composites used in aircraft today. Under the Adaptive Compliant Trailing Edge Flight Experiment a new concept of a flexible wing trailing edge is being evaluated which will reduce weight and improve aerodynamic performance. This presentation will describe the development these two airframe technologies.

  20. Simultaneous drag and flow measurements of Olympic skeleton athletes

    NASA Astrophysics Data System (ADS)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

Top