Meinhardt, J P; Ashton, B A; Annich, G M; Quintel, M; Hirschl, R B
2003-05-30
To evaluate the influence of pump system and flow pattern on expiratory airway collapse (EAC) in total perfluorocarbon ventilation. - Prospective, controlled, randomized animal trial for determination of (1) post-mortem changes by repeated expiration procedures (EP) with a constant flow piston pump (PP) before and after sacrifice (n = 8 rabbits), (2) differences between pump systems by subjecting animals to both PP and roller pump (RP) circuits for expiration (n = 16 rabbits). EP were performed using a servo-controlled shut-off at airway pressures < 25 cm H subset 2O randomly with either pump at different flows. - Expired volumes before and after sacrifice were not significantly different. PP and RP revealed identical mean flows, while significantly more liquid was drained using PP (p<0.05). Increasing differences towards higher flow rates indicated profound flow pulsatility in RP. - (1) post-mortem changes in expired volumes are not significant, (2) EAC is related to flow rate and pump system; (3) relationship between expiratory flow rate and drainable liquid volume is linear inverse; (4) PP provides higher drainage than RP. - Expiratory airway collapse is related to flow rate and pump system, post mortem changes in expirable volumes are not significant. Relationship between expiratory flow rate and drainable liquid volume is linear inverse, piston pump expiration provides higher drainage volumes than roller pump expiration.
NASA Astrophysics Data System (ADS)
Acharya, S.; Mylavarapu, R.; Jawitz, J. W.
2012-12-01
In shallow unconfined aquifers, the water table usually shows a distinct diurnal fluctuation pattern corresponding to the twenty-four hour solar radiation cycle. This diurnal water table fluctuation (DWTF) signal can be used to estimate the groundwater evapotranspiration (ETg) by vegetation, a method known as the White [1932] method. Water table fluctuations in shallow phreatic aquifers is controlled by two distinct storage parameters, drainable porosity (or specific yield) and the fillable porosity. Yet, it is implicitly assumed in most studies that these two parameters are equal, unless hysteresis effect is considered. The White based method available in the literature is also based on a single drainable porosity parameter to estimate the ETg. In this study, we present a modification of the White based method to estimate ETg from DWTF using separate drainable (λd) and fillable porosity (λf) parameters. Separate analytical expressions based on successive steady state moisture profiles are used to estimate λd and λf, instead of the commonly employed hydrostatic moisture profile approach. The modified method is then applied to estimate ETg using the DWTF data observed in a field in northeast Florida and the results are compared with ET estimations from the standard Penman-Monteith equation. It is found that the modified method resulted in significantly better estimates of ETg than the previously available method that used only a single, hydrostatic-moisture-profile based λd. Furthermore, the modified method is also used to estimate ETg even during rainfall events which produced significantly better estimates of ETg as compared to the single λd parameter method.
Improved method and composition for immobilization of waste in cement-based material
Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.
1987-10-01
A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.
Evolution of clog formation with time in columns permeated with synthetic landfill leachate
NASA Astrophysics Data System (ADS)
VanGulck, Jamie F.; Rowe, R. Kerry
2004-11-01
Laboratory column tests conducted to gain insight regarding the biological and chemical clogging mechanisms in a porous medium are presented. To seed the porous medium with landfill bacteria, a mixture of Keele Valley Landfill and synthetic leachate permeated through the column under anaerobic conditions for the first 9 days of operation. After this, 100% synthetic leachate was used. The synthetic leachate approximated Keele Valley Landfill leachate in chemical composition but contained negligible suspended solids and bacteria compared with real leachate. The removal of volatile fatty acids (VFAs), primarily acetate, in leachate as it passed through the medium was highly correlated with the precipitation of calcium carbonate (CaCO 3(s)) from solution. The columns experienced a decrease in drainable porosity from an initial value of about 0.38 to less than 0.1 after steady state chemical oxygen demand (COD) removal, resulting in a five-order magnitude decrease in hydraulic conductivity. The decrease in drainable porosity prior to steady state COD removal was primarily due to the growth of a biofilm on the medium surface. After steady state COD removal, calcium precipitation was at least equally responsible for the decrease in drainable porosity as biofilm growth. Clog composition analyses showed that CaCO 3(s) was the dominant clog constituent and that 99% of the carbonate in the clog material was bound to calcium.
Changes in water levels and storage in the High Plains Aquifer, predevelopment to 2009
McGuire, V.L.
2011-01-01
The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the onset of substantial irrigation with groundwater from the aquifer (about 1950 and termed "predevelopment" in this fact sheet). By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (ft) (Luckey and others, 1981). In 1987, in response to declining water levels, Congress directed the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources entities, to assess and track water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment to 2009. Drainable water in storage is the fraction of water in the aquifer that will drain by gravity and can be withdrawn by wells. The remaining water in the aquifer is held to the aquifer material by capillary forces and generally cannot be withdrawn by wells. Drainable water in storage is termed "water in storage" in this report. A companion USGS report presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2011).
14 CFR 27.971 - Fuel tank sump.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must have a drainable sump with an effective capacity in any ground attitude to be expected in service... that in any ground attitude to be expected in service, water will drain from all parts of the tank to...
Effect of drainage in unbound aggregate bases on flexible pavement performance.
DOT National Transportation Integrated Search
2009-03-01
The main objective of this study is to optimize the gradation of Mexican limestone aggregate for use as an unbound drainable base material that has adequate permeability while staying structurally stable during the construction time and the pavement...
Incremental Costs and Performance Benefits of Various Features of Concrete Pavements
DOT National Transportation Integrated Search
2004-04-01
Various design features (such as dowel bars, tied shoulders, or drainable bases) may be added to a portland cement concrete (PCC) pavement design to improve its overall performance by maintaining a higher level of serviceability or by extending its s...
Permeability and stability of base and subbase materials : appendices A-Q, August 2000.
DOT National Transportation Integrated Search
2000-08-01
This study determined the hydraulic conductivities, effective porosities and resilient moduli of several current and proposed drainable base materials. The materials studied were AASHTO No. 57, AASHTO No. 67, ODOT No. 304, ODOT No. 310, Iowa DOT No. ...
Permeability and stability of base and subbase materials : final report, August 2000.
DOT National Transportation Integrated Search
2000-08-01
This study determined the hydraulic conductivities, effective porosities and resilient moduli of several current and proposed drainable base materials. The materials studied were AASHTO No. 57, AASHTO No. 67, ODOT No. 304, ODOT No. 310, Iowa DOT No. ...
Permeability and stability of base and subbase materials : executive summary, August 2000.
DOT National Transportation Integrated Search
2000-08-01
This study determined the hydraulic conductivities, effective porosities and resilient moduli of several current and proposed drainable base materials. The materials studied were AASHTO No. 57, AASHTO No. 67, ODOT No. 304, ODOT No. 310, Iowa DOT No. ...
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2007-04-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2006-11-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (drops and ice particles) as well as interstitial aerosol particles; an interstitial inlet which collected only interstitial (unactivated) aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the cloud phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~10% in mixed-phase clouds with IMF>0.2. This is explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
Effects of Land Use of the Hydrology of Drained Coastal Plain Watersheds
R. Wayne Skaggs; George M Chescheir; Glen P. Fernandez; Devendra M. Amatya
2004-01-01
Some of the world's most productive cropland requires artificial or improved drainage for efficient agricultural production. Soil hydraulic properties, such as hydraulicconductivity and drainable porosity, are conventionally used in design of drainage systems. While it is recognized that these soil properties vary over a relatively wide range within a given soil...
Determination of field-effective soil properties in the tidewater region of North Carolina
J. McFero Grace; R.W. Skaggs
2013-01-01
Soils vary spatially in texture, structure, depth of horizons, and macropores, which can lead to a large variation in soil physical properties. In particular, saturated hydraulic conductivity (Ksat) and drainable porosity are critical properties required to model field hydrology in poorly drained lands. These soil-property values can be measured...
Simulation of Layered Magma Chambers.
ERIC Educational Resources Information Center
Cawthorn, Richard Grant
1991-01-01
The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…
Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology
NASA Astrophysics Data System (ADS)
Weiler, Markus; McDonnell, Jeff
2004-01-01
We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions.
Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.
Williams, G R; Doran, P M
2000-01-01
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems.
NASA Astrophysics Data System (ADS)
Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.
2018-04-01
Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.
NASA Technical Reports Server (NTRS)
Vanstone, R. H.; Shannon, J. L., Jr.; Pierce, W. S.; Low, J. R., Jr.
1977-01-01
The plane strain fracture toughness K sub Ic and conventional tensile properties of two commercially produced one-inch thick Ti-5Al-2.5Sn plates were determined at cryogenic temperatures. One plate was extra-low interstitial (ELI) grade, the other normal interstitial. Portions of each plate were mill annealed at 1088 K (1500 F) followed by either air cooling or furnace cooling. The tensile properties, flow curves, and K sub Ic of these plates were determined at 295 K (room temperature), 77 K (liquid nitrogen temperature), and 20 K (liquid hydrogen temperature).
Interstitial space and collagen alterations of the developing rat diaphragm
NASA Technical Reports Server (NTRS)
Gosselin, L. E.; Martinez, D. A.; Vailas, A. C.; Sieck, G. C.
1993-01-01
The effect of growth on the relative interstitial space [%total cross-sectional area (CSA)] and collagen content of the rat diaphragm muscle was examined at postnatal ages of 0, 7, 14, and 21 days as well as in adult males. The proportion of interstitial space relative to total muscle CSA was determined by computerized image analysis of lectin-stained cross sections of diaphragm muscle. To assess collagen content and extent of collagen maturation (i.e., cross-linking), high-pressure liquid chromatography analysis was used to measure hydroxyproline concentration and the nonreducible collagen cross-link hydroxylysylpyridinoline (HP), respectively. At birth, interstitial space accounted for approximately 47% of total diaphragm muscle CSA. During postnatal growth, the relative contribution of interstitial space decreased such that by adulthood the interstitial space accounted for approximately 18% of total muscle CSA. The change in relative interstitial space occurred without a concomitant change in hydroxyproline concentration. However, the concentration of HP markedly increased with age such that the adult diaphragm contained approximately 17 times more HP than at birth. These results indicate that during development the relative CSA occupied by interstitial space decreases as muscle fiber size increases. However, the reduction in relative interstitial space is not associated with a change in collagen concentration. Thus collagen density in the interstitial space may increase with age. It is possible that the observed changes in relative interstitial space and collagen influence the passive length-force properties of the diaphragm.
SYNTHESIS REPORT ON FIVE DENSE, NONAQUEOUS-PHASE LIQUID (DNAPL) REMEDIATION PROJECTS
Dense non-aqueous phase liquid (DNAPL) poses a difficult problem for subsurface remediation because it serves as a continuing source to dissolved phase ground water contamination and is difficult to remove from interstitial pore space or bedrock fractures in the subsurface. Numer...
DOT National Transportation Integrated Search
2003-11-01
The objectives of this research are to determine the effect of unbound drainable base types on the performance of PCCP and the efficiency of fiber-reinforced polymer (FRP) dowels, compared to epoxy coated steel dowels, when retrofitted to re-establis...
Aerosol partitioning in natural mixed-phase clouds
NASA Astrophysics Data System (ADS)
Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.
2004-03-01
In situ aerosol and cloud drop microphysical measurements at a high-alpine site are used to investigate aerosol partitioning between cloud and interstitial phases in natural, mid-latitude, mixed-phase clouds. Measurements indicate a decrease in the activated aerosol fraction (FN) for particle diameters dP > 100 nm with cloud temperature from FN ~ 0.54 in summer liquid-phase clouds to FN ~ 0.08 in winter mixed-phase clouds. The latter may be attributed to the Bergeron-Findeisen mechanism whereby ice crystals grow at the expense of liquid water drops, releasing formerly activated aerosols back into the interstitial phase. This provides a means to distinguish the indirect effects of aerosols on drops and ice crystals.
Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Verheggen, Bart; Cozic, Julie; Weingartner, Ernest; Bower, Keith; Mertes, Stephan; Connolly, Paul; Gallagher, Martin; Flynn, Michael; Choularton, Tom; Baltensperger, Urs
2007-12-01
The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE-3, CLACE-3? and CLACE-4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, FN, defined as the fraction of the total aerosol number concentration (with particle diameter dp > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed-phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in-cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to -25°C. The Wegener-Bergeron-Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.
Jiménez, L; Angulo, V; Caparrós, S; Ariza, J
2007-12-01
The influence of operational variables in the pulping of vine shoots by use of ethanolamine [viz. temperature (155-185 degrees C), cooking time (30-90min) and ethanolamine concentration (50-70% v/v)] on the properties of the resulting pulp (viz. yield, kappa index, viscosity and drainability) was studied. A central composite factorial design was used in conjunction with the software BMDP and ANFIS Edit Matlab 6.5 to develop polynomial and fuzzy neural models that reproduced the experimental results of the dependent variables with errors less than 10%. Both types of models are therefore effective with a view to simulating the ethanolamine pulping process. Based on the proposed equations, the best choice is to use values of the operational valuables resulting in near-optimal pulp properties while saving energy and immobilized capital on industrial facilities by using lower temperatures and shorter processing times. One combination leading to near-optimal properties with reduced costs is using a temperature of 180 degrees C and an ethanolamine concentration of 60% for 60min, to obtain pulp with a viscosity of 6.13% lower than the maximum value (932.8ml/g) and a drainability of 5.49% lower than the maximum value (71 (o)SR).
Onsurathum, Sudarat; Haonon, Ornuma; Pinlaor, Porntip; Pairojkul, Chawalit; Khuntikeo, Narong; Thanan, Raynoo; Roytrakul, Sittiruk; Pinlaor, Somchai
2018-04-01
Tumor interstitial fluid contains tumor-specific proteins that may be useful biomarkers for cancers. In this study, we identified proteins present in cholangiocarcinoma interstitial fluid. Proteins derived from three samples of tumor interstitial fluid and paired samples of adjacent normal interstitial fluid from cholangiocarcinoma patients were subjected to two-dimensional liquid chromatography with tandem mass spectrometry. Candidate proteins were selected based on a greater than twofold change in expression levels between tumor interstitial fluid and normal interstitial fluid. Upregulation of six proteins in tumor interstitial fluid, including S100 calcium binding protein A6 (S100A6), S100 calcium binding protein A9, aldo-keto reductase family 1 member C4, neuropilin-1, 14-3-3 zeta/delta, and triosephosphate isomerase was assessed by western blot and immunohistochemistry. Their potential as markers was evaluated in human cholangiocarcinoma tissue arrays, and in serum using enzyme-linked immunosorbent assay. Expression of S100A6 was higher in tumor interstitial fluid than in normal interstitial fluid and showed the highest positive rate (98.96%) in cholangiocarcinoma tissues. Serum levels of S100A6 did not differ between cholangitis and cholangiocarcinoma patients, but were significantly higher than in healthy individuals ( p < 0.0001). In cholangiocarcinoma cases, S100A6 level was associated with vascular invasion ( p = 0.007) and could distinguish cholangiocarcinoma patients from healthy individuals as effectively as the carbohydrate antigen 19-9. In addition, potential for drug treatment targeting S100A6 and other candidate proteins was also demonstrated using STITCH analysis. In conclusion, proteomics analysis of tumor interstitial fluid could be a new approach for biomarker discovery, and S100A6 is a potential risk marker for screening of cholangiocarcinoma.
NASA Astrophysics Data System (ADS)
Martin, E.; Sigmarsson, O.
2007-11-01
Segregation veins are common in lava sheets and result from internal differentiation during lava emplacement and degassing. They consist of evolved liquid, most likely replaced by gas-filter pressing from a ˜50% crystallised host lava. Pairs of samples, host lavas and associated segregation veins from the Reykjanes Peninsula (Iceland), Lanzarote (Canary Islands) and the Masaya volcano (Nicaragua) show extreme mineralogical and compositional variations (MgO in host lava, segregation veins and interstitial glass ranges from 8-10 wt%, 3-6 wt%, and to less than 0.01 wt%, respectively). These samples allow the assessment of the internal lava flow differentiation mechanism, since both the parental and derived liquid are known in addition to the last magma drops in the form of late interstitial glasses. The mineralogical variation, mass-balance calculated from major- and trace element composition, and transitional metal partition between crystals and melts are all consistent with fractional crystallisation as the dominant differentiation mechanism. The interstitial glasses are highly silicic (SiO2 = 70-80 wt%) and represent a final product of high-degree (75-97%) fractional crystallisation of olivine tholeiite at a pressure close to one atmosphere. The tholeiitic liquid-line-of-decent and the composition of the residual melts are governed by the K2O/Na2O of the initial basaltic magma. The granitic minimum is reached if the initial liquid has a high K2O/Na2O whereas trondhjemitic composition is the final product of magma with low initial K2O/Na2O.
Klunder, Edgar B [Bethel Park, PA
2011-08-09
The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.
Method for making surfactant-templated thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You
2010-08-31
An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
Method for making surfactant-templated thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou
2002-01-01
An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
Method for making surfactant-templated, high-porosity thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou
2001-01-01
An evaporation-induced self-assembly method to prepare a surfactant-templated thin film by mixing a silica sol, a surfactant, and a hydrophobic polymer and then evaporating a portion of the solvent during coating onto a substrate and then heating to form a liquid-phase, thin film material with a porosity greater than approximately 50 percent. The high porosity thin films can have dielectric constants less than 2 to be suitable for applications requiring low-dielectric constants. An interstitial compound can be added to the mixture, with the interstitial compound either covalently bonded to the pores or physically entrapped within the porous structure. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
Atomistic Simulation of Displacement Cascades in Zircon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram; Weber, William J.; Corrales, Louis R.
2002-05-06
Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.
Simple-to-Complex Transformation in Liquid Rubidium.
Gorelli, Federico A; De Panfilis, Simone; Bryk, Taras; Ulivi, Lorenzo; Garbarino, Gaston; Parisiades, Paraskevas; Santoro, Mario
2018-05-18
We investigated the atomic structure of liquid Rb along an isothermal path at 573 K, up to 23 GPa, by X-ray diffraction measurements. By raising the pressure, we observed a liquid-liquid transformation from a simple metallic liquid to a complex one. The transition occurs at 7.5 ± 1 GPa which is slightly above the first maximum of the T-P melting line. This transformation is traced back to the density-induced hybridization of highest electronic orbitals leading to the accumulation of valence electrons between Rb atoms and to the formation of interstitial atomic shells, a behavior that Rb shares with Cs and is likely to be common to all alkali metals.
A set of constitutive relationships accounting for residual NAPL in the unsaturated zone.
Wipfler, E L; van der Zee, S E
2001-07-01
Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.
Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.
1989-01-01
An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.
Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.
1989-11-21
An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.
NASA Astrophysics Data System (ADS)
Voisin, Didier; Legrand, Michel; Chaumerliac, Nadine
2000-03-01
In order to study scavenging processes of chemical species in mixed phase clouds, in-cloud field measurements were conducted in December 1997 at the Puy de Dôme mountain (center of France, 1465 m above sea level). Soluble species including NH+4, Cl-;, NO3-3, SO-4, HCOO-, CH3COO-, and C2O-4 present in the different phases (supercooled water droplets, rimed snowflakes, interstitial gases, and aerosols) of cold clouds have been investigated. Conducted in parallel to microphysical studies of clouds (liquid water and ice contents, and size distribution of hydrometeors), these chemical investigations allow us to examine the partitioning of strong (HNO3 and HCl) and weak (SO2, HCOOH, and CH3COOH) acids as well as ammonia between interstitial air and the condensed phases (liquid and solid water particles) in mixed clouds present during winter at midlatitude regions. From that, we discuss the processes by which these key atmospheric species are taken up from the gas phase by the condensed phases (liquid and ice) in these cold clouds. We examine several factors which are of importance in driving the final composition of cloud ice. They include the partitioning of species between gaseous and supercooled liquid phases, the amount of rimed ice collected by snowflakes, and the retention of gas during shock freezing of supercooled droplets onto ice particles. Strong acids (HCl and HNO3) as well as NH3, being sufficiently soluble in water, are mainly partitioned into supercooled water droplets. Furthermore, being subsaturated in liquid droplets, these species are well retained in rimed ice. For these species, riming is found to be the main process driving the final composition of snowflakes, direct incorporation from the gas phase during growth of snowflakes remaining insignificant because of low concentrations in the gas phase. For light carboxylic acids the riming process mainly determines the composition of the snowflakes, but an additional significant contribution by gas incorporation during the growth of snowflakes cannot be excluded. SO2 is also present at significant levels in the interstitial air and is poorly retained in ice during riming of supercooled water droplets. However, hydroxymethanesulfonate (HMSA) was likely present in supercooled liquid droplets, making it difficult to evaluate by which mechanism S(IV) (i.e., HMSA plus SO2) has been incorporated into snowflakes.
Closed end regeneration method
Yang, Arthur Jing-Min; Zhang, Yuehua
2006-06-27
A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
Aerosol partitioning in mixed-phase clouds at the Jungfraujoch (3580 m asl)
NASA Astrophysics Data System (ADS)
Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.
2003-04-01
Field measurements on the partitioning between the interstitial and the liquid/ice phase in natural clouds were performed at the high-alpine research station Jungfraujoch (3580 m asl, Switzerland) during a summer and a winter campaign. The size distributions of the total and the interstitial aerosol were determined by means of a scanning mobility particle sizer (SMPS). From these, size resolved scavenging ratios were calculated. Simultaneously, cloud water content (CWC) and cloud particle size distributions along with meteorological data were obtained. In cold mixed phase clouds (existing of liquid droplets and ice crystals), strong differences were found in comparison to the warm summer clouds. In the warm cloud types all particles above a certain diameter were activated and thereby the scavenging ratio (number of activated particles divided by the total number concentration) above a certain threshold diameter approached 1. In the winter clouds, the scavenging ratio never reached the value of 1 and could be as low as 0. These observations are explained by the Bergeron-Findeisen process: Here, particles are also activated to droplets in the first step, but after the formation of the ice phase droplets evaporate while the ice crystals grow, due to difference in the saturation vapor pressure over water and ice. This release of aerosol particles to the interstitial aerosol has significant implications for the climate forcing: It can be expected that the number of CCN is of less importance as soon as ice crystals are formed.
NASA Astrophysics Data System (ADS)
Cui, Junfang; Tang, Xiangyu; Zhang, Wei
2017-04-01
In southwest China, a grand hydraulic engineering called Three Gorges Dam (TGD) was completed and under full power run since 2009, making a total area of 349 km2 along Yangtze River exposing the dry-wet cycles by its impounding of water step by step from the elevations of 135 m in summer season to 175 m in winter season at each year. As populated area, the environmental issues aroused by the TGR have centered on water quality, biodiversity, sedimentation, downstream riverbed erosion and pollutants (both heavy metals and organic pollutants) transportation. All these are regulated or affected by soil structure and pore network, directly or indirectly. Thus, the study of soil physical quality changed induced by these seasonal dry-wet cycles is crucial. The objective of this study is: (1) to describe soil structural status in WLF zone of TGR by combination of laboratory measures and visual evaluation method; (2) to describe the pore system in this zone by both SWRC and CT images; and (3) to address the changes of soil physical quality changed by seasonal dry-wet cycles. Our results showed a deterioration of soil structure (indicated by a high Sq score in VESS) and soil aggregate stability (indicated by low MWD and the mass fractal dimension Dm) in lower land of TGR. The data from both soil water retention curve and micro-CT image demonstrates a going -worse of soil physical quality by decreasing of soil pore number and porosity as well as a shift of drainable micro-pores (0.1 < r < 125 µm) to non-drainable micro-pores (r < 0.1 µm) in the lower land of TGR.
Nanopore reactive adsorbents for the high-efficiency removal of waste species
Yang, Arthur Jing-Min; Zhang, Yuehua
2005-01-04
A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
A tungsten-rhenium interatomic potential for point defect studies
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
2018-05-28
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less
A tungsten-rhenium interatomic potential for point defect studies
NASA Astrophysics Data System (ADS)
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
2018-05-01
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).
A tungsten-rhenium interatomic potential for point defect studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less
A liquidus phase diagram for the groundmass of EETA 79001A (Eg), a primitive Shergottite composition
NASA Technical Reports Server (NTRS)
Jones, J. H.; Jurewicz, A. J. G.; Le, L.
1992-01-01
Shergottites are members of the SNC meteorite suite, which may be samples of Mars. If so, the shergottite in our collection that most likely represents primitive liquid from the Martian mantle is EETA 79001. EETA 79001 has the Nd isotopic signature of a long-term depleted mantle, a relatively high Mg number, and a slightly olivine-normative composition. The authors have performed experiments on the composition of EETA 79001 for traces of Eg. Other topics discussed include: comparison of calculated phase equilibria; nature of the olivine-pyroxene boundary; and interstitial liquids.
Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner
2012-01-01
Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800cm(-1) range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described. A variation of blood glucose between approx. 80mg/dl and 250mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054cm(-1) and 1084cm(-1), a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner
2012-01-01
Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800 cm -1 range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described [11]. A variation of blood glucose between approx. 80 mg/dl and 250 mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054 cm -1 and 1084 cm -1, a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50 μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients.
Lin, Chia-En; Chang, Wen-Shin; Lee, Jen-Ai; Chang, Ting-Ya; Huang, Yu-Shen; Hirasaki, Yoshiro; Chen, Hung-Shing; Imai, Kazuhiro; Chen, Shih-Ming
2018-03-01
Aristolochic acid (AA) causes interstitial renal fibrosis, called aristolochic acid nephropathy (AAN). There is no specific indicator for diagnosing AAN, so this study aimed to investigate the biomarkers for AAN using a proteomics method. The C3H/He female mice were given ad libitum AA-distilled water (0.5 mg/kg/day) and distilled water for 56 days in the AA and normal groups, respectively. The AA-induced proteins in the kidney were investigated using a proteomics study, including fluorogenic derivatization with 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide, followed by high-performance liquid chromatography analysis and liquid chromatography tandem mass spectrometry with a MASCOT database searching system. There were two altered proteins, thrombospondin type 1 (TSP1) and G protein-coupled receptor 87 (GPR87), in the kidney of AA-group mice on day 56. GPR87, a tumorigenesis-related protein, is reported for the first time in the current study. The renal interstitial fibrosis was certainly induced in the AA-group mice under histological examination. Based on the results of histological examination and the proteomics study, this model might be applied to AAN studies in the future. TSP1 might be a novel biomarker for AAN, and the further role of GPR87 leading to AA-induced tumorigenesis should be researched in future studies. Copyright © 2017 John Wiley & Sons, Ltd.
The parent magma of the nakhlite meteorites - Clues from melt inclusions
NASA Technical Reports Server (NTRS)
Harvey, Ralph P.; Mcsween, Harry Y., Jr.
1992-01-01
Several forms of trapped liquid found within nakhlite meteorites have been examined, including interstitial melt and magmatic inclusions within the cores of large olivine grains. Differences in the mineralogy and texture between two types of trapped melt inclusions, and between these inclusions and the mesostasis, indicate that vitrophyric inclusions are most appropriate for estimating the composition of a nakhlite parental magma in equilibrium with early-forming olivine and augite. Parent liquids were calculated from the mineralogy of large inclusions in Nakhla and Governador Valadares, using a system of mass-balance equations solved by linear regression methods. The chosen parental liquids were cosaturated in olivine and augite and had Mg/Fe values consistent with measured augite/liquid Kds. These parental magma compositions are similar to other published compositions for Nakhla, Chassigny, and Shergotty parental melts, and may correspond to a significant magma type on Mars.
Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.
Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio
2015-01-15
Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, R. E.
2015-01-01
Electrochemical test results are presented for six noble metals evaluated in two acidic test solutions which are representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The two test solutions consisted of fresh waste liquid which had been modified with a proposed or alternate pretreatment formulation and its associated brine concentrate. The six test metals included three titanium grades, (Commercially Pure, 6Al-4V alloy and 6Al-4V Low Interstitial alloy), two nickel-chromium alloys (Inconel® 625 and Hastelloy® C276), and one high tier stainless steel (Cronidur® 30).
Periocular necrotizing fasciitis in an infant.
Proia, Alan D
Periocular necrotizing fasciitis developed in a 12-month-old boy with swelling of both eyes and redness and a discharge from the left eye approximately 36 hours after blunt trauma. Computed tomography revealed preseptal and soft-tissue edema on the left side, but no signs of orbital involvement, orbital fractures, or drainable abscess in the anterior left lower eyelid. The inflammatory signs worsened over the next day, and there was purulent discharge from the left lower eyelid and an abscess and necrosis of the lower eyelid skin. He did well following surgical debridement and treatment with intravenous antibiotics. His course highlights the difficulty in diagnosing necrotizing fasciitis and the necessity for prompt surgical debridement and empirical broad-spectrum antibiotic therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
In vivo wireless ethanol vapor detection in the Wistar rat
Cheney, C. Parks; Srijanto, B.; Hedden, D. L.; Gehl, A.; Ferrell, T. L.; Schultz, J.; Engleman, E. A.; McBride, W. J.; O'Connor, S.
2009-01-01
Traditional alcohol studies measure blood alcohol concentration to elucidate the biomedical factors that contribute to alcohol abuse and alcoholism. These measurements require large and expensive equipment, are labor intensive, and are disruptive to the subject. To alleviate these problems, we have developed an implantable, wireless biosensor that is capable of measuring alcohol levels for up to six weeks. Ethanol levels were measured in vivo in the interstitial fluid of a Wistar rat after administering 1 g/kg and 2 g/kg ethanol by intraperitoneal (IP) injection. The data were transmitted wirelessly using a biosensor selective for alcohol detection. A low-power piezoresistive microcantilever sensor array was used with a polymer coating suitable for measuring ethanol concentrations at 100% humidity over several hours. A hydrophobic, vapor permeable nanopore membrane was used to screen liquid and ions while allowing vapor to pass to the sensor from the subcutaneous interstitial fluid. PMID:20161283
Nyman, Jeffry S.; Roy, Anuradha; Acuna, Rae L.; Gayle, Heather J.; Reyes, Michael J.; Tyler, Jerrod H.; Dean, David D.; Wang, Xiaodu
2007-01-01
Collagen crosslinks are important to the quality of bone and may be contributors to the age-related increase in bone fracture. This study was performed to investigate whether age and gender effects on collagen crosslinks are similar in osteonal and interstitial bone tissues. Forty human cadaveric femurs were collected and divided into two age groups: Middle aged (42–63 years of age) and Elderly (69–90 years of age) with ten males and ten females in each group (n = 10). Micro-cores of bone tissue from both secondary osteons (newly formed) and interstitial regions (biologically old) in the medial quadrant of the diaphysis were extracted using a custom-modified, computer numerical controlled machine. The bone specimens were then analyzed using high performance liquid chromatography to determine the effects of age and gender on the concentration of mature, enzymatic crosslinks (hydroxylysyl-pyridinoline – HP and lysylpyridinoline – LP) and a non-enzymatic crosslink (pentosidine – PE) at these two bony sites. The results indicate that age has a significant effect on the concentration of LP and PE, while gender has a significant effect on HP and LP. In addition, the concentration of the crosslinks in the secondary osteons is significantly different from that in the interstitial bone regions. These results suggest that the rate of non-enzymatic crosslinking may increase while the formation of maturate enzymatic crosslinks may decrease with age. Such changes could potentially reduce the inherent quality of the bone tissue in the elderly skeleton. PMID:16962838
Cooling system for continuous metal casting machines
Draper, Robert; Sumpman, Wayne C.; Baker, Robert J.; Williams, Robert S.
1988-01-01
A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.
Cooling system for continuous metal casting machines
Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.
1988-06-07
A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.
A new airborne sampler for interstitial particles in ice and liquid clouds
NASA Astrophysics Data System (ADS)
Moharreri, A.; Craig, L.; Rogers, D. C.; Brown, M.; Dhaniyala, S.
2011-12-01
In-situ measurements of cloud droplets and aerosols using aircraft platforms are required for understanding aerosol-cloud processes and aiding development of improved aerosol-cloud models. A variety of clouds with different temperature ranges and cloud particle sizes/phases must be studied for comprehensive knowledge about the role of aerosols in the formation and evolution of cloud systems under different atmospheric conditions. While representative aerosol measurements are regularly made from aircrafts under clear air conditions, aerosol measurements in clouds are often contaminated by the generation of secondary particles from the high speed impaction of ice particles and liquid droplets on the surfaces of the aircraft probes/inlets. A new interstitial particle sampler, called the blunt-body aerosol sampler (BASE) has been designed and used for aerosol sampling during two recent airborne campaigns using NCAR/NSF C-130 aircraft: PLOWS (2009-2010) and ICE-T (2011). Central to the design of the new interstitial inlet is an upstream blunt body housing that acts to shield/deflect large cloud droplets and ice particles from an aft sampling region. The blunt-body design also ensures that small shatter particles created from the impaction of cloud-droplets on the blunt-body are not present in the aft region where the interstitial inlet is located. Computational fluid dynamics (CFD) simulations along with particle transport modeling and wind tunnel studies have been utilized in different stages of design and development of this inlet. The initial flights tests during the PLOWS campaign showed that the inlet had satisfactory performance only in warm clouds and when large precipitation droplets were absent. In the presence of large droplets and ice, the inlet samples were contaminated with significant shatter artifacts. These initial results were reanalyzed in conjunction with a computational droplet shatter model and the numerical results were used to arrive at an improved sampler design. Analysis of the data from the recent ICE-T campaign with the improved sampler design shows that the modified version of BASE can provide shatter-artifact free sampling of aerosol particles in the presence of ice particles and significantly reduced shatter artifacts in warm clouds. Detailed design and modeling aspects of the sampler will be discussed and the sampler performance in warm and cold clouds will be presented and compared with measurements made using other aerosol inlets flown on the NCAR/NSF C-130 aircraft.
Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, K.S.; Stout, L.A.; Napier, B.A.
1983-06-01
This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
Efficiency of differentiation in the Skaergaard magma chamber
NASA Astrophysics Data System (ADS)
Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L.; Humphreys, M.; Thy, P.
2011-12-01
Although it is largely agreed that crystallization occurs inwardly in crystal mushes along the margins of magma chambers, the efficiency and mechanisms of differentiation are not well constrained. The fractionation paradigm hinges on mass exchange between the crystal mush and the main magma reservoir resulting in coarse-grained, refractory (cumulate) rocks of primary crystals, and complementary enrichment of incompatible elements in the main reservoir of magma. Diffusion, convection, liquid immiscibility and compaction have been proposed as mechanisms driving this mass exchange. Here we examine the efficiency of differentiation in basaltic crystal mushes in different regions of the Skaergaard magma chamber. The contents of incompatible elements such as phosphorus and calculated residual porosities are high in the lowermost cumulate rocks of the floor (47-30%) and decrease upsection, persisting at low values in the uppermost two-thirds of the floor rock stratigraphy (~5% residual porosity). The residual porosity is intermediate at the walls (~15%) and highest and more variable at the roof (10-100%). This is best explained by compaction and expulsion of interstitial liquid from the accumulating crystal mush at the floor and the inefficiency of these processes elsewhere in the intrusion. In addition, the roof data imply upwards infiltration of interstitial liquid. Remarkably uniform residual porosity of ~15% for cumulates formed along the walls suggest that their preservation is related to the rheological properties of the mush, i.e. at ≤ 15% porosity the mush is rigid enough to adhere to the wall, while at higher porosity it is easily swept away. We conclude that the efficiency of compaction and differentiation can be extremely variable along the margins of magma chambers. This should be taken into account in models of magma chamber evolution.
Developing a model for moisture in saltcake waste tanks: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, C.S.; Aimo, N.; Fayer, M.J.
1997-07-01
This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less
Blind Leak Detection for Closed Systems
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter; Johnson, Ricky; Todd, Douglas; Russell, Samuel; Walker, James
2003-01-01
The current inspection technique for locating interstitial leaking in the Space Shuttle Main Engine nozzles is the application of a liquid leak check solution in the openings where the interstitials space between the tubing and the structural jacket vent out the aft end of the nozzle, while its cooling tubes are pressurized to 25 psig with Helium. When a leak is found, it is classified, and if the leak is severe enough the suspect tube is cut open so that a boroscope can be inserted to find the leak point. Since the boroscope can only cover a finite tube length and since it is impossible to identify which tube (to the right or left of the identified interstitial) is leaking, many extra and undesired repairs have been made to fix just one leak. In certain instances when the interstitials are interlinked by poor braze bonding, many interstitials will show indications of leaking from a single source. What is desired is a technique that can identify the leak source so that a single repair can be performed. Dr, Samuel Russell and James Walker, both with NASA/MSFC have developed a thermographic inspection system that addresses a single repair approach. They have teamed with Boeing/Rocketdyne to repackage the inspection processes to be suitable to address full scale Shuttle development and flight hardware and implement the process at NASA centers. The methods and results presented address the thermographic identification of interstitial leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera (capable of detecting a delta temperature difference of 0.025 C) is used to record the cooling effects associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner hot wall surface as the nozzle is pressurized, These images are enhanced by digitally subtracting a thermal reference image taken before pressurization. The method provides a non-intrusive way of locating the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation. Other applications for this thermographic inspection system are the Reinforced-Carbon-Carbon (RCC) leading edge of the Space Shuttle orbiter and braze joint integrity.
NASA Astrophysics Data System (ADS)
Vouillamoz, J. M.; Lawson, F. M. A.; Yalo, N.; Descloitres, M.
2014-08-01
Hundreds of thousands of boreholes have been drilled in hard rocks of Africa and Asia for supplying human communities with drinking water. Despite the common use of geophysics for improving the siting of boreholes, a significant number of drilled holes does not deliver enough water to be equipped (e.g. 40% on average in Benin). As compared to other non-invasive geophysical methods, magnetic resonance sounding (MRS) is selective to groundwater. However, this distinctive feature has not been fully used in previous published studies for quantifying the drainable groundwater in hard rocks (i.e. the specific yield) and the short-term productivity of aquifer (i.e. the transmissivity). We present in this paper a comparison of MRS results (i.e. the water content and pore-size parameter) with both specific yield and transmissivity calculated from long duration pumping tests. We conducted our experiments in six sites located in different hard rock groups in Benin, thus providing a unique data set to assess the usefulness of MRS in hard rock aquifers. We found that the MRS water content is about twice the specific yield. We also found that the MRS pore-size parameter is well correlated with the specific yield. Thus we proposed two linear equations for calculating the specific yield from the MRS water content (with an uncertainty of about 10%) and from the pore-size parameter (with an uncertainty of about 20%). The later has the advantage of defining a so-named MRS cutoff time value for indentifying non-drainable MRS water content and thus low groundwater reserve. We eventually propose a nonlinear equation for calculating the specific yield using jointly the MRS water content and the pore-size parameters, but this approach has to be confirmed with further investigations. This study also confirmed that aquifer transmissivity can be estimated from MRS results with an uncertainty of about 70%. We conclude that MRS can be usefully applied for estimating aquifer specific yield and transmissivity in weathered hard rock aquifers. Our result will contribute to the improvement of well siting and groundwater management in hard rocks.
X-Ray Absorption Spectra of Amorphous Ices from GW Quasiparticle Calculation
NASA Astrophysics Data System (ADS)
Kong, Lingzhu; Car, Roberto
2013-03-01
We use a GW approach[2] to compute the x-ray absorption spectra of model low- and high-density amorphous ice structures(LDA and HDA)[3]. We include the structural effects of quantum zero point motion using colored-noise Langevin molecular dynamics[4]. The calculated spectra differences in the main and post edge region between LDA and HDA agree well with experimental observations. We attribute these differences to the presence of interstitial molecules within the first coordination shell range in HDA. This assignment is further supported by a calculation of the spectrum of ice VIII, a high-pressure structure that maximizes the number of interstitial molecules and, accordingly, shows a much weaker post-edge feature. We further rationalize the spectral similarity between HDA and liquid water, and between LDA and ice Ih in terms of the respective similarities in the H-bond network topology and bond angle distributions. Supported by grants DOE-DE-SC0005180, DOE DE-SC0008626 and NSF-CHE-0956500.
Banerjee, Debamalya; Bhat, Shrivalli N.; Bhat, Subray V.; Leporini, Dino
2012-01-01
The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448–11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed. PMID:23049747
NASA Astrophysics Data System (ADS)
Boudreau, A. E.; Meurer, W. P.
The major platinum-group elements (PGE) concentrations in layered intrusions are typically associated with zones in which the sulfide abundance begins to increase. In a number of layered intrusions, there is also a distinct stratigraphic separation in the peak concentrations of the PGE from those of the base metals, gold and sulfur through these zones. These stratigraphic ``offsets'' are characterized by a lower, typically S-poor, Pt- and Pd-enriched zone overlain by a zone enriched in the base metals, S and Au. The separations amount to a few decimeters to several tens of meters. In some instances, the high Pt and Pd concentrations are associated with trivial amounts of sulfide. Theoretical considerations suggest that these offsets can be modeled as chromatographic peaks that develop during an infiltration/reaction process. Using Pd as a typical PGE and Cu as a typical base metal, a numeric model is developed that illustrates how metal separations can develop in a vapor-refining zone as fluid evolved during solidification of a cumulus pile leaches sulfide and redeposits it higher in the crystal pile. The solidification/degassing ore-element transport is coupled with a compaction model for the crystal pile. Solidification resulting from conductive cooling through the base of the compacting column leads to an increasing volatile concentration in the intercumulus liquid until it reaches fluid saturation. Separation and upward migration of this fluid lead to an upward-migrating zone of increasingly higher bulk water contents as water degassed from underlying cumulates enriches overlying, fluid-undersaturated interstitial liquids. Sulfide is resorbed from the degassing regions and is reprecipitated in these vapor-undersaturated interstitial liquids, producing a zone of relatively high modal sulfide that also migrates upward with time. Owing to its strong preference for sulfide, Pd is not significantly mobile until all sulfide is resorbed. The result is a zone of increasing PGE enrichment that follows the sulfide resorption front as solidification/degassing continues. In detail, the highest Pd concentrations occur stratigraphically below the peak in S and base metals. The high Pd/S ratio mimics values conventionally interpreted as the result of high (silicate liquid)/(sulfide liquid) mass ratios (``R'' values). However, in this case, the high Pd/S ratio is the result of a chromatographic/reaction front enrichment and not a magmatic sulfide-saturation event.
NASA Astrophysics Data System (ADS)
Daugaard Nielsen, Troels Frederik
2013-04-01
The Skaergaard intrusion is the type locality for stratiform "Skaergaard-type" PGE-Au mineralisations with layers rich in PGE, followed by Au and Cu. Models for stratiform PGE mineralisations divide into uppers and downers models. Downers models assume bulk liquid S-saturation followed by a variety of accumulation processes and the second model the scavenging of metals by fluids deep in intrusions and deposition in chemical traps above. This investigation is based on continuous profiling in roof, walls and floor. Cu anomalies in roof, walls and floor are contemporaneous and systematics in Pd/Pt and Pd/Au ratios document bulk liquid S-saturation, no loss of precious metal below the mineralisation and no obvious chemical traps. A classic downers process is documented. The timing of the mineralisation is controlled by composition of liquidus plagioclase and fraction of residual magma (F). PGE concentrations are an order of magnitude higher in the floor mineralisation due to accumulation. Systematics across the mineralisation shows in the centre of the intrusion 5 main levels of Pd-concentration followed by an Au and a Cu-level. All levels PGE and Au levels have c. 100 ppm Cu and show no correlation to PGE and Au. 90% of all PGE is contained in one phase, skaergaardite (PdCu).The lower and main PGE concentration has moderate Pd/Pt ratios. Overlying secondary reefs have high, basal Pd/Pt and show local S-saturation reflecting d-values of PGE between sulphide and silicate liquid. No basal high Pd/Pt anomaly occurs at Au and Cu levels and the floor shows four types of mineralisation. The main PGE reef (Pd5) has gradual increase and decrease in PGE and Pd/Pt, dissolution of sulphide, increasing PGE+Au/Cu due to reaction between interstial and documented reactive Fe-rich silicate melt and the bulk magma sulfides. Dissolution of Cu-sulfide increases PGE/Cu, reduces the size of droplets to 30µ (av.) and provides metals for secondary reefs above - formed by migration of interstitial melt - and show expected decrease in Pd/Pt and increase in Au/Pd due to fractionation and substitutions in Skaergaardite (PdCu) and tetra-auricupride (AuCu). The main Au level is elevated relative to the top Pd-level (Pd1). High resolution X-ray tomography and petrography shows the precious metal phases on grain boundaries. The paragenesis is complex with many tellurides, arsenite and sulfides, and primary hydrous phases including amphiboles, ferrosaponite and chlorite. The Au mineralisation level is the residual of the Fe-rich interstitial silicate melt trapped by the layering of the gabbros. The Cu levels above are like the secondary Pd-levels secondary mineralisation levels caused by reaction between primary sulphide and Fe-rich melt. The Skaergaard-type mineralisation owes its characteristics to the concentration of Fe-rich interstitial melt and loss of immiscible granophyric melt from the mush zone at the floor of the residual bulk magma and a continuum of dissolution and S-saturation in an ever changing interstitial melt environment.
Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.
Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A
2013-01-01
The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.
Advances in the treatment of rheumatic interstitial lung disease.
Vassallo, Robert; Thomas, Charles F
2004-05-01
Interstitial lung disease frequently complicates the rheumatic diseases. The purpose of this review is to outline recent advances and current concepts regarding the management of these interstitial lung diseases. Several histologic lesions cause interstitial lung disease in rheumatic diseases, including nonspecific interstitial pneumonia, usual interstitial pneumonia, organizing pneumonia, lymphocytic interstitial pneumonia, desquamative interstitial pneumonia, and acute interstitial pneumonia. Although the relative frequency of occurrence of these histopathologic lesions is not definitively established, it seems that nonspecific interstitial pneumonia accounts for a large proportion of rheumatic disease-associated interstitial lung diseases. Although usual interstitial pneumonia generally responds poorly to corticosteroid therapy, other forms of interstitial pneumonia are often steroid responsive and have a more favorable long-term prognosis. Pulmonary hypertension is increasingly recognized as a complication of these interstitial lung diseases. Treatment of pulmonary hypertension in these patients provides clinical benefit and may suppress pulmonary inflammation and fibrosis. Lung transplantation is a treatment option for selected patients with severe pulmonary involvement and limited life expectancy. Interstitial lung disease is common in the rheumatic diseases, may be caused by a variety of lesions that respond differently to treatment, and may lead to the development of pulmonary hypertension. Whether the prognosis of interstitial lung disease associated with rheumatic disease is similar to that associated with the idiopathic interstitial pneumonias is not known. Treatment of these interstitial lung diseases should take into account the specific histologic lesion, the activity of the underlying rheumatic disease, and associated pulmonary hypertension, if present. The diagnosis of a rheumatic disease is no longer an absolute contraindication to lung transplantation.
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Bardoxolone Methyl Evaluation in Patients With Pulmonary Hypertension (PH) - LARIAT
2018-06-08
Pulmonary Arterial Hypertension; Pulmonary Hypertension; Interstitial Lung Disease; Idiopathic Interstitial Pneumonia; Idiopathic Pulmonary Fibrosis; Sarcoidosis; Respiratory Bronchiolitis Associated Interstitial Lung Disease; Desquamative Interstitial Pneumonia; Cryptogenic Organizing Pneumonia; Acute Interstitial Pneumonitis; Idiopathic Lymphoid Interstitial Pneumonia; Idiopathic Pleuroparenchymal Fibroelastosis
NASA Astrophysics Data System (ADS)
Iveson, Simon M.
2003-06-01
Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.
Kim, Tae-Won; Kim, Young-Jung; Seo, Chang-Seob; Kim, Hyun-Tae; Park, Se-Ra; Lee, Mee-Young; Jung, Ju-Young
2016-04-15
Renal interstitial fibrosis is characterized by excessive accumulation of extracellular matrix, which leads to end-stage renal failure. The aim of this study was to explore the effect of Elsholtzia ciliata (Thunb.) Hylander ethanol extract (ECE) on renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO). After quantitative analysis of ECE using the high performance liquid chromatography-photodiode array (HPLC-PDA) method, an in vitro study was performed to assess the anti-inflammatory and anti-fibrotic effects of ECE, using lipopolysaccharide (LPS) and transforming growth factor-ß (TGF-ß), respectively. For in vivo study, all male Sprague Dawley (SD) rats (n=10/group), except for those in the control group, underwent UUO. The rats were orally treated with water (control), captopril (positive control, 200 mg/kg), and ECE (300 and 500 mg/kg) for 14 days. In ECE, luteolin and rosmarinic acid were relatively abundant among the other flavonoids and phenolic acids. ECE treatment ameliorated LPS-induced overexpression of nuclear factor-κB, tumor necrosis factor (TNF-α), and interleukin-6 and improved oxidative stress in RAW 264.7 cells. Furthermore, ECE treatment suppressed TGF-ß-induced α-smooth muscle actin and matrix metalloproteinase 9 expression in human renal mesangial cells. In the UUO model, 14 consecutive days of ECE treatment improved UUO-induced renal damage and attenuated histopathological alterations and interstitial fibrosis. Moreover, the renal expression of TNF-α, TGF-ß, and Smad 3 were inhibited by ECE treatment. Taken together, the effects of ECE may be mediated by blocking the activation of TGF-ß and inflammatory cytokines, leading subsequently to degradation of the ECM accumulation pathway. Based on these findings, ECE might serve as an improved treatment strategy for renal fibrotic disease. Copyright © 2016 Elsevier GmbH. All rights reserved.
Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids.
Kotomin, Eugene; Kuzovkov, Vladimir; Popov, Anatoli I; Maier, Joachim; Vila, Rafael
2018-01-11
The annealing kinetics of the primary electronic F-type color centers (oxygen vacancies with trapped one or two electrons) is analyzed for three ionic materials (Al 2 O 3 , MgO, and MgF 2 ) exposed to intensive irradiation by electrons, neutrons, and heavy swift ions. Phenomenological theory of diffusion-controlled recombination of the F-type centers with much more mobile interstitial ions (complementary hole centers) allows us to extract from experimental data the migration energy of interstitials and pre-exponential factor of diffusion. The obtained migration energies are compared with available first-principles calculations. It is demonstrated that with the increase of radiation fluence both the migration energy and pre-exponent are decreasing in all three materials, irrespective of the type of irradiation. Their correlation satisfies the Meyer-Neldel rule observed earlier in glasses, liquids, and disordered materials.The origin of this effect is discussed. This study demonstrates that in the quantitative analysis of the radiation damage of real materials the dependence of the defect migration parameters on the radiation fluence plays an important role and cannot be neglected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohori, N.P.; Sciurba, F.C.; Owens, G.R.
We report four cases of giant-cell interstitial pneumonia that occurred in association with exposure to hard metals. All patients presented with chronic interstitial lung disease and had open-lung biopsies that revealed marked interstitial fibrosis, cellular interstitial infiltrates, and prominent intraalveolar macrophages as well as giant cells displaying cellular cannibalism. We also review the literature to determine the sensitivity and specificity of giant-cell interstitial pneumonia for hard-metal pneumoconiosis. Although hard-metal pneumoconiosis may take the form of usual interstitial pneumonia, desquamative interstitial pneumonia, and giant-cell interstitial pneumonia, the finding of giant-cell interstitial pneumonia is almost pathognomonic of hard-metal disease and should provokemore » an investigation of occupational exposure. 25 references.« less
Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O
2015-01-01
The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.
Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions
NASA Astrophysics Data System (ADS)
van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura
2017-12-01
Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.
NASA Astrophysics Data System (ADS)
Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora
2015-04-01
Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.
NASA Astrophysics Data System (ADS)
Maruyama, Kenji; Hiroi (Sato), Satoshi; Endo, Hirohisa; Hoshino, Hideoki; Odagaki, Takashi; Hensel, Friedrich
2017-08-01
The reverse Monte Carlo (RMC) and Voronoi-Delaunay (VD) void analyses were applied to study the modification of chain geometries near the semiconductor (SC) to metal (M) transition in expanded liquid Se along the isochore of d = 3.4 g/cm3. Fluctuations of dihedral angles with increasing temperature and pressure cause modification of the helical (H) chain to the planar zigzag (Z) chain conformations. The distribution of voids size (rV ) supported by chain segments and distances to the 4th 6th neighbor atoms on the chain segments provide information on the stacking of planar zigzag chains compensated by empty space (L-voids, rV 3.6 Å) which leads to the formation of metallic domains. Near SC-M transition region the number fraction NZ/NH for Z and H chain segments increases.
Fluorescent accessory phases in the carbonaceous matrix of ureilites
NASA Technical Reports Server (NTRS)
Berkley, J. L.; Taylor, G. J.; Keil, K.; Healey, J. T.
1978-01-01
The carbonaceous matrix of ureilite meteorites (C-bearing olivine-pigeonite achondrites) contain abundant minute phases that emit a multicolored fluorescence under electron bombardment. These include NaCl and KCl, found in all seven ureilites studied, high-Si glass with pyroxene and chlorapatite quench crystals in North Haig, an unidentified high-Ca-Al-Cl phase in Novo Urei, and possibly free SiO2 in Novo Urei and Dingo Pup Donga. The origin of these phases is uncertain but some, especially chlorides and glass, may represent residual postcumulus materials precipitated from a late-stage interstitial liquid during the igneous phase of ureilite history.
Annihilating vacancies via dynamic reflection and emission of interstitials in nano-crystal tungsten
NASA Astrophysics Data System (ADS)
Li, Xiangyan; Duan, Guohua; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.; Liang, Yunfeng; Chen, Jun-Ling; Luo, G.-N.
2017-11-01
Radiation damage not only seriously degrades the mechanical properties of tungsten (W) but also enhances hydrogen retention in the material. Introducing a large amount of defect sinks, e.g. grain boundaries (GBs) is an effective method for improving radiation-resistance of W. However, the mechanism by which the vacancies are dynamically annihilated at long timescale in nano-crystal W is still not clear. The dynamic picture for eliminating vacancies with single interstitials and small interstitial-clusters has been investigated by combining molecular dynamics, molecular statics and object Kinetic Monte Carlo methods. On one hand, the annihilation of bulk vacancies was enhanced due to the reflection of an interstitial-cluster of parallel ≤ft< 1 1 1 \\right> crowdions by the GB. The interstitial-cluster was observed to be reflected back into the grain interior when approaching a locally dense GB region. Near this region, the energy landscape for the interstitial was featured by a shoulder, different to the decreasing energy landscape of the interstitial near a locally loose region as indicative of the sink role of the GB. The bulk vacancy on the reflection path was annihilated. On the other hand, the dynamic interstitial emission efficiently anneals bulk vacancies. The single interstitial trapped at the GB firstly moved along the GB quickly and clustered to be the di-interstitial therein, reducing its mobility to a value comparable to that that for bulk vacancy diffusion. Then, the bulk vacancy was recombined via the coupled motion of the di-interstitial along the GB, the diffusion of the vacancy towards the GB and the accompanying interstitial emission. These results suggest that GBs play an efficient role in improving radiation-tolerance of nano-crystal W via reflecting highly-mobile interstitials and interstitial-clusters into the bulk and annihilating bulk vacancies, and via complex coupling of in-boundary interstitial diffusion, clustering of the interstitial and vacancy diffusion in the bulk.
Radiation damage in cubic ZrO 2 and yttria-stabilized zirconia from molecular dynamics simulations
Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.
2014-11-20
Here, we perform molecular dynamics simulation on cubic ZrO 2 and yttria-stabilized zirconia (YSZ) to elucidate defect cluster formation resulting from radiation damage, and evaluate the impact of Y-dopants. Interstitial clusters composed of split-interstitial building blocks, i.e., Zr-Zr or Y-Zr are formed. Moreover, oxygen vacancies control cation defect migration; in their presence, Zr interstitials aggregate to form split-interstitials whereas in their absence Zr interstitials remain immobile, as isolated single-interstitials. Y-doping prevents interstitial cluster formation due to sequestration of oxygen vacancies.
Interstitial cystitis - resources
Resources - interstitial cystitis ... The following organizations are good resources for information on interstitial cystitis : Interstitial Cystitis Association -- www.ichelp.org National Institute of Diabetes and Digestive and Kidney Diseases -- www. ...
Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.
Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao
2016-07-01
In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p < 0.05). Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.
2007-12-01
The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)
Tissue dielectric measurement using an interstitial dipole antenna.
Wang, Peng; Brace, Christopher L
2012-01-01
The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna's input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5-20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole-Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. © 2011 IEEE
Tissue Dielectric Measurement Using an Interstitial Dipole Antenna
Wang, Peng; Brace, Christopher L.
2012-01-01
The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna’s input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5–20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole–Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. PMID:21914566
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
NASA Astrophysics Data System (ADS)
Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.
2016-04-01
Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.
Mizuno, Ryuichi; Asano, Koichiro; Mikami, Shuji; Nagata, Hirohiko; Kaneko, Gou; Oya, Mototsugu
2012-05-01
To elucidate the patterns of interstitial lung disease during everolimus treatment in patients with metastatic renal cell carcinoma, we reviewed seven cases of everolimus-induced interstitial lung disease. Seven patients with metastatic renal cell carcinoma, which continued to progress despite treatment with sunitinib or sorafenib, developed interstitial lung disease after treatment with everolimus. Chest X-ray demonstrated diffuse infiltrates in lung fields, and chest computed tomography showed bilateral reticular and ground-glass opacities. Serum levels of lactate dehydrogenase (7/7), C-reactive protein (6/7), pulmonary surfactant associated protein D (1/7) and Krebs von den Lungen 6 (5/7) were elevated. The bronchoalveolar lavage fluid obtained from four patients with Grade 3 interstitial lung disease showed lymphocytosis. The transbronchial lung biopsy specimens showed interstitial lymphocytic infiltration and septal thickening of alveolar walls. In two cases with mild interstitial lung disease, the everolimus therapy was successfully continued. In four cases with Grade 3 interstitial lung disease, the drug was discontinued and steroid therapy was initiated. Pulmonary symptoms and radiological abnormalities resolved within 2 months. Serum Krebs von den Lungen 6 was elevated compared with baseline in all cases with interstitial lung disease. Some patients who developed mild interstitial lung disease during everolimus treatment could continue to receive the treatment. Even when severe interstitial lung disease developed, withdrawal of the drug and short-term use of high-dose steroids resulted in rapid recovery. Prompt recognition of interstitial lung disease exacerbation as well as exclusion of progressive disease or infection is of primary importance.
Cloud Condensation Nuclei in Cumulus Humilis - Selected Case Study During the CHAPS Campaign
NASA Astrophysics Data System (ADS)
Yu, X.; Berg, L. K.; Berkowitz, C. M.; Alexander, M. L.; Lee, Y.; Laskin, A.; Ogren, J. A.; Andrews, B.
2009-12-01
The Cumulus Humilis Aerosol Processing Study (CHAPS) provided a unique opportunity to study aerosol and cloud processing. Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Department of Energy (DOE) G-1 aircraft was used as one of the main platforms in CHAPS. Flight tracks were designed and implemented to characterize freshly emitted aerosols on cloud top and cloud base as well as with cloud, i.e., cumulus humilis (or fair-weather cumulus), in the vicinity of Oklahoma City. Measurements of interstitial aerosols and residuals of activated condensation cloud nuclei were conducted simultaneously. The interstitial aerosols were determined downstream of an isokinetic inlet; and the activated particles downstream of a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This work will focus on studying CCN properties in cumulus humilis. Several approaches will be taken. The first is single particle analysis of particles collected by the Time-Resolved Aerosol Sampler (TRAC) by SEM/TEM coupled with EDX. We will specifically look into differences in particle properties such as chemical composition and morphology between activated and interstitial ones. The second analysis will link in situ measurements with the snap shots observations by TRAC. For instance, by looking into the characteristic m/z obtained by AMS vs. CO or isoprene, one can gain more insight into the role of primary and secondary organic aerosols in CCNs and background aerosols. Combined with observations of cloud properties, an improved picture of CCN activation in cumulus humilis can be made.
Changes in the interstitial fluid and the muscle water in rabbits in hemorrhagic shock.
Wolcott, M W; Malinin, T I; Wu, N M
1976-01-01
Dynamics and changes in the biochemical composition in the interstitial fluid and the muscle water were studied in hemorrhagic shock. The interstitial fluid was collected from implanted perforated capsules. Muscle biopsies were examined with regard to their water content by the steady state magnetic nuclear resonance spectroscopy. The consistent and what appears to be the most significant changes were the fall in the interstitial fluid pressures, the quantitative reduction of muscle water, a sharp fall in the blood and interstitial blood pH, the moderate hyperkalemia and lack of change in blood an interstitial fluid sodium, and the rise in blood glucose levels not accompanied by a rise in the interstitial fluid glucose levels. PMID:11754
Stability and migration of large oxygen clusters in UO(2+x): density functional theory calculations.
Andersson, D A; Espinosa-Faller, F J; Uberuaga, B P; Conradson, S D
2012-06-21
Using ab initio molecular dynamics simulations and nudged elastic band calculations we examine the finite temperature stability, transition pathways, and migration mechanisms of large oxygen clusters in UO(2+x). Here we specifically consider the recently proposed split quad-interstitial and cuboctahedral oxygen clusters. It is shown that isolated cuboctahedral clusters may transform into more stable configurations that are closely linked to the split quad-interstitial. The split quad-interstitial is stable with respect to single interstitials occupying the empty octahedral holes of the UO(2) lattice. In order to better understand discrepancies between theory and experiments, the simulated atomic pair distribution functions for the split quad-interstitial structures are analyzed with respect to the distribution function for U(4)O(9) previously obtained from neutron diffraction data. Our nudged elastic band calculations suggest that the split quad-interstitial may migrate by translating one of its constituent di-interstitial clusters via a barrier that is lower than the corresponding barrier for individual interstitials, but higher than the barrier for the most stable di-interstitial cluster.
[Airway-centered interstitial fibrosis related to exposure to fumes from cleaning products].
Serrano, Mario; Molina-Molina, María; Ramírez, José; Sánchez, Marcelo; Xaubet, Antoni
2006-10-01
Airway-centered interstitial fibrosis is a little known clinical entity that has only recently been described in the literature. Its pathology is characterized by bronchial fibrosis and localized interstitial pulmonary fibrosis around the airways. The disease has been associated with inhalation of a variety of substances, environmental or occupational, organic or inorganic. Clinical signs, radiographic manifestations, and lung function in patients with airway-centered interstitial fibrosis are similar to those of patients with idiopathic interstitial pneumonia. We describe a case of airway-centered interstitial fibrosis related to exposure to fumes from cleaning products.
Scaling of wet granular flows in a rotating drum
NASA Astrophysics Data System (ADS)
Jarray, Ahmed; Magnanimo, Vanessa; Ramaioli, Marco; Luding, Stefan
2017-06-01
In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling) yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.
Thermal luminescence spectroscopy chemical imaging sensor.
Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C
2012-10-01
The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
NASA Technical Reports Server (NTRS)
Blander, M.; Planner, H. N.; Keil, K.; Nelson, L. S.; Richardson, N. L.
1976-01-01
Laser-melted magnesium silicate droplets were supercooled 400-750 C below their equilibrium liquidus temperatures before crystallization and their texture was compared with that of meteoritic and lunar chondrules. Crystal morphology, width and texture were studied in relation to nucleation temperature and bulk composition. It was found that the only phase to nucleate from the forsterite-enstatite normative melts was forsterite. Highly siliceous glass, about 65% SiO2 by weight, was identified interstitially to the forsterite crystals in seven of the MgSiO4 spherules and was thought to be present in all.
Bubble migration in a compacting crystal-liquid mush
NASA Astrophysics Data System (ADS)
Boudreau, Alan
2016-04-01
Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid. Bubbles can also move rapidly by `surfing' on porosity waves that can develop in a compacting mush.
Water polygons in high-resolution protein crystal structures.
Lee, Jonas; Kim, Sung-Hou
2009-07-01
We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.
Water polygons in high-resolution protein crystal structures
Lee, Jonas; Kim, Sung-Hou
2009-01-01
We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 Å resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of “stable” water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state. PMID:19551896
Annular Air Leaks in a liquid hydrogen storage tank
NASA Astrophysics Data System (ADS)
Krenn, AG; Youngquist, RC; Starr, SO
2017-12-01
Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.
Papper, S
1980-01-01
There are many causes of interstitial nephritis other than pyelonephritis. The term interstitial nephritis does not connote a single etiologic or pathogenetic mechanism; it rather arbitrarily places together a wider variety of renal diseases that have a predilection for early and major involvement of the renal interstitium. The prototype of acute interstitial nephritis is acute pyelonephritis. In addition, there is a drug-related acute interstitial disease that is probably of immunological nature and usually reverses with discontinuance of the offending drug. Chronic interstitial nephritis includes many diverse illnesses. Nonobstructive pyelonephritis occurs but its prevalence is debated. Analgesic abuse nephropathy is not rare and is potentially reversible. Papillary necrosis has many causes and a wide spectrum of clinical presentations. Heavy metals, such as lead, cause interstitial nephritis. Balkan nephropathy occurs in an endemic area and although not bacterial in origin is of unknown cause.
Balance point characterization of interstitial fluid volume regulation.
Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M
2009-07-01
The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.
Druliner, A.D.; Mason, J.P.
2001-01-01
The U.S. Geological Survey, in cooperation with the Lower Platte South Natural Resources District, conducted a hydrogeologic and water-quality reconnaissance study of the five principal aquifers in deposits of Quaternary age in the Natural Resources District. The purpose of the study was to delineate the approximate extent of the aquifers, to estimate volumes of drainable water in three aquifers, to provide information that could be useful in designing future ground-water-quality monitoring, and to determine baseline water-quality conditions in the aquifers, focusing on nitrate concentrations. The approximate lateral boundaries of the Dwight-Valparaiso, Crete-Princeton-Adams, and Waverly aquifers were defined as areas in which the thickness of continuous sand and gravel deposits was less than 40 feet. The three aquifers were determined to contain about 1,340,000; 1,540,000; and 172,000 acre-feet of drainable water, respectively, assuming a specific yield of 0.20. During the summer of 1994, ground-water samples were collected from 46 wells in the five aquifers and analyzed for nitrate and screened for triazine herbicides. Additionally, water samples from 39 of these wells were analyzed for major ions, iron, and manganese, and 35 were analyzed for radon. Water-quality analyses revealed that the water in the five aquifers had specific conductances that ranged from 399 to 2,040 micro-siemens per centimeter and was a calcium-carbonate to calcium-magnesium-sodium carbonate type. The most mineralized water samples were from the Crete-Princeton-Adams aquifer, which contained a median concentration of dissolved solids of 520 milligrams per liter. Concentrations of nitrate in water samples from the aquifers ranged from less than 0.05 to 23 milligrams per liter as nitrogen, and only six water samples exceeded the Maximum Contaminant Level established by the U.S. Environmental Protection Agency of 10 milligrams per liter. The median concentration of radon for water samples from the five aquifers was 300 picocuries per liter, which is the proposed Maximum Contaminant Level. Water samples from the Crete-Princeton-Adams and Waverly aquifers had the largest concentrations of radon among the five aquifers. The Crete-Princeton-Adams aquifer had a median concentration of 440 picocuries per liter, and the Waverly aquifer had a median concentration of 390 picocuries per liter. Herbicides were detected in water from only six wells, which were in four of the five aquifers. Atrazine, metabolites of atrazine, metolachlor, and metribuzin were detected in concentrations generally less than 1.00 microgram per liter.
Tyan, Yu-Chang; Wu, Hsin-Yi; Lai, Wu-Wei; Su, Wu-Chou; Liao, Pao-Chi
2005-01-01
Pleural effusion, an accumulation of pleural fluid, contains proteins originated from plasma filtrate and, especially when tissues are damaged, parenchyma interstitial spaces of lungs and/or other organs. This study details protein profiles in human pleural effusion from 43 lung adenocarcinoma patients by a two-dimensional nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (2D nano-HPLC-ESI-MS/MS) system. The experimental results revealed the identification of 1415 unique proteins from human pleural effusion. Among these 124 proteins identified with higher confidence levels, some proteins have not been reported in plasma and may represent proteins specifically present in pleural effusion. These proteins are valuable for mass identification of differentially expressed proteins involved in proteomics database and screening biomarker to further study in human lung adenocarcinoma. The significance of the use of proteomics analysis of human pleural fluid for the search of new lung cancer marker proteins, and for their simultaneous display and analysis in patients suffering from lung disorders has been examined.
Horino, Taro; Matsumoto, Tatsuki; Inoue, Kosuke; Ichii, Osamu; Terada, Yoshio
2018-05-01
Sarcoidosis affects multiple organs including lung, heart and kidney. Sarcoidosis causes hypercalcemia, hypergammaglobulinemia, and rarely, granulomatous interstitial nephritis, resulting in renal stromal damage. Granulomatous interstitial nephritis is characterized as interstitial nephritis with noncaseating epithelioid granulomas. Diagnosing granulomatous interstitial nephritis before patient's death is challenging; hence, only few cases proven by renal biopsy have been reported till date. We present a case of acute kidney injury caused by granulomatous interstitial nephritis as a renal manifestation of sarcoidosis proven by renal biopsy, which can be confirmed by 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. Glucocorticoid therapy was helpful for improving and maintaining her renal function over a 6-year period.
Kvit, Anton A; Devine, Erin E; Jiang, Jack J; Vamos, Andrew C; Tao, Chao
2015-05-01
Vocal fold tissue is biphasic and consists of a solid extracellular matrix skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and to estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency, and material parameters were chosen based on those reported in the literature. Postprocessing included liquid velocity, pore pressure, and von Mises stress calculations as well as the frequency-stress and amplitude-stress relationships. Resulting time-averaged velocity vectors during vibration indicated liquid movement toward the midline of the fold, as well as upward movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just after vibration. A linear relationship was found between the amplitude and pore pressure, whereas a nonlinear relationship was found between the frequency and pore pressure. Although this study had certain computational simplifications, it is the first biphasic finite element model to use a realistic geometry and demonstrate the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline; however, the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.
2015-01-01
OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469
Evolution of anisotropy in bcc Fe distorted by interstitial boron
NASA Astrophysics Data System (ADS)
Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert
2018-01-01
The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.
Chylothorax in dermatomyositis complicated with interstitial pneumonia.
Isoda, Kentaro; Kiboshi, Takao; Shoda, Takeshi
2017-04-01
Chylothorax is a disease in which chyle leaks and accumulates in the thoracic cavity. Interstitial pneumonia and pneumomediastinum are common thoracic manifestations of dermatomyositis, but chylothorax complicated with dermatomyositis is not reported. We report a case of dermatomyositis with interstitial pneumonia complicated by chylothorax. A 77-year-old woman was diagnosed as dermatomyositis with Gottron's papules, skin ulcers, anti-MDA5 antibody and rapid progressive interstitial pneumonia. Treatment with betamethasone, tacrolimus and intravenous high-dose cyclophosphamide was initiated, and her skin symptoms and interstitial pneumonia improved once. However, right-sided chylothorax began to accumulate and gradually increase, and at the same time, her interstitial pneumonia began to exacerbate, and skin ulcers began to reappear on her fingers and auricles. Although her chylothorax improved by fasting and parenteral nutrition, she died due to further exacerbations of dermatomyositis and interstitial pneumonia in spite of steroid pulse therapy, increase in the betamethasone dosage, additional intravenous high-dose cyclophosphamide and plasma pheresis. An autopsy showed no lesions such as malignant tumors in the thoracic cavity. This is the first report of chylothorax complicated by dermatomyositis with interstitial pneumonia.
Water on Mars: Evidence from MER Mission Results
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2004-01-01
The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer, or "duricrust". Elemental analyzes at five sites on Mars show that these soils have sulfur content and chlorine content consistent with the presence of sulfates and halides as mineral cements. The soil is highly enriched in the salt-forming elements compared with rock. Analysis of the soil cementation indicates some features which may be evidence of liquid water. At both MER sites, duricrust textures revealed by the Microscopic Imager show features including the presence of fine sand-sized grains, some of which may be aggregates of fine silt and clay, surrounded by a pervasive light colored material that is associated with microtubular structures and networks of microfractures. Stereo views of undisturbed duricrust surfaces reveal rugged microrelief between 2-3 mm and minimal loose material. Comparisons of microscopic images of duricrust soils obtain before and after placement of the Mossbauer spectrometer indicate differing degrees of compaction and cementation. Two models of a transient water hypothesis are offered, a "top down" hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a "bottom up" alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water. The viability of both of these models ultimately hinges on the availability of seasonally transient liquid water for brief periods.
Transient Liquid Water as a Mechanism for Induration of Soil Crusts on Mars
NASA Technical Reports Server (NTRS)
Landis, G. A.; Blaney, D.; Cabrol, N.; Clark, B. C.; Farmer, J.; Grotzinger, J.; Greeley, R.; McLennan, S. M.; Richter, L.; Yen, A.
2004-01-01
The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer tagged as "duricrust". A hypothesis to explain the formation of duricrust on Mars should address not only the potential mechanisms by which these materials become cemented, but also the textural and compositional components of cemented Martian soils. Elemental analyzes at five sites on Mars show that these soils have sulfur content of up to 4%, and chlorine content of up to 1%. This is consistent with the presence of sulfates and halides as mineral cements. . For comparison, the rock "Adirondack" at the MER site, after the exterior layer was removed, had nearly five times lower sulfur and chlorine content , and the Martian meteorites have ten times lower sulfur and chlorine content, showing that the soil is highly enriched in the saltforming elements compared with rock.Here we propose two alternative models to account for the origin of these crusts, each requiring the action of transient liquid water films to mediate adhesion and cementation of grains. Two alternative versions of the transient water hypothesis are offered, a top down hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a bottom up alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water.
Smoking-related interstitial lung diseases.
Caminati, A; Graziano, P; Sverzellati, N; Harari, S
2010-12-01
In pulmonary pathology, a wide spectrum of morphological changes is related to the consequences of smoking, and recognizing them on surgical specimens and on small transbronchial biopsies represents a challenge for the pathologist. Respiratory bronchiolitis, also referred to as smoker's bronchiolitis, is a common histologic feature found in the lung tissue of cigarette smokers. When identified as the sole histopathologic finding in the clinical setting of symptomatic interstitial lung disease, a diagnosis of respiratory bronchiolitis-interstitial lung disease is made. Since smoking is recognized to cause a variety of histologic patterns encompassing respiratory bronchiolitis, respiratory bronchiolitis-interstitial lung disease, desquamative interstitial pneumonia and pulmonary Langerhans cell hystiocytosis, smoking-related interstitial lung disease may be a useful concept to keep in mind for the pathologists. The relationship of smoking with each of these entities has been largely established on the basis of epidemiologic evidence. Although they have been retained as distinct and separate conditions in various classifications of interstitial lung diseases, these entities share a number of clinical, radiologic, and pathologic features suggesting that they represent a spectrum of patterns of interstitial lung disease occurring in predisposed individuals who smoke. Evaluation of histologic features, particularly in surgical lung biopsy samples, is important in making the distinction between these disorders. However, even after tissue biopsy, it may sometimes be difficult to clearly separate these entities. Recently, respiratory bronchiolitis-interstitial lung disease with fibrosis has been described and postulated that this is a smoking-related condition distinct from fibrotic non-specific interstitial pneumonia.
Albanese, Elisa; Leccese, Mirko; Di Valentin, Cristiana; Pacchioni, Gianfranco
2016-01-01
N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700–1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering. PMID:27527493
2014-01-01
Background Acute interstitial pneumonia is a rare interstitial lung disease that rapidly progresses to respiratory failure or death. Several studies showed that myofibroblast plays an important role in the evolution of diffuse alveolar damage, which is the typical feature of acute interstitial pneumonia. However, no evidence exists whether alveolar epithelial cells are an additional source of myofibroblasts via epithelial-mesenchymal transition in acute interstitial pneumonia. Case presentation In this report, we present a case of acute interstitial pneumonia in a previously healthy 28-year-old non-smoking woman. Chest high-resolution computed tomography scan showed bilateral and diffusely ground-glass opacification. The biopsy was performed on the fifth day of her hospitalization, and results showed manifestation of acute exudative phase of diffuse alveolar damage characterized by hyaline membrane formation. On the basis of the preliminary diagnosis of acute interstitial pneumonia, high-dose glucocorticoid was used. However, this drug showed poor clinical response and could improve the patient’s symptoms only during the early phase. The patient eventually died of respiratory dysfunction. Histological findings in autopsy were consistent with the late form of acute interstitial pneumonia. Conclusions The results in this study revealed that alveolar epithelial cells underwent epithelial-mesenchymal transition and may be an important origin of myofibroblasts in the progression of acute interstitial pneumonia. Conducting research on the transformation of alveolar epithelial cells into myofibroblasts in the lung tissue of patients with acute interstitial pneumonia may be beneficial for the treatment of this disease. However, to our knowledge, no research has been conducted on this topic. PMID:24755111
Wijetunge, S; Ratnatunga, N V I; Abeysekera, T D J; Wazil, A W M; Selvarajah, M
2015-01-01
Chronic kidney disease of unknown etiology (CKDU) is endemic among the rural farming communities in several localities in and around the North Central region of Sri Lanka. This is an interstitial type renal disease and typically has an insidious onset and slow progression. This study was conducted to identify the pathological features in the different clinical stages of CKDU. This is a retrospective study of 251 renal biopsies identified to have a primary interstitial disease from regions endemic for CKDU. Pathological features were assessed and graded in relation to the clinical stage. The mean age of those affected by endemic CKDU was 37.3 ± 12.5 years and the male to female ratio was 3.3:1. The predominant feature of stage I disease was mild and moderate interstitial fibrosis; most did not have interstitial inflammation. The typical stage II disease had moderate interstitial fibrosis with or without mild interstitial inflammation. Stage III disease had moderate and severe interstitial fibrosis, moderate interstitial inflammation, tubular atrophy and some glomerulosclerosis. Stage IV disease typically had severe interstitial fibrosis and inflammation, tubular atrophy and glomerulosclerosis. The mean age of patients with stage I disease (27 ± 10.8 years) was significantly lower than those of the other stages. About 79.2%, 55%, 49.1% and 50% in stage I, II, III and IV disease respectively were asymptomatic at the time of biopsy.
Intravesical NGF Antisense Therapy Using Lipid Nanoparticle for Interstitial Cystitis
2015-10-01
intravesical botulinum toxin type A injec- tions plus hydrodistention with hydrodis- tention alone for the treatment of refractory interstitial cystitis/ painful ...SUPPLEMENTARY NOTES 14. ABSTRACT Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating disorder characterized by persistent pelvic pain ...from an animal efficacy experiment conducted during the previous period. The project is ongoing. 15. SUBJECT TERMS Interstitial cystitis/ painful
In vivo interstitial glucose characterization and monitoring in the skin by ATR-FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Skrebova Eikje, Natalja
2011-03-01
Successful development of real-time non-invasive glucose monitoring would represent a major advancement not only in the treatment and management of patients with diabetes mellitus and carbohydrate metabolism disorders, but also for understanding in those biochemical, metabolic and (patho-)physiological processes of glucose at the molecular level in vivo. Here, ATR-FTIR spectroscopy technique has been challenged not only for in vivo measurement of interstitial glucose levels, but also for their non-invasive molecular qualitative and quantitative comparative characterization in the skin tissue. The results, based on calculated mean values of determined 5 glucose-specific peaks in the glucose-related 1000-1160 cm-1 region, showed intra- and inter-subject differences in interstitial glucose activity levels with their changes at different times and doses of OGTT, while raising questions about the relationships between interstitial and blood glucose levels. In conclusion, the introduction of ATR-FTIR spectroscopy technique has opened up an access to the interstitial fluid space in the skin tissue for interstitial glucose characterization and monitoring in vivo. Though interstitial versus blood glucose monitoring has different characteristics, it can be argued that accurate and precise measurements of interstitial glucose levels may be more important clinically.
New insights into canted spiro carbon interstitial in graphite
NASA Astrophysics Data System (ADS)
EL-Barbary, A. A.
2017-12-01
The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.
A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.
NASA Astrophysics Data System (ADS)
Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian; Gasparovic, Richard F.; Pockalny, Robert A.
2000-08-01
A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.
Mechanisms of differentiation in the Skaergaard magma chamber
NASA Astrophysics Data System (ADS)
Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L. P.; Humphreys, M. C. S.; Thy, P.
2012-04-01
The Skaergaard intrusion is a superb natural laboratory for studying mechanisms of magma chamber differentiation. The magnificent exposures and new systematic sample sets of rocks that solidified inwards from the roof, walls and floor of the chamber provide means to test the relative roles of crystal settling, diffusion, convection, liquid immiscibility and compaction in different regions of the chamber and in opposite positions relative to gravity. Examination of the melt inclusions and interstitial pockets has demonstrated that a large portion of intrusion crystallized from an emulsified magma chamber composed of immiscible silica- and iron-rich melts. The similarity of ratios of elements with opposite partitioning between the immiscible melts (e.g. P and Rb) in wall, floor and roof rocks, however, indicate that large-scale separation did not occur. Yet, on a smaller scale of metres to hundred of metres and close to the interface between the roof and floor rocks (the Sandwich Horizon), irregular layers and pods of granophyre hosted by extremely iron-rich cumulates point to some separation of the two liquid phases. Similar proportions of the primocryst (cumulus) minerals in roof, wall and floor rocks indicate that crystal settling was not an important mechanism. Likewise, the lack of fractionation of elements with different behavior indicate that diffusion and fluid-driven metasomatism played relatively minor roles. Compositional convection and/or compaction within the solidifying crystal mush boundary layer are likely the most important mechanisms. A correlation of low trapped liquid fractions (calculated from strongly incompatible elements) in floor rocks with high fractionation density (the density difference between the crystal framework and the liquid) indicate that compaction is the dominating process in expelling evolved liquid from the crystal mush layer. This is supported by high and variable trapped liquid contents in the roof rocks, where gravity-driven compaction will not work.
Lung volumes and emphysema in smokers with interstitial lung abnormalities.
Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O
2011-03-10
Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; P<0.001) and a lower percentage of emphysema defined by lung-attenuation thresholds of -950 Hounsfield units (-3%; 95% CI, -4 to -2; P<0.001) and -910 Hounsfield units (-10%; 95% CI, -12 to -8; P<0.001). As compared with participants without interstitial lung abnormalities, those with abnormalities were more likely to have a restrictive lung deficit (total lung capacity <80% of the predicted value; odds ratio, 2.3; 95% CI, 1.4 to 3.7; P<0.001) and were less likely to meet the diagnostic criteria for chronic obstructive pulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).
Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and ... is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among coal ...
Wijetunge, S.; Ratnatunga, N. V. I.; Abeysekera, T. D. J.; Wazil, A. W. M.; Selvarajah, M.
2015-01-01
Chronic kidney disease of unknown etiology (CKDU) is endemic among the rural farming communities in several localities in and around the North Central region of Sri Lanka. This is an interstitial type renal disease and typically has an insidious onset and slow progression. This study was conducted to identify the pathological features in the different clinical stages of CKDU. This is a retrospective study of 251 renal biopsies identified to have a primary interstitial disease from regions endemic for CKDU. Pathological features were assessed and graded in relation to the clinical stage. The mean age of those affected by endemic CKDU was 37.3 ± 12.5 years and the male to female ratio was 3.3:1. The predominant feature of stage I disease was mild and moderate interstitial fibrosis; most did not have interstitial inflammation. The typical stage II disease had moderate interstitial fibrosis with or without mild interstitial inflammation. Stage III disease had moderate and severe interstitial fibrosis, moderate interstitial inflammation, tubular atrophy and some glomerulosclerosis. Stage IV disease typically had severe interstitial fibrosis and inflammation, tubular atrophy and glomerulosclerosis. The mean age of patients with stage I disease (27 ± 10.8 years) was significantly lower than those of the other stages. About 79.2%, 55%, 49.1% and 50% in stage I, II, III and IV disease respectively were asymptomatic at the time of biopsy. PMID:26628792
Deficiency of interstitial cells of Cajal in the small intestine of patients with Crohn's disease.
Porcher, Christophe; Baldo, Marjolaine; Henry, Monique; Orsoni, Pierre; Julé, Yvon; Ward, Sean M
2002-01-01
Interstitial cells of Cajal are critical for the generation of electrical slow waves that regulate the phasic contractile activity of the tunica muscularis of the GI tract. Under certain pathophysiological conditions loss of interstitial cells of Cajal may play a role in the generation of certain motility disorders. The aim of the present study was to determine if there is an abnormality in the density or distribution of interstitial cells of Cajal from patients with Crohn's disease. Small intestines from control subjects and patients with Crohn's disease were examined using immunohistochemistry and antibodies against the Kit receptor, which is expressed in interstitial cells of Cajal within the tunica muscularis of the GI tract. The density and distribution of interstitial cells of Cajal were assessed in the longitudinal and circular muscle layers and in the myenteric and deep muscular plexus regions of Crohn's and control tissues. Tissues from Crohn's disease patients showed an almost complete abolition of interstitial cells of Cajal within the longitudinal and circular muscle layers and a significant reduction in numbers at the level of the myenteric and deep muscular plexuses. In tissues from Crohn's disease patients, the density of interstitial cells of Cajal was reduced throughout the tunica muscularis in comparison to control small intestines. The disturbance of intestinal motility that occurs in patients with Crohn's disease may be a consequence of the loss of or defects in specific populations of interstitial cells of Cajal within the tunica muscularis.
Hwang, Jeong-Hwa; Misumi, Shigeki; Sahin, Hakan; Brown, Kevin K; Newell, John D; Lynch, David A
2009-01-01
To compare the computed tomographic (CT) features of idiopathic fibrosing interstitial pneumonia with those of pulmonary fibrosis related to collagen vascular disease (CVD). We reviewed the CT scans of 177 patients with diffuse interstitial pulmonary fibrosis, of which 97 had idiopathic fibrosing interstitial pneumonia and 80 had CVD. The CT images were systematically scored for the presence and extent of pulmonary and extrapulmonary abnormalities. Computed tomographic diagnosis of usual interstitial pneumonia (UIP) or nonspecific interstitial pneumonia (NSIP) was assigned. A CT pattern of UIP was identified in 59 (60.8%) of patients with idiopathic fibrosing interstitial pneumonia compared with 15 (18.7%) of those patients with CVD; conversely, the CT diagnosis of NSIP was made in 51 (64%) of patients with CVD compared with 36 (37%) of patients with idiopathic disease (P < 0.01). In 113 patients who had lung biopsy, the CT diagnoses of UIP and NSIP were concordant with the histologic diagnoses in 36 of 50 patients and 34 of 41 patients, respectively. Pleural effusions, esophageal dilation, and pericardial abnormalities were more frequent in patients with CVD than in patients with idiopathic fibrosing interstitial pneumonia. Compared with patients with CVD, those patients with an idiopathic fibrosing interstitial pneumonia showed a higher prevalence of a UIP pattern and lower prevalence of an NSIP pattern as determined by CT. Identification of coexisting extrapulmonary abnormalities on CT can support a diagnosis of CVD.
Time scales of transient enhanced diffusion: Free and clustered interstitials
NASA Astrophysics Data System (ADS)
Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.
1996-12-01
Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.
Dukhin, Stanislav S.; Labib, Mohamed E.
2016-01-01
Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection. Surprisingly, it was overlooked that there is a more favorable drug release mode which can be achieved when a special DDD is implanted near lymphatics. This opportunity can be realized when the interstitial fluid flow penetrates a drug delivery device of proper design and allows such fluid to flow out of it. This design is based on hollow fibers loaded with drug and whose hydrodynamic permeability is much higher than that of the surrounding tissue. The latter is referred to as hollow fiber of high hydrodynamic permeability (HFHP). The interstitial flow easily penetrates the hollow fiber membrane as well as its lumen with a higher velocity than that in the adjacent tissue. The interstitial liquid stream entering the lumen becomes almost saturated with drug as it flows out of the HFHP. This is due to the drug powder dissolution in the lumens of HFHP which forms a strip of drug solution that crosses the interstitium and finally enters the lymphatics. This hydrodynamically-driven release (HDR) may exceed the concomitant diffusion-driven release (DDR) by one or even two orders of magnitude. The hydrodynamics of the two-compartment media is sufficient for developing the HDR theory which is detailed in this paper. Convective diffusion theory for two compartments (membrane of hollow fiber and adjacent tissue) is required for exact quantification when a small contribution of DDR to predominating HDR is present. Hence, modeling is important for HDR which would lead to establishing a new branch in physico-chemical hydrodynamics. The release rate achieved with the use of HFHP increases proportional to the number of hollow fibers in the fabric employed in drug delivery. Based on this contribution, it is now possible to simultaneously provide high release rates and long release durations, thus overcoming a fundamental limitation in drug delivery. Perhaps this breakthrough in long-term drug delivery has potential applications in targeting lymphatics and in treating cancer and cancer metastasis without causing the serious side effects of systemic drugs. PMID:28579697
Induced Autologous Stem Cell Transplantation for Treatment of Rabbit Renal Interstitial Fibrosis
Ruan, Guang-Ping; Xu, Fan; Li, Zi-An; Zhu, Guang-Xu; Pang, Rong-Qing; Wang, Jin-Xiang; Cai, Xue-Min; He, Jie; Yao, Xiang; Ruan, Guang-Hong; Xu, Xin-Ming; Pan, Xing-Hua
2013-01-01
Introduction Renal interstitial fibrosis (RIF) is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. Methods A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP). These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. Results Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05) were observed in serum creatinine (SCr) (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L) and blood urea nitrogen (BUN) (119 ± 22 µmol/L to 97 ± 13 µmol/L), indicating improvement in renal function. Conclusions We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function. PMID:24367598
NASA Technical Reports Server (NTRS)
Goesele, U.; Ast, D. G.
1983-01-01
Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.
Yagishita, Mizuki; Kondo, Yuya; Terasaki, Toshihiko; Terasaki, Mayu; Shimizu, Masaru; Honda, Fumika; Oyama, Ayako; Takahashi, Hiroyuki; Yokosawa, Masahiro; Asashima, Hiromitsu; Hagiwara, Shinya; Tsuboi, Hiroto; Matsumoto, Isao; Sumida, Takayuki
2018-02-28
Patients with clinically amyopathic dermatomyositis (CADM), a subset of dermatomyositis characterized by a lack of muscle involvement, frequently develop rapidly progressive and treatment-resistant interstitial lung disease. We report the case of a 49-year-old man who was diagnosed with CADM. He developed interstitial pneumonia, which did not respond to combination therapy with methylprednisolone pulse therapy, cyclophosphamide, and cyclosporine. We therefore attempted plasma exchange. After 7 courses of therapeutic plasma exchange, the interstitial pneumonia gradually improved. This case suggests that plasma exchange might be an effective therapeutic option for patients with progressive interstitial lung disease in steroid- and immunosuppressive therapy-refractive CADM.
NASA Astrophysics Data System (ADS)
Abe, T.; Takahashi, T.; Shirai, K.
2017-02-01
In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.
Casting core for a cooling arrangement for a gas turbine component
Lee, Ching-Pang; Heneveld, Benjamin E
2015-01-20
A ceramic casting core, including: a plurality of rows (162, 166, 168) of gaps (164), each gap (164) defining an airfoil shape; interstitial core material (172) that defines and separates adjacent gaps (164) in each row (162, 166, 168); and connecting core material (178) that connects adjacent rows (170, 174, 176) of interstitial core material (172). Ends of interstitial core material (172) in one row (170, 174, 176) align with ends of interstitial core material (172) in an adjacent row (170, 174, 176) to form a plurality of continuous and serpentine shaped structures each including interstitial core material (172) from at least two adjacent rows (170, 174, 176) and connecting core material (178).
Suskind, Anne M; Berry, Sandra H; Ewing, Brett A; Elliott, Marc N; Suttorp, Marika J; Clemens, J Quentin
2013-01-01
As part of the RICE (RAND Interstitial Cystitis Epidemiology) study, we developed validated case definitions to identify interstitial cystitis/bladder pain syndrome in women and chronic prostatitis/chronic pelvic pain syndrome in men. Using population based screening methods, we applied these case definitions to determine the prevalence of these conditions in men. A total of 6,072 households were contacted by telephone to screen for men who had symptoms of interstitial cystitis/bladder pain syndrome or chronic prostatitis/chronic pelvic pain syndrome. An initial 296 men screened positive, of whom 149 met the inclusionary criteria and completed the telephone interview. For interstitial cystitis/bladder pain syndrome 2 case definitions were applied (1 with high sensitivity and 1 with high specificity), while for chronic prostatitis/chronic pelvic pain syndrome a single case definition (with high sensitivity and specificity) was used. These case definitions were used to classify subjects into groups based on diagnosis. The interstitial cystitis/bladder pain syndrome weighted prevalence estimates for the high sensitivity and high specificity definitions were 4.2% (3.1-5.3) and 1.9% (1.1-2.7), respectively. The chronic prostatitis/chronic pelvic pain syndrome weighted prevalence estimate was 1.8% (0.9-2.7). These values equate to 1,986,972 (95% CI 966,042-2,996,924) men with chronic prostatitis/chronic pelvic pain syndrome and 2,107,727 (95% CI 1,240,485-2,974,969) men with the high specificity definition of interstitial cystitis/bladder pain syndrome in the United States. The overlap between men who met the high specificity interstitial cystitis/bladder pain syndrome case definition or the chronic prostatitis/chronic pelvic pain syndrome case definition was 17%. Symptoms of interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome are widespread among men in the United States. The prevalence of interstitial cystitis/bladder pain syndrome symptoms in men approaches that in women, suggesting that this condition may be underdiagnosed in the male population. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindel, Joshua; Muruganandham, Manickam; Pigge, F. Christopher
Purpose: To present a novel marker-flange, addressing source-reconstruction uncertainties due to the artifacts of a titanium intracavitary applicator used for magnetic resonance imaging (MRI)-guided high-dose-rate (HDR) brachytherapy (BT); and to evaluate 7 different MRI marker agents used for interstitial prostate BT and intracavitary gynecologic HDR BT when treatment plans are guided by MRI. Methods and Materials: Seven MRI marker agents were analyzed: saline solution, Conray-60, copper sulfate (CuSO{sub 4}) (1.5 g/L), liquid vitamin E, fish oil, 1% agarose gel (1 g agarose powder per 100 mL distilled water), and a cobalt–chloride complex contrast (C4) (CoCl{sub 2}/glycine = 4:1). A plastic,more » ring-shaped marker-flange was designed and tested on both titanium and plastic applicators. Three separate phantoms were designed to test the marker-flange, interstitial catheters for prostate BT, and intracavitary catheters for gynecologic HDR BT. T1- and T2-weighted MRI were analyzed for all markers in each phantom and quantified as percentages compared with a 3% agarose gel background. The geometric accuracy of the MR signal for the marker-flange was measured using an MRI-CT fusion. Results: The CuSO{sub 4} and C4 markers on T1-weighted MRI and saline on T2-weighted MRI showed the highest signals. The marker-flange showed hyper-signals of >500% with CuSO{sub 4} and C4 on T1-weighted MRI and of >400% with saline on T2-weighted MRI on titanium applicators. On T1-weighted MRI, the MRI signal inaccuracies of marker-flanges were measured <2 mm, regardless of marker agents, and that of CuSO{sub 4} was 0.42 ± 0.14 mm. Conclusion: The use of interstitial/intracavitary markers for MRI-guided prostate/gynecologic BT was observed to be feasible, providing accurate source pathway reconstruction. The novel marker-flange can produce extremely intense, accurate signals, demonstrating its feasibility for gynecologic HDR BT.« less
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.
2014-05-01
We demonstrated the application of relative radiance-based continuous wave (cw) measurements for recovering absorption and scattering properties (the effective attenuation coefficient, the diffusion coefficient, the absorption coefficient and the reduced scattering coefficient) of bulk porcine muscle phantoms in the 650-900 nm spectral range. Both the side-firing fiber (the detector) and the fiber with a spherical diffuser at the end (the source) were inserted interstitially at predetermined locations in the phantom. The porcine phantoms were prostate-shaped with ˜4 cm in diameter and ˜3 cm thickness and made from porcine loin or tenderloin muscles. The described method was previously validated using the diffusion approximation on simulated and experimental radiance data obtained for homogenous Intralipid-1% liquid phantom. The approach required performing measurements in two locations in the tissue with different distances to the source. Measurements were performed on 21 porcine phantoms. Spectral dependences of the effective attenuation and absorption coefficients for the loin phantom deviated from corresponding dependences for the tenderloin phantom for wavelengths <750 nm. The diffusion constant and the reduced scattering coefficient were very close for both phantom types. To quantify chromophore presence, the plot for the absorption coefficient was matched with a synthetic absorption spectrum constructed from deoxyhemoglobin, oxyhemoglobin and water. The closest match for the porcine loin spectrum was obtained with the following concentrations: 15.5 µM (±30% s.d.) Hb, 21 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The tenderloin absorption spectrum was best described by 30 µM Hb (±30% s.d), 19 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The higher concentration of Hb in tenderloin was consistent with a dark-red appearance of the tenderloin phantom. The method can be applied to a number of biological tissues and organs for interstitial optical interrogation.
Towner, Rheal A; Wisniewski, Amy B; Wu, Dee H; Van Gordon, Samuel B; Smith, Nataliya; North, Justin C; McElhaney, Rayburt; Aston, Christopher E; Shobeiri, S Abbas; Kropp, Bradley P; Greenwood-Van Meerveld, Beverley; Hurst, Robert E
2016-03-01
Interstitial cystitis/bladder pain syndrome is a bladder pain disorder associated with voiding symptomatology and other systemic chronic pain disorders. Currently diagnosing interstitial cystitis/bladder pain syndrome is complicated as patients present with a wide range of symptoms, physical examination findings and clinical test responses. One hypothesis is that interstitial cystitis symptoms arise from increased bladder permeability to urine solutes. This study establishes the feasibility of using contrast enhanced magnetic resonance imaging to quantify bladder permeability in patients with interstitial cystitis. Permeability alterations in bladder urothelium were assessed by intravesical administration of the magnetic resonance imaging contrast agent Gd-DTPA (Gd-diethylenetriaminepentaacetic acid) in a small cohort of patients. Magnetic resonance imaging signal intensity in patient and control bladders was compared regionally and for entire bladders. Quantitative assessment of magnetic resonance imaging signal intensity indicated a significant increase in signal intensity in anterior bladder regions compared to posterior regions in patients with interstitial cystitis (p <0.01) and significant increases in signal intensity in anterior bladder regions (p <0.001). Kurtosis (shape of probability distribution) and skewness (measure of probability distribution asymmetry) were associated with contrast enhancement in total bladders in patients with interstitial cystitis vs controls (p <0.05). Regarding symptomatology interstitial cystitis cases differed significantly from controls on the SF-36®, PUF (Pelvic Pain and Urgency/Frequency) and ICPI (Interstitial Cystitis Problem Index) questionnaires with no overlap in the score range in each group. ICSI (Interstitial Cystitis Symptom Index) differed significantly but with a slight overlap in the range of scores. Data suggest that contrast enhanced magnetic resonance imaging provides an objective, quantifiable measurement of bladder permeability that could be used to stratify bladder pain patients and monitor therapy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Rahaghi, Farbod N; Sanchez-Ferrero, Gonzalo Vegas; Putman, Rachel K; Hunninghake, Gary M; Onieva, Jorge Onieva; Martinez, Fernando J; Choi, Augustine M; Bowler, Russell P; Lynch, David A; Hatabu, Hiroto; Bhatt, Surya P; Dransfield, Mark T; Wells, J Michael; Rosas, Ivan O; San Jose Estepar, Raul; Washko, George R
2018-06-05
Purpose To determine if interstitial features at chest CT enhance the effect of emphysema on clinical disease severity in smokers without clinical pulmonary fibrosis. Materials and Methods In this retrospective cohort study, an objective CT analysis tool was used to measure interstitial features (reticular changes, honeycombing, centrilobular nodules, linear scar, nodular changes, subpleural lines, and ground-glass opacities) and emphysema in 8266 participants in a study of chronic obstructive pulmonary disease (COPD) called COPDGene (recruited between October 2006 and January 2011). Additive differences in patients with emphysema with interstitial features and in those without interstitial features were analyzed by using t tests, multivariable linear regression, and Kaplan-Meier analysis. Multivariable linear and Cox regression were used to determine if interstitial features modified the effect of continuously measured emphysema on clinical measures of disease severity and mortality. Results Compared with individuals with emphysema alone, those with emphysema and interstitial features had a higher percentage predicted forced expiratory volume in 1 second (absolute difference, 6.4%; P < .001), a lower percentage predicted diffusing capacity of lung for carbon monoxide (DLCO) (absolute difference, 7.4%; P = .034), a 0.019 higher right ventricular-to-left ventricular (RVLV) volume ratio (P = .029), a 43.2-m shorter 6-minute walk distance (6MWD) (P < .001), a 5.9-point higher St George's Respiratory Questionnaire (SGRQ) score (P < .001), and 82% higher mortality (P < .001). In addition, interstitial features modified the effect of emphysema on percentage predicted DLCO, RVLV volume ratio, 6WMD, SGRQ score, and mortality (P for interaction < .05 for all). Conclusion In smokers, the combined presence of interstitial features and emphysema was associated with worse clinical disease severity and higher mortality than was emphysema alone. In addition, interstitial features enhanced the deleterious effects of emphysema on clinical disease severity and mortality. © RSNA, 2018 Online supplemental material is available for this article.
Numerical Modeling of Fluid Flow in Solid Tumors
Soltani, M.; Chen, P.
2011-01-01
A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952
Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn 1 + δ Sb
Taylor, Alice E.; Berlijn, Tom; Hahn, Steven E.; ...
2015-06-15
We repormore » t elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn 1 + δ Sb . Measurements were performed on a large, T C = 434 K, single crystal with interstitial Mn content of δ ≈ 0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (H K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. Finally, the results show that the influence of the interstitial Mn on the magnetic state in this system is more important than previously understood.« less
The pulmonary histopathology of anti-KS transfer RNA synthetase syndrome.
Schneider, Frank; Aggarwal, Rohit; Bi, David; Gibson, Kevin; Oddis, Chester; Yousem, Samuel A
2015-01-01
The clinical spectrum of the antisynthetase syndromes (AS) has been poorly defined, although some frequently present with pulmonary manifestations. The anti-KS anti-asparaginyl-transfer RNA synthetase syndrome is one in which pulmonary interstitial lung disease is almost always present and yet the histopathologic spectrum is not well described. To define the morphologic manifestations of pulmonary disease in those patients with anti-KS antiasparaginyl syndrome. We reviewed the connective tissue disorder registry of the University of Pittsburgh and identified those patients with anti-KS autoantibodies who presented with interstitial lung disease and had surgical lung biopsies. The 5 patients with anti-KS antisynthetase syndrome were usually women presenting with dyspnea and without myositis, but with mechanic's hands (60%) and Raynaud phenomenon (40%). They most often presented with a usual interstitial pneumonia pattern of fibrosis (80%), with the final patient displaying organizing pneumonia. Pulmonary interstitial lung disease is a common presentation in patients with the anti-KS-antisynthetase syndrome, who are often women with rather subtle or subclinical connective tissue disease, whereas the literature emphasizes the nonspecific interstitial pneumonia pattern often diagnosed clinically. Usual interstitial pneumonia and organizing pneumonia patterns of interstitial injury need to be added to this clinical differential diagnosis.
Scalar mixtures in porous media
NASA Astrophysics Data System (ADS)
Kree, Mihkel; Villermaux, Emmanuel
2017-10-01
Using a technique allowing for in situ measurements of concentrations fields, the evolution of scalar mixtures flowing within a porous medium made of a three-dimensional random stack of solid spheres, is addressed. Two distinct fluorescent dyes are injected from separate sources. Their evolution as they disperse and mix through the medium is directly observed and quantified, which is made possible by matching the refractive indices of the spheres and the flowing interstitial liquid. We decipher the nature of the interaction rule between the scalar sources, explaining the phenomenon that alters the concentration distribution of the overall mixture as it decays toward uniformity. Any residual correlation of the initially merged sources is progressively hidden, leading to an effective fully random interaction rule of the two distinct subfields.
Lung transplantation and interstitial lung disease.
Alalawi, Raed; Whelan, Timothy; Bajwa, Ravinder S; Hodges, Tony N
2005-09-01
Interstitial lung disease includes a heterogeneous group of disorders that leads to respiratory insufficiency and death in a significant number of patients. Lung transplantation is a therapeutic option in select candidates. The indications, transplant procedure options, and outcomes continue to evolve. Various recipient comorbidities influence the choice of procedure in patients with interstitial lung disease. Single lung transplants are used as the procedure of choice and bilateral transplants are reserved for patients with suppurative lung disease and patients with pulmonary hypertension. Issues unique to patients with interstitial lung disease affect the morbidity, mortality and recurrence of the disease. Lung transplantation is an effective therapy for respiratory failure in interstitial lung disease with survival following transplant being similar to that achieved in transplant recipients with other diseases.
NASA Astrophysics Data System (ADS)
Kanitpanyacharoen, W.; Boudreau, A. E.
2013-02-01
The petrology of base metal sulfides and associated accessory minerals in rocks away from economically significant ore zones such as the Merensky Reef of the Bushveld Complex has previously received only scant attention, yet this information is critical in the evaluation of models for the formation of Bushveld-type platinum-group element (PGE) deposits. Trace sulfide minerals, primarily pyrite, pyrrhotite, pentlandite, and chalcopyrite are generally less than 100 microns in size, and occur as disseminated interstitial individual grains, as polyphase assemblages, and less commonly as inclusions in pyroxene, plagioclase, and olivine. Pyrite after pyrrhotite is commonly associated with low temperature greenschist alteration haloes around sulfide grains. Pyrrhotite hosted by Cr- and Ti-poor magnetite (Fe3O4) occurs in several samples from the Marginal to Lower Critical Zones below the platiniferous Merensky Reef. These grains occur with calcite that is in textural equilibrium with the igneous silicate minerals, occur with Cl-rich apatite, and are interpreted as resulting from high temperature sulfur loss during degassing of interstitial liquid. A quantitative model demonstrates how many of the first-order features of the Bushveld ore metal distribution could have developed by vapor refining of the crystal pile by chloride-carbonate-rich fluids during which sulfur and sulfide are continuously recycled, with sulfur moving from the interior of the crystal pile to the top during vapor degassing.
NASA Astrophysics Data System (ADS)
Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.; Myers, K. F.; Dugan, H.; Doran, P. T.; Virginia, R. A.
2016-12-01
Closed depressions in the Lower Taylor Valley (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by about an order of magnitude than the resistivity of nearby slopes and ridges (100s of ohm-m vs. 1000s). We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and/or deliquescent vapor fronts. High concentration of salts in the top decimeters to meters beneath the surface may prolong the existence and abundance of liquid water in this otherwise very cold and dry high polar desert. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Transient EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation. In areas where we measured low resistivity, the integrated liquid water fraction in the top 5m may be a few to several percent by volume, equivalent to a few or several dozens of cm of water layer thickness. This estimate assumes that the interstitial waters have very low resistivity, comparable to seawater or hypersaline brines at freezing (0.2-0.35 ohm-m). If soil water was considerably fresher than this, liquid water content would have to reach dozens of percent throughout the top 5m for bulk resistivities to drop to 100s of ohm-m. We consider the latter case to be unlikely as the thermally defined active layer in this region with mean annual temperature close to -20C and short summer season is as thin as dozens of cm. The areas with high near-surface resistivities have either a comparable fraction of water but with much higher resistivity or have briny interstitial water at much lower volume concentrations (<1% in top 5m). We favor the former explanation. Closed depressions in the Lake Fryxell basin (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by almost an order of magnitude than nearby slopes and ridges. We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and deliquescent vapor fronts. Highly hygroscopic salts may prolong the existence and abundance of liquid water in the near surface in this otherwise very cold and dry high polar desert. In areas with low measured resistivity, the liquid water fraction in the top 5m may be a few percent by volume. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Time Domain EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation.
Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.
2007-01-01
Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156
NASA Astrophysics Data System (ADS)
Martin, E.; Sigmarsson, O.
2006-12-01
How the continental crust began to form early in Earth's history is unconstrained. However, it is reasonable to presume that higher heat flow in the past, resulted in more frequent interaction of mantle plumes and mid- oceanic ridges. If true, then Iceland could be a good analogue for processes occurring on Earth at its youth stage. This is supported by the relatively high abundance of silicic rocks in Iceland but their rarity on other oceanic hot spots. The origin of Icelandic silicic rocks has been a subject of a lively debate but has been shown to be principally formed by partial melting of hydrothermally altered basaltic crust. However, in rare cases, their origin by fractional crystallization from mantle derived basalts is suggested. Segregation veins in lava flows frequently contain interstitial glasses of silicic compositions. Moreover, they allow an exceptional overview of the fractional crystallization mechanism. These veins form by gas filter pressing during cooling and degassing of solidifying lava flows, after approximately 50% fractional crystallization of anhydrous minerals. Pairs of samples, host lava and associated segregation veins, from Reykjanes Peninsula (Iceland), Lanzarote (Canary Island) and Masaya's volcano (Nicaragua), allow the assessment of a near-complete fractional crystallization of olivine tholeiitic basalt at pressure close to one atmosphere. Interstitial glass patches in segregation veins represent the final product of this process (80 97 % of fractional crystallization). These ultimate liquids are of granitic composition in the case of Lanzarote and Masaya but overwhelmingly trondhjemitic at Reykjanes. It appears that the initial K2O/Na2O of the basaltic liquid controls the evolution path of the residual liquid composition produced at pressure close to 0.1 MPa (1 bar). Granitic liquids are generated from basalts of high initial K2O/Na2O whereas low initial K2O/Na2O leads to trondhjemitic compositions. The trondhjemitic composition of glass patches from the segregation vein at Reykjanes Peninsula differs from Icelandic silicic magmas but is close to those of the Archaean TTG (trondhjemite-tonalite-granodiorite) suite. Taken at face value, this may imply that fractional crystallisation of olivine tholeiites (low K2O/Na2O) could have played a significant role during the formation of the early continental crust. At higher pressure, where garnet is on liquidus, fractional crystallisation can generate the observed trace element patterns observed in TTG. The progressive cooling, crystallization and degassing of basaltic magma ocean, thought to have been prevailing during the Hadean, could have led to high degree of fractional crystallization producing significant volume of trondhjemitic melts that because of its buoyancy contributed to the formation of the earliest continental crust.
Interstitial protein alterations in rabbit vocal fold with scar.
Thibeault, Susan L; Bless, Diane M; Gray, Steven D
2003-09-01
Fibrous and interstitial proteins compose the extracellular matrix of the vocal fold lamina propria and account for its biomechanic properties. Vocal fold scarring is characterized by altered biomechanical properties, which create dysphonia. Although alterations of the fibrous proteins have been confirmed in the rabbit vocal fold scar, interstitial proteins, which are known to be important in wound repair, have not been investigated to date. Using a rabbit model, interstitial proteins decorin, fibromodulin, and fibronectin were examined immunohistologically, two months postinduction of vocal fold scar by means of forcep biopsy. Significantly decreased decorin and fibromodulin with significantly increased fibronectin characterized scarred vocal fold tissue. The implications of altered interstitial proteins levels and their affect on the fibrous proteins will be discussed in relation to increased vocal fold stiffness and viscosity, which characterizes vocal fold scar.
CT in the diagnosis of interstitial lung disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergin, C.J.; Mueller, N.L.
1985-09-01
The computed tomographic (CT) appearance of interstitial lung disease was assessed in 23 patients with known interstitial disease. These included seven patients with fibrosing alveolitis, six with silicosis, two with hypersensitivity pneumonitis, three with lymphangitic spread of tumor, two with sarcoidosis, one with rheumatoid lung disease, and two with neurofibromatosis. The CT appearance of the interstitial changes in the different disease entities was assessed. Nodules were a prominent CT feature in silicosis, sarcoidosis, and lymphangitic spread of malignancy. Distribution of nodules and associated interlobular septal thickening provided further distinguishing features in these diseases. Reticular densities were the predominant CT changemore » in fibrosing alveolitis, rheumatoid lung disease, and extrinsic allergic alveolitis. CT can be useful in the investigation of selected instances of interstitial pulmonary disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
Populations of subplate and interstitial neurons in fetal and adult human telencephalon.
Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša
2010-10-01
In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.
Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Clark, Sara L; Voorhees, Jennifer P; Tjeerdema, Ron S; Casteline, Jane; Stewart, Margaret
2009-02-01
Phase I whole sediment toxicity identification evaluation (TIE) methods have been developed to characterize the cause of toxicity as organic chemicals, metals, or ammonia. In Phase II identification treatments, resins added to whole sediment to reduce toxicity caused by metals and organics can be separated and eluted much like solid-phase extraction (SPE) columns are eluted for interstitial water. In this study, formulated reference sediments spiked with toxic concentrations of copper, fluoranthene, and nonylphenol were subjected to whole sediment and interstitial water TIE treatments to evaluate Phase I and II TIE procedures for identifying the cause of toxicity to Hyalella azteca. Phase I TIE treatments consisted of adding adsorbent resins to whole sediment, and using SPE columns to remove spiked chemicals from interstitial water. Phase II treatments consisted of eluting resins and SPE columns and the preparation and testing of eluates for toxicity and chemistry. Whole sediment resins and SPE columns significantly reduced toxicity, and the eluates from all treatments contained toxic concentrations of the spiked chemical except for interstitial water fluoranthene. Toxic unit analysis based on median lethal concentrations (LC50s) allowed for the comparison of chemical concentrations among treatments, and demonstrated that the bioavailability of some chemicals was reduced in some samples and treatments. The concentration of fluoranthene in the resin eluate closely approximated the original interstitial water concentration, but the resin eluate concentrations of copper and nonylphenol were much higher than the original interstitial water concentrations. Phase II whole sediment TIE treatments provided complementary lines of evidence to the interstitial water TIE results.
Coxiella burnetii, a hidden pathogen in interstitial lung disease?
Melenotte, Cléa; Izaaryene, Jalal-Jean; Gomez, Carine; Delord, Marion; Prudent, Elsa; Lepidi, Hubert; Mediannikov, Oleg; Lacoste, Marion; Djossou, Felix; Mania, Alexandre; Bernard, Noelle; Huchot, Eric; Mège, Jean-Louis; Brégeon, Fabienne; Raoult, Didier
2018-04-06
We report 7 patients with interstitial lung disease (ILD) on CT-scan reviewing. C. burnetii was diagnosed in situ in one lung biopsy performed. All patients had advanced interstitial lung fibrosis and persistent C. burnetii infection. Q fever may be a cofactor of ILD, especially in endemic areas.
[Modern Views on Children's Interstitial Lung Disease].
Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu
2015-01-01
Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.
NASA Astrophysics Data System (ADS)
Mathayan, Vairavel; Kothalamuthu, Saravanan; Gnanasekaran, Jaiganesh; Balakrishnan, Sundaravel; Panigrahi, Binaykumar
2018-01-01
The O18 and self ions are implanted at same depth in Fe (1 1 0) crystal and annealed to study the oxygen trapping under excess self interstitial defects. Rutherford backscattering spectrometry, nuclear reaction analysis and channeling measurements have been performed to determine the lattice site position of O18. The presence of dislocation loops is confirmed by energy-dependent dechanneling parameter measurements. From the tilt angular scans of Fe and O18 signals along 〈1 0 0〉, 〈1 1 0〉 axes, O18 is found to be displaced 0.2 Å from tetrahedral towards octahedral interstitial site in O18. Similar lattice site location of oxygen with the displacement of 0.37 Å is predicted by density functional theory calculations for the interaction of oxygen with 〈1 0 0〉 interstitial dislocation loop structure. Our results provide strong evidence on oxygen trapping at interstitial dislocation loops in the presence of excess interstitial defects in iron.
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.
2013-01-01
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149
Probing Chemical Properties of Interstitial Micro-fluids in Ice
NASA Astrophysics Data System (ADS)
Cheng, J.; Colussi, A. J.; Hoffmann, M. R.
2007-12-01
Liquid is present as microscopic channels in polycrystalline ice at sub-freezing and even sub-eutectic temperatures. Not only do chemicals tend to concentrate substantially in this microscopic liquid phase, but local physicochemical properties may also differ widely from the bulk counterparts, therefore critically affecting the thermodynamics and kinetics of chemical processes occurring in frozen media such as snow, frost, and frost- flowers. This phenomenon has important implications in atmospheric chemistry such as affecting the composition of the atmospheric boundary layer in snow-covered regions. A method using con-focal laser scanning microscope equipped with a cryostat has been developed to measure physicochemical properties of the microscopic liquid phase in ice that are not readily extrapolated from the bulk data. The experimental setup allows for monitoring the freezing process of an aqueous solution with a sub- second time resolution and a submicron 3D spatial resolution. The physicochemical properties (e.g. viscosity, polarity, and acidity) can, in theory, be deduced from features of the fluorescence spectra of particular fluorescent indicators. For example, the acidity change during the freezing and melting process of electrolyte solutions has been monitored in real time by a pH-dependent dual emission fluorescent probe C-SNARF-1. The effects of temperature, freezing rate, and added electrolytes such as ammonium sulfate, sodium chloride and zwitterions are also examined. The findings complement the theory and previous experimental evidence of freezing hydrolysis.
Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M
2018-05-04
Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.
NASA Astrophysics Data System (ADS)
Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.
2018-05-01
Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.
Yiyong, Zhou; Jianqiu, Li; Min, Zhang
2002-04-01
Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role, in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and Vmax of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The Vmax values in sediment increased during the summer, in conjunction with lower Km values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher Vmax in sediments plus lower Km values in interstitial water, in summer. In summary, a focus on phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the need for distinguishing functionally distinct extracellular enzymes between the sediment and interstitial water of lakes.
Native interstitial defects in ZnGeN2
NASA Astrophysics Data System (ADS)
Skachkov, Dmitry; Lambrecht, Walter R. L.
2017-10-01
A density functional study is presented of the interstitial Zni, Gei, and Ni in ZnGeN2. Corrections to the band gap are included by means of the LDA+U method. The Zn and Ge interstitials are both found to strongly prefer the larger octahedral site compared to the two types of tetrahedral sites. The Zn interstitial is found to be a shallow double donor, but it has higher energy than previously studied antisite defects. It has a resonance in the conduction band that is Zn-s like. The Ge interstitial is an even higher energy of formation defect and also behaves as a shallow double donor, but it also has a deep level in the gap corresponding to a Ge-s orbital character while the Ge-p forms a resonance in the conduction band. The nitrogen interstitial forms a split-interstitial configuration, as also occurs in GaN. Its electronic levels can be related to that of a N2 molecule. The defect levels in the gap correspond to the πg-like lowest unoccupied molecular orbital of the molecule, which here becomes filled with three electrons in the defect's neutral charge state. They are found to prefer a high-spin configuration in the q =+1 state. The corresponding transition levels are obtained and show that this is an amphoteric trap level occurring in +2 , +1 , 0, and -1 charge states. The two possible sites for this split interstitial, on top of Zn or on top of Ge, differ slightly in N2 bond length. While the Ni defects have the lowest formation energy among the interstitials, it is still higher than that of the antisites. Hence they are not expected to occur in sufficient concentration to affect the intrinsic Fermi level position. In particular, they do not contribute to the unintentional n -type background doping.
Effect on phloridzin on net rate of liquid absorption from the pleural space of rabbits.
Zocchi, L; Agostoni, E; Raffaini, A
1996-11-01
Previous indirect findings have suggested the occurrence of solute-coupled liquid absorption from the pleural space, consistent with Na(+)-K(+)-ATPase on the interstitial side plus a Na(+)-H+ and CI(-)-HCO3- double exchange on the luminal side of the pleural mesothelium. To assess whether Na(+)-glucose cotransport also operates on the luminal side, the relationship between net rate of liquid absorption from the right pleural space (Jnet) and volume of liquid injected into this space (0.5, 1 or 2 ml) was determined in anaesthetized rabbits during hydrothoraces with phloridzin (10(-3)M) or with phloridzin plus 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulphonic acid (SITS; 1.5 x 10(-4)M). The relationship obtained during hydrothoraces with phloridzin was displaced downwards by 0.09 ml h-1 relative to that in control hydrothoraces (P < 0.01). The decrease in Jnet was similar in hydrothoraces of various sizes. The relationship obtained in hydrothoraces with phloridzin plus SITS was displaced downwards by 0.16 ml h-1 relative to that in control hydrothoraces (P < 0.01), i.e. the decrease in Jnet was similar to the sum (0.17 ml h-1) of the decreases in Jnet produced individually by phloridzin and by SITS (0.08 ml h-1). The decrease in Jnet was similar in hydrothoraces of differing size. The above findings are consistent with the occurrence of Na(+)-glucose cotransport on the luminal side of the pleural mesothelium, operating simultaneously with the double exchange also under physiological conditions.
Interstitial-phase precipitation in iron-base alloys: a comparative study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelton, A.R.
1982-06-01
Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy.
Winter, Benjamin J.; O'Connell, Helen E.; Bowden, Scott; Carey, Marcus; Eisen, Damon P.
2015-01-01
Objectives To investigate whether polyomaviruses contribute to interstitial cystitis pathogenesis. Subjects and Methods A prospective study was performed with 50 interstitial cystitis cases compared with 50 age-matched, disease-free controls for the frequency of polyomaviruria. Associations between polyomaviruria and disease characteristics were analysed in cases. Polyomavirus in urine and bladder tissue was detected with species (JC virus vs. BK virus) specific, real-time PCR. Results Case patients were reflective of interstitial cystitis epidemiology with age range from 26–88 years (median 58) and female predominance (41/50 F). There was a significant increase in the frequency of polyomavirus shedding between cases and controls (p<0.02). Polyomavirus shedding, in particular BK viruria, was associated with vesical ulceration, a marker of disease severity, among interstitial cystitis cases after adjustment for age and sex (OR 6.8, 95% CI 1.89–24.4). There was a significant association among cases between the presence of BK viruria and response to intravesical Clorpactin therapy (OR 4.50, 95% CI 1.17–17.4). Conclusion The presence of polyomaviruria was found to be associated with the ulcerative form of interstitial cystitis. Clorpactin, which has anti-DNA virus activity, was more likely to improve symptoms in the presence of BK viruria. These data from this pilot study suggest associations between polyomaviruria and interstitial cystitis warranting further investigation. PMID:26325074
Dynamics of Helium-Loaded Grain Boundaries under Shear Deformation in α-Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fei; Yang, Li; Heinisch, Howard L.
2014-03-30
The defects produced in collision cascades will interact with microstructural features in materials, such as GBs and dislocations. The coupled motion of GBs under stress has been widely observed in simulations and experiments. Two symmetric tilt GBs with a common <110> tilt axis (Σ3 and Σ11) in bcc iron are used to investigate the coupled motion of GBs under shear deformation. Also, we have explored the effect of self-interstitial atoms (SIAs) loading on the GB motion, with different concentrations of interstitials randomly inserted around the GB plane. The simulation results show that the interstitial loading reduces the critical stress ofmore » the GB coupled motion for the Σ3 GB. Furthermore, the interstitials and vacancies are inserted randomly at the GB plane and at a distance of 1 nm away from the GB plane, respectively, to understand the self-healing mechanism of GBs under stress. The behavior of the defect-loaded GBs depends on the GB structure. The loaded interstitials in the Σ3 GB easily form <111> interstitial clusters that do not move along with the GB. The vacancies in the Σ3 GB impede the GB motion. However, the interstitials move along with the Σ11 GB and annihilate with vacancies when the GB moves into the vacancy-rich region, leading to the self-healing and damage recovery of the Σ11 GB.« less
NASA Astrophysics Data System (ADS)
Tikhonchev, M.; Svetukhin, V.; Kapustin, P.
2017-09-01
Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.
Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn.
Barczak, Sonia A; Buckman, Jim; Smith, Ronald I; Baker, Annabelle R; Don, Eric; Forbes, Ian; Bos, Jan-Willem G
2018-03-30
TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi 1+y Sn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5-3 mW m -1 K -2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m -1 K -1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.
Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn
Barczak, Sonia A.; Smith, Ronald I.; Baker, Annabelle R.; Don, Eric; Forbes, Ian
2018-01-01
TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn. PMID:29601547
Jones, Natalie; Schneider, Gary; Kachroo, Sumesh; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W
2012-01-01
The Food and Drug Administration's Mini-Sentinel pilot program initially aimed to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest (HOIs) from administrative and claims data. This paper summarizes the process and findings of the algorithm review of pulmonary fibrosis and interstitial lung disease. PubMed and Iowa Drug Information Service Web searches were conducted to identify citations applicable to the pulmonary fibrosis/interstitial lung disease HOI. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify pulmonary fibrosis and interstitial lung disease, including validation estimates of the coding algorithms. Our search revealed a deficiency of literature focusing on pulmonary fibrosis and interstitial lung disease algorithms and validation estimates. Only five studies provided codes; none provided validation estimates. Because interstitial lung disease includes a broad spectrum of diseases, including pulmonary fibrosis, the scope of these studies varied, as did the corresponding diagnostic codes used. Research needs to be conducted on designing validation studies to test pulmonary fibrosis and interstitial lung disease algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.
2015-01-01
Hepatocellular carcinoma (HCC) is the most common form of liver cancer (~80%), and it is one of the few cancer types with rising incidence in the United States. This highly invasive cancer is very difficult to detect until its later stages, resulting in limited treatment options and low survival rates. There is a dearth of knowledge regarding the mechanisms associated with the effects of biomechanical forces such as interstitial fluid flow (IFF) on hepatocellular carcinoma invasion. We hypothesized that interstitial fluid flow enhanced hepatocellular carcinoma cell invasion through chemokine-mediated autologous chemotaxis. Utilizing a 3D in vitro invasion assay, we demonstrated that interstitial fluid flow promoted invasion of hepatocellular carcinoma derived cell lines. Furthermore, we showed that autologous chemotaxis influences this interstitial fluid flow-induced invasion of hepatocellular carcinoma derived cell lines via the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12) signaling axis. We also demonstrated that mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling affects interstitial fluid flow-induced invasion; however, this pathway was separate from CXCR4/CXCL12 signaling. This study demonstrates, for the first time, the potential role of interstitial fluid flow in hepatocellular carcinoma invasion. Uncovering the mechanisms that control hepatocellular carcinoma invasion will aid in enhancing current liver cancer therapies and provide better treatment options for patients. PMID:26560447
Skugareva, O A; Kaplan, M A; Malygina, A I; Mikhailovskaya, A A
2009-11-01
Antitumor efficiency of interstitial photodynamic therapy was evaluated in experiments on outbred albino rats with implanted M-1 sarcoma. Interstitial photodynamic therapy was carried out using one diffusor at different output power and duration of exposure. The percentage of complete regression of the tumors increased with increasing exposure parameters.
Le, Kelvin; Li, Xiaosong; Figueroa, Daniel; Towner, Rheal A.; Garteiser, Philippe; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.
2011-01-01
Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy. PMID:22191937
Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.
Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven
2015-09-21
Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.
NASA Astrophysics Data System (ADS)
Hai, X.; Porcher, F.; Mayer, C.; Miraglia, S.
2018-02-01
Steady state and in-situ neutron powder diffraction on selected compositions of the magneto-caloric (La,Ce)(Fe,Si)13CxHy compounds has been used to locate the sites accommodated by the interstitial species and to reveal the structural modifications (breathing) that occur upon metal substitution and/or interstitial insertion. The latter type of measurement in which the sequential filling of interstitial sites is followed allows one to extract some useful hydrogenation kinetics data. This structural investigation has allowed to precise the deformations undergone by the complex metallic alloys La(Fe,Si)13 when subjected to light interstitial insertion or rare earth substitution at the cation site of the NaZn13-structure type. We attempt to correlate hydrogenation kinetics variations (depression or enhancement of the hydrogen absorption rate) with a particular inhomogeneous cell variation (breathing) and bonding of the NaZn13 structure-type.
Interstitial granulomatous dermatitis with arthritis.
Long, D; Thiboutot, D M; Majeski, J T; Vasily, D B; Helm, K F
1996-06-01
Interstitial granulomatous dermatitis with arthritis is an uncommon systemic disorder involving the cutaneous and musculoskeletal systems. The eruption may mimic other dermatoses including granuloma annulare, erythema chronicum migrans, and the inflammatory stage of morphea. Key histopathologic characteristics, along with clinical correlation, allow accurate diagnosis. We describe the clinical, serologic, and histologic features in three patients with interstitial granulomatous dermatitis with arthritis. Skin biopsy specimens were examined and correlated with the clinical and laboratory findings. Erythematous, annular, indurated plaques on the extremities were present in two women. An erythematous, papular eruption on the head and neck was present in a third patient. All patients had myalgia and migratory polyarthralgias of the extremities along with various serologic abnormalities. Histologic examination revealed a dense lymphohistiocytic interstitial infiltrate involving primarily the reticular dermis. Foci of necrobiotic collagen were present. Vasculitis was absent. Interstitial granulomatous dermatitis with arthritis is unique multisystem disease with variable cutaneous expression. Abnormal serologic findings indicate a possible connection to collagen vascular disease.
Diffuse Alveolar Damage: A Common Phenomenon in Progressive Interstitial Lung Disorders
Kaarteenaho, Riitta; Kinnula, Vuokko L.
2011-01-01
It has become obvious that several interstitial lung diseases, and even viral lung infections, can progress rapidly, and exhibit similar features in their lung morphology. The final histopathological feature, common in these lung disorders, is diffuse alveolar damage (DAD). The histopathology of DAD is considered to represent end stage phenomenon in acutely behaving interstitial pneumonias, such as acute interstitial pneumonia (AIP) and acute exacerbations of idiopathic pulmonary fibrosis (IPF). Acute worsening and DAD may occur also in patients with nonspecific interstitial pneumonias (NSIPs), and even in severe viral lung infections where there is DAD histopathology in the lung. A better understanding of the mechanisms underlying the DAD reaction is needed to clarify the treatment for these serious lung diseases. There is an urgent need for international efforts for studying DAD-associated lung diseases, since the prognosis of these patients has been and is still dismal. PMID:21637367
Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Bai, Xian-Ming; Tonks, Michael R.
2015-03-01
This Letter reports the transition of C15 phase self-interstitial clusters to loops in body-centered-cubic Iron. Molecular dynamics simulations are performed to evaluate the relative stabilities of difference interstitial cluster configurations including C15 phase structure and <100> and <111>/2 loops. Within a certain size range, C15 cluster are found more stable than loops, and the relative stabilities are reversed beyond that range. In accordance to the crossover in relative stabilities, C15 clusters may grow by absorbing individual interstitials at small sizes and transitions into loops eventually. The transition takes place by nucleation and reaction of <111>/2 loop segments. These observations explainmore » the absence of C15 phase interstitial clusters predicted by density-functional-theory calculations in previous experimental observations. More importantly, the current results provide a new formation mechanism of <100> loops which requires no interaction of loops.« less
de Pablo, C E; García Sagredo, J M; Ferro, M T; Ferrando, P; San Román, C
1980-01-01
A child was brought to us with multiple anomalies. On examination we found an interstitial deletion in the long arms of chromosome 1. We studied genetic and chromosome markers, comparing our clinical and cytogenetic findings with other reported cases of chromosome 1 interstitial deletion. Images PMID:6937620
Interstitial water in the swash zone, that area of a beach where waves continuously wash up on the sand, is suspected of accumulating microbes. If pathogens are concentrated in the interstitial water or if they grow, they may pose a health risk, especially for children. This st...
Morais, António; Moura, M Conceição Souto; Cruz, M Rosa; Gomes, Isabel
2004-01-01
Nonspecific interstitial pneumonitis (NSIP) initially described by Katzenstein and Fiorelli in 1994, seems to be a distinct clinicopathologic entity among idiopathic interstitial pneumonitis (IIP). Besides different histologic features from other IIP, NSIP is characterized by a better long-term outcome, associated with a better steroids responsiveness than idiopathic pulmonar fibrosis (IPF), where usually were included. Thus, differentiating NSIP from other IIP, namely IPF is very significant, since it has important therapeutic and prognostic implications. NSIP encloses different pathologies, namely those with inflammatory predominance (cellular subtype) or fibrous predominance (fibrosing subtype). NSIP is reviewed and discussed by the authors, after two clinical cases description.
Baylor, Peter A; Sobenes, Juan R; Vallyathan, Val
2013-05-01
We present a case of interstitial pulmonary fibrosis accompanied by radiographic evidence of progressive massive fibrosis in a patient who had a 15-20 year history of almost daily recreational inhalation of methamphetamine. Mineralogical analysis confirmed the presence of talc on biopsy of the area of progressive massive fibrosis. The coexistence of interstitial pulmonary fibrosis and progressive massive fibrosis suggests that prolonged recreational inhalation of methamphetamine that has been "cut" with talc can result in sufficient amount of talc being inhaled to result in interstitial pulmonary fibrosis and progressive massive fibrosis in the absence of other causes.
Interstitial pneumonitis after acetylene welding: a case report.
Brvar, Miran
2014-01-01
Acetylene is a colorless gas commonly used for welding. It acts mainly as a simple asphyxiant. In this paper, however, we present a patient who developed a severe interstitial pneumonitis after acetylene exposure during aluminum welding. A 44-year old man was welding with acetylene, argon and aluminum electrode sticks in a non-ventilated aluminum tank for 2 h. Four hours after welding dyspnea appeared and 22 h later he was admitted at the Emergency Department due to severe respiratory insufficiency with pO2 = 6.7 kPa. Chest X-ray showed diffuse interstitial infiltration. Pulmonary function and gas diffusion tests revealed a severe restriction (55% of predictive volume) and impaired diffusion capacity (47% of predicted capacity). Toxic interstitial pneumonitis was diagnosed and high-dose systemic corticosteroid methylprednisolone and inhalatory corticosteroid fluticasone therapy was started. Computed Tomography (CT) of the lungs showed a diffuse patchy ground-glass opacity with no signs of small airway disease associated with interstitial pneumonitis. Corticosteroid therapy was continued for the next 8 weeks gradually reducing the doses. The patient's follow-up did not show any deterioration of respiratory function. In conclusion, acetylene welding might result in severe toxic interstitial pneumonitis that improves after an early systemic and inhalatory corticosteroid therapy.
One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.
2002-12-01
One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.
Interstitial Cells: Regulators of Smooth Muscle Function
Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don
2014-01-01
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherertz, T; Ellis, R; Colussi, V
2014-06-15
Purpose: To evaluate volumetric coverage of a Mick Radionuclear titanium Split-Ring applicator (SRA) with/without interstitial needle compared to an intracavitary Vienna applicator (VA), interstitial-intracavitary VA, and intracavitary ring and tandem applicator (RTA). Methods: A 57 year-old female with FIGO stage IIB cervical carcinoma was treated following chemoradiotherapy (45Gy pelvic and 5.4Gy parametrial boost) with highdose- rate (HDR) brachytherapy to 30Gy in 5 fractions using a SRA. A single interstitial needle was placed using the Ellis Interstitial Cap for the final three fractions to increase coverage of left-sided gross residual disease identified on 3T-MRI. High-risk (HR) clinical target volume (CTV) andmore » intermediate-risk (IR) CTV were defined using axial T2-weighted 2D and 3D MRI sequences (Philips PET/MRI unit). Organs-at-risks (OARs) were delineated on CT. Oncentra planning system was used for treatment optimization satisfying GEC-ESTRO guidelines for target coverage and OAR constraints. Retrospectively, treatment plans (additional 20 plans) were simulated using intracavitary SRA (without needle), intracavitary VA (without needle), interstitial-intracavitary VA, and intracavitary RTA with this same patient case. Plans were optimized for each fraction to maintain coverage to HR-CTV. Results: Interstitial-intracavitary SRA achieved the following combined coverage for external radiation and brachytherapy (EQD2): D90 HR-CTV =94.6Gy; Bladder-2cc =88.9Gy; Rectum-2cc =65.1Gy; Sigmoid-2cc =48.9Gy; Left vaginal wall (VW) =103Gy, Right VW =99.2Gy. Interstitial-intracavitary VA was able to achieve identical D90 HR-CTV =94.6Gy, yet Bladder-2cc =91.9Gy (exceeding GEC-ESTRO recommendations of 2cc<90Gy) and Left VW =120.8Gy and Right VW =115.5Gy. Neither the SRA nor VA without interstitial needle could cover HR-CTV adequately without exceeding dose to Bladder-2cc. Conventional RTA was unable to achieve target coverage for the HR-CTV >80Gy without severely overdosing OARs. Conclusion: The Ellis Interstitial Cap for the SRA offered superior dosimetric coverage as compared to the interstitialintracavitary VA. This represents the first reported use for this devise, and further investigation is warranted.« less
Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin
Liu, Qingdu; Binns, Thomas C.; Davidoff, Olena; Kapitsinou, Pinelopi P.; Pfaff, Andrew S.; Olauson, Hannes; Fogo, Agnes B.; Fong, Guo-Hua; Gross, Kenneth W.
2016-01-01
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2–/– renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2–/– mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation. PMID:27088801
The role of interstitial binding in radiation induced segregation in W-Re alloys
NASA Astrophysics Data System (ADS)
Gharaee, Leili; Marian, Jaime; Erhart, Paul
2016-07-01
Due to their high strength and advantageous high-temperature properties, tungsten-based alloys are being considered as plasma-facing candidate materials in fusion devices. Under neutron irradiation, rhenium, which is produced by nuclear transmutation, has been found to precipitate in elongated precipitates forming thermodynamic intermetallic phases at concentrations well below the solubility limit. Recent measurements have shown that Re precipitation can lead to substantial hardening, which may have a detrimental effect on the fracture toughness of W alloys. This puzzle of sub-solubility precipitation points to the role played by irradiation induced defects, specifically mixed solute-W interstitials. Here, using first-principles calculations based on density functional theory, we study the energetics of mixed interstitial defects in W-Re, W-V, and W-Ti alloys, as well as the heat of mixing for each substitutional solute. We find that mixed interstitials in all systems are strongly attracted to each other with binding energies of -2.4 to -3.2 eV and form interstitial pairs that are aligned along parallel first-neighbor <111 > strings. Low barriers for defect translation and rotation enable defect agglomeration and alignment even at moderate temperatures. We propose that these elongated agglomerates of mixed-interstitials may act as precursors for the formation of needle-shaped intermetallic precipitates. This interstitial-based mechanism is not limited to radiation induced segregation and precipitation in W-Re alloys but is also applicable to other body-centered cubic alloys.
Moreso, F; Seron, D; O'Valle, F; Ibernon, M; Gomà, M; Hueso, M; Cruzado, J M; Bestard, O; Duarte, V; del Moral, R García; Grinyó, J M
2007-12-01
Patients with a protocol renal allograft biopsy simultaneously displaying interstitial fibrosis/tubular atrophy (IF/TA) and subclinical rejection (SCR) have a shortened graft survival than patients with a normal biopsy, or with a biopsy only displaying IF/TA or SCR. The poor outcome of these patients could be related with a more severe inflammation. We evaluate the immunophenotype of infiltrating cells in these diagnostic categories. Nonexhausted paraffin blocks from protocol biopsies done during the first year were stained with anti-CD45, CD3, CD20, CD68 and CD15 monoclonal antibodies. Glomerular and interstitial positive cells were counted. C4d deposition in peritubular capillaries was evaluated. Histological diagnoses were: normal (n = 80), SCR (n = 17), IF/TA (n = 42) and IF/TA + SCR (n = 17). Only interstitial CD20 positive cells were significantly increased in patients displaying IF/TA + SCR; normal (137 +/- 117), SCR (202 +/- 145), IF/TA (208 +/- 151) and IF/TA + SCR (307 +/- 180 cells/mm(2)), p < 0.01. The proportion of biopsies displaying C4d deposition was not different among groups. The upper tertile of CD20 positive interstitial cells was associated with a decreased death-censored graft survival (relative risk: 3.01, 95% confidence interval: 1.23-7.35; p = 0.015). These data suggest that B-cell interstitial infiltrates are associated with histological damage and outcome, but do not distinguish whether these infiltrates were the cause or the consequence of chronic tubulo-interstitial damage.
Yasuda, Yuichiro; Hattori, Yoshihiro; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Urata, Yoshiko; Nogami, Munenobu; Takenaka, Daisuke; Negoro, Shunichi; Satouchi, Miyako
2018-01-01
The optimal chemotherapy regimen for non-small cell lung cancer patients with interstitial lung disease is unclear. We therefore investigated the safety and efficacy of carboplatin plus nab-paclitaxel as a first-line regimen for non-small cell lung cancer in patients with interstitial lung disease. We retrospectively reviewed advanced non-small cell lung cancer patients with interstitial lung disease who received carboplatin plus nab-paclitaxel as a first-line chemotherapy regimen at Hyogo Cancer Center between February 2013 and August 2016. interstitial lung disease was diagnosed according to the findings of pretreatment chest high-resolution computed tomography. Twelve patients were included (male, n = 11; female, n = 1). The overall response rate was 67% and the disease control rate was 100%. The median progression free survival was 5.1 months (95% CI: 2.9-8.3 months) and the median overall survival was 14.9 months (95% CI: 4.8-not reached). A chemotherapy-related acute exacerbation of interstitial lung disease was observed in one patient; the extent of this event was Grade 2. There were no treatment-related deaths. Carboplatin plus nab-paclitaxel, as a first-line chemotherapy regimen for non-small cell lung cancer, showed favorable efficacy and safety in patients with preexisting interstitial lung disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
Hammel, H T; Schlegel, Whitney M
2005-01-01
In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to include the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries, (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure.
Reversible geminate recombination of hydrogen-bonded water molecule pair
NASA Astrophysics Data System (ADS)
Markovitch, Omer; Agmon, Noam
2008-08-01
The (history independent) autocorrelation function for a hydrogen-bonded water molecule pair, calculated from classical molecular dynamics trajectories of liquid water, exhibits a t-3/2 asymptotic tail. Its whole time dependence agrees quantitatively with the solution for reversible diffusion-influenced geminate recombination derived by Agmon and Weiss [J. Chem. Phys. 91, 6937 (1989)]. Agreement with diffusion theory is independent of the precise definition of the bound state. Given the water self-diffusion constant, this theory enables us to determine the dissociation and bimolecular recombination rate parameters for a water dimer. (The theory is indispensable for obtaining the bimolecular rate coefficient.) Interestingly, the activation energies obtained from the temperature dependence of these rate coefficients are similar, rather than differing by the hydrogen-bond (HB) strength. This suggests that recombination requires displacing another water molecule, which meanwhile occupied the binding site. Because these activation energies are about twice the HB strength, cleavage of two HBs may be required to allow pair separation. The autocorrelation function without the HB angular restriction yields a recombination rate coefficient that is larger than that for rebinding to all four tetrahedral water sites (with angular restrictions), suggesting the additional participation of interstitial sites. Following dissociation, the probability of the pair to be unbound but within the reaction sphere rises more slowly than expected, possibly because binding to the interstitial sites delays pair separation. An extended diffusion model, which includes an additional binding site, can account for this behavior.
Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.
1989-08-22
A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.
Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.
1989-01-01
A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.
NASA Astrophysics Data System (ADS)
Aoi, Y.; Tominaga, T.
2013-03-01
Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
Sintering of viscous droplets under surface tension
NASA Astrophysics Data System (ADS)
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Schauroth, Jenny; Dobson, Katherine J.; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
We conduct experiments to investigate the sintering of high-viscosity liquid droplets. Free-standing cylinders of spherical glass beads are heated above their glass transition temperature, causing them to densify under surface tension. We determine the evolving volume of the bead pack at high spatial and temporal resolution. We use these data to test a range of existing models. We extend the models to account for the time-dependent droplet viscosity that results from non-isothermal conditions, and to account for non-zero final porosity. We also present a method to account for the initial distribution of radii of the pores interstitial to the liquid spheres, which allows the models to be used with no fitting parameters. We find a good agreement between the models and the data for times less than the capillary relaxation timescale. For longer times, we find an increasing discrepancy between the data and the model as the Darcy outgassing time-scale approaches the sintering timescale. We conclude that the decreasing permeability of the sintering system inhibits late-stage densification. Finally, we determine the residual, trapped gas volume fraction at equilibrium using X-ray computed tomography and compare this with theoretical values for the critical gas volume fraction in systems of overlapping spheres.
Grabtchak, Serge; Palmer, Tyler J; Whelan, William M
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ∼43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
MCNP Parametric Studies of Plutonium Metal and Various Interstitial Moderating Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glazener, Natasha; Kamm, Ryan James
2017-03-31
Nuclear Criticality Safety (NCS) has performed calculations evaluating the effect of different interstitial materials on 5.0-kg of plutonium metal. As with all non-fissionable interstitials, the results here illustrate that it requires significant quantities of oil to be intimately mixed with plutonium, reflected by a thick layer of full-density water, to achieve the same reactivity as that of solid plutonium metal.
Li, Bao; Wang, Zhi-Qi; Wang, Qian-Suo; Cuan, Jing-Bo
2013-06-01
By using cylindrical sediment sampler and Peeper' s interstitial water sampler, the intact sediment and interstitial water were collected from different zones of Nansi Lake in Shandong Province in summer and winter. The distribution characteristics of the sediment phosphorus forms and of the phosphate (PO4(3-)-P) in interstitial water were analyzed, and their correlations were discussed. In the sediments of Nansi Lake, phosphorus was richer, and had a significant spatial differentiation, with an overall decreasing trend from north to south, which was related to the seriously polluted Northern Nansi Lake near Jining City. Among the phosphorous forms, inorganic phosphorus (IP) had the highest concentration, accounting for 52.3%-87.2% and 60.6%-88.3% of the total phosphorus (TP) in summer and winter, respectively. The TP concentrations in 5 cm surface sediment of four sub-lakes were all higher in summer than in winter, which could be related to the human activities such as exuberant aquaculture, more chemical fertilizers application around lake, and frequent tourism activities, etc. in summer. In vertical direction, the PO4(3-)-P concentration in interstitial water decreased after an initial increase in summer and winter, and was obviously higher in summer than in winter, suggesting that the phosphorous in sediment had a higher potential to release to the overlying water in summer. The organic phosphorus (OP) and IP in sediment had a significant correlation in summer but less correlation in winter, indicating that the transformation between sediment IP and OP was more active in summer than in winter. The iron and aluminum bound phosphorus (Fe/Al-P) and IP in sediment were significantly positively correlated with the PO4(3-)-P in interstitial water. In summer and winter, the average PO4(3-)-P concentration in interstitial water collected by Peeper' s interstitial water sampler was about 20%-50% higher than that collected by the conventional centrifugal method, suggesting that using Peeper' s interstitial water sampler could be more precise.
Pressure monitoring during lipofilling procedures.
Klein, S M; Prantl, L; Geis, S; Eisenmann-Klein, M; Dolderer, J; Felthaus, O; Loibl, M; Heine, N
2014-01-01
Grafting of autologous lipoaspirate for various clinical applications has become a common procedure in clinical practice. With an estimated mortality rate of 10-15 percent, fat embolism is among the most severe complications to be expected after lipofilling therapies. The aim of this study was to determine the level of interstitial pressure after the injection of defined volumes of lipoaspirate into the subcutaneous tissue of female breasts. It was hypothesized, that interstitial pressure levels exceed the physiologic capillary pressure during lipofilling procedures and hence increase the potential risk for fat embolism. Further it was investigated if external tissue expansion has the potential to significantly reduce interstitial tissue pressure. Interstitial pressure was monitored in 36 female patients, that underwent autologous fat injections into the breast. Measurements were conducted with a sensor needle connected to a pressure transducer (LogiCal Pressure Monitoring Kit, Smiths medical int. Ltd., UK). Patients were divided into 4 subcohorts differing in their pre-treatment regimen or local tissue conditions. Pre-treatment consisted of tissue expansion, achieved with the Brava™ (Brava LLC Miami, Fla., USA) vacuum-chamber. The increase in interstitial pressure after injection volumes of 100 ml (p = 0.006), 200 ml (p = 0.000) and between 100 ml and 200 ml (p = 0.004) respectively, were significant in non-mastectomized patients without pre-treatment. Patients pre-treated with Brava™ did not show such statistically significant differences in interstitial pressures before and after the injection of 100 ml and 200 ml of lipoaspirate (p = 0.178). The difference in interstitial pressure in mastectomized patients between 0 ml and 100 ml (p = 0.003), as well as 0 ml and 200 ml (p = 0.028) was significant. The difference in pressures between pre-treated patients and patients without pre-treatment did not differ significantly in the mastectomized patient cohort. During lipofilling procedures interstitial pressures are reached that exceed pressure limits defined as hazardous for fat embolism. To date it is unknown what pressure levels need to be considered critical for complications in soft tissue interventions. Further the results indicate higher interstitial pressures for patients that had undergone mastectomy, whereas pre-treatment with external tissue expansion seemed to diminish pressure values.
Wendland, Edson; Gomes, Luis H; Troeger, Uwe
2015-01-01
The contribution of recharge to regional groundwater flow systems is essential information required to establish sustainable water resources management. The objective of this work was to determine the groundwater outflow in the Ribeirão da Onça Basin using a water balance model of the saturated soil zone. The basin is located in the outcrop region of the Guarani Aquifer System (GAS). The water balance method involved the determination of direct recharge values, groundwater storage variation and base flow. The direct recharge was determined by the water table fluctuation method (WTF). The base flow was calculated by the hydrograph separation method, which was generated by a rain-flow model supported by biweekly streamflow measurements in the control section. Undisturbed soil samples were collected at depths corresponding to the variation zone of the groundwater level to determine the specific yield of the soil (drainable porosity). Water balances were performed in the saturated zone for the hydrological years from February 2004 to January 2007. The direct recharge ranged from 14.0% to 38.0%, and groundwater outflow from 0.4% to 2.4% of the respective rainfall during the same period.
Kinetic Monte Carlo (kMC) simulation of carbon co-implant on pre-amorphization process.
Park, Soonyeol; Cho, Bumgoo; Yang, Seungsu; Won, Taeyoung
2010-05-01
We report our kinetic Monte Carlo (kMC) study of the effect of carbon co-implant on the pre-amorphization implant (PAL) process. We employed BCA (Binary Collision Approximation) approach for the acquisition of the initial as-implant dopant profile and kMC method for the simulation of diffusion process during the annealing process. The simulation results implied that carbon co-implant suppresses the boron diffusion due to the recombination with interstitials. Also, we could compare the boron diffusion with carbon diffusion by calculating carbon reaction with interstitial. And we can find that boron diffusion is affected from the carbon co-implant energy by enhancing the trapping of interstitial between boron and interstitial.
Rosenbach, Misha; English, Joseph C
2015-07-01
The terms "palisaded neutrophilic and granulomatous dermatitis," "interstitial granulomatous dermatitis," and the subset "interstitial granulomatous drug reaction" are a source of confusion. There exists substantial overlap among the entities with few strict distinguishing features. We review the literature and highlight areas of distinction and overlap, and propose a streamlined diagnostic workup for patients presenting with this cutaneous reaction pattern. Because the systemic disease associations and requisite workup are similar, and the etiopathogenesis is poorly understood but likely similar among these entities, we propose the simplified unifying term "reactive granulomatous dermatitis" to encompass these entities. Copyright © 2015 Elsevier Inc. All rights reserved.
Asato, Yuko; Kamitani, Toshiaki; Ootsuka, Kuniyuki; Kuramochi, Mizuki; Nakanishi, Kozo; Shimada, Tetsuya; Takahashi, Toshiyuki; Misu, Tatsuro; Aoki, Masashi; Fujihara, Kazuo; Kawabata, Yoshinori
2018-05-18
We herein report the case of a 76-year old man with aquaporin-4-Immunoglobulin-G (AQP4-IgG)-positive neuromyelitis optica spectrum disorder (NMOSD), in whom transient interstitial pulmonary lesions developed at the early stage of the disease. Chest X-ray showed multiple infiltrative shadows in both upper lung fields, and computed tomography revealed abnormal shadows distributed randomly in the lungs. Surgical lung biopsy showed features of unclassifiable interstitial pneumonia, characterized by various types of air-space organization, which resulted in obscure lung structure. This is the first report to describe the pathological findings of interstitial pneumonia, which may represent a rare extra-central nervous system complication of NMOSD.
Agut, Amalia; Talavera, Jesus; Buendia, Antonio; Anson, Agustina; Santarelli, Giorgia; Gomez, Serafin
2015-01-01
A 1.5-year-old, 23 kg intact male Dalmatian dog was evaluated for acute respiratory insufficiency without a previous history of trauma or toxic exposition. Imaging revealed pneumomediastinum, pneumothorax, diffuse unstructured interstitial pulmonary pattern, pulmonary interstitial emphysema, and pneumoretroperitoneum. Histopathological evaluation of the lungs revealed perivascular and peribronchial emphysema, mild lymphocytic interstitial pneumonia with atypical proliferation of type II pneumocytes in bronchioles and alveoli. A lung disease resembling fibrosing interstitial pneumonia in man and cats has been previously reported in Dalmatians and should be included as a differential diagnosis for Dalmatians with this combination of clinical and imaging characteristics. © 2014 American College of Veterinary Radiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Field, Kevin G.; Allen, Todd R.
2016-02-23
A detailed analysis of the diffusion fluxes near and at grain boundaries of irradiated Fe–Cr–Ni alloys, induced by preferential atom-vacancy and atom-interstitial coupling, is presented. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. The preferential atom-vacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. The calculated fluxes up to 10 dpa suggested the dominant diffusion mechanism for chromium and iron is via vacancy,more » while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly modified by the segregation induced by irradiation, leading to the oscillatory behavior of alloy compositions in this region.« less
NASA Technical Reports Server (NTRS)
Kitabatake, M.; Fons, P.; Greene, J. E.
1991-01-01
The relaxation, diffusion, and annihilation of split and hexagonal interstitials resulting from 10 eV Si irradiation of (2x1)-terminated Si(100) are investigated. Molecular dynamics and quasidynamics simulations, utilizing the Tersoff many-body potential are used in the investigation. The interstitials are created in layers two through six, and stable atomic configurations and total potential energies are derived as a function of site symmetry and layer depth. The interstitial Si atoms are allowed to diffuse, and the total potential energy changes are calculated. Lattice configurations along each path, as well as the starting configurations, are relaxed, and minimum energy diffusion paths are derived. The results show that the minimum energy paths are toward the surface and generally involved tetrahedral sites. The calculated interstitial migration activation energies are always less than 1.4 eV and are much lower in the near-surface region than in the bulk.
Lithification opf gas-rich chondrite regolith breccias by grain boundary and localized shock melting
NASA Technical Reports Server (NTRS)
Bischoff, A.; Rubin, A. E.; Keil, K.; Stoeffler, D.
1983-01-01
The fine-grained matrices (less than 150 microns) of 14 gas-rich ordinary chondrile regolith breccias were studied in an attempt to decipher the nature of the lithification process that converted loose regolith material into consolidated breccias. It is found that there is a continuouos gradation in matrix textures from nearly completely clastic (class A) to highly cemented (class C) breccias in which the remining clasts are completely surrounded by interstitial, shock-melted material. It is concluded that this interstitial material is formed by shock melting in the porous regolith. In general, the abundances of solar-wind-implanted He-4 and Ne-20 are inversely correlated with the abundance of intenstitial, shock-melted, feldspathic material. Chondrites with the highest abundance of interstitial, melted material (class C) experienced the highest shock pressures and temperatures and suffered the most extensive degassing. It is this interstitial, feldspathic melt that lithifies and cements the breccias together; those breccias with very little interstitial melt (class A) are the most porous and least consolidated.
Cardoso, Luis; Fritton, Susannah P.; Gailani, Gaffar; Benalla, Mohammed; Cowin, Stephen C.
2012-01-01
This contribution reviews recent research performed to assess the porosity and permeability of bone tissue with the objective of understanding interstitial fluid movement. Bone tissue mechanotransduction is considered to occur due to the passage of interstitial pore fluid adjacent to dendritic cell structures in the lacunar-canalicular porosity. The movement of interstitial fluid is also necessary for the nutrition of osteocytes. This review will focus on four topics related to improved assessment of bone interstitial fluid flow. First, the advantages and limitations of imaging technologies to visualize bone porosities and architecture at several length scales are summarized. Second, recent efforts to measure the vascular porosity and lacunar-canalicular microarchitecture are discussed. Third, studies associated with the measurement and estimation of the fluid pressure and permeability in the vascular and lacunar-canalicular domains are summarized. Fourth, the development of recent models to represent the interchange of fluids between the bone porosities is described. PMID:23174418
NASA Astrophysics Data System (ADS)
Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.
2001-08-01
Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. This study of boron TED reduction in Si1-x-yGexCy during 750 °C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank-Turnbull reaction, and a carbon interstitial-carbon substitutional (CiCs) pairing reaction that successfully simulates carbon suppression of boron TED at 750 °C for anneal times ranging from 10 s to 60 min.
[New toxicity of fotemustine: diffuse interstitial lung disease].
Bertrand, M; Wémeau-Stervinou, L; Gauthier, S; Auffret, M; Mortier, L
2012-04-01
Fotemustine is an alkylating cytostatic drug belonging to the nitrosourea family and is used in particular in the treatment of disseminated malignant melanoma. Herein, we report a case of interstitial lung disease associated with fotemustine. An 81-year-old man treated with fotemustine for metastatic melanoma presented acute interstitial lung disease 20 days after a fourth course of fotemustine monotherapy. The condition regressed spontaneously, with the patient returning to the clinical, radiological and blood gas status that had preceded fotemustine treatment. After other potential aetiologies had been ruled out, acute fotemustine-induced lung toxicity was considered and this treatment was definitively withdrawn. Other cytostatic agents belonging to the nitrosourea family can cause similar pictures, with a number of cases of interstitial lung disease thus being ascribed to fotemustine and dacarbazine. To our knowledge, this is the first case of interstitial lung disease induced by fotemustine monotherapy. This diagnosis should be considered where respiratory signs appear in melanoma patients undergoing fotemustine treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Laparoscopic management of interstitial pregnancy with automatic stapler
Ahsan Akhtar, Muhammad; Izzat, Feras; Keay, Stephen D
2012-01-01
A 36-year-old woman was referred by general practitioner to the early pregnancy unit with pelvic pain in her seventh week of pregnancy. She had a transvaginal ultrasound. Unruptured live twin tubal ectopic pregnancy was diagnosed on. Diagnostic laparoscopy revealed an unruptured left interstitial ectopic pregnancy. The interstitial tubal pregnancy was removed by laparoscopic automatic stapler with minimal blood loss. The patient had an uneventful recovery to health. PMID:23093504
2013-05-10
Performance of Interstitially Surface Hardened Stainless Steel 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jones, Jennifer Lynn...interstitial carbon atoms into stainless steel surfaces without the formation of carbides. Surface hardening of machine elements such as impellors or...the corrosion resistance of the stainless steel is retained, rather than degraded, is of particular interest for marine applications. This project
a Study of Dynamic Powder Consolidation Based on a Particle-Level Mathematical Model.
NASA Astrophysics Data System (ADS)
Williamson, Richard L.
A mathematical model is developed to investigate the effects of large amplitude shock waves on powder materials during dynamic consolidation. The model is constructed at the particle level, focusing on a region containing a few powder particles and the surrounding interstices. The general equations of continuum mechanics are solved over this region, using initial and boundary conditions appropriate for the consolidation process. Closure of the equation system is obtained using an analytical equation of state; relations are included to account for solid to liquid phase changes. An elastic, perfectly-plastic constitutive law, specifically modified to describe material behavior at high-strain-rates, is applied to the solid materials. To reduce complexity, the model is restricted to two dimensions, therefore individual particles are approximated as infinitely long cylinders rather than spheres. The equation system is solved using standard finite-difference numerical techniques. It is demonstrated that for typical consolidation conditions, energy diffusion mechanisms are insignificant during the rapid densification phase of consolidation. Using type 304 stainless steel powder material, the particle-level model is used to investigate the mechanisms responsible for particle surface heating and metallurgical bonding during consolidation. It is demonstrated that energy deposition near particle surfaces results both from rapid particle deformation during interstitial filling and large localized impacts occurring at the final instant of interstitial closure; particle interior regions remain at sufficiently low temperatures to avoid microstructural modification. Nonuniform metallurgical bonding is predicted around the particle periphery, ranging from complete fusion to mechanical abutment. Simulation results are used to investigate the detailed wave propagation phenomena at the particle level, providing an improved understanding of this complex behavior. A variety of parametric studies are conducted including investigations of the effects of stress wave amplitude and rise time, the role of interstitial gases during consolidation, and various geometric aspects including the importance of initial void fraction. The model is applied to a metal matrix composite system to investigate the consolidation of mixtures of differing materials; results of a two-dimensional experiment are included. Available experimental data are compared with simulation results. In general, very good agreement between simulation results and data is obtained.
[Experience in the treatment of interstitial cystitis: review of 17 cases].
Flores-Carreras, Oscar; Martínez-Espinoza, Claudia J; González-Ruiz, María Isabel
2011-03-01
The Interstitial Cystitis (IC) has been considered in the past an uncommon pathology, however it has received a special attention during the last 20 years, (1678 scientific articles published since 1984 to 2009). There are many therapeutic options not at all satisfactory because there isn't consensus about diagnostic and treatment. To share our experiences in the treatment of interstitial cystitis, additionally, to comment on the therapeutic response of treatment used. Observational, retrospective an analytic study of 17 treated patients from 22 with diagnosis of IC and Bladder Painful Syndrome (IC/BPS) were managed in Urodifem de Occidente, S.C. a private Urogynecologic unit between January 2001 and April 2010. The diagnosis was done in agreement with the concepts of Interstitial Cystitis group from clinical and cystoscopic characteristics. The treatment was: Dimethyl sulfoxide (DIMSO) and Pentosan Polysulfate. The evaluation was measured by Interstitial Cystitis Symptomatic Index (ICSI) and Interstitial Cystitis Problem Index (ICPI) both validated evaluation instruments, 82% of the patients had a significative improvement of symptomatology and quality of live The ICSI pre and post treatment was of 17.0 and 4.5 and the ICPI was of 14.8 and 4.1 respectively. We recommend the use of combine treatment of DIMSO and PPS in cases of I.C.
Atomic diffusion in strain fields near solutes
NASA Astrophysics Data System (ADS)
Shropshire, Steven L.; Collins, Gary S.
1993-03-01
Annihilation reactions between mobile self-interstitial defects and complexes of vacancies with111In probe solutes in Au were studied. Measurements were made using the technique of perturbed angular correlations of gamma rays (PAC). Au samples were doped with complexes and plastically deformed at a low temperature to generate fluxes of self-interstitials. Changes in the concentrations of monovacancy (1V) to tetravacancy (4V) complexes induced by annihilation reactions were measured. These are now analysed using a system of coupled first-order equations in order to obtain interstitial annihilation cross sections of the complexes and the fractional amounts of different interstitial clusters in the flux. Relative cross sections obtained for Au are 1.0(1), 3.3(3), 1.2(2) and 7.5(2.5), respectively, for 1V to 4V complexes. The large increase in the cross sections with vacancy number is attributed to a progressive relaxation of the dilatational strain surrounding the oversized In solute as more vacancies are trapped. Also obtained from the analysis are values 0.34(5), 0.66(7), 0.0(1) and 0.0(2), respectively, for the fractions of mobile 1I to 4I clusters in deformed Au, indicating that di-interstitials are produced more readily than mono-interstitials during plastic deformation.
Ungprasert, Patompong; Wilton, Katelynn M; Ernste, Floranne C; Kalra, Sanjay; Crowson, Cynthia S; Rajagopalan, Srinivasan; Bartholmai, Brian J
2017-10-01
To evaluate the correlation between measurements from quantitative thoracic high-resolution CT (HRCT) analysis with "Computer-Aided Lung Informatics for Pathology Evaluation and Rating" (CALIPER) software and measurements from pulmonary function tests (PFTs) in patients with idiopathic inflammatory myopathies (IIM)-associated interstitial lung disease (ILD). A cohort of patients with IIM-associated ILD seen at Mayo Clinic was identified from medical record review. Retrospective analysis of HRCT data and PFTs at baseline and 1 year was performed. The abnormalities in HRCT were quantified using CALIPER software. A total of 110 patients were identified. At baseline, total interstitial abnormalities as measured by CALIPER, both by absolute volume and by percentage of total lung volume, had a significant negative correlation with diffusing capacity for carbon monoxide (DLCO), total lung capacity (TLC), and oxygen saturation. Analysis by subtype of interstitial abnormality revealed significant negative correlations between ground glass opacities (GGO) and reticular density (RD) with DLCO and TLC. At one year, changes of total interstitial abnormalities compared with baseline had a significant negative correlation with changes of TLC and oxygen saturation. A negative correlation between changes of total interstitial abnormalities and DLCO was also observed, but it was not statistically significant. Analysis by subtype of interstitial abnormality revealed negative correlations between changes of GGO and RD and changes of DLCO, TLC, and oxygen saturation, but most of the correlations did not achieve statistical significance. CALIPER measurements correlate well with functional measurements in patients with IIM-associated ILD.
Is postural tremor size controlled by interstitial potassium concentration in muscle?
Lakie, M; Hayes, N; Combes, N; Langford, N
2004-01-01
Objectives: To determine whether factors associated with postural tremor operate by altering muscle interstitial K+. Methods: An experimental approach was used to investigate the effects of procedures designed to increase or decrease interstitial K+. Postural physiological tremor was measured by conventional means. Brief periods of ischaemic muscle activity were used to increase muscle interstitial K+. Infusion of the ß2 agonist terbutaline was used to decrease plasma (and interstitial) K+. Blood samples were taken for the determination of plasma K+. Results: Ischaemia rapidly reduced tremor size, but only when the muscle was active. The ß2 agonist produced a slow and progressive rise in tremor size that was almost exactly mirrored by a slow and progressive decrease in plasma K+. Conclusions: Ischaemic reduction of postural tremor has been attributed to effects on muscle spindles or an unexplained effect on muscle. This study showed that ischaemia did not reduce tremor size unless there was accompanying muscular activity. An accumulation of K+ in the interstitium of the ischaemic active muscle may blunt the response of the muscle and reduce its fusion frequency, so that the force output becomes less pulsatile and tremor size decreases. When a ß2 agonist is infused, the rise in tremor mirrors the resultant decrease in plasma K+. Decreased plasma K+ reduces interstitial K+ concentration and may produce greater muscular force fluctuation (more tremor). Many other factors that affect postural tremor size may exert their effect by altering plasma K+ concentration, thereby changing the concentration of K+ in the interstitial fluid. PMID:15201362
The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers.
Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Putman, Rachel K; Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; Estepar, Raul San Jose; Washko, George R
2017-08-01
Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Henry, M; Porcher, C; Julé, Y
1998-06-10
The aim of the present study was to describe the deep muscular plexus of the pig duodenum and to characterize its cellular components. Numerous nerve varicosities have been detected in the deep muscular plexus using anti-synaptophysin antibodies. Nerve fibres were also detected here in the outer circular muscle layer, whereas no nerve fibres were observed in the inner circular muscle layer. In the deep muscular plexus, nerve fibres projected to interstitial cells which were characterized at the ultrastructural level. The interstitial cells were of two kinds: the interstitial fibroblastic-like cells (FLC) and the interstitial dense cells (IDC), both of which were interposed between nerve fibres and smooth muscle cells. The FLC were characterized by their elongated bipolar shape, the lack of basal lamina, a well-developed endoplasmic reticulum, a Golgi apparatus, and intermediate filaments. They were closely apposed to axon terminals containing small clear synaptic vesicles and/or dense-cored vesicles. They were frequently connected to each other and to smooth muscle cells of the inner and outer circular layer by desmosomes and more rarely by gap junctions. The IDC are myoid-like cells. They had a stellate appearance and were characterized by a dense cell body, numerous caveolae, and a discontinuous basal lamina. The IDC were always closely apposed to nerve fibres and were connected to smooth muscle cells by desmosomes and small gap junctions. The present results show the unique pattern of cellular organization of the deep muscular plexus of the pig small intestine. They suggest that the interstitial cells in the deep muscular plexus are involved in the integration and transmission of nervous inputs from myenteric neurons to the inner and outer circular muscle layers. The clear-cut distinction observed here between the two types of interstitial cells (fibroblastic and myoid-like) suggests that the interstitial cells of each type may also be involved in some other specific activity, which still remains to be determined.
An analytical model to predict interstitial lubrication of cartilage in migrating contact areas.
Moore, A C; Burris, D L
2014-01-03
For nearly a century, articular cartilage has been known for its exceptional tribological properties. For nearly as long, there have been research efforts to elucidate the responsible mechanisms for application toward biomimetic bearing applications. It is now widely accepted that interstitial fluid pressurization is the primary mechanism responsible for the unusual lubrication and load bearing properties of cartilage. Although the biomechanics community has developed elegant mathematical theories describing the coupling of solid and fluid (biphasic) mechanics and its role in interstitial lubrication, quantitative gaps in our understanding of cartilage tribology have inhibited our ability to predict how tribological conditions and material properties impact tissue function. This paper presents an analytical model of the interstitial lubrication of biphasic materials under migrating contact conditions. Although finite element and other numerical models of cartilage mechanics exist, they typically neglect the important role of the collagen network and are limited to a specific set of input conditions, which limits general applicability. The simplified approach taken in this work aims to capture the broader underlying physics as a starting point for further model development. In agreement with existing literature, the model indicates that a large Peclet number, Pe, is necessary for effective interstitial lubrication. It also predicts that the tensile modulus must be large relative to the compressive modulus. This explains why hydrogels and other biphasic materials do not provide significant interstitial pressure under high Pe conditions. The model quantitatively agrees with in-situ measurements of interstitial load support and the results have interesting implications for tissue engineering and osteoarthritis problems. This paper suggests that a low tensile modulus (from chondromalacia or local collagen rupture after impact, for example) may disrupt interstitial pressurization, increase shear stresses, and activate a condition of progressive surface damage as a potential precursor of osteoarthritis. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.
2018-03-01
Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.
Foster, Derek M.; Martin, Luke G.; Papich, Mark G.
2016-01-01
Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900% penetration to the airways. Despite high diffusion into the bronchi, the tulathromycin concentrations achieved were lower than the MIC of susceptible bacteria at most time points. PMID:26872361
[Medical management of interstitiel pregnancy by in situ methotrexate].
Debras, E; Fernandez, H; Pourcelot, A-G; Houllier, M; Capmas, P
2016-09-01
Interstitial pregnancy accounts for 3 to 11% of ectopic pregnancy; these pregnancies are the more frequently non-tubal ectopic pregnancy. Medical treatment can be used in case of unruptured interstitial pregnancy and is used more and more frequently to avoid hemorrhagic risk and risk of conversion to radical surgery when a surgical management is decided. However, a larger use of methotrexate in interstitial pregnancy and conditions of use are not clearly defined. The aim of this study is to report a series of unruptured interstitial pregnancy managed by in situ injection of methotrexate. This retrospective observational study included women treated for an interstitial pregnancy between 2010 and 2013 in a teaching hospital. Medical management used was an in situ injection of methotrexate (1mg/kg) guided by vaginal sonography plus an intramuscular injection of methotrexate (1mg/kg) in the 48hours following in situ injection and 600mg of mifepristone when progesterone blood rate was more than 9ng/mL. A great decrease of serum hCG without surgery was considered a success. Fourteen women had an interstitial pregnancy during the study period. Six were managed surgically in 5 cases for suspicion of uterine rupture and one for pregnancy of unknown location. Eight women had a medical management and the success rate was 100%. Mean time for decrease of serum hCG until 2 UI/L was 54.4 days [34.0-74.8]. No uterine rupture or immediate complication was reported. Five women out of 8 had a spontaneous pregnancy after management of interstitial pregnancy. Medical management by in situ injection of methotrexate under sonographic guidance with an intramuscular injection within the 48hours following the in situ injection and mifepristone when ectopic pregnancy was active can be proposed in first-line therapy in case of unruptured interstitial pregnancy. This treatment has a great efficiency and low rate of complications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
String-like cooperative motion in homogeneous melting
Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F.
2013-01-01
Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of “superheated” Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of “homogeneous” melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional “static” defect melting models. PMID:23556789
String-like cooperative motion in homogeneous melting.
Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F
2013-03-28
Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static" defect melting models.
Gilloteaux, J
1975-08-27
Studies on the intrinsic innervation of the anterior byssal retractor muscle (ABRM) in Mytilus edulis L. were continued at the ultrastructural level. Electron micrographs show nerve processes ensheathed by glio-interstitial cells running between muscle fibers. The glio-interstitial cells may represent all the types of osmiophilic cells previously described by the light microscopic ZIO technique in the anterior byssal retractor muscle.
Bismuth interstitial impurities and the optical properties of GaP 1- x - yBi xN y
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, Theresa M.; Beaton, Daniel A.; Perkins, John D.
Two distinctive regimes of behavior are observed from GaP 1-x-y Bi x N y alloys with x < 2.4%, y < 3.4% grown by molecular beam epitaxy. These regimes are correlated with abundant bismuth interstitial impurities that are encouraged or suppressed according to the sample growth temperature, with up to 55% of incorporated bismuth located interstitially. When bismuth interstitials are present, radiative recombination arises at near-band-edge localized states rather than from impurity bands and deep state luminescence. Finally, this change demonstrates a novel strategy for controlling luminescence in isoelectronic semiconductor alloys and is attributed to a disruption of carrier transfermore » processes.« less
Bismuth interstitial impurities and the optical properties of GaP 1- x - yBi xN y
Christian, Theresa M.; Beaton, Daniel A.; Perkins, John D.; ...
2017-10-10
Two distinctive regimes of behavior are observed from GaP 1-x-y Bi x N y alloys with x < 2.4%, y < 3.4% grown by molecular beam epitaxy. These regimes are correlated with abundant bismuth interstitial impurities that are encouraged or suppressed according to the sample growth temperature, with up to 55% of incorporated bismuth located interstitially. When bismuth interstitials are present, radiative recombination arises at near-band-edge localized states rather than from impurity bands and deep state luminescence. Finally, this change demonstrates a novel strategy for controlling luminescence in isoelectronic semiconductor alloys and is attributed to a disruption of carrier transfermore » processes.« less
Deidda, Arianna; Pisanu, Claudia; Micheletto, Laura; Bocchetta, Alberto; Del Zompo, Maria; Stochino, Maria Erminia
2017-06-01
We investigated a pulmonary adverse drug reaction possibly induced by fluoxetine, the Interstitial Lung Disease, by performing a systematic review of published case reports on this subject, a review of the World Health Organization VigiAccess database, of the European EudraVigilance database and of a national Pharmacovigilance database (Italian Pharmacovigilance Network). The research found a total of seven cases linking fluoxetine to Interstitial Lung Disease in the literature. 36 cases of interstitial lung disease related to fluoxetine were retrieved from the VigiAccess database (updated to July 2016), and 36 reports were found in EudraVigilance database (updated to June 2016). In the Italian Pharmacovigilance database (updated to August 2016), we found only one case of Interstitial Lung Disease, codified as "pulmonary disease". Our investigation shows that fluoxetine might be considered as a possible cause of Interstitial Lung Disease. In particular, although here we do not discuss the assessment of benefits and harms of fluoxetine, since this antidepressant is widely used, our review suggests that fluoxetine-induced Interstitial Lung Disease should be considered in patients with dyspnea, associated or not with dry cough, who are treated with this drug. An early withdrawn of fluoxetine could be useful to obtain a complete remission of this adverse drug reaction and special attention should be particularly devoted to long-term therapy, and to female and elderly patients. Although the spontaneous reporting system is affected by important limitations, drug post- marketing surveillance represents an important tool to evaluate the real world effectiveness and safety of drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.
2015-01-01
Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150
Parra, Edwin Roger; Ruppert, Aline Domingos Pinto; Capelozzi, Vera Luiza
2014-01-01
To validate the importance of the angiotensin II receptor isotypes and the lymphatic vessels in systemic sclerosis and idiopathic pulmonary fibrosis. We examined angiotensin II type 1 and 2 receptors and lymphatic vessels in the pulmonary tissues obtained from open lung biopsies of 30 patients with systemic sclerosis and 28 patients with idiopathic pulmonary fibrosis. Their histologic patterns included cellular and fibrotic non-specific interstitial pneumonia for systemic sclerosis and usual interstitial pneumonia for idiopathic pulmonary fibrosis. We used immunohistochemistry and histomorphometry to evaluate the number of cells in the alveolar septae and the vessels stained by these markers. Survival curves were also used. We found a significantly increased percentage of septal and vessel cells immunostained for the angiotensin type 1 and 2 receptors in the systemic sclerosis and idiopathic pulmonary fibrosis patients compared with the controls. A similar percentage of angiotensin 2 receptor positive vessel cells was observed in fibrotic non-specific interstitial pneumonia and usual interstitial pneumonia. A significantly increased percentage of lymphatic vessels was present in the usual interstitial pneumonia group compared with the non-specific interstitial pneumonia and control groups. A Cox regression analysis showed a high risk of death for the patients with usual interstitial pneumonia and a high percentage of vessel cells immunostained for the angiotensin 2 receptor in the lymphatic vessels. We concluded that angiotensin II receptor expression in the lung parenchyma can potentially control organ remodeling and fibrosis, which suggests that strategies aimed at preventing high angiotensin 2 receptor expression may be used as potential therapeutic target in patients with pulmonary systemic sclerosis and idiopathic pulmonary fibrosis.
Correlation of gene expression with bladder capacity in interstitial cystitis/bladder pain syndrome.
Colaco, Marc; Koslov, David S; Keys, Tristan; Evans, Robert J; Badlani, Gopal H; Andersson, Karl-Erik; Walker, Stephen J
2014-10-01
Interstitial cystitis and bladder pain syndrome are terms used to describe a heterogeneous chronic pelvic and bladder pain disorder. Despite its significant prevalence, our understanding of disease etiology is poor. We molecularly characterized interstitial cystitis/bladder pain syndrome and determined whether there are clinical factors that correlate with gene expression. Bladder biopsies from female subjects with interstitial cystitis/bladder pain syndrome and female controls without signs of the disease were collected and divided into those with normal and low anesthetized bladder capacity, respectively. Samples then underwent RNA extraction and microarray assay. Data generated by these assays were analyzed using Omics Explorer (Qlucore, Lund, Sweden), GeneSifter® Analysis Edition 4.0 and Ingenuity® Pathway Analysis to determine similarity among samples within and between groups, and measure differentially expressed transcripts unique to each phenotype. A total of 16 subjects were included in study. Principal component analysis and unsupervised hierarchical clustering showed clear separation between gene expression in tissues from subjects with low compared to normal bladder capacity. Gene expression in tissue from patients with interstitial cystitis/bladder pain syndrome who had normal bladder capacity did not significantly differ from that in controls without interstitial cystitis/bladder pain syndrome. Pairwise analysis revealed that pathways related to inflammatory and immune response were most involved. Microarray analysis provides insight into the potential pathological condition underlying interstitial cystitis/bladder pain syndrome. This pilot study shows that patients with this disorder who have low compared to normal bladder capacity have significantly different molecular characteristics, which may reflect a difference in disease pathophysiology. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
[Alternative treatments for interstitial cystitis].
Gamé, X; Bart, S; Castel-Lacanal, E; De Sèze, M; Karsenty, G; Labat, J-J; Rigaud, J; Scheiber-Nogueira, M C; Ruffion, A
2009-06-01
Interstitial cystitis is the first cause of bladder pain. In case of failure of the usual treatments, several other modalities have been proposed. These therapeutic modalities are posterior sacral root neuromodulation, posterior tibial nerve stimulation, vanilloid agent intravesical instillation, intradetrusor botulinum toxin injections and surgery. A certain efficiency of each of these treatments in the interstitial cystitis has been reported. However, the evaluation of these treatments is limited and the level of evidence is too low to propose these treatments in routine.
Formation and Migration Energies of Interstitials in Silicon Under Strain Conditions
NASA Technical Reports Server (NTRS)
Halicioglu, Timur; Barnett, David M.
1999-01-01
Simulation calculations are conducted for Si substrates to analyze formation and diffusion energies of interstitials under strain condition using statics methods .based on a Stillinger-Weber type potential function. Defects in the vicinity of the surface region and in the bulk are examined, and the role played by compressive and tensile strains on the energetics of interstitials is investigated. Results indicate that strain alters defect energetics which, in turn, modifies their diffusion characteristics.
Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis
Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian
2013-01-01
Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807
Kim, Sung Han; Oh, Shin Ah; Oh, Seung-June
2014-02-01
To identify the voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder. Between September 2005 and June 2010, 3-day voiding diaries of 49 consecutive bladder pain syndrome/interstitial cystitis patients and 301 overactive bladder patients were prospectively collected at an outpatient clinic and retrospectively analyzed. The characteristics of the two groups were not significantly different. However, all voiding variables including volume and frequency were significantly different except for the total voided volume: patients with bladder pain syndrome/interstitial cystitis showed significantly higher voiding frequencies, smaller maximal and mean voided volume, and more constant and narrower ranges of voided volume compared with overactive bladder patients (P < 0.005). Furthermore, mean intervals between voiding in bladder pain syndrome/interstitial cystitis were shorter and more consistent during the day and night (P < 0.001), although mean night-time variances were greater than daytime variances. Logistic regression analysis showed that total night-time frequency, maximal night-time voided volume and mean variance of daytime voiding intervals most significantly differentiated the two groups. Some voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder patients differ significantly according to 3-day voiding diary records. These findings provide additional information regarding the differences between these two diseases in the outpatient clinical setting. © 2013 The Japanese Urological Association.
NASA Astrophysics Data System (ADS)
Xiao, Haibo; Xu, Linfang; Wang, Ruilong; Yang, Changping
2017-09-01
The geometric structure, electronic structure and formation energy of CaCu3Ti4O12 (CCTO) with interstitial copper atom have been studied using the density-functional method within the GGA approximation. Result of structural optimization shows that the interstitial Cu-atom (Cu7) prefers to occupy a special location which is symmetrical with an intrinsic copper atom (Cu13) deviated from the normal site. The mulliken analysis indicates the loss of electrons from interstitial atom (Cu7) and Cu13 are only half more of the losing in other copper atom, which reveals a characteristics of covalent bonding between Cu7/Cu13 and surrounding oxygen atoms respectively. Meanwhile, it is found from electron density difference (EDD) and orbital analysis that the introduction of interstitial Cu atom causes prominent structural reconstruction of a new ;CuO4; quadrilateral. Moreover, the new ;CuO4; planar leads to a corresponding electronic reconstruction in the hybridization between Cu7/Cu13 3d and O 2p at the vicinity of fermi surface, for which a new conductive filament channel comes into being. Besides, the formation energies of the interstitial defects in various charge states are corrected with the value of 2.18, -4.17 and -9.46 eV for charge of 0, 1+ and 2+, respectively.
Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.
Cowin, Stephen C; Cardoso, Luis
2015-03-18
There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient
Dongaonkar, R. M.; Laine, G. A.; Stewart, R. H.
2011-01-01
Microvascular permeability to water is characterized by the microvascular filtration coefficient (Kf). Conventional gravimetric techniques to estimate Kf rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate Kf estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce Kf from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to Kf and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of Kf in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique. PMID:21346245
Blood and Interstitial flow in the hierarchical pore space architecture of bone tissue
Cowin, Stephen C.; Cardoso, Luis
2015-01-01
There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. PMID:25666410
Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu
2018-06-13
The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
Ab initio study of point defects near stacking faults in 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Zhang, Yanwen
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Ab initio study of point defects near stacking faults in 3C-SiC
Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...
2016-07-02
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Investigations of lymphatic drainage from the interstitial space
NASA Astrophysics Data System (ADS)
Jayathungage Don, Tharanga; Richard Clarke Collaboration; John Cater Collaboration; Vinod Suresh Collaboration
2017-11-01
The lymphatic system is a highly complex biological system that facilitates the drainage of excess fluid in body tissues. In addition, it is an integral part of the immunological control system. Understanding the mechanisms of fluid absorption from the interstitial space and flow through the initial lymphatics is important to treat several pathological conditions. The main focus of this study is to computationally model the lymphatic drainage from the interstitial space. The model has been developed to consider a 3D lymphatic network and uses biological data to inform the creation of realistic geometries for the lymphatic capillary networks. We approximate the interstitial space as a porous region and the lymphatic vessel walls as permeable surfaces. The dynamics of the flow is approximated by Darcy's law in the interstitium and the Navier-Stokes equations in the lymphatic capillary lumen. The proposed model examines lymph drainage as a function of pressure gradient. In addition, we have examined the effects of interstitial and lymphatic wall permeabilities on the lymph drainage and the solute transportation in the model. The computational results are in accordance with the available experimental measurements.
Glazer, Craig S
2015-03-01
Chronic hypersensitivity pneumonitis is increasingly recognized as an important mimic of other fibrotic lung diseases. This review will summarize recent data regarding the importance and difficulty of determining causative exposures both for accurate diagnosis and prognosis, and describe the expanded pathologic spectrum of the disease, the effects of fibrosis on prognosis and challenges in the diagnostic evaluation. Several recent publications show the potential pathologic patterns induced by chronic hypersensitivity pneumonitis are broader than the classic triad of bronchiolitis, interstitial infiltrates and granulomas. Other pathologic patterns include nonspecific interstitial pneumonia, usual interstitial pneumonia, organizing pneumonia, bronchiolitis and airway centric fibrosis. Detecting a causative antigen in fibrotic hypersensitivity pneumonitis is challenging but critically important both for accurate diagnosis and improved prognosis. The prognosis in hypersensitivity pneumonitis worsens in the presence of fibrosis, but it remains significantly better than idiopathic pulmonary fibrosis. Hypersensitivity pneumonitis is increasingly recognized as an important cause of fibrotic interstitial lung disease. Hypersensitivity pneumonitis demonstrates a remarkable tendency to mimic other idiopathic interstitial pneumonias. A detailed exposure history remains a cornerstone of diagnosis and management.
Yin, Zhongcheng; Zhou, Xudong; Li, Xiaoju; Xiao, Aiguo
2013-01-01
Interstitial fibrosis is regarded as the main pathway for the progression of chronic kidney disease (CKD) and is often associated with severe renal dysfunction. Stem cell-based therapies may provide alternative approaches for the treatment of CKD. Human amniotic fluid-derived stem cells (hAFSCs) are a novel stem cell population, which exhibit both embryonic and mesenchymal stem cell characteristics. Herein, the present study investigated whether the transplantation of hAFSCs into renal tissues could improve renal interstitial fibrosis in a murine model of unilateral ureteral obstruction (UUO). We showed that hAFSCs provided a protective effect and alleviated interstitial fibrosis as reflected by an increase in microvascular density; additionally, hAFSCs treatment beneficially modulated protein levels of vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1). Therefore, we hypothesize that hAFSCs could represent an alternative, readily available source of stem cells that can be applied for the treatment of renal interstitial fibrosis. PMID:23724119
020. Coexistence of lung adenocarcinoma and usual interstitial pneumonia: a case report
Baliaka, Aggeliki; Papaemmanouil, Styliani; Spyratos, Dionysis; Zarogoulidis, Paul; Sakkas, Leonidas
2015-01-01
Background Usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause. The most common symptoms are progressively increased shortness of breath and dry cough. Some studies suggest an association between usual interstitial pneumonia and lung cancer through different pathogenetic mechanisms. Objective The case presentation of a patient with lung adenocarcinoma and UIP. Methods A 66-year-old male presented with persistent dry cough, hemoptysis and dyspnea. The chest radiographs revealed a mass in the lower lobe of the left lung, measuring 3 cm, as well as diffuse interstitial changes in the same lobe. Two partial lobectomies were performed. Results Histological examination of the mass showed moderately differentiated adenocarcinoma, focally with bronchoalveolar pattern (Immunohistochemical detection of EGFR: positive). The rest lung parenchyma presented histological appearance of UIP. Conclusions According to clinicopathological studies, the prevalence of lung cancer among patients with UIP/IPF varies between 4% and 9%. The overall median survival of IPF-Ca patients is seven months in comparison with IPF only patients (14 months).
Native defects in GaN: a hybrid functional study
NASA Astrophysics Data System (ADS)
Diallo, Ibrahima Castillo; Demchenko, Denis
Intrinsic defects play an important role in the performance of GaN-based devices. We present hybrid density functional calculations of the electronic and possible optical properties of interstitial N (Ni-Ni) , N antisite (NGa) , interstitial Ga (Gai) , Ga antisite (GaN) , Ga vacancy (VGa) , N vacancy (VN) and Ga-N divacancies (VGaVN) in GaN. Our results show that the vacancies display relatively low formation energies in certain samples, whereas antisites and interstitials are energetically less favorable. However, interstitials can be created by electron irradiation. For instance, in 2.5 MeV electron-irradiated GaN samples, a strong correlation between the frequently observed photoluminescence (PL) band centered around 0.85 eV accompanied with a rich phonon sideband of ~0.88 eV and the theoretical optical behavior of interstitial Ga is discussed. N vacancies are found to likely contribute to the experimentally obtained green luminescence band (GL2) peaking at 2.24 eV in high-resistivity undoped and Mg-doped GaN. National Science Foundation (DMR-1410125) and the Thomas F. and Kate Miller Jeffress Memorial Trust.
Bolzán, Alejandro D
2017-07-01
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes. Copyright © 2017 Elsevier B.V. All rights reserved.
[Effect of rapamycin on proliferation of rat heart valve interstitial cells in vitro].
Tan, Yan; Wang, Ji-Ye; Yi, Ren-Liang; Qiu, Jian
2016-04-01
To investigate the effect of rapamycin on the proliferation of rat valvular interstitial cells in primary culture. The interstitial cells isolated from rat aortic valves were cultured and treated with rapamycin, and the cell growth and cell cycle changes were analyzed using MTT assay and flow cytometry, respectively. RT-PCR was used to detect mRNA expression levels of S6 and P70S6K in cells, and the protein expressions level of S6, P70S6K, P-S6, and P-P70S6K were detected using Western blotting. Rat aortic valvular interstitial cells was isolated successfully. The rapamycin-treated cells showed a suppressed proliferative activity (P<0.05), but the cell cycle distribution remained unaffected. Rapamycin treatment resulted in significantly decreased S6 and P70S6K protein phosphorylation level in the cells (P<0.05). The mechanism by which rapamycin inhibits the proliferation of valvular interstitial cells probably involves suppression of mTOR to lower S6 and P70S6K phosphorylation level but not direct regulation of the cell cycle.
Average structure and local configuration of excess oxygen in UO(2+x).
Wang, Jianwei; Ewing, Rodney C; Becker, Udo
2014-03-19
Determination of the local configuration of interacting defects in a crystalline, periodic solid is problematic because defects typically do not have a long-range periodicity. Uranium dioxide, the primary fuel for fission reactors, exists in hyperstoichiometric form, UO(2+x). Those excess oxygen atoms occur as interstitial defects, and these defects are not random but rather partially ordered. The widely-accepted model to date, the Willis cluster based on neutron diffraction, cannot be reconciled with the first-principles molecular dynamics simulations present here. We demonstrate that the Willis cluster is a fair representation of the numerical ratio of different interstitial O atoms; however, the model does not represent the actual local configuration. The simulations show that the average structure of UO(2+x) involves a combination of defect structures including split di-interstitial, di-interstitial, mono-interstitial, and the Willis cluster, and the latter is a transition state that provides for the fast diffusion of the defect cluster. The results provide new insights in differentiating the average structure from the local configuration of defects in a solid and the transport properties of UO(2+x).
First-Principles Study of Carbon and Vacancy Structures in Niobium
Ford, Denise C.; Zapol, Peter; Cooley, Lance D.
2015-04-03
The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less
Perkins, David D.; Metzenberg, Robert L.; Raju, Namboori B.; Selker, Eric U.; Barry, Edward G.
1986-01-01
In translocation OY321 of Neurospora crassa, the nucleolus organizer is divided into two segments, a proximal portion located interstitially in one interchange chromosome, and a distal portion now located terminally on another chromosome, linkage group I. In crosses of Translocation x Translocation, exceptional progeny are recovered nonselectively in which the chromosome sequence has apparently reverted to Normal. Genetic, cytological, and molecular evidence indicates that reversion is the result of meiotic crossing over between homologous displaced rDNA repeats. Marker linkages are wild type in these exceptional progeny. They differ from wild type, however, in retaining an interstitial block of rRNA genes which can be demonstrated cytologically by the presence of a second, small interstitial nucleolus and genetically by linkage of an rDNA restriction site polymorphism to the mating-type locus in linkage group I. The interstitial rDNA is more highly methylated than the terminal rDNA. The mechanism by which methylation enzymes distinguish between interstitial rDNA and terminal rDNA is unknown. Some hypotheses are considered. PMID:2947829
Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.
2017-09-01
The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress directionmore » and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.« less
Tien, Joe; Truslow, James G; Nelson, Celeste M
2012-01-01
This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.
The behaviour of stacking fault energy upon interstitial alloying.
Lee, Jee-Yong; Koo, Yang Mo; Lu, Song; Vitos, Levente; Kwon, Se Kyun
2017-09-11
Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.
Aust, Thomas; O'Neill, Aoife; Cario, Gregory
2011-01-01
To describe the laparoscopic management of an interstitial gestation of a heterotopic pregnancy. Case report and technique description. Tertiary-level private practice. Woman with a 6-week gestation spontaneous heterotopic twin pregnancy: one twin intrauterine, one interstitial. A purse-string suture was applied to the proximal portion of the interstitial heterotopic pregnancy. To enable a cornual resection to be performed with minimal bleeding and without recourse to laparotomy. At 8 weeks gestation an ultrasound scan confirmed a viable singleton intrauterine pregnancy, but a scan at 12 weeks showed a missed miscarriage. The embedding of the suture into the uterine serosa prevents slipping of the ligature that could occur with a pretied loop. Copyright © 2011 American Society for Reproductive Medicine. All rights reserved.
Soldati, Gino; Demi, Marcello
2017-06-01
In recent years, great advances have been made in the use of lung ultrasound to detect pulmonary edema and interstitial changes in the lung. However, it is clear that B-lines oversimplify the description of the physical phenomena associated with their presence. The artifactual images that ultrasounds provide in interstitial pulmonary pathology are merely the ultimate outcome of the complex interaction of a specific acoustic wave with a specific three-dimensional biological structure. This interaction lacks a solid physical interpretation of the acoustic signs to support it. The aim of this paper was to describe the differences between the sonographic interstitial syndrome related to lung diseases and that related to cardiogenic edema in the light of current knowledge regarding the pleural plane's response to ultrasound waves.
Gallium interstitial in irradiated germanium: Deep level transient spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted
Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p-type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.
Gallium interstitial in irradiated germanium: Deep level transient spectroscopy
NASA Astrophysics Data System (ADS)
Kolkovsky, Vl.; Petersen, M. Christian; Mesli, A.; van Gheluwe, J.; Clauws, P.; Larsen, A. Nylandsted
2008-12-01
Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p -type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.
Interstitial Lung Disease due to Siderosis in a Lathe Machine Worker.
Gothi, D; Satija, B; Kumar, S; Kaur, Omkar
2015-01-01
Since its first description in 1936, siderosis of lung has been considered a benign pneumoconiosis due to absence of significant clinical symptoms or respiratory impairment. Subsequently, authors have questioned the non-fibrogenic property of iron. However, siderosis causing interstitial lung disease with usual interstitial pneumonia (UIP) pattern has not been described in the past. We report a case of UIP on high resolution computed tomography, proven to be siderosis on transbronchial lung biopsy in a lathe machine worker.
2017-09-01
PROJECT NUMBER Kenneth M. Peters 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...AWARD NUMBER: W81XWH-16-1-0307 TITLE: Comparison of Bladder-Directed and Pelvic Floor Therapy in Women With Interstitial Cystitis/Bladder Pain...Pelvic Floor Therapy in Women With Interstitial Cystitis/Bladder Pain Syndrome 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
Idiopathic Interstitial Pneumonias
... 50 More than 60% Pulmonary rehabilitation Lung transplantation Pirfenidone or nintedanib 50–70% die in 5 years. ... In This Article Generic Name Select Brand Names Pirfenidone ESBRIET nintedanib OFEV Interstitial Lung Diseases Overview of ...
Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer
2014-12-26
The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even for those residues whose conformational densities in the apo state are unaffected by the treatment of the bulk solvent. Together, these results show that the explicit treatment of interstitial water molecules is necessary for a proper description of allosteric transitions.
Interstitial lung disease - adults - discharge
... lung disease Pulmonary alveolar proteinosis Rheumatoid lung disease Sarcoidosis Patient Instructions Eating extra calories when sick - adults ... team. Related MedlinePlus Health Topics Interstitial Lung Diseases Sarcoidosis Browse the Encyclopedia A.D.A.M., Inc. ...
View of first level from north showing interstitial structural columns ...
View of first level from north showing interstitial structural columns for the Shuttle assemble configuration. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron
NASA Astrophysics Data System (ADS)
Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang
2017-09-01
The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of 〈 110 〉 dumbbells and 〈 111 〉 crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.
Hydrogen vibrations in austenitic fcc Fe-Cr-Mn-Ni steels
NASA Astrophysics Data System (ADS)
Danilkin, S. A.; Fuess, H.; Wipf, H.; Ivanov, A.; Gavriljuk, V. G.; Delafosse, D.; Magnin, T.
2003-07-01
By neutron spectroscopy, we studied vibrations of H interstitials in two austenitic fcc steels (Fe0.55Cr0.20Mn0.10Ni0.15 and Fe0.54Cr0.27Ni0.19) doped with 0.37 and 0.33 at% H. The band modes, in which H vibrates with its metal neighbours, cause a weak intensity in the energy range of the acoustic vibrations of the H-free steels. The energies of the fundamental and the twofold local-mode excitations, in which H vibrates against its metal neighbours, were ~ 130 and ~ 260 meV, respectively. The respective peaks in the spectra were broadened because the metal neighbours of H, and thus its vibrational energies, vary from interstitial site to interstitial site. The above energy values support an H occupation of octahedral interstitial sites.
Desquamative interstitial pneumonia associated with chrysotile asbestos fibres.
Freed, J A; Miller, A; Gordon, R E; Fischbein, A; Kleinerman, J; Langer, A M
1991-01-01
The drywall construction trade has in the past been associated with exposure to airborne asbestos fibres. This paper reports a drywall construction worker with 32 years of dust exposure who developed dyspnoea and diminished diffusing capacity, and showed diffuse irregular opacities on chest radiography. He did not respond to treatment with corticosteroids. Open lung biopsy examination showed desquamative interstitial pneumonia. Only a single ferruginous body was seen on frozen section, but tissue examination by electron microscopy showed an extraordinary pulmonary burden of mineral dust with especially high concentrations of chrysotile asbestos fibres. This report emphasises the need to consider asbestos fibre as an agent in the aetiology of desquamative interstitial pneumonia. The coexistent slight interstitial fibrosis present in this case is also considered to have resulted from exposure to mineral dust, particularly ultramicroscopic asbestos fibres. Images PMID:1645584
Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.
Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf
2017-08-22
The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Huber, Vincent J.; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L.
2018-01-01
The blood–brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow–Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow–Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [17O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [17O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB. PMID:29481527
Liu, L J; Schlesinger, M
2015-09-07
A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smoking related idiopathic interstitial pneumonia: Results of an ERS/ATS Task Force
Flaherty, Kevin R.; Fell, Charlene; Aubry, Marie-Christine; Brown, Kevin; Colby, Thomas; Costabel, Ulrich; Franks, Teri J.; Gross, Barry H; Hansell, David M.; Kazerooni, Ella; Kim, Dong Soon; King, Talmadge E.; Kitachi, Masanori; Lynch, David; Myers, Jeff; Nagai, Sonoko; Nicholson, Andrew G.; Poletti, Venerino; Raghu, Ganesh; Selman, Moises; Toews, Galen; Travis, William; Wells, Athol U.; Vassallo, Robert; Martinez, Fernando J.
2015-01-01
Background Cigarette smoking is a key factor in the development of numerous pulmonary diseases. Methods An international group of clinicians, radiologists, and pathologists evaluated patients with previously identified idiopathic interstitial pneumonia (IIP) to determine unique features of cigarette smoking. Phase 1 (derivation group) identified smoking related features in patients with a history of smoking (n=41). Phase 2 (validation group) determined if these features correctly predicted the smoking status of IIP patients (n=100) to participants blinded to smoking history. Finally, investigators sought to determine if a new smoking-related interstitial lung disease phenotype could be defined. Results Phase 1 suggested that preserved forced vital capacity with disproportionately reduced DLCO, various radiographic and histopathologic findings were smoking related features. In Phase 2 the kappa among clinicians was 0.16 (95% CI 0.11 – 0.21), among the pathologists 0.36 (95% CI 0.32 – 0.34) and among the radiologists 0.43 (95% CI 0.35 – 0.52) for smoking related features. Eight of the 100 cases were felt to represent a potential smoking related interstitial lung disease. Conclusion Smoking related features of interstitial lung disease were identified in a minority of smokers and are not specific for smoking. This study is limited by its retrospective design and the potential for recall bias of smoking history and lack of information on second had smoke exposure. Further research is needed to understand the relationship between smoking and interstitial lung disease. PMID:25063244
Brain interstitial fluid TNF-α after subarachnoid hemorrhage
Hanafy, Khalid A.; Grobelny, Bartosz; Fernandez, Luis; Kurtz, Pedro; Connolly, ES; Mayer, Stephan A.; Schindler, Christian; Badjatia, Neeraj
2010-01-01
Objective: TNF-α is an inflammatory cytokine that plays a central role in promoting the cascade of events leading to an inflammatory response. Recent studies have suggested that TNF-α may play a key role in the formation and rupture of cerebral aneurysms, and that the underlying cerebral inflammatory response is a major determinate of outcome following subrarachnoid hemorrhage (SAH). Methods: We studied 14 comatose SAH patients who underwent multimodality neuromonitoring with intracranial pressure (ICP) and cerebral microdialysis as part of their clinical care. Continuous physiological variables were time-locked every 8 hours and recorded at the same point that brain interstitial fluid TNF-α was measured in brain microdialysis samples. Significant associations were determined using generalized estimation equations. Results: Each patient had a mean of 9 brain tissue TNF-α measurements obtained over an average of 72 hours of monitoring. TNF-α levels rose progressively over time. Predictors of elevated brain interstitial TNF-α included higher brain interstitial fluid glucose levels (β=0.066, P<0.02), intraventricular hemorrhage (β=0.085, P<0.021), and aneurysm size >6 mm (β=0.14, p<0.001). There was no relationship between TNF-α levels and the burden of cisternal SAH; concurrent measurements of serum glucose, or lactate-pyruvate ratio. Interpretation: Brain interstitial TNF-α levels are elevated after SAH, and are associated with large aneurysm size, the burden of intraventricular blood, and elevation brain interstitial glucose levels. PMID:20110094
The Significance of Interstitial Cells in Neurogastroenterology
Blair, Peter J; Rhee, Poong-Lyul; Sanders, Kenton M; Ward, Sean M
2014-01-01
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα+) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα+ cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract. PMID:24948131
Case-control study of medical comorbidities in women with interstitial cystitis.
Clemens, J Quentin; Meenan, Richard T; O'Keeffe Rosetti, Maureen C; Kimes, Teresa A; Calhoun, Elizabeth A
2008-06-01
We used physician assigned diagnoses in an electronic medical record to assess comorbidities associated with interstitial cystitis. A computer search of the administrative database at Kaiser Permanente Northwest, Portland, Oregon was performed for May 1, 1998 to April 30, 2003. All women with a medical record diagnosis of interstitial cystitis (ICD-9 code 595.1) were identified. These cases were then matched with 3 controls each based on age and duration in the health plan. The medical diagnoses (using ICD-9 codes restricted to 3 digits) assigned to these 2 groups were compared using the OR. A total of 239 cases and 717 matched controls were analyzed. There were 23 diagnoses that were significantly more common in cases than in controls (p < or = 0.005). Seven of these 23 diagnoses were other urological or gynecological codes used to describe pelvic symptoms. Additional specific conditions associated with interstitial cystitis were gastritis (OR 12.2), child abuse (OR 9.3), fibromyalgia (OR 3.0), anxiety disorder (OR 2.8), headache (OR 2.5), esophageal reflux (OR 2.2), unspecified back disorder (OR 2.2) and depression (OR 2.0). A diagnosis of interstitial cystitis was associated with multiple other unexplained physical symptoms and certain psychiatric conditions. Studies to explore the possible biological explanations for these associations are needed. Interstitial cystitis was also associated with a history of child abuse, although 96% of patients with IC did not have this diagnosis.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.
2008-04-01
The global aerosol-climate model ECHAM5-HAM has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme. Transfer, production, and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland). Although the single-column simulations cannot be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.
Sintering of viscous droplets under surface tension
Vasseur, Jérémie; Llewellin, Edward W.; Schauroth, Jenny; Dobson, Katherine J.; Scheu, Bettina; Dingwell, Donald B.
2016-01-01
We conduct experiments to investigate the sintering of high-viscosity liquid droplets. Free-standing cylinders of spherical glass beads are heated above their glass transition temperature, causing them to densify under surface tension. We determine the evolving volume of the bead pack at high spatial and temporal resolution. We use these data to test a range of existing models. We extend the models to account for the time-dependent droplet viscosity that results from non-isothermal conditions, and to account for non-zero final porosity. We also present a method to account for the initial distribution of radii of the pores interstitial to the liquid spheres, which allows the models to be used with no fitting parameters. We find a good agreement between the models and the data for times less than the capillary relaxation timescale. For longer times, we find an increasing discrepancy between the data and the model as the Darcy outgassing time-scale approaches the sintering timescale. We conclude that the decreasing permeability of the sintering system inhibits late-stage densification. Finally, we determine the residual, trapped gas volume fraction at equilibrium using X-ray computed tomography and compare this with theoretical values for the critical gas volume fraction in systems of overlapping spheres. PMID:27274687
Implementation plan for underground waste storage tank surveillance and stabilization improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.
1989-04-01
Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate themore » interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.« less
Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.
Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf
2017-08-22
Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.
2015-01-21
Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less
Radiation-enhanced self- and boron diffusion in germanium
NASA Astrophysics Data System (ADS)
Schneider, S.; Bracht, H.; Klug, J. N.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Bougeard, D.; Haller, E. E.
2013-03-01
We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘C and 720 ∘C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction and the interstitialcy and dissociative diffusion mechanisms. The numerical simulations ascertain concentrations of Ge interstitials and B-interstitial pairs that deviate by several orders of magnitude from their thermal equilibrium values. The dominance of self-interstitial related defects under irradiation leads to an enhanced self- and B diffusion in Ge. Analysis of the experimental profiles yields data for the diffusion of self-interstitials (I) and the thermal equilibrium concentration of BI pairs in Ge. The temperature dependence of these quantities provides the migration enthalpy of I and formation enthalpy of BI that are compared with recent results of atomistic calculations. The behavior of self- and B diffusion in Ge under concurrent annealing and irradiation is strongly affected by the property of the Ge surface to hinder the annihilation of self-interstitials. The limited annihilation efficiency of the Ge surface can be caused by donor-type surface states favored under vacuum annealing, but the physical origin remains unsolved.
Investigation of the fracture mechanism of Ti-5Al-2.5Sn at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Van Stone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.
1978-01-01
Fractography and metallographic sectioning were used to investigate the influence of microstructure on the fracture mechanism and fracture toughness (KIC) of normal interstitial and extra low interstitial (ELI) Ti-5Al-25Sn at 20 K (-423 F) and 77 K (-320 F). Plates of each grade were mill annealed at 815 C followed by either air or furnace cooling. These variations in composition and cooling rate resulted in differences in the volume fraction and internal structure of the dispersed beta phase and in the ordering of the alpha matrix. The ELI alloys were tougher than the normal interstitial plates. KIC of the furnace-cooled ELI plate was 25% lower than that of the air-cooled ELI material. Variations in cooling rate had no influence of KIC of the normal interstitial alloys. Fractography showed that a large portion of the fracture surfaces were covered with elongated dimples. Metallographic sections of specimens deformed at 77 K showed that these features form at the intersections of slip bands or deformation twins with grain or twin boundaries. Ordering and higher interstitial levels increase the local strain in slip bands resulting in void nucleation at lower macroscopic strains and lower KIC values.
Moser, Othmar; Yardley, Jane E.; Bracken, Richard M.
2018-01-01
Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise. PMID:29342932
First principles study of hydrogen behaviors in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.
2011-11-01
Understanding the behaviors of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Here, we have used first principles calculations to study the hydrogen behavior in WC. It is found that the most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon basal plane. The binding energy between two interstitial hydrogen atoms is negative, suggesting that hydrogen itself is not capable of trapping another hydrogen atoms to form hydrogen molecule. The calculated results on the interaction between hydrogen and vacancy indicate that hydrogen atom is preferably trapped by vacancy defects and hydrogen molecule can not be formed in mono-vacancy. In addition, the hydrogen atom bound to carbon is only found in tungsten vacancy. We also study the migrations of hydrogen in WC and find that the interstitial hydrogen atom prefers to diffuse along the c-axis. Our studies provide some explanations for the results of the thermal desorption process of energetic hydrogen ion implanted into WC.
Epimorphin expression in interstitial pneumonia
Terasaki, Yasuhiro; Fukuda, Yuh; Suga, Moritaka; Ikeguchi, Naoki; Takeya, Motohiro
2005-01-01
Epimorphin modulates epithelial morphogenesis in embryonic mouse organs. We previously suggested that epimorphin contributes to repair of bleomycin-induced pulmonary fibrosis in mice via epithelium-mesenchyme interactions. To clarify the role of epimorphin in human lungs, we evaluated epimorphin expression and localization in normal lungs, lungs with nonspecific interstitial pneumonia (NSIP), and lungs with usual interstitial pneumonia (UIP); we also studied the effect of recombinant epimorphin on cultured human alveolar epithelial cells in vitro. Northern and Western blotting analyses revealed that epimorphin expression in NSIP samples were significantly higher than those in control lungs and lungs with UIP. Immunohistochemistry showed strong epimorphin expression in mesenchymal cells of early fibrotic lesions and localization of epimorphin protein on mesenchymal cells and extracellular matrix of early fibrotic lesions in the nonspecific interstitial pneumonia group. Double-labeled fluorescent images revealed expression of matrix metalloproteinase 2 in re-epithelialized cells overlying epimorphin-positive early fibrotic lesions. Immunohistochemistry and metalloproteinase activity assay demonstrated augmented expression of metalloproteinase induced by recombinant epimorphin in human alveolar epithelial cells. These findings suggest that epimorphin contributes to repair of pulmonary fibrosis in nonspecific interstitial pneumonia, perhaps partly by inducing expression of matrix metalloproteinase 2, which is an important proteolytic factor in lung remodeling. PMID:15651999
Api, Murat; Api, Olus
2010-03-01
To report the successful treatment of an advanced interstitial ectopic pregnancy via laparoscopic cornuotomy following treatment failure with methotrexate (MTX). A 28-year-old, gravida 3, para 0 woman with a history of successfully treated tubal pregnancy with medical therapy 2 years ago, presented with spotting bleeding and lower abdominal pain. Her initial beta-hCG level was 11706 mIU/ml and the transvaginal ultrasound examination showed an empty uterine cavity with a gestational sac 8 x 10 x 9 mm in diameter having no fetal pole or yolk sac, located just adjacent to the left uterine cornual region. She was introduced 50 mg of systemic MTX with the presumed diagnosis of interstitial pregnancy. Because the serum beta-hCG level raised to 18654 mIU/ml and a fetal pole with cardiac activity emerged on the ultrasound on the fourth day after MTX injection, laparoscopy was planned. The interstitial pregnancy was successfully treated via laparoscopic cornuotomy with the preservation of the uterus. In advanced interstitial pregnancies with high hCG levels, systemic MTX therapy is expected to be ineffective. Laparoscopic cornuotomy is a minimally invasive and effective method of treatment with the advantage of preserving future fertility.
Zinc diffusion in gallium arsenide and the properties of gallium interstitials
NASA Astrophysics Data System (ADS)
Bracht, H.; Brotzmann, S.
2005-03-01
We have performed zinc diffusion experiments in gallium arsenide at temperatures between 620°C and 870°C with a dilute Ga-Zn source. The low Zn partial pressure established during annealing realizes Zn surface concentrations of ⩽2×1019cm-3 , which lead to the formation of characteristic S-shaped diffusion profiles. Accurate modeling of the Zn profiles, which were measured by means of secondary ion mass spectroscopy, shows that Zn diffusion under the particular doping conditions is mainly mediated by neutral and singly positively charged Ga interstitials via the kick-out mechanism. We determined the temperature dependence of the individual contributions of neutral and positively charged Ga interstitials to Ga diffusion for electronically intrinsic conditions. The data are lower than the total Ga self-diffusion coefficient and hence consistent with the general interpretation that Ga diffusion under intrinsic conditions is mainly mediated by Ga vacancies. Our results disprove the general accepted interpretation of Zn diffusion in GaAs via doubly and triply positively charged Ga interstitials and solves the inconsistency related to the electrical compensation of the acceptor dopant Zn by the multiply charged Ga interstitials.
Kinetics of self-interstitial migration in bcc and fcc transition metals
NASA Astrophysics Data System (ADS)
Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.
2018-03-01
Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.
Anterior vaginal wall tenderness (AVWT) as a physical symptom in chronic pelvic pain.
Paulson, John D; Paulson, Joseph N
2011-01-01
Chronic pelvic pain is often difficult to diagnose and treat properly. Physicians called on to treat this problem may not be able to give a specific diagnosis. The aim of this study was to see whether the physical presence of anterior vaginal wall tenderness could help narrow down and elucidate diagnoses in a practice focusing on diagnosis and treatment of chronic pelvic pain. The study cohort comprised 284 patients with chronic pelvic pain limited to gynecologic and lower urinary problems. Histories, physical examinations, and endoscopic procedures were performed on each patient. An analysis of this information was conducted. Of the chronic pelvic pain patients, 78% had endometriosis, 81% had interstitial cystitis, and 61% had both concurrently. The sensitivity of anterior vaginal wall tenderness (AVWT) in patients with interstitial cystitis was 95%, and in those with only endometriosis and no interstitial cystitis, the sensitivity was 17%. The positive predictive value for interstitial cystitis was 85%, and for endometriosis it was 67%. Examination of the anterior vaginal wall with an empty bladder at the initial examination can lead one to suspect interstitial cystitis and possibly either concomitant or singular endometriosis and allow the physician to approach the workup accordingly.
Crystallization of tholeiitic basalt in Alae Lava Lake, Hawaii
Peck, D.L.; Wright, T.L.; Moore, J.G.
1966-01-01
The eruption of Kilauea Volcano August 21-23, 1963, left 600,000 cubic meters of basaltic lava in a lava lake as much as 15 meters deep in Alae pit crater. Field studies of the lake began August 27 and include repeated core drilling, measurements of temperature in the crust and melt, and precise level surveys of the lake surface. The last interstitial melt in the lake solidified late in September 1964; by mid August 1965 the maximum temperature was 690??C at a depth of 11.5 meters. Pumice air-quenched from about 1140??C contains only 5 percent crystals - clinopyroxene, cuhedral olivine (Fo 80), and a trace of plagioclase, (An 70). Drill cores taken from the zone of crystallization in the lake show that olivine continued crystallizing to about 1070??C; below that it reacts with the melt, becoming corroded and mantled by pyroxene and plagioclase. Below 1070??C, pyroxene and plagioclase crystallized at a constant ratio. Ilmenite first appeared at about 1070??C and was joined by magnetite at about 1050??C; both increased rapidly in abundance to 1000??C. Apatite first appeared as minute needles in interstitial glass at 1000??C. Both the abundance and index of refraction of glass quenched from melt decreased nearly linearly with falling temperature. At 1070??C the quenched lava contains about 65 percent dark-brown glass with an index of 1.61; at 980??C it contains about 8 percent colorless glass with an index of 1.49. Below 980??C, the percentage of glass remained constant. Progressive crystallization forced exsolution of gases from the melt fraction; these formed vesicles and angular pores, causing expansion of the crystallizing lava and lifting the surface of the central part of the lake an average of 19.5 cm. The solidified basalt underwent pneumatolitic alteration, including deposition of cristobalite at 800??C, reddish alteration of olivine at 700??C, tarnishing of ilmenite at 550??C, deposition of anhydrite at 250??C, and deposition of native sulfur at 100??C. Ferric-ferrous ratios suggest that oxidation with maximum intensity between 550??C and 610??C moved downward in the crust as it cooled; this was followed by reduction at a temperature of about 100??C. The crystallized basalt is a homogeneous fine-grained rock containing on the average 48.3 percent by volume intergranular pyroxene (augite > pigeonite), 34.2 percent plagioclase laths (An60 70), 7.9 percent interstitial glass, 6.9 percent opaques (ilmenite > magnetite), 2.7 percent olivine (Fo70 80), and a trace of apatite. Chemical analyses of 18 samples, ranging from initially quenched pumice to lava cored more than a year after the eruption from the center and from near the base of the lake, show little variation from silica-saturated tholeiitic basalt containing 50.4 percent SiO2, 2.4 percent Na2O, and 0.54 percent K2O. Apparently there was no significant crystal settling and no appreciable vapor-phase transport of these components during the year of crystallization. However, seven samples of interstitial liquid that had been filter-pressed into gash fractures and drill holes from partly crystalline mush near the base of the crust show large differences from the bulk composition of the solidified crust-lower MgO, CaO, and Al2O3; and higher total iron, TiO2, Na2O, K2O, P2O5, and F, and, in most samples, SiO2. The minor elements Ba, Ga, Li, Y, and Yb and possibly Cu tend to be enriched in the filter-pressed liquids, and Cr and possibly Ni tend to be depleted. ?? 1966 Stabilimento Tipografico Francesco Giannini & Figli.
EPR, optical and modeling of Mn(2+) doped sarcosinium oxalate monohydrate.
Kripal, Ram; Singh, Manju
2015-01-25
Electron paramagnetic resonance (EPR) study of Mn(2+) ions doped in sarcosinium oxalate monohydrate (SOM) single crystal is done at liquid nitrogen temperature (LNT). EPR spectrum shows a bunch of five fine structure lines and further they split into six hyperfine components. Only one interstitial site was observed. With the help of EPR spectra the spin Hamiltonian parameters including zero field splitting (ZFS) parameters are evaluated. The optical absorption study at room temperature is also done in the wavelength range 195-1100 nm. From this study cubic crystal field splitting parameter, Dq=730 cm(-1) and Racah inter-electronic repulsion parameters B=792 cm(-1), C=2278 cm(-1) are determined. ZFS parameters D and E are also calculated using crystal field parameters from superposition model and microscopic spin Hamiltonian theory. The calculated ZFS parameter values are in good match with the experimental values obtained by EPR. Copyright © 2014 Elsevier B.V. All rights reserved.
Lishova, E A; Nikoda, V V; Bondarenko, A V; Ragozin, A K; Skipenko, O G
2013-01-01
Recently new technologies of diagnostics and correction of carbohydrates metabolism disturbances are introduced in the ICU to improve the safety for patients during intensive care. 33 patients after pancreas surgery were included into the study 13 patients (39%) had underlying diabetes mellitus. Glucose level changes in the interstitial liquid of the subcutaneous fat during postoperative period were monitored by system of CGM Medtronic MiniMed Guardian RT, MiniMed Paradigm Real-time. Valid values of glucose were from 4.1 to 10.1 mmol/L. Episodes of glucose level increasing occurred in 94% of patients in postoperative period after pancreas surgery. Average level of glucose was within the limits of valid values. However in 64% of cases patients needed insulin therapy Used systems of continuous glucose monitoring in the ICU allow improving the safety for patients receiving artificial nutrition and intravenous insulin therapy.
NASA Astrophysics Data System (ADS)
Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.
2011-10-01
The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.
Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.
Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin
2017-07-07
Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.
NASA Technical Reports Server (NTRS)
Albert, Mary R.
2012-01-01
Dr. Albert's current research is centered on transfer processes in porous media, including air-snow exchange in the Polar Regions and in soils in temperate areas. Her research includes field measurements, laboratory experiments, and theoretical modeling. Mary conducts field and laboratory measurements of the physical properties of natural terrain surfaces, including permeability, microstructure, and thermal conductivity. Mary uses the measurements to examine the processes of diffusion and advection of heat, mass, and chemical transport through snow and other porous media. She has developed numerical models for investigation of a variety of problems, from interstitial transport to freezing of flowing liquids. These models include a two-dimensional finite element code for air flow with heat, water vapor, and chemical transport in porous media, several multidimensional codes for diffusive transfer, as well as a computational fluid dynamics code for analysis of turbulent water flow in moving-boundary phase change problems.
Enhancement of room temperature ferromagnetism in tin oxide nanocrystal using organic solvents
NASA Astrophysics Data System (ADS)
Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.
2017-10-01
The effect of organic solvents (ethanol & ethylene glycol) on the room temperature ferromagnetism in nanocrystalline tin oxide has been studied. The samples were synthesized using sol-gel method with the mixture of water & organic liquid as solvent. It is found that pristine SnO2 nanocrystal contain two different types of paramagnetic centres over their surface:(i) surface chemisorbed oxygen species and (ii) Sn interstitial & oxygen vacancy defect pair. The magnetic moment induced in the as-prepared samples is mainly contributed by the alignment of local spin moments resulting from these defects. These surface defect states are highly activated by the usage of ethylene glycol solvent rather than ethylene in tin oxide nanostructure synthesis. Powder X-ray diffraction, transmission electron microscope imaging, energy dispersive spectrometry, Fourier transformed infrared spectroscopy, UV-vis absorption spectroscopy, photoluminescence spectroscopy, vibrating sample magnetometer measurement and electron spin resonance spectroscopy were employed to characterize the nanostructured tin oxide materials.
Depletion of interstitial oxygen in silicon and the thermal donor model
NASA Technical Reports Server (NTRS)
Borenstein, Jeffrey T.; Singh, Vijay A.; Corbett, James W.
1987-01-01
It is shown here that the experimental results of Newman (1985) and Tan et al. (1986) regarding the loss of oxygen interstitials during 450 C annealing of Czochralski silicon are consistent with the recently proposed model of Borenstein, Peak, and Corbett (1986) for thermal donor formation. Calculations were carried out for TD cores corresponding to O2, O3, O4, and/or O5 clusters. A simple model which attempts to capture the essential physics of the interstitial depletion has been constructed, and is briefly described.
Fortin, F; Beaulieu Bergeron, M; Fetni, R; Lemieux, N
2009-01-01
Human telomeres play a major role in stabilizing chromosome ends and preventing fusions. Chromosomes bearing a broken end are rescued by the acquisition of a new telomeric cap without any subtelomeric sequences being present at the breakpoint, a process referred to as chromosome healing. Conversely, a loss of telomeric function or integrity can lead to the presence of interstitial telomeres at the junction site in translocations or ring chromosomes. In order to determine the frequency at which interstitial telomeres or chromosome healing events are observed in target chromosome abnormalities, we conducted a retrospective FISH study using pan-telomeric and chromosome-specific subtelomeric probes on archival material from 40 cases of terminal deletions, translocations or ring chromosomes. Of the 19 terminal deletions investigated, 17 were negative for the subtelomeric probe specific to the deleted arm despite being positive for the pan-telomeric probe. These 17 cases were thus considered as having been rescued through chromosome healing, suggesting that this process is frequent in terminal deletions. In addition, as 2 of these cases were inherited from a parent bearing the same deletion, chromosomes healed by this process are thus stable through mitosis and meiosis. Regarding the 13 cases of translocations and 8 ring chromosomes, 4 and 2 cases respectively demonstrated pan-telomeric sequences at the interstitial junction point. Furthermore, 2 cases of translocations and 1 ring chromosome had both interstitial pan-telomeres and subtelomeres, whereas 2 other cases of ring chromosomes and 1 case of translocation only showed interstitial subtelomeres. Therefore, interstitial (sub)telomeric sequences in translocations and ring chromosomes are more common than previously thought, as we found a frequency of 43% in this study. Moreover, our results illustrate the necessity of performing FISH with both subtelomeric and pan-telomeric probes when investigating these rearrangements, as the breakpoints can be either in the distal part of the pan-telomeres, or in between the 2 types of sequences. Copyright 2009 S. Karger AG, Basel.
Crowdsourcing Disease Biomarker Discovery Research: The IP4IC Study.
Chancellor, Michael B; Bartolone, Sarah N; Veerecke, Andrew; Lamb, Laura E
2018-05-01
Biomarker discovery is limited by readily assessable, cost efficient human samples available in large numbers that represent the entire heterogeneity of the disease. We developed a novel, active participation crowdsourcing method to determine BP-RS (Bladder Permeability Defect Risk Score). It is based on noninvasive urinary cytokines to discriminate patients with interstitial cystitis/bladder pain syndrome who had Hunner lesions from controls and patients with interstitial cystitis/bladder pain syndrome but without Hunner lesions. We performed a national crowdsourcing study in cooperation with the Interstitial Cystitis Association. Patients answered demographic, symptom severity and urinary frequency questionnaires on a HIPAA (Health Insurance Portability and Accountability Act) compliant website. Urine samples were collected at home, stabilized with a preservative and sent to Beaumont Hospital for analysis. The expression of 3 urinary cytokines was used in a machine learning algorithm to develop BP-RS. The IP4IC study collected a total of 448 urine samples, representing 153 patients (147 females and 6 males) with interstitial cystitis/bladder pain syndrome, of whom 54 (50 females and 4 males) had Hunner lesions. A total of 159 female and 136 male controls also participated, who were age matched. A defined BP-RS was calculated to predict interstitial cystitis/bladder pain syndrome with Hunner lesions or a bladder permeability defect etiology with 89% validity. In this novel participation crowdsourcing study we obtained a large number of urine samples from 46 states, which were collected at home, shipped and stored at room temperature. Using a machine learning algorithm we developed BP-RS to quantify the risk of interstitial cystitis/bladder pain syndrome with Hunner lesions, which is indicative of a bladder permeability defect etiology. To our knowledge BP-RS is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome and one of the first biomarker assays to be developed using crowdsourcing. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng
2017-12-01
The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5-16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7-8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5-7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5-6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8-16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.
The solubility of rare gases in fused silica: A numerical evaluation
NASA Astrophysics Data System (ADS)
Guillot, Bertrand; Guissani, Yves
1996-07-01
The solubility of rare gases in a simulated model of fused silica is evaluated by the test particle method. It is shown that the order of magnitude of the rare gas solubility in liquid silica is mainly governed by the entropy of cavity formation and only marginally by the solvation energy of the solute in the melt. Hence, the hierarchy of solubilities is dictated by the size of the noble gases: The smaller the atom the higher the solubility. Moreover, the solubility exhibits only a moderate temperature dependence at fixed density. In silica glass the same solubility hierarchy is found (in agreement with the experimental data) although the energetic contribution to the absorption process may become significant, particularly when the temperature decreases. These results in silica are in strong contrast with those obtained in liquid water where the energetic contribution to the rare gas solubility is large enough to overcompensate the entropic loss of cavity formation, the net result being that light noble gases (e.g., He) are less soluble than heavier ones (e.g., Xe). These contrasting behaviors are explained by pointing out that the liquid phase occurs in very different temperature ranges for these two systems (SiO2 and H2O) while the rare gas-solvent interaction energy is essentially of the same order of magnitude. Finally, the structure of silica around helium and neon atoms is found to be interstitial (cristobalitelike) while in the case of heavier rare gases, the structure of cavities is more reminiscent of the polyhedral arrangement encountered with clathrasils.
Ciani, Cesare; Doty, Stephen B.; Fritton, Susannah P.
2009-01-01
Bone is a composite porous material with two functional levels of porosity: the vascular porosity that surrounds blood vessels and the lacunar-canalicular porosity that surrounds the osteocytes. Both the vascular porosity and lacunar-canalicular porosity are directly involved in interstitial fluid flow, thought to play an important role in bone’s maintenance. Because of the small dimensions of the lacunar-canalicular porosity, interstitial fluid space has been difficult to visualize and quantify. We report a new staining protocol that is reliable and easily reproducible, using fluorescein isothiocyanate (FITC) as a probe visualized by confocal microscopy. Reconstructed FITC-stained cross sections enable effective visualization of bone microstructure and microporosities. This new staining process can be used to analyze interstitial fluid space, providing high-resolution quantification of the vascular pores and the lacunar-canalicular network of cortical and cancellous bone. PMID:19442607
Electrode assembly for use in a solid polymer electrolyte fuel cell
Raistrick, Ian D.
1989-01-01
A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.
Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk
2017-01-12
High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase's instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.
Interstitial laser prostatectomy
NASA Astrophysics Data System (ADS)
Johnson, Douglas E.; Cromeens, Douglas M.; Price, Roger E.
1994-05-01
Interstitial laser coagulation of the canine prostate using the Sharplan interstitial thermal therapy fiber (Model 25432) was performed in 9 adult dogs and the subsequent gross and histopathologic changes occurring in the prostate were studied at intervals ranging from 1 hour to 5 weeks. A large well-demarcated area of acute coagulative necrosis developed around each fiber tract which in turn was surrounded by a prominent narrow zone of marked tissue disruption and an outer zone of hemorrhage. Liquefaction developed within the coagulative areas within 24 hours and by 4 days, each prostatic lobe contained an irregular cavity which became lined by normal-appearing transitional epithelium and that by 5 weeks, communicated with the prostatic urethra. These changes, similar to those reported following transurethral visual laser ablation of the prostate, suggest that interstitial laser thermal therapy may provide an alternative means for treating selected patients suffering from prostatic enlargement.
Sekimoto, Yasuhito; Kato, Motoyasu; Shukuya, Takehiko; Koyama, Ryo; Nagaoka, Tetsutaro; Takahashi, Kazuhisa
2016-04-01
Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor and a key drug for advanced non-small cell lung cancer. There are few reports describing bevacizumab-induced chronic interstitial pneumonia. A 62-year-old man with advanced non-small cell lung cancer was admitted to our hospital with dyspnea. He previously received four courses of carboplatin plus paclitaxel with bevacizumab combination therapy and thereafter received four courses of maintenance bevacizumab monotherapy. A chest-computed tomography scan on admission revealed diffuse ground glass opacity. He had not received any other drugs and did not have pneumonia. Thus, he was diagnosed with bevacizumab-induced chronic interstitial pneumonia and was treated with a high dose of corticosteroids. After steroid treatment, his dyspnea and radiological findings improved. This case report is the first description of bevacizumab-induced chronic interstitial pneumonia during maintenance therapy in a patient with non-small cell lung cancer.
Kwee, Ingrid L.
2017-01-01
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467
NASA Astrophysics Data System (ADS)
Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk
2017-01-01
High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase’s instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.
Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji
2017-08-18
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Late glaucoma after interstitial keratitis.
Grant, W M
1975-01-01
In a systematic study of 45 patients who had syphilitic interstitial keratitis early in life and, many years later, were discovered to have glaucoma, there was evidence of two different but equally common mechanisms. In one group of patients, a deep-chamber type of glaucoma was superimposed on old inflammatory changes, was characteristically refractory to medical treatment, but did well with filtering surgery. The other group of patients had reversible angle-closure glaucoma associated with anatomically small anterior segments, and typically responded well to iridectomy. The late, refractory, deep-chamber type of glaucoma may involve endothelialization and formation of glass membrane in the angle, as seen in one excised eye. Occurrence of the shallow-chamber, reversible angle-closure type of glaucoma after interstitial keratitis may be coincidental, since no other evidence supports the idea that small anterior segments might be particularly prevalent among patients who have had congenital syphilis or interstitial keratitis.
Song, Xiao-Zong; Zhao, Chang-Xing; Wang, Xiao-Lan; Li, Ji
2009-04-01
Because of intensive vegetable production in plastic greenhouses in northern China, the potential risk of nitrate leaching to groundwater is increasingly apparent, threatening ecosystem services and the sustainability of food production. In the present work, nine drainable lysimeters were installed into vegetable fields, with in-situ loamy soils, in Shouguang City of the north China vegetable base. The experiments were conducted to quantify the magnitude and variability of nitrate leaching to groundwater and to access the fate of total fertilizer-N inputs in the area. The results obtained indicated that: under local conventional agronomic practices, there is a high discrepancy in leaching nitrate-N concentration (ranging from 17 to 457 mg L(-1)), and nitrate losses (152-347 kg N ha(-1)) were observed from 1-m soil profiles in the field. Meanwhile, high fertilizer N application resulted in low N efficiency, with only (33.0+/-13)% (mean+/-S.D.) of input N absorbed by the crops, while additionally nearly half of the total inputs of N were unaccounted in a partial N balance sheet. It is concluded that groundwater pollution associated with greenhouse-based vegetable production had been confirmed in Shouguang, adversely affecting water quality and leading to serial agro-ecological problems.
Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T
2017-07-01
Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001). Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.
Beckett, Megan K; Elliott, Marc N; Clemens, J Quentin; Ewing, Brett; Berry, Sandra H
2014-01-01
We describe differences in work participation and income by bladder symptom impact and comorbidities among women with interstitial cystitis/bladder pain syndrome. Cross-sectional data from 2,767 respondents younger than 65 years identified with interstitial cystitis/bladder pain syndrome symptoms were analyzed. The data were taken from the RAND Interstitial Cystitis Epidemiology (RICE) survey, and included retrospective self-reports of interstitial cystitis/bladder pain syndrome impact, severity, years since onset, related comorbidities (depressive symptomatology, number of conditions), work participation and income, and personal characteristics. Multiple regressions predicted 5 current work outcomes of works now, kept from working by pain, missed work days, days worked when bothered by symptoms and real income change since symptom onset. Controlling for work status at symptom onset and personal characteristics, greater bladder symptom impact predicted a greater likelihood of not now working, kept more days from working by pain, missed more work days and working more days with symptoms. More depressive symptomatology and greater number of comorbidities predicted reduced work participation. Women experienced no growth in real income since symptom onset. Measures of symptom severity were not associated with any of the economic outcomes. Greater interstitial cystitis/bladder pain syndrome symptom impact, depressive symptomatology and count of comorbidities (but not symptom severity) were each associated with less work participation and leveling of women's long-term earnings. Management of bladder symptom impact on nonwork related activities and depressive symptomatology may improve women's work outcomes. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Increased Risk of Interstitial Lung Disease in Children with a Single R288K Variant of ABCA3
Wittmann, Thomas; Frixel, Sabrina; Höppner, Stefanie; Schindlbeck, Ulrike; Schams, Andrea; Kappler, Matthias; Hegermann, Jan; Wrede, Christoph; Liebisch, Gerhard; Vierzig, Anne; Zacharasiewicz, Angela; Kopp, Matthias Volkmar; Poets, Christian F; Baden, Winfried; Hartl, Dominik; van Kaam, Anton H; Lohse, Peter; Aslanidis, Charalampos; Zarbock, Ralf; Griese, Matthias
2016-01-01
The ABCA3 gene encodes a lipid transporter in type II pneumocytes critical for survival and normal respiratory function. The frequent ABCA3 variant R288K increases the risk for neonatal respiratory distress syndrome among term and late preterm neonates, but its role in children’s interstitial lung disease has not been studied in detail. In a retrospective cohort study of 228 children with interstitial lung disease related to the alveolar surfactant system, the frequency of R288K was assessed and the phenotype of patients carrying a single R288K variant further characterized by clinical course, lung histology, computed tomography and bronchoalveolar lavage phosphatidylcholine PC 32:0. Cell lines stably transfected with ABCA3-R288K were analyzed for intracellular transcription, processing and targeting of the protein. ABCA3 function was assessed by detoxification assay of doxorubicin, and the induction and volume of lamellar bodies. We found nine children with interstitial lung disease carrying a heterozygous R288K variant, a frequency significantly higher than in the general Caucasian population. All identified patients had neonatal respiratory insufficiency, recovered and developed chronic interstitial lung disease with intermittent exacerbations during early childhood. In vitro analysis showed normal transcription, processing, and targeting of ABCA3-R288K, but impaired detoxification function and smaller lamellar bodies. We propose that the R288K variant can underlie interstitial lung disease in childhood due to reduced function of ABCA3, demonstrated by decelerated detoxification of doxorubicin, reduced PC 32:0 content and decreased lamellar body volume. PMID:26928390
Naito, Yoshiro; Fujii, Aya; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru
2015-07-01
Iron accumulation is associated with the pathophysiology of chronic kidney disease (CKD). Renal fibrosis is a final common feature that contributes to the progression of CKD; however, little is known about the association between renal iron accumulation and renal interstitial fibrosis in CKD. Here we investigate the effects of iron chelation on renal interstitial fibrosis in a rat model of CKD. CKD was induced by 5/6 nephrectomy in Sprague-Dawley rats. At 8 weeks after operation, 5/6 nephrectomized rats were administered an oral iron chelator, deferasirox (DFX), in chow for 8 weeks. Other CKD rats were given a normal diet. Sham-operative rats given a normal diet served as a control. CKD rats exhibited hypertension, glomerulosclerosis and renal interstitial fibrosis. Iron chelation with DFX did not change hypertension and glomerulosclerosis; however, renal interstitial fibrosis was attenuated in CKD rats. Consistent with these findings, renal gene expression of collagen type III and transforming growth factor-β was increased in CKD rats compared with the controls, while iron chelation suppressed these increments. In addition, a decrease in vimentin along an increase in E-cadherin in renal gene expression was observed in CKD rats with iron chelation. CKD rats also showed increased CD68-positive cells in the kidney, whereas its increase was attenuated by iron deprivation. Similarly, increased renal gene expression of CD68, tumor necrosis factor-α and monocyte chemoattractant protein-1 was suppressed in CKD rats with iron chelation. Renal iron accumulation seems to be associated with renal interstitial fibrosis in a rat model of CKD.
Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping
2014-09-01
Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Min; Frieboes, Hermann B.; McDougall, Steven R.; Chaplain, Mark A.J.; Cristini, Vittorio; Lowengrub, John
2013-01-01
The flow of interstitial fluid and the associated interstitial fluid pressure (IFP) in solid tumors and surrounding host tissues have been identified as critical elements in cancer growth and vascularization. Both experimental and theoretical studies have shown that tumors may present elevated IFP, which can be a formidable physical barrier for delivery of cell nutrients and small molecules into the tumor. Elevated IFP may also exacerbate gradients of biochemical signals such as angiogenic factors released by tumors into the surrounding tissues. These studies have helped to understand both biochemical signaling and treatment prognosis. Building upon previous work, here we develop a vascular tumor growth model by coupling a continuous growth model with a discrete angiogenesis model. We include fluid/oxygen extravasation as well as a continuous lymphatic field, and study the micro-environmental fluid dynamics and their effect on tumor growth by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and lymphatic drainage. We thus elucidate further the non-trivial relationship between the key elements contributing to the effects of interstitial pressure in solid tumors. In particular, we study the effect of IFP on oxygen extravasation and show that small blood/lymphatic vessel resistance and collapse may contribute to lower transcapillary fluid/oxygen flux, thus decreasing the rate of tumor growth. We also investigate the effect of tumor vascular pathologies, including elevated vascular and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic drainage, and the IFP. Our results reveal that elevated interstitial hydraulic conductivity together with poor lymphatic function is the root cause of the development of plateau profiles of the IFP in the tumor, which have been observed in experiments, and contributes to a more uniform distribution of oxygen, solid tumor pressure and a broad-based collapse of the tumor lymphatics. We also find that the rate that IFF is fluxed into the lymphatics and host tissue is largely controlled by an elevated vascular hydraulic conductivity in the tumor. We discuss the implications of these results on microenvironmental transport barriers, and the tumor invasive and metastatic potential. Our results suggest the possibility of developing strategies of targeting tumor cells based on the cues in the interstitial fluid. PMID:23220211
NASA Astrophysics Data System (ADS)
Hayes, Ben; Ashwal, Lewis D.; Webb, Susan J.; Bybee, Grant M.
2017-03-01
The Bellevue drillcore intersects 3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of 40 to 170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30-40% pyroxene). We examined the textures and mineral compositions of a 40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density increase is produced by the downward infiltration of noritic magma into a previously emplaced plagioclase-rich crystal mush. Fresh noritic magma soaked down into the crystallizing anorthositic mush, partially dissolving plagioclase laths and assimilating Fe-enriched pore melt. The presence of multiple cycles showing upward increases in density in the Bellevue drillcore suggests that downward magma infiltration occurred episodically during crystallization of the Main Zone.
Barashev, A. V.; Golubov, S. I.; Stoller, R. E.
2015-06-01
We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keane, T.J.; Van Dyk, J.; Rider, W.D.
Interstitial pneumonia is a frequent and often fatal complication of allogenic bone marrow transplantation. Thirty to 40 percent of such cases are of unknown etiology and have been labelled as cases of idiopathic interstitial pneumonia. Idiopathic cases are more commonly associated with the use of total body irradiation; their occurrence appears to be independent of immunosupression or graft versus host disease. Evidence is presented from the literature suggesting that the development of idiopathic interstitial pneumonia is related to the absolute absorbed dose of radiation to lung. The similarity of idiopathic pneumonia to radiation pneumonitis seen in a different clinical settingmore » is described.« less
NASA Astrophysics Data System (ADS)
Tuomisto, Filip; Prozheeva, Vera; Makkonen, Ilja; Myers, Thomas H.; Bockowski, Michal; Teisseyre, Henryk
2017-11-01
We show that Be exhibits amphoteric behavior in GaN, involving switching between substitutional and interstitial positions in the lattice. This behavior is observed through the dominance of BeGa in the positron annihilation signals in Be-doped GaN, while the emergence of VGa at high temperatures is a consequence of the Be impurities being driven to interstitial positions. The similarity of this behavior to that found for Na and Li in ZnO suggests that this could be a universal property of light dopants substituting for heavy cations in compound semiconductors.
Tuomisto, Filip; Prozheeva, Vera; Makkonen, Ilja; Myers, Thomas H; Bockowski, Michal; Teisseyre, Henryk
2017-11-10
We show that Be exhibits amphoteric behavior in GaN, involving switching between substitutional and interstitial positions in the lattice. This behavior is observed through the dominance of Be_{Ga} in the positron annihilation signals in Be-doped GaN, while the emergence of V_{Ga} at high temperatures is a consequence of the Be impurities being driven to interstitial positions. The similarity of this behavior to that found for Na and Li in ZnO suggests that this could be a universal property of light dopants substituting for heavy cations in compound semiconductors.
Akimov, M A; Gel'fond, M L; Gershanovich, M L; Barchuk, A S
2003-01-01
Thirty-eight patients with disseminated skin melanoma received chemotherapy in conjunction with laser coagulation or interstitial hyperthermia of intra- or subcutaneous metastases. Use of combination therapy was followed by a rise to 37% in total response and 16%--complete regression, respectively. Most effectiveness was attained when the dacarbazine + cisplatin + BCNU + tamoxifen regime was employed. In this group of 16 patients (46%), total response was 56% and, what is most significant, 31% in complete regression. In all cases of apparent response, polychemotherapy was administered both before and after laser coagulation or interstitial hyperthermia.
Predicting vacancy-mediated diffusion of interstitial solutes in α -Fe
NASA Astrophysics Data System (ADS)
Barouh, Caroline; Schuler, Thomas; Fu, Chu-Chun; Jourdan, Thomas
2015-09-01
Based on a systematic first-principles study, the lowest-energy migration mechanisms and barriers for small vacancy-solute clusters (VnXm ) are determined in α -Fe for carbon, nitrogen, and oxygen, which are the most frequent interstitial solutes in several transition metals. We show that the dominant clusters present at thermal equilibrium (V X and V X2 ) have very reduced mobility compared to isolated solutes, while clusters composed of a solute bound to a small vacancy cluster may be significantly more mobile. In particular, V3X is found to be the fastest cluster for all three solutes. This result relies on the large diffusivity of the most compact trivacancy in a bcc lattice. Therefore, it may also be expected for interstitial solutes in other bcc metals. In the case of iron, we find that V3X may be as fast as or even more mobile than an interstitial solute. At variance with common assumptions, the trapping of interstitial solutes by vacancies does not necessarily decrease the mobility of the solute. Additionally, cluster dynamics simulations are performed considering a simple iron system with supersaturation of vacancies, in order to investigate the impacts of small mobile vacancy-solute clusters on properties such as the transport of solute and the cluster size distributions.
Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J; Dale, Anders M; Omholt, Stig W; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H
2017-09-12
The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.
Near-infrared fiber delivery systems for interstitial photothermal therapy
NASA Astrophysics Data System (ADS)
Slatkine, Michael; Mead, Douglass S.; Konwitz, Eli; Rosenberg, Zvi
1995-05-01
Interstitial photothermal coagulation has long been recognized as a potential important, minimally invasive modality for treating a variety of pathologic conditions. We present two different technologies for interstitial photothermal coagulation of tissue with infrared lasers: An optical fiber with a radially symmetric diffusing tip for deep coagulation, and a flat bare fiber for the coagulation of thin and long lesions by longitudinally moving the fiber while lasing in concert. Urology and Gynecology Fibers: The fibers are 600 microns diameter with 20 - 40 mm frosted distal tips protected by a smooth transparent cover. When used with a Neodymium:YAG (Nd:YAG) laser, the active fiber surface diffuses optical radiation in a radial pattern, delivering up to 40 W power, and thus providing consistent and uniform interstitial photothermal therapy. Coagulation depth ranges from 4 to 15 mm. Animal studies in the United States and clinical studies in Europe have demonstrated the feasibility of using these fibers to treat benign prostatic hyperplasia and endometrial coagulation. Rhinology Fiber: The fiber is an 800 micron diameter flat fiber operated at 8 W power level while being interstitially pushed and pulled along its axis. A long and thin coagulated zone is produced. The fiber is routinely used for the shrinking of hypertrophic turbinates without surrounding and bone mucusal damage in ambulatory environments.
Li, Zhifang; Chen, Haiyu; Zhou, Feifan; Li, Hui; Chen, Wei R.
2015-01-01
Photothermal therapy is an effective means to induce tumor cell death, since tumor tissue is more sensitive to temperature increases than normal tissue. Biological responses depend on tissue temperature; target tissue temperature needs to be precisely measured and controlled to achieve desired thermal effects. In this work, a unique photoacoustic (PA) sensor is proposed for temperature measurement during interstitial laser phototherapy. A continuous-wave laser light and a pulsed laser light, for photothermal irradiation and photoacoustic temperature measurement, respectively, were delivered to the target tissue through a fiber coupler. During laser irradiation, the PA amplitude was measured. The Grüneisen parameter and the bioheat equation were used to determine the temperature in strategic positions in the target tissue. Our results demonstrate that the interstitial PA amplitude is a linear function of temperature in the range of 22 to 55 °C, as confirmed by thermocouple measurement. Furthermore, by choosing appropriate laser parameters, the maximum temperature surrounding the active diffuse fiber tip in tissue can be controlled in the range of 41 to 55 °C. Thus, this sensor could potentially be used for fast, accurate, and convenient three-dimensional temperature measurement, and for real-time feedback and control of interstitial laser phototherapy in cancer treatment. PMID:25756865
The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC
Jiang, Hao; Wang, Xing; Szlufarska, Izabela
2017-02-09
Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less
Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics
Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...
2015-03-05
In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less
Esophageal involvement and interstitial lung disease in mixed connective tissue disease.
Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R
2009-06-01
Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; p<0.01) and among patients with severe motor dysfunction (90% vs. 35%; p<0.001). Although we were not able to prove a causal relationship between esophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.
Role of the testis interstitial compartment in spermatogonial stem cell function
Potter, Sarah J.; DeFalco, Tony
2017-01-01
Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580
The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Xing; Szlufarska, Izabela
Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less
NASA Technical Reports Server (NTRS)
Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong
2007-01-01
A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.
Crackle analysis for chest auscultation and comparison with high-resolution CT findings.
Kawamura, Takeo; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Kido, Shoji; Jiang, Zhongwei; Matsunaga, Naofumi
2003-01-01
The purpose of our study was to clarify the correlation between respiratory sounds and the high-resolution CT (HRCT) findings of lung diseases. Respiratory sounds were recorded using a stethoscope in 41 patients with crackles. All had undergone inspiratory and expiratory CT. Subjects included 18 patients with interstitial pneumonia and 23 without interstitial pneumonia. Two parameters, two-cycle duration (2CD) and initial deflection width (IDW) of the "crackle," were induced by time-expanded waveform analysis. Two radiologists independently assessed 11 HRCT findings. An evaluation was carried out to determine whether there was a significant difference in the two parameters between the presence and absence of each HRCT finding. The two parameters of crackles were significantly shorter in the interstitial pneumonia group than the non-interstitial pneumonia group. Ground-glass opacity, honeycombing, lung volume reduction, traction bronchiectasis, centrilobular nodules, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were correlated with one or two parameters in all patients, whereas the other three findings were not. Among the interstitial pneumonia group, traction bronchiectasis, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were significantly correlated with one or two parameters. Abnormal respiratory sounds were correlated with some HRCT findings.
NASA Astrophysics Data System (ADS)
Bonafos, C.; Alquier, D.; Martinez, A.; Mathiot, D.; Claverie, A.
1996-05-01
When end-of-range defects are located close to or within doping profiles they render diffusion "anomalous" by both enhancing the dopant diffusivity and trapping it, both phenomena decreasing with time. Upon annealing, these defects grow in size and their density is reduced through the emission and capture of Si-interstitial atoms by a coarsening process called Ostwald ripening. In this paper, we report on how, by coupling the Ostwald ripening theory with TEM observations of the time evolution of the dislocation loops upon annealing, quantitative information allowing the enhanced diffusivity to be understood can be extracted. Indeed, during the coarsening process, a supersaturation, {C}/{C e}, of Si self-interstitial atoms is maintained between the loops and decreases with time. The enhanced diffusivity is assumed to be linked to the evolution of this interstitial supersaturation during annealing through the interstitial component of boron diffusion. We show that C drastically decreases during the first second of the anneal to asymptotically reach a value just above the equilibrium concentration Ce. This rapid decay is precisely at the origin of the transient enhanced diffusivity of dopants in the vicinity of the loops.
The evaluation of interstitial Cajal cells distribution in non-tumoral colon disorders.
Becheanu, G; Manuc, M; Dumbravă, Mona; Herlea, V; Hortopan, Monica; Costache, Mariana
2008-01-01
Interstitial cells of Cajal (ICC) are pacemakers that generate electric waves recorded from the gut and are important for intestinal motility. The aim of the study was to evaluate the distribution of interstitial cells of Cajal in colon specimens from patients with idiopathic chronic pseudo-obstruction and other non-tumoral colon disorders as compared with samples from normal colon. The distribution pattern of ICC in the normal and pathological human colon was evaluated by immunohistochemistry using antibodies for CD117, CD34, and S-100. In two cases with intestinal chronic idiopathic pseudo-obstruction we found a diffuse or focal reducing number of Cajal cells, the loss of immunoreactivity for CD117 being correlated with loss of immunoreactivity for CD34 marker. Our study revealed that the number of interstitial cells of Cajal also decrease in colonic diverticular disease and Crohn disease (p<0.05), whereas the number of enteric neurones appears to be normal. These findings might explain some of the large bowel motor abnormalities known to occur in these disorders. Interstitial Cajal cells may play an important role in pathogenesis and staining for CD117 on transmural intestinal surgical biopsies could allow a more extensive diagnosis in evaluation of chronic intestinal pseudo-obstruction.
Huang, Jiequn; Liu, Changzhi; Zhu, Ruiqiu; Su, Yongpeng; Lin, Jingcheng; Lu, Jianhai; Wen, Shuchao; Zuo, Liuer
2018-06-01
We report a man with amyopathic dermatomyositis (ADM) complicated by severe interstitial lung disease (ILD) received extracorporeal membrane oxygenation (ECMO) in combination with double filtration plasmapheresis (DFPP). This is the first report of the utility of ECMO in combination with DFPP in ADM related ILD in adults. A 48-year-old man who was previously healthy had a 2-month history of cough and shortness of breath, which aggravated in 5 days. Amyopathic dermatomyositis and complicated by severe interstitial lung disease. ECMO was giving when the patient suffered acute respiratory failure. Though corticosteroids was giving, primary disease was still developing with relapses of spontaneous pneumomediastinum and pneumothorax. Then, DFPP treatment was initiated. After the treatments above, the patient's clinical condition improved with the reduction of bilateral interstitial infiltrates and improvement of lung compliance. Unfortunately, he discontinued the treatment because of the financial problem. When get a rapid progressive interstitial lung disease for no apparent reason, amyopathic dermatomyositis should be considered, especially with suspected skin lesions. ECMO, in combination with DFPP, should be considered as a supportive therapy and initiated early in patients in acute respiratory failure secondary to ADM-ILD. Prompt initiation of DFPP in dermatomyositis patients with ILD might help reduce the occurrence of spontaneous pneumomediastinum or pneumothorax.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy, A.A.; McCulloch, L.; Liu, E.
1991-05-01
The relationship between tubulointerstitial nephritis and proteinuria was characterized in experimental nephrosis in rats. In one group, proteinuria induced by aminonucleoside of puromycin (PAN) was reduced by using an 8% protein diet and adding the angiotensin I-converting enzyme (ACE) inhibitor enalapril to the drinking water. Two control groups were injected with saline and PAN, respectively, and fed a 27% protein diet. The first group had significantly reduced albuminuria and a definite attenuation of tubular cell injury. There was a strong positive correlation between the number of interstitial macrophages and albuminuria. The beneficial effect was reproduced by dietary-protein restriction alone, whereasmore » ACE inhibition alone had an insignificant effect on the degree of proteinuria. Depletion of circulating T lymphocytes in one group of nephrotic rats eliminated interstitial lymphocytes but did not affect interstitial macrophage influx. Inhibition of the in situ proliferation of resident interstitial macrophages by unilateral kidney irradiation failed to change the intensity of the macrophage infiltration. Treatment of rats with sodium maleate produced proximal tubular cell toxicity but interstitial inflammation did not develop, suggesting that the latter is not a nonspecific response to tubular injury. These studies demonstrate a strong relationship between tubulointerstitial nephritis and the severity of proteinuria in experimental nephrosis.« less
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Summers, Richard L.; Martin, David S.; Meck, Janice V.; Coleman, Thomas G.
2007-01-01
Reentry orthostasis after exposure to the conditions of spaceflight is a persistent problem among astronauts. In a previous study, a computer model systems analysis was used to examine the physiologic mechanisms involved in this phenomenon. In this analysis, it was determined that an augmented capacitance of lower extremity veins due to a fluid volume contracture of the surrounding interstitial spaces during spaceflight results in an increase in sequestered blood volume upon standing and appears to be the initiating mechanism responsible for reentry orthostasis. In this study, we attempt to validate the central premise of this hypothesis using a ground-based spaceflight analog. 10 healthy subjects were placed at bed rest in a 6 head down tilt position for 60 days of bed rest. The impact of adaptations in interstitial fluid volume and venous capacitance in the lower extremities were then observed during a standard tilt test protocol performed before and after the confinement period. The interstitial thickness superficial to the calcaneous immediately below the lateral malleolus was measured using ultrasound with a 17-5 MHz linear array transducer. Measurements of the changes in anterior tibial vein diameter during tilt were obtained by similar methods. The measurements were taken while the subjects were supine and then during upright tilt (80') for thirty minutes, or until the subject had signs of presyncope. Additional measurements of the superficial left tibia interstitial thickness and stroke volume by standard echocardiographic methods were also recorded. In addition, calf compliance was measured over a pressure range of 10-60 mmHg, using plethysmography, in a subset of these subjects (n = 5). There was a average of 6% diminution in the size of the lower extremity interstitial space as compared to measurements acquired prior to bed rest. This contracture of the interstitial space coincided with a subsequent relative increase in the percentage change in tibial vein diameter and stroke volume upon tilting in contrast to the observations made before bed rest (54 vs 23% respectively). Compliance in the calf increased by an average of 36% by day 27 of bedrest. A systems analysis using a computer model of cardiovascular physiology suggests that microgravity induced interstitial volume depletion results in an accentuation of venous blood volume sequestration and is the initiating event in reentry orthostasis. This hypothesis was tested in volunteer subjects using a ground-based spaceflight analog model that simulated the body fluid redistribution induced by microgravity exposure. Measurements of changes in the interstitial spaces and observed responses of the anterior tibial vein with tilt, together with the increase in calf compliance, were consistent with our proposed mechanism for the initiation of postflight orthostasis often seen in astronauts.
Tey, Wei Keat; Kuang, Ye Chow; Ooi, Melanie Po-Leen; Khoo, Joon Joon
2018-03-01
Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses. This study proposes an automated quantification system for measuring the amount of interstitial fibrosis in renal biopsy images as a consistent basis of comparison among pathologists. The system extracts and segments the renal tissue structures based on colour information and structural assumptions of the tissue structures. The regions in the biopsy representing the interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area and quantified as a percentage of the total area of the biopsy sample. A ground truth image dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated a good correlation in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses due to the uncertainties in human judgement. An automated quantification system for accurately measuring the amount of interstitial fibrosis in renal biopsy images is presented as a consistent basis of comparison among pathologists. The system identifies the renal tissue structures through knowledge-based rules employing colour space transformations and structural features extraction from the images. In particular, the renal glomerulus identification is based on a multiscale textural feature analysis and a support vector machine. The regions in the biopsy representing interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area. The experiments conducted evaluate the system in terms of quantification accuracy, intra- and inter-observer variability in visual quantification by pathologists, and the effect introduced by the automated quantification system on the pathologists' diagnosis. A 40-image ground truth dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated an average error of 9 percentage points in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists involving samples from 70 kidney patients also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. The accuracy of the proposed quantification system has been validated with the ground truth dataset and compared against the pathologists' quantification results. It has been shown that the correlation between different pathologists' estimation of interstitial fibrosis area has significantly improved, demonstrating the effectiveness of the quantification system as a diagnostic aide. Copyright © 2017 Elsevier B.V. All rights reserved.
Background/Objectives. Passive sampling is becoming a frequently used measurement technique at Superfund sites with contaminated sediments. Passive sampling measures the concentrations of freely dissolved chemicals (Cfrees) in the sediment interstitial water. The freely dissol...
76 FR 33653 - Maritime Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... maritime navigation safety communications system through which marine vessels automatically transmit... may also operate on 12.5 kHz offset frequencies in areas where the licensee is authorized on both... operate on the interstitial channel between Channels 27 and 87 and the interstitial channel between...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falmbigl, M.; Putzky, D.; Ditto, J.
2015-11-15
A series of ferecrystalline compounds ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub n} with n=1–6 and a thin film V{sub 1+x}Se{sub 2} were synthesized utilizing the modulated elemental reactant technique. The effect of interstitial V-atoms ranging from 0.13≤x≤0.42 in different compounds on structure and electrical properties of these intergrowth compounds is reported. The presence of the interstitial V-atoms for n>1 was confirmed by Rietveld refinements as well as HAADF-STEM cross sections. The off-stoichiometry in the thin film V{sub 1.13}Se{sub 2} causes a suppression of the charge density wave, similar to the effect of non-stoichiometry observed for the bulk compound. The charge densitymore » wave of ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub 1,} however, is not affected by the non-stoichiometry due to its incorporation as volume inclusions or due to the quasi 2-dimensionality of the isolated VSe{sub 2} layer. In the compounds ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub n} with n=2–6, the temperature dependence of the electrical resistivity approaches bulk-like behavior. - Highlights: • Ferecrystalline thin film compounds with interstitial V-atoms were synthesized. • Interstitial atoms cause an expansion of the superlattice. • The charge density wave transition in the V{sub 1.13}VSe{sub 2} film is strongly suppressed. • Interstitial V has a minor influence on the CDW transition of the ferecrystals.« less
Harris, Deborah L; Battin, Malcolm R; Williams, Chris E; Weston, Philip J; Harding, Jane E
2009-01-01
The optimal approach to detection and management of neonatal hypoglycaemia remains unclear. We sought to demonstrate whether electro-encephalography (EEG) changes could be detected on the amplitude-integrated EEG monitor during induced hypoglycaemia in newborn lambs, and also to determine the accuracy of continuously measured interstitial glucose in this situation. Needle electrodes were placed in the P3-P4, O1-O2 montages. The interstitial glucose sensor was placed subcutaneously. After 30 min baseline recordings, hypoglycaemia was induced by insulin infusion and blood glucose levels were monitored every 5 min. The infusion was adjusted to reduce blood glucose levels by 0.5 mmol/l every 15 min and then maintain a blood glucose level <1.0 mmol/l for 4 h. EEG parameters analysed included amplitude, continuity and spectral edge frequency. The interstitial and blood glucose levels were compared. All lambs (n = 15, aged 3-11 days) became hypoglycaemic, with median blood glucose levels falling from 6.5 to 1.0 mmol/l, p < 0.0001. There were no detectable changes in any of the measured EEG parameters related to hypoglycaemia, although seizures occurred in 2 lambs. There was moderate agreement between the intermittent blood glucose and continuous interstitial glucose measurements in the baseline, decline, and hypoglycaemia periods (mean difference -0.7 mmol/l, 95% confidence interval, CI, -2.8 to 1.4 mmol/l). However, agreement was poor during reversal of hypoglycaemia (mean difference 4.5 mmol/l, 95% CI -1.1 to 10.7 mmol/l). The cot-side EEG may not be a useful clinical tool in the detection of neurological changes induced by hypoglycaemia. However, continuous interstitial glucose monitoring may be useful in the management of babies at risk of hypoglycaemia. (c) 2008 S. Karger AG, Basel.
Pérez-Dórame, Renzo; Mejía, Mayra; Mateos-Toledo, Heidegger; Rojas-Serrano, Jorge
2015-01-01
To describe the association between rheumatoid arthritis disease activity (RA) and interstitial lung damage (inflammation and fibrosis), in a group of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). A retrospective study of RA patients with interstitial lung disease (restrictive pattern in lung function tests and evidence of interstitial lung disease in high resolution computed tomography (HRCT)). Patients were evaluated to exclude other causes of pulmonary disease. RA disease activity was measured with the CDAI index. Interstitial lung inflammation and fibrosis were determined by Kazerooni scale. We compared Kazerooni ground-glass score with the nearest CDAI score to HRCT date scan of the first medical evaluation at our institution. In nine patients, we compared the first ground-glass score with a second one after treatment with DMARDs and corticosteroids. Spearman's rank correlation coefficient was used to evaluate association between RA disease activity and the Kazerooni ground-glass and fibrosis scores. Thirty-four patients were included. A positive correlation between CDAI and ground-glass scores was found (rs=0.3767, P<0.028). Fibrosis and CDAI scores were not associated (rs=-0.0747, P<0.6745). After treatment, a downward tendency in the ground-glass score was observed (median [IQR]): (2.33 [2,3] vs. 2 [1.33-2.16]), P<0.056, along with a lesser CDAI score (27 [8-43] vs. 9 [5-12]), P<0.063. There is a correlation between RA disease activity and ground-glass appearance in the HRCT of RA-ILD patients. These results suggest a positive association between RA disease activity and lung inflammation in RA-ILD. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, D.J.; Berry, W.J.; Benyi, S.J.
1996-12-01
The role of interstitial cadmium and acid-volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked to achieve nominal cadmium/AVS molar ratios of 0.0 (control), 0.1, 0.8, and 3.0 in this 118-d test. Oxidation of AVS in the surficial 2.4 cm within 2 to 4 weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 cadmium/AVS treatment measured simultaneously extracted metal (SEM{sub Cd}) was always less than AVS. Interstitial cadmium concentrations were less than those likely to cause biological effects. Nomore » significant biological effects were detected. In the nominal 0.8 cadmium/AVS treatment, measured SEM{sub Cd} commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations were of likely toxicological significance to highly sensitive species. Shifts in the presence or absence over all taxa, and fewer macrobenthic polychaetes (Mediomastus ambiseta, Streblospio benedicti, and Podarke obscurea) and unidentified meiofaunal nematodes, were observed. In the nominal 3.0 cadmium/AVS treatment, concentrations of SEM{sub Cd} were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, the sediments were colonized by fewer macrobenthic species, polychaete species, and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs; and exhibited other impacts. Over all treatments, the observed biological responses were consistent with SEM{sub Cd}/AVS ratios in surficial sediments and interstitial water cadmium concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, D.; Berry, W.; Benyi, S.
1995-12-31
The role of interstitial cadmium and acid volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked with cadmium to achieve simultaneously extracted metal (SEM)/AVS molar ratios of 0. 0 (control), 0.1, 0.8 and 3.0 in this 118-day test. Oxidation of AVS in the surficial 2.4 cm within two to four weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 SEM/AVS treatment, measured SEM was always less than AVS. Interstitial cadmium concentrations (< 3--10 {micro}g/L) were below those likely tomore » cause biological effects. No significant biological effects were detected. In the nominal 0.8 SEM/AVS treatment, measured SEM commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations (24--157 {micro}g/L) were likely of toxicological significance to sensitive species. Shifts were observed in presence/absence of species, and there were fewer macrobenthic polychaetes (Mediomastus ambiseta, Strebloapio benedicti and Podarke obscura) and unidentified meiofaunal nematodes. In the nominal 3.0 SEM/AVS treatment, concentrations of SEM were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, these sediments were colonized by fewer macrobenthic species, polychaete species and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs and exhibited other impacts. The observed biological responses were consistent with measured SEM/AVS ratios in surficial sediments and interstitial water cadmium concentrations, further supporting their utility in predicting metals bioavailability.« less
Lädermann, A; Zumstein, M A; Kolo, F C; Grosclaude, M; Koglin, L; Schwitzguebel, A J P
2016-12-01
Rotator cuff tear (RCT) is a frequent condition of clinical relevance that can be managed with a symptomatic conservative treatment, but surgery is often needed. Biological components like leukocytes and platelet rich plasma (L-PRP) could represent an alternative curative method for interstitial RCT. It has been hypothesized that an ultrasound guided L-PRP injection in supraspinatus interstitial RCT could induce radiological healing. A prospective case series including 25 patients was performed in order to assess the effect of L-PRP infiltration into supraspinatus interstitial RCTs. Primary outcome was tear size change determined by magnetic resonance imaging arthrogram (MRA) before and 6 months after L-PRP infiltration. Secondary outcomes were Constant score, SANE score, and pain visual analog scale (VAS) after L-PRP infiltration. Tear volume diminution was statistically significant (P=.007), and a >50% tear volume diminution was observed in 15 patients. A statistically significant improvement of Constant score (P<.001), SANE score (P=.001), and VAS (P<.001) was observed. In 21 patients, Constant score improvement reached the minimal clinical important difference of 10.4 points. We observed a statistically significant and clinically relevant effect on RCT size and clinical parameters after L-PRP infiltration. Such an important improvement of supraspinatus interstitial RCT with conservative management is uncommon, therefore intratendinous L-PRP infiltrations could have been beneficial. This encouraging result could pave the way for future randomized studies in order to formally determinate whether L-PRP infiltrations are a possible alternative to surgical treatment of interstitial RCT. Prospective observational study; Level of evidence II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Amin, M., E-mail: m.al-amin@warwick.ac.uk; Murphy, J. D., E-mail: john.d.murphy@warwick.ac.uk
2016-06-21
We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo in situ way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poormore » wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 μs to 38.7 μs. The lifetime of top wafers is improved from 12.1 μs to 23.8 μs under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.« less
Kohan, A D; Armenakas, N A; Fracchia, J A
2000-02-01
We compare the comprehensive 1-year charges in a consecutive group of patients undergoing radical prostatectomy and transperineal interstitial brachytherapy for clinically localized prostate cancer at a single urban institution. A total of 60 consecutive men with clinically localized prostate cancer (T1-T2, N0, M0) were treated during a 15-month period with radical prostatectomy or interstitial brachytherapy. Hospital and outpatient records were analyzed for each patient in regard to preoperative, operative and postoperative charges. Parameters included number of encounters, diagnostic and therapeutic interventions, hospitalization and operative charges, and followup visits, diagnostic tests and interventions for 1 year. All charge calculations were based arbitrarily on the 1996 Medicare fee schedule, factoring in the mandated global charge reimbursement period of 90 days for both procedures. Of the patients 38 underwent radical prostatectomy (prostatectomy group) and 22 underwent interstitial brachytherapy (brachytherapy group). The brachytherapy group was older with higher pretreatment serum prostate specific antigen and clinical stage disease, and more frequently received neoadjuvant hormonal therapy compared to the prostatectomy group. The 2 groups were similar in Gleason score and, when applicable, duration of neoadjuvant hormonal therapy. Preoperative charges were 15.3% lower for prostatectomy than for brachytherapy (not statistically significant). Conversely, operative charges for prostatectomy were 13.5% higher (p = 0.04). The major difference among preoperative, operative and postoperative charges was for those incurred postoperatively by the brachytherapy group, which were 56.0% higher than those for the prostatectomy group ($2,285.20 versus $1,007.20, p = 0.0004). Transperineal interstitial seed implantation is perceived by many as more cost-effective than radical prostatectomy for patients with clinically localized prostate cancer. We demonstrated that when such patients were followed for 1 year, the comprehensive charges for radical prostatectomy and interstitial brachytherapy were equivalent.
Caminati, Antonella; Harari, Sergio
2005-12-01
Idiopathic interstitial pneumonias are a group of diffuse, inflammatory and fibrotic disorders of the lung parenchyma that cause restrictive physiology and impair gas exchange. Usual interstitial pneumonia and non-specific interstitial pneumonia comprise the majority of idiopathic interstitial pneumonia cases. Previous studies have identified the histopathologic pattern as the most important baseline factor in determining prognosis. The non-invasive diagnosis of these diseases is sometimes uncertain but histological evaluation is an imperfect gold-standard. In some cases, the biopsy specimen may not be representative of the entire lung. In other cases, there may be differences in interpretation of the histological findings. HRCT has also assumed a greater role in the diagnosis and management of patients with idiopathic interstitial pneumonia. Factors affecting prognosis are discussed controversially. Histological criteria, clinical features, or lung function parameters are not clear prognostic indicators. Increased interstitial abnormalities in the HRCT, parameters indicating restrictive lung function, desaturation at 6MWT and abnormal gas exchange are possible determinants of survival. The prognostic value of pulmonary function trends over time may prove more useful. Longitudinal behavior is a more accurate determinant of outcome than evaluation at a single point in time. It is important to remember that no predictor of survival can ever reliably predict an individual patient's prognosis. Physicians should realize this limitation, and use predictor tools as general prognostic guides, not crystal balls. However, due to the great variability in the natural history of the disease, close monitoring of the patients may be necessary to evaluate the individual course of each patient.
Blood glucose level reconstruction as a function of transcapillary glucose transport.
Koutny, Tomas
2014-10-01
A diabetic patient occasionally undergoes a detailed monitoring of their glucose levels. Over the course of a few days, a monitoring system provides a detailed track of their interstitial fluid glucose levels measured in their subcutaneous tissue. A discrepancy in the blood and interstitial fluid glucose levels is unimportant because the blood glucose levels are not measured continuously. Approximately five blood glucose level samples are taken per day, and the interstitial fluid glucose level is usually measured every 5min. An increased frequency of blood glucose level sampling would cause discomfort for the patient; thus, there is a need for methods to estimate blood glucose levels from the glucose levels measured in subcutaneous tissue. The Steil-Rebrin model is widely used to describe the relationship between blood and interstitial fluid glucose dynamics. However, we measured glucose level patterns for which the Steil-Rebrin model does not hold. Therefore, we based our research on a different model that relates present blood and interstitial fluid glucose levels to future interstitial fluid glucose levels. Using this model, we derived an improved model for calculating blood glucose levels. In the experiments conducted, this model outperformed the Steil-Rebrin model while introducing no additional requirements for glucose sample collection. In subcutaneous tissue, 26.71% of the calculated blood glucose levels had absolute values of relative differences from smoothed measured blood glucose levels less than or equal to 5% using the Steil-Rebrin model. However, the same difference interval was encountered in 63.01% of the calculated blood glucose levels using the proposed model. In addition, 79.45% of the levels calculated with the Steil-Rebrin model compared with 95.21% of the levels calculated with the proposed model had 20% difference intervals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robust G2 pausing of adult stem cells in Hydra.
Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte
2014-01-01
Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Xiao, Xia; Du, Chunyang; Yan, Zhe; Shi, Yonghong; Duan, Huijun; Ren, Yunzhuo
2017-01-01
Inflammation plays a crucial role in renal interstitial fibrosis, the pathway of chronic kidney diseases. Necroptosis is a novel form of regulated cell death, which plays a potential role in inflammation and renal diseases. The small molecule necrostatin-1 (Nec-1) is a specific inhibitor of necroptosis. This study was aimed at determining the role of necroptosis, RIP1/RIP3/mixed lineage kinase domain-like (MLKL) signaling pathway, in renal inflammation and interstitial fibrosis related to primitive tubulointerstitial injury. It was also aimed at evaluating the effect of Nec-1 in renal fibrosis induced by unilateral ureteral obstruction (UUO). Renal histology, immunohistochemistry, western blot, and real-time polymerase chain reaction were performed using UUO C57BL/6J mice model. Moreover, we tested whether Nec-1 was renal-protective in the interstitial fibrosis kidney. Mice were exposed to UUO and injected intraperitoneal with Nec-1 or vehicle. The levels of RIP1/RIP3/MLKL protein and mRNA were increased in the obstructed kidneys 7 days after UUO; this was accompanied by changes in renal pathological lesions. Renal histological examination showed lesser renal damage in Nec-1-treated UUO mice. Renal inflammation, assessed by tumor necrosis factor-α, interleukin-1β, and monocyte chemotactic protein-1 was markedly attenuated by Nec-1. Furthermore, Nec-1 treatment also significantly reduced TGF-β and α-smooth muscle actin, indicating lesser renal interstitial fibrosis. These findings suggest that the participation of necroptosis in UUO is partly demonstrated. And necroptosis inhibition may have a potential role in the treatment of diseases with increased inflammatory response and interstitial fibrosis in renal. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.
2011-03-01
Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.
NASA Astrophysics Data System (ADS)
Igumbor, E.; Mapasha, R. E.; Meyer, W. E.
2017-07-01
The results of an ab initio modelling of aluminium substitutional impurity ({\\hbox {Al}}_Ge), aluminium interstitial in Ge [{\\hbox {I}}_Al for the tetrahedral (T) and hexagonal (H) configurations] and aluminium interstitial-substitutional pairs in Ge ({\\hbox {I}}_Al{\\hbox {Al}}_Ge) are presented. For all calculations, the hybrid functional of Heyd, Scuseria, and Ernzerhof in the framework of density functional theory was used. Defects formation energies, charge state transition levels and minimum energy configurations of the {\\hbox {Al}}_Ge, {\\hbox {I}}_Al and {\\hbox {I}}_Al{\\hbox {Al}}_Ge were obtained for -2, -1, 0, +1 and +2 charge states. The calculated formation energy shows that for the neutral charge state, the {\\hbox {I}}_Al is energetically more favourable in the T than the H configuration. The {\\hbox {I}}_Al{\\hbox {Al}}_Ge forms with formation energies of -2.37 eV and -2.32 eV, when the interstitial atom is at the T and H sites, respectively. The {\\hbox {I}}_Al{\\hbox {Al}}_Ge is energetically more favourable when the interstitial atom is at the T site with a binding energy of 0.8 eV. The {\\hbox {I}}_Al in the T configuration, induced a deep donor (+2/+1) level at EV+0.23 eV and the {\\hbox {Al}}_Ge induced a single acceptor level (0/-1) at EV+0.14 eV in the band gap of Ge. The {\\hbox {I}}_Al{\\hbox {Al}}_Ge induced double-donor levels are at E_V+0.06 and E_V+0.12 eV, when the interstitial atom is at the T and H sites, respectively. The {\\hbox {I}}_Al and {\\hbox {I}}_Al{\\hbox {Al}}_Ge exhibit properties of charge state-controlled metastability.
Malik, Shabana T; Birch, Brian R; Voegeli, David; Fader, Mandy; Foria, Vipul; Cooper, Alan J; Walls, Andrew F; Lwaleed, Bashir A
2018-05-15
To identify the presence and geographical distribution of mast cell (MC) subtypes: MC T (tryptase positive-chymase negative) and MC TC (tryptase positive-chymase positive) in bladder tissue. Bladder tissue was obtained from patients with painful bladder syndrome/interstitial cystitis (n=14) and normal histology from University Hospital Southampton tissue bank. Sequential tissue slices were immunohistochemically stained for MC subtypes using anti-MC tryptase (for MC T and MC TC ) and anti-MC chymase (for MC TC ). Stained sections were photographed, and positively stained MCs were quantified using ImageJ. Data were analysed using descriptive statistics and individual paired t-tests. There was a significant difference in the density of MCs between each layer of the disease bladder, with the greatest accumulation within the detrusor (p<0.001). There was a significant increase in MC TC subtype in the lamina (p=0.009) in painful bladder syndrome/interstitial cystitis. Our results suggest that mastocytosis is present within all layers of disease bladder, especially the muscle layer. The varying increase in MC subtypes in the lamina and mucosa may explain the variability in painful bladder syndrome/interstitial cystitis symptoms. A high influx of MC TC in the mucosa of individuals who also had ulceration noted within their diagnostic notes may be of the Hunner's ulcer subclassification. These findings suggest a relationship between the pathogenesis of MC subtypes and the clinical presentation of painful bladder syndrome/interstitial cystitis. A cohort study would further elucidate the diagnostic and/or therapeutic potential of MCs in patients with painful bladder syndrome/interstitial cystitis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
During the performance of contaminated sediment studies using nonpolar pollutants, like polyclorinated biphenyls (PCBs), with marine organisms, the routes of exposure can include whole sediment, overlying waters and interstitial waters (assuming no feeding). These routes can be f...
Complementary bodybuilding: A potential risk for permanent kidney disease.
El-Reshaid, Wael; El-Reshaid, Kamel; Al-Bader, Shaikha; Ramadan, Ahmad; Madda, John Patrick
2018-01-01
We report our experience of renal disease associated with bodybuilders who had been on high-protein diet, anabolic androgenic steroids (AASs), and growth hormone (GH) for years. A total of 22 adult males who volunteered information about use of high protein diet and AAS or GH were seen over a six-year period with renal disease. Kidney biopsy revealed focal segmental glomerulosclerosis (FSGS) in eight, nephroangiosclerosis in four, chronic interstitial nephritis in three, acute interstitial nephritis in two, nephrocalcinosis with chronic interstitial nephritis in two, and single patients with membranous glomerulopathy, crescentic glomerulopathy, and sclerosing glomerulonephritis. Patients with FSGS had a longer duration of exposure, late presentation, and worse prognosis. Those with interstitial disease had shorter exposure time and earlier presentation and had improved or stabilized after discontinuation of their practice. There is a need for health education for athletes and bodybuilders to inform them about the risks of renal disease involved with the use of high-protein diet, AAS, and GH.
NASA Astrophysics Data System (ADS)
Maeda, Susumu; Sudo, Haruo; Okamura, Hideyuki; Nakamura, Kozo; Sueoka, Koji; Izunome, Koji
2018-04-01
A new control technique for achieving compatibility between crystal quality and gettering ability for heavy metal impurities was demonstrated for a nitrogen-doped Czochralski silicon wafer with a diameter of 300 mm via ultra-high temperature rapid thermal oxidation (UHT-RTO) processing. We have found that the DZ-IG structure with surface denuded zone and the wafer bulk with dense oxygen precipitates were formed by the control of vacancies in UHT-RTO process at temperature exceeding 1300 °C. It was also confirmed that most of the void defects were annihilated from the sub-surface of the wafer due to the interstitial Si atoms that were generated at the SiO2/Si interface. These results indicated that vacancies corresponded to dominant species, despite numerous interstitial silicon injections. We have explained these prominent features by the degree of super-saturation for the interstitial silicon due to oxidation and the precise thermal properties of the vacancy and interstitial silicon.
Cluster dynamics modeling and experimental investigation of the effect of injected interstitials
NASA Astrophysics Data System (ADS)
Michaut, B.; Jourdan, T.; Malaplate, J.; Renault-Laborne, A.; Sefta, F.; Décamps, B.
2017-12-01
The effect of injected interstitials on loop and cavity microstructures is investigated experimentally and numerically for 304L austenitic stainless steel irradiated at 450 °C with 10 MeV Fe5+ ions up to about 100 dpa. A cluster dynamics model is parametrized on experimental results obtained by transmission electron microscopy (TEM) in a region where injected interstitials can be safely neglected. It is then used to model the damage profile and study the impact of self-ion injection. Results are compared to TEM observations on cross-sections of specimens. It is shown that injected interstitials have a significant effect on cavity density and mean size, even in the sink-dominated regime. To quantitatively match the experimental data in the self-ions injected area, a variation of some parameters is necessary. We propose that the fraction of freely migrating species may vary as a function of depth. Finally, we show that simple rate theory considerations do not seem to be valid for these experimental conditions.
Lattice Location of Mg in GaN: A Fresh Look at Doping Limitations.
Wahl, U; Amorim, L M; Augustyns, V; Costa, A; David-Bosne, E; Lima, T A L; Lippertz, G; Correia, J G; da Silva, M R; Kappers, M J; Temst, K; Vantomme, A; Pereira, L M C
2017-03-03
Radioactive ^{27}Mg (t_{1/2}=9.5 min) was implanted into GaN of different doping types at CERN's ISOLDE facility and its lattice site determined via β^{-} emission channeling. Following implantations between room temperature and 800 °C, the majority of ^{27}Mg occupies the substitutional Ga sites; however, below 350 °C significant fractions were also found on interstitial positions ∼0.6 Å from ideal octahedral sites. The interstitial fraction of Mg was correlated with the GaN doping character, being highest (up to 31%) in samples doped p type with 2×10^{19} cm^{-3} stable Mg during epilayer growth, and lowest in Si-doped n-GaN, thus giving direct evidence for the amphoteric character of Mg. Implanting above 350 °C converts interstitial ^{27}Mg to substitutional Ga sites, which allows estimating the activation energy for migration of interstitial Mg as between 1.3 and 2.0 eV.
Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Nastar, Maylise
2016-06-01
We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.
2012-01-01
Background The capacity for herpesvirus to cause disease in cetaceans is unclear and may be varied depending on the different conditions of individuals and between different species. Kidney pathology and intralesional virus-associated infection have been rarely reported in cetaceans. Result On April 2004, an old adult male Blainville’s beaked whale (Mesoplodon densirostris) 420 cm long with a poor body condition was stranded on Tenerife Island. During necropsy, no gross lesions were observed in the kidneys. However, membranous glomerulonephritis, multifocal interstitial lymphoplasmacytic nephritis and acute multifocal necrotizing tubulointerstitial nephritis with intranuclear inclusion bodies was diagnosed by histological analysis. Tissue samples were submitted for bacteriological analysis and molecular viral screening. Conclusion A novel alpha herpesvirus associated with interstitial nephritis was identified in an old adult male Blainville's beaked whale (M. densirostris) with a poor body condition stranded in the Canary Islands. This report suggests that identification of herpesvirus infection could be used as a differential diagnosis for interstitial nephritis in cetaceans. PMID:23237059
HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
2013-09-30
Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional Hemore » is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.« less
Intralayer magnetic ordering in Ge/Mn digital alloys
NASA Astrophysics Data System (ADS)
Otrokov, M. M.; Ernst, A.; Ostanin, S.; Fischer, G.; Buczek, P.; Sandratskii, L. M.; Hergert, W.; Mertig, I.; Kuznetsov, V. M.; Chulkov, E. V.
2011-04-01
We present a first-principles investigation of the electronic properties of Ge/Mn digital alloys obtained by the insertion of Mn monolayers in the Ge host. The main attention is devoted to the study of the magnetic properties of the Mn layers for various types of ordering of the Mn atoms. Depending on the type of Mn position three different structures are considered: substitutional, interstitial, and combined substitutional-interstitial. In all three cases numerical structural relaxation of the atomic positions has been performed. We find that the intralayer exchange parameters depend strongly on the crystal structure. For the substitutional and interstitial types of structure the stable magnetic order was found to be ferromagnetic. For the mixed substitutional-interstitial structure the ferromagnetic configuration appears unstable and a complex ferrimagnetic structure forms. The spin-wave excitations are calculated within the Heisenberg model. The critical temperatures of the magnetic phase transitions are determined using Monte Carlo simulations with interatomic exchange parameters obtained for two different magnetic reference states: a ferromagnetic and a disordered local moment state.
NASA Technical Reports Server (NTRS)
Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving
1987-01-01
Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.
An overview of interstitial brachytherapy and hyperthermia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, B.B.; Harney, J.
Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combinationmore » with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.« less
Lattice Location of Mg in GaN: A Fresh Look at Doping Limitations
NASA Astrophysics Data System (ADS)
Wahl, U.; Amorim, L. M.; Augustyns, V.; Costa, A.; David-Bosne, E.; Lima, T. A. L.; Lippertz, G.; Correia, J. G.; da Silva, M. R.; Kappers, M. J.; Temst, K.; Vantomme, A.; Pereira, L. M. C.
2017-03-01
Radioactive 27Mg (t1 /2=9.5 min ) was implanted into GaN of different doping types at CERN's ISOLDE facility and its lattice site determined via β- emission channeling. Following implantations between room temperature and 800 °C , the majority of 27Mg occupies the substitutional Ga sites; however, below 350 °C significant fractions were also found on interstitial positions ˜0.6 Å from ideal octahedral sites. The interstitial fraction of Mg was correlated with the GaN doping character, being highest (up to 31%) in samples doped p type with 2 ×1019 cm-3 stable Mg during epilayer growth, and lowest in Si-doped n -GaN, thus giving direct evidence for the amphoteric character of Mg. Implanting above 350 °C converts interstitial 27Mg to substitutional Ga sites, which allows estimating the activation energy for migration of interstitial Mg as between 1.3 and 2.0 eV.
NASA Astrophysics Data System (ADS)
Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu
1995-10-01
Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.
Itai, Junji; Ohshimo, Shinichiro; Kida, Yoshiko; Ota, Kohei; Iwasaki, Yasumasa; Hirohashi, Nobuyuki; Bonella, Francesco; Guzman, Josune; Costabel, Ulrich; Kohno, Nobuoki; Tanigawa, Koichi
2015-01-05
Direct hemoperfusion with polymyxin B-immobilized fiber (PMX-DHP) might be beneficial for treating acute exacerbation (AE) of interstitial pneumonia (IP). Venovenous extracorporeal membranous oxygenation (VV-ECMO) is an emerging tool to avoid ventilator-induced lung injury. This is a report presenting the first three patients with AE of IP treated with a combined therapy of PMX-DHP and VV-ECMO. Patient 1 was a 68-year-old male with acute interstitial pneumonia, patient 2 a 67-year-old male with AE of idiopathic pulmonary fibrosis, and patient 3 a 61-year-old female with AE of collagen vascular disease-associated interstitial pneumonia. All patients were severely hypoxemic and required mechanical ventilation. A combined therapy using PMX-DHP and VV-ECMO was initiated with support of intravenous corticosteroids and antibiotics. Radiological findings, oxygenation and laboratory findings markedly improved and all patients survived without severe complications. A combined therapy of PMX-DHP and VV-ECMO might be a therapeutic option for AE of IP.
Sisson, T.W.; Kimura, Jun-Ichi; Coombs, M.L.
2009-01-01
A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids' distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400??C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ???3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol 142:520-542, 2002). It may represent the melting products of a fertile domain in the ambient upper mantle impinged upon and perturbed by the sustained plume source that feeds later shield-stage magmatism. ?? US Government 2009.
NASA Astrophysics Data System (ADS)
Christiansen, E. H.
2016-12-01
Simple models describing silicic magma reservoirs and their connections with volcanic rocks have been denigrated as "big red blobs" and "balloons-and-soda straws." Although these models are certainly generalized to convey complex relations, there are multiple reasons to accept the existence of large magma chambers and direct connections between volcanoes and plutonic rocks. These include:-Geophysical evidence (seismic, magnetotelluric, and geodetic) for the existence of large bodies of magma in the crust today. Magma is a mixture of liquids, solids, and fluids. It does not have to be melt rich, nor does it need to be mobile and eruptible; it just has to have melt present. -Eruptions of large volumes (>1,000 km3) of dacitic to rhyolitic magma and large collapse calderas (30-50 km across). -The thermal lifetimes of large bodies are extended by high recharge rates. Individual bodies of magma may exist for tens to hundreds of thousands of years.-Geochronological evidence that pluton lifetimes are similar to those of volcanic fields.-Evidence for incremental emplacement of a pluton is not evidence against the former existence of a large magma reservoir, but the natural consequence of ongoing replenishment and crystallization after eruptions cease. Thus, what might have been a large liquid-dominated system at the time of eruption of a large ignimbrite, is subsequently intruded by new batches of magma as it crystallizes and closes down. This destroys the evidence for a large red blob and creates a composite pluton. -Direct and indirect evidence connect plutons to large eruptions. This is shown by field relations, geochronology, as well as chemical, mineralogical, and isotopic similarities of volcanic and plutonic rocks. -Volcanic and plutonic differentiation patterns are very similar, but differ in some ways because cumulates are preserved in the plutonic record and because intrusions continue to differentiate (liquids separate from solids) until the last bit of liquid is consumed. Highly evolved liquids are present in the volcanic record, but are less common than in intrusions. Most plutonic rocks appear to be mixtures of cumulate minerals and interstitial melt unable to separate from the coarsening mush.
Ciani, Cesare; Doty, Stephen B.; Fritton, Susannah P.
2014-01-01
Bone interstitial fluid flow is thought to play a fundamental role in the mechanical stimulation of bone cells, either via shear stresses or cytoskeletal deformations. Recent evidence indicates that osteocytes are surrounded by a fiber matrix that may be involved in the mechanotransduction of external stimuli as well as in nutrient exchange. In our previous tracer studies designed to map how different-sized molecules travel through the bone porosities, we found that injected ferritin was confined to blood vessels and did not pass into the mineralized matrix. However, other investigators have shown that ferritin forms halo-shaped labeling that enters the mineralized matrix around blood vessels. This labeling is widely used to explain normal interstitial fluid movement in bone; in particular, it is said to demonstrate bulk centrifugal interstitial fluid movement away from a highly pressurized vascular porosity. In addition, appositional ferritin fronts are said to demonstrate centrifugal interstitial fluid movement from the medullary canal to the periosteal surface. The purpose of this study was to investigate the conflicting ferritin labeling results by evaluating the role of different histological processes in the formation of ferritin “halos.” Ferritin was injected into the rat vasculature and allowed to circulate for 5 min. Samples obtained from tibiae were reacted for different times with Perl's reagent and then were either paraffin-embedded or sectioned with a cryostat. Halo-like labeling surrounding vascular pores was found in all groups, ranging from 1.2–3.9% for the samples treated with the shortest histological processes (unembedded, frozen sections) to 5.6–15% for the samples treated with the longest histological processes (paraffin-embedded sections). These results indicate that different histological processing methods are able to create ferritin “halos,” with some processing methods allowing more redistribution of the ferritin tracer than others. Based on these results and the fact that “halo” labeling has not been found with any other tracer, as we seek to further delineate the movement of interstitial fluid and the role it plays in bone mechanotransduction, we believe that ferritin “halo” labeling should not be used to demonstrate physiological bone interstitial fluid flow. PMID:15964255
Ciani, Cesare; Doty, Stephen B; Fritton, Susannah P
2005-09-01
Bone interstitial fluid flow is thought to play a fundamental role in the mechanical stimulation of bone cells, either via shear stresses or cytoskeletal deformations. Recent evidence indicates that osteocytes are surrounded by a fiber matrix that may be involved in the mechanotransduction of external stimuli as well as in nutrient exchange. In our previous tracer studies designed to map how different-sized molecules travel through the bone porosities, we found that injected ferritin was confined to blood vessels and did not pass into the mineralized matrix. However, other investigators have shown that ferritin forms halo-shaped labeling that enters the mineralized matrix around blood vessels. This labeling is widely used to explain normal interstitial fluid movement in bone; in particular, it is said to demonstrate bulk centrifugal interstitial fluid movement away from a highly pressurized vascular porosity. In addition, appositional ferritin fronts are said to demonstrate centrifugal interstitial fluid movement from the medullary canal to the periosteal surface. The purpose of this study was to investigate the conflicting ferritin labeling results by evaluating the role of different histological processes in the formation of ferritin "halos." Ferritin was injected into the rat vasculature and allowed to circulate for 5 min. Samples obtained from tibiae were reacted for different times with Perl's reagent and then were either paraffin-embedded or sectioned with a cryostat. Halo-like labeling surrounding vascular pores was found in all groups, ranging from 1.2-3.9% for the samples treated with the shortest histological processes (unembedded, frozen sections) to 5.6-15% for the samples treated with the longest histological processes (paraffin-embedded sections). These results indicate that different histological processing methods are able to create ferritin "halos," with some processing methods allowing more redistribution of the ferritin tracer than others. Based on these results and the fact that "halo" labeling has not been found with any other tracer, as we seek to further delineate the movement of interstitial fluid and the role it plays in bone mechanotransduction, we believe that ferritin "halo" labeling should not be used to demonstrate physiological bone interstitial fluid flow.
Defect-induced change of temperature-dependent elastic constants in BCC iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Setyawan, W.; Zhang, S. H.
2017-07-01
The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.
Symmetry and diffusivity of the interstitial hydrogen shallow-donor center in In 2O 3
Weiser, Philip; Qin, Ying; Yin, Weikai; ...
2016-11-16
Uniaxial stress experiments performed for the 3306 cm -1 vibrational line assigned to the interstitial-hydrogen, shallow-donor center in In 2O 3 reveal its symmetry and transition- moment direction. The defect alignment that can be produced by a [001] stress applied at 165 K is due to a process that is also a hydrogen- diffusion jump, providing a microscopic determination of the diffusion constant for H in In 2O 3 and its mechanism. Lastly, our experimental results strongly complement theoretical predictions for the structure and diffusion of the interstitial hydrogen donor center in In 2O 3.
Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study
NASA Astrophysics Data System (ADS)
Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.
2018-06-01
The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.
Ectrodactyly and proximal/intermediate interstitial deletion 7q
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElveen, C.; Carvajal, M.V.; Moscatello, D.
1995-03-13
We report on an individual with severe mental retardation, seizures, microcephaly, unusual face, scoliosis, and cleft feet and cleft right hand. The chromosomal study showed a proximal interstitial deletion 7q (q11.23q22). From our review of the literature, 11 patients have been reported with ectrodactyly (split hand/split foot malformation) and proximal/intermediate interstitial deletions or rearrangements of 7q. The critical segment for ectrodactyly seems to be located between 7q21.2 and 7q22.1. This malformation is present in 41% of the patients whose deletion involves the critical segment. 37 refs., 3 figs., 1 tab.
Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten
Suzudo, Tomoaki; Hasegawa, Akira
2016-01-01
Modeling the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the density functional theory combined with comprehensive analyses of massive experimental database to indicate a mechanism to mitigate the effect of radiation on W crystals by adding particular solute elements that change the migration property of interstitials. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose self-interstitial atoms become a stable crowdion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications. PMID:27824134
Mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor in a ferret
INOUE, Saki; YONEMARU, Kayoko; YANAI, Tokuma; SAKAI, Hiroki
2014-01-01
A 5-year-old male ferret presented with an enlarged canalicular testis in the left inguinal region. Microscopically, the enlarged testis consisted of a diffuse intimately admixed proliferation of c-kit-positive germ cell-like and Wilms tumor-1 protein-positive Sertoli cell-like components, but no Call-Exner body was detected. In addition, the compact proliferation of steroidogenic acute regulatory protein-intense positive interstitial cells was identified in a separate peripheral area of the mass. Based on histopathological and immunohistochemical findings, the tumor was diagnosed as a mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor. PMID:25311985
Edemagenic gain and interstitial fluid volume regulation.
Dongaonkar, R M; Quick, C M; Stewart, R H; Drake, R E; Cox, C S; Laine, G A
2008-02-01
Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient (K(f)), effective lymphatic resistance (R(L)), and interstitial compliance (C). This formulation suggests two types of gain: "multivariate" dependent on C, R(L), and K(f), and "compliance-dominated" approximately equal to C. The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema.
Effects of hydration on steric and electric charge-induced interstitial volume exclusion--a model.
Øien, Alf H; Justad, Sigrid R; Tenstad, Olav; Wiig, Helge
2013-09-03
The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Yamakawa, Hideaki; Hagiwara, Eri; Kitamura, Hideya; Yamanaka, Yumie; Ikeda, Satoshi; Sekine, Akimasa; Baba, Tomohisa; Iso, Shinichiro; Okudela, Koji; Iwasawa, Tae; Takemura, Tamiko; Kuwano, Kazuyoshi; Ogura, Takashi
2016-01-01
Background Patients with idiopathic interstitial pneumonias sometimes have a few features of connective tissue disease (CTD) and yet do not fulfil the diagnostic criteria for any specific CTD. Objective This study was conducted to elucidate the characteristics, prognosis, and disease behavior in patients with interstitial lung disease (ILD) associated with systemic sclerosis (SSc)-related autoantibodies. Methods We retrospectively analyzed medical records of 72 ILD patients: 40 patients with SSc (SSc-ILD) and 32 patients with SSc-related autoantibody-positive ILD but not with CTD (ScAb-ILD), indicating lung-dominant CTD with SSc-related autoantibody. Results Patients with SSc-ILD were predominantly females and non-smokers, and most had nonspecific interstitial pneumonia confirmed by high-resolution computed tomography (HRCT) and pathological analysis. However, about half of the patients with ScAb-ILD were male and current or ex-smokers. On HRCT analysis, honeycombing was more predominant in patients with ScAb-ILD than with SSc-ILD. Pathological analysis showed the severity of vascular intimal or medial thickening in the SSc-ILD patients to be significantly higher than that in the ScAb-ILD patients. Survival curves showed that the patients with ScAb-ILD had a significantly poorer outcome than those with SSc-ILD. Conclusion Data from this study suggest that lung-dominant CTD with SSc-related autoantibody is a different disease entity from SSc-ILD. PMID:27564852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.
2016-07-08
Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials alongmore » $$\\langle$$110$$\\rangle$$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $$\\langle$$110$$\\rangle$$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.« less
MATSUMAE, Mitsunori; SATO, Osamu; HIRAYAMA, Akihiro; HAYASHI, Naokazu; TAKIZAWA, Ken; ATSUMI, Hideki; SORIMACHI, Takatoshi
2016-01-01
Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016. PMID:27245177
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Wolf, Walter; Wimmer, Erich
2013-01-09
The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations < 0.6 at.% and hydrogen impurities of < 0.015 at.% have been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 Å) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by Ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on Smore » sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n=1,…,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e. Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.« less
Palestini, Paola; Calvi, Chiara; Conforti, Elena; Daffara, Rossella; Botto, Laura; Miserocchi, Giuseppe
2003-10-01
We evaluated in anesthetized rabbits the compositional changes of plasmalemmal lipid microdomains from lung tissue samples after inducing pulmonary interstitial edema (0.5 ml/kg for 3 h, leading to approximately 5% increase in extravascular water). Lipid microdomains (lipid rafts and caveolae) were present in the detergent-resistant fraction (DRF) obtained after discontinuous sucrose density gradient. DRF was enriched in caveolin-1, flotillin, aquaporin-1, GM1, cholesterol, sphingomyelin, and phosphatidylserine, and their contents significantly increased in interstitial edema. The higher DRF content in caveolin, flotillin, and aquaporin-1 and of the ganglioside GM1 suggests an increase both in caveolar domains and in lipid rafts, respectively. Compositional changes could be ascribed to endothelial and epithelial cells that provide most of plasma membrane surface area in the air-blood barrier. Alterations in lipid components in the plasma membrane may reflect rearrangement of floating lipid platforms within the membrane and/or lipid translocation from intracellular stores. Lipid traffic could be stimulated by the marked increase in hydraulic interstitial pressure after initial water accumulation, from approximately -10 to 5 cmH2O, due to the low compliance of the pulmonary tissue, in particular in the basement membranes and in the interfibrillar substance. Compositional changes in lipid microdomains represent a sign of cellular activation and suggest the potential role of mechanotransduction in response to developing interstitial edema.
Perched Ground Water in Zeolitized-Bedded Tuff, Rainier Mesa and Vicinity, Nevada Test Site, Nevada
Thordarson, William
1965-01-01
Rainier Mesa--site of the first series of underground nuclear detonations--is the highest of a group of ridges and mesas within the Nevada Test Site. The mesa is about 9.5 square miles in area and reaches a maximum altitude of 7,679 feet. The mesa is underlain by welded tuff, friable-bedded tuff, and zeolitized-bedded tuff of the Piapi Canyon Group and the Indian Trail Formation of Tertiary age. The tuff--2,000 to 9,000 feet thick--rests unconformably upon thrust-faulted miogeosynclinal rocks of Paleozoic age. Zeolitic-bedded tuff at the base of the tuff sequence controls the recharge rate of ground water to the underlying and more permeable Paleozoic aquifers. The zeolitic tuff--600 to 800 feet thick--is a fractured aquitard with high interstitial porosity, but with very low interstitial permeability and fracture transmissibility. The interstitial porosity ranges from 29 to 38 percent, the interstitial permeability is generally less than 0.009 gpd/ft3, and the fracture transmissibility ranges from 10 to 100 gpd/ft for 900 feet of saturated rock. The tuff is generally fully saturated interstitially hundreds of feet above the regional water table, yet no appreciable volume of water moves through the interstices because of the very low permeability. The only freely moving water observed in miles of underground workings occurred in fractures, usually fault zones.
NASA Astrophysics Data System (ADS)
Sharkov, E. V.; Chistyakov, A. V.; Shchiptsov, V. V.; Bogina, M. M.; Frolov, P. V.
2018-03-01
Magmatic oxide mineralization widely developed in syenite-gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe-Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet'ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe-Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10-15 vol %, reaching 30-70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe-Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe-Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe-Ti oxides makes it possible to consider them complex ores. It is shown that the Fe-Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and Ti contents in an interstitial melt; and (2) periodic accumulation of the residual melt in front of this zone. Unlike liquid immiscibility leading to melt splitting into two phases, this liquid dissolved the residual components of the melt. Correspondingly, such an Fe-rich liquid has unusual properties and requires further study.
NASA Astrophysics Data System (ADS)
Ware, Steve William
Focally ablative therapy of cancer has gained significant interest recently. Improvements in diagnostic techniques have created possibilities for treatment which were once clinically unfeasible. Imaging must be capable of allowing accurate diagnosis, staging and planning upon initiation of therapy. Recent improvements in MRI and molecular imaging techniques have made it possible to accurately localize lesions and in so doing, improve the accuracy of proposed focal treatments. Using multimodality imaging it is now possible to target, plan and evaluate interstitial focal treatment using liposome encapsulated beta emitting radionuclides in a variety of cancer types. Since most absorbed dose is deposited early and heterogeneously in beta-radionuclide therapy, investigation of the resultant molecular and cellular events during this time is important for evaluating treatment efficacy. Additionally, investigating a multifocal entity such as prostate cancer is helpful for determining whether MRI is capable of discriminating the proper lesion for therapy. Correlation of MRI findings with histopathology can further improve the accuracy of interstitial focal radionuclide therapy by providing non-invasive surrogates for tissue compartment sizes. In the application of such therapies, compartmental sizes are known to heavily influence the distribution of injected agents. This has clear dosimetric implications with the potential to significantly alter the efficacy of treatment. The hypothesis of this project was that multimodality imaging with magnetic resonance imaging (MRI), autoradiography (AR), and single photon emission computed tomography (SPECT) could be used to target, plan, and evaluate interstitial focal therapy with non-sealed source, liposome-encapsulated 186Re beta emitting radionuclides. The specific aims of this project were to 1) Identify suitable targets for interstitial focal therapy. This was done by retrospectively analyzing MRI data to characterize the tumor microenvironment through correlation with in-plane compartmental sizes obtained from histopathology analysis of step-sectioned prostatectomy specimens; 2) Gauge the ability of a reader to plan an interstitial focal treatment using MRI. This was accomplished by objective measures of contrast and volume measurement with subjective reader analysis of tumor conspicuities; 3) Evaluation of the early biologic response to 186Re interstitial focal therapy. This was achieved by correlation of histochemistry (HC) markers: hetrochromatin protein alpha (HP1α), cluster of differentiation 34 (CD34), terminal deoxynucleotidal transferase nick end labeling (TUNEL), caspase 3, Ki-67 and hematoxylin & eosin (H&E) to the radiation distribution as seen on AR and radiation absorbed dose as computed from planar imaging. The conclusions of this study are that prostate MRI allows targeting of appropriate lesions for therapy by its ability to inform on the tumor microenvironment. MRI distinguishes prostatic tumors on the basis of tissue composition. Readers are better able reproduce volumes and thus plan interstitial therapy for tumors which have a denser, more homogeneous composition. The combination of SPECT and autoradiography showed a dose and position dependent expression of HC markers. These results demonstrate that multimodality imaging is capable of targeting, planning and evaluating interstitial focal therapy.
Modeling of multi-phase interactions of reactive nitrogen between snow and air in Antarctica
NASA Astrophysics Data System (ADS)
McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.
2016-12-01
In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional processes that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume air-liquid interactions and aqueous phase chemistry taking place at the interface between the snow grain and air. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (<30 kg m-2 yr-1); and Halley, a coastal site with at times at or above freezing temperatures during summer, high accumulation rate and high background level of sea salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two processes, thermodynamic equilibrium of HNO3 between interstitial air and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.
Density, structure, and dynamics of water: The effect of van der Waals interactions
NASA Astrophysics Data System (ADS)
Wang, Jue; Román-Pérez, G.; Soler, Jose M.; Artacho, Emilio; Fernández-Serra, M.-V.
2011-01-01
It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.
Sulyok, Michael; Miró, Manuel; Stingeder, Gerhard; Koellensperger, Gunda
2005-08-01
In this paper, flow-through microdialysis is presented as a novel analytical tool for automatic sampling of low molecular weight organic anions (LMWOA), such as oxalate and citrate, in solid samples of environmental concern. The microsampling methodology involves the implantation of dedicated capillary-type probes offering unrivalled spatial resolution (ca. 200μm) in definite soil sites. These passive samplers are aimed at monitoring local processes, such as the release of organic acids occurring in the rhizosphere environment, in nearly real-time. The influence of chemical and physical variables (composition and flow rate of the perfusion liquid, ionic strength and pH of the outer medium and presence of metal ions therein) was assessed in vitro using liquid-phase assays. On the other hand, the resistance of the external solid medium to mass transfer, and the actual applicability of in vivo calibration methods were investigated using quartz sand as an inert model soil. Microdialysers furnished with 3cm long semipermeable tubular membranes were perfused with 0.01M NaNO 3 at a flow rate of 2.0μl/min, yielding dialysis recoveries ≥45% for both assayed LMWOAs in simulated background soil electrolyte solutions, and ≥24% in the interstitial liquid of complex solid samples. Full knowledge of the fate of LMWOAs in soils was obtained through the application of stimulus-response approaches that mimic the discrete exudation pulses of roots. Highly time-resolved microdialysates were used to discern readily available species such as free carboxylic anions and LMW metal-organic acid complexes from adsorbed, precipitated or mineralised analyte species in a variety of soil samples containing variable amounts of organic matter, exchangeable cations and different levels of metal pollution.
Interactions between solidification and compositional convection in mushy layers
NASA Technical Reports Server (NTRS)
Worster, M. Grae
1994-01-01
Mushy layers are ubiquitous during the solidification of alloys. They are regions of mixed phase wherein solid crystals are bathed in the melt from which they grew. The matrix of crystals forms a porous medium through which the melt can flow, driven either by external forces or by its own buoyancy in a gravitational field. Buoyancy-driven convection of the melt depends both on temperature gradients, which are necessary for solidification, and on compositional gradients, which are generated as certain components of the alloy are preferentially incorporated in the solid phase and the remaining components are expelled into the melt. In fully liquid regions, the combined action of temperature and concentration on the density of the liquid can cause various forms of double-diffusive convection. However, in the interior of mushy regions the temperature and concentration are thermodynamically coupled so only single-diffusive convection can occur. Typically, the effect of composition on the buoyancy of the melt is much greater than the effect of temperature, and thus convection in mushy layers in driven primarily by the computational gradients within them. The rising interstitial liquid is relatively dilute, having come from colder regions of the mushy layer, where the liquidus concentration is lower, and can dissolve the crystal matrix through which it flows. This is the fundamental process by which chimneys are formed. It is a nonlinear process that requires the convective velocities to be sufficiently large, so fully fledged chimneys (narrow channels) might be avoided by means that weaken the flow. Better still would be to prevent convection altogether, since even weak convection will cause lateral, compositional inhomogeneities in castings. This report outlines three studies that examine the onset of convection within mushy layers.
A significant negative correlation between testicular interstitial cell tumors and pituitary tumors in control male F344 rats has been reported associated with the number of animals per cage. Change in numbers of animals per cage may cause stress and increased serum corticosteroi...
Abstract
Procedures for purification of Leydig cells have facilitated studies of their regulatory biology. A multistep procedure, that includes a filtration with nylon mesh (100 micron pore size) to separate interstitial cells from the seminiferous tubules, combining centr...
Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte
NASA Astrophysics Data System (ADS)
Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying
2018-01-01
Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.
Benitex, Yulia; McNaney, Colleen A; Luchetti, David; Schaeffer, Eric; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M
2013-08-30
Research on disorders of the central nervous system (CNS) has shown that an imbalance in the levels of specific endogenous neurotransmitters may underlie certain CNS diseases. These alterations in neurotransmitter levels may provide insight into pathophysiology, but can also serve as disease and pharmacodynamic biomarkers. To measure these potential biomarkers in vivo, the relevant sample matrix is cerebrospinal fluid (CSF), which is in equilibrium with the brain's interstitial fluid and circulates through the ventricular system of the brain and spinal cord. Accurate analysis of these potential biomarkers can be challenging due to low CSF sample volume, low analyte levels, and potential interferences from other endogenous compounds. A protocol has been established for effective method development of bioanalytical assays for endogenous compounds in CSF. Database searches and standard-addition experiments are employed to qualify sample preparation and specificity of the detection thus evaluating accuracy and precision. This protocol was applied to the study of the histaminergic neurotransmitter system and the analysis of histamine and its metabolite 1-methylhistamine in rat CSF. The protocol resulted in a specific and sensitive novel method utilizing pre-column derivatization ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS), which is also capable of separating an endogenous interfering compound, identified as taurine, from the analytes of interest. Copyright © 2013 John Wiley & Sons, Ltd.
Spatially-resolved probing of biological phantoms by point-radiance spectroscopy
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-03-01
Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.
Morishita, Tetsuya
2009-05-21
We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).
Convection and fluidization in oscillatory granular flows: The role of acoustic streaming.
Valverde, Jose Manuel
2015-06-01
Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves.
NASA Astrophysics Data System (ADS)
MacMahon, Heber; Vyborny, Carl; Sabeti, Victoria; Metz, Charles; Doi, Kunio
1985-09-01
A potential advantage of digital radiographic systems is their ability to enhance images by various types of processing. Digital unsharp masking is one of the simplest and potentially most useful forms of enhancement. The efficacy of unsharp masking in clinical radiologic diagnosis has not been investigated systematically, however. The effect of digital unsharp masking on the detectability of two types of subtle abnormalities, pneumothorax and interstitial infiltrate, was studied in an observer performance test. An ROC analysis of this preliminary data suggests that unsharp masking may improve diagnostic accuracy for pneumothorax. Radiologists' performance in identifying interstitial infiltrates was degraded by the image processing, however, and false positive diagnoses tended to be more frequent.
Manheim, Frank T.; Peck, E.E.; Lane, Candice M.
1985-01-01
The authors have devised a technique for determining chloride in interstitial water of consolidated rocks. Samples of rocks ranging from 5 to 10 g are crushed and sieved under controlled conditions and then ground with distilled water to submicron size in a closed mechanical mill. The chloride concentrations and total pore-water concentrations, obtained earlier from the same samples by low-temperature vacuum desiccation, are used to arrive at the 'original' pore-water chloride concentrations by a simple iteration procedure. Interstitial chlorinity results obtained from Cretaceous and Jurassic strata in the Gulf of Mexico coastal areas ranged from 20 to 100 g/kg Cl with reproducibility approaching plus or minus 1%.
Pancreas tumor interstitial pressure catheter measurement
NASA Astrophysics Data System (ADS)
Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.
2016-03-01
This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.
Yokohori, Naoko; Sato, Akitoshi; Hasegawa, Mizue; Katsura, Hideki; Hiroshima, Kenzo; Takemura, Tamiko
2017-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus involved in the pathogenesis of adult T-cell leukemia (ATL) and HTVL-1-associated bronchioloalveolar disorder (HABA). The clinical and pathological findings of HABA have been characterized as either a diffuse panbronchiolitis (DPB) pattern or idiopathic interstitial pneumonia (IIP) pattern. Treatments for HABA include corticosteroids for the IIP pattern and erythromycin for the DPB pattern. We herein report a case of HABA-associated unclassifiable interstitial pneumonia that improved with combined therapy with pirfenidone and erythromycin. This is the first report on the effectiveness of combined therapy with pirfenidone and erythromycin for HABA. PMID:28050003
Giant-cell interstitial pneumonia in a gas station worker.
Lee, S M; Moon, C H; Oh, Y B; Kim, H Y; Ahn, Y; Ko, E J; Joo, J E
1998-10-01
Giant-cell interstitial Pneumonia (GIP) is a very uncommon respiratory disease. The majority of cases of GIP are caused by exposure to cobalt, tungsten and other hard metals. In this report, we describe GIP in a patient who worked in gas station and dealt in propane gas vessels. He presented with clinical features of chronic interstitial lung disease and underwent an open lung biopsy that showed DIP-like reaction with large numbers of intra-alveolar macrophages and numerous large, multinucleated histiocytes which were admixed with the macrophages. Analysis of lung tissue for hard metals was done. Cobalt was the main component of detected hard metals. Corticosteroid therapy was started and he recovered fully.
Interstitial water in the swash zone, that area of a beach where waves continuously wash up on the sand, is suspected of accumulating microbes. If pathogens are concentrated in the interstitial water or if they grow, they may pose a health risk, especially for children. This s...
This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it account...
2015-10-01
interstitial space. Recently, nanodroplets that can extravasate to a tumor’s interstitial space have been developed for targeted imaging 4 and drug...with each pulse applied to a different point in the sample (2 mm spacing) to prevent the effects of cavitation damage from altering the tissue phantom
Pulmonary interstitial fibrosis with evidence of aflatoxin B1 in lung tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvorackova, I.; Pichova, V.
Three cases of pulmonary interstitial fibrosis, two in agricultural workers and one in a textile worker, are reported. In lung samples of all three patients the presence of aflatoxin B1 was demonstrated by radioimmunoassay (RIA). A possible occupational risk of aflatoxin exposure via the respiratory tract is suggested.
Code of Federal Regulations, 2013 CFR
2013-10-01
... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... only. (f) Frequency assignments for Flight Test VHF Stations may be based on either 8.33 kHz or 25 kHz spacing. Assignable frequencies include the interstitial frequencies 8.33 kHz from the VHF frequencies listed in paragraphs (a) and (b) of this section. Each 8.33 kHz interstitial frequency is subject to the...
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari P.; Bank, Seth R.; Banerjee, Sanjay K.
2012-02-01
We present an ab-initio density functinal theory study of dilute-nitride GaSb. Adding dilute quantities of nitrogen causes rapid reduction in bandgap of GaSb (˜300 meV for 2% N). Due to this rapid reduction in bandgap, dilute-nitrides provide a pathway for extending the emission of GaSb based type-I diode lasers into the mid-infrared wavelength region (3-5 micron). In this study we look at the effect of substitutional N impurity on the electronic properties of our system and compare it with the band-anticrossing model, a phenomenological model, which has been used to explain giant band bowing observed in dilute-nitride alloys. We also study the effect of Sb-N split interstitials which are known to be non-radiative recombination centers. Furthermore we also discuss the stability of the Sb-N split interstitial relative to substitutional nitrogen to determine if the split interstitials can be annihilated using post-growth annealing to improve the radiative lifetime of the material which essential for laser operation.
Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells
NASA Astrophysics Data System (ADS)
Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming
2015-03-01
Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.
Usual interstitial pneumonia: typical, possible, and “inconsistent” patterns
Torres, Pedro Paulo Teixeira e Silva; Rabahi, Marcelo Fouad; Moreira, Maria Auxiliadora Carmo; Meirelles, Gustavo de Souza Portes; Marchiori, Edson
2017-01-01
ABSTRACT Idiopathic pulmonary fibrosis is a severe and progressive chronic fibrosing interstitial lung disease, a definitive diagnosis being established by specific combinations of clinical, radiological, and pathological findings. According to current international guidelines, HRCT plays a key role in establishing a diagnosis of usual interstitial pneumonia (UIP). Current guidelines describe three UIP patterns based on HRCT findings: a typical UIP pattern; a pattern designated “possible UIP”; and a pattern designated “inconsistent with UIP”, each pattern having important diagnostic implications. A typical UIP pattern on HRCT is highly accurate for the presence of histopathological UIP, being currently considered to be diagnostic of UIP. The remaining patterns require further diagnostic investigation. Other known causes of a UIP pattern include drug-induced interstitial lung disease, chronic hypersensitivity pneumonitis, occupational diseases (e.g., asbestosis), and connective tissue diseases, all of which should be included in the clinical differential diagnosis. Given the importance of CT studies in establishing a diagnosis and the possibility of interobserver variability, the objective of this pictorial essay was to illustrate all three UIP patterns on HRCT. PMID:29160385
The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.; ...
2016-05-26
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. But, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we usemore » traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We also show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. Finally, we uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.« less
Non-invasive imaging of barriers to drug delivery in tumors.
Hassid, Yaron; Eyal, Erez; Margalit, Raanan; Furman-Haran, Edna; Degani, Hadassa
2008-08-01
Solid tumors often develop high interstitial fluid pressure (IFP) as a result of increased water leakage and impaired lymphatic drainage, as well as changes in the extracellular matrix composition and elasticity. This high fluid pressure forms a barrier to drug delivery and hence, resistance to therapy. We have developed techniques based on contrast enhanced magnetic resonance imaging for mapping in tumors the vascular and transport parameters determining the delivery efficiency of blood borne substances. Sequential images are recorded during continuous infusion of a Gd-based contrast agent and analyzed according to a new physiological model, yielding maps of microvascular transfer constants, as well as outward convective interstitial transfer constants and steady state interstitial contrast agent concentrations both reflecting IFP distribution. We further demonstrated in non small cell human lung cancer xenografts the capability of our techniques to monitor in vivo collagenase induced increase in contrast agent delivery as a result of decreased IFP. These techniques can be applied to test drugs that affect angiogenesis and modulate interstitial fluid pressure and has the potential to be extended to cancer patients for assessing resistance to drug delivery.
Non-Invasive Imaging of Barriers to Drug Delivery in Tumors
Hassid, Yaron; Eyal, Erez; Margalit, Raanan; Furman-Haran, Edna; Degani, Hadassa
2011-01-01
Solid tumors often develop high interstitial fluid pressure (IFP) as a result of increased water leakage and impaired lymphatic drainage, as well as changes in the extracellular matrix composition and elasticity. This high fluid pressure forms a barrier to drug delivery and hence, resistance to therapy. We have developed techniques based on contrast enhanced magnetic resonance imaging for mapping in tumors the vascular and transport parameters determining the delivery efficiency of blood borne substances. Sequential images are recorded during continuous infusion of a Gd-based contrast agent and analyzed according to a new physiological model, yielding maps of microvascular transfer constants, as well as outward convective interstitial transfer constants and steady state interstitial contrast agent concentrations both reflecting IFP distribution. We further demonstrated in non small cell human lung cancer xenografts the capability of our techniques to monitor in vivo collagenase induced increase in contrast agent delivery as a result of decreased IFP. These techniques can be applied to test drugs that affect angiogenesis and modulate interstitial fluid pressure and has the potential to be extended to cancer patients for assessing resistance to drug delivery. PMID:18638494
Is the appearance of macrophages in pulmonary tissue related to time of asphyxia?
Vacchiano, G; D'Armiento, F; Torino, R
2001-01-01
In order to connect the appearance of macrophages and giant cells in pulmonary tissue with the time of asphyxia the authors analyzed 50 asphyxiated human lungs paying their attention on the number of alveolar and interstitial macrophages and giant cells. They compared histological specimens of 25 asphixiated humans lungs following a slow asphyxia (30 min or more) with 25 histological specimens of asphyxiated human lungs following a rapid asphyxia (10-15 min). Alveolar and interstitial macrophages and giant cells per section, were considered and numbered. Controls were done on histological examination of traumatized lungs. In the pulmonary alveoli following on acute asphyxia there were 27.7+/-4.4 macrophages per section. Subjects dead after a slow asphyxiation showed 68.2+/-7.1 alveolar macrophages per section (p<0.001). Interstitial macrophages were also frequently present. No differences are detectable in the number of polynuclear giant cells between rapidly and slowly asphyxiated human lungs. The number of alveolar and interstitial macrophages per section can be considered as a further histological evidence of a slow asphyxia and can differentiate a slow asphyxia from an acute one.
Moss, G S; Das Gupta, T K; Brinkman, R; Sehgal, L; Newsom, B
1979-01-01
The object of this study was to compare the ultrastructure pulmonary effects of the infusion of homologous and heterologous serum albumin solution in the treatment of hemorrhagic shock in baboons. Adult baboons subjected to hemorrhagic shock were resuscitated with either baboon serum albumin, human serum albumin, or Ringer's lactate solution. The lungs were fixed in vivo with potassium pyroantimony, a solution which produces electron dense interstitial precipitation of sodium. The lungs from animals resuscitated with baboon serum albumin showed evidence of interstitial edema, including dispersion of collagen fibers, interstitial smudging and increased interstital sodium concentrations. Similar changes were seen following human serum albumin infusions. Lung tissue from animals treated with Ringer's lactate solution showed minimal changes from normal. These results suggest that interstitial pulmonary edema develops after either homologous or heterologous serum albumin infusion in the treatment of hemorrhagic shock in baboons. Images Figs. 2a and b. Figs. 3a and b. Figs. 4a and b. Figs. 5a and b. Figs. 6a and b. PMID:106780
The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W
NASA Astrophysics Data System (ADS)
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.; Voter, Arthur F.
2016-05-01
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we use traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.
Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation
Tang, Lei; van de Ven, Anne L.; Guo, Dongmin; Andasari, Vivi; Cristini, Vittorio; Li, King C.; Zhou, Xiaobo
2014-01-01
Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport, angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure. PMID:24404145
Xu, Jun; Bu, Fan-Xing; Guo, Yi-Fei; Zhang, Wei; Hu, Ming; Jiang, Ji-Sen
2018-05-01
Radioactive cesium pollution have received considerable attention due to the increasing risks in development of the nuclear power plants in the world. Although various functional porous materials are utilized to adsorb Cs+ ions in water, Prussian blue analogues (PBAs) are an impressive class of candidates because of their super affinity of Cs+ ions. The adsorption ability of the PBAs strongly relate to the mesostructure and interstitial sites. To design a hollow PBA with large number of interstitial sites, the traditional hollowing methods are not suitable owing to the difficulty in processing the specific PBAs with large number of interstitial sites. In this work, we empolyed a rational strategy which was to form a "metal oxide"@"PBA" core-shell structure via coordination replication at first, then utilized a mild etching to remove the metal oxide core, led to hollow PBA finally. The obtained hollow PBAs were of high crystallinity and large number of interstitial sites, showing a super adsorption performance for Cs+ ions (221.6 mg/g) within a short period (10 min).
Interplay between interstitial displacement and displacive lattice transformations
NASA Astrophysics Data System (ADS)
Zhang, Xie; Hickel, Tilmann; Rogal, Jutta; Neugebauer, Jörg
2016-09-01
Diffusionless displacive lattice rearrangements, which include martensitic transformations, are in real materials often accompanied by a displacive drag of interstitials. The interplay of both processes leads to a particular atomistic arrangement of the interstitials in the product phase, which is decisive for its performance. An archetype example is the martensitic transformation in Fe-C alloys. One of the puzzles for this system is that the deviation from the cubic symmetry (i.e., the tetragonality) in the martensite resulting from this interplay is lower than what thermodynamics dictates. In our ab initio approach, the relative motion of C in the transforming lattice is studied with the nudged elastic band method. We prove that an atomic shearlike shuffle mechanism of adjacent (11 2 ¯) Fe layers along the ±[111] bcc directions is essential to achieve a redistribution of C atoms during the fcc → bcc transition, which fully explains the abnormal behavior. Furthermore, the good agreement with experiment validates our method to treat a diffusionless redistribution of interstitials and a displacive rearrangement of the host lattice simultaneously.
Percutaneous interstitial brachytherapy for adrenal metastasis: technical report.
Kishi, Kazushi; Tamura, Shinji; Mabuchi, Yasushi; Sonomura, Tetsuo; Noda, Yasutaka; Nakai, Motoki; Sato, Morio; Ino, Kazuhiko; Yamanaka, Noboru
2012-09-01
We developed and evaluated the feasibility of a brachytherapy technique as a safe and effective treatment for adrenal metastasis. Adapting a paravertebral insertion technique in radiofrequency ablation of adrenal tumors, we developed an interstitial brachytherapy for adrenal metastasis achievable on an outpatient basis. Under local anesthesia and under X-ray CT guidance, brachytherapy applicator needles were percutaneously inserted into the target. A treatment plan was created to eradicate the tumor while preserving normal organs including the spinal cord and kidney. We applied this interstitial brachytherapy technique to two patients: one who developed adrenal metastasis as the third recurrence of uterine cervical cancer after reirradiation, and one who developed metachronous multiple metastases from malignant melanoma. The whole procedure was completed in 2.5 hours. There were no procedure-related or radiation-related early/late complications. FDG PET-CT images at two and three months after treatment showed absence of FDG uptake, and no recurrence of the adrenal tumor was observed for over seven months until expiration, and for six months until the present, respectively. This interventional interstitial brachytherapy procedure may be useful as a safe and eradicative treatment for adrenal metastasis.
NASA Astrophysics Data System (ADS)
Maghdour-Mashhour, Reza; Shabani, Amir Ali Tabbakh
2017-07-01
The Karaj Dam basement Sill is a 460 m-thick saucer shaped sill, situated in the Alborz Magmatic Belt, Northern Iran. The results of geochemical, textural and field relations reveal characteristics of a sill with a well-developed S-shaped compositional profile which could be subdivided into distinct parts and suggest that the sill was repeatedly split and reinjected with fresh magma in the upper half of the previous emplacements (over- to partly intra-accretion). Whole rock and mineral compositional profiles have recorded five to six discrete injections of magma, each of which individually show an upward increase in terms of primitivity which represents partial crystallization in feeder conduits. The first three small successive pulses of magma, emplaced in the basal 150 m of the floor sequence, were followed by voluminous fourth and fifth pulses in the upper portion of the sill. During final two pulses the system acts as a closed system for each independently, and evolves through compositional convection or compaction aided in-situ crystallization. Theoretical models for convection and compaction shows the significance of both processes. Considering the final porosity of 0.1 < φ < 0.45, calculated convective velocities (0.2 < Vc < 227 m/year) are higher than the calculated crystal accumulation rate of the basal 150 m and upper portion of the sill (Va = 1 and 0.1 m/year), when the crystal mush varies between 1 to 0.01 m with the liquid viscosity ranging from 85 to 15 Pa·s. Our calculations further indicate that compaction driven velocity of liquid expulsion (ω - w) hardly exceeds the Va in the basal 150 m of the floor sequence. The highest velocity is reached (ω - w = 1 m/year) only if the crystal mush thickness is no less than 240 m with the porosity of 0.6 and the liquid viscosity of no more than 15 Pa·s. On the other hand, compaction is highly effective in the upper portion of the sill. Transfer of residual liquid from the compacting lower solidification front to the dilating upper solidification front resulted in characteristic chemical and mineralogical effects, such as the depletion of the lower half of the sill and the enrichment of the sandwich zone in incompatible elements and modal granophyre. Crystallization of the fourth pulse of magma produced a peak in incompatible clement concentrations at a sandwich horizon located at the 410 m level, where the floor and roof of the sill appeared to converge at this stage. Subsequent to the time of this enriched zone crystallizing, the fifth pulse of magma was emplaced near this level and inflated the chamber vertically for 200 m. Cumulus material containing interstitial melt and subsequent buoyancy driven upward transport of interstitial melt in this pulse concentrated incompatible elements at 47 m below the main peak, at the stratigraphic height of 360-370 m. The boundaries between the successive pulses were cryptic and represent a gradational contact in terms of grain size, chemical composition and crystallization sequence. This implies a short time interval between the emplacements of the magma. This sill is comparable with Antarctica Beacon Sill and Hudson River Palisades Sill, and the recognition of evidence for reinjection and compaction in these macroscopically uniform sills, as well as the Karaj Dam basement Sill, suggests that these processes may be common in the construction of sills with a thickness of more than 100 m.
Ab initio theory of noble gas atoms in bcc transition metals.
Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian
2018-06-18
Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.
Clinicopathological correlates of chronic kidney disease of unknown etiology in Sri Lanka.
Selvarajah, M; Weeratunga, P; Sivayoganthan, S; Rathnatunga, N; Rajapakse, S
2016-09-01
Chronic kidney disease of unknown etiology (CKDu) is a major healthcare issue in Sri Lanka. This study included 125 consecutive patients with a diagnosis of CKDu undergoing renal biopsy at one hospital from 2008 to 2012. Associations between renal outcome parameters, epidemiological data, and histopathological findings were examined and regression models constructed based on univariate associations with outcome variables as serum creatinine >1.2 and stage of CKD >3. The mean patient age was 46.21 years (standard deviation = 11.64). A marked male predominance was noted. A positive family history of CKD was seen in 35.8%. Prominent histopathological features were glomerular sclerosis (94.8%), interstitial infiltration (76%) with lymphocytic infiltration, interstitial fibrosis (71.2%), and tubular atrophy (70.4%). Importantly, significant histological changes were seen in patients with early CKDu. For CKD stage >3 independent associations were: interstitial fibrosis [P = 0.005; odds ratio (OR) =0.153] and interstitial infiltrate ( P = 0.030; OR = 0.2440. For serum creatinine >1.2, independent predictors were >50% glomerular sclerosis ( P = 0.041; OR = 0.92), tubular atrophy ( P = 0.034; OR = 0.171, and more than 40 residential life years ( P = 0.009; OR = 9.229). Chronic tubulointerstitial nephritis (TIN) appears to be the predominant histopathological finding in patients with CKDu, with significant renal pathology established early on in the course of the disease. Interstitial infiltration appears to be an independent association of advancing CKD, CKDu, histopathology, histology, and TIN.
Hypothalamic digoxin, hemispheric chemical dominance, and interstitial lung disease.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-10-01
The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with idiopathic pulmonary fibrosis and in individuals of differing hemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of idiopathic pulmonary fibrosis. All 15 cases of interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. The isoprenoidal metabolites--digoxin, dolichol, and ubiquinone, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, tyrosine/tryptophan catabolic patterns, free radical metabolism, glycoconjugate metabolism, and RBC membrane composition--were assessed in idiopathic pulmonary fibrosis as well as in individuals with differing hemispheric dominance. In patients with idiopathic pulmonary fibrosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in patients with idiopathic pulmonary fibrosis. Isoprenoid pathway dysfunction con tributes to the pathogenesis of idiopathic pulmonary fibrosis. The biochemical patterns obtained in interstitial lung disease are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. However, all the patients with interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Interstitial lung disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.
Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.
Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A
2016-01-01
The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease. © The Author(s) 2015.
Clinicopathological correlates of chronic kidney disease of unknown etiology in Sri Lanka
Selvarajah, M.; Weeratunga, P.; Sivayoganthan, S.; Rathnatunga, N.; Rajapakse, S.
2016-01-01
Chronic kidney disease of unknown etiology (CKDu) is a major healthcare issue in Sri Lanka. This study included 125 consecutive patients with a diagnosis of CKDu undergoing renal biopsy at one hospital from 2008 to 2012. Associations between renal outcome parameters, epidemiological data, and histopathological findings were examined and regression models constructed based on univariate associations with outcome variables as serum creatinine >1.2 and stage of CKD >3. The mean patient age was 46.21 years (standard deviation = 11.64). A marked male predominance was noted. A positive family history of CKD was seen in 35.8%. Prominent histopathological features were glomerular sclerosis (94.8%), interstitial infiltration (76%) with lymphocytic infiltration, interstitial fibrosis (71.2%), and tubular atrophy (70.4%). Importantly, significant histological changes were seen in patients with early CKDu. For CKD stage >3 independent associations were: interstitial fibrosis [P = 0.005; odds ratio (OR) =0.153] and interstitial infiltrate (P = 0.030; OR = 0.2440. For serum creatinine >1.2, independent predictors were >50% glomerular sclerosis (P = 0.041; OR = 0.92), tubular atrophy (P = 0.034; OR = 0.171, and more than 40 residential life years (P = 0.009; OR = 9.229). Chronic tubulointerstitial nephritis (TIN) appears to be the predominant histopathological finding in patients with CKDu, with significant renal pathology established early on in the course of the disease. Interstitial infiltration appears to be an independent association of advancing CKD, CKDu, histopathology, histology, and TIN. PMID:27795631
Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans
NASA Technical Reports Server (NTRS)
Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.
2000-01-01
It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.
Gastroesophageal Reflux Disease in Children with Interstitial Lung Disease.
Dziekiewicz, M A; Karolewska-Bochenek, K; Dembiński, Ł; Gawronska, A; Krenke, K; Lange, J; Banasiuk, M; Kuchar, E; Kulus, M; Albrecht, P; Banaszkiewicz, A
2016-01-01
Gastroesophageal reflux disease is common in adult patients with interstitial lung disease. However, no data currently exist regarding the prevalence and characteristics of the disease in pediatric patients with interstitial lung disease. The aim of the present study was to prospectively assess the incidence of gastroesophageal reflux disease and characterize its features in children with interstitial lung disease. Gastroesophageal reflux disease was established based on 24 h pH-impedance monitoring (MII-pH). Gastroesophageal reflux episodes (GERs) were classified according to widely recognized criteria as acid, weakly acid, weakly alkaline, or proximal. Eighteen consecutive patients (15 boys, aged 0.2-11.6 years) were enrolled in the study. Gastroesophageal reflux disease was diagnosed in a half (9/18) of children. A thousand GERs were detected by MII-pH (median 53.5; IQR 39.0-75.5). Of these, 585 (58.5 %) episodes were acidic, 407 (40.7 %) were weakly acidic, and eight (0.8 %) were weakly alkaline. There were 637 (63.7 %) proximal GERs. The patients in whom gastroesophageal reflux disease was diagnosed had a significantly higher number of proximal and total GERs. We conclude that the prevalence of gastroesophageal reflux disease in children with interstitial lung disease is high; thus, the disease should be considered regardless of presenting clinical symptoms. A high frequency of non-acid and proximal GERs makes the MII-pH method a preferable choice for the detection of reflux episodes in this patient population.
Zimmern, P E; Laub, D; Leach, G E
1995-07-01
Fluorescein angiography has been used in the study of bleeding vessels, neovascularity, tumors and ischemic tissues in a variety of disorders. This pilot study was designed to evaluate the feasibility, safety and relevance of this interesting technology for the evaluation of bladder wall vessels in patients with interstitial cystitis and bladder cancer. Five patients with National Institutes of Health defined interstitial cystitis symptoms and 10 with bladder cancer were studied during cytoscopy while they were under general anesthesia. A yellow-green barrier filter (520 nm.) was placed over the cystoscope eyepiece and a blue exciter filter (465 nm.) was attached to the light source. Patients received a 5 ml. bolus of 10% fluorescein intravenously. After hydrodistension, glomerulations in interstitial cystitis patients were more prominent with fluorescein angiography and occurred in the venule phase. Areas of papillary transitional cell tumor and carcinoma in situ developed a brilliant yellow-green fluorescence. Adjacent normal urothelium was nonfluorescent and provided a contrasting dark background facilitating the detection of all lesions. No allergic reaction or other adverse effect related to the fluorescein injection was observed. These unique observations in a limited number of patients suggest that fluorescein angiography of the bladder is a safe and simple procedure. This preliminary report underscores the relevance of fluorescein angiography in the detection of bladder tumor and offers a new approach to the evaluation of bladder wall vessels in interstitial cystitis patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bukowiecki, L.J.; Geloeen, A.; Collet, A.J.
1986-06-01
The mechanisms of brown adipocyte proliferation and differentiation during cold acclimation (and/or adaptation to hyperphagia) have been studied by quantitative photonic radioautography. (/sup 3/H)thymidine was injected to warm-acclimated (25/sup 0/C) rats and to animals exposed to 5/sup 0/C for 2 days. Samples of interscapular brown adipose tissue were collected for quantitative analysis of mitotic frequencies at various periods of time (4 h-15 days) after the injection of (/sup 3/H)thymidine, the rats being maintained at the temperatures to which they were initially exposed. It was found that cold exposure for 2 days markedly enhanced mitotic activity in endothelial cells, interstitial cells,more » and brown preadipocytes rather than in fully differentiated brown adipocytes. The total tissue labeling index (percent of labeled nuclei) increased approx.70 times over control values. The authors now report that cellular labeling progressively increased in mature brown adipocytes during cold acclimation, whereas it correspondingly decreased in interstitial cells and brown preadipocytes. This indicates that the sequence of events for cellular differentiation is interstitial cells ..-->.. brown preadipocytes ..-->.. mature brown adipocytes. Remarkable, labeling frequency did not change in endothelial cells during cold acclimation demonstrating that these cells cannot be considered as progenitors of brown adipocytes. It is suggested that brown adipocyte proliferation and differentiation from interstitial cells represent the fundamental phenomena explaining the enhanced capacity of cold-acclimated and/or hyperphagic rats to respond calorigenically to catecholamines.« less
[Lung transplantation in pulmonary fibrosis and other interstitial lung diseases].
Berastegui, Cristina; Monforte, Victor; Bravo, Carlos; Sole, Joan; Gavalda, Joan; Tenório, Luis; Villar, Ana; Rochera, M Isabel; Canela, Mercè; Morell, Ferran; Roman, Antonio
2014-09-15
Interstitial lung disease (ILD) is the second indication for lung transplantation (LT) after emphysema. The aim of this study is to review the results of LT for ILD in Hospital Vall d'Hebron (Barcelona, Spain). We retrospectively studied 150 patients, 87 (58%) men, mean age 48 (r: 20-67) years between August 1990 and January 2010. One hundred and four (69%) were single lung transplants (SLT) and 46 (31%) bilateral-lung transplants (BLT). The postoperative diagnoses were: 94 (63%) usual interstitial pneumonia, 23 (15%) nonspecific interstitial pneumonia, 11 (7%) unclassifiable interstitial pneumonia and 15% miscellaneous. We describe the functional results, complications and survival. The actuarial survival was 87, 70 and 53% at one, 3 and 5 years respectively. The most frequent causes of death included early graft dysfunction and development of chronic rejection in the form of bronchiolitis obliterans (BOS). The mean postoperative increase in forced vital capacity and forced expiratory volume in the first second (FEV1) was similar in SLT and BLT. The best FEV1 was reached after 10 (r: 1-36) months. Sixteen percent of patients returned to work. At some point during the evolution, proven acute rejection was diagnosed histologically in 53 (35%) patients. The prevalence of BOS among survivors was 20% per year, 45% at 3 years and 63% at 5 years. LT is the best treatment option currently available for ILD, in which medical treatment has failed. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Swartz, M A; Kaipainen, A; Netti, P A; Brekken, C; Boucher, Y; Grodzinsky, A J; Jain, R K
1999-12-01
Interstitial fluid movement is intrinsically linked to lymphatic drainage. However, their relationship is poorly understood, and associated pathologies are mostly untreatable. In this work we test the hypothesis that bulk tissue fluid movement can be evaluated in situ and described by a linear biphasic theory which integrates the regulatory function of the lymphatics with the mechanical stresses of the tissue. To accomplish this, we develop a novel experimental and theoretical model using the skin of the mouse tail. We then use the model to demonstrate how interstitial-lymphatic fluid movement depends on a balance between the elasticity, hydraulic conductivity, and lymphatic conductance as well as to demonstrate how chronic swelling (edema) alters the equipoise between tissue fluid balance parameters. Specifically, tissue fluid equilibrium is perturbed with a continuous interstitial infusion of saline into the tip of the tail. The resulting gradients in tissue stress are measured in terms of interstitial fluid pressure using a servo-null system. These measurements are then fit to the theory to provide in vivo estimates of the tissue hydraulic conductivity, elastic modulus, and overall resistance to lymphatic drainage. Additional experiments are performed on edematous tails to show that although chronic swelling causes an increase in the hydraulic conductivity, its greatly increased distensibility (due to matrix remodeling) dampens the driving forces for fluid movement and leads to fluid stagnation. This model is useful for examining potential treatments for edema and lymphatic disorders as well as substances which may alter tissue fluid balance and/or lymphatic drainage.
Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive
Newton, Chad A.; Batra, Kiran; Torrealba, Jose; Kozlitina, Julia; Glazer, Craig S.; Aravena, Carlos; Meyer, Keith; Raghu, Ganesh; Collard, Harold R.; Garcia, Christine Kim
2017-01-01
Heterozygous mutations in four telomere-related genes have been linked to pulmonary fibrosis, but little is known about similarities or differences of affected individuals. 115 patients with mutations in telomerase reverse transcriptase (TERT) (n=75), telomerase RNA component (TERC) (n=7), regulator of telomere elongation helicase 1 (RTEL1) (n=14) and poly(A)-specific ribonuclease (PARN) (n=19) were identified and clinical data were analysed. Approximately one-half (46%) had a multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF); others had unclassifiable lung fibrosis (20%), chronic hypersensitivity pneumonitis (12%), pleuroparenchymal fibroelastosis (10%), interstitial pneumonia with autoimmune features (7%), an idiopathic interstitial pneumonia (4%) and connective tissue disease-related interstitial fibrosis (3%). Discordant interstitial lung disease diagnoses were found in affected individuals from 80% of families. Patients with TERC mutations were diagnosed at an earlier age than those with PARN mutations (51±11 years versus 64±8 years; p=0.03) and had a higher incidence of haematological comorbidities. The mean rate of forced vital capacity decline was 300 mL·year−1 and the median time to death or transplant was 2.87 years. There was no significant difference in time to death or transplant for patients across gene mutation groups or for patients with a diagnosis of IPF versus a non-IPF diagnosis. Genetic mutations in telomere related genes lead to a variety of interstitial lung disease (ILD) diagnoses that are universally progressive. PMID:27540018
Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive.
Newton, Chad A; Batra, Kiran; Torrealba, Jose; Kozlitina, Julia; Glazer, Craig S; Aravena, Carlos; Meyer, Keith; Raghu, Ganesh; Collard, Harold R; Garcia, Christine Kim
2016-12-01
Heterozygous mutations in four telomere-related genes have been linked to pulmonary fibrosis, but little is known about similarities or differences of affected individuals.115 patients with mutations in telomerase reverse transcriptase (TERT) (n=75), telomerase RNA component (TERC) (n=7), regulator of telomere elongation helicase 1 (RTEL1) (n=14) and poly(A)-specific ribonuclease (PARN) (n=19) were identified and clinical data were analysed.Approximately one-half (46%) had a multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF); others had unclassifiable lung fibrosis (20%), chronic hypersensitivity pneumonitis (12%), pleuroparenchymal fibroelastosis (10%), interstitial pneumonia with autoimmune features (7%), an idiopathic interstitial pneumonia (4%) and connective tissue disease-related interstitial fibrosis (3%). Discordant interstitial lung disease diagnoses were found in affected individuals from 80% of families. Patients with TERC mutations were diagnosed at an earlier age than those with PARN mutations (51±11 years versus 64±8 years; p=0.03) and had a higher incidence of haematological comorbidities. The mean rate of forced vital capacity decline was 300 mL·year -1 and the median time to death or transplant was 2.87 years. There was no significant difference in time to death or transplant for patients across gene mutation groups or for patients with a diagnosis of IPF versus a non-IPF diagnosis.Genetic mutations in telomere related genes lead to a variety of interstitial lung disease (ILD) diagnoses that are universally progressive. Copyright ©ERS 2016.
Influence of interstitial Fe to the phase diagram of Fe1+yTe1-xSex single crystals
NASA Astrophysics Data System (ADS)
Sun, Yue; Yamada, Tatsuhiro; Pyon, Sunseng; Tamegai, Tsuyoshi
2016-08-01
Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear (π, 0) in the parent compound FeTe different from the collinear AFM order (π, π) in most iron pnictides. Study of the phase diagram of Fe1+yTe1-xSex is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe1+yTe1-xSex, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature (x-T) phase diagrams for Fe1+yTe1-xSex (0 ≤ x ≤ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for x < 0.05, and bulk SC emerges from x = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe1+yTe1-xSex is found to be similar to the case of the “1111” system such as LaFeAsO1-xFx, and is different from that of the “122” system.
Electronic characterization of defects in narrow gap semiconductors
NASA Technical Reports Server (NTRS)
Patterson, James D.
1994-01-01
We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.
SU-E-T-574: Fessiblity of Using the Calypso System for HDR Interstitial Catheter Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J S; Ma, C
2014-06-01
Purpose: It is always a challenge to reconstruct the interstitial catheter for high dose rate (HDR) brachytherapy on patient CT or MR images. This work aims to investigate the feasibility of using the Calypso system (Varian Medical, CA) for HDR catheter reconstruction utilizing its accuracy on tracking the electromagnetic transponder location. Methods: Experiment was done with a phantom that has a HDR interstitial catheter embedded inside. CT scan with a slice thickness of 1.25 mm was taken for this phantom with two Calypso beacon transponders in the catheter. The two transponders were connected with a wire. The Calypso system wasmore » used to record the beacon transponders’ location in real time when they were gently pulled out with the wire. The initial locations of the beacon transponders were used for registration with the CT image and the detected transponder locations were used for the catheter path reconstruction. The reconstructed catheter path was validated on the CT image. Results: The HDR interstitial catheter was successfully reconstructed based on the transponders’ coordinates recorded by the Calypso system in real time when the transponders were pulled in the catheter. After registration with the CT image, the shape and location of the reconstructed catheter are evaluated against the CT image and the result shows an accuracy of 2 mm anywhere in the Calypso detectable region which is within a 10 cm X 10 cm X 10 cm cubic box for the current system. Conclusion: It is feasible to use the Calypso system for HDR interstitial catheter reconstruction. The obstacle for its clinical usage is the size of the beacon transponder whose diameter is bigger than most of the interstitial catheters used in clinic. Developing smaller transponders and supporting software and hardware for this application is necessary before it can be adopted for clinical use.« less
Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying
2018-05-01
Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
Hesterberg, Stephen G; Duckett, C Cole; Salewski, Elizabeth A; Bell, Susan S
2017-04-01
Identifying and quantifying the relevant properties of habitat structure that mediate predator-prey interactions remains a persistent challenge. Most previous studies investigate effects of structural density on trophic interactions and typically quantify refuge quality using one or two-dimensional metrics. Few consider spatial arrangement of components (i.e., orientation and shape) and often neglect to measure the total three-dimensional (3D) space available as refuge. This study tests whether the three-dimensionality of interstitial space, an attribute produced by the spatial arrangement of oyster (Crassostrea virginica) shells, impacts the foraging success of nektonic predators (primary blue crab, Callinectes sapidus) on mud crab prey (Eurypanopeus depressus) in field and mesocosm experiments. Interstices of 3D-printed shell mimics were manipulated by changing either their orientation (angle) or internal shape (crevice or channel). In both field and mesocosm experiments, under conditions of constant structural density, predator foraging success was influenced by 3D aspects of interstitial space. Proportional survivorship of tethered mud crabs differed significantly as 3D interstitial space varied by orientation, displaying decreasing prey survivorship as angle of orientation increased (0° = 0.76, 22.5° = 0.13, 45° = 0.0). Tethered prey survivorship was high when 3D interstitial space of mimics was modified by internal shape (crevice survivorship = 0.89, channel survivorship = 0.96) and these values did not differ significantly. In mesocosms, foraging success of blue crabs varied with 3D interstitial space as mean proportional survivorship (± SE) of mud crabs was significantly lower in 45° (0.27 ± 0.06) vs. 0° (0.86 ± 0.04) orientations and for crevice (0.52 ± 0.11) vs. channel shapes (0.95 ± 0.02). These results suggest that 3D aspects of interstitial space, which have direct relevance to refuge quality, can strongly influence foraging success in our oyster reef habitat. Our findings highlight the importance of spatial arrangement in mediating consumptive pathways in hard-structured habitats and demonstrate how quantifying the three-dimensionality of living space captures aspects of habitat structure that have been missing from previous empirical studies of trophic interactions and structural complexity. © 2017 by the Ecological Society of America.
Phosphorus-defect interactions during thermal annealing of ion implanted silicon
NASA Astrophysics Data System (ADS)
Keys, Patrick Henry
Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.
Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete
Landrou, Gnanli; Brumaud, Coralie; Winnefeld, Frank; Flatt, Robert J.; Habert, Guillaume
2016-01-01
This paper focuses on the modification of clay properties with inorganic additives to deflocculate and flocculate inorganic soil for the development of a material that would be as easy to use as the current concrete products, but with a much lower environmental impact. Considering that the rheological behaviour of clays is controlled by their surface charge, we first introduce potential determining ions to deflocculate the clay particles and to reduce the yield stress of the earth material. Their efficiency is characterized using zeta potential measurements and rheological tests. We then achieve the flocculation of clay particles by using natural minerals that slowly dissolve in the interstitial liquid and ultimately precipitate calcium silicate hydrate (C–S–H). The precipitation products are identified by X-ray diffraction and the consequences of this delayed precipitation are followed by oscillatory rheometric measurements. Finally, it is suggested that in this process, C–S–H precipitation is not used as a binding vector but as an anti-plasticizer that removes the inorganic dispersant additives. PMID:28773453
Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete.
Landrou, Gnanli; Brumaud, Coralie; Winnefeld, Frank; Flatt, Robert J; Habert, Guillaume
2016-04-29
This paper focuses on the modification of clay properties with inorganic additives to deflocculate and flocculate inorganic soil for the development of a material that would be as easy to use as the current concrete products, but with a much lower environmental impact. Considering that the rheological behaviour of clays is controlled by their surface charge, we first introduce potential determining ions to deflocculate the clay particles and to reduce the yield stress of the earth material. Their efficiency is characterized using zeta potential measurements and rheological tests. We then achieve the flocculation of clay particles by using natural minerals that slowly dissolve in the interstitial liquid and ultimately precipitate calcium silicate hydrate (C-S-H). The precipitation products are identified by X-ray diffraction and the consequences of this delayed precipitation are followed by oscillatory rheometric measurements. Finally, it is suggested that in this process, C-S-H precipitation is not used as a binding vector but as an anti-plasticizer that removes the inorganic dispersant additives.
Modeling of an initial stage of bone fracture healing
NASA Astrophysics Data System (ADS)
Lu, Yanfei; Lekszycki, Tomasz
2015-09-01
In case of the secondary bone fracture healing, four characteristic steps are often distinguished. The first stage, hematoma and clot formation, which is an object of our study, is important because it prepares the environment for the following stages. In this work, a new mathematical model describing basic effects present short after the injury is proposed. The main idea is based on the assumption that blood leaking from the ruptured blood vessels propagates into a poroelastic saturated tissue close to the fracture and mixes with the interstitial liquid present in pores. After certain time period from the first contact with surrounding tissue, the solidification of blood in the fluid mixture starts. This results in clot formation. By assuming the time necessary to initiate solidification and critical saturation of blood in the mixture, the shape and the structure of blood clot could be determined. In numerical example, proposed mathematical formulas were used to study the size of the gap between fractured parts and its effect in blood clot formation.
Extended and Point Defects in Diamond Studied with the Aid of Various Forms of Microscopy.
Steeds; Charles; Gilmore; Butler
2000-07-01
It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.
ERIC Educational Resources Information Center
Phillippo, Kate L.; Blosser, Allison
2013-01-01
This article analyzes school social work's history to provide perspective on current dilemmas in social work practice and research. The authors use interstitial emergence theory, which holds that practices from overlapping fields (like social work and K-12 education) can develop into new fields, as an analytic framework. This perspective extends…
Genthner, Fred J., Joseph B. James, Diane F. Yates and Stephanie D. Friedman. Submitted. Use of Composite Data Sets for Source-Tracking Enterococci in the Water Column and Shoreline Interstitial Waters on Pensacola Beach Florida. Mar. Pollut. Bull. 33 p. (ERL,GB 1212).
So...
Periodic Landau-Zener problem in long-range migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oksengendler, B. L.; Turaeva, N. N.
From studies of radiation effects in semiconductors at low temperatures, it is known that an interstitial atom migrates over a distance of up to 1000 A (Watkins effect). The interpretation of this effect is based on the inversion of potential energy curves of an interstitial atom in semiconductors when it changes its charge. At low temperatures, a cascade of radiationless transitions can occur between the ground and excited states of a relocalized electron, which leads to the coherent tunneling of the interstitial atom through the lattice. The description of this effect using the scattering matrix S leads to the dispersionmore » law and to an equation for the effective mass of such a quasiparticle called an inversion.« less
Chronic pulmonary interstitial fibrosis in a blue-fronted Amazon parrot (Amazona aestiva aestiva).
Amann, Olga; Kik, Marja J L; Passon-Vastenburg, Maartje H A C; Westerhof, Ineke; Lumeij, Johannes T; Schoemaker, Nico J
2007-03-01
A 30-yr-old blue-fronted Amazon parrot (Amazon aestiva aestiva) was presented to the clinic with a history of sneezing more often during the last 2 mo. Physical examination revealed only a mild nasal discharge. Complete hematologic and plasma biochemical examination showed no abnormalities. Computerized tomography (CT) of the complete bird showed generalized lung alterations consistent with lung fibrosis. Two lung biopsies were taken. The results of the histologic examination of the biopsies confirmed the tentative CT diagnosis of pulmonary interstitial fibrosis. To our knowledge this is the first reported case of chronic pulmonary interstitial fibrosis diagnosed by means of a lung biopsy in an avian species. The histologic characteristics are discussed and compared with those of human idiopathic pulmonary fibrosis.
The rope sign: a case of interstitial granulomatous dermatitis with arthritis.
Savoia, Francesco; Stinchi, Caterina; Gaddoni, Giuseppe; Patrizi, Annalisa; Odorici, Giulia; Tengattini, Vera; Cataleta, Pierluigi; Zago, Silvia
2016-02-01
Interstitial granulomatous dermatitis with arthritis (IGDA), also known as Ackerman's syndrome, is a rare cutaneous disease classically characterized by the triad of cutaneous cords, a typical histologic infiltrate mainly constituted by histiocytes and arthritis/connective tissue disease. Here we report the case of IGDA with the typical clinical and histological features in a patient affected by lupus erythematosus. In this article we underline that IGDA may have a variety of different clinical and histological features. The rope sign is typical but infrequent, while histology is usually characteristic and shows a dermal inflammatory infiltrate, with a predominance of histiocytes, localized interstitially and in a palisaded array between collagen fibres, that show signs of degeneration. Clinical and histological differential diagnoses are discussed.
NASA Astrophysics Data System (ADS)
Li, Dachao; Xu, Qingmei; Liu, Yu; Wang, Ridong; Xu, Kexin; Yu, Haixia
2017-11-01
A high-accuracy microdialysis method that can provide the reference values of glucose concentration in interstitial fluid for the accurate evaluation of non-invasive and minimally invasive continuous glucose monitoring is reported in this study. The parameters of the microdialysis process were firstly optimized by testing and analyzing three main factors that impact microdialysis recovery, including the perfusion rate, temperature, and glucose concentration in the area surrounding the microdialysis probe. The precision of the optimized microdialysis method was then determined in a simulation system that was designed and established in this study to simulate variations in continuous glucose concentration in the human body. Finally, the microdialysis method was tested for in vivo interstitial glucose concentration measurement.
Possible cage motion of interstitial Fe in α-Al 2 O 3
NASA Astrophysics Data System (ADS)
Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Mantovan, R.; Mølholt, T. E.; Bharuth-Ram, K.; Gislason, H. P.; Langouche, G.; Madsen, M. B.; Naidoo, D.; Ólafsson, S.; Weyer, G.
2013-04-01
In addition to spectral components due to Fe2 + and Fe3 + , a single line is observed in emission Mössbauer spectra following low fluence (<1015 cm - 2) implantation of 57Fe*, 57Mn and 57Co in α-Al2O3. For the 57Co and 57Mn implantations, the intensity of the single line is found to depend on the emission angle relative to the crystal symmetry axis. This angular dependence can be explained by a non-isotropic f-factor and/or motion of the Fe ion between sites in an interstitial cage. It is argued that interstitial cage motion is a more likely explanation, as this can account for the lack of quadrupole splitting of the line.
NASA Astrophysics Data System (ADS)
de Jager, Arjan A.; van Trier, Bart N.; Veenendaal, Liesbeth M.; van Hillegersberg, Richard; Verdaasdonk, Rudolf M.
2005-04-01
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Surgical treatments, including hepatic resection and liver transplantation are considered as the most effective treatment of HCC. However, less than 20% of HCC patients can be treated surgically because of: multi-focal diseases, proximity of tumor to key vascular or biliary structures and inadequate functional hepatic reserve related coexistent cirrhosis. In this unfortunate groups of patients various palliative treatments modalities are being performed to extend the time of survival and quality of life. These techniques include trans-catheter arterial chemoembolization (TACE), percutaneous ethanol injection (PEI) and Interstitial Thermal Therapy: laser-induced interstitial thermotherapy (LITT) and radio-frequency ablation (RFA).
NASA Astrophysics Data System (ADS)
O'Driscoll, B.; Daly, J. S.; Emeleus, C. H.; Donaldson, C. H.
2007-12-01
Laterally extensive (~2 mm thick) chrome-spinel seams in the Rum Layered Suite, NW Scotland, occur at the junctions of several of the coupled peridotite-troctolite macro-rhythmic units that make up the bulk of the eastern part of the intrusion. A detailed petrographic study of the rocks immediately above and below two of these seams suggests that existing models for seam formation involving early crystallisation and gravitational settling of chrome-spinel crystals from a newly emplaced body of picritic magma may be flawed. Instead, the textural relationships between minerals suggest that olivine crystallisation in the peridotite above each of the seams occurred before that of most of the chrome-spinel. Reaction textures between olivine and chrome-spinel crystals are commonly observed, with plagioclase usually occurring as thin rims between both olivine and chrome-spinel where both are in close proximity. The textural evidence suggests a significant degree of olivine crystal-shape change; it seems that many of the olivine crystals immediately above the main seams may initially have had much more complex (harrisitic) crystal shapes before modification to simpler morphologies in a crystal mush. Plagioclase occurs in the peridotite as large oikocrysts up to several cm in size. Additionally, the chrome-spinel seams occur only in those units that display extensive evidence of syn-magmatic deformation of unconsolidated cumulate in the underlying troctolite, and the seams themselves often exhibit small-scale load structures. A model suggesting in-situ crystallisation of the chrome-spinel seams is proposed, whereby mixing of an evolved interstitial liquid with a primitive picritic melt occurred approximately at the crystal mush-magma interface. The former was released from the unconsolidated troctolite mush as a response to re-mobilization and chaotic slumping, possibly triggered by emplacement of some of the hot picrite into the crystal mush pile. Significant undercooling in the picrite due to emplacement-related cooling had already produced a crystal framework comprising complex skeletal olivine crystal morphologies with very fast growth rates. It is envisaged that the significantly modified olivine textures in the peridotite immediately above both seams can be attributed to upward- moving porosity waves of the same 'mixed' interstitial melt that precipitated the chrome-spinel seams. In addition to formation of the seams at the main unit junctions, 'necklace' or 'chain-like' distributions of chrome-spinel crystals around olivine crystals in the peridotite, as well as the large plagioclase oikocrysts, argue for the presence of a mobile interstitial melt with a protracted cooling history.
Brophy, J.G.; Dorais, M.J.; Donnelly-Nolan, J.; Singer, B.S.
1997-01-01
The rhyolite of Little Glass Mountain (73-74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54-61% SiO2) and partially crystalline cumulate hornblende gabbro (53-55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54-61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide??olivine, +/-orthopyroxene, +/-hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53-55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70-74% SiO2). The gabbros record a two-stage crystallization history of plagioclase + olivine + augite (Stage I) followed by plagioclase+orthopyroxene + hornblende + Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30, K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.
The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers
NASA Astrophysics Data System (ADS)
Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina
2017-02-01
Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.
dos Santos, G.C.; Parra, E.R.; Stegun, F.W.; Cirqueira, C.S.; Capelozzi, V.L.
2013-01-01
Idiopathic interstitial pneumonias include complex diseases that have a strong interaction between genetic makeup and environmental factors. However, in many cases, no infectious agent can be demonstrated, and these clinical diseases rapidly progress to death. Theoretically, idiopathic interstitial pneumonias could be caused by the Epstein-Barr virus, cytomegalovirus, adenovirus, hepatitis C virus, respiratory syncytial virus, and herpesvirus, which may be present in such small amounts or such configuration that routine histopathological analysis or viral culture techniques cannot detect them. To test the hypothesis that immunohistochemistry provides more accurate results than the mere histological demonstration of viral inclusions, this method was applied to 37 open lung biopsies obtained from patients with idiopathic interstitial pneumonias. As a result, immunohistochemistry detected measles virus and cytomegalovirus in diffuse alveolar damage-related histological patterns of acute exacerbation of idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia in 38 and 10% of the cases, respectively. Alveolar epithelium infection by cytomegalovirus was observed in 25% of organizing pneumonia patterns. These findings were coincident with nuclear cytopathic effects but without demonstration of cytomegalovirus inclusions. These data indicate that diffuse alveolar damage-related cytomegalovirus or measles virus infections enhance lung injury, and a direct involvement of these viruses in diffuse alveolar damage-related histological patterns is likely. Immunohistochemistry was more sensitive than the histological demonstration of cytomegalovirus or measles virus inclusions. We concluded that all patients with diffuse alveolar damage-related histological patterns should be investigated for cytomegalovirus and measles virus using sensitive immunohistochemistry in conjunction with routine procedures. PMID:24270907
Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.
2012-01-01
Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508
Interstitial flow influences direction of tumor cell migration through competing mechanisms
Polacheck, William J.; Charest, Joseph L.; Kamm, Roger D.
2011-01-01
Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526–538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease. PMID:21690404
Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim
2017-06-01
Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.
Mueller-Lisse, U G; Thoma, M; Faber, S; Heuck, A F; Muschter, R; Schneede, P; Weninger, E; Hofstetter, A G; Reiser, M F
1999-02-01
To determine if hypointense lesions clearly outline on T2-weighted fast spin-echo (SE) magnetic resonance (MR) images obtained during coagulative interstitial laser-induced thermotherapy (LITT) of a prostate with benign hyperplasia. In six patients with benign prostatic hyperplasia (BPH), 12 LITT treatments were followed online with repetitive axial T2-weighted fast SE imaging (repetition time, 3,700 msec; echo time, 138 msec; acquisition time, 19 seconds). Development, time course, correlation with interstitial tissue temperature, and diameters of hypointense lesions around the laser diffusor tip were investigated. Lesion diameters on T2-weighted images acquired during LITT were compared with diameters of final lesions on T2-weighted images and unperfused lesions on enhanced T1-weighted SE images obtained at the end of therapy. Hypointense lesions developed within 20-40 seconds of LITT. Average correlation coefficients between interstitial temperature development and signal intensity development were 0.92 during LITT and 0.90 after LITT. Regression slopes were significantly steeper during LITT (0.67% signal intensity change per degree Celsius) than after LITT (0.47% per degree Celsius; P = .038). Lesions remained visible after LITT for all procedures. Average maximum diameters of lesions were 1-3 mm larger during LITT than after LITT (P = .0006-.019). Repetitive T2-weighted fast SE MR imaging during interstitial coagulative LITT of BPH demonstrates the development of permanent hypointense prostate lesions. However, posttherapeutic lesion diameters tend to be overestimated during LITT.
NASA Astrophysics Data System (ADS)
DSouza, Alisha V.; Marra, Kayla; Gunn, Jason R.; Samkoe, Kimberley S.; Pogue, Brian W.
2016-10-01
Lymphatic uptake of interstitially administered agents occurs by passive convective-diffusive inflow driven by interstitial concentration and pressure, while the downstream lymphatic transport is facilitated by active propulsive contractions of lymphatic vessel walls. Near-infrared fluorescence imaging in mice was used to measure these central components of lymphatic transport for the first time, using two different-sized molecules-methylene blue (MB) and fluorescence-labeled antibody immunoglobulin G (IgG)-IRDye 680RD. This work confirms the hypothesis that lymphatic passive inflow and active propulsion rates can be separated based upon the relative differences in Stokes-Einstein diffusion coefficient. This coefficient specifically affects the passive-diffusive uptake when the interstitial volume and pressure are constant. Parameters such as mean time-to-peak signal, overall fluorescence signal intensities, and number of active peristaltic pulses, were estimated from temporal imaging data. While the mean time to attain peak signal representative of diffusion-dominated flow in the lymph vessels was 0.6±0.2 min for MB and 8±6 min for IgG, showing a size dependence, the active propulsion rates were 3.4±0.8 pulses/min and 3.3±0.5 pulses/min, respectively, appearing size independent. The propulsion rates for both dyes decreased with clearance from the interstitial injection-site, indicating intrinsic control of the smooth muscles in response to interstitial pressure. This approach to size-comparative agent flow imaging of lymphatic function can enable noninvasive characterization of diseases related to uptake and flow in lymph networks.
Araki, Tetsuro; Nishino, Mizuki; Zazueta, Oscar E.; Gao, Wei; Dupuis, Josée; Okajima, Yuka; Latourelle, Jeanne C.; Rosas, Ivan O.; Murakami, Takamichi; O’Connor, George T.; Washko, George R.; Hunninghake, Gary M.; Hatabu, Hiroto
2015-01-01
Objective To investigate the prevalence and distribution of paraseptal emphysema on chest CT images in the Framingham Heart Study (FHS) population, and assess its impact on pulmonary function. Also pursued was the association with interstitial lung abnormalities. Materials and Methods We assessed 2633 participants in the FHS for paraseptal emphysema on chest CT. Characteristics of participants, including age, sex, smoking status, clinical symptoms, and results of pulmonary function tests, were compared between those with and without paraseptal emphysema. The association between paraseptal emphysema and interstitial lung abnormalities was investigated. Results Of the 2633 participants, 86 (3%) had pure paraseptal emphysema (defined as paraseptal emphysema with no other subtypes of emphysema other than paraseptal emphysema or a very few centrilobular emphysema involved) in at least one lung zone. The upper zone of the lungs was almost always involved. Compared to the participants without paraseptal emphysema, those with pure paraseptal emphysema were significantly older, and were more frequently male and smokers (mean 64 years, 71% male, mean 36 pack-years, p<0.001) and had significantly decreased FEV1/FVC% (p=0.002), and diffusion capacity of carbon monoxide (DLCO) (p=0.002). There was a significant association between pure paraseptal emphysema and interstitial lung abnormalities (p<0.001). Conclusions The prevalence of pure paraseptal emphysema was 3% in the FHS population, predominantly affects the upper lung zone, and contributes to decreased pulmonary function. Cigarette smoking, aging, and male gender were the factors associated with the presence of paraseptal emphysema. Significant association between paraseptal emphysema and interstitial lung abnormalities was observed. PMID:25868675
Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon
NASA Astrophysics Data System (ADS)
Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter
2015-09-01
The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.
Arcadu, Antonella; Byrne, Suzanne C; Pirina, Pietro; Hartman, Thomas E; Bartholmai, Brian J; Moua, Teng
2017-08-01
Little is known about presenting 'inconsistent' or 'possible' usual interstitial pneumonia (UIP) computed tomography (CT) patterns advancing to 'consistent' UIP as disease progresses in idiopathic pulmonary fibrosis (IPF). We hypothesized that if 'consistent' UIP represented more advanced disease, such a pattern on presentation should also correlate with more severe pulmonary function test (PFT) abnormalities. Consecutive IPF patients (2005-2013) diagnosed by international criteria with baseline PFT and CT were included. Presenting CTs were assessed by three expert radiologists for consensus UIP pattern ('consistent', 'possible', and 'inconsistent'). Approximation of individual and combined interstitial abnormalities was also performed with correlation of interstitial abnormalities and UIP CT pattern made with PFT findings and survival. Three-hundred and fifty patients (70% male) were included with a mean age of 68.3 years. Mean percent predicted forced vital capacity (FVC%) and diffusion capacity (DLCO%) was 64% and 45.5% respectively. Older age and male gender correlated more with 'consistent' UIP CT pattern. FVC% was not associated with any UIP pattern but did correlate with total volume of radiologist assessed interstitial abnormalities. DLCO% was lower in those with 'consistent' UIP pattern. A 'consistent' UIP CT pattern was also not independently predictive of survival after correction for age, gender, FVC%, and DLCO%. PFT findings appear to correlate with extent of radiologic disease but not specific morphologic patterns. Whether such UIP patterns represent different stages of disease severity or radiologic progression is not supported by coinciding pulmonary function decline. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice. PMID:26727725
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon.The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers,but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice.
NASA Astrophysics Data System (ADS)
Uno, Yuko; Ogawa, Emiyu; Aiyoshi, Eitaro; Arai, Tsunenori
2018-02-01
We constructed the 3-compartment talaporfin sodium pharmacokinetic model for canine by an optimization using the fluorescence measurement data from canine skin to estimate the concentration in the interstitial space. It is difficult to construct the 3-compartment model consisted of plasma, interstitial space, and cell because there is a lack of the dynamic information. Therefore, we proposed the methodology to construct the 3-compartment model using the measured talaporfin sodium skin fluorescence change considering originated tissue part by a histological observation. In a canine animal experiment, the talaporfin sodium concentration time history in plasma was measured by a spectrophotometer with a prepared calibration curve. The time history of talaporfin sodium Q-band fluorescence on left femoral skin of a beagle dog excited by talaporfin sodium Soret-band of 409 nm was measured in vivo by our previously constructed measurement system. The measured skin fluorescence was classified to its source, that is, specific ratio of plasma, interstitial space, and cell. We represented differential rate equations of the talaporfin sodium concentration in plasma, interstitial space, cell. The specific ratios and a converting constant to obtain absolute value of skin concentration were arranged. Minimizing the squared error of the difference between the measured fluorescence data and calculated concentration by the conjugate gradient method in MATLAB, the rate constants in the 3-compartment model were determined. The accuracy of the fitting operation was confirmed with determination coefficient of 0.98. We could construct the 3-compartment pharmacokinetic model for canine using the measured talaporfin sodium fluorescence change from canine skin.
Overview of the cellular and molecular basis of kidney fibrosis
Eddy, Allison A
2014-01-01
The common pathogenetic pathway of progressive injury in patients with chronic kidney disease (CKD) is epitomized as normal kidney parenchymal destruction due to scarring (fibrosis). Understanding the fundamental pathways that lead to renal fibrosis is essential in order to develop better therapeutic options for human CKD. Although complex, four cellular responses are pivotal. (1) An interstitial inflammatory response that has multiple consequences—some harmful and others healing. (2) The appearance of a unique interstitial cell population of myofibroblasts, primarily derived from kidney stromal cells (fibroblasts and pericytes), that are the primary source of the various extracellular matrix proteins that form interstitial scars. (3) Tubular epithelial cells that have variable and time-dependent roles as early responders to injury and later as victims of fibrosis due to the loss of their regenerative abilities. (4) Loss of interstitial capillary integrity that compromises oxygen delivery and leads to a vicious cascade of hypoxia–oxidant stress that accentuates injury and fibrosis. In the absence of adequate angiogenic responses, a healthy interstitial capillary network is not maintained. The fibrotic ‘scar' that typifies CKD is an interesting consortium of multifunctional macromolecules that not only change in composition and structure over time, but can be degraded via extracellular and intracellular proteases. Although transforming growth factor beta appears to be the primary driver of kidney fibrosis, a vast array of additional molecules may have modulating roles. The importance of genetic and epigenetic factors is increasingly appreciated. An intriguing but incompletely understood cardiorenal syndrome underlies the high morbidity and mortality rates that develop in association with progressive kidney fibrosis. PMID:25401038
NASA Technical Reports Server (NTRS)
Jacobi, N.; Zmuidzinas, J. S.
1974-01-01
A formalism was developed for temperature-dependent, self-consistent phonons in quantum solids with defects. Lattice vacancies and interstitials in solid helium and metallic hydrogen, as well as electronic excitations in solid helium, were treated as defects that modify properties of these systems. The information to be gained from the modified phonon spectrum is discussed.
Severe interstitial pneumonia due to murine typhus in a patient returning from Bali.
Malheiro, Luís; Ceia, Filipa; Alves, João; Carvalho, Ana Cláudia; Sobrinho-Simões, Joana; Sousa, Rita; Sarmento, António; Santos, Lurdes
2017-01-01
Murine typhus has been increasingly reported as a cause of fever in returning travelers from Southeast Asia. We report a case of a previously healthy traveler returning from Bali with an non-specific febrile illness which quickly progressed to a severe form of interstitial pneumonia. After a careful epidemiological evaluation and laboratory analysis, murine typhus was diagnosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticho, B.H.; Perez-Tamayo, C.; Konnak, J.W.
1988-06-01
We report a case of primary squamous cell carcinoma of the distal male urethra with a single inguinal node metastasis. Treatment consisted of unilateral pelvic and inguinal lymphadenectomy, and a combined course of external beam and interstitial radiation therapy to the distal urethra and penis by the Henschke modification of the Paris technique.
Characterization of the Chicken Ovarian Cancer Model
2005-08-01
Typical staining of tumor in an area of stromal hyperplasia . Figure 5. Adenocarcinoma, Ovary, Chicken, Her2/neu. Intense staining of tumor cells in...variable amounts of interstitial fibrovascular tissue and/or smooth muscle bundles, which accounted for their scirrhous nature grossly. 22...Figure 25). Figure 25. Peritoneum, Adenocarcinoma. Interstitial fibrovascular tissue and/or smooth muscle bundles account for the scirrhous
Meng, J; Zhang, J; Zhuang, Q-W; Wang, X; Li, Z-P; Gu, Q-P
2014-10-01
To investigate the efficacy as well as the complications involved in the use of interstitial Iodine-125 implantation for the treatment of oral cavity and maxillofacial carcinomas. Fifteen patients with oral cavity and maxillofacial carcinomas received treatment planning system (TPS)-guided interstitial Iodine-125 implantation. The apparent activity per particle ranged from 0.6 mCi (2.22MBq) to 0.7 mCi (2.59MBq). The matched peripheral dose delivered by radioactive seeds ranged from 90 to 120 Gy. The efficacy of the treatment and the postoperative complications were evaluated during follow-up. The seeds were implanted successfully in all 15 patients and median number of seeds implanted was 36.53. CT scans were performed in all patients at 1-6 months postoperatively. During follow-up at 6-27 months, seed migration occurred and a good local tumor control was achieved with an overall response of 86.7%. No severe side effects were observed. TPS-guided interstitial Iodine-125 implantation is an effective and safe procedure with minimal invasiveness for the treatment of oral cavity and maxillofacial carcinomas, and it effectively prevents the recurrence of cancer and short-term lymphatic metastasis.
Plasek, Jiri; Dvorackova, Jana; Jahoda, Jan; Trulikova, Kristina; Mokosova, Radka; Danek, Tomas; Hrabovsky, Vladimir; Martinek, Arnost
2011-12-01
Acute interstitial pneumonia is characterized by rapid progressive dyspnoea degenerating into respiratory failure requiring mechanical ventilation. Acute interstitial pneumonia (AIP) and idiopathic pulmonary fibrosis (IPF) are separate clinic/pathological entities although overlap may be present. It is well-known that patients with IPF have increased risk of lung carcinoma; Adenocarcinoma in connection with IPF is less common. Moreover the subtype of adenocarcinoma, diffuse bronchoalveolar carcinoma has not yet been described. We report the case of 45 yr old former hockey player with increased bilateral reticular shadowing on chest radiograph, dyspnoea, velcro-like crackles, restrictive respiratory disease and mixed high-resolution computed tomography finding. During brief in-patient treatment the patient developed acute respiratory failure accompanied by multiorgan failure and disseminated coagulopathy. Deterioration of the microcirculation was followed by loss of peripheral vascular resistance, which was irreversible even with normalization of the blood gases achieved by extracorporeal membrane oxygenation. At autopsy, bronchoalveolar carcinoma in usual interstitial pneumonia (UIP) combined with areas of alveolar damage with hyaline membranes was found. This case alerts clinicians to unusual idiopathic pulmonary fibrosis manifestations and its complications. Close collaboration between clinicians, pathologists and laboratory physicians is highly recommended for early diagnosis and appropriate treatment.
Interstitial loop transformations in FeCr
Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...
2015-03-27
Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientationmore » depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.« less
Barrier Coatings for Refractory Metals and Superalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
SM Sabol; BT Randall; JD Edington
2006-02-23
In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements.more » Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.« less
Ryan, Patrick H; Dihle, Mark; Griffin, Susan; Partridge, Charles; Hilbert, Timothy J; Taylor, Richard; Adjei, Stephen; Lockey, James E
2011-08-01
To determine the rate of chest radiographic abnormalities among residents of North Dakota potentially exposed to road gravel containing the fibrous mineral erionite. Participants (n = 34) completed a questionnaire, chest radiograph, and high resolution computed tomography scan to assess the rate of interstitial and pleural changes consistent with fibrous mineral exposure. Interstitial, pleural, or both changes typically associated with asbestos exposure were observed by high resolution computed tomography in seven (21%) individuals. The primary exposure pathway for six of these was from gravel pits, road maintenance, or both. Three participants (8.8%) demonstrated bilateral localized pleural changes with calcification; two of these also had accompanying interstitial changes. All three reported extensive work in gravel pits, road maintenance, or both. These results indicate that occupational exposure to erionite contained within road gravel in the United States represents a potential health hazard. This study identifies chest radiographic changes among residents of North Dakota occupationally exposed to road gravel containing erionite. Public health officials and physicians in affected areas should be aware of the potential health effects of erionite exposure. Precautionary measures should be taken to limit occupational exposure to gravel containing erionite.
Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation
NASA Astrophysics Data System (ADS)
Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.
2012-03-01
Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.
Canisso, I F; Coffee, L L; Ortved, K; Fubini, S L; Monteagudo, L V; Schlafer, D H; Gilbert, R O
2014-12-01
An 8-year-old, mixed breed, polled goat was presented for evaluation of male-like behaviour. Clinical findings included clitoromegaly, a heavily muscled neck, pronounced beard, and erect dorsal guard hairs, which are phenotypic characteristics commonly observed in intersex animals. Transrectal ultrasonography revealed the presence of two abdominal masses caudolateral to the uterine horns. Serum concentration of estradiol was elevated. Genetic evaluation was compatible with polled intersex syndrome defined by an XX karyotype without a Y chromosome or SRY gene. Based on gross and histologic evaluation, the abdominal masses were determined to be intra-abdominal testes, each of which was effaced by Sertoli cell and interstitial (Leydig) cell tumours. The Sertoli cell tumours (SCTs) represented two unique histologic patterns. Regardless of pattern, neoplastic Sertoli cells were consistently lipid laden and positive for vimentin. Interstitial cell tumours (ICTs) were negative for vimentin. Clinical and histopathologic findings suggest that prolonged exposure to steroids secreted by neoplastic Sertoli cells contributed to virilization. In addition, results from immunohistochemistry indicated that vimentin may be a valuable immunodiagnostic tool for differentiation between interstitial and Sertoli cell tumours in goats. © 2014 Blackwell Verlag GmbH.
Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes
Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo
2016-01-01
One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479
Histological evolution of pleuroparenchymal fibroelastosis
Hirota, Takako; Yoshida, Yuji; Kitasato, Yasuhiko; Yoshimi, Michihiro; Koga, Takaomi; Tsuruta, Nobuko; Minami, Masato; Harada, Taishi; Ishii, Hiroshi; Fujita, Masaki; Nabeshima, Kazuki; Nagata, Nobuhiko; Watanabe, Kentaro
2015-01-01
Aims To investigate the histological evolution in the development of pleuroparenchymal fibroelastosis (PPFE). Methods and results We examined four patients who had undergone surgical lung biopsy twice, or who had undergone surgical lung biopsy and had been autopsied, and in whom the histological diagnosis of the first biopsy was not PPFE, but the diagnosis of the second biopsy or of the autopsy was PPFE. The histological patterns of the first biopsy were cellular and fibrotic interstitial pneumonia, cellular interstitial pneumonia (CIP) with organizing pneumonia, CIP with granulomas and acute lung injury in cases 1, 2, 3, and 4, respectively. Septal elastosis was already present in the non-specific interstitial pneumonia-like histology of case 1, but a few additional years were necessary to reach consolidated subpleural fibroelastosis. In case 3, subpleural fibroelastosis was already present in the first biopsy, but only to a small extent. Twelve years later, it was replaced by a long band of fibroelastosis. The septal inflammation and fibrosis and airspace organization observed in the first biopsies were replaced by less cellular subpleural fibroelastosis within 3–12 years. Conclusions Interstitial inflammation or acute lung injury may be an initial step in the development of PPFE. PMID:25234959
Yamamoto, Yuzo; Okamoto, Isamu; Otsubo, Kohei; Iwama, Eiji; Hamada, Naoki; Harada, Taishi; Takayama, Koichi; Nakanishi, Yoichi
2015-10-01
Alectinib, the second generation anaplastic lymphoma kinase (ALK) inhibitor, has significant potency in patients with ALK rearrangement positive non-small cell lung cancer (NSCLC), and its toxicity is generally well tolerable. We report a patient who developed severe acute interstitial lung disease after alectinib treatment. An 86-year-old woman with stage IV lung adenocarcinoma positive for rearrangement of ALK gene was treated with alectinib. On the 215th day after initiation of alectinib administration, she was admitted to our hospital with the symptom of progressive dyspnea. Computed tomography (CT) revealed diffuse ground glass opacities and consolidations in both lungs, and analysis of bronchoalveolar lavage fluid revealed pronounced lymphocytosis. There was no evidence of infection or other specific causes of her condition, and she was therefore diagnosed with interstitial lung disease induced by alectinib. Her CT findings and respiratory condition improved after steroid pulse therapy. As far as we are aware, this is the first reported case of alectinib-induced severe interstitial lung disease (ILD). We should be aware of the possibility of such a severe adverse event and should therefore carefully monitor patients treated with this drug.
Interstitial micelles in binary blends of A B A triblock copolymers and homopolymers
NASA Astrophysics Data System (ADS)
Wołoszczuk, S.; Banaszak, M.
2018-01-01
We investigate triblock-homopolymer blends of types A1BA2/A and A1BA2/B, using a lattice Monte Carlo method. While the simulated triblock chains are compositionally symmetric in terms of the A-to-B volume ratio, the A1 block is significantly shorter than the A2 block. For the pure A1BA2 melt and the A1BA2 solutions in selective solvent the phase behavior is relatively well known, including existence and stability of the interstitial micelles which were discovered in previous Monte Carlo simulations. In this paper we study the stability of the interstitial micelles as a function of triblock volume fraction in selective homopolymers of either type A or type B, using two significantly different homopolymer chain lengths. We found that adding selective homopolymer of type A shifts the stability of the interstitial micelles into significantly higher temperatures. We also obtained, via self-assembly, intriguing new nanostructures which can be identified as ordered truncated octahedra. Finally, we established that the phase behavior of the triblock-homopolymer blends depends relatively weakly on the chain length of the added homopolymer.
Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production
2014-01-01
Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728
Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance
NASA Technical Reports Server (NTRS)
Kennedy, T. A.; Spencer, M. G.
1986-01-01
A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.
Gupta, Pawan; Dash, Devijyoti; Mittal, Richa; Chhabra, Sunil K
2017-05-01
The combined pulmonary fibrosis and emphysema (CPFE) syndrome is a unique and an under-recognized disorder characterized by emphysema in the upper lobes and interstitial fibrosis in the lower lobes of the lung. It occurs predominantly in males and almost exclusively in smokers. This rare combination of a restrictive and an obstructive mechanical defect carries a poorer prognosis than either of the two components. We present a case of CPFE syndrome in a non-smoker female patient who developed lower lobe emphysema subsequent to development of interstitial fibrosis. The case was remarkable for the extreme rarity of several presenting features, namely, a lower lobe occurrence of emphysema subsequent to pre-existent interstitial fibrosis, female gender and absence of a history of smoking. © 2015 John Wiley & Sons Ltd.