Environmental controls on drainage behavior of an ephemeral stream
Blasch, K.W.; Ferré, T.P.A.; Vrugt, J.A.
2010-01-01
Streambed drainage was measured at the cessation of 26 ephemeral streamflow events in Rillito Creek, Tucson, Arizona from August 2000 to June 2002 using buried time domain reflectometry (TDR) probes. An unusual drainage response was identified, which was characterized by sharp drainage from saturation to near field capacity at each depth with an increased delay between depths. We simulated the drainage response using a variably saturated numerical flow model representing a two-layer system with a high permeability layer overlying a lower permeability layer. Both the observed data and the numerical simulation show a strong correlation between the drainage velocity and the temperature of the stream water. A linear combination of temperature and the no-flow period preceding flow explained about 90% of the measured variations in drainage velocity. Evaluation of this correlative relationship with the one-dimensional numerical flow model showed that the observed temperature fluctuations could not reproduce the magnitude of variation in the observed drainage velocity. Instead, the model results indicated that flow duration exerts the most control on drainage velocity, with the drainage velocity decreasing nonlinearly with increasing flow duration. These findings suggest flow duration is a primary control of water availability for plant uptake in near surface sediments of an ephemeral stream, an important finding for estimating the ecological risk of natural or engineered changes to streamflow patterns. Correlative analyses of soil moisture data, although easy and widely used, can result in erroneous conclusions of hydrologic cause—effect relationships, and demonstrating the need for joint physically-based numerical modeling and data synthesis for hypothesis testing to support quantitative risk analysis.
The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao
2018-01-01
Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.
Yi, C.; Monson, Russell K.; Zhai, Z.; Anderson, D.E.; Lamb, B.; Allwine, G.; Turnipseed, A.A.; Burns, Sean P.
2005-01-01
The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Yi, Chuixiang; Monson, Russell K.; Zhai, Zhiqiang; Anderson, Dean E.; Lamb, Brian; Allwine, Gene; Turnipseed, Andrew A.; Burns, Sean P.
2005-11-01
The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.
The Soil Foam Drainage Equation - an alternative model for unsaturated flow in porous media
NASA Astrophysics Data System (ADS)
Assouline, Shmuel; Lehmann, Peter; Hoogland, Frouke; Or, Dani
2017-04-01
The analogy between the geometry and dynamics of wet foam drainage and gravity drainage of unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation - SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. Potential advantages of the proposed drainage foam formalism include direct description of transient flow without requiring constitutive functions; evolution of capillary cross sections that provides consistent description of self-regulating internal fluxes (e.g., towards field capacity); and a more intuitive geometrical picture of capillary flow across textural boundaries. We will present new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions that are in good agreement with the numerical solution of the SFDE and experimental results. The foam drainage methodology expands the range of tools available for describing and quantifying unsaturated flows and provides geometrically tractable links between evolution of liquid configuration and flow dynamics in unsaturated porous media. The resulting geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.
Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine
Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander
2007-01-01
Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows from the smaller (less than 5 square miles) drainage basins and underpredict peak flows from larger drainage basins. The results of this study are consistent with the most comprehensive analysis of observed and modeled peak streamflows in the United States, which analyzed statistical peak flows from 70 drainage basins in the Midwest and the Northwest.
NASA Astrophysics Data System (ADS)
Nyman, Petter; Sherwin, Christopher; Sheridan, Gary; Lane, Patrick
2015-04-01
This study uses aerial imagery and field surveys to develop a statistical model for determining debris flow susceptibility in a landscape with variable terrain, soil and vegetation properties. A measure of landscape scale debris flow response was obtained by recording all debris flow affected drainage lines in the first year after fire in a ~258 000 ha forested area that was burned by the 2009 Black Saturday Wildfire in Victoria. A total of 12 500 points along the drainage network were sampled from catchments ranging in size from 0.0001 km2to 75 km2. Local slope and the attributes of the drainage areas (including the spatially averaged peak intensity) were extracted for each sample point. A logistic regression was used to model how debris flow susceptibility varies with the normalised burn ratio (dNBR, from Landsat imagery), rainfall intensity (from rainfall radar), slope (from DEM) and aridity (from long-term radiation, temperature and rainfall data).The model of debris flow susceptibility produced a good fit with the observed debris flow response of drainage networks within the burned area and was reliable in distinguishing between drainage lines which produced debris flows and those which didn't. The performance of the models was tested through multiple iterations of fitting and testing using unseen data. The local channel slope captured the effect of scale on debris flow susceptibility with debris flow probability approaching zero as the channel slope decreased with increasing drainage area. Aridity emerged as an important predictor of debris flow susceptibility, with increased likelihood of debris flows in drier parts of the landscape, thus reinforcing previous research in the region showing that post-fire surface runoff from wet Eucalypt forests is insufficient for initiating debris flows. Fire severity, measured as dNBR, was also a very important predictor. The inclusion of local channel slope as a predictor of debris flow susceptibility proved to be an effective approach for implicitly incorporating scale and relief as parameters. When combined with models of debris flow magnitude the results from this study can be used obtain continuous probability-magnitude relations of sediment flux from debris flows for drainage networks across entire burned areas.
Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.
2017-12-27
Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface-water appropriations. Presented streamflow distribution maps are foundational work intended to support the development of additional streamflow distribution maps that include statistical constraints on the selected flow conditions.
NASA Astrophysics Data System (ADS)
Akinwumiju, Akinola S.; Olorunfemi, Martins O.
2018-05-01
This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.
Application of seepage flow models to a drainage project in fractured rock
NASA Astrophysics Data System (ADS)
Gmünder, Ch.; Arn, Th.
1993-04-01
Various theoretical approaches are used to model groundwater flow in fractured rock. This paper presents the application of several approaches to the restoration of the drainage of Rofla tunnel, Grisons, Switzerland. In this tunnel it became necessary to take measures against the washing out of calcium carbonates from the tunnel lining cement, because the calcium carbonate clogged up the existing drainage tubes leading to increased rock water pressures on the inside arch of the tunnel. Drainage boreholes were drilled on a section of the tunnel and their influence on the water pressures was monitored. On the basis of the geological survey different seepage flow models were established to reproduce the measured water pressures. The models were then used to predict the future water pressures acting on the tunnel lining after restoration. Thus, the efficacy of the different drainage proposals could be predicted and therefore optimised. Finally, the accuracy of the predictions is discussed and illustrated using the measurements in the test section.
Modelling water flow under glaciers and ice sheets
Flowers, Gwenn E.
2015-01-01
Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082
Modelling water flow under glaciers and ice sheets.
Flowers, Gwenn E
2015-04-08
Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.
NASA Astrophysics Data System (ADS)
Fortes, M. A.; Coughlan, S.
1994-10-01
A simple model of foam drainage is introduced in which the Plateau borders and quadruple junctions are identified with pools that discharge through channels to pools underneath. The flow is driven by gravity and there are friction losses in the exhausting channels. The equation of Bernoulli combined with the Hagen-Poiseuille equation is applied to describe the flow. The area of the cross section of the exhausting channels can be taken as a constant or may vary during drainage. The predictions of the model are compared with standard drainage curves and with the results of a recently reported experiment in which additional liquid is supplied at the top of the froth.
Ruddy, Barbara C.; Stevens, Michael R.; Verdin, Kristine
2010-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Fourmile Creek fire in Boulder County, Colorado, in 2010. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Data for the models include burn severity, rainfall total and intensity for a 25-year-recurrence, 1-hour-duration rainstorm, and topographic and soil property characteristics. Several of the selected drainage basins in Fourmile Creek and Gold Run were identified as having probabilities of debris-flow occurrence greater than 60 percent, and many more with probabilities greater than 45 percent, in response to the 25-year recurrence, 1-hour rainfall. None of the Fourmile Canyon Creek drainage basins selected had probabilities greater than 45 percent. Throughout the Gold Run area and the Fourmile Creek area upstream from Gold Run, the higher probabilities tend to be in the basins with southerly aspects (southeast, south, and southwest slopes). Many basins along the perimeter of the fire area were identified as having low probability of occurrence of debris flow. Volume of debris flows predicted from drainage basins with probabilities of occurrence greater than 60 percent ranged from 1,200 to 9,400 m3. The predicted moderately high probabilities and some of the larger volumes responses predicted for the modeled storm indicate a potential for substantial debris-flow effects to buildings, roads, bridges, culverts, and reservoirs located both within these drainages and immediately downstream from the burned area. However, even small debris flows that affect structures at the basin outlets could cause considerable damage.
Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.
2012-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 High Park fire near Fort Collins in Larimer County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and to estimate the same for 44 selected drainage basins along State Highway 14 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall (25 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall (43 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall (51 millimeters). Estimated debris-flow probabilities along the drainage network and throughout the drainage basins of interest ranged from 1 to 84 percent in response to the 2-year-recurrence, 1-hour-duration rainfall; from 2 to 95 percent in response to the 10-year-recurrence, 1-hour-duration rainfall; and from 3 to 97 in response to the 25-year-recurrence, 1-hour-duration rainfall. Basins and drainage networks with the highest probabilities tended to be those on the eastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Estimated debris-flow volumes range from a low of 1,600 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, roads, bridges, and culverts located both within and immediately downstream from the burned area. Colorado State Highway 14 is also susceptible to impacts from debris flows.
Tillery, Anne C.; Matherne, Anne Marie
2013-01-01
A preliminary hazard assessment was developed of the debris-flow potential from 56 drainage basins burned by the Little Bear Fire in south-central New Mexico in June 2012. The Little Bear Fire burned approximately 179 square kilometers (km2) (44,330 acres), including about 143 km2 (35,300 acres) of National Forest System lands of the Lincoln National Forest. Within the Lincoln National Forest, about 72 km2 (17,664 acres) of the White Mountain Wilderness were burned. The burn area also included about 34 km2 (8,500 acres) of private lands. Burn severity was high or moderate on 53 percent of the burn area. The area burned is at risk of substantial postwildfire erosion, such as that caused by debris flows and flash floods. A postwildfire debris-flow hazard assessment of the area burned by the Little Bear Fire was performed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Forest Service, Lincoln National Forest. A set of two empirical hazard-assessment models developed by using data from recently burned drainage basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burn area drainage network and for selected drainage basins within the burn area. The models incorporate measures of areal burn extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. Relative hazard rankings of postwildfire debris flows were produced by summing the estimated probability and volume ranking to illustrate those areas with the highest potential occurrence of debris flows with the largest volumes. The probability that a drainage basin could produce debris flows and the volume of a possible debris flow at the basin outlet were estimated for three design storms: (1) a 2-year-recurrence, 30-minute-duration rainfall of 27 millimeters (mm) (a 50 percent chance of occurrence in any given year); (2) a 10-year-recurrence, 30-minute-duration rainfall of 42 mm (a 10 percent chance of occurrence in any given year); and (3) a 25-year-recurrence, 30-minute-duration rainfall of 51 mm (a 4 percent chance of occurrence in any given year). Thirty-nine percent of the 56 drainage basins modeled have a high (greater than 80 percent) probability of debris flows in response to the 2-year design storm; 80 percent of the modeled drainage basins have a high probability of debris flows in response to the 25-year design storm. For debris-flow volume, 7 percent of the modeled drainage basins have an estimated debris-flow volume greater than 100,000 cubic meters (m3) in response to the 2-year design storm; 9 percent of the drainage basins are included in the greater than 100,000 m3 category for both the 10-year and the 25-year design storms. Drainage basins in the greater than 100,000 m3 volume category also received the highest combined hazard ranking. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be needed prior to rainstorms within these drainage basins, their outlets, or areas downstream from these drainage basins within the 2- to 3-year period of vulnerability. This work is preliminary and is subject to revision. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.
Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.
2012-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 Waldo Canyon fire near Colorado Springs in El Paso County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and potential volume of debris flows along the drainage network of the burned area and to estimate the same for 22 selected drainage basins along U.S. Highway 24 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (29 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (42 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (48 millimeters). Estimated debris-flow probabilities at the pour points of the the drainage basins of interest ranged from less than 1 to 54 percent in response to the 2-year storm; from less than 1 to 74 percent in response to the 10-year storm; and from less than 1 to 82 percent in response to the 25-year storm. Basins and drainage networks with the highest probabilities tended to be those on the southern and southeastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Nine of the 22 drainage basins of interest have greater than a 40-percent probability of producing a debris flow in response to the 10-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 1,500 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located both within and immediately downstream from the burned area. U.S. Highway 24, on the southern edge of the burn area, is also susceptible to impacts from debris flows.
NASA Astrophysics Data System (ADS)
Wu, T.; Li, T.; Li, J.; Wang, G.
2017-12-01
Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.
Verdin, Kristine L.; Dupree, Jean A.; Stevens, Michael R.
2013-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2013 West Fork Fire Complex near South Fork in southwestern Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within and just downstream from the burned area, and to estimate the same for 54 drainage basins of interest within the perimeter of the burned area. Input data for the debris-flow models included topographic variables, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm; (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm; and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm. Estimated debris-flow probabilities at the pour points of the 54 drainage basins of interest ranged from less than 1 to 65 percent in response to the 2-year storm; from 1 to 77 percent in response to the 10-year storm; and from 1 to 83 percent in response to the 25-year storm. Twelve of the 54 drainage basins of interest have a 30-percent probability or greater of producing a debris flow in response to the 25-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 2,400 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages also were predicted to produce substantial debris flows. One of the 54 drainage basins of interest had the highest combined hazard ranking, while 9 other basins had the second highest combined hazard ranking. Of these 10 basins with the 2 highest combined hazard rankings, 7 basins had predicted debris-flow volumes exceeding 100,000 cubic meters, while 3 had predicted probabilities of debris flows exceeding 60 percent. The 10 basins with high combined hazard ranking include 3 tributaries in the headwaters of Trout Creek, four tributaries to the West Fork San Juan River, Hope Creek draining toward a county road on the eastern edge of the burn, Lake Fork draining to U.S. Highway 160, and Leopard Creek on the northern edge of the burn. The probabilities and volumes for the modeled storms indicate a potential for debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located within and immediately downstream from the burned area. U.S. Highway 160, on the eastern edge of the burn area, also is susceptible to impacts from debris flows.
Unconfined aquifer response to infiltration basins and shallow pump tests
NASA Astrophysics Data System (ADS)
Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.
2007-05-01
SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.
Validation of model predictions of pore-scale fluid distributions during two-phase flow
NASA Astrophysics Data System (ADS)
Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.
2018-05-01
Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.
McVoy, Christopher; Park, Winifred A.; Obeysekera, Jayantha
1996-01-01
Preservation and restoration of the remaining Everglades ecosystem is focussed on two aspects: improving upstream water quality and improving 'hydropatterns' - the timing, depth and flow of surface water. Restoration of hydropatterns requires knowledge of the original pre-canal drainage conditions as well as an understanding of the soil, topo-graphic, and vegetation changes that have taken place since canal drainage began in the 1880's. The Natural System Model (NSM), developed by the South Florida Water Management District (SFWMD) and Everglades National Park, uses estimates of pre-drainage vegetation and topography to estimate the pre-drainage hydrologic response of the Everglades. Sources of model uncertainty include: (1) the algorithms, (2) the parameters (particularly those relating to vegetation roughness and evapotranspiration), and (3) errors in the assumed pre-drainage vegetation distribution and pre-drainage topography. Other studies are concentrating on algorithmic and parameter sources of uncertainty. In this study we focus on the NSM output -- predicted hydropattern -- and evaluate this by comparison with all available direct and indirect information on pre-drainage hydropatterns. The unpublished and published literature is being searched exhaustively for observations of water depth, flow direction, flow velocity and hydroperiod, during the period prior and just after drainage (1840-1920). Additionally, a comprehensive map of soils in the Everglades region, prepared in the 1940's by personnel from the University of Florida Agricultural Experiment Station, the U.S. Soil Conservation Service, the U.S. Geological Survey, and the Everglades Drainage District, is being used to identify wetland soils and to infer the spatial distribution of pre-drainage hydrologic conditions. Detailed study of this map and other early soil and vegetation maps in light of the history of drainage activities will reveal patterns of change and possible errors in the input to the NSM. Changes in the wetland soils are important because of their effects on topography (soil subsidence) and in their role as indicators of hydropattern.
Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution
NASA Astrophysics Data System (ADS)
Struble, W.; Roering, J. J.
2017-12-01
In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering, fracture density, recurrence interval, bulking, and grain size may determine process-form linkages in humid and arid settings. Evaluation of debris flow processes in sites of varying climate presents the opportunity to quantify the role of debris flow incision in the evolution of steepland valleys and improve landscape evolution models.
An analytical solution for predicting the transient seepage from a subsurface drainage system
NASA Astrophysics Data System (ADS)
Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling
2016-05-01
Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.
Investigations of lymphatic drainage from the interstitial space
NASA Astrophysics Data System (ADS)
Jayathungage Don, Tharanga; Richard Clarke Collaboration; John Cater Collaboration; Vinod Suresh Collaboration
2017-11-01
The lymphatic system is a highly complex biological system that facilitates the drainage of excess fluid in body tissues. In addition, it is an integral part of the immunological control system. Understanding the mechanisms of fluid absorption from the interstitial space and flow through the initial lymphatics is important to treat several pathological conditions. The main focus of this study is to computationally model the lymphatic drainage from the interstitial space. The model has been developed to consider a 3D lymphatic network and uses biological data to inform the creation of realistic geometries for the lymphatic capillary networks. We approximate the interstitial space as a porous region and the lymphatic vessel walls as permeable surfaces. The dynamics of the flow is approximated by Darcy's law in the interstitium and the Navier-Stokes equations in the lymphatic capillary lumen. The proposed model examines lymph drainage as a function of pressure gradient. In addition, we have examined the effects of interstitial and lymphatic wall permeabilities on the lymph drainage and the solute transportation in the model. The computational results are in accordance with the available experimental measurements.
Quantifying radar-rainfall uncertainties in urban drainage flow modelling
NASA Astrophysics Data System (ADS)
Rico-Ramirez, M. A.; Liguori, S.; Schellart, A. N. A.
2015-09-01
This work presents the results of the implementation of a probabilistic system to model the uncertainty associated to radar rainfall (RR) estimates and the way this uncertainty propagates through the sewer system of an urban area located in the North of England. The spatial and temporal correlations of the RR errors as well as the error covariance matrix were computed to build a RR error model able to generate RR ensembles that reproduce the uncertainty associated with the measured rainfall. The results showed that the RR ensembles provide important information about the uncertainty in the rainfall measurement that can be propagated in the urban sewer system. The results showed that the measured flow peaks and flow volumes are often bounded within the uncertainty area produced by the RR ensembles. In 55% of the simulated events, the uncertainties in RR measurements can explain the uncertainties observed in the simulated flow volumes. However, there are also some events where the RR uncertainty cannot explain the whole uncertainty observed in the simulated flow volumes indicating that there are additional sources of uncertainty that must be considered such as the uncertainty in the urban drainage model structure, the uncertainty in the urban drainage model calibrated parameters, and the uncertainty in the measured sewer flows.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
Watershed models for instructional films
Peter E. Black; Raymond E. Leonard
1970-01-01
Watershed models, with a special sponge material that simulates soil drainage, were used to make an instructional film on subsurface flow and stream flow. Construction of the models and filming techniques are described.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2017-03-01
The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.
Poppenga, Sandra K.; Worstell, Bruce B.
2016-01-01
Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal regions.
Traditional Foley drainage systems--do they drain the bladder?
Garcia, Maurice M; Gulati, Shelly; Liepmann, Dorian; Stackhouse, G Bennett; Greene, Kirsten; Stoller, Marshall L
2007-01-01
Foley catheters are assumed to drain the bladder to completion. Drainage characteristics of Foley catheter systems are poorly understood. To investigate unrecognized retained urine with Foley catheter drainage systems, bladder volumes of hospitalized patients were measured with bladder scan ultrasound volumetrics. Additionally, an in vitro bench top mock bladder and urinary catheter system was developed to understand the etiology of such residual volumes. A novel drainage tube design that optimizes indwelling catheter drainage was also designed. Bedside bladder ultrasound volumetric studies were performed on patients hospitalized in ward and intensive care unit. If residual urine was identified the drainage tubing was manipulated to facilitate drainage. An ex vivo bladder-urinary catheter model was designed to measure flow rates and pressures within the drainage tubing of a traditional and a novel drainage tube system. A total of 75 patients in the intensive care unit underwent bladder ultrasound volumetrics. Mean residual volume was 96 ml (range 4 to 290). In 75 patients on the hospital ward mean residual volume was 136 ml (range 22 to 647). In the experimental model we found that for every 1 cm in curl height, obstruction pressure increased by 1 cm H2O within the artificial bladder. In contrast, the novel spiral-shaped drainage tube demonstrated rapid (0.5 cc per second), continuous and complete (100%) reservoir drainage in all trials. Traditional Foley catheter drainage systems evacuate the bladder suboptimally. Outflow obstruction is caused by air-locks that develop within curled redundant drainage tubing segments. The novel drainage tubing design eliminates gravity dependent curls and associated air-locks, optimizes flow, and minimizes residual bladder urine.
Drainage hydraulics of permeable friction courses
NASA Astrophysics Data System (ADS)
Charbeneau, Randall J.; Barrett, Michael E.
2008-04-01
This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.
Synthesis of natural flows at selected sites in and near the Milk River basin, Montana, 1928-89
Cary, L.E.; Parrett, Charles
1995-01-01
Natural monthly streamflows were synthesized for the years 1928-89 at 2 sites in the St. Mary River Basin and 11 sites in the Milk River Basin in north- central Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation for the Milk River Basin. Recorded flows at most sites have been affected by human activities, including reservoir storage and irrigation diversions. The flows at the model nodes were corrected for the effects of these activities to obtain synthesized flows. The synthesized flows at nodes with seasonal and short-term records were extended using a statistical technique. The methods of synthesis varied, depending on upstream activities and information available. Flows at sites in the St. Mary River Basin and at the Milk River at Eastern Crossing of International Boundary pre- viously had been synthesized. The flows at mainstem sites downstream from the Milk River at Eastern Crossing were synthesized by adding synthesized natural runoff from intervening drainage areas to natural flows for Milk River at Eastern Crossing. Natural runoff from intervening drainage areas was estimated by multiplying recorded flows at selected index gaging stations on tributary streams by the ratio of the intervening drainage area to the combined drainage area of the index stations. The recorded flows for Milk River at Western Crossing of International Boundary and for Peoples Creek near Dodson, Montana, were assumed to be natural flows. The synthesized annual flows at the mouth of the Milk River compared favorably with the recorded flows near the mouth when the effects of upstream irrigation were considered.
Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD
NASA Astrophysics Data System (ADS)
Saadat, S.; Bowling, L. C.; Frankenberger, J.
2017-12-01
Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.
Cold air drainage flows subsidize montane valley ecosystem productivity.
Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford
2016-12-01
In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Smith, J. D.; Kean, J. W.
2003-12-01
Accurate empirical determination of river discharge during an extreme event is very difficult even at a gage site. Moreover, the procurement of extreme flow measurements at many locations in an ungaged drainage basin often is necessary to relate the surface-water flow in the drainage network during a flood to the spatial distribution of intense rainfall. Consequently, paleo-hydrologic methods have to be employed to estimate peak discharges. These methods, however, require the application of some type of flow model. Often the flow models used with paleo-hydrologic data are over simplified and embody low-flow or extrapolated roughness coefficients that are inappropriate for the high flow of interest and that substantially reduce the reliability of the estimated discharge. Models that permit calculation of flow resistance from measured or calculated pre-flood, post-flood, or evolving channel and floodplain geometries and roughnesses can yield the most accurate results for these extreme situations. We have developed a procedure for directly calculating flow discharge as a function of stage in reaches a few tens of river widths in length. The foundation for this approach is a set of algorithms that permits computation of the form drag on topographic elements and woody vegetation. Its application requires an initial survey of the channel and floodplain topography and roughness. The method can be used either with stage determined from a set of pressure gages distributed throughout a drainage basin to monitor discharge in a drainage network or with paleo-hydrologic data to determine discharge from extreme events. Currently, our method of determining discharge from stage is being tested at various sites in the drainage basin of the Whitewater River, Kansas. Two of these sites are just downstream of USGS gages, and a third is a short distance downstream from the outlet pipe of a man-made lake. These tests are for a full range of hydrologic conditions in order to demonstrate that the model-based method for converting stage to discharge can be employed with confidence (1) in ungaged drainage basins where a large number of discharge measurements are required for hydrologic research, (2) at locations where rated USGS stage gages are too expensive, (3) near the sites of USGS stage gages for floods during which the discharge exceeds those for which the gage has been rated, and (4) for situations where paleo-flood methods have to be used to obtain a peak discharge. Model calculated rating curves are compared to measured ones for one of the USGS gage sites. Model calculations also are used to show that Manning's and other friction coefficients are functions of stage at this site. An approach such as the one described here is essential for the quantitative investigation of fluvial geomorphic processes caused by very large floods.
Prudic, David E.; Gee, Glendon; Stevens, Peter R.; Nicholson, Thomas J.
1996-01-01
Infiltration into and drainage from facilities for the disposal of low-level radioactive wastes is considered the major process by which non-volatile contaminants are transported away from the facilities. The session included 10 papers related to the processes of infiltration and drainage, and to the simulation of flow and transport through the unsaturated zone. The first paper, presented by David Stonestrom, was an overview regarding the application of unsaturated flow theory to infiltration and drainage. Stonestrom posed three basic questions, which are:How well do we know the relevant processes affecting flow and transport?How well can we measure the parametric functions used to quantify flow and transport?How do we treat complexities inherent in field settings?The other nine papers presented during the session gave some insight to these questions. Topics included: laboratory measurement of unsaturated hydraulic conductivities at low water contents, by John Nimmo; use of environmental tracers to identify preferential flow through fractured media and to quantify drainage, by Edmund Prych and Edwin Weeks; field experiments to evaluate relevant processes affecting infiltration and drainage, by Brian Andraski, Glendon Gee, and Peter Wierenga; and the use of determinist'c and stochastic models for simulating flow and transport through heterogeneous sediments, by Richard Hills, Lynn Gelhar, and Shlomo Neuman.
NASA Astrophysics Data System (ADS)
How, Penelope; Benn, Douglas I.; Hulton, Nicholas R. J.; Hubbard, Bryn; Luckman, Adrian; Sevestre, Heïdi; van Pelt, Ward J. J.; Lindbäck, Katrin; Kohler, Jack; Boot, Wim
2017-11-01
Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an early-season episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.
Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin
NASA Astrophysics Data System (ADS)
Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio
2003-07-01
This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.
Technique for predicting ground-water discharge to surface coal mines and resulting changes in head
Weiss, L.S.; Galloway, D.L.; Ishii, Audrey L.
1986-01-01
Changes in seepage flux and head (groundwater level) from groundwater drainage into a surface coal mine can be predicted by a technique that considers drainage from the unsaturated zone. The user applies site-specific data to precalculated head and seepage-flux profiles. Groundwater flow through hypothetical aquifer cross sections was simulated using the U.S. Geological Survey finite-difference model, VS2D, which considers variably saturated two-dimensional flow. Conceptual models considered were (1) drainage to a first cut, and (2) drainage to multiple cuts, which includes drainage effects of an area surface mine. Dimensionless head and seepage flux profiles from 246 simulations are presented. Step-by-step instructions and examples are presented. Users are required to know aquifer characteristics and to estimate size and timing of the mine operation at a proposed site. Calculated groundwater drainage to the mine is from one excavated face only. First cut considers confined and unconfined aquifers of a wide range of permeabilities; multiple cuts considers unconfined aquifers of higher permeabilities only. The technique, developed for Illinois coal-mining regions that use area surface mining and evaluated with an actual field example, will be useful in assessing potential hydrologic impacts of mining. Application is limited to hydrogeologic settings and mine operations similar to those considered. Fracture flow, recharge, and leakage are nor considered. (USGS)
Numerical simulations of drainage flows on Mars
NASA Technical Reports Server (NTRS)
Parish, Thomas R.; Howard, Alan D.
1992-01-01
Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.
Yunus, Ahmad Jailani Muhamed; Nakagoshi, Nobukazu; Salleh, Khairulmaini Osman
2003-03-01
This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage.
Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter; Hanna, Edward; Palmer, Steven; Huybrechts, Philippe
2011-01-27
Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4 centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.
Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.
NASA Astrophysics Data System (ADS)
O'Steen, Lance B.
2000-11-01
Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.
NASA Astrophysics Data System (ADS)
Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard
2018-01-01
Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE < 0.5) uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately simulate hydrologic processes in mildly sloped watersheds.
Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes
NASA Astrophysics Data System (ADS)
Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis
2015-04-01
Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.
Drainage characteristics of the 3F MicroStent using a novel film occlusion anchoring mechanism.
Lange, Dirk; Hoag, Nathan A; Poh, Beow Kiong; Chew, Ben H
2011-06-01
To determine whether the overall ureteral flow through an obstructed ureter using the 3F MicroStent™ that uses a novel film occlusion anchoring mechanism is comparable to the flow using a conventional 3F and 4.7F Double-J stent. An in vitro silicone ureter model and an ex vivo porcine urinary model (kidney and ureter) were used to measure the overall flow through obstructed and unobstructed ureters with either a 3F Double-J stent (Cook), 3F MicroStent (PercSys), or 4.7F Double-J stent (Cook). Mean flow rates were compared with descriptive statistics. Mean flow rates through the obstructed silicone ureter (12-mm stone) for the 3F MicroStent, 3F Double-J stent, and 4.7F Double-J stent were 326.7±13.3 mL/min, 283.3±19.2 mL/min, and 356.7±14.1 mL/min, respectively. In the obstructed ex vivo porcine ureter model, the flow as a percentage of free flow was 60%, 53%, and 50 %, respectively. In both ureteral models, flow rates of the 3F MicroStent and 4.7F Double-J stents were not statistically different. The 3F MicroStent demonstrated drainage equivalent to a 4.7F Double-J stent, in both in vitro silicone and ex vivo porcine obstructed urinary models. We have demonstrated the crucial first step that this 3F stent, using a novel film occlusion anchoring mechanism, has equivalent, if not slightly improved, drainage rates when compared with its larger counterpart.
Debris-flow runout predictions based on the average channel slope (ACS)
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, W.; Youssef, M.; Birgand, F.; Chescheir, G. M.; Maxwell, B.; Tian, S.
2017-12-01
Agricultural drainage is a practice used to artificially enhance drainage characteristics of naturally poorly drained soils via subsurface drain tubing or open-ditch systems. Approximately 25% of the U.S. agricultural land requires improved drainage for economic crop production. However, drainage increases the transport of dissolved agricultural chemicals, particularly nitrates to downstream surface waters. Nutrient export from artificially drained agricultural landscapes has been identified as the leading source of elevated nutrient levels in major surface water bodies in the U.S. Controlled drainage has long been practiced to reduce nitrogen export from agricultural fields to downstream receiving waters. It has been hypothesized that controlled drainage reduces nitrogen losses by promoting denitrification, reducing drainage outflow from the field, and increasing plant uptake. The documented performance of the practice was widely variable as it depends on several site-specific factors. The goal of this research was to utilize high frequency measurements to investigate the effect of agricultural drainage and related management practices on nitrate fate and transport for an artificially drained agricultural field in eastern North Carolina. We deployed a field spectrophotometer to measure nitrate concentration every 45 minutes and measured drainage flow rate using a V-notch weir every 15 minutes. Furthermore, we measured groundwater level, precipitation, irrigation amount, temperature to characterize antecedent conditions for each event. Nitrate concentration-drainage flow (C-Q) relationships generated from the high frequency measurements illustrated anti-clockwise hysteresis loops and nitrate flushing mechanism in response to most precipitation and irrigation events. Statistical evaluation will be carried out for the C-Q relationships. The results of our analysis, combined with numerical modeling, will provide a better understanding of hydrological and biogeochemical processes controlling the fate and transport of nitrate in drained agricultural landscapes.
Topography and geomorphology of the Huygens landing site on Titan
Soderblom, L.A.; Tomasko, M.G.; Archinal, B.A.; Becker, T.L.; Bushroe, M.W.; Cook, D.A.; Doose, L.R.; Galuszka, D.M.; Hare, T.M.; Howington-Kraus, E.; Karkoschka, E.; Kirk, R.L.; Lunine, J.I.; McFarlane, E.A.; Redding, B.L.; Rizk, B.; Rosiek, M.R.; See, C.; Smith, P.H.
2007-01-01
The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30?? appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ???100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the "coastline" at the highland-lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland-lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland-lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yousfi, Ammar; Mechergui, Mohammed
2016-04-01
The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et al. (2001). In this work, a novel solution based on theoretical approach will be adapted to incorporate both the seepage face and the unsaturated zone flow contribution for solving ditch drained aquifers problems. This problem will be tackled on the basis of the approximate 2D solution given by Castro-Orgaz et al. (2012). This given solution yields the generalized water table profile function with a suitable boundary condition to be determined and provides a modified DF theory which permits as an outcome the analytical determination of the seepage face. To assess the ability of the developed equation for water-table estimations, the obtained results were compared with numerical solutions to the 2-D problem under different conditions. It is shown that results are in fair agreement and thus the resulting model can be used for designing ditch drainage systems. With respect to drainage design, the spacings calculated with the newly derived equation are compared with those computed from the DF theory. It is shown that the effect of the unsaturated zone flow contribution is limited to sandy soils and The calculated maximum increase in drain spacing is about 30%. Keywords: subsurface ditch drainage; unsaturated zone; seepage face; water-table, ditch spacing equation
Skinner, Kenneth D.
2013-01-01
A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.
Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian
2017-10-01
Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.
Branching pattern in natural drainage network
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Singh, A.; Wang, D.
2017-12-01
The formation and growth of river channels and their network evolution are governed by the erosional and depositional processes operating on the landscape due to movement of water. The branching structure of drainage network is an important feature related to the network topology and contain valuable information about the forming mechanisms of the landscape. We studied the branching patterns in natural drainage networks, extracted from 1 m Digital Elevation Models (DEMs) of 120 catchments with minimal human impacts across the United States. We showed that the junction angles have two distinct modes an the observed modes are physically explained as the optimal angles that result in minimum energy dissipation and are linked to the exponent characterizing slope-area curve. Our findings suggest that the flow regimes, debris-flow dominated or fluvial, have distinct characteristic angles which are functions of the scaling exponent of the slope-area curve. These findings enable us to understand the geomorphological signature of hydrological processes on drainage networks and develop more refined landscape evolution models.
NASA Astrophysics Data System (ADS)
Wolosoff, S. E.; Duncan, J.; Endreny, T.
2001-05-01
The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.
Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D
2013-11-01
Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-01-01
Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.
Effect of inlet modelling on surface drainage in coupled urban flood simulation
NASA Astrophysics Data System (ADS)
Jang, Jiun-Huei; Chang, Tien-Hao; Chen, Wei-Bo
2018-07-01
For a highly developed urban area with complete drainage systems, flood simulation is necessary for describing the flow dynamics from rainfall, to surface runoff, and to sewer flow. In this study, a coupled flood model based on diffusion wave equations was proposed to simulate one-dimensional sewer flow and two-dimensional overland flow simultaneously. The overland flow model provides details on the rainfall-runoff process to estimate the excess runoff that enters the sewer system through street inlets for sewer flow routing. Three types of inlet modelling are considered in this study, including the manhole-based approach that ignores the street inlets by draining surface water directly into manholes, the inlet-manhole approach that drains surface water into manholes that are each connected to multiple inlets, and the inlet-node approach that drains surface water into sewer nodes that are connected to individual inlets. The simulation results were compared with a high-intensity rainstorm event that occurred in 2015 in Taipei City. In the verification of the maximum flood extent, the two approaches that considered street inlets performed considerably better than that without street inlets. When considering the aforementioned models in terms of temporal flood variation, using manholes as receivers leads to an overall inefficient draining of the surface water either by the manhole-based approach or by the inlet-manhole approach. Using the inlet-node approach is more reasonable than using the inlet-manhole approach because the inlet-node approach greatly reduces the fluctuation of the sewer water level. The inlet-node approach is more efficient in draining surface water by reducing flood volume by 13% compared with the inlet-manhole approach and by 41% compared with the manhole-based approach. The results show that inlet modeling has a strong influence on drainage efficiency in coupled flood simulation.
NASA Astrophysics Data System (ADS)
Burow, K. R.; Gamble, J. M.; Fujii, R.; Constantz, J.
2001-12-01
Water flowing through the Sacramento-San Joaquin River Delta supplies drinking water to more than 20 million people in California. Delta water contains elevated concentrations of dissolved organic carbon (DOC) from drainage through the delta peat soils, forming trihalomethanes when the water is chlorinated for drinking. Land subsidence caused by oxidation of the peat soils has led to increased pumping of drainage water from delta islands to maintain arable land. An agricultural field on Twitchell Island was flooded in 1997 to evaluate continuous flooding as a technique to mitigate subsidence. The effects of shallow flooding on DOC loads to the drain water must be determined to evaluate the feasibility of this technique. In this study, heat is used as a nonconservative tracer to determine shallow ground-water flux and calculate DOC loads to an adjacent drainage ditch. Temperature profiles and water levels were measured in 12 wells installed beneath the pond, in the pond, and in an adjacent drainage ditch from May 2000 to June 2001. The range in seasonal temperatures decreased with depth, but seasonal temperature variation was evident in wells screened as deep as 10 to 12 feet below land surface. A constant temperature of 17 degrees C was measured in wells 25 feet beneath the pond. Ground-water flux beneath the pond was quantified in a two-dimensional simulation of water and heat exchange using the SUTRA flow and transport model. The effective vertical hydraulic conductivity of the peat soils underlying the pond was estimated through model calibration. Calibrated hydraulic conductivity is higher (1E-5 m/sec) than estimates from slug tests (2E-6 m/sec). Modeled pond seepage is similar to that estimated from a water budget, although the total seepage determined from the water budget is within the range of error of the instrumentation. Overall, model results indicate that recharge from the pond flows along shallow flow paths and that travel times through the peat to the drainage ditch may be on the order of decades.
Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed
Schilling, K.E.; Helmers, M.
2008-01-01
The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
Extension of local front reconstruction method with controlled coalescence model
NASA Astrophysics Data System (ADS)
Rajkotwala, A. H.; Mirsandi, H.; Peters, E. A. J. F.; Baltussen, M. W.; van der Geld, C. W. M.; Kuerten, J. G. M.; Kuipers, J. A. M.
2018-02-01
The physics of droplet collisions involves a wide range of length scales. This poses a challenge to accurately simulate such flows with standard fixed grid methods due to their inability to resolve all relevant scales with an affordable number of computational grid cells. A solution is to couple a fixed grid method with subgrid models that account for microscale effects. In this paper, we improved and extended the Local Front Reconstruction Method (LFRM) with a film drainage model of Zang and Law [Phys. Fluids 23, 042102 (2011)]. The new framework is first validated by (near) head-on collision of two equal tetradecane droplets using experimental film drainage times. When the experimental film drainage times are used, the LFRM method is better in predicting the droplet collisions, especially at high velocity in comparison with other fixed grid methods (i.e., the front tracking method and the coupled level set and volume of fluid method). When the film drainage model is invoked, the method shows a good qualitative match with experiments, but a quantitative correspondence of the predicted film drainage time with the experimental drainage time is not obtained indicating that further development of film drainage model is required. However, it can be safely concluded that the LFRM coupled with film drainage models is much better in predicting the collision dynamics than the traditional methods.
NASA Astrophysics Data System (ADS)
Xu, Bin; Ye, Ming; Dong, Shuning; Dai, Zhenxue; Pei, Yongzhen
2018-07-01
Quantitative analysis of recession curves of karst spring hydrographs is a vital tool for understanding karst hydrology and inferring hydraulic properties of karst aquifers. This paper presents a new model for simulating karst spring recession curves. The new model has the following characteristics: (1) the model considers two separate but hydraulically connected reservoirs: matrix reservoir and conduit reservoir; (2) the model separates karst spring hydrograph recession into three stages: conduit-drainage stage, mixed-drainage stage (with both conduit drainage and matrix drainage), and matrix-drainage stage; and (3) in the mixed-drainage stage, the model uses multiple conduit layers to present different levels of conduit development. The new model outperforms the classical Mangin model and the recently developed Fiorillo model for simulating observed discharge at the Madison Blue Spring located in northern Florida. This is attributed to the latter two characteristics of the new model. Based on the new model, a method is developed for estimating effective porosity of the matrix and conduit reservoirs for the three drainage stages. The estimated porosity values are consistent with measured matrix porosity at the study site and with estimated conduit porosity reported in literature. The new model for simulating karst spring hydrograph recession is mathematically general, and can be applied to a wide range of karst spring hydrographs to understand groundwater flow in karst aquifers. The limitations of the model are discussed at the end of this paper.
Thin film drainage between pre-inflated capsules or vesicles
NASA Astrophysics Data System (ADS)
Keh, Martin; Walter, Johann; Leal, Gary
2013-11-01
Capsules and vesicles are often used as vehicles to carry active ingredients or fragrance in drug delivery and consumer products and oftentimes in these applications the particles may be pre-inflated due to the existence of a small osmotic pressure difference between the interior and exterior fluid. We study the dynamics of thin film drainage between capsules and vesicles in flow as it is crucial to fusion and deposition of the particles and, therefore, the stability and effectiveness of the products. Simulations are conducted using a numerical model coupling the boundary integral method for the motion of the fluids and a finite element method for the membrane mechanics. For low capillary numbers, the drainage behavior of vesicles and capsules are approximately the same, and also similar to that of drops as the flow-independent and uniform tension due to pre-inflation dominates. The tension due to deformation caused by flow will become more important as the strength of the external flow (i.e. the capillary number) increases. In this case, the shapes of the thin film region are fundamentally different for capsules and vesicles, and the drainage behavior in both cases differs from a drop. Funded by P&G.
NASA Astrophysics Data System (ADS)
Pedretti, D.; Beckie, R. D.; Mayer, K. U.
2015-12-01
The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.
Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan
2016-06-01
The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.
Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Wickert, Andrew D.
2016-11-01
Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.
States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD), the metal rich runoff flowing primarily from abandoned mines and surface deposits of mine waste. AMD can lower stream and river pH ...
Maurizio Borin; Tomaso Bisol; Devendra M. Amatya
2010-01-01
The performance of DRAINWAT, a DRAINMOD based-watershed scale hydrology model, in predicting the water discharge was assessed in a small basin in Northern Italy during 2002-2005. DRAINWAT slightly unpredicted (4%) the total stream drainage flow respect the measured data (549 mm), in calibration (2002-04). The underprediction was 11% in 2004-05 validation period, when...
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.
Prognosis of flow conditions for de-centralized seepage of rainwater from roads
NASA Astrophysics Data System (ADS)
Meyer, Martin; Hasan, Issa; Sallwey, Jana; Graeber, Peter-Wolfgang
2013-04-01
Urbanization programs that include the construction of new settlements or roads lead to an increase in surface sealing. Conventional road drainage is being carried out by a rainwater sewage system coupled with collection and detention basins. This leads to local decreases in evaporation and groundwater recharge, disturbing the natural local water balance. The increased number of climate changed induced extreme precipitation events leads to a higher risk of road floodings as a result of a failure of these systems. Furthermore, the treatment of the discharge loaded with contaminants (such as heavy metals and MTBE) is resolved neither ecologically nor technologically. By using a natural, effective and sustainable evaporation and drainage strategy it is possible to reduce the probability of road floodings, to restore the natural local water balance and to establish ecologically and economically more beneficial rainwater drainage. By using PCSiWaPro®, a simulation tool for unsaturated soil zone processes developed at the Institute of Waste Management and the Technical University of Dresden, the effects of different atmospheric, hydrological and hydrogeological parameters and system conditions on the subsurface drainage flow conditions in the vicinity of a typical German highway road were studied. Special attention was given to the influence of extreme precipitation events on the drainage time at differently tilted parts of the surface, on surface drainages from lateral noise-protection barriers and on the probability of road surface underwashing. Differently constructed upper soil stratifications were tested for their ability to quickly drain water into the ground, which, besides the reduced risk of road flooding, also influence the duration time for the drainage water in each soil layer. Individual rainwater infiltration rates were applied for different regions of the model. The behaviours of three different types of soil (coarse sand, slightly silty sand and medium silty sand) were tested for their applicability as road base materials. The simulation results showed that for extreme precipitation events, the optimized decentralized road drainage system was able to discharge the accumulated rainwater. In future applications, the unsaturated flow model will be extended to a reactive transport model in order to develop strategies for optimal local drainage system design with special regard to natural purification features of different soil layer types. Additionally, PCSiWaPro® can be coupled to a groundwater model to simulate the influence of potential local groundwater contamination by road discharge on the whole underlying aquifer.
NASA Astrophysics Data System (ADS)
Mei, Chao; Liu, Jiahong; Wang, Hao; Shao, Weiwei; Xia, Lin; Xiang, Chenyao; Zhou, Jinjun
2018-06-01
Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers, in the context of rapid urbanization and climate change worldwide. In recent years, source control measures (SCMs) such as green roofs, permeable pavements, rain gardens, and vegetative swales have been implemented to address flood inundation in urban settings, and proven to be cost-effective and sustainable. In order to investigate the ability of SCMs on reducing inundation in a community-scale urban drainage system, a dynamic rainfall-runoff model of a community-scale urban drainage system was developed based on SWMM. SCMs implementing scenarios were modelled under six design rainstorm events with return period ranging from 2 to 100 years, and inundation risks of the drainage system were evaluated before and after the proposed implementation of SCMs, with a risk-evaluation method based on SWMM and analytic hierarchy process (AHP). Results show that, SCMs implementation resulting in significantly reduction of hydrological indexes that related to inundation risks, range of reduction rates of average flow, peak flow, and total flooded volume of the drainage system were 28.1-72.1, 19.0-69.2, and 33.9-56.0 %, respectively, under six rainfall events with return periods ranging from 2 to 100 years. Corresponding, the inundation risks of the drainage system were significantly reduced after SCMs implementation, the risk values falling below 0.2 when the rainfall return period was less than 10 years. Simulation results confirm the effectiveness of SCMs on mitigating inundation, and quantified the potential of SCMs on reducing inundation risks in the urban drainage system, which provided scientific references for implementing SCMs for inundation control of the study area.
Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma
2013-07-26
[1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d -1 in 1999 and 0.52 h d -1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers.
Guthoff, R F; Schmidt, W; Buss, D; Schultze, C; Ruppin, U; Stachs, O; Sternberg, K; Klee, D; Chichkov, B; Schmitz, K-P
2009-09-01
The purpose of this study was to develop a microstent with valve function, which normalizes the intraocular pressure (IOP) and drains into the suprachoroidal space. In comparison to the subconjunctival space the suprachoroidal space is attributed with less fibroblast colonization and activity. Different glaucoma drainage devices were idealized as tubes and the flow rates were calculated according to Hagen-Poiseuille. The dimensions of the ideal glaucoma implant were modified with respect to an aqueous humor production of 2 microl/min and the different outflow pathways. Specific components of glaucoma drainage devices at the inlet and outlet were not included. The volume flow calculation of the tested glaucoma implants showed that the dimensions of all lumina were too large to prevent postoperative hypotension. A maximum inner tube diameter of 53 microm was calculated for drainage into the suprachoroidal space based on an intra-ocular pressure (IOP) of 20 mmHg. The glaucoma microstent has to guarantee an aqueous humor flow for physiological IOP. An increase of IOP has to be regulated to physiological pressure conditions by the microvalve.
Methods and equations for estimating peak streamflow per square mile in Virginia’s urban basins
Austin, Samuel H.
2014-01-01
Models are presented that describe Virginia urban area annual peak streamflow per square mile based on basin percent urban area and basin drainage area. Equations are provided to estimate Virginia urban peak flow per square mile of basin drainage area in each of the following annual exceedance probability categories: 0.995, 0.99, 0.95, 0.9, 0.8, 0.67, 0.5, 0.43, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 1.005, 1.01, 1.05, 1.11, 1.25, 1.49, 2.0, 2.3, 5, 10, 25, 50, 100, 200, and 500 years, respectively). Equations apply to Virginia drainage basins ranging in size from no less than 1.2 mi2 to no more than 2,400 mi2 containing at least 10 percent urban area, and not more than 96 percent urban area. A total of 115 Virginia drainage basins were analyzed. Actual-by-predicted plots and leverage plots for response variables and explanatory variables in each peak-flow annual exceedance probability category indicate robust model fits and significant explanatory power. Equations for 8 of 15 urban peak-flow response surface models yield R-square values greater than 0.8. Relations identified in statistical models, describing significant increases in urban peak stream discharges as basin urban area increases, affirm empirical relations reported in past studies of change in stream discharge, lag times, and physical streamflow processes, most notably those detailed for urban areas in northern Virginia.
Gamble, James M.; Burow, Karen R.; Wheeler, Gail A.; Hilditch, Robert; Drexler, Judy Z.
2003-01-01
Data were collected during a study to determine the effects of continuous shallow flooding on ground-water discharge to an agricultural drainage ditch on Twitchell Island, California. The conceptual model of the hydrogeologic setting was detailed with soil coring and borehole-geophysical logs. Twenty-two monitoring wells were installed to observe hydraulic head. Ten aquifer slug tests were done in peat and mineral sediments. Ground-water and surface-water temperature was monitored at 14 locations. Flow to and from the pond was monitored through direct measurement of flows and through the calculation of a water budget. These data were gathered to support the development of a two-dimensional ground-water flow model. The model will be used to estimate subsurface discharge to the drainage ditch as a result of the pond. The estimated discharge will be used to estimate the concentrations of DOC that can be expected in the ditch.
NASA Astrophysics Data System (ADS)
Bhattarai, K. P.; O'Connor, K. M.
2003-04-01
Inefficient natural land drainage and the consequent frequent flooding of rivers are a problem of particular significance to the Irish economy. Such problems can be attributed less to the amount of annual rainfall, than to the topological configuration of Ireland. Its high maritime rim and relatively flat interior results in poor river gradients, intercepted by many lakes. As a remedial measure to tackle these problems, Arterial Drainage Schemes (ADSs) were started in Ireland from as early as the beginning of the nineteenth century. The major activities carried out under ADSs have been the deepening and widening of channels to increase their discharge-carrying capacity, which naturally affected the hydrological behaviour of the catchments involved. Earlier studies carried out in order to assess the effects of such ADSs on the hydrological behaviour of Irish catchments were concentrated mainly on comparisons of unit hydrographs and relationship between flood peaks of pre- and post-drainage periods. The present study, carried out on the River Brosna catchment in Ireland, concentrates on assessing the changes in the rainfall runoff transformation process, by using the conceptual Soil Moisture Accounting and Routing Model (SMAR), one of the constituent models of the "Galway River Flow Modelling and Forecasting System (GFMFS)" software package. Hydro-meteorological data of the pre-drainage (1942--1947) and post-drainage (1954--2000) periods have been used in this study. The results of the present study show that, for similar patterns of rainfall, the catchment produces higher annual maximum daily flows, and lower annual minimum daily flows in the post-drainage period than in the pre-drainage period. Moreover, the post-drainage unit hydrographs are more "peaky" and have quicker recessions than the pre-drainage counterparts, thus confirming the findings of the earlier studies. It is also observed that, apart from the expected pre-to-post-drainage change, the nature of the catchment response throughout the post-drainage period has not remained the same as it reverted to pre-drainage-like behaviour after the first one-and-a-half decades (around 1969), indicating that the effects of the ADS had died out over that time. This behaviour was also confirmed by comparing the evolving nature of the unit hydrograph produced for a five-year moving calibration window period from 1959 to 1974. It is unclear at this point whether this change was due to the observed reduction in rainfall in the mid-seventies, inefficient maintenance of the channels, land subsidence following drainage, changes in land use, urbanization, climate change, or some other factors or combinations. The results of the present study further show that, during the nineties, the response pattern changed back again to something akin to early post-drainage-like behaviour, the reason for which is even less clear but obviously can not be attributed to the ADS. Further investigations are currently underway to try to explain such changes in the catchment response to rainfall and also to establish if similar changes occurred on other Irish catchments which also underwent arterial drainage schemes.
NASA Astrophysics Data System (ADS)
de Fleurian, Basile; Morlighem, Mathieu; Seroussi, Helene; Rignot, Eric; van den Broeke, Michiel R.; Kuipers Munneke, Peter; Mouginot, Jeremie; Smeets, Paul C. J. P.; Tedstone, Andrew J.
2016-10-01
Basal sliding is a main control on glacier flow primarily driven by water pressure at the glacier base. The ongoing increase in surface melting of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here we examine the case of Russell Glacier, in West Greenland, where an extensive set of observations has been collected. These observations suggest that the recent increase in melt has had an equivocal impact on the annual velocity, with stable flow on the lower part of the drainage basin but accelerated flow above the Equilibrium Line Altitude (ELA). These distinct behaviors have been attributed to different evolutions of the subglacial draining system during and after the melt season. Here we use a high-resolution subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the cause of these distinct behaviors. We find that the increase in meltwater production at low elevation yields a more efficient drainage system compatible with the observed stagnation of the mean annual flow below the ELA. At higher elevation, the model indicates that the drainage system is mostly inefficient and is therefore strongly sensitive to an increase in meltwater availability, which is consistent with the observed increase in ice velocity.
Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows
Paul H. Gudiksen; Gilbert J. Ferber; Malcolm M. Fowler; Wynn L. Eberhard; Michael A. Fosberg; William R. Knuth
1984-01-01
A series of tracer experiments were carried out as part of the Atmospheric Studies in Complex Terrain (ASCOT) program to evaluate pollutant transport and dispersion characteristics of nocturnal drainage flows within a valley in northern California. The results indicate that the degree of interaction of the drainage flows with the larger scale regional flows are...
NASA Astrophysics Data System (ADS)
Zakirov, T.; Galeev, A.; Khramchenkov, M.
2018-05-01
The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.
A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples
NASA Astrophysics Data System (ADS)
Flowers, Gwenn E.; Clarke, Garry K. C.
2002-11-01
Basal hydrology is acknowledged as a fundamental control on glacier dynamics, especially in cases where surface meltwater reaches the bed. For many glaciers at midlatitudes, basal drainage is influenced by subaerial, englacial, and subsurface water flow. One of the major shortcomings of existing basal hydrology models is the treatment of the glacier bed as an isolated system. We present theoretical and computational models that couple glacier surface runoff, englacial water storage and transport, subglacial drainage, and subsurface groundwater flow. Each of the four model components is represented as a two-dimensional, vertically integrated layer that communicates with its neighbors through water exchange. Governing equations are derived from the law of mass conservation and are expressed as a balance between the internal distribution of water and external sources. The numerical exposition of this theory is a time-dependent finite difference model that can be used to simulate glacier drainage. In this paper we outline the theory and conduct simple tests using an idealized glacier geometry. In the companion paper, the model is tailored to Trapridge Glacier, Yukon Territory, Canada, where results are compared with measurements of subglacial water pressure.
A two-stage storage routing model for green roof runoff detention.
Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia
2014-01-01
Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.
NASA Astrophysics Data System (ADS)
Raimonet, M.; Oudin, L.; Rabouille, C.; Garnier, J.; Silvestre, M.; Vautard, R.; Thieu, V.
2016-12-01
Water quality management of fresh and marine aquatic systems requires modelling tools along the land-ocean continuum in order to evaluate the effect of climate change on nutrient transfer and on potential ecosystem dysfonctioning (e.g. eutrophication, anoxia). In addition to direct effects of climate change on water temperature, it is essential to consider indirect effects of precipitation and temperature changes on hydrology since nutrient transfers are particularly sensitive to the partition of streamflow between surface flow and baseflow. Yet, the determination of surface flow and baseflow, their spatial repartition on drainage basins, and their relative potential evolution under climate change remains challenging. In this study, we developed a generic approach to determine 10-day surface flow and baseflow using a regionalized hydrological model applied at a high spatial resolution (unitary catchments of area circa 10km²). Streamflow data at gauged basins were used to calibrate hydrological model parameters that were then applied on neighbor ungauged basins to estimate streamflow at the scale of the French territory. The proposed methodology allowed representing spatialized surface flow and baseflow that are consistent with climatic and geomorphological settings. The methodology was then used to determine the effect of climate change on the spatial repartition of surface flow and baseflow on the Seine drainage bassin. Results showed large discrepancies of both the amount and the spatial repartition of changes of surface flow and baseflow according to the several GCM and RCM used to derive projected climatic forcing. Consequently, it is expected that the impact of climate change on nutrient transfer might also be quite heterogeneous for the Seine River. This methodology could be applied in any drainage basin where at least several gauged hydrometric stations are available. The estimated surface flow and baseflow can then be used in hydro-ecological models in order to evaluate direct and indirect impacts of climate change on nutrient transfers and potential ecosystem dysfunctioning along the land-ocean continuum.
The effect of inclusion of inlets in dual drainage modelling
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.; Djordjević, Slobodan
2018-04-01
In coupled sewer and surface flood modelling approaches, the flow process in gullies is often ignored although the overland flow is drained to sewer network via inlets and gullies. Therefore, the flow entering inlets is transferred to the sewer network immediately, which may lead to a different flood estimation than the reality. In this paper, we compared two modelling approach with and without considering the flow processes in gullies in the coupled sewer and surface modelling. Three historical flood events were adopted for model calibration and validation. The results showed that the inclusion of flow process in gullies can further improve the accuracy of urban flood modelling.
Wellman, Tristan P.; Paschke, Suzanne S.; Minsley, Burke; Dupree, Jean A.
2011-01-01
The Leadville mining district is historically one of the most heavily mined regions in the world producing large quantities of gold, silver, lead, zinc, copper, and manganese since the 1860s. A multidisciplinary investigation was conducted by the U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, to characterize large-scale groundwater flow in a 13 square-kilometer region encompassing the Canterbury Tunnel and the Leadville Mine Drainage Tunnel near Leadville, Colorado. The primary objective of the investigation was to evaluate whether a substantial hydraulic connection is present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel for current (2008) hydrologic conditions. Altitude in the Leadville area ranges from about 3,018 m (9,900 ft) along the Arkansas River valley to about 4,270 m (14,000 ft) along the Continental Divide east of Leadville, and the high altitude of the area results in a moderate subpolar climate. Winter precipitation as snow was about three times greater than summer precipitation as rain, and in general, both winter and summer precipitation were greatest at higher altitudes. Winter and summer precipitation have increased since 2002 coinciding with the observed water-level rise near the Leadville Mine Drainage Tunnel that began in 2003. The weather patterns and hydrology exhibit strong seasonality with an annual cycle of cold winters with large snowfall, followed by spring snowmelt, runoff, and recharge (high-flow) conditions, and then base-flow (low-flow) conditions in the fall prior to the next winter. Groundwater occurs in the Paleozoic and Precambrian fractured-rock aquifers and in a Quaternary alluvial aquifer along the East Fork Arkansas River, and groundwater levels also exhibit seasonal, although delayed, patterns in response to the annual hydrologic cycle. A three-dimensional digital representation of the extensively faulted bedrock was developed and a geophysical direct-current resistivity field survey was performed to evaluate the geologic structure of the study area. The results show that the Canterbury Tunnel is located in a downthrown structural block that is not in direct physical connection with the Leadville Mine Drainage Tunnel. The presence of this structural discontinuity implies there is no direct groundwater pathway between the tunnels along a laterally continuous bedrock unit. Water-quality results for pH and major-ion concentrations near the Canterbury Tunnel showed that acid mine drainage has not affected groundwater quality. Stable-isotope ratios of hydrogen and oxygen in water indicate that snowmelt is the primary source of groundwater recharge. On the basis of chlorofluorocarbon and tritium concentrations and mixing ratios for groundwater samples, young groundwater (groundwater recharged after 1953) was indicated at well locations upgradient from and in a fault block separate from the Canterbury Tunnel. Samples from sites downgradient from the Canterbury Tunnel were mixtures of young and old (pre-1953) groundwater and likely represent snowmelt recharge mixed with older regional groundwater that discharges from the bedrock units to the Arkansas River valley. Discharge from the Canterbury Tunnel contained the greatest percentage of old (pre-1953) groundwater with a mixture of about 25 percent young water and about 75 percent old water. A calibrated three-dimensional groundwater model representing high-flow conditions was used to evaluate large-scale flow characteristics of the groundwater and to assess whether a substantial hydraulic connection was present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel. As simulated, the faults restrict local flow in many areas, but the fracture-damage zones adjacent to the faults allow groundwater to move along faults. Water-budget results indicate that groundwater flow across the lateral edges of the model controlled the majority of flow in and out of the aquifer (79 percent and 63 percent of the total water budget, respectively). The largest contributions to the water budget were groundwater entering from the upper reaches of the watershed and the hydrologic interaction of the groundwater with the East Fork Arkansas River. Potentiometric surface maps of the simulated model results were generated for depths of 50, 100, and 250 m. The surfaces revealed a positive trend in hydraulic head with land-surface altitude and evidence of increased control on fluid movement by the fault network structure at progressively greater depths in the aquifer. Results of advective particle-tracking simulations indicate that the sets of simulated flow paths for the Canterbury Tunnel and the Leadville Mine Drainage Tunnel were mutually exclusive of one another, which also suggested that no major hydraulic connection was present between the tunnels. Particle-tracking simulations also revealed that although the fault network generally restricted groundwater movement locally, hydrologic conditions were such that groundwater did cross the fault network at many locations. This cross-fault movement indicates that the fault network controls regional groundwater flow to some degree but is not a complete barrier to flow. The cumulative distributions of adjusted age results for the watershed indicate that approximately 30 percent of the flow pathways transmit groundwater that was younger than 68 years old (post-1941) and that about 70 percent of the flow pathways transmit old groundwater. The particle-tracking results are consistent with the apparent ages and mixing ratios developed from the chlorofluorocarbon and tritium results. The model simulations also indicate that approximately 50 percent of the groundwater flowing through the study area was less than 200 years old and about 50 percent of the groundwater flowing through the study area is old water stored in low-permeability geologic units and fault blocks. As a final examination of model response, the conductance parameters of the Canterbury Tunnel and Leadville Mine Drainage Tunnel were manually adjusted from the calibrated values to determine if altering the flow discharge in one tunnel affects the hydraulic behavior in the other tunnel. The examination showed no substantial hydraulic connection. The multidisciplinary investigation yielded an improved understanding of groundwater characteristics near the Canterbury Tunnel and the Leadville Mine Drainage Tunnel. Movement of groundwater between the Canterbury Tunnel and Leadville Mine Drainage Tunnel that was central to this investigation could not be evaluated with strong certainty owing to the structural complexity of the region, study simplifications, and the absence of observation data within the upper sections of the Canterbury Tunnel and between the Canterbury Tunnel and the Leadville Mine Drainage Tunnel. There was, however, collaborative agreement between all of the analyses performed during this investigation that a substantial hydraulic connection did not exist between the Canterbury Tunnel and the Leadville Mine Drainage Tunnel under natural flow conditions near the time of this investigation.
Landform Formation Under Ice Sheets
NASA Astrophysics Data System (ADS)
Schoof, C. G.; Ng, F. S.; Hallet, B.
2004-12-01
We present a new mathematical model for the formation of subglacial landforms such as drumlins under a warm-based, soft-bedded ice sheet. At the heart of the model is a channelized drainage system in which smaller channels grow at the expense of larger ones, leading to the continuous creation and extinction of drainage paths, and to a spatially distributed imprint on the landscape. We demonstrate how interactions between such a drainage system, bed topography and ice flow can lead to the spontaneous formation of subglacial landforms, and discuss the effect of different sediment transport characteristics in the drainage system on the shape and migration of these landforms. This mathematical model is the first component of a study of landscape/ice-sheet self-organization, which is inspired and guided, in part, by new digital topographic data (LIDAR) that are revealing with unprecedented detail the striking grain of glacially scoured topography on length scales ranging from 0.5 to 20 km.
Modeling variability in porescale multiphase flow experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Bowen; Bao, Jie; Oostrom, Mart
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulationsmore » are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.« less
Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones
NASA Astrophysics Data System (ADS)
Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel
2018-04-01
In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.
Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma
Esralew, Rachel A.; Smith, S. Jerrod
2010-01-01
Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari
Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke
2018-03-01
We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.
NASA Astrophysics Data System (ADS)
Hayward, N.; Jackson, L. E.; Ryan, J. J.
2017-12-01
This study of southern Yukon (Canada) challenges the notion that the landscape in the long-lived, tectonically active, northern Canadian Cordillera is implicitly young. The impact of Cenozoic displacement along the continental- scale Tintina Fault on the development of the Yukon River and drainage basins of central Yukon is investigated through geophysical and hydrological modeling of digital terrain model data. Regional geological evidence suggests that the age of the planation of the Yukon plateaus is at least Late Cretaceous, rather than Neogene as previously concluded, and that there has been little penetrative deformation or net incision in the region since the late Mesozoic. The Tintina Fault has been interpreted as having experienced 430 km of dextral displacement, primarily during the Eocene. However, the alignment of river channels across the fault at specific displacements, coupled with recent seismic events and related fault activity, indicate that the fault may have moved in stages over a longer time span. Topographic restoration and hydrological models show that the drainage of the Yukon River northwestward into Alaska via the ancestral Kwikhpak River was only possible at restored displacements of up to 50-55 km on the Tintina Fault. We interpret the published drainage reversals convincingly attributed to the effects of Pliocene glaciation as an overprint on earlier Yukon River reversals or diversions attributed to tectonic displacements along the Tintina Fault. At restored fault displacements of between 230 and 430 km, our models illustrate that paleo Yukon River drainage conceivably may have flowed eastward into the Atlantic Ocean via an ancestral Liard River, which was a tributary of the paleo Bell River system. The revised drainage evolution if correct requires wide-reaching reconsideration of surficial geology deposits, the flow direction and channel geometries of the region's ancient rivers, and importantly, exploration strategies of placer gold deposits.
NASA Astrophysics Data System (ADS)
Inamdar, S. P.; Singh, S.
2013-12-01
Understanding how dissolved organic matter (DOM) varies spatially in catchments and the processes and mechanisms that regulate this variation is critical for developing accurate and reliable models of DOM. We determined the concentrations and composition of DOM at multiple locations along a stream drainage network in a 79 ha forested, Piedmont, watershed in Maryland, USA. DOM concentrations and composition was compared for five stream locations during baseflow (drainage areas - 0.62, 3.5, 4.5, 12 and 79 ha) and three locations (3.5, 12, 79 ha) for storm flow. Sampling was conducted by manual grab samples and automated ISCO samplers. DOM composition was characterized using a suite of spectrofluorometric indices which included - HIX, a254, and FI. A site-specific PARAFAC model was also developed for DOM fluorescence to determine the humic-, fulvic-, and protein-like DOM constituents. Hydrologic flow paths during baseflow and stormflow were characterized for all stream locations using an end-member mixing model (EMMA). DOM varied notably across the sampled positions for baseflow and stormflow. During baseflow, mean DOC concentrations for the sampled locations ranged between 0.99-3.1 mg/L whereas for stormflow the range was 5.22-8.11 mg/L. Not surprisingly, DOM was more humic and aromatic during stormflow versus baseflow. The 3.5 ha stream drainage location that contained a large wetland yielded the highest DOC concentration as well as the most humic and aromatic DOM, during both, baseflow and stormflow. In contrast, a headwater stream location (0.62 ha) that received runoff from a groundwater seep registered the highest mean value for % protein-like DOM (30%) and the lowest index for aromaticity (mean a254 = 6.52) during baseflow. During stormflow, the mean % protein-like DOM was highest at the largest 79 ha drainage location (mean = 11.8%) and this site also registered the lowest mean value for a254 (46.3). Stream drainage locations that received a larger proportion of runoff along surficial flow paths produced a more aromatic and humic DOM with high DOC concentrations; whereas those with a greater proportion of groundwater contributions produced DOM with greater % of protein-like content. Overall, our observations suggest that occurrence of wetlands and the nature of hydrologic flow paths were the key determinants for the spatial pattern of DOM.
Dengue transmission based on urban environmental gradients in different cities of Pakistan.
Khalid, Bushra; Ghaffar, Abdul
2015-03-01
This study focuses on the dengue transmission in different regions of Pakistan. For this purpose, the data of dengue cases for 2009-2012 from four different cities (Rawalpindi, Islamabad, Lahore, and Karachi) of the country is collected, evaluated, and compiled. To identify the reasons and regions of higher risk of Dengue transmission, land use classification, analysis of climate covariates and drainage patterns was done. Analysis involves processing of SPOT 5 10 m, Landsat TM 30 m data sets, and SRTM 90 m digital elevation models by using remote sensing and GIS techniques. The results are based on the change in urbanization and population density, analysis of temperature, rainfall, and wind speed; calculation of drainage patterns including stream features, flow accumulation, and drainage density of the study areas. Results suggest that the low elevation areas with calm winds and minimum temperatures higher than the normal, rapid increase in unplanned urbanization, low flow accumulation, and higher drainage density areas favor the dengue transmission.
Coe, Jeffrey A.; Reid, Mark E.; Brien, Dainne L.; Michael, John A.
2011-01-01
To better understand controls on debris-flow entrainment and travel distance, we examined topographic and drainage network characteristics of initiation locations in two separate debris-flow prone areas located 700 km apart along the west coast of the U.S. One area was located in northern California, the other in southern Oregon. In both areas, debris flows mobilized from slides during large storms, but, when stratified by number of contributing initiation locations, median debris-flow travel distances in Oregon were 5 to 8 times longer than median distances in California. Debris flows in Oregon readily entrained channel material; entrainment in California was minimal. To elucidate this difference, we registered initiation locations to high-resolution airborne LiDAR, and then examined travel distances with respect to values of slope, upslope contributing area, planform curvature, distance from initiation locations to the drainage network, and number of initiation areas that contributed to flows. Results show distinct differences in the topographic and drainage network characteristics of debris-flow initiation locations between the two study areas. Slope and planform curvature of initiation locations (landslide headscarps), commonly used to predict landslide-prone areas, were not useful for predicting debris-flow travel distances. However, a positive, power-law relation exists between median debris-flow travel distance and the number of contributing debris-flow initiation locations. Moreover, contributing area and the proximity of the initiation locations to the drainage network both influenced travel distances, but proximity to the drainage network was the better predictor of travel distance. In both study areas, flows that interacted with the drainage network flowed significantly farther than those that did not. In California, initiation sites within 60 m of the network were likely to reach the network and generate longtraveled flows; in Oregon, the threshold was 80 m.
Global 30m Height Above the Nearest Drainage
NASA Astrophysics Data System (ADS)
Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick
2016-04-01
Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and variable thresholding methods. The resulting HAND dataset was analyzed regarding its spatial variability and to assess the global distribution of the main landform types: valley, ecotone, slope, and plateau. The method used to compute HAND was implemented using PCRaster software, running on Google Compute Engine platform running under Ubuntu Linux. The Google Earth Engine was used to perform mosaicing and clipping of the original DEMs as well as to provide access to the final product. The effort took about three months of computing time on eight core CPU virtual machine.
Properties of the subglacial till inferred from supraglacial lake drainage
NASA Astrophysics Data System (ADS)
Neufeld, J. A.; Hewitt, D.
2017-12-01
The buildup and drainage of supraglacial lakes along the margins of the Greenland ice sheet has been previously observed using detailed GPS campaigns which show that rapid drainage events are often preceded by localised, transient uplift followed by rapid, and much broader scale, uplift and flexure associated with the main drainage event [1,2]. Previous models of these events have focused on fracturing during rapid lake drainage from an impermeable bedrock [3] or a thin subglacial film [4]. We present a new model of supraglacial drainage that couples the water flux from rapid lake drainage events to a simplified model of the pore-pressure in a porous, subglacial till along with a simplified model of the flexure of glacial ice. Using a hybrid mathematical model we explore the internal transitions between turbulent and laminar flow throughout the evolving subglacial cavity and porous till. The model predicts that an initially small water flux may locally increase pore-pressure in the till leading to uplift and a local divergence in the ice velocity that may ultimately be responsible for large hydro-fracturing and full-scale drainage events. Furthermore, we find that during rapid drainage while the presence of a porous, subglacial till is crucial for propagation, the manner of spreading is remarkably insensitive to the properties of the subglacial till. This is in stark contrast to the post-drainage relaxation of the pore pressure, and hence sliding velocity, which is highly sensitive to the permeability, compressibility and thickness of subglacial till. We use our model, and the inferred sensitivity to the properties of the subglacial till after the main drainage event, to infer the properties of the subglacial till. The results suggest that a detailed interpretation of supraglacial lake drainage may provide important insights into the hydrology of the subglacial till along the margins of the Greenland ice sheet, and the coupling of pore pressure in subglacial till with the observed ice velocity. 1 Das et al. Science 320, 778-781 (2008) 2 Stevens et al. Nature 522, 73-76 (2015) 3 Tsai & Rice J. Geophys. Res. 115, 1-18 (2010) 4 Adhikari & Tsai J. Geophys. Res. 120, 580-603 (2015)
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona
Webb, Robert H.; Pringle, Patrick T.; Rink, Glenn R.
1989-01-01
A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content of less than about 40 percent by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows also occur in the Cambrian Muav Limestone and underlying Bright Angel Shale and the Quaternary basalts in the western Grand Canyon. Debris-flow frequency and magnitude were studied in detail in the Lava-Chuar Creek drainage at Colorado River mile 65.5; in the Monument Creek drainage at mile 93.5; and in the Crystal Creek drainage at mile 98.2. Debris flows have reached the Colorado River on an average of once every 20 to 30 years in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 years in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 years, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cubic feet per second. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cubic feet per second. The debris flow of 1966 in the Crystal Creek drainage had a discharge estimated between 9,200 and 14,000 cubic feet per second. Determination of the effective cross-sectional area was a problem in all calculations involving superelevations on bends because areas near superelevation marks were 1.5 to 3.5 times larger than areas of upstream or downstream cross sections. Debris flows in the Grand Canyon generally are composed of 10 to 40 percent sand by weight and may represent a significant source of beach-building sand along the Colorado River. The particle-size distributions are very poorly sorted and the largest transported boulders were in the Crystal Creek drainage. The large boulders transported into the Colorado River by debris flows create or change hydraulic controls (rapids); these controls appear to be governed by the magnitude and frequency of tributary-flow events and the history of discharges on the Colorado River. Reworking of debris fans by the Colorado River creates debris bars that constrain the size of eddy systems and forms secondary rapids and riffles below tributary mouths.
NASA Astrophysics Data System (ADS)
Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.
2006-12-01
The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.
Capillary trapping in thin-film flows of particles
NASA Astrophysics Data System (ADS)
Sauret, Alban; Gomez, Michael; Dressaire, Emilie
Flows of suspensions have been modeled on a continuum level by using constitutive relations to capture how the viscosity varies with the particle concentration. However, in thin liquid films, where the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and could result in the contamination of the surface and the loss of transported material. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the dynamics of the drainage exhibits behavior that cannot be captured with a Newtonian model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 and CNRS-PICS-07242.
Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage
Diem, Alexandra K.; MacGregor Sharp, Matthew; Gatherer, Maureen; Bressloff, Neil W.; Carare, Roxana O.; Richardson, Giles
2017-01-01
Alzheimer's Disease (AD) is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ) in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD) pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD. PMID:28883786
Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.
2003-01-01
This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp
NASA Astrophysics Data System (ADS)
Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank
2015-04-01
Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet. We show that imperviousness maps generated using UAV imagery processed with modern classification methods achieve accuracy comparable with standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on modelled surface runoff and pipe flows. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility to flexibly acquire up-to-date aerial images at a superior quality and a competitive price. Our analyses furthermore suggest that spatially more detailed urban drainage models can even better benefit from the full detail of UAV imagery.
High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery
NASA Astrophysics Data System (ADS)
Tokarczyk, P.; Leitao, J. P.; Rieckermann, J.; Schindler, K.; Blumensaat, F.
2015-01-01
Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual subcatchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet. We show that imperviousness maps generated using UAV imagery processed with modern classification methods achieve accuracy comparable with standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on modelled surface runoff and pipe flows. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility to flexibly acquire up-to-date aerial images at a superior quality and a competitive price. Our analyses furthermore suggest that spatially more detailed urban drainage models can even better benefit from the full detail of UAV imagery.
A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients.
NASA Astrophysics Data System (ADS)
Yamada, T.; Bunker, S.
1989-07-01
A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind directional shear and temperature gradients, two modifications are added to the model. The strong wind directional shear was maintained by introducing a `nudging' term in the equation of motion to guide the modeled winds in the layers above the ridge top toward the observed wind direction. The second modification was accomplished by reformulating the conservation equation for the potential temperature in such a way that only the deviation from the horizontally averaged value was prognostically computed.The vegetation distribution used in this study is undoubtedly crude. Nevertheless, the present simulation suggests that tall tree canopy can play an important role in producing inhomogeneous wind distribution, particularly in the levels below the canopy top.
Recent results and persisting problems in modeling flow induced coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortelný, I., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz; Jza, J., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz
2014-05-15
The contribution summarizes recent results of description of the flow induced coalescence in immiscible polymer blends and addresses problems that call for which solving. The theory of coalescence based on the switch between equations for matrix drainage between spherical or deformed droplets provides a good agreement with more complicated modeling and available experimental data for probability, P{sub c}, that the collision of droplets will be followed by their fusion. A new equation for description of the matrix drainage between deformed droplets, applicable to the whole range of viscosity ratios, p, of the droplets and matrixes, is proposed. The theory facilitatesmore » to consider the effect of the matrix elasticity on coalescence. P{sub c} decreases with the matrix relaxation time but this decrease is not pronounced for relaxation times typical of most commercial polymers. Modeling of the flow induced coalescence in concentrated systems is needed for prediction of the dependence of coalescence rate on volume fraction of droplets. The effect of the droplet anisometry on P{sub c} should be studied for better understanding the coalescence in flow field with high and moderate deformation rates. A reliable description of coalescence in mixing and processing devices requires proper modeling of complex flow fields.« less
NASA Astrophysics Data System (ADS)
Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin
2016-03-01
The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level, while 43% of the drainage basins without occurred debris flow valleys are at a high risk level. A comparison with results from past studies demonstrated that the accuracy of these findings is greater than 85%, indicating that the basin topography created by rapid tectonic deformations is more favorable for debris flows.
Multiphase flow predictions from carbonate pore space images using extracted network models
NASA Astrophysics Data System (ADS)
Al-Kharusi, Anwar S.; Blunt, Martin J.
2008-06-01
A methodology to extract networks from pore space images is used to make predictions of multiphase transport properties for subsurface carbonate samples. The extraction of the network model is based on the computation of the location and sizes of pores and throats to create a topological representation of the void space of three-dimensional (3-D) rock images, using the concept of maximal balls. In this work, we follow a multistaged workflow. We start with a 2-D thin-section image; convert it statistically into a 3-D representation of the pore space; extract a network model from this image; and finally, simulate primary drainage, waterflooding, and secondary drainage flow processes using a pore-scale simulator. We test this workflow for a reservoir carbonate rock. The network-predicted absolute permeability is similar to the core plug measured value and the value computed on the 3-D void space image using the lattice Boltzmann method. The predicted capillary pressure during primary drainage agrees well with a mercury-air experiment on a core sample, indicating that we have an adequate representation of the rock's pore structure. We adjust the contact angles in the network to match the measured waterflood and secondary drainage capillary pressures. We infer a significant degree of contact angle hysteresis. We then predict relative permeabilities for primary drainage, waterflooding, and secondary drainage that agree well with laboratory measured values. This approach can be used to predict multiphase transport properties when wettability and pore structure vary in a reservoir, where experimental data is scant or missing. There are shortfalls to this approach, however. We compare results from three networks, one of which was derived from a section of the rock containing vugs. Our method fails to predict properties reliably when an unrepresentative image is processed to construct the 3-D network model. This occurs when the image volume is not sufficient to represent the geological variations observed in a core plug sample.
Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
Kulessa, Bernd; Hubbard, Alun L.; Booth, Adam D.; Bougamont, Marion; Dow, Christine F.; Doyle, Samuel H.; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A. W.; Jones, Glenn A.
2017-01-01
The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. PMID:28835915
Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.
Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A
2017-08-01
The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.
CUA Annual Meeting Abstracts addition.
2012-08-01
: Foley catheters are assumed to drain the bladder to completion. We have previously shown that dependent loops along the drainage tubing create air-locks, which obstruct antegrade urine flow and result in un-drained residual bladder urine. We hypothesized that drainage characteristics of Foley catheters remain poorly understood by urologists and general surgeons. We conducted a nationwide survey of general surgery and urology training program faculty and residents, to assess perceptions of Foley catheter drainage. We designed a novel catheter drainage tube/bag that eliminates air-locks. : An anonymous illustrated questionnaire assessing Foley catheter use patterns and perception was sent to general surgery and urology residency programs (N=108) nationwide. A modified catheter drainage tube/bag unit was designed and tested. An ex vivo catheterized bladder model was designed to measure and compare urine drainage rates with the standard drainage system, versus with our novel design. : A total of 307 responses were collected from residents (55%) and faculty (45%); responses were similar among both groups (p<0.05). The majority reported that at their centers Foley catheter drainage tubes are generally positioned with a dependent loop (94.1%), and, that positioning with a dependent loop, versus without (78.1%) promoted optimal drainage. Antegrade drainage does not occur with a traditional drainage system when a >5.5 inch dependent loop in place. With our proposed design, which eliminates dependent loops, the bladder model emptied to completion consistently. : Traditional Foley catheter drainage systems, as commonly used, evacuate the bladder sub- optimally. More reliable and complete bladder drainage may decrease the incidence of catheter related UTI. The novel modified Foley catheter drainage tube/bag design presented here eliminates dependent loops, to optimize antegrade drainage.
NASA Astrophysics Data System (ADS)
Rao, Lei; Wang, Pei-fang; Dai, Qing-song; Wang, Chao
2018-05-01
In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen (NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.
NASA Astrophysics Data System (ADS)
Mest, S. C.; Harbert, W.; Crown, D. A.
2001-05-01
Geographical Information System GRID-based raster modeling of surface water runoff in the eastern Hellas region of Mars has been completed. We utilized the 0.0625 by 0.0625 degree topographic map of Mars collected by the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA) instrument to model watershed and surface runoff drainage systems. Scientific interpretation of these models with respect to ongoing geological mapping is presented in Mest et al., (2001). After importing a region of approximately 77,000,000 square kilometers into Arc/Info 8.0.2 we reprojected this digital elevation model (DEM) from a Mars sphere into a Mars ellipsoid. Using a simple cylindrical geographic projection and horizontal spatial units of decimal degrees and then an Albers projection with horizontal spatial units of meters, we completed basic hydrological modeling. Analysis of the raw DEM to determine slope, aspect, flow direction, watershed and flow accumulation grids demonstrated the need for correction of single pixel sink anomalies. After analysis of zonal elevation statistics associated with single pixel sinks, which identified 0.8 percent of the DEM points as having undefined surface water flow directions, we filled single pixel sink values of 89 meters or less. This correction is comparable with terrestrial DEMs that contain 0.9 percent to 4.7 percent of cells, which are sinks (Tarboton et al., 1991). The fill-corrected DEM was then used to determine slope, aspect, surface water flow direction and surface water flow accumulation. Within the region of interest 8,776 watersheds were identified. Using Arc/Info GRID flow direction and flow accumulation tools, regions of potential surface water flow accumulation were identified. These networks were then converted to a Strahler ordered stream network. Surface modeling produced Strahler orders one through six. As presented in Mest et al., (2001) comparisons of mapped features may prove compatible with drainage networks and watersheds derived using this methodology. Mest, Scott C., Crown, David A., and Harbert, William, 2001, Highland drainage basins and valley networks in the eastern Hellas Region of Mars, Abstract 1419, Lunar and Planetary Science XXXII Meeting Houston (CDROM). Tarboton D. G., Bras, R. L., and Rodriguez-Iturbe, 1991, On the Extraction of Channel Networks from Digital Elevation Data, Hydrological Processes, v. 5, 81-100. http://viking.eps.pitt.edu
Debris flow initiation in proglacial gullies on Mount Rainier, Washington
NASA Astrophysics Data System (ADS)
Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul
2014-12-01
Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.
Greenland Subglacial Drainage Evolution Regulated by Weakly Connected Regions of the Bed
NASA Technical Reports Server (NTRS)
Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen F.; Catania, Ginny A.; Neumann, Thomas A.; Luthi, Martin P.; Gulley, Jason; Ryser, Claudia; Hawley, Robert L.; Morriss, Blaine
2016-01-01
Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.
Greenland subglacial drainage evolution regulated by weakly connected regions of the bed
Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.; Catania, Ginny A.; Neumann, Thomas A.; Lüthi, Martin P.; Gulley, Jason; Ryser, Claudia; Hawley, Robert L.; Morriss, Blaine
2016-01-01
Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology. PMID:27991518
Greenland subglacial drainage evolution regulated by weakly connected regions of the bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.
Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage ofmore » water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. Finally, these results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.« less
Greenland subglacial drainage evolution regulated by weakly connected regions of the bed.
Hoffman, Matthew J; Andrews, Lauren C; Price, Stephen A; Catania, Ginny A; Neumann, Thomas A; Lüthi, Martin P; Gulley, Jason; Ryser, Claudia; Hawley, Robert L; Morriss, Blaine
2016-12-19
Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.
Greenland subglacial drainage evolution regulated by weakly connected regions of the bed
Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.; ...
2016-12-19
Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage ofmore » water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. Finally, these results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.« less
Greenland subglacial drainage evolution regulated by weakly connected regions of the bed
NASA Astrophysics Data System (ADS)
Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.; Catania, Ginny A.; Neumann, Thomas A.; Lüthi, Martin P.; Gulley, Jason; Ryser, Claudia; Hawley, Robert L.; Morriss, Blaine
2016-12-01
Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.
NASA Astrophysics Data System (ADS)
Kennedy, C. D.; Gall, H.; Jafvert, C. T.; Bowen, G. J.
2010-12-01
Subsurface (‘tile’) drainage, consisting of buried grids of perforated pipe, has provided a means of converting millions of acres of poorly drained soils in the Midwestern U.S. into fertile cropland. However, by altering pathways and rates of soil water and groundwater movement through agricultural lands, this practice may accelerate the loss of nitrate and other agrochemicals. To better understand the hydrological controls on nitrogen dynamics in artificially drained agricultural watersheds, a field sampling program has been established at the Animal Science Research and Education Center (ASREC) at Purdue University (West Lafayette, Indiana) to (1) measure precipitation amount, tile flow, and water-table elevation, and (2) collect water samples for analysis of nitrate, major ions, and oxygen isotope ratios in precipitation, tile drainage, shallow (1 m) and deep (3 m) groundwater, and soil water during storm events. Preliminary physical, chemical, and isotopic data collected at the ASREC show a coincident timing of peak storm ‘event water’ and peak nitrate flux in tile drainage, suggesting significant routing of infiltrating event water. In this work, we aim to refine our understanding of tile drainage at the ASREC by developing a mixing model for partitioning contributions of soil water and groundwater in tile drainage during several storm runoff events ranging in precipitation intensity and coinciding with varying antecedent soil moisture conditions. The results of our model will describe tile drainage in terms of its hydrological components, soil water and groundwater, which in turn will provide a means of incorporating the effects of tile drainage in surface/subsurface hydrological transport models.
NASA Astrophysics Data System (ADS)
Poulter, Benjamin; Goodall, Jonathan L.; Halpin, Patrick N.
2008-08-01
SummaryThe vulnerability of coastal landscapes to sea level rise is compounded by the existence of extensive artificial drainage networks initially built to lower water tables for agriculture, forestry, and human settlements. These drainage networks are found in landscapes with little topographic relief where channel flow is characterized by bi-directional movement across multiple time-scales and related to precipitation, wind, and tidal patterns. The current configuration of many artificial drainage networks exacerbates impacts associated with sea level rise such as salt-intrusion and increased flooding. This suggests that in the short-term, drainage networks might be managed to mitigate sea level rise related impacts. The challenge, however, is that hydrologic processes in regions where channel flow direction is weakly related to slope and topography require extensive parameterization for numerical models which is limited where network size is on the order of a hundred or more kilometers in total length. Here we present an application of graph theoretic algorithms to efficiently investigate network properties relevant to the management of a large artificial drainage system in coastal North Carolina, USA. We created a digital network model representing the observation network topology and four types of drainage features (canal, collector and field ditches, and streams). We applied betweenness-centrality concepts (using Dijkstra's shortest path algorithm) to determine major hydrologic flowpaths based off of hydraulic resistance. Following this, we identified sub-networks that could be managed independently using a community structure and modularity approach. Lastly, a betweenness-centrality algorithm was applied to identify major shoreline entry points to the network that disproportionately control water movement in and out of the network. We demonstrate that graph theory can be applied to solving management and monitoring problems associated with sea level rise for poorly understood drainage networks in advance of numerical methods.
Evaluation of existing and modified wetland equations in the SWAT model
USDA-ARS?s Scientific Manuscript database
The drainage significantly alters flow and nutrient pathways in small watersheds and reliable simulation at this scale is needed for effective planning of nutrient reduction strategies. The Soil and Water Assessment Tool (SWAT) has been widely utilized for prediction of flow and nutrient loads, but...
Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona
Webb, R.H.; Pringle, P.T.; Rink, G.R.
1987-01-01
A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content < 40% by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows have reached the Colorado River on an average of once every 20 to 30 yr in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 yr in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 yr, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cu ft/sec. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cu ft/sec. The debris flow of 1966 in the Crystal Creek drainage had a discharge estimated between 9,200 and 14,000 cu ft/sec. Debris flows in the Grand Canyon generally are composed of 10 to 40% sand by weight and may represent a significant source of beach-building sand along the Colorado River. The particle size distributions are very poorly sorted and the largest transported boulders were in the Crystal Creek drainage. Reworking of debris fans by the Colorado River creates debris bars that constrain the size of eddy systems and forms secondary rapids and riffles below tributary mouths. (See also W89-09239) (Lantz-PTT)
The Sensitivity of Orographic Precipitation to Flow Direction
NASA Astrophysics Data System (ADS)
Mass, C.; Picard, L.
2015-12-01
An area of substantial interest is the sensitivity of orographic precipitation to the characteristics of the incoming flow and to the surrounding environment. Some studies have suggested substantial sensitivity of precipitation within individual river drainages for relatively small directional or stability variations of incoming flow. A characterization of such flow sensitivity would be of great value for hydrometeorological prediction, the determination of Probable Maximum Precipitation statistics, and for quantifying the uncertainty in precipitation and hydrological forecasts. To gain insight into this problem, an idealized version of the Weather Research and Forecasting (WRF) modeling system was created in which simulations are driven by a single vertical sounding, with the assumption of thermal wind balance. The actual terrain is used and the full physics complement of the modeling system. The presentation will show how precipitation over the Olympic Mountains of Washington State varies as flow direction changes. This analysis will include both the aggregate precipitation over the barrier and the precipitation within individual drainages or areas. The role of surrounding terrain and the nearby coastline are also examined by removing these features from simulations. Finally, the impact of varying flow stability and speed on the precipitation over this orographic feature will be described.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by using Anti-vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John W.; West, Jeff S..
2013-01-01
An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6- DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John W.; West, Jeff S.
2017-01-01
An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6-DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has a significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to the conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.
Kaufmann, Vander; Pinheiro, Adilson; Castro, Nilza Maria dos Reis
2014-05-01
Intense rainfall adversely affects agricultural areas, causing transport of pollutants. Physically-based hydrological models to simulate flows of water and chemical substances can be used to help decision-makers adopt measures which reduce such problems. The purpose of this paper is to evaluate the performance of SWAP and ANIMO models for simulating transport of water, nitrate and phosphorus nutrients, during intense rainfall events generated by a simulator, and during natural rainfall, on a volumetric drainage lysimeter. The models were calibrated and verified using daily time series and simulated rainfall measured at 10-minute intervals. For daily time-intervals, the Nash-Sutcliffe coefficient was 0.865 for the calibration period and 0.805 for verification. Under simulated rainfall, these coefficients were greater than 0.56. The pattern of both nitrate and phosphate concentrations in daily drainage flow under simulated rainfall was acceptably reproduced by the ANIMO model. In the simulated rainfall, loads of nitrate transported in surface runoff varied between 0.08 and 8.46 kg ha(-1), and in drainage form the lysimeter, between 2.44 and 112.57 kg ha(-1). In the case of phosphate, the loads transported in surface runoff varied between 0.002 and 0.504 kg ha(-1), and in drainage, between 0.005 and 1.107 kg ha(-1). The use of the two models SWAP and ANIMO shows the magnitudes of nitrogen and phosphorus fluxes transported by natural and simulated intense rainfall in an agricultural area with different soil management procedures, as required by decision makers. Copyright © 2014 Elsevier B.V. All rights reserved.
A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution
NASA Astrophysics Data System (ADS)
Durner, W.; Diamantopoulos, E.
2014-12-01
Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.
Schilling, Keith E; Wolter, Calvin F; Isenhart, Thomas M; Schultz, Richard C
2015-11-01
Strategies to reduce nitrate-nitrogen (nitrate) pollution delivered to streams often seek to increase groundwater residence time to achieve measureable results, yet the effects of tile drainage on residence time have not been well documented. In this study, we used a geographic information system groundwater travel time model to quantify the effects of artificial subsurface drainage on groundwater travel times in the 7443-ha Bear Creek watershed in north-central Iowa. Our objectives were to evaluate how mean groundwater travel times changed with increasing drainage intensity and to assess how tile drainage density reduces groundwater contributions to riparian buffers. Results indicate that mean groundwater travel times are reduced with increasing degrees of tile drainage. Mean groundwater travel times decreased from 5.6 to 1.1 yr, with drainage densities ranging from 0.005 m (7.6 mi) to 0.04 m (62 mi), respectively. Model simulations indicate that mean travel times with tile drainage are more than 150 times faster than those that existed before settlement. With intensive drainage, less than 2% of the groundwater in the basin appears to flow through a perennial stream buffer, thereby reducing the effectiveness of this practice to reduce stream nitrate loads. Hence, strategies, such as reconnecting tile drainage to buffers, are promising because they increase groundwater residence times in tile-drained watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Diatoms as an indicator for tile drainage flow in a German lowland catchment.
Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola
2018-01-01
The separation of runoff components within a model simulation is of great importance for a successful implementation of management measures. Diatoms could be a promising indicator for tile drainage flow due to their diverse preferences to different aquatic habitats. In this study, we collected diatom samples of 9 sites (4 tile drainage, TD, and 5 river sites, Ri) in a German lowland catchment at a weekly or biweekly time step from March to July 2013 with the aim of testing the suitability of diatoms for tile drainage flow, which is typical for lowland catchment. Planothidium lanceolatum , Ulnaria biceps , and Navicula gregaria dominated in TD sites with relative abundances of 22.2, 21.5, and 10.9%, respectively. For Ri sites, the most abundant species was Navicula lanceolata (20.5%), followed by Ulnaria biceps (12.9%), Cyclotella meneghiniana (9.5%), and Planothidium lanceolatum (9.3%). Compared with Ri sites, TD had a lower diatom density, biomass, species richness, and percentage of Aquatic/Riparian diatoms (AqRi%). However, the proportion of Riparian diatoms (RiZo%) increased at TD. Indicator value method (IndVal) revealed that the two groups (Ri and TD) were characterized by different indicator species. Fifteen taxa, including Cocconeis placentula , Cyclotella meneghiniana , N. lanceolata , and U. biceps , were significant indicators for Ri sites. Planothidium lanceolatum , Achnanthidium minutissimum , and Navicula gregaria were significant indicators for TD sites. A pronounced variation was found in the species lists of diatom community between Ri and TD water body types associated with different indicator species. With respect to hydrograph separation, these findings highlight the suitability of diatoms as an indicator for tile drainage flow. However, spatial and temporal variations of diatoms should be considered in future surveys.
Passive wick fluxmeters: Design considerations and field applications
NASA Astrophysics Data System (ADS)
Gee, G. W.; Newman, B. D.; Green, S. R.; Meissner, R.; Rupp, H.; Zhang, Z. F.; Keller, J. M.; Waugh, W. J.; van der Velde, M.; Salazar, J.
2009-04-01
Optimization of water use in agriculture and quantification of percolation from landfills and watersheds require reliable estimates of vadose zone water fluxes. Current technology is limited primarily to lysimeters, which directly measure water flux but are expensive and may in some way disrupt flow, causing errors in the measured drainage. We report on design considerations and field tests of an alternative approach, passive wick fluxmeters, which use a control tube to minimize convergent or divergent flow. Design calculations with a quasi-three-dimensional model illustrate how convergence and divergence can be minimized for a range of soil and climatic conditions under steady state and transient fluxes using control tubes of varying heights. There exists a critical recharge rate for a given wick length, where the fluxmeter collection efficiency is 100% regardless of the height of the control tube. Otherwise, convergent or divergent flow will occur, especially when the control tube height is small. While divergence is eliminated in coarse soils using control tubes, it is reduced but not eliminated in finer soils, particularly for fluxes <100 mm/a. Passive wick fluxmeters were tested in soils ranging from nonvegetated semiarid settings in the United States to grasslands in Germany and rain-fed crops in New Zealand and the South Pacific. Where side-by-side comparisons of drainage were made between passive wick fluxmeters and conventional lysimeters in the United States and Germany, agreement was very good. In semiarid settings, drainage was found to depend upon precipitation distribution, surface soil, topographic relief, and the type and amount of vegetation. In Washington State, United States, soil texture dominated all factors controlling drainage from test landfill covers. As expected, drainage was greatest (>60% annual precipitation) from gravel surfaces and least (no drainage) from silt loam soils. In Oregon and New Mexico, United States, and in New Zealand, drainage showed substantial spatial variability. The New Mexico tests were located in semiarid canyon bottom terraces, with flash flood prone locations having extremely high drainage/precipitation ratios. In the wettest environments, drainage was found to be closely linked to the rate and duration of precipitation events.
Hydrologic Analysis of Fort Leonard Wood, Missouri
2015-08-01
of water available to FLW from the Roubidoux Creek drainage . In this case, because water is lost to the groundwater system while flowing through...taken from the Roubidoux Creek drainage . Roubidoux Creek is intermittent, and the stream loses water to the groundwater system as it flows through...13 Figure 5. FLW drainage divide
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...
2014-12-31
During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less
NASA Astrophysics Data System (ADS)
Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.
2011-12-01
The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.
RTC simulations on large branched sewer systems with SmaRTControl.
de Korte, Kees; van Beest, Dick; van der Plaat, Marcel; de Graaf, Erno; Schaart, Niels
2009-01-01
In The Netherlands many large branched sewer systems exist. RTC can improve the performance of these systems. The objective of the universal algorithm of SmaRTControl is to improve the performance of the sewer system and the WWTP. The effect of RTC under rain weather flow conditions is simulated using a hydrological model with 19 drainage districts. The system related inefficiency coefficient (SIC) is introduced for assessment of the performance of sewer systems. The performance can be improved by RTC in combination with increased pumping capacities in the drainage districts, but without increasing the flow to the WWTP. Under dry weather flow conditions the flow to the WWTP can be equalized by storage of wastewater in the sewer system. It is concluded that SmaRTControl can improve the performance, that simulations are necessary and that SIC is an excellent parameter for assessment of the performance.
Potential Improvements for HEC-HMS Automated Parameter Estimation
2006-08-01
and is now a graduate student in the Department of Civil and Environmental Engineering at the University of Illinois at Urbana /Champaign. Daniel...divided into 14 nested subwatersheds with a flow measuring flume constructed at each of the subwatershed outlets. The drainage areas above the...boundaries and stream network, and rain and stream gauge locations are shown in Figure 1. The first HEC-HMS model was applied to the 39.8-acre drainage
High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery
NASA Astrophysics Data System (ADS)
Tokarczyk, P.; Leitao, J. P.; Rieckermann, J.; Schindler, K.; Blumensaat, F.
2015-10-01
Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment, particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the catchment area as model input. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increases as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data are often unavailable. Modern unmanned aerial vehicles (UAVs) allow one to acquire high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility of deriving high-resolution imperviousness maps for urban areas from UAV imagery and of using this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is proposed and evaluated in a state-of-the-art urban drainage modelling exercise. In a real-life case study (Lucerne, Switzerland), we compare imperviousness maps generated using a fixed-wing consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their overall accuracy, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyse the surface runoff of the 307 individual subcatchments regarding relevant attributes, such as peak runoff and runoff volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet. We show that imperviousness maps generated from UAV images processed with modern classification methods achieve an accuracy comparable to standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on predicted surface runoff and pipe flows, when traditional workflows are used. We expect that they will have a substantial influence when more detailed modelling approaches are employed to characterize land use and to predict surface runoff. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility of flexibly acquiring up-to-date aerial images at a quality compared with off-the-shelf image products and a competitive price at the same time. We believe that in the future, urban drainage models representing a higher degree of spatial detail will fully benefit from the strengths of UAV imagery.
Triangular-shaped landforms reveal subglacial drainage routes in SW Finland
NASA Astrophysics Data System (ADS)
Mäkinen, J.; Kajuutti, K.; Palmu, J.-P.; Ojala, A.; Ahokangas, E.
2017-05-01
The aim of this study is to present the first evidence of triangular-shaped till landforms and related erosional features indicative of subglacial drainage within the ice stream bed of the Scandinavian ice sheet in Finland. Previously unidentified grouped patterns of Quaternary deposits with triangular landforms can be recognized from LiDAR-based DEMs. The triangular landforms occur as segments within geomorphologically distinguishable routes that are associated with eskers. The morphological and sedimentological characteristics as well as the distribution of the triangular landforms are interpreted to involve the creep of saturated deforming till, flow and pressure fluctuations of subglacial meltwater associated with meltwater erosion. There are no existing models for the formation of this kind of large-scale drainage systems, but we claim that they represent an efficient drainage system for subglacial meltwater transfer under high pressure conditions. Our hypothesis is that the routed, large-scale subglacial drainage systems described herein form a continuum between channelized (eskers) and more widely spread small-scale distributed subglacial drainage. Moreover, the transition from the conduit dominated drainage to triangular-shaped subglacial landforms takes place about 50-60 km from the ice margin. We provide an important contribution towards a more realistic representation of ice sheet hydrological drainage systems that could be used to improve paleoglaciological models and to simulate likely responses of ice sheets to increased meltwater production.
NASA Astrophysics Data System (ADS)
Castelltort, F. Xavier; Carles Balasch, J.; Cirés, Jordi; Colombo, Ferran
2017-04-01
A homoclinal shifting process in NE of the Ebro basin, NE Iberian Peninsula, reorganized an old flow network into a new one. This process was initiated by the reactivation of a major normal fault (Amer Fault). An anaclinal stream, flowing to the hanging wall block, incised in the fault-line scarp, accessing by headward erosion the less resistant Paleogene units. The result was the formation of a sequence of strike valleys. The first valleys are situated in a more elevated topographical position than the valleys formed later. The last and the most important valley is La Plana de Vic, which is being emptied by differential erosion in front of the resistant base layer. The study of the lateral migration of a drainage basin since its initial stages has allowed the recognition of the layout of a drainage network and its model of evolution. The new drainage network includes three different subsystems. The main subsystem consists of stream courses flowing along the strike valley. While the other two subsystems flow into the main or can flow directly to the basin sink. These are the anaclinal subsystem, which drains the scarp face of the asymmetric valley, and the cataclinal subsystem, which drains the cuesta. The process of homoclinal shifting makes the strike streams migrate laterally and dip in the less resistant unit. This migration implies the reorganization of the other two tributary subsystems. The sequence of reorganizations may be preserved on the resistant bedrock of the cuesta. This allows the reconstruction of the route of the headward erosion of the initial anaclinal stream course through remnants of ancient strike streams flowing into former basin sinks, and its cataclinal tributaries draining the cuesta. In the case study of La Plana de Vic the migration route of the basin sink can be reconstructed from its initial position, Early Pleistocene, until present day. Besides, reorganization of the cataclinal network can also be recognized. During the lateral migration three incisions were made in a large anticlinal structure in the north (Bellmunt Anticline) and one incision was made in a crystalline massif (Montseny) in the south. The last of the incisions into the Bellmunt Anticline captured by headward erosion an older drainage network with headwaters in the axial Pyrenees. The result of the homoclinal shifting process was the capture of older drainage basins and the formation of the current drainage basin of the river Ter.
Drainage capture and discharge variations driven by glaciation in the Southern Alps, New Zealand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann V. Rowan; Mitchell A. Plummer; Simon H. Brocklehurst
Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial–interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, Newmore » Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level–driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change.« less
Modeling smoke plume patterns in drainage flows
M.A. Fosberg
1985-01-01
A three-dimensional diagnostic wind model for use in complex terrain has been combined with a three-dimensional trajectory and puff air quality model. The wind model utilizes a terrain following coordinate system and conserves both mass and momentum. The wind model provides the winds required by the predictive trajectory and puff dispersion model. Both the wind model...
Evaluation of an Infiltration Model with Microchannels
NASA Astrophysics Data System (ADS)
Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.
2015-12-01
This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were implemented to calculate infiltration along with a kinematic wave model for overland flow that accounts for short-circuiting of flow. Additionally, a sensitivity analysis on the parameters implemented in the model has been performed. Finally, the field experiments results have been used to quantify the validity of the coupled model.
Fio, John L.; Leighton, David A.
1994-01-01
Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.
Environmental flows in hydro-economic models
NASA Astrophysics Data System (ADS)
Pereau, Jean-Christophe; Pryet, Alexandre
2018-03-01
The protection of environmental flows, as a management objective for a regulating agency, needs to be consistent with the aquifer water balance and the degree of resource renewability. A stylized hydro-economic model is used where natural recharge, which sustains environmental flows, is considered both in the aquifer water budget and in the welfare function as ecosystem damage. Groundwater recharge and the associated natural drainage may be neglected for aquifers containing fossil water, where the groundwater is mined. However, when dealing with an aquifer that constitutes a renewable resource, for which recharge is not negligible, natural drainage should explicitly appear in the water budget. In doing so, the optimum path of net extraction rate does not necessarily converge to the recharge rate, but depends on the costs associated with ecosystem damages. The optimal paths and equilibrium values for the water volume and water extraction are analytically derived, and numerical simulations based on the Western La Mancha aquifer (southwest Spain) illustrate the theoretical results of the study.
Simulation of Surface-Water Conditions in the Nontidal Passaic River Basin, New Jersey
Spitz, Frederick J.
2007-01-01
The Passaic River Basin, the third largest drainage basin in New Jersey, encompasses 950 mi2 (square miles) in the highly urbanized area outside New York City, with a population of 2 million. Water quality in the basin is affected by many natural and anthropogenic factors. Nutrient loading to the Wanaque Reservoir in the northern part of the basin is of particular concern and is caused partly by the diversion of water at two downstream intakes that is transferred back upstream to refill the reservoir. The larger of these diversions, Wanaque South intake, is on the lower Pompton River near Two Bridges, New Jersey. To support the development of a Total Maximum Daily Load (TMDL) for nutrients in the nontidal part of the basin (805 mi2), a water-quality transport model was needed. The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and New Jersey EcoComplex, developed a flow-routing model to provide the hydraulic inputs to the water-quality model. The Diffusion Analogy Flow model (DAFLOW) described herein was designed for integration with the Water Quality Analysis Simulation Program (WASP) watershed water-quality model. The flow routing model was used to simulate flow in 108 miles of the Passaic River and major tributaries. Flow data from U.S. Geological Survey streamflow-gaging stations represent most of the model's upstream boundaries. Other model inputs include estimated flows for ungaged tributaries and unchanneled drainage along the mainstem, and reported flows for major point-source discharges and diversions. The former flows were calibrated using the drainage-area ratio method. The simulation extended over a 4+ year period representing a range in flow conditions. Simulated channel cross-sectional geometry in the DAFLOW model was calibrated using several different approaches by adjusting area and top width parameters. The model also was calibrated to observed flows for water year 2001 (low flow) at five mainstem gaging stations and one station at which flow was estimated. The model's target range was medium to low flows--the range of typical intake operations. Simulated flow mass balance, hydrographs (flood-wave speed, attenuation, and spread), flow-duration curves, and velocity and depth values were compared to observed counterparts. Mass balance and hydrograph fit were evaluated quantitatively. Simulation results generally were within the accuracy of the flow data at the measurement stations. The model was validated to observed flows for water years 2000 (average flow), 2002 (extreme low flow), and 2003 (high flow). Results for 19 of 20 comparisons indicate average mass-balance and model-fit errors of 6.6 and 15.7 percent, respectively, indicating that the model reasonably represents the time variation of streamflow in the nontidal Passaic River Basin. An algorithm (subroutine) also was developed for DAFLOW to simulate the hydraulic mixing that occurs near the Wanaque South intake upstream from the confluence of the Pompton and Passaic Rivers. The intake draws water from multiple sources, including effluent from a nearby wastewater-treatment plant, all of which have different phosphorus loads. The algorithm determines the proportion of flow from each source and operates within a narrow flow range. The equations used in the algorithm are based on the theory of diffusion and lateral mixing in rivers. Parameters used in the equations were estimated from limited available local flow and water-quality data. As expected, simulation results for water years 2000, 2001, and 2003 indicate that most of the water drawn to the intake comes from the Pompton River; however, during many short periods of low flow and high diversion, particularly in water year 2002, entrainment of the other flow sources compensated for the insufficient flow in the Pompton River. As additional verification of the flow model used in the water-quality model, a Branched Lagrangian Transport Model (B
Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.
2004-01-01
Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are ephemeral and supply inflow to the valley floor only during spring runoff in wet years or during large precipitation events. Annual unit-area runoff for the perennial drainages was used to estimate inflow from ephemeral drainages totaling 11,700 acre-feet per year. The totaled estimate of perennial and ephemeral tributary inflows to Carson Valley is 37,600 acre-feet per year. Gaged perennial inflow is 27 percent of the total, ungaged perennial inflow is 42 percent, and ephemeral inflow is 31 percent. The estimate is from 50 to 60 percent greater than three previous estimates, one made for a larger area and similar to two other estimates made for larger areas. The combined uncertainty of the estimates totaled about 33 percent of the total inflow or about 12,000 acre-feet per year.
NASA Astrophysics Data System (ADS)
Hossain, S., Jr.
2015-12-01
Rainfall induced flooding during rainy season is a regular phenomenon in Dhaka City. Almost every year a significant part of the city suffers badly with drainage congestion. There are some highly dense areas with lower ground elevation which submerge under water even with an intense precipitation of few hours. The higher areas also suffer with the drainage problem due to inadequate maintenance of the system and encroachment or illegal filling up of the drainage canals and lakes. Most part of the city suffered from long term urban flooding during historical extreme rainfall events in September 2004, 2007 and July 2009. The situation is likely to worsen in the future due to Climate Change, which may lead to more frequent and intense precipitation. To assess the major and minor drainage systems and elements of the urban basins using the hydrodynamic modelling and, through this, identifying the flooding events and areas, taking into account the current situation and future flood or drainage scenarios. Stormwater modeling has a major role in preventing issues such as flash floods and urban water-quality problems. Stormwater models of a lowered spatial resolution would thus appear valuable if only their ability to provide realistic results could be proved. The present scenario of urban morphology of Dhaka city and existing drainage system is complex for hydrological and hydrodynamic modeling. Furthermore limitations of background data and uncertain future urban scenarios may confine the potential outputs of a model. Although several studies were carried out including modeling for drainage master planning, a detail model for whole DAP (Detaile Area Plan) of Dhaka city area is not available. The model developed under this study is covering the existing drainage system in the study area as well as natural flows in the fringe area. A good number of models are available for hydrological and hydraulic analysis of urban areas. These are MIKE 11, MOUSE, HEC-RAS, HEC HMS and EPA SWMM. EPA-SWMM is used for the study area which is mostly developed and consists pipe networks, open channels and water bodies. This study proposes a methodology for rapid catchment delineation and stormwater management model (SWMM) set-up in a large urban area with model calibration and validation.
Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.
Weaver, J.C.
1997-01-01
Drainage area and low-flow discharge profiles are presented for the Deep River. The drainage-area profile shows downstream increases in basin size. At the mouth, the drainage area for the Deep River is 1,441 square miles. Low-flow discharge profiles for the Deep River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included.
NASA Astrophysics Data System (ADS)
Simkins, L. M.; Carter, S. P.; Greenwood, S. L.; Schroeder, D. M.
2017-12-01
Understanding meltwater at the base of ice sheets is critical for predicting ice flow and subglacial sediment deformation. Whereas much progress has been made with observing contemporary systems, these efforts have been limited by the short temporal scales of remote sensing data, the restricted spatial coverage of radar sounding data, and the logistical challenges of direct access. Geophysical and sedimentological data from deglaciated continental shelves reveal broad spatial and temporal perspectives of subglacial hydrology, that complement observations of contemporary systems. Massive bedrock channels, such as those on the sediment-scoured inner continental shelf of the Amundsen Sea and the western Antarctic Peninsula, are up to hundreds of meters deep, which indicate either catastrophic drainage events or slower channel incision over numerous glaciations or sub-bank full drainage events. The presence of these deep channels has implications for further ice loss as they may provide conduits today for warm water incursion into sub-ice shelf cavities. Sediment-based subglacial channels, widespread in the northern hemisphere terrestrial domain and increasingly detected on both Arctic and Antarctic marine margins, help characterize more ephemeral drainage systems active during ice sheet retreat. Importantly, some observed sediment-based channels are connected to upstream subglacial lakes and terminate at paleo-grounding lines. From these records of paleo-subglacial hydrology, we extract the relative timing of meltwater drainage, estimate water fluxes, and contemplate the sources and ultimate fate of basal meltwater, refining predictive models for modern systems. These insights provided by geological data fill a gap in knowledge regarding spatial and temporal dynamics of subglacial hydrology and offer hindsight into meltwater drainage influence/association with ice flow and retreat behavior. The union of information gathered from paleo- and contemporary subglacial hydrology strengthens our understanding of the nature of meltwater drainage beneath ice sheets and informs better theory and numerical models.
NASA Astrophysics Data System (ADS)
Park, E.; Jeong, J.
2017-12-01
A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.
NASA Astrophysics Data System (ADS)
Chiu, C.; Bowling, L. C.
2011-12-01
The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.
Davis, Niall F.; McMahon, Barry P.; Walsh, Michael; McDermott, Thomas E.D.; Thornhill, John A.; Manecksha, Rustom P.
2017-01-01
Introduction We aimed to investigate irrigation and drainage characteristics of commercially available urethral catheters and determined which catheter offers the best flow characteristics. Material and methods Twelve different commercially available urethral catheters from three companies (Bard™, Rusch™ and Dover™) were investigated to compare their irrigation and drainage properties. Irrigation port, drainage port and overall cross-sectional areas for a 24Fr 3-way catheter was measured and compared. The maximum (Qmax) and average (Qavg) irrigation and drainage flow rates for each catheter was measured for 20–40 seconds using uroflowmetry. The primary endpoint was to determine which catheter offers optimal irrigation and drainage parameters. Results Overall cross-sectional area, irrigation port cross-sectional area, and drainage port cross-sectional area differed significantly for each 24Fr 3-way catheter assessed (p <0.001). The 24Fr 3-way Rusch Simplastic™ catheter consistently demonstrated the greatest maximal flow rate (Qmax: 5 ±0.3 ml/s) and average flow rate (Qavg: 4.6 ±0.2 ml/s) for irrigation. The 24Fr 3-way Dover™ catheter provided the greatest drainage properties (Qmax: 19.7 ±2 ml/s; Q avg: 15.9 ±5 ml/s). In the setting of continuous bladder irrigation, the 24Fr 3-way Rusch Simplastic™ catheter provided the highest irrigation rates (Qmax: 6.6 ±1.8 ml/s; Q avg: 4.6 ±0.9 ml/s). Conclusions Three-way catheters demonstrate significant differences in their irrigation and drainage characteristics. The type of catheter selected should be based on the appropriate prioritization of efficient bladder irrigation versus efficient bladder drainage. PMID:29410890
Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart
2014-03-15
Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.
Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado
Cannon, S.H.; Kirkham, R.M.; Parise, M.
2001-01-01
A torrential rainstorm on September 1, 1994 at the recently burned hillslopes of Storm King Mountain, CO, resulted in the generation of debris flows from every burned drainage basin. Maps (1:5000 scale) of bedrock and surficial materials and of the debris-flow paths, coupled with a 10-m Digital Elevation Model (DEM) of topography, are used to evaluate the processes that generated fire-related debris flows in this setting. These evaluations form the basis for a descriptive model for fire-related debris-flow initiation. The prominent paths left by the debris flows originated in 0- and 1st-order hollows or channels. Discrete soil-slip scars do not occur at the heads of these paths. Although 58 soil-slip scars were mapped on hillslopes in the burned basins, material derived from these soil slips accounted for only about 7% of the total volume of material deposited at canyon mouths. This fact, combined with observations of significant erosion of hillslope materials, suggests that a runoff-dominated process of progressive sediment entrainment by surface runoff, rather than infiltration-triggered failure of discrete soil slips, was the primary mechanism of debris-flow initiation. A paucity of channel incision, along with observations of extensive hillslope erosion, indicates that a significant proportion of material in the debris flows was derived from the hillslopes, with a smaller contribution from the channels. Because of the importance of runoff-dominated rather than infiltration-dominated processes in the generation of these fire-related debris flows, the runoff-contributing area that extends upslope from the point of debris-flow initiation to the drainage divide, and its gradient, becomes a critical constraint in debris-flow initiation. Slope-area thresholds for fire-related debris-flow initiation from Storm King Mountain are defined by functions of the form Acr(tan ??)3 = S, where Acr is the critical area extending upslope from the initiation location to the drainage divide, and tan ?? is its gradient. The thresholds vary with different materials. ?? 2001 Elsevier Science B.V. All rights reserved.
An ecohydrological model for studying groundwater-vegetation interactions in wetlands
NASA Astrophysics Data System (ADS)
Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui
2011-10-01
SummaryDespite their importance to the natural environment, wetlands worldwide face drastic degradation from changes in land use and climatic patterns. To help preservation efforts and guide conservation strategies, a clear understanding of the dynamic relationship between coupled hydrology and vegetation systems in wetlands, and their responses to engineering works and climate change, is needed. An ecohydrological model was developed in this study to address this issue. The model combines a hydrology component based on the Richards' equation for characterizing variably saturated groundwater flow, with a vegetation component described by Lotka-Volterra equations tailored for plant growth. Vegetation is represented by two characteristic wetland herbaceous plant types which differ in their flood and drought resistances. Validation of the model on a study site in the Everglades demonstrated the capability of the model in capturing field-measured water table and transpiration dynamics. The model was next applied on a section of the Nee Soon swamp forest, a tropical wetland in Singapore, for studying the impact of possible drainage works on the groundwater hydrology and native vegetation. Drainage of 10 m downstream of the wetland resulted in a localized zone of influence within half a kilometer from the drainage site with significant adverse impacts on groundwater and biomass levels, indicating a strong need for conservation. Simulated water table-plant biomass relationships demonstrated the capability of the model in capturing the time-lag in biomass response to water table changes. To test the significance of taking plant growth into consideration, the performance of the model was compared to one that substituted the vegetation component with a pre-specified evapotranspiration rate. Unlike its revised counterpart, the original ecohydrological model explicitly accounted for the drainage-induced plant biomass decrease and translated the resulting reduced transpiration toll back to the groundwater hydrology for a more accurate soil water balance. This study represents, to our knowledge, the first development of an ecohydrological model for wetland ecosystems that characterizes the coupled relationship between variably-saturated groundwater flow and plant growth dynamics.
Characterization of the hydraulic performance of a gully under drainage conditions.
Martins, Ricardo; Leandro, Jorge; de Carvalho, Rita Fernandes
2014-01-01
During rainfall events with low return periods (1-20 years) the drainage system can provide some degree of protection to urban areas. The system design is based not only on good hydraulic performance of the surface and the sewer network but also on their linking elements. Although the linking elements are of utmost importance as they allow the exchange of flow between the surface and the sewer network, there is a lack of studies that thoroughly characterize them. One crucial structural part of those elements is the gully. State-of-the-art dual-drainage models often use simplified formulae to replicate the gully hydraulic behaviour that lacks proper validation. This work focuses on simulating, both numerically and experimentally, the hydraulic performance of a 0.6 × 0.3 × 0.3 [m] (L × W × D) gully located inside an 8 × 0.5 × 0.5 [m] rectangular channel. The numerical simulations are conducted with the OpenFOAM toolbox and validated with water level measurements in the Multiple-Linking-Element experimental installation located at the Laboratory of Hydraulics of the University of Coimbra. The results provide a complete three-dimensional insight of the hydraulic behaviour of the flow inside the gully, and discharge coefficient formulae are disclosed that can be directly applied in dual-drainage models as internal boundary conditions.
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Channelized subglacial drainage over a deformable bed
Walder, J.S.; Fowler, A.
1994-01-01
We develop theoretically a description of a possible subglacial drainage mechanism for glaciers and ice sheets moving over saturated, deformable till. The model is based on the plausible assumption that flow of water in a thin film at the ice-till interface is unstable to the formation of a channelized drainage system, and is restricted to the case in which meltwater cannot escape through the till to an underlying aquifer. In describing the physics of such channelized drainage, we have generalized and extended Rothlisberger's model of channels cut into basal ice to include "canals' cut into the till, paying particular attention to the role of sediment properties and the mechanics of sediment transport. We show that sediment-floored Rothlisberger (R) channels can exist for high effective pressures, and wide, shallow, ice-roofed canals cut into the till for low effective pressures. Canals should form a distributed, non-arborescent system, unlike R channels. Geologic evidence derived from land forms and deposits left by the Pleistocene ice sheets in North America and Europe is consistent with predictions of the model. -from Authors
Boundary effects on forced drainage through aqueous foam
NASA Astrophysics Data System (ADS)
Brannigan, G.; de Alcantara Bonfim, O. F.
2001-03-01
The flow of liquid through foam confined in vertical tubes was investigated by measuring the velocity vf of the liquid front forced down by gravity for various flow rates Q. The power law relating the velocity to flow rate of the incoming liquid (v_f ~ Q^α) was observed for tubes of various cross-sectional areas, A. The exponent α was found to vary linearly with the reciprocal of the area: α= 0.325 + 13.7 mm^2/A . This further supports the node-dominated foam drainage model, which predicts α= 1/3 in the limit of infinite cross-sectional area. This relation appears to be independent of bubble size, suggesting that using smaller foam bubbles may not alleviate boundary effects. The results of these experiments also partially explain the discrepancies in measurements of α reported in previous works.
NASA Astrophysics Data System (ADS)
Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.
2014-12-01
Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.
NASA Astrophysics Data System (ADS)
Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.
2016-04-01
Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.
Uncertainty in surface water flood risk modelling
NASA Astrophysics Data System (ADS)
Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.
2009-04-01
Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.
Estimation of hectare-scale soil-moisture characteristics from aquifer-test data
Moench, A.F.
2003-01-01
Analysis of a 72-h, constant-rate aquifer test conducted in a coarse-grained and highly permeable, glacial outwash deposit on Cape Cod, Massachusetts revealed that drawdowns measured in 20 piezometers located at various depths below the water table and distances from the pumped well were significantly influenced by effects of drainage from the vadose zone. The influence was greatest in piezometers located close to the water table and diminished with increasing depth. The influence of the vadose zone was evident from a gap, in the intermediate-time zone, between measured drawdowns and drawdowns computed under the assumption that drainage from the vadose zone occurred instantaneously in response to a decline in the elevation of the water table. By means of an analytical model that was designed to account for time-varying drainage, simulated drawdowns could be closely fitted to measured drawdowns regardless of the piezometer locations. Because of the exceptional quality and quantity of the data and the relatively small aquifer heterogeneity, it was possible by inverse modeling to estimate all relevant aquifer parameters and a set of three empirical constants used in the upper-boundary condition to account for the dynamic drainage process. The empirical constants were used to define a one-dimensional (ID) drainage versus time curve that is assumed to be representative of the bulk material overlying the water table. The curve was inverted with a parameter estimation algorithm and a ID numerical model for variably saturated flow to obtain soil-moisture retention curves and unsaturated hydraulic conductivity relationships defined by the Brooks and Corey equations. Direct analysis of the aquifer-test data using a parameter estimation algorithm and a two-dimensional, axisymmetric numerical model for variably saturated flow yielded similar soil-moisture characteristics. Results suggest that hectare-scale soil-moisture characteristics are different from core-scale predictions and even relatively small amounts of fine-grained material and heterogeneity can dominate the large-scale soil-moisture characteristics and aquifer response. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cassidy, Rachel; Doody, Donnacha; Watson, Catherine
2016-04-01
Despite the implementation of EU regulations controlling the use of fertilisers in agriculture, reserves of phosphorus (P) in soils continue to pose a threat to water quality. Mobilisation and transport of legacy P from soil to surface waters has been highlighted as a probable cause of many water bodies continuing to fail to achieve targets under the Water Framework Directive. However, the rates and quantities lost from farmland, and the timescales for positive change to water quality, following cessation of P inputs, remain poorly understood. Monitoring data from an instrumented grassland research site in Northern Ireland provide some insights. The site is located in a hydrologically 'flashy' landscape characterised by steep gradients and poorly drained soils over impermeable bedrock. Between 2000 and 2005 soil Olsen P concentrations were altered in five 0.2 ha hydrologically isolated grazed grassland plots through chemical fertiliser applications of 0, 10, 20, 40, 80 kg P ha-1yr-1. By 2004 this had resulted in soil Olsen P concentrations of 19, 24, 28, 38 and 67 mg P L-1 across the plots, after which applications ceased. Subsequently, until 2012, changes in soil Olsen P across the plots and losses to overland flow and drainage were monitored, with near-continuous flow measurement and water samples abstracted for chemical analysis. Runoff events were sampled at 20 minute intervals while drainage flows were taken as a weekly composite of 4-hourly samples. Overland flow events were defined by at least 24 hours without flow being recorded at the respective plot outlets. Drainage flow was examined on a weekly basis as it was continuous except during prolonged dry periods. To examine the hydrological drivers of overland flow and drainage losses the dissolved reactive P (DRP) and total P (TP) time series were synchronised with rainfall data and modelled soil moisture deficits. Results demonstrated that from 2005-2012 there was no significant difference among plots in the recorded TP and DRP time series for either overland flow or drainage flow despite the large variation in soil Olsen P. Flow-weighted mean concentrations for overland flow losses declined slightly over the period but remained in excess of the chemical Environmental Quality Standard in all plots (EQS; 0.035 mg/L). In individual events the plot receiving zero P fertiliser inputs since 2000 often lost as much, or more, P than the plot which received 80 kg ha-1 yr-1 up to 2005. Annual loads also reflect this. Drainage losses showed no decline over the period. The hydrological drivers, particularly the antecedent dry period and soil moisture, were observed to have a greater influence on P loss from the plots than soil P status. Given that Olsen P often forms the basis of nutrient management advice this raises questions on the environmental sustainability of current nutrient advice for some soil types under similar geoclimatic conditions.
Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.
2012-01-01
In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow Creek, Iron Creek, and West Fork Mogollon Creek. Drainage basins with estimated debris-flow volumes greater than 100,000 m3 for the 25-year-recurrence event, 24 percent of the basins modeled, also include tributaries to Deep Creek, Mineral Creek, Gilita Creek, West Fork Gila River, Mogollon Creek, and Turkey Creek, among others. Basins with the highest combined probability and volume relative hazard rankings for the 25-year-recurrence rainfall include tributaries to Whitewater Creek, Mineral Creek, Willow Creek, West Fork Gila River, West Fork Mogollon Creek, and Turkey Creek. Debris flows from Whitewater, Mineral, and Willow Creeks could affect the southwestern New Mexico communities of Glenwood, Alma, and Willow Creek. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be necessary within a 2- to 3-year period of vulnerability following the Whitewater-Baldy Fire. This work is preliminary and is subject to revision. It is being provided because of the need for timely "best science" information. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.
Paybins, Katherine S.
2003-01-01
Characteristics of perennial and intermittent headwater streams were documented in the mountaintop removal coal-mining region of southern West Virginia in 2000?01. The perennial-flow origin points were identified in autumn during low base-flow conditions. The intermittent-flow origin points were identified in late winter and early spring during high base-flow conditions. Results of this investigation indicate that the median drainage area upstream of the origin of intermittent flow was 14.5 acres, and varied by an absolute median of 3.4 acres between the late winter measurements of 2000 and early spring measurements of 2001. Median drainage area in the northeastern part of the study unit was generally larger (20.4 acres), with a lower median basin slope (322 feet per mile) than the southwestern part of the study unit (12.9 acres and 465 feet per mile, respectively). Both of the seasons preceding the annual intermittent flow visits were much drier than normal. The West Virginia Department of Environmental Protection reports that the median size of permitted valley fills in southern West Virginia is 12.0 acres, which is comparable to the median drainage area upstream of the ephemeralintermittent flow point (14.5 acres). The maximum size of permitted fills (480 acres), however, is more than 10 times the observed maximum drainage area upstream of the ephemeral-intermittent flow point (45.3 acres), although a single valley fill may cover more than one drainage area. The median drainage area upstream of the origin of perennial flow was 40.8 acres, and varied by an absolute median of 18.0 acres between two annual autumn measurements. Only basins underlain with mostly sandstone bedrock produced perennial flow. Perennial points in the northeast part of the study unit had a larger median drainage area (70.0 acres) and a smaller median basin slope (416 feet per mile) than perennial points in the southwest part of the study unit (35.5 acres and 567 feet per mile, respectively). Some streams were totally dry for one or both of the annual October visits. Both of the seasons preceding the October visits had near normal to higher than normal precipitation. These dry streams were adjacent to perennial streams draining similarly sized areas, suggesting that local conditions at a firstorder- stream scale determine whether or not there will be perennial flow. Headwater-flow rates varied little from year to year, but there was some variation between late winter and early spring and autumn. Flow rates at intermittent points of flow origin ranged from 0.001 to 0.032 cubic feet per second, with a median of 0.017 cubic feet per second. Flow rates at perennial points of flow origin ranged from 0.001 to 0.14 cubic feet per second, with a median of 0.003 cubic feet per second.
Water Drainage from Unsaturated Soils in a Centrifuge Permeameter
NASA Astrophysics Data System (ADS)
Ornelas, G.; McCartney, J.; Zhang, M.
2013-12-01
This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and Darcy's law is no longer valid) was at a relatively high degree of saturation of 0.8. This finding is important as many water flow analyses in the literature assume that Darcy's law is valid over a much wider range of degrees of saturation, an error that potentially may lead to overestimates of water flow in unsaturated soil layers.
Costanza-Robinson, Molly S; Henry, Eric J
2017-03-01
Surfactant miscible-displacement (SMD) column experiments are used to measure air-water interfacial area (A I ) in unsaturated porous media, a property that influences solute transport and phase-partitioning. The conventional SMD experiment results in surface tension gradients that can cause water redistribution and/or net drainage of water from the system ("surfactant-induced flow"), violating theoretical foundations of the method. Nevertheless, the SMD technique is still used, and some suggest that experimental observations of surfactant-induced flow represent an artifact of improper control of boundary conditions. In this work, we used numerical modeling, for which boundary conditions can be perfectly controlled, to evaluate this suggestion. We also examined the magnitude of surfactant-induced flow and its impact on A I measurement during multiple SMD flow scenarios. Simulations of the conventional SMD experiment showed substantial surfactant-induced flow and consequent drainage of water from the column (e.g., from 75% to 55% S W ) and increases in actual A I of up to 43%. Neither horizontal column orientation nor alternative boundary conditions resolved surfactant-induced flow issues. Even for simulated flow scenarios that avoided surfactant-induced drainage of the column, substantial surfactant-induced internal water redistribution occurred and was sufficient to alter surfactant transport, resulting in up to 23% overestimation of A I . Depending on the specific simulated flow scenario and data analysis assumptions used, estimated A I varied by nearly 40% and deviated up to 36% from the system's initial A I . We recommend methods for A I determination that avoid generation of surface-tension gradients and urge caution when relying on absolute A I values measured via SMD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Incremental terrain processing for large digital elevation models
NASA Astrophysics Data System (ADS)
Ye, Z.
2012-12-01
Incremental terrain processing for large digital elevation models Zichuan Ye, Dean Djokic, Lori Armstrong Esri, 380 New York Street, Redlands, CA 92373, USA (E-mail: zye@esri.com, ddjokic@esri.com , larmstrong@esri.com) Efficient analyses of large digital elevation models (DEM) require generation of additional DEM artifacts such as flow direction, flow accumulation and other DEM derivatives. When the DEMs to analyze have a large number of grid cells (usually > 1,000,000,000) the generation of these DEM derivatives is either impractical (it takes too long) or impossible (software is incapable of processing such a large number of cells). Different strategies and algorithms can be put in place to alleviate this situation. This paper describes an approach where the overall DEM is partitioned in smaller processing units that can be efficiently processed. The processed DEM derivatives for each partition can then be either mosaicked back into a single large entity or managed on partition level. For dendritic terrain morphologies, the way in which partitions are to be derived and the order in which they are to be processed depend on the river and catchment patterns. These patterns are not available until flow pattern of the whole region is created, which in turn cannot be established upfront due to the size issues. This paper describes a procedure that solves this problem: (1) Resample the original large DEM grid so that the total number of cells is reduced to a level for which the drainage pattern can be established. (2) Run standard terrain preprocessing operations on the resampled DEM to generate the river and catchment system. (3) Define the processing units and their processing order based on the river and catchment system created in step (2). (4) Based on the processing order, apply the analysis, i.e., flow accumulation operation to each of the processing units, at the full resolution DEM. (5) As each processing unit is processed based on the processing order defined in (3), compare the resulting drainage pattern with the drainage pattern established at the coarser scale and adjust the drainage boundaries and rivers if necessary.
Coupled flow and deformations in granular systems beyond the pendular regime
NASA Astrophysics Data System (ADS)
Yuan, Chao; Chareyre, Bruno; Darve, Felix
2017-06-01
A pore-scale numerical model is proposed for simulating the quasi-static primary drainage and the hydro-mechanical couplings in multiphase granular systems. The solid skeleton is idealized to a dense random packing of polydisperse spheres by DEM. The fluids (nonwetting and wetting phases) space is decomposed to a network of tetrahedral pores based on the Regular Triangulation method. The local drainage rules and invasion logic are defined. The fluid forces acting on solid grains are formulated. The model can simulate the hydraulic evolution from a fully saturated state to a low level of saturation but beyond the pendular regime. The features of wetting phase entrapments and capillary fingering can also be reproduced. Finally, a primary drainage test is performed on a 40,000 spheres of sample. The water retention curve is obtained. The solid skeleton first shrinks then swells.
A quantitative study on accumulation of age mass around stagnation points in nested flow systems
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Wei; Wan, Li; Ge, Shemin; Cao, Guo-Liang; Hou, Guang-Cai; Hu, Fu-Sheng; Wang, Xu-Sheng; Li, Hailong; Liang, Si-Hai
2012-12-01
The stagnant zones in nested flow systems have been assumed to be critical to accumulation of transported matter, such as metallic ions and hydrocarbons in drainage basins. However, little quantitative research has been devoted to prove this assumption. In this paper, the transport of age mass is used as an example to demonstrate that transported matter could accumulate around stagnation points. The spatial distribution of model age is analyzed in a series of drainage basins of different depths. We found that groundwater age has a local or regional maximum value around each stagnation point, which proves the accumulation of age mass. In basins where local, intermediate and regional flow systems are all well developed, the regional maximum groundwater age occurs at the regional stagnation point below the basin valley. This can be attributed to the long travel distances of regional flow systems as well as stagnancy of the water. However, when local flow systems dominate, the maximum groundwater age in the basin can be located around the local stagnation points due to stagnancy, which are far away from the basin valley. A case study is presented to illustrate groundwater flow and age in the Ordos Plateau, northwestern China. The accumulation of age mass around stagnation points is confirmed by tracer age determined by 14C dating in two boreholes and simulated age near local stagnation points under different dispersivities. The results will help shed light on the relationship between groundwater flow and distributions of groundwater age, hydrochemistry, mineral resources, and hydrocarbons in drainage basins.
Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.
Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F
2015-03-01
Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.
2005-01-01
Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A
Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.
Jaynes, D B; Isenhart, T M
2014-03-01
Riparian buffers are a proven practice for removing NO from overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage, most of the subsurface flow leaving fields is passed through the buffers in drainage pipes, leaving little opportunity for NO removal. We investigated the feasibility of re-routing a fraction of field tile drainage as subsurface flow through a riparian buffer for increasing NO removal. We intercepted an existing field tile outlet draining a 10.1-ha area of a row-cropped field in central Iowa and re-routed a fraction of the discharge as subsurface flow along 335 m of an existing riparian buffer. Tile drainage from the field was infiltrated through a perforated pipe installed 75 cm below the surface by maintaining a constant head in the pipe at a control box installed in-line with the existing field outlet. During 2 yr, >18,000 m (55%) of the total flow from the tile outlet was redirected as infiltration within the riparian buffer. The redirected water seeped through the 60-m-wide buffer, raising the water table approximately 35 cm. The redirected tile flow contained 228 kg of NO. On the basis of the strong decrease in NO concentrations within the shallow groundwater across the buffer, we hypothesize that the NO did not enter the stream but was removed within the buffer by plant uptake, microbial immobilization, or denitrification. Redirecting tile drainage as subsurface flow through a riparian buffer increased its NO removal benefit and is a promising management practice to improve surface water quality within tile-drained landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Leclaire, Sébastien; Parmigiani, Andrea; Malaspinas, Orestis; Chopard, Bastien; Latt, Jonas
2017-03-01
This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this field, using a complex geometry that originates from a 3D scan of a porous sandstone. The methods presented in this article were implemented in the open-source PALABOS library, a general C++ matrix-based library well adapted for massive fluid flow parallel computation.
Base flow calibration in a global hydrological model
NASA Astrophysics Data System (ADS)
van Beek, L. P.; Bierkens, M. F.
2006-12-01
Base flow constitutes an important water resource in many parts of the world. Its provenance and yield over time are governed by the storage capacity of local aquifers and the internal drainage paths, which are difficult to capture at the global scale. To represent the spatial and temporal variability in base flow adequately in a distributed global model at 0.5 degree resolution, we resorted to the conceptual model of aquifer storage of Kraaijenhoff- van de Leur (1958) that yields the reservoir coefficient for a linear groundwater store. This model was parameterised using global information on drainage density, climatology and lithology. Initial estimates of aquifer thickness, permeability and specific porosity from literature were linked to the latter two categories and calibrated to low flow data by means of simulated annealing so as to conserve the ordinal information contained by them. The observations used stem from the RivDis dataset of monthly discharge. From this dataset 324 stations were selected with at least 10 years of observations in the period 1958-1991 and an areal coverage of at least 10 cells of 0.5 degree. The dataset was split between basins into a calibration and validation set whilst preserving a representative distribution of lithology types and climate zones. Optimisation involved minimising the absolute differences between the simulated base flow and the lowest 10% of the observed monthly discharge. Subsequently, the reliability of the calibrated parameters was tested by reversing the calibration and validation sets.
Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.
2017-12-01
Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.
The application of Mike Urban model in drainage and waterlogging in Lincheng county, China
NASA Astrophysics Data System (ADS)
Luan, Qinghua; Zhang, Kun; Liu, Jiahong; Wang, Dong; Ma, Jun
2018-06-01
Recently, the water disaster in cities especially in Chinese mountainous cities is more serious, due to the coupling influences of waterlogging and regional floods. It is necessary to study the surface runoff process of mountainous cities and examine the regional drainage pipeline network. In this study, the runoff processes of Lincheng county (located in Hebei province, China) in different scenarios were simulated through Mike Urban model. The results show that all of the runoff process of the old town and the new residential area with larger slope, is significant and full flow of these above zones exists in the part of the drainage pipeline network; and the overflow exists in part of the drainage pipeline network when the return period is ten years or twenty years, which illuminates that the waterlogging risk in this zone of Lincheng is higher. Therefore, remodeling drainage pipeline network in the old town of Lincheng and adding water storage ponds in the new residential areas were suggested. This research provides both technical support and decision-making reference to local storm flood management, also give the experiences for the study on the runoff process of similar cities.
Capillary trapping of particles in thin-film flows
NASA Astrophysics Data System (ADS)
Dressaire, Emilie; Gomez, Michael; Colnet, Benedicte; Sauret, Alban
2017-11-01
When a thin layer of suspension flows over a substrate, some particles remain trapped on the solid surface. When the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and the dynamics of the liquid films. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films and the resulting loss of transported material. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the drainage dynamics exhibits behavior that cannot be captured with a continuum model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 & CNRS-PICS-07242 & ACS-PRF 55845-ND9.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.
1991-04-01
Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.
Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA
NASA Astrophysics Data System (ADS)
Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.
2012-12-01
Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length relates to the poorly understood bulking process where feedback mechanisms working to progressively increase sediment concentrations likely operate. The apparent length dependence revealed in this study requires a shift in thought about the conditions leading to debris flow generation in catchments dominated by unconsolidated and transportable material.
Drainage network optimization for inundation mitigation case study of ITS Surabaya
NASA Astrophysics Data System (ADS)
Savitri, Yang Ratri; Lasminto, Umboro
2017-06-01
Institut Teknologi Sepuluh Nopember (ITS) Surabaya is one of engineering campus in Surabaya with an area of ± 187 ha, which consists of building and campus facilities. The campus is supported by drainage system planned according to the ITS Master Plan on 2002. The drainage system is planned with numbers of retention and detention pond based on the city concept of Zero Delta Q concept. However, in the rainy season, it frequently has inundation problems in several locations. The problems could be identified from two major sources, namely the internal campus facilities and external condition connected with the city drainage system. This paper described the capabilities of drainage network optimization to mitigate local urban drainage problem. The hydrology-hydraulic investigation was done by utilizing the Storm Water Management Model (SWMM) developed by US Environmental Protection Agency (EPA). The mitigation is based on several alternative that based on the existing condition and regarding the social problem. The study results showed that the management of the flow from external source could reduce final stored volume of the campus main channel by 31.75 %.
A postscript to Circulation of the blood: men and ideas.
Riley, R L
1982-10-01
Since 1964, when Fishman and Richards published Circulation of the Blood: Men and Ideas, Guyton's model of the circulation, in which mean circulatory pressure serves as the upstream pressure for venous return, has been extended, and the concept of vascular smooth muscle tone acting like the pressure surrounding a Starling resistor has been postulated. According to this scheme, the positive zero flow intercepts of rapidly determined arterial pressure-flow curves are the effective downstream pressures for arterial flow to different tissues. The arterioles, like Starling resistors, determine the downstream pressures and are followed by abrupt pressure drops, or "waterfalls." Capillary pressures are closely linked to those of the venules into which they flow. Capillary-venular pressures are the upstream pressures for venous return. In exercising muscles, reduced arteriolar tone lowers arteriolar pressure and increases arterial flow. This, in turn, raises capillary-venular pressure and increases venous flow. The arteriolar-capillary waterfall is decreased or eliminated. Total blood flow is increased by diversion of blood from tissues with slow venous drainage to muscles with fast venous drainage (low resistance X compliance). The heart pumps away the increased venous return by shifting to a new ventricular function curve.
NASA Astrophysics Data System (ADS)
Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui
2004-02-01
With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.
Stably stratified canopy flow in complex terrain
NASA Astrophysics Data System (ADS)
Xu, X.; Yi, C.; Kutter, E.
2015-07-01
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.
Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.
2016-08-18
Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most groundwater discharge recharged within the boundaries of the shipyard is to the dry docks; only at the western end of the shipyard does groundwater discharge directly to Puget Sound. Particle tracking for the existing long-term monitoring well network suggests that only a few wells intercept groundwater that originates as recharge within the shipyard boundary.
NASA Astrophysics Data System (ADS)
Sivanesapillai, Rakulan; Falkner, Nadine; Hartmaier, Alexander; Steeb, Holger
2016-09-01
We present a conservative smoothed particle hydrodynamics (SPH) model to study the flow of multiple, immiscible fluid phases in porous media using direct pore-scale simulations. Particular focus is put on continuously tracking the evolution of interfacial areas, which are considered to be important morphological quantities affecting multiphase transport in porous media. In addition to solving the Navier-Stokes equations, the model accounts for the effects of capillarity at interfaces and contact lines. This is done by means of incorporating the governing interfacial mass and momentum balances using the continuum surface force (CSF) method, thus rendering model calibration routines unnecessary and minimizing the set of constitutive and kinematic assumptions. We address the application of boundary conditions at rigid solid surfaces and study the predictive capability of the model as well as optimal choices for numerical parameters using an extensive model validation procedure. We demonstrate the applicability of the model to simulate multiphase flows involving partial wettability, dynamic effects, large density ratios (up to 1000), large viscosity ratios (up to 100), as well as fragmentation and coalescence of fluid phases. The model is used to study the evolution of fluid-fluid interfacial areas during saturation-controlled primary drainage and main imbibition of heterogeneous pore spaces at low capillary numbers. A variety of pore-scale effects, such as wetting phase entrapment and fragmentation due to snap-off, are observed. Specific fluid-fluid interfacial area is observed to monotonically increase during primary drainage and hysteretic effects are apparent during main imbibition.
Warne, A.G.; Toth, L.A.; White, W.A.
2000-01-01
Major controls on the retention, distribution, and discharge of surface water in the historic (precanal) Kissimmee drainage basin and river were investigated to determine reference conditions for ecosystem restoration. Precanal Kissimmee drainage-basin hydrology was largely controlled by landforms derived from relict, coastal ridge, lagoon, and shallow-shelf features; widespread carbonate solution depressions; and a poorly developed fluvial drainage network. Prior to channelization for flood control, the Kissimmee River was a very low gradient, moderately meandering river that flowed from Lake Kissimmee to Lake Okeechobee through the lower drainage basin. We infer that during normal wet seasons, river discharge rapidly exceeded Lake Okeechobee outflow capacity, and excess surface water backed up into the low-gradient Kissimmee River. This backwater effect induced bankfull and peak discharge early in the flood cycle and transformed the flood plain into a shallow aquatic system with both lacustrine and riverine characteristics. The large volumes of surface water retained in the lakes and wetlands of the upper basin maintained overbank flow conditions for several months after peak discharge. Analysis indicates that most of the geomorphic work on the channel and flood plain occurred during the frequently recurring extended periods of overbank discharge and that discharge volume may have been significant in determining channel dimensions. Comparison of hydrogeomorphic relationships with other river systems identified links between geomorphology and hydrology of the precanal Kissimmee River. However, drainage-basin and hydraulic geometry models derived solely from general populations of river systems may produce spurious reference conditions for restoration design criteria.
NASA Technical Reports Server (NTRS)
Andrews, Lauren C.; Poinar, Kristin; Dow, Christine F.; Nowicki, Sophie M.
2017-01-01
Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980- 2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial- lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially and the probability of crevassing at high elevations will play an important role in how the subglacial system, proglacial discharge and ice motion will respond to future increases in surface melt production and runoff.
Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.
Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B
2007-01-01
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.
Subglacial efficiency and storage modified by the temporal pattern of high-elevation meltwater input
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Dow, C. F.; Poinar, K.; Nowicki, S.
2017-12-01
Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980-2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial-lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially and the probability of crevassing at high elevations will play an important role in how the subglacial system, proglacial discharge and ice motion will respond to future increases in surface melt production and runoff.
Subglacial efficiency and storage modified by the temporal pattern of high-elevation meltwater input
NASA Astrophysics Data System (ADS)
Ackley, S. F.; Maksym, T.; Stammerjohn, S. E.; Gao, Y.; Weissling, B.
2016-12-01
Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980-2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial-lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially and the probability of crevassing at high elevations will play an important role in how the subglacial system, proglacial discharge and ice motion will respond to future increases in surface melt production and runoff.
Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi
2015-01-06
CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.
Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.
Gómez, Manuel; Recasens, Joan; Russo, Beniamino; Martínez-Gomariz, Eduardo
2016-10-01
Inlet efficiency is a requirement for characterizing the flow transfers between surface and sewer flow during rain events. The dual drainage approach is based on the joint analysis of both upper and lower drainage levels, and the flow transfer is one of the relevant elements to define properly this joint behaviour. This paper presents the results of an experimental and numerical investigation about the inlet efficiency definition. A full scale (1:1) test platform located in the Technical University of Catalonia (UPC) reproduces both the runoff process in streets and the water entering the inlet. Data from tests performed on this platform allow the inlet efficiency to be estimated as a function of significant hydraulic and geometrical parameters. A reproduction of these tests through a numerical three-dimensional code (Flow-3D) has been carried out simulating this type of flow by solving the RANS equations. The aim of the work was to reproduce the hydraulic performance of a previously tested grated inlet under several flow and geometric conditions using Flow-3D as a virtual laboratory. This will allow inlet efficiencies to be obtained without previous experimental tests. Moreover, the 3D model allows a better understanding of the hydraulics of the flow interception and the flow patterns approaching the inlet.
Frehmann, T; Niemann, A; Ustohal, P; Geiger, W F
2002-01-01
Four individual mathematical submodels simulating different subsystems of urban drainage were intercoupled to an integral model. The submodels (for surface runoff, flow in sewer system, wastewater treatment plant and receiving water) were calibrated on the basis of field data measured in an existing urban catchment investigation. Three different strategies for controlling the discharge in the sewer network were defined and implemented in the integral model. The impact of these control measures was quantified by representative immission state-parameters of the receiving water. The results reveal that the effect of a control measure may be ambivalent, depending on the referred component of a complex drainage system. Furthermore, it is demonstrated that the drainage system in the catchment investigation can be considerably optimised towards environmental protection and operation efficiency if an appropriate real time control on the integral scale is applied.
NASA Astrophysics Data System (ADS)
Jahangeer, F.; Gupta, P. K.; Yadav, B. K.
2017-12-01
Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The findings of the study help to enhance the understanding of the sustainable soil-water resources management and agricultural practices.
Amplification of postwildfire peak flow by debris
NASA Astrophysics Data System (ADS)
Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.
2016-08-01
In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.
Amplification of postwildfire peak flow by debris
Kean, Jason W.; McGuire, Luke; Rengers, Francis K.; Smith, Joel B.; Staley, Dennis M.
2016-01-01
In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.
Sharma, Ashwani Kumar; Gaikwad, Shailesh; Gupta, Vipul; Garg, Ajay; Mishra, Nalini K
2008-04-01
Since it was first described, normal pressure hydrocephalus (NPH) and its treatment by means of cerebrospinal fluid (CSF) shunting have been the focus of much investigation. Whatever be the cause of NPH, it has been hypothesized that in this disease there occurs decreased arterial expansion and an increased brain expansion leading to increased transmantle pressure. We cannot measure the latter, but fortunately the effect of these changes (increased peak flow velocity through the aqueduct) can be quantified with cine phase-contrast magnetic resonance imaging (MRI). This investigation was thus undertaken to characterize and measure CSF peak flow velocity at the level of the aqueduct, before and after lumbar CSF drainage, by means of a phase-contrast cine MRI and determine its role in selecting cases for shunt surgery. 37 patients with clinically suspected NPH were included in the study. Changes in the hyperdynamic peak CSF flow velocity with 50 ml lumbar CSF drainage (mimicking shunt) were evaluated in them for considering shunt surgery. 14 out of 15 patients who were recommended for shunt surgery, based on changes peak flow velocity after lumbar CSF drainage, improved after shunt surgery. None of the cases which were not recommended for shunt surgery, based on changes in CSF peak flow velocity after lumbar CSF drainage, improved after shunt surgery (2 out of 22 cases). The study concluded that the phase-contrast MR imaging, done before and after CSF drainage, is a sensitive method to support the clinical diagnosis of normal pressure hydrocephalus, selecting patients of NPH who are likely to benefit from shunt surgery, and to select patients of NPH who are not likely to benefit from shunt surgery.
NASA Astrophysics Data System (ADS)
Bird, B. M.; Devitt, D.
2012-12-01
Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand the thermal dynamics of cold air drainage. Granier probes were installed in the five test species to monitor transpirational flow relative to cold air movement. Mid day soil - plant - water measurements are also being taken on a monthly basis during the growing season at all locations. Measurements include: leaf xylem water potential, stomata conductance, chlorophyll index readings, canopy minus ambient temperatures and surface soil moisture contents. To date the monitoring system has revealed cold air drainage occurring during periods of every month. We will report the physiological response of the five plant species, with emphasis on assessing the linkages with cold air movement.
4 Living roofs in 3 locations: Does configuration affect runoff mitigation?
NASA Astrophysics Data System (ADS)
Fassman-Beck, Elizabeth; Voyde, Emily; Simcock, Robyn; Hong, Yit Sing
2013-05-01
Four extensive living roofs and three conventional (control) roofs in Auckland, New Zealand have been evaluated over periods of 8 months to over 2 yrs for stormwater runoff mitigation. Up to 56% cumulative retention was measured from living roofs with 50-150 mm depth substrates installed over synthetic drainage layers, and with >80% plant coverage. Variation in cumulative %-retention amongst sites is attributed to different durations of monitoring, rather than actual performance. At all sites, runoff rarely occurred at all from storms with less than 25 mm of precipitation, from the combined effects of substrates designed to maximize moisture storage and because >90% of individual events were less than 25 mm. Living roof runoff depth per event is predicted well by a 2nd order polynomial model (R2 = 0.81), again demonstrating that small storms are well managed. Peak flow per event from the living roofs was 62-90% less than a corresponding conventional roof's runoff. Seasonal retention performance decreased slightly in winter, but was nonetheless substantial, maintaining 66% retention at one site compared to 45-93% in spring-autumn at two sites. Peak flow mitigation did not vary seasonally. During a 4-month period of concurrent monitoring at all sites, varied substrate depth did not influence runoff depth (volume), %-retention, or %-peak flow mitigation compared to a control roof at the same site. The magnitude of peak flow was greater from garden shed-scale living roofs compared to the full-scale living roofs. Two design aspects that could be manipulated to increase peak flow mitigation include lengthening the flow path through the drainage layer to vertical gutters and use of flow-retarding drainage layer materials.
NASA Astrophysics Data System (ADS)
Cavanagh, J. P.; Lampkin, D. J.; Moon, T.
2017-12-01
The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.
NASA Astrophysics Data System (ADS)
Askarinejad, Amin; Molinari, Orlando; Macek, Matej; Petkovsek, Ana; Springman, Sarah
2013-04-01
The Slano Blato landslide, with a volume of more than 1 million m3, is one of the largest landslides in Slovenia. The sliding mass consists mainly of clay and clayey gravel of highly weathered and deteriorated flysch type clastic soft rocks, while a minor part represents grains of limestones. Large movements were firstly scientifically reported in 1789 by B. Hacquet followed by the catastrophic events in 1888 and 1902. The landslide was stabilised through extensive remediation measures approximately 100 years ago. The landslide was reactivated again in November 2000, after an intense rainfall event. The upper part of the landslide was stabilized by a curved row of large hollow dowels (6 to 8 m in diameter and ~20 m deep), which were designed to fulfil both retaining and the drainage requirements. Draining the sliding material will have two effects, i) decreasing the unsaturated hydraulic conductivity of the slope and ii) increasing the effective stress and shear strength of the sliding material. The drainage efficiency of the installed dowels is examined analytically and numerically. The analytical calculation is performed under simplified assumptions according to the classical theory of Dupuit and Thiem. Comparison between these results and limited insitu measurements implies that the amount of water discharge into the dowels and the groundwater drawdown can be fairly well determined using a simplified 3D analytical model. The numerical calculations were conducted using the finite element program PLAXIS under different steady state and transient scenarios. Results are compared with a case of 'no drainage' to capture the extent of drainage upslope and downslope. These simulations show that the installation of the dowels leads to successful drainage of the slope at least to a radius of 40 m. The pattern of potential lines of the flow net in the slope, derived from the 3D analytical models, shows that the row of dowels can be replaced by a 2D plane flow trench drain with equivalent hydraulic properties. This observation is valid due to the small spacing between the dowels and is supported by the agreement between the results of 2D plane flow analyses and the insitu measurements of the discharge into the dowels and water table drawdown. However, it should be noted that analytical and numerical results include significant simplifications in the soil models and boundary conditions. For example, assuming uniform hydraulic properties for the materials might have important effects, especially in the case of the Slano Blato landslide, as flysch bedrock exhibits significant heterogeneous hydro-mechanical features. Accordingly, models need to be calibrated further based on a denser network of insitu measurements.
Drainage water management is a conservation practice that has the potential to reduce drainage outflow and nitrate (NO3) loss from agricultural fields while maintaining or improving crop yields. The goal of this study was to quantify the impact of drainage water management on dra...
Birch, A A; Eynon, C A; Schley, D
2006-01-01
The objective of this report is to highlight the potential for false pressure measurements from systems that combine intracranial pressure (ICP) measurement and ventricular drainage. If the ports of the drain become blocked to the extent that they present a high resistance to cerebrospinal fluid flow, then a significant pressure gradient between the inside and outside of the catheter may be established. Thus, any intracatheter transducer will faithfully record a pressure much lower than true ICP. This holds true for catheter-tip transducers when the transducer lies inside the catheter. In the absence of flow, however, pressures will equalize; therefore, accurate measurements may be taken if the drain is temporarily closed. We model this situation and provide simulations of expected measurements in such situations; these compare well to observed clinical readings.
Numerical Simulation of Abandoned Gob Methane Drainage through Surface Vertical Wells
Hu, Guozhong
2015-01-01
The influence of the ventilation system on the abandoned gob weakens, so the gas seepage characteristics in the abandoned gob are significantly different from those in a normal mining gob. In connection with this, this study physically simulated the movement of overlying rock strata. A spatial distribution function for gob permeability was derived. A numerical model using FLUENT for abandoned gob methane drainage through surface wells was established, and the derived spatial distribution function for gob permeability was imported into the numerical model. The control range of surface wells, flow patterns and distribution rules for static pressure in the abandoned gob under different well locations were determined using the calculated results from the numerical model. PMID:25955438
Traum, Jonathan A.; Phillips, Steven P.; Bennett, George L.; Zamora, Celia; Metzger, Loren F.
2014-01-01
To better understand the potential effects of restoration flows on existing drainage problems, anticipated as a result of the San Joaquin River Restoration Program (SJRRP), the U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Reclamation (Reclamation), developed a groundwater flow model (SJRRPGW) of the SJRRP study area that is within 5 miles of the San Joaquin River and adjacent bypass system from Friant Dam to the Merced River. The primary goal of the SJRRP is to reestablish the natural ecology of the river to a degree that restores salmon and other fish populations. Increased flows in the river, particularly during the spring salmon run, are a key component of the restoration effort. A potential consequence of these increased river flows is the exacerbation of existing irrigation drainage problems along a section of the river between Mendota and the confluence with the Merced River. Historically, this reach typically was underlain by a water table within 10 feet of the land surface, thus requiring careful irrigation management and (or) artificial drainage to maintain crop health. The SJRRPGW is designed to meet the short-term needs of the SJRRP; future versions of the model may incorporate potential enhancements, several of which are identified in this report. The SJRRPGW was constructed using the USGS groundwater flow model MODFLOW and was built on the framework of the USGS Central Valley Hydrologic Model (CVHM) within which the SJRRPGW model domain is embedded. The Farm Process (FMP2) was used to simulate the supply and demand components of irrigated agriculture. The Streamflow-Routing Package (SFR2) was used to simulate the streams and bypasses and their interaction with the aquifer system. The 1,300-square mile study area was subdivided into 0.25-mile by 0.25-mile cells. The sediment texture of the aquifer system, which was used to distribute hydraulic properties by model cell, was refined from that used in the CVHM to better represent the natural heterogeneity of aquifer-system materials within the model domain. In addition, the stream properties were updated from the CVHM to better simulate stream-aquifer interactions, and water-budget subregions were refined to better simulate agricultural water supply and demand. External boundary conditions were derived from the CVHM. The SJRRPGW was calibrated for April 1961 to September 2003 by using groundwater-level observations from 133 wells and streamflow observations from 19 streamgages. The model was calibrated using public-domain parameter estimation software (PEST) in a semi-automated manner. The simulated groundwater-level elevations and trends (including seasonal fluctuations) and surface-water flow magnitudes and trends reasonably matched observed data. The calibrated model is planned to be used to assess the potential effects of restoration flows on agricultural lands and the relative capabilities of proposed SJRRP actions to reduce these effects.
Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne
2016-01-01
Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.
NASA Astrophysics Data System (ADS)
Wheater, H. S.; Xu, L.; Gober, P.; Pomeroy, J. W.; Wong, J.
2017-12-01
Extensive agricultural drainage of lakes and wetlands in the Canadian Prairies has led to benefits for agricultural production, but has had a substantial influence on hydrological regimes and wetland extent. There is need for the potential impacts of current policy in changing the socio-hydrological resilience of prairie wetland basins in response to agricultural drainage to be examined. Whilst wetland drainage can increase agricultural productivity, it can also reduce stocks of natural capital and decrease ecosystem services, such as pollutant retention, habitat for waterfowls, carbon sequestration, and downstream flood attenuation. Effective policies that balance drainage benefits and negative externalities have to consider pricing. This is explored here using the Cold Regions Hydrological Model for hydrological simulations and the Inclusive Wealth approach for modelling in support of cost-benefit analysis. Inclusive wealth aggregates the value of natural, human, and technological assets used to produce social welfare. A shadow price, defined as the marginal change in social value for a marginal change in the current stock quantity, is used to valuate assets that contribute to social welfare. The shadow price of each asset is estimated by taking into account the social and economic benefits and external losses of wetland services caused by wetland drainage. The coupled model was applied to the Smith Creek Research Basin in south-eastern Saskatchewan, Canada where wetland drainage has caused major alterations of the hydrological regime including increased peak flows, discharge volumes and duration of streamflow. Changes in depressional storage in wetlands was used to calculate the corresponding changes of inclusive wealth over a 30-year period under the impacts from the limitation proposed in the Agricultural Water Management Strategy of Saskatchewan. The adjusted societal values of drainage demonstrate the dynamics between changes in hydrological conditions of wetland basins and social welfare, which help to evaluate potential impacts of the current policy on the resilience and sustainability of socio-hydrological systems. The results also help determine effective goals for management to maximize the societal benefits of drainage and minimize its negative impacts on ecosystem functions.
Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System
NASA Astrophysics Data System (ADS)
KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.
2017-12-01
The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.
2016-09-06
Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.
Modeling nitrate removal in a denitrification bed
USDA-ARS?s Scientific Manuscript database
Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...
Charles A. Harrison; Susan O’Ney
2002-01-01
We developed procedures for installing prefabricated trapezoidal flumes in deep (10 to 12 feet) drainage ditches to monitor hydrologic functions and provide gauge locations for sampling discharge. Flows from the instrumented basins were generally low, but the ditches were occasionally subject to high flows caused by rain events of 2 to 3 inches or more. These high flow...
Carbon dioxide transport over complex terrain
Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.
2004-01-01
The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.
Corn stover harvest increases herbicide movement to subsurface drains: RZWQM simulations
Shipitalo, Martin J.; Malone, Robert W.; Ma, Liwang; Nolan, Bernard T.; Kanwar, Rameshwar S.; Shaner, Dale L.; Pederson, Carl H.
2016-01-01
BACKGROUND Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor, and metolachlor oxanilic acid (OXA). RESULTS The model accurately simulated field-measured metolachlor transport in drainage. A 3-yr simulation indicated that 50% residue removal decreased subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4 to 5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, ~ 2-fold reductions in OXA losses were simulated with residue removal. CONCLUSION RZWQM indicated that if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase due to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease due to the more rapid movement of the parent compound into the soil.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
Drainage for land treatment sites must be evaluated with respect to the purpose the system is meant to achieve. Off-site drainage controls the flow of storm runoff onto the site or groundwater incursion into the soil within the site. On-site drainage is employed for a variety of reasons. These two areas of drainage control must be designed as a…
NASA Astrophysics Data System (ADS)
Chen, Yi-Feng; Hong, Jia-Min; Zheng, Hua-Kang; Li, Yi; Hu, Ran; Zhou, Chuang-Bing
2016-03-01
The Jinping-I double-curvature arch dam, located in the middle reach of Yalong River and with a maximum height of 305 m, is the world's highest dam of this type that has been completed. Since the second stage of reservoir impounding, after which the reservoir water level was gradually raised by about 232 m, a significant amount of leakage was observed from the drainage holes drilled in the lowest drainage tunnel at the left bank abutment at an elevation of 1595 m a.s.l. (above sea level), with an observed maximum pressure of about 0.3 MPa. A number of investigations, including water quality analysis, digital borehole imaging, tunnel geological mapping, and in situ groundwater monitoring, were performed to examine the source of leaking, the groundwater flow paths, and the performance of the grouting curtains. By defining two objective functions using the in situ time series measurements of flow rate and hydraulic head, respectively, a multiobjective inverse modeling procedure was proposed to evaluate the permeability of the foundation rocks that was underestimated in the design stage. This procedure takes advantage of the orthogonal design, finite element forward modeling of the transient groundwater flow, artificial neural network, and non-dominated sorting genetic algorithm, hence significantly reducing the computational cost and improving the reliability of the inversed results. The geological structures that lead to the leakage were identified and the seepage flow behaviors in the dam foundation and the left bank abutment were assessed. Based on the field measurements and the inverse modeling results, the effects of the engineering treatments of the leakage event on the dam safety were analyzed. It has been demonstrated that the seepage control system is effective in lowering the groundwater level and limiting the amount of seepage in the dam foundation, and the leakage event does not pose a threat to the safety of the dam.
Yuan Yuan; Thomas Meixner; Mark E. Fenn; Jirka Simunek
2011-01-01
Soil water dynamics and drainage are key abiotic factors controlling losses of atmospherically deposited N in Southern California. In this paper soil N leaching and trace gaseous emissions simulated by the DAYCENT biogeochemical model using its original semi‐dynamic water flow module were compared to that coupled with a finite element transient water flow...
August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine
Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.
2003-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.
NASA Astrophysics Data System (ADS)
Haiblen, Anna; Ward, Brent; Normandeau, Philippe; Campbell, Janet
2017-04-01
Esker networks have traditionally been invoked to represent the channelised subglacial drainage system in shield terrains. However, eskers are only one landform found within 'subglacial meltwater corridors' (SMCs) on the Canadian Shield. SMCs are tracts where till has been eroded, bedrock is exposed, and glaciofluvial sediments have been deposited. SMCs are regularly spaced, parallel deglacial ice-flow directions, have undulating longitudinal profiles, and cross modern drainage divides. Our lidar- and field-based mapping near Lac de Gras, Northwest Territories, west of the Keewatin Ice Divide (KID), reveals that eskers are not present in the majority of SMCs. Instead, enigmatic mounds are commonly the dominant landform type. Enigmatic mounds typically occur in groups of 20 to 200. They are commonly composed of sandy diamicton that is coarser grained and better sorted than regional till. This diamicton is occasionally draped with well-sorted, stratified glaciofluvial sediments. Some enigmatic mounds have a single highpoint (individual mounds) while others have a complex, irregular form (complex mounds). Individual mounds have an average long-axis length of 43 m and an average height of < 2 m, however, their size is highly variable: the largest mounds are 170 m long and 15 m high. Complex mounds are typically larger than individual mounds. Our morphometric analysis shows that individual mounds have a mean length-to-width ratio of 1.8. The average mound elongation direction parallels the final ice flow that affected the area. However, where meltwater- and ice-flow directions differ, mound long-axis orientations typically cluster about meltwater flow directions. We have also observed SMCs and enigmatic mounds in the South Rae region of Northwest Territories, 450 km SE of Lac de Gras. Multiple types of enigmatic mounds are present in this area: some are similar to those near Lac de Gras, some are composed of till, and some are composed of sorted and stratified sediments. SMCs likely formed late during deglaciation because the enigmatic mounds and eskers that they contain do not appear to have been significantly affected by ice flow following their deposition. We suggest that transient, sheet-type subglacial meltwater flow events resulted in erosion and transport of basal till. Meltwater was likely sourced from supraglacial lakes that formed and drained catastrophically when the ablation zone of the Laurentide Ice Sheet affected the area. The enigmatic mounds that we have observed near Lac de Gras may have been deposited from a slurry-type flow. Eskers likely formed later, after a channelised drainage system was established. It is possible that SMCs are the Quaternary landscape record of lake-drainage events similar to those that occur in Southwest Greenland today. The hydraulic conditions required to create enigmatic mounds are different to those required for esker formation. Thus, SMCs, not just the eskers that they sometimes contain, should be considered when parameters are developed for numerical models relating to subglacial drainage systems in shield terrains. Determining the genesis of landforms found within SMCs will improve our understanding of hydraulic conditions in the subglacial, channelised drainage system during ice-sheet retreat and decay.
NASA Astrophysics Data System (ADS)
Kim, Byung Sik; Jeung, Se Jin; Lee, Dong Seop; Han, Woo Suk
2015-04-01
As the abnormal rainfall condition has been more and more frequently happen and serious by climate change and variabilities, the question whether the design of drainage system could be prepared with abnormal rainfall condition or not has been on the rise. Usually, the drainage system has been designed by rainfall I-D-F (Intensity-Duration-Frequency) curve with assumption that I-D-F curve is stationary. The design approach of the drainage system has limitation not to consider the extreme rainfall condition of which I-D-F curve is non-stationary by climate change and variabilities. Therefore, the assumption that the I-D-F curve is stationary to design drainage system maybe not available in the climate change period, because climate change has changed the characteristics of extremes rainfall event to be non-stationary. In this paper, design rainfall by rainfall duration and non-stationary I-D-F curve are derived by the conditional GEV distribution considering non-stationary of rainfall characteristics. Furthermore, the effect of designed peak flow with increase of rainfall intensity was analyzed by distributed rainfall-runoff model, S-RAT(Spatial Runoff Assessment Tool). Although there are some difference by rainfall duration, the traditional I-D-F curves underestimates the extreme rainfall events for high-frequency rainfall condition. As a result, this paper suggest that traditional I-D-F curves could not be suitable for the design of drainage system under climate change condition. Keywords : Drainage system, Climate Change, non-stationary, I-D-F curves This research was supported by a grant 'Development of multi-function debris flow control technique considering extreme rainfall event' [NEMA-Natural-2014-74] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of KOREA
Utility of 222Rn as a passive tracer of subglacial distributed system drainage
NASA Astrophysics Data System (ADS)
Linhoff, Benjamin S.; Charette, Matthew A.; Nienow, Peter W.; Wadham, Jemma L.; Tedstone, Andrew J.; Cowton, Thomas
2017-03-01
Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L-1), decreasing by a factor of 2-5 (3-5 dpm L-1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.
NASA Astrophysics Data System (ADS)
Zepp, Harald; König, Christoph; Kranl, Julius; Becker, Martin; Werth, Barbara; Rathje, Michael
2017-06-01
The application of the groundwater flow model SPRING to the city of Düsseldorf, Germany (217 km2) as part of a larger hydrological catchment area (708 km2) required developing a new, robust calculation scheme (RUBINFLUX) for groundwater recharge with a high spatial and temporal resolution. RUBINFLUX combines a novel approach for drainage from the unsaturated zone with proven hydrological components. The drainage is calculated as a natural exponential function using the difference between the actual storage and the water storage at field capacity without making use of the Richards equation. The simulated groundwater recharge values at each element of the groundwater mesh were used as the upper boundary condition. After transient calibration of the groundwater flow model against 871 observation wells, the transient variations of the groundwater levels at locations not influenced by river levels were accurately simulated. The integration of RUBINFLUX into SPRING has proved suitable for complex hydrological systems.
Armstrong, David S.; Parker, Gene W.; Richards, Todd A.
2003-01-01
Streamflow characteristics and methods for determining streamflow requirements for habitat protection were investigated at 23 active index streamflow-gaging stations in southern New England. Fish communities sampled near index streamflow-gaging stations in Massachusetts have a high percentage of fish that require flowing-water habitats for some or all of their life cycle. The relatively unaltered flow condition at these sites was assumed to be one factor that has contributed to this condition. Monthly flow durations and low flow statistics were determined for the index streamflow-gaging stations for a 25- year period from 1976 to 2000. Annual hydrographs were prepared for each index station from median streamflows at the 50-percent monthly flow duration, normalized by drainage area. A median monthly flow of 1 ft3/s/mi2 was used to split hydrographs into a high-flow period (November–May), and a low-flow period (June–October). The hydrographs were used to classify index stations into groups with similar median monthly flow durations. Index stations were divided into four regional groups, roughly paralleling the coast, to characterize streamflows for November to May; and into two groups, on the basis of base-flow index and percentage of sand and gravel in the contributing area, for June to October. For the June to October period, for index stations with a high base-flow index and contributing areas greater than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.57, 0.49, and 0.46 ft3/s/mi2 for July, August, and September, respectively. For index stations with a low base-flow index and contributing areas less than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.34, 0.28, and 0.27 ft3/s/mi2 for July, August, and September, respectively. Streamflow variability between wet and dry years can be characterized by use of the interquartile range of median streamflows at selected monthly flow durations. For example, the median Q50 discharge for August had an interquartile range of 0.30 to 0.87 ft3/s/mi2 for the high-flow group and 0.16 to 0.47 ft3/s/mi2 for the low-flow group. Streamflow requirements for habitat protection were determined for 23 index stations by use of three methods based on hydrologic records, the Range of Variability Approach, the Tennant method, and the New England Aquatic-Base-Flow method. Normalized flow management targets determined by the Range of Variability Approach for July, August, and September ranged between 0.21 and 0.84 ft3/s/mi2 for the low monthly flow duration group, and 0.37 and 1.27 ft3/s/mi2 for the high monthly flow duration group. Median streamflow requirements for habitat protection during summer for the 23 index streamflow-gaging stations determined by the Tennant method, normalized by drainage area, were 0.81, 0.61, and 0.21 ft3/s/mi2 for the Tennant 40-, 30-, and 10-percent of the mean annual flow methods, representing good, fair, and poor stream habitat conditions in summer, according to Tennant. New England Aquatic-Base-Flow streamflow requirements for habitat protection during summer were determined from median of monthly mean flows for August for index streamflow-gaging stations having drainage areas greater than 50 mi2 . For five index streamflow-gaging stations in the low median monthly flow group, the average median monthly mean streamflow for August, normalized by drainage area, was 0.48 ft3/s/mi2. Streamflow requirements for habitat protection were determined for riffle habitats near 10 index stations by use of two methods based on hydraulic ratings, the Wetted-Perimeter and R2Cross methods. Hydraulic parameters required by these methods were simulated by calibrated HEC-RAS models. Wetted-Perimeter streamflow requirements for habitat protection, normalized by drainage area, ranged between 0.13 and 0.58 ft3/s/mi2, and had a median value of 0.37 ft3/s/mi2. Streamflow requirements determined by the R2Cross 3-of-3 criteria method ranged between 0.39 and 2.1 ft3/s/mi2 , and had a median of 0.84 ft3/s/mi2. Streamflow requirements determined by the R2Cross 2-of-3 criteria method, normalized by drainage area, ranged between 0.16 and 0.85 ft3/s/mi2 and had a median of 0.36 ft3/s/mi2 , respectively. Streamflow requirements determined by the different methods were evaluated by comparison to streamflow statistics from the index streamflow-gaging stations.
Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.
2009-01-01
Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...
2016-01-01
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
NASA Astrophysics Data System (ADS)
Kavka, P.; Jeřábek, J.; Strouhal, L.
2016-12-01
The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for the choice of the simulation model. Several representatives of practically oriented models (SMODERP is one of them) will be tested for the output sensitivity to selected precipitation scenario comparing to variability connected with other inputs uncertainty. The research was supported by the grant QJ1520265 of the Czech Ministry of Agriculture.
INVESTIGATION OF DRY-WEATHER POLLUTANT ENTRIES INTO STORM-DRAINAGE SYSTEMS
This article describes the results of a series of research tasks to develop a procedure to investigate non-stormwater (dry-weather) entries into storm drainage systems. Dry-weather flows discharging from storm drainage systems can contribute significant pollutant loadings to rece...
Low-flow profiles of the Tallapoosa River and tributaries in Georgia
Carter, R.F.; Hopkins, E.H.; Perlman, H.A.
1988-01-01
Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The report is the fourth in a series of reports presenting the results of a low flow study of all stream basins north of the Fall Line in Georgia. This report covers the part of the Tallapoosa River basin in the Piedmont province of Georgia. The low flow characteristic presented is the minimum average flow for 7 consecutive days with a 10-year recurrence interval (7Q10). The data are presented in tables and shown graphically as ' low flow profiles ' (low flow plotted against distance along a stream channel), and as ' drainage area profiles ' (drainage area plotted against distance along a stream channel). Low flow profiles were constructed by interpolation or extrapolation from points of known low flow data. Low flow profiles are included for all stream reaches where low flow data of sufficient accuracy are available to justify computation of the profiles. Drainage area profiles are included for all stream basins > 5 sq mi, except for those in a few remote areas. Flow records were not adjusted for diversions or other factors that cause measured flows to represent conditions other than natural flow. (Author 's abstract)
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, Leslie D.; Glatfelter, Dale R.
1991-01-01
Equations for estimating the 7-day, 2-year and 7oday, 10-year low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low-flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow-duration ratio, which is the 20-percent flow duration divided by the 90-percent flow duration. Flow-duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from the plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow-duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low-flow characteristics at 82 gaging stations where flow-duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-year and 7-day, 10-year low flows are 19 and 28 percent. When flow-duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46 and 61 percent. However, when stations having drainage areas of less than 10 square miles are excluded from the test, the standard errors decrease to 38 and 49 percent. Standard errors increase when stations with small basins are included, probably because some of the flow-duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow-duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and central physiographic zones of the State. Low-flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low-flow characteristic can be adjusted. The method is most accurate for sites having drainage areas ranging from 10 to 1,000 square miles and for predictions of 7-day, 10-year low flows ranging from 0.5 to 340 cubic feet per second.
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, L.D.; Glatfelter, D.R.
1986-01-01
Equations for estimating the 7-day, 2-yr and 7-day, 10-yr low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow duration ratio, which is the 20% flow duration divided by the 90% flow duration. Flow duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from this plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low flow characteristics at 82 gaging stations where flow duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-yr and 7-day, 10-yr low flows are 19% and 28%. When flow duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46% and 61%. However, when stations with drainage areas < 10 sq mi are excluded from the test, the standard errors reduce to 38% and 49%. Standard errors increase when stations with small basins are included, probably because some of the flow duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and the central physiographic zones of the state. Low flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low flow characteristic can be adjusted. The method is most accurate for sites with drainage areas ranging from 10 to 1,000 sq mi and for predictions of 7-day, 10-yr low flows ranging from 0.5 to 340 cu ft/sec. (Author 's abstract)
Modeling Antarctic Subglacial Lake Filling and Drainage Cycles
NASA Technical Reports Server (NTRS)
Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.
2016-01-01
The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.
Integration of sewer system maps in topographically based sub-basin delineation in suburban areas
NASA Astrophysics Data System (ADS)
Jankowfsky, Sonja; Branger, Flora; Braud, Isabelle; Rodriguez, Fabrice
2010-05-01
Due to the increase of urbanization, suburban areas experience a fast change in land use. The impact of such modifications on the watershed hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the possibility to take into account land use change, and more particularly to consider urbanized areas and anthropogenic features such as roads or ditches and their impact on the hydrological cycle. A detailed definition of the hydrographical drainage network and a corresponding delineation of sub-basins is therefore necessary as input to distributed models. Sub-basins in natural catchments are usually delineated using standard GIS based terrain analysis. The drainage network in urbanised watersheds is often modified, due to sewer systems, ditches, retention basins, etc.. Therefore, its delineation is not only determined by topography. The simple application of terrain analysis algorithms to delineate sub-basins in suburban areas can consequently lead to erroneous sub-basin borders. This study presents an improved approach for sub-basin delineation in suburban areas. It applies to small catchments connected to a sewage plant, located outside the catchment boundary. The approach assumes that subsurface flow follows topography. The method requires a digital elevation model (DEM), maps of land use, cadastre, sewer system and the location of measurement stations and retention basins. Firstly, the topographic catchment border must be defined for the concerning flow measurement station. Standard GIS based algorithms, like the d8-flow direction algorithm (O'Callaghan and Mark, 1984) can be applied using a high resolution DEM. Secondly, the artificial catchment outlets have to be determined. Each catchment has one natural outlet - the measurement station on the river- but it can have several artificial outlets towards a sewage station. Once the outlets are determined, a first approximation of the "theoretical maximal contributing area" can be made. It encompasses the whole connected sewer system and the topographic catchment boundary. The area of interest is therefore defined. The next step is the determination of the extended drainage network, consisting of the natural river, ditches, combined and separated sewer systems and retention basins. This requires a detailed analysis of sewer system data, field work (mapping of ditches and inlets into the natural river). Contacts with local authorities are also required to keep up-to-date about recent changes. Pure wastewater and drinking water pipes are not integrated in the drainage network. In order to have a unique drainage network for the model, choices might have to be made in case of several coexisting drainage pipes. The urban sub-basins are then delineated with the help of a cadastral map (Rodriguez et al., 2003) or an aerial photography. Each cadastral unit is connected to the closest drainage pipe, following the principle of proximity and gravity. The assembly of all cadastral units connected to one network reach represents one urban sub-basin. The sub-basins in the rural part are calculated using the d8 flow direction and watershed delineation algorithm with "stream burning" (Hutchinson, 1989). One sub-basin is delineated for each reach of the extended drainage network. Some manual corrections of the calculated sub-basins are necessary. Finally, the urban and rural sub-basins are merged by subtraction of the urban area from the rural area and subsequent union of both maps. This method was applied to the Chaudanne catchment, a sub-basin of the Yzeron catchment (ca. 4 km2) in the suburban region of Lyon city, France. The method leads to a 30 % extended catchment area, as compared to the topographic catchment area. For each river inlet the sub-basin area could be determined, as well as for each retention basin. This information can be directly used for the dimensioning of retention basins, pipe diameters, etc.
Low flow drainages and seeps are typically not evaluated for mitigation due to the perceived low impact on the watershed. However, localized metals concentrations and acidity can be at levels of concern. Future passage of a “Good Samaritan Act” should increase activity at curren...
A new energy transfer model for turbulent free shear flow
NASA Technical Reports Server (NTRS)
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
Shipitalo, Martin J; Malone, Robert W; Ma, Liwang; Nolan, Bernard T; Kanwar, Rameshwar S; Shaner, Dale L; Pederson, Carl H
2016-06-01
Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor and metolachlor oxanilic acid (OXA). The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4-5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, approximately twofold reductions in OXA losses were simulated with residue removal. The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase owing to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease as a result of the more rapid movement of the parent compound into the soil. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
A synthesis and comparative evaluation of drainage water management
USDA-ARS?s Scientific Manuscript database
Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management...
NASA Astrophysics Data System (ADS)
Bhattachan, A.; BenDor, T.; Ardón, M.; Bernhardt, E. S.; Wright, J. P.; Emanuel, R. E.
2016-12-01
The Atlantic Coastal Plain of the United States has been altered drastically in the past century to support agriculture, real estate, and recreational activities. In a landscape with minimal hydraulic gradients and potentially large fluctuations in sea level, the effects of introducing artificial drainages (e.g., ditches and canals) on hydrological properties are often drastic and sometimes unpredictable. In this study, we focus on a portion of the outer coastal plain of North Carolina that ranges in elevation between 6 to -5 meters a.m.s.l. To this end, we use a high-resolution, Lidar-derived digital elevation model to study the effects of artificial drainages on landscape elevation, flow accumulation, and drainage density within an 800-km2 study area. Specifically, we use image-processing techniques to filter artificial drainages from the region and compare hydrologically relevant landscape metrics with and without these features. In general, artificial drainages lower land elevation, short-circuit otherwise natural flow paths and lead to increased ( 3 times) drainage density across the landscape. We also calculate a saltwater intrusion vulnerability index (SIVI), with and without canals and ditches, to investigate the contribution of this infrastructure to saltwater intrusion vulnerability in this low-lying coastal region. The SIVI represents the ability of the freshwater to impede the inland migration of saltwater during drought periods or as sea level rises. Our results show that the construction of artificial drainages would in fact lead to an increase in vulnerability to saltwater intrusion and this pattern is consistent across all four major land-cover (wetlands, agriculture, shrub and forest) in our study area. Thus, combined with extant saltwater impacts on freshwater-dependent landscapes across our study area, our findings are immediately relevant to this region and to similar coastal regions worldwide.
Non-linear hydraulic properties of woodchips necessary to design denitrification beds
USDA-ARS?s Scientific Manuscript database
Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds for optimum nitrate remov...
NASA Astrophysics Data System (ADS)
Lee, T.; Lee, C.; Kim, H.
2016-12-01
Abstract Song-do international city was constructed by reclaiming land from the coastal waters of Yeonsu-gu, Incheon Metropolitan City, Republic of Korea. The □-shaped cyclic artificial water way has been considered for improving water quality, waterfront and internal drainage in Song-do international city. By improving water quality, various marine facilities, such as marina, artificial beach, marine terminal, and so on, will be set up around the artificial water way for the waterfront. Since the water stage of the artificial water way changes depending on water gates operations, it is necessary to develop an urban inundation warning model to evaluate safeties of the waterfront facilities and its passengers. By considering characteristics of urban watershed, we calculate discharge flowing into the water way using XP-SWMM model. As a result of estimating 100-year flood frequency, although there are slight differences in drainage sections, the maximum flood discharge occurs in 90-min rainfall duration. In order to consider impacts of tide and hydraulic structure, we establish Inland drainage plans through the analysis of unsteady flow using HEC-RAS. The urban inundation warning model is configured to issue a warning when the water plain elevation exceeds EL. 1.5m which is usually managed at EL. 1.0m. In this study, the design flood stage of artificial water way and urban inundation warning model are developed for Song-do international city, and therefore it is expected that a reliability of management and operation of the waterfront facilities is improved. Keywords : Artificial Water Way; Waterfront; Urban Inundation Warning Model. Acknowlegement This research was supported by a grant [MPSS-NH-2015-79] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
NASA Astrophysics Data System (ADS)
Andre, B. J.; Rajaram, H.; Silverstein, J.
2010-12-01
Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.
Creating a water depth map from Earth Observation-derived flood extent and topography data
NASA Astrophysics Data System (ADS)
Matgen, Patrick; Giustarini, Laura; Chini, Marco; Hostache, Renaud; Pelich, Ramona; Schlaffer, Stefan
2017-04-01
Enhanced methods for monitoring temporal and spatial variations of water depth in rivers and floodplains are very important in operational water management. Currently, variations of water elevation can be estimated indirectly at the land-water interface using sequences of satellite EO imagery in combination with topographic data. In recent years high-resolution digital elevation models (DEM) and satellite EO data have become more readily available at global scale. This study introduces an approach for efficiently converting remote sensing-derived flood extent maps into water depth maps using a floodplain's topography information. For this we make the assumption of uniform flow, that is the depth of flow with respect to the drainage network is considered to be the same at every section of the floodplain. In other words, the depth of water above the nearest drainage is expected to be constant for a given river reach. To determine this value we first need the Height Above Nearest Drainage (HAND) raster obtained by using the area of interest's DEM as source topography and a shapefile of the river network. The HAND model normalizes the topography with respect to the drainage network. Next, the HAND raster is thresholded in order to generate a binary mask that optimally fits, over the entire region of study, the flood extent map obtained from SAR or any other remote sensing product, including aerial photographs. The optimal threshold value corresponds to the height of the water line above the nearest drainage, termed HANDWATER, and is considered constant for a given subreach. Once the HANDWATER has been optimized, a water depth map can be generated by subtracting the value of the HAND raster at the each location from this parameter value. These developments enable large scale and near real-time applications and only require readily available EO data, a DEM and the river network as input data. The approach is based on a hierarchical split-based approach that subdivides a drainage network into segments of variable length with evidence of uniform flow. The method has been tested with remote sensing data and DEM data that differ in terms of spatial resolution and accuracy. A comprehensive evaluation of the obtained water depth maps with hydrodynamic modelling results and in situ measured water level recordings was carried out on a reach of the river Severn located in the United Kingdom. First results show that the obtained root mean squared difference is 10 cm when using high resolution high precision data sets (i.e. aerial photographs of flood extent and a LiDAR-derived DEM) and amount to 50 cm when using as inputs moderate resolution SAR imagery from ENVISAT and a SRTM-derived DEM.
Johnson, Raymond H.
2007-01-01
In mountain watersheds, the increased demand for clean water resources has led to an increased need for an understanding of ground water flow in alpine settings. In Prospect Gulch, located in southwestern Colorado, understanding the ground water flow system is an important first step in addressing metal loads from acid-mine drainage and acid-rock drainage in an area with historical mining. Ground water flow modeling with sensitivity analyses are presented as a general tool to guide future field data collection, which is applicable to any ground water study, including mountain watersheds. For a series of conceptual models, the observation and sensitivity capabilities of MODFLOW-2000 are used to determine composite scaled sensitivities, dimensionless scaled sensitivities, and 1% scaled sensitivity maps of hydraulic head. These sensitivities determine the most important input parameter(s) along with the location of observation data that are most useful for future model calibration. The results are generally independent of the conceptual model and indicate recharge in a high-elevation recharge zone as the most important parameter, followed by the hydraulic conductivities in all layers and recharge in the next lower-elevation zone. The most important observation data in determining these parameters are hydraulic heads at high elevations, with a depth of less than 100 m being adequate. Evaluation of a possible geologic structure with a different hydraulic conductivity than the surrounding bedrock indicates that ground water discharge to individual stream reaches has the potential to identify some of these structures. Results of these sensitivity analyses can be used to prioritize data collection in an effort to reduce time and money spend by collecting the most relevant model calibration data.
Bhadha, Jehangir H; Sexton, Anne; Lang, Timothy A; Daroub, Samira H
2017-11-07
The purpose of this study is to describe the methods used to capture flow-weighted water and suspended particulates from farm canals during drainage discharge events. Farm canals can be enriched by nutrients such as phosphorus (P) that are susceptible to transport. Phosphorus in the form of suspended particulates can significantly contribute to the overall P loads in drainage water. A settling tank experiment was conducted to capture suspended particulates during discrete drainage events. Farm canal discharge water was collected in a series of two 200 L settling tanks over the entire duration of the drainage event, so as to represent a composite subsample of the water being discharged. Imhoff settling cones are ultimately used to settle out the suspended particulates. This is achieved by siphoning water from the settling tanks via the cones. The particulates are then collected for physico-chemical analyses.
Impact of Tile Drainage on the Distribution of Concentration and Age of Inorganic Soil Nitrogen.
NASA Astrophysics Data System (ADS)
Woo, D.; Kumar, P.
2017-12-01
Extensive network of tile drainage network across the Midwestern United States, northern Europe and other regions of the world have enhanced agricultural productivity. Because of its impact on sub-surface flow patterns and moisture and temperature dynamics, it controls the nitrogen cycle in agricultural systems, and its influence on nitrogen dynamics plays a key role in determining the short- and long-term evolution of soil inorganic nitrogen concentration and age. The spatial mapping of nitrogen concentration and age under tile-drained fields has, therefore, the potential to open up novel solution to the vexing challenge of reducing environmental impacts while at the same time maintaining agricultural productivity. The objective of this study is to explore the impacts of tile drains on the age dynamics of nitrate, immobile ammonium, mobile ammonia/um, and non-reactive tracer (such as chloride) by implementing two mobile interacting pore domains to capture matrix and preferential flow paths in a coupled ecohydrology and biogeochemistry model, Dhara. We applied this model to an agricultural farm supporting a corn-soybean rotation in the Midwestern United States. It should be expected that the installation of tile drains decrease the age of soil nutrient due to nutrient losses through tile drainage. However, an increase in the age of mobile ammonia/um is observed in contrast to the cases for nitrate, immobile ammonium, and non-reactive tracer. These results arise because the depletion of mobile ammonia/um due to tile drainage causes a high mobility flux from immobile ammonium to mobile ammonia/um, which also carries a considerable amount of relatively old age of immobile ammonium to mobile ammonia/um. In addition, the ages of nitrate and mobile ammonia/um in tile drainage range from 1 to 3 years, and less than a year, respectively, implying that not considering age transformations between nitrogen species would result in substantial underestimation of nitrogen ages, possibly leading to an erroneous conclusion.
NASA Astrophysics Data System (ADS)
Kulhavý, Zbyněk; Fučík, Petr
2015-04-01
In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.
Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland
Burow, K.R.; Constantz, J.; Fujii, R.
2005-01-01
Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch. Copyright ?? 2005 National Ground Water Association.
Stream channel responses to streamflow diversion on small streams of the Snake River drainage, Idaho
Carolyn C. Bohn; John G. King
2000-01-01
The effects on channels of small, low-head seasonal water diversions in the Snake River drainage were investigated. Channels below small diversions were compared to the channels immediately above the same diversions to determine if differences in flow conveyance, substrate sediment size distribution, or streamside vegetation density were present. Estimates of flow...
Brandt, L.A.; Portier, Kenneth M.; Kitchens, W.M.
2000-01-01
Size, shape, orientation, and distribution of tree islands in a remnant of northern Everglades wetland were examined from 1950 and 1991 aerial photography. The objectives were to quantify the patterns of tree islands in Loxahatchee National Wildlife Refuge, to determine if the patterns of tree islands had changed between the two dates, and to relate the tree island patterns to modeled pre- and post-drainage hydrologic patterns. There was considerable variation in the patterns of tree islands spatially and temporally. Changes in the size and shape of tree islands from 1950 to 1991 are consistent with changes in the modeled pre- and post-drainage hydrologic patterns. Photo plots along the edges of the refuge, where hydroperiods are longer and depths deeper than they were historically, show a decrease in tree island size and in overall area of tree islands in the plots. Photo plots in the interior, where hydroperiods are shorter than they were pre-drainage, show an increase in tree island area. Overall, there is a tendency for more tree islands to be irregularly shaped in the 1991 photo plots than in the 1950 plots, a reflection of the loss of water flow, reduction of pulse magnitude, and the ponding of water along the perimeter dikes. This study illustrates the importance of considering long-term changes in hydroperiod, depths, and water flows in the restoration of this area.
Challenges in Understanding and Predicting Greenland Lake Drainage Events
NASA Astrophysics Data System (ADS)
Poinar, K.; Andrews, L. C.; Moon, T. A.; Nowicki, S.
2017-12-01
To accurately predict ice flow, an ice-sheet model must resolve the complex spatio-temporal variability of the ice-sheet hydrologic system. For Greenland, this requires understanding rapid lake drainage events, by which moulins deliver water from supraglacial lakes to the ice-sheet base. Critical metrics include the drainage event location and its timing during the melt season. Here, we use multiple remote sensing datasets to investigate whether local principal strain rates control the dates of rapid supraglacial lake drainage events. We identify 359 rapid lake drainage events through a semi-automated analysis of MODIS and Landsat imagery, which we apply to Pâkitsoq, western Greenland, over nine summers (2006-2010 and 2013-2016). We compare these drainage dates to principal strain rates derived from InSAR (MEaSUREs and other products) and Landsat (GoLIVE and other products) satellite data over the same years. The InSAR-derived strain rates have lower uncertainties ( 0.01 yr-1) but capture only a wintertime average; the Landsat-derived strain rates have larger uncertainties ( 0.1 yr-1) but feature higher temporal resolution (≥16 days) and span the entire year, including the melt season. We find that locations with more-tensile wintertime strain rates are associated with earlier draining of supraglacial lakes in the subsequent summer. This is consistent with observations of lake drainage "clusters" or "cascades", where the perturbation from an initial lake drainage event is thought to trigger other lake drainages in the area. Our relation is not statistically significant, however, and any causality is complicated by a stronger correlation with more traditional metrics such as surface elevation and cumulative melt days. We also find that the Landsat-derived summertime strain rates, despite their higher temporal resolution, do not resolve the transient extensional strain rates known from GPS observations to accompany and/or incite rapid lake drainages. Our results highlight the current challenges in observing, at the regional scale, the causes of rapid lake drainage events, which must be better understood in order to parameterize surface-to-bed hydrological connections in ice-sheet models.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2010-01-01
Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin
Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.
2012-01-01
The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to 2011. Daily natural flows at the dam, as computed by the adjusted drainage-area ratio method and the water-budget method, were used to compute monthly flow-duration values for the period of historical data available for each method. Monthly flow-durations provide a means for evaluating the frequency and range in flows that have been observed for each month over the course of many years. Both methods described the pattern and timing of measured high-flow and low-flow events at the upstream gaging stations. The adjusted drainage-area ratio method generally had smaller residual errors across the full range of observed flows and had smaller monthly biases than the water-budget method. Although it is not possible to evaluate which method may be more "correct" for estimating monthly natural flows at the dam, comparisons between the results of each method indicate that the adjusted drainage-area ratio method may be susceptible to biases at high flows due to isolated storms outside of the Manitowish River watershed. Conversely, it appears that the water-budget method may be susceptible to biases at low flows because of its sensitivity to the accuracy of reported lake stage and outflows, as well as effects of upstream diversions that could not be fully compensated for with this method. Results from both methods are useful for understanding the natural flow patterns at the dam. Flows for both methods have similar patterns, with high median flows in spring and low median flows in late summer. Similarly, the range from monthly high-flow durations to low-flow durations increases during spring, decreases during summer, and increases again during fall. These seasonal patterns illustrate a challenge with interpreting a single value of natural low flow. That is, a natural low flow computed for September is not representative of a natural low flow in April. Moreover, alteration of natural flows caused by storing water in the Chain of Lakes during spring and releasing it in fall causes a change in the timing of high and low flows compared with natural conditions. That is, the lowest reported dam outflows occurred in spring and highest reported outflows occurred in fall, which is opposite the natural patterns.
INVESTIGATION OF INAPPROPRIATE POLLUTANTS ENTRIES INTO STORM DRAINAGE SYSTEMS: A USER'S GUIDE
This User's Guide is the result of a series of EPA sponsored research tasks to develop a procedure to investigate non-stormwater entries into storm drainage systems. A number of past projects have found that dry-weather flows discharging from storm drainage systems can contribu...
Manual lymphatic drainage in chronic venous disease: a duplex ultrasound study.
Dos Santos Crisóstomo, Rute Sofia; Candeias, Miguel Sandu; Ribeiro, Ana Margarida Martins; da Luz Belo Martins, Catarina; Armada-da-Silva, Paulo As
2014-12-01
To compare the effect of call-up and reabsorption maneuvers of manual lymphatic drainage on blood flow in femoral vein and great saphenous vein in patients with chronic venous disease and healthy controls. Forty-one subjects participated in this study (mean age: 42.68(15.23)), 23 with chronic venous disease (chronic venous disease group) with clinical classification C1-5 of clinical-etiological-anatomical-pathological (CEAP) and 18 healthy subjects (control group). Call-up and reabsorption maneuvers were randomly applied in the medial aspect of the thigh. The cross-sectional areas, as well as the peak and the mean blood flow velocity at femoral vein and great saphenous vein, were assessed by Duplex ultrasound at the baseline and during maneuvers. The venous flow volume changes were calculated. The venous flow volume in femoral vein and great saphenous vein increased during both manual lymphatic drainage maneuvers and in both groups (P < 0.05). The two maneuvers had a similar effect on femoral vein and great saphenous vein hemodynamics, and in both the chronic venous disease and control groups. As a result of the call-up maneuver, the flow volume augmentations, as a result of call-up maneuver, decreased with the severity of chronic venous disease in those patients measured by the clinical classification of CEAP (r = -0.64; P = 0.03). Manual lymphatic drainage increases the venous blood flow in the lower extremity with a magnitude that is independent from the specific maneuver employed or the presence of chronic venous disease. Therefore, manual lymphatic drainage may be an alternative strategy for the treatment and prevention of venous stasis complications in chronic venous disease. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
A laboratory study of colloid and solute transport in surface runoff on saturated soil
NASA Astrophysics Data System (ADS)
Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar
2011-05-01
SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.
Kaplan, Metin; Erol, Fatih Serhat; Bozgeyik, Zülküf; Koparan, Mehmet
2007-07-01
In the present study, the clinical effectiveness of a surgical procedure in which no draining tubes are installed following simple burr hole drainage and saline irrigation is investigated. 10 patients, having undergone operative intervention for unilateral chronic subdural hemorrhage, having a clinical grade of 2 and a hemorrhage thickness of 2 cm, were included in the study. The cerebral blood flow rates of middle cerebral artery were evaluated bilaterally with Doppler before and after the surgery. All the cases underwent the operation using the simple burr hole drainage technique without the drain and consequent saline irrigation. Statistical analysis was performed by Wilcoxon signed rank test (p<0.05). There was a pronounced decrease in the preoperative MCA blood flow in the hemisphere the hemorrhage had occurred (p=0.008). An increased PI value on the side of the hemorrhage drew our attention (p=0.005). Postoperative MCA blood flow measurements showed a statistically significant improvement (p=0.005). Furthermore, the PI value showed normalization (p<0.05). The paresis and the level of consciousness improved in all cases. Simple burr hole drainage technique is sufficient for the improvement of cerebral blood flow and clinical recovery in patients with chronic subdural hemorrhage.
Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams
Stuckey, Marla H.; Reed, Lloyd A.
2000-01-01
Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.
A Bézier-Spline-based Model for the Simulation of Hysteresis in Variably Saturated Soil
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Peche, Aaron; Thiele, Luisa-Bianca; Graf, Thomas; Neuweiler, Insa
2017-04-01
Most transient variably saturated flow models neglect hysteresis in the p_c-S-relationship (Beven, 2012). Such models tend to inadequately represent matrix potential and saturation distribution. Thereby, when simulating flow and transport processes, fluid and solute fluxes might be overestimated (Russo et al., 1989). In this study, we present a simple, computationally efficient and easily applicable model that enables to adequately describe hysteresis in the p_c-S-relationship for variably saturated flow. This model can be seen as an extension to the existing play-type model (Beliaev and Hassanizadeh, 2001), where scanning curves are simplified as vertical lines between main imbibition and main drainage curve. In our model, we use continuous linear and Bézier-Spline-based functions. We show the successful validation of the model by numerically reproducing a physical experiment by Gillham, Klute and Heermann (1976) describing primary drainage and imbibition in a vertical soil column. With a deviation of 3%, the simple Bézier-Spline-based model performs significantly better that the play-type approach, which deviates by 30% from the experimental results. Finally, we discuss the realization of physical experiments in order to extend the model to secondary scanning curves and in order to determine scanning curve steepness. {Literature} Beven, K.J. (2012). Rainfall-Runoff-Modelling: The Primer. John Wiley and Sons. Russo, D., Jury, W. A., & Butters, G. L. (1989). Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resources Research, 25(10), 2109-2118. https://doi.org/10.1029/WR025i010p02109. Beliaev, A.Y. & Hassanizadeh, S.M. (2001). A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport in Porous Media 43: 487. doi:10.1023/A:1010736108256. Gillham, R., Klute, A., & Heermann, D. (1976). Hydraulic properties of a porous medium: Measurement and empirical representation. Soil Science Society of America Journal, 40(2), 203-207.
Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas
Asquith, William H.
1998-01-01
Peak-flow frequency for 38 stations with at least 8 years of data in natural (unregulated and nonurbanized) basins was estimated on the basis of annual peak-streamflow data through water year 1995. Peak-flow frequency represents the peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, 250, and 500 years. The peak-flow frequency and drainage basin characteristics for the stations were used to develop two sets of regression equations to estimate peak-flow frequency for tributaries of the Colorado River in the study area. One set of equations was developed for contributing drainage areas less than 32 square miles, and another set was developed for contributing drainage areas greater than 32 square miles. A procedure is presented to estimate the peak discharge at sites where both sets of equations are considered applicable. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent prediction interval for any estimation from the equations.
Flowmetering of drainage wells in Kuwait City, Kuwait
Paillet, Frederick L.; Senay, Y.; Mukhopadhyay, A.; Szekely, F.
2000-01-01
A heat-pulse flowmeter was used in six drainage wells in Kuwait City for flow profiling under both ambient and pumping conditions. The data collected were used in: (a) estimating the cross-flow among the screened intervals under ambient conditions; (b) estimating the relative transmissivity adjacent to the individual screen zones; and (c) determination of the hydraulic heads at the far boundaries of the large-scale aquifer zones. These inferences were cross-checked against known hydrogeology of the aquifer-aquitard system in the study area, and the calibration results of numerical flow modeling. The major conclusions derived from the flow measurements were: (a) the presence of natural downward cross-flow under ambient condition supported the hypothesis that the upper part of the Kuwait Group aquifer in the study area was divided into a series of permeable units (aquifers), separated by confining or semi-confining beds (aquitards); (b) the head differences between the different screened zones, derived through modeling of the flowmeter data of the wells, provided additional confirmation for the division of the upper part of the Kuwait Group aquifer into compartments in the study area; (c) flowmeter data indicated that the second and third aquifers were contributing most of the water to the well bores, compared with the uppermost (first) and the lowermost (fourth) aquifers; and (d) inflow to the wells during pumping was associated with discrete sub-intervals in the screened zones, controlled by local aquifer heterogeneity, and possibly clogging of screens and gravel pack.
Hydrologic enforcement of lidar DEMs
Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl
2014-01-01
Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.
Design and hydrologic performance of a tile drainage treatment wetland in Minnesota, USA
USDA-ARS?s Scientific Manuscript database
Treatment wetlands are increasingly needed to remove nitrate from agricultural drainage water to protect downstream waters such as the Gulf of Mexico. A 0.10 ha wetland was designed,installed and monitored to treat subsurface drainage flow from farmland in Minnesota, USA. This project sought to deve...
Role of foam drainage in producing protein aggregates in foam fractionation.
Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao
2017-10-01
It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.
A proposed drainage evolution model for Central Africa—Did the Congo flow east?
NASA Astrophysics Data System (ADS)
Stankiewicz, Jacek; de Wit, Maarten J.
2006-01-01
Understanding the origin of Sub-Saharan biodiversity requires knowing the history of the region's paleo-ecosystems. As water is essential for sustaining of life, the evolving geometry of river basins often have influence on local speciation. With this in mind, we analyse drainage patterns in Central and East Africa. Evidence from marine fossils suggests the Congo Basin was submerged for much of the Cretaceous, and after being uplifted drained eastwards through a paleo-Congo river towards the Indian Ocean. Two remnant peneplains in the Congo Basin are interpreted as evidence that this basin was tectonically stable on at least two occasions in the past. The lower peneplain is interpreted as the base level of the drainage pattern that had its outlet in Tanzania, at the present Rufiji Delta that was once over 500 km wide. The Luangwa, today a tributary of the Zambezi river, was a part of this drainage network. This pattern was subsequently disrupted by uplift associated with the East African Rifting in the Oligocene-Eocene (30-40 Ma). The resulting landlocked system was captured in the Miocene (5-15 Ma) by short rivers draining into the Atlantic Ocean, producing the drainage pattern of Central Africa seen today.
Barlow, Paul M.; Moench, Allen F.
2011-01-01
The computer program WTAQ simulates axial-symmetric flow to a well pumping from a confined or unconfined (water-table) aquifer. WTAQ calculates dimensionless or dimensional drawdowns that can be used with measured drawdown data from aquifer tests to estimate aquifer hydraulic properties. Version 2 of the program, which is described in this report, provides an alternative analytical representation of drainage to water-table aquifers from the unsaturated zone than that which was available in the initial versions of the code. The revised drainage model explicitly accounts for hydraulic characteristics of the unsaturated zone, specifically, the moisture retention and relative hydraulic conductivity of the soil. The revised program also retains the original conceptualizations of drainage from the unsaturated zone that were available with version 1 of the program to provide alternative approaches to simulate the drainage process. Version 2 of the program includes all other simulation capabilities of the first versions, including partial penetration of the pumped well and of observation wells and piezometers, well-bore storage and skin effects at the pumped well, and delayed drawdown response of observation wells and piezometers.
Autixier, Laurène; Mailhot, Alain; Bolduc, Samuel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Prévost, Michèle; Dorner, Sarah
2014-11-15
The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes. Copyright © 2014 Elsevier B.V. All rights reserved.
Sources of Increased Spring and Streamflow Caused by the 2014 South Napa Earthquake
NASA Astrophysics Data System (ADS)
Rytuba, J. J.; Holzer, T. L.
2014-12-01
Seasonally dry springs and creeks began flowing over a broad region in the hills around Napa following the M6.0 South Napa earthquake on August 24, 2014. Flows in hillside creek beds, which were dry before the earthquake, were reported from 19 km west, to 6 km east, and 18 km north of Napa and the epicenter, an area that shook at MMI≥VI. The exact timing of the increased flow is unknown because the earthquake occurred at 3:20 AM PDT. A gaging station on the Napa River, which is downstream from several tributaries that began flowing after the earthquake, showed a sudden increase of flow rate within 45 minutes following the earthquake. The sudden increase at the gaging station suggests flows initiated either contemporaneously with or very soon after the strong shaking. This timing is consistent with eyewitness accounts of other streams and springs at daylight, a few hours after the earthquake. One of the largest increases of streamflow was in Green Valley, where a streamflow rate of about 100 cubic hectometers per day was measured in Wild Horse Creek. Two types of waters are being discharged in the Wild Horse Creek drainage: 1) water with low iron concentration that has exchanged with rhyolitic flows and tuffs in the upper part of the drainage; and 2) high iron concentration water that has exchanged with basaltic andesite in the middle part of drainage (vertical interval of about 75 meters). The high iron waters are depositing FeOOH other iron phases. Mixing of the two water types results in water with pH 6.9 and conductivity of 0.197 mS. This water is used by the Vallejo Water District for domestic purposes after it is mixed with recent surface water runoff stored in Lake Frey reservoir in order to improve its quality. Other drainages that have increased flow since the earthquake have water chemistry consistent with exchange with rhyolitic flows and tuffs that are the dominant rock type in these drainages.
Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
Gehlen, Manuel; Eklund, Anders; Kurtcuoglu, Vartan; Malm, Jan; Schmid Daners, Marianne
2017-08-01
Three different types of anti-siphon devices (ASDs) have been developed to counteract siphoning-induced overdrainage in upright posture. However, it is not known how the different ASDs affect CSF dynamics under the complex pressure environment seen in clinic due to postural changes. We investigated which ASDs can avoid overdrainage in upright posture best without leading to CSF accumulation. Three shunts each of the types Codman Hakim with SiphonGuard (flow-regulated), Miethke miniNAV with proSA (gravitational), and Medtronic Delta (membrane controlled) were tested. The shunts were compared on a novel in vitro setup that actively emulates the physiology of a shunted patient. This testing method allows determining the CSF drainage rates, resulting CSF volume, and intracranial pressure in the supine, sitting, and standing posture. The flow-regulated ASDs avoided increased drainage by closing their primary flow path when drainage exceeded 1.39 ± 0.42 mL/min. However, with intraperitoneal pressure increased in standing posture, we observed reopening of the ASD in 3 out of 18 experiment repetitions. The adjustable gravitational ASDs allow independent opening pressures in horizontal and vertical orientation, but they did not provide constant drainage in upright posture (0.37 ± 0.03 mL/min and 0.26 ± 0.03 mL/min in sitting and standing posture, respectively). Consequently, adaptation to the individual patient is critical. The membrane-controlled ASDs stopped drainage in upright posture. This eliminates the risk of overdrainage, but leads to CSF accumulation up to the volume observed without shunting when the patient is upright. While all tested ASDs reduced overdrainage, their actual performance will depend on a patient's specific needs because of the large variation in the way the ASDs influence CSF dynamics: while the flow-regulated shunts provide continuous drainage in upright posture, the gravitational ASDs allow and require additional adaptation, and the membrane-controlled ASDs show robust siphon prevention by a total stop of drainage.
Methods for estimating low-flow statistics for Massachusetts streams
Ries, Kernell G.; Friesz, Paul J.
2000-01-01
Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The streamgaging stations had from 2 to 81 years of record, with a mean record length of 37 years. The low-flow partial-record stations had from 8 to 36 streamflow measurements, with a median of 14 measurements. All basin characteristics were determined from digital map data. The basin characteristics that were statistically significant in most of the final regression equations were drainage area, the area of stratified-drift deposits per unit of stream length plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the western region of Massachusetts. The equations were developed by use of weighted-least-squares regression analyses, with weights assigned proportional to the years of record and inversely proportional to the variances of the streamflow statistics for the stations. Standard errors of prediction ranged from 70.7 to 17.5 percent for the equations to predict the 7-day, 10-year low flow and 50-percent duration flow, respectively. The equations are not applicable for use in the Southeast Coastal region of the State, or where basin characteristics for the selected ungaged site are outside the ranges of those for the stations used in the regression analyses. A World Wide Web application was developed that provides streamflow statistics for data collection stations from a data base and for ungaged sites by measuring the necessary basin characteristics for the site and solving the regression equations. Output provided by the Web application for ungaged sites includes a map of the drainage-basin boundary determined for the site, the measured basin characteristics, the estimated streamflow statistics, and 90-percent prediction intervals for the estimates. An equation is provided for combining regression and correlation estimates to obtain improved estimates of the streamflow statistics for low-flow partial-record stations. An equation is also provided for combining regression and drainage-area ratio estimates to obtain improved e
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin
NASA Astrophysics Data System (ADS)
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu
2012-01-01
On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill.
Predicting impact of SLR on coastal flooding in Banda Aceh coastal defences
NASA Astrophysics Data System (ADS)
Al'ala, Musa; Syamsidik, Kato, Shigeru
2017-10-01
Banda Aceh is a low-lying city located at the northern tip of Sumatra Island and situated at the conjuncture of Malacca Strait and the Andaman Sea. A Sea Level Rise (SLR) rate at 7 mm/year has been observed around this region. In the next 50 years, this city will face a serious challenge to encounter impacts of the sea level rise, such as frequent coastal floodings. This study is aimed at estimating impacts of the sea level rise induced coastal floodings on several types of coastal structures and city drainage system. Numerical simulations of Delft3D were applied to investigate the influence of the gradual sea level rise in 50 years. The hydrodynamic process of coastal flooding and sediment transport were simulated by Delft3D-Flow. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Hydrodynamic process gains the flow process revealing the level of the sea water intrusion also observed in the model. Main rivers (Krueng Aceh, Krueng Neng, and Alue Naga Flood Canal) and the drainage system were observed to see the tides effects on coastal structures and drainage system. The impact on coastal community focusing on affected area, shoreline retreat, the rate of sea intrusion was analyzed with spatial tools. New coastal line, coastal flooding vulnerable area, and the community susceptibility properties map influenced by 50 years sea level rise is produced. This research found that the city needs to address strategies to anticipate the exacerbating impacts of the sea level rise by managing its coastal spatial planning and modify its drainage system, especially at the drainage outlets.
Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review
NASA Astrophysics Data System (ADS)
Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van
2013-04-01
Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118
An Automated, Gravity-driven CSF Drainage System Decreases Complications and Lowers Costs
Lieberson, Robert E; Meyer, William; Trang, Tung
2017-01-01
Background: FlowSafeTM (BeckerSmith Medical, Irvine, CA, USA) is a novel, robotic, external lumbar drainage (ELD) system, which was designed to control cerebrospinal fluid (CSF) drainage, reduce complications, and decrease treatment costs. Methods: Forty-seven consecutive neurosurgical patients requiring ELD were treated using the FlowSafe system. Results: In 39 of 40 patients with traumatic and surgical dural openings, potential CSF leaks were avoided. In seven patients with suspected normal pressure hydrocephalus, post-infectious ventriculomegaly, or pseudotumor cerebrum, we were able to assess the likelihood of improvement with shunting. The system, therefore, produced what we considered to be the “desired result” in 46 of 47 patients (98%). Our one treatment failure (2%) involved a patient with unrecognized hydrocephalus who, following a Chiari repair with a dural patch graft, was drained for six days. A persistent CSF leak eventually required a reoperation. Two patients (4%) described low-pressure headaches during treatment. Both responded to temporarily suspending or reducing the drainage rate. We saw no complications. Required nursing interventions were minimal. Conclusions: The FlowSafe system was safe and effective. In our experience, there were fewer complications compared to currently available ELD systems. The FlowSafe was well tolerated by our patients. The near elimination of nursing interventions should allow lumbar drainage to be delivered in less costly, non-intensive care unit settings. Larger trials will be needed. PMID:28331772
K. Novick; S. Brantley; C. Ford Miniat; J. Walker; J.M. Vose
2014-01-01
Multiple data streams from a new flux tower located in complex and heterogeneous terrain at theCoweeta Hydrologic Laboratory (North Carolina, USA) were integrated to identify periods of advectiveflow regimes. Drainage flows were expected a priori, due to the location of the measurement site at thebase of a long, gently-sloping valley. Drainage flow was confirmed by...
NASA Astrophysics Data System (ADS)
Lange, Rolf
1989-07-01
The three-dimensional, diagnostic, particle-in-cell transport and diffusion model MATHEW/ADPIC is used to test its transferability from one site in complex terrain to another with different characteristics, under stable nighttime drainage flow conditions. The two sites were subject to extensive drainage flow tracer experiments under the multilaboratory Atmospheric Studies in Complex Terrain (ASCOT) program: the first being a valley in the Geysers geothermal region of northern California, and the second a canyon in western Colorado. The domain in each case is approximately 10 × 10 km. The 1980 Geysers model evaluation is only quoted. The 1984 Brush Creek model evaluation is described in detail.Results from comparing computed with measured concentrations from a variety of tracer releases indicate that 52% of the 4531 samples from five experiments in Brush Creek and 50% of the 831 samples from four experiments in the Geysers agreed within a factor of 5. When an angular 10° uncertainty, consistent with anemometer reliability limits in complex terrain, was allowed to be applied to the model results, model performance improved such that 78% of samples compared within a factor of 5 for Brush Creek and 77% for the Geysers. Looking at the range of other factors of concentration ratios, results indicate that the model is satisfactorily transferable without tuning it to a specific site.
Bedrock morphology reveals drainage network in northeast Baffin Bay
NASA Astrophysics Data System (ADS)
Slabon, Patricia; Dorschel, Boris; Jokat, Wilfried; Freire, Francis
2018-02-01
A subglacial drainage network underneath the paleo-ice sheet off West Greenland is revealed by a new compilation of high-resolution bathymetry data from Melville Bay, northeast Baffin Bay. This drainage network is an indicator for ice streaming and subglacial meltwater flow toward the outer shelf. Repeated ice sheet advances and retreats across the crystalline basement together with subglacial meltwater drainage had their impact in eroding overdeepened troughs along ice stream pathways. These overdeepenings indicate the location of a former ice sheet margin. The troughs inherit characteristics of glacial and subglacial meltwater erosion. Most of the troughs follow tectonic weakness zones such as faults and fractures in the crystalline bedrock. Many of these tectonic features correspond with the orientations of major fault axes in the Baffin Bay region. The troughs extend from the present (sub) glacial fjord systems at the Greenland coast and parallel modern outlet-glacier pathways. The fast flowing paleo-ice streams were likely accelerated from the meltwater flow as indicated by glacial landforms within and along the troughs. The ice streams flowed along narrow tributary troughs and merged to form large paleo-ice streams bedded in the major cross-shelf troughs of Melville Bay. Apart from the troughs, a rough seabed topography characterises the bedrock, and we see a sharp geomorphic transition where ice flowed onto sedimentary rock and deposits.
Jato-Espino, Daniel; Charlesworth, Susanne M; Bayon, Joseba R; Warwick, Frank
2016-01-21
Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall-runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network.
Jato-Espino, Daniel; Charlesworth, Susanne M.; Bayon, Joseba R.; Warwick, Frank
2016-01-01
Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall–runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network. PMID:26805864
Water quality of a coastal Louisiana swamp and how dredging is undermining restoration efforts
NASA Astrophysics Data System (ADS)
Lane, Robert R.; Huang, Haosheng; Day, John W.; Justic, Dubravko; DeLaune, Ronald D.
2015-01-01
The Bayou Boeuf Basin (BBB), a sub-basin of the Barataria Basin estuary in coastal Louisiana, consists of forested and floating wetlands receiving drainage from surrounding agricultural fields and urban watersheds. We characterized surface water quality in the BBB, and determined through hydrologic modeling if a series of levee breaks along major drainage channels would significantly improve water quality by allowing flow into surrounding wetlands. Surface water monitoring found surrounding sugarcane farm fields to be major sources of nutrient and sediment loading. Hydrological modeling indicated that levee breaks would increase N reduction from the current 21.4% to only 29.2%, which is much lower than the anticipated 90-100% removal rate. This was due to several factors, one them being dredging of main drainage channels to such a degree that water levels do not rise much above the surrounding wetland elevation even during severe storms, so only a very small fraction of the stormwater carried in the channel is exposed to wetlands. These unexpected results provide insight into an undoubtedly pervasive problem in human dominated wetland systems; that of decreased flooding during storm events due to channel deepening by dredging activities. Additional water quality management practices should be implemented at the farm field level, prior to water entering major drainage canals.
Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport
NASA Astrophysics Data System (ADS)
Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi
2017-04-01
Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of seismic profiles collected over the floating ice shelves and the grounded ice sheet.
Urban Stormwater Runoff: A New Class of Environmental Flow Problem
Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.
2012-01-01
Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257
Garcia, Ana Maria
2012-01-01
The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.
Investigation of Preferential Flow in Low Impact Development Practice
NASA Astrophysics Data System (ADS)
Liu, L.; Cao, R.; Wang, C.; Jiang, W.; Wang, J.; Xia, Z.
2016-12-01
The characteristics of preferential flow in soil affect Low Impact Development (LID) practices in two aspects. On the one hand, preferential flow may facilitate drainage of stormwater by causing non-uniform movement of water through a small portion of media (such as cracks and holes), and thus leading to much faster transport of water and solutes in one specific direction than others. On the other hand, within a certain ranges, preferential flow may weaken the subgrade capacity of pressure and/or shear stress resistance. Therefore, for the purpose of improving LID practices, there may exist an optimum scenario with a high allowable flowrate and least negative impact of resistance capacity for a soil layer. This project aims to assist the LID design by exploring the features of preferential flow in different soil compositions, studying how different flow paths affect the stability of subgrade, preliminarily analyzing the sensitivity of preferential flow impacting on drainage capacity and subgrade stability in the LID, and further optimizing LID practices. Accordingly, the concepts of Essential Direction Path, Unessential Direction Path and the Sensitivity Coefficient are defined and analyzed to simulate a hypothetical funneling scenario in LID practice. Both irrigation apparatus experiments and numerical models are utilized in this research to investigate the features of preferential flow, effective strength and overall shear strength. The main conclusions include: (1) Investigation of preferential flow characteristics in essential direction path and unessential direction path, respectively; (2) Optimum design of preferential flow in LID practice; (3) Transport capacity determination of preferential flow path in different soils; (4) Study of preferential flow impact on roadbed stability. KEY WORDS: Preferential Flow, Subgrade stability, LID, Sensitivity Coefficient, Funneling Preferential Flow Path
Hydrologic response for a high-elevation storm in the South Dakota Black Hills
Bunkers, Matthew J.; Smith, Melissa; Driscoll, Daniel G.; Hoogestraat, Galen K.
2015-01-01
A group of thunderstorms produced >4 in of rain during four periods of progressively more intense rainfall across a small part of a relatively high-elevation area of the northern Black Hills on 5 August 2014. The resulting hydrologic response was noteworthy in two very small headwater drainage basins, where the measured peak flows are by far the largest—relative to drainage area—ever documented for the high-elevation Limestone Plateau area. However, peak flows attenuated quickly in a downstream direction owing to the storms tracking perpendicular to the drainage direction, moderately dry antecedent conditions, and progressive widening of the valley bottoms.
Patterns and age distribution of ground-water flow to streams
Modica, E.; Reilly, T.E.; Pollock, D.W.
1997-01-01
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.
2011-08-15
A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less
Controls on streamflow intermittence in the Colorado Front Range
NASA Astrophysics Data System (ADS)
Kampf, S. K.; Puntenney, K.; Martin, C.; Weber, R.; Gerlich, J.; Hammond, J. C.; Lefsky, M. A.
2017-12-01
Intermittent streams comprise more than 60% of the channel length in semiarid northern Colorado, yet little is known about their flow magnitude and timing. We used field surveys, stream sensors, and remote sensing to quantify spatial and temporal patterns of streamflow intermittence in the Cache la Poudre basin in 2016-2017. To evaluate potential controls on streamflow intermittence, we delineated the drainage area to each monitored point and quantified the catchment's mean precipitation, temperature, snow persistence, slope, aspect, vegetation type, soil type, and bedrock geology. During the period of study, most streams below 2500 m elevation and <550 mm mean annual precipitation were intermittent, with flow only during the early spring and summer. In these drier low elevation areas, flow duration generally increased with precipitation and snow persistence. Locally, the type of bedrock geology and location of streams relative to faults affected flow duration. Above 2500 m, nearly all streams with drainage areas >1 km2 had perennial flow, whereas nearly all streams with drainage areas <1 km2 had intermittent flow. For the high elevation intermittent streams, stream locations often differed substantially from the locations mapped in standard GIS data products. Initial analyses have identified no clearly quantifiable controls on flow duration of high elevation streams, but field observations indicate subsurface flow paths are important contributors to surface streams.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Nishizawa, Osamu; Kiyama, Tamotsu; Chiyonobu, Shun; Xue, Ziqiu
2014-06-01
We injected Berea sandstone with supercritical CO2 and imaged the results with a medical X-ray computed tomography (CT) scanner. The images were acquired by injecting CO2 into a core of brine-saturated sandstone (drainage), and additional images were acquired during reinjection of brine (imbibition) after drainage. We then analysed the temporal variations of CO2 saturation maps obtained from the CT images. The experiments were performed under a confining pressure of 12 MPa, a pore pressure of 10 MPa and a temperature of 40 °C. Porosity and CO2 saturation were calculated for each image voxel of the rock on the basis of the Hounsfield unit values (CT numbers) measured at three states of saturation: dry, full brine saturation and full CO2 saturation. The saturation maps indicated that the distributions of CO2 and brine were controlled by the sub-core-scale heterogeneities which consisted of a laminated structure (bedding) with high- and low-porosity layers. During drainage, CO2 preferentially flowed through the high-porosity layers where most of the CO2 was entrapped during low flow-rate imbibition. The entrapped CO2 was flushed out when high flow-rate imbibition commenced. Plots of the voxel's CT number against porosity revealed the relationship between fluid replacement and porosity. By reference to the CT numbers at the full brine-saturated stage, differential CT numbers were classified into three bins corresponding to voxel porosity: high, medium and low porosity. Distributions of the differential CT number for the three porosity bins were bimodal and in order with respect to the porosity bins during both drainage and imbibitions; however, the order differed between the two stages. This difference suggested that different replacement mechanisms operated for the two processes. Spatial autocorrelation of CO2 saturation maps on sections perpendicular to the flow direction revealed remarkable changes during passage of the replacement fronts during both drainage and imbibition, changes reflecting the interfingering pattern across the replacement fronts. Although the permeability differences between high- and low-porosity layers were not sufficiently large to disturb the uniform flow of brine, the CO2 concentration in the high-porosity layers may have been caused by the differences of capillary pressure between wide and narrow pore throats, perhaps enhanced by an invasion percolation mechanism in flow-path networks.
NASA Astrophysics Data System (ADS)
Huang, Yu-ru; Tung, Ching-pin
2015-04-01
Climate change had altered the hydrological processes globally with result that the extreme events have an increase in both the magnitude and the frequency. In particular, the high intensity rainfall cause the severe flooding had significantly impacted on human life and property in recently year. The traditional facility to handle runoff is the drainage system which is designed in accordance with the intensity-duration-frequency (IDF) curve. However, the flooding occurs once the drainage capacity is overwhelmed by excess stormwater. Thus the general solution are that expanding and upgrading the existing drainage system or increasing the design return period for new development areas to reduce flooding. Besides, another technique which is low impact development(LID) is regarded as more sustainable solution for stormwater management. The concept of LID is to control stormwater at the source by decentralized practices and mimic the predevelopment hydrologic conditions including storage, retention and high rate of infiltration. In contrast to conventional drainage system aims to move runoff away as quickly as possible, the LID approach attempts to keep runoff on site to reduce peak and volume of flow. The purpose of this research is to identify the most cost-effective measures for stormwater management after the analysis of the strategies combining drainage system and LID on various land use planning. The case study is a rural community in Hsinchu in Taiwan, and having residential areas, farms and pond. It is assumed that two land use layout are planned and drainage system are designed for 2-,and 5-year return period events. On the other hand, three LID technologies, namely green roof, porous pavement and rain barrel, are selected to place in the scenario of the drainage system for 2-year return period event, and the minimal peak flow is target to optimize LID placement by simulated annealing algorithm. Moreover, the design storm under climate change are derived from the revised IDF curve. After that the storm water management model (SWMM) is used to simulate these strategies for a spectrum of design storms, the cost and the benefit can be analyzed to provide government an advice in developing stormwater management under uncertain conditions of climate change.
NASA Astrophysics Data System (ADS)
Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.
2016-04-01
One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experiments assays with the grate inlets [3 - 4]. Indeed, the Methodology carried out can become a useful tools to understand the hydraulics behavior of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations [5 - 6]. References [1] Gómez, M., Macchione, F. and Russo, B. (2006). Inlet systems and risk criteria associated to street runoff application to urban drainage catchments. 27 Corso di aggiornamiento in techniche per la difesa dall'inquinamento. [2] Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 [3] DigiFlow. User Guide. (2012), (June). [4] Vila, T., Tellez, J., Sanchez, J.M., Sotillos, L., Diez, M., and Redondo, J.M. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014. [5] Tellez, J., Gómez, M., Russo, B. and Redondo, J.M. (2014). A simple technique to measuring surface flow velocity to analyze the behavior of fields velocities in hydraulics engineer applications. Geophysical Research Abstracts - EGU General Assembly 2015. [6] Tellez, J., Gómez, M. and Russo, B. (2015). Técnica para la obtención del campo de velocidad del flujo superficial en proximidad de rejas de alcantarillado. IV Jornadas de Ingeniería del Agua. La precipitación y los procesos erosivos.
Mechanisms to explain the reverse perivascular transport of solutes out of the brain.
Schley, D; Carare-Nnadi, R; Please, C P; Perry, V H; Weller, R O
2006-02-21
Experimental studies and observations in the human brain indicate that interstitial fluid and solutes, such as amyloid-beta (Abeta), are eliminated from grey matter of the brain along pericapillary and periarterial pathways. It is unclear, however, what constitutes the motive force for such transport within blood vessel walls, which is in the opposite direction to blood flow. In this paper the potential for global pressure differences to achieve such transport are considered. A mathematical model is constructed in order to test the hypothesis that perivascular drainage of interstitial fluid and solutes out of brain tissue is driven by pulsations of the blood vessel walls. Here it is assumed that drainage occurs through a thin layer between astrocytes and endothelial cells or between smooth muscle cells. The model suggests that, during each pulse cycle, there are periods when fluid and solutes are driven along perivascular spaces in the reverse direction to the flow of blood. It is shown that successful drainage may depend upon some attachment of solutes to the lining of the perivascular space, in order to produce a valve-like effect, although an alternative without this requirement is also postulated. Reduction in pulse amplitude, as in ageing cerebral vessels, would prolong the attachment time, encourage precipitation of Abeta peptides in vessel walls, and impair elimination of Abeta from the brain. These factors may play a role in the pathogenesis of cerebral amyloid angiopathy and in the accumulation of Abeta in the brain in Alzheimer's disease.
Smith, S. Jerrod; Esralew, Rachel A.
2010-01-01
The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.
NASA Astrophysics Data System (ADS)
Behseresht, J.; Prodanović, M.; Bryant, S. L.
2007-12-01
A spectrum of behavior is encountered in ocean sediments bearing methane hydrates, ranging from essentially static accumulations where hydrate and brine co-exist, to active cold seeps where hydrate and a methane gas phase co-exist in the hydrate stability zone (HSZ). In this and a companion paper (Jain and Juanes) we describe methods to test the following hypothesis: the coupling between drainage and fracturing, both induced by pore pressure, determines whether methane gas entering the HSZ is converted completely to hydrate. Here we describe a novel implementation of the level set method (LSM) to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. Predictions of fluid configurations in infinite-acting model sediments indicate that the brine in drained sediment (after invasion by methane gas) is better connected than previously believed. This increases the availability of water and the rate of counter-diffusion of salinity ions, thus relaxing the limit on hydrate build-up within gas- invaded grain matrix. Simulated drainage of a fracture in sediment shows that points of contact between fracture faces are crucial. They allow residual water saturation to remain within an otherwise gas-filled fracture. Simulations of imbibition, which can occur for example after drainage into surrounding sediment reduces gas phase pressure in the fracture, indicate that the gas/water interfaces at contact points significantly shifts the threshold pressures for withdrawal of gas. During both drainage and imbibition, the contact points greatly increase water availability for hydrate formation within the fracture. We discuss coupling this capillarity-controlled displacement model with a discrete element model for grain-scale mechanics. The coupled model provides a basis for evaluating the macroscopic conditions (thickness of gas accumulation below the hydrate stability zone; average sediment grain size; principal earth stresses) favoring co- existence of methane gas and hydrate in the HSZ. Explaining the range of behavior is useful in assessing resource volumes and evaluating pore-to-core scale flow paths in production strategies.
A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis
NASA Astrophysics Data System (ADS)
Rulli, M.; Menduni, G.; Rosso, R.
2003-12-01
A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.
Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania
NASA Astrophysics Data System (ADS)
Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.
2000-04-01
A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.
Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.
2015-10-14
The accuracy of Precipitation-Runoff Modeling System model streamflow estimates of nine river basins in eastern Iowa as compared to measured values at U.S. Geological Survey streamflow-gaging stations varied. The Precipitation-Runoff Modeling System models of nine river basins in eastern Iowa were satisfactory at estimating daily streamflow at 57 of the 79 calibration sites and 13 of the 14 validation sites based on statistical results. Unsatisfactory performance can be contributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) the availability and accuracy of meteorological input data. The Precipitation- Runoff Modeling System models of nine river basins in eastern Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.
Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico
Cannon, S.H.; Reneau, Steven L.
2000-01-01
Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire-related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder-sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris-flow producing and flood-producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris-flow responses were produced without the presence of water-repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris-flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley and Sons, Ltd.
Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.
2001-01-01
An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.
Smith, Laurence C; Chu, Vena W; Yang, Kang; Gleason, Colin J; Pitcher, Lincoln H; Rennermalm, Asa K; Legleiter, Carl J; Behar, Alberto E; Overstreet, Brandon T; Moustafa, Samiah E; Tedesco, Marco; Forster, Richard R; LeWinter, Adam L; Finnegan, David C; Sheng, Yongwei; Balog, James
2015-01-27
Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm⋅d(-1)) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41-98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056-0.112 km(3)⋅d(-1) vs. ∼0.103 km(3)⋅d(-1)), and when integrated over the melt season, totaled just 37-75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.
Smith, Laurence C.; Chu, Vena W.; Yang, Kang; Gleason, Colin J.; Pitcher, Lincoln H.; Rennermalm, Asa K.; Legleiter, Carl J.; Behar, Alberto E.; Overstreet, Brandon T.; Moustafa, Samiah E.; Tedesco, Marco; Forster, Richard R.; LeWinter, Adam L.; Finnegan, David C.; Sheng, Yongwei; Balog, James
2015-01-01
Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km2 of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54–2.81 cm⋅d−1) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41–98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056–0.112 km3⋅d−1 vs. ∼0.103 km3⋅d−1), and when integrated over the melt season, totaled just 37–75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean. PMID:25583477
Pirici, Ionica; Balsanu, Tudor Adrian; Bogdan, Catalin; Margaritescu, Claudiu; Divan, Tamir; Vitalie, Vacaras; Mogoanta, Laurentiu; Pirici, Daniel; Carare, Roxana Octavia; Muresanu, Dafin Fior
2017-12-23
Aquaporin-4 (AQP4) is the most abundant water channel in the brain, and its inhibition before inducing focal ischemia, using the AQP4 inhibitor TGN-020, has been showed to reduce oedema in imaging studies. Here, we aimed to evaluate, for the first time, the histopathological effects of a single dose of TGN-020 administered after the occlusion of the medial cerebral artery (MCAO). On a rat model of non-reperfusion ischemia, we have assessed vascular densities, albumin extravasation, gliosis, and apoptosis at 3 and 7 days after MCAO. TGN-020 significantly reduced oedema, glial scar, albumin effusion, and apoptosis, at both 3 and 7 days after MCAO. The area of GFAP-positive gliotic rim decreased, and 3D fractal analysis of astrocytic processes revealed a less complex architecture, possibly indicating water accumulating in the cytoplasm. Evaluation of the blood vessels revealed thicker basement membranes colocalizing with exudated albumin in the treated animals, suggesting that inhibition of AQP4 blocks fluid flow towards the parenchyma in the paravascular drainage pathways of the interstitial fluid. These findings suggest that a single dose of an AQP4 inhibitor can reduce brain oedema, even if administered after the onset of ischemia, and AQP4 agonists/antagonists might be effective modulators of the paravascular drainage flow.
Discovery of relict subglacial lakes and their geometry and mechanism of drainage
Livingstone, Stephen J.; Utting, Daniel J.; Ruffell, Alastair; Clark, Chris D.; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C.
2016-01-01
Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow. PMID:27292049
NASA Astrophysics Data System (ADS)
Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.
2010-12-01
Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow unit, depositional features can vary from massive, diffusely-stratified to stratified, and cross stratified. We interpret this variability as a result of interaction with nearby topography, rapid sedimentation of large blocks, or a combination of the two; this implies rapid spatial and temporal instabilities in the current. For each flow unit we measure deposit thickness, bedding style, clast size, density and sorting, and degree of pumice rounding with distance from source. We use this data to better understand and interpret flow dynamics from depositional characteristics. The data we collect will be used to refine and validate numerical models of PDCs, ultimately providing a more accurate hazard assessment for explosive eruptions.
A model for water discharge based on energy consumption data (WATEN).
NASA Astrophysics Data System (ADS)
Moyano, María Carmen; Tornos, Lucía; Juana, Luis
2014-05-01
As the need for water conservation is becoming a major water concern, a lumped model entitled WATEN has been proposed to analyse the water balance in the B-XII Irrigation Sector of the Lower Guadalquivir Irrigated Area, one of the largest irrigated areas in Spain. The aim of this work is to approach the hydrological study of an irrigation district lacking of robust data in such a manner that the water balance is performed from less to more process complexity. WATEN parameters are the total and readily available moisture in the soil, a fix percentage for effective precipitation, and the irrigation efficiency. The Sector presents six different drainage pumping stations, with particular pumping groups and with no water flow measurement devices. Energy consumption depends on the working pumping stations and groups, and on the variable water level to discharge. Energy consumed in the drainage pumping stations has been used for calibration The study has relied on two monthly series of data: the volume of drainage obtained from the model and the energy consumed in the pumping stations. A double mass analysis has permitted the detection of data tendencies. The two resulting series of data have been compared to assess model performance, particularly the Pearson's product moment correlation coefficient and the Nash-Sutcliffe coefficient of efficiency, e2, determined for monthly data and for annual and monthly average data. For model calibration, we have followed a classical approach based on objective functions optimization, and a robust approach based on Markov chain Monte Carlo simulation process, driven in a similar manner to genetic algorithms, entitled Parameters Estimation on Driven Trials (PEDT), and aiming to reduce computational requirements. WATEN has been parameterised maintaining its physical and conceptual rationality. The study approach is outlined as a progressive introduction of data. In this manner, we can observe its effect on the studied objective functions, and visualize if new data adds significant improvements to model results. The model attained an average Nash-Sutcliffe coefficient e2~= 0.90 between based on energy drainage observations and estimated drainage discharge. The study has shown that the Sector crop evapotranspiration, is lower than the expected value in pristine conditions. This reduction would be more noticeable at the end of the summer months, attaining as far as a 40% reduction. Average drainage in the studied period, is about 3700 m3/ha/year. This methodology is thought to be the basis for similar worldwide studies comprising scarce-data irrigation districts with drainage discharge to receiving water bodies, and serve as a guide for future alike applications.
Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams
NASA Astrophysics Data System (ADS)
Plitzuweit, S. J.; Springer, G. S.
2008-12-01
Channel network geometry (CNG) is a critical determinant of hydrological response and may significantly affect incision processes within the Appalachian Plateau near Richwood, West Virginia. The Williams, Cherry, and Cranberry Rivers share drainage divides and their lower reaches flow atop resistant, quartz-rich sandstones. The lower two-thirds of the Cranberry and Williams Rivers display linear profiles atop the sandstones; whereas the Cherry is concave upwards atop the sandstones. Because lithologies and geological structures are similar among the watersheds, we tested whether differences in CNGs explain the profile shapes and reach-scale channel properties. Specifically, we quantified CNG by calculating reach- specific area-distance functions using DEMs. The area-distance functions were then converted into synthetic hydrographs to model hydrological responses. The Cherry River exhibits a classic dendritic drainage pattern, producing peaked hydrographs and low interval transit times. The Cranberry River displays a trellis-like drainage pattern, which produces attenuated hydrographs and high interval transit times. The upstream reaches of the Williams River have a dendritic drainage pattern, but the lower two-thirds of the watershed transitions into an elongated basin with trellis-like CNG. Reach gradients are steeper in the lower reaches of the Williams and Cranberry Rivers where hydrographs are attenuated. In contrast, peaked hydrographs within the Cherry River are associated with lower reach gradients despite resistant sandstone channel beds. Trellis-like CNG may restrict the ability of downstream reaches within the Williams and Cranberry Rivers to achieve the critical discharge needed to cause incision during floods (all other things being equal). If so, increased reach gradients may be hydraulic adjustments that compensate for comparatively low discharges. We are now applying the synthetic hydrographs to HEC-RAS flow models generated from field channel surveys in order to analyze whether stream power and shear stress are adjusted to reflect CNG at the reach- scale. These models are compared to those with discharges calculated using drainage area and precipitation totals alone. We conclude that gradients in bedrock mountain streams may reflect basin-scale hydrology (CNG) and not simply local geological or geomorphic factors. This challenges the conclusions of others who ascribe local channel adjustments to: i) lithology and structure alone, or ii) local colluvium grain sizes.
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.
2015-12-01
We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.
NASA Astrophysics Data System (ADS)
Bleacher, J. E.
2015-12-01
Streamlined islands are often assumed to be the product of erosion by water and are cited as evidence of aqueous flows on Mars. However, lava can build streamlined islands in a manner that is more easily explained by flow thickening followed by partial drainage of preferred lava pathways. Kīlauea's December 1974 (D1974) flow was emplaced as a broad sheet-like flow from a series of en echelon fissures across an older hummocky pāhoehoe tumulus field. The lavas surrounded the tumuli and coalesced to fill a topographic low near the basal scarp of the Koae Fault System. As these obstacles were inundated by the D1974 flow, the lava preferentially cooled around the tumuli to form a higher viscosity zone beneath a smooth crust. Stagnation of these thinner, cooler, and more viscous zones focused the flow into a series of preferred lava pathways located between the stagnant islands. Changes in the local discharge rate disrupted the crust of the flow above the lower viscosity pathways. Older tumuli adjacent to the D1974 flow display the same relief as the flow's islands and uncovered portions of this older flow are exposed at the tops of many islands, supporting an interpretation that islands were anchored by high-standing pre-flow tumuli. As the local lava supply waned, partial drainage of the preferred pathways occurred between the higher-standing surfaces anchored to the older tumuli. The resulting morphology consists of a relatively smooth flow field with thin margins that is dissected by depressed pathways or channels. This morphology resembles an erosional surface incised into a smooth plain, but actually represents an initial constructional process followed by partial drainage within a viscous lava flow. Many other Hawaiian rift zone, fissure-fed flow fields display comparable morphologies in the near vent facies, including islands, terraces, thin flow margins and a lack of well defined topographic levees along channels. Thus, branching channel networks and streamlined islands within fissure-fed flow fields on Mars could have resulted from a combination of initial flow thickening followed by partial drainage of preferred lava pathways, and therefore do not necessarily imply substrate erosion or modification by fluvial processes.
Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P
2015-12-01
Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl · min(-1) and 2.7 × 10(-3) mmHg/µl · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost expended on manufacturing and testing prototypes. Further optimisation of the FSI model is expected to ensure further convergence between the simulation and the results of experimental investigations. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Thenoux, M.; Gironas, J. A.; Mejia, A.
2013-12-01
Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system affect the hydrologic response, and that these effects depend on the degree of imperviousness and the characteristics of the precipitation. Results of this research improve our understanding on how urban planning decisions can contribute to minimize the hydrologic and environmental impacts of urban development.
Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins
Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; ...
2015-06-25
We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicitymore » in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.« less
Tanner, C C; Nguyen, M L; Sukias, J P S
2005-01-01
Nitrogen removal performance is reported for constructed wetlands treating subsurface drainage from irrigated and rain-fed dairy pastures in North Island, New Zealand. Flow-proportional sampling of inflow and outflow concentrations were combined with continuous flow records to calculate mass balances for the wetlands. Drainage flows from the irrigated catchment were 2.5-4 fold higher and N exports up to 5 fold higher per unit area than for the rain-fed catchment. Hydraulic and associated N loadings to the wetlands were highly pulsed, associated with rainfall, soil water status, and irrigation events. Transient pulses of organic nitrogen were an important form of N loss from the rain-fed landscape in the first year, and were very effectively removed in the wetland (> 90%). Median nitrate concentrations of approximately 10 g m(-3) in the drainage inflows were reduced by 15-67% during passage through the wetlands and annual nitrate-N loads by 16-61% (38-31 7 g N m(-2)y(-1)). Generation in the wetlands of net ammoniacal-N and organic-N (irrigated site) partially negated reduction in nitrate-N loads. The results show that constructed wetlands comprising 1-2% of catchment area can provide moderate reductions in TN export via pastoral drainage, but performance is markedly influenced by variations in seasonal loading and establishment/maturation factors.
How to Make Our Models More Physically-based
NASA Astrophysics Data System (ADS)
Savenije, H. H. G.
2016-12-01
Models that are generally called "physically-based" unfortunately only have a partial view of the physical processes at play in hydrology. Although the coupled partial differential equations in these models reflect the water balance equations and the flow descriptors at laboratory scale, they miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem (and sometimes people). What these agents do is manipulate the substrate in a way that it supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, in agreement with the landscape, and in response to climatic drivers. In brief, our hydrological system is alive and has a strong capacity to adjust to prevailing and changing circumstances. Although most physically based models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian thinking on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. If this active agent is not reflected in our models, then they miss essential physics. Through a Darwinian approach, we can determine the root zone storage capacity of ecosystems, as a crucial component of hydrological models, determining the partitioning of fluxes and the conservation of moisture to bridge periods of drought. Another crucial element of physical systems is the evolution of drainage patterns, both on and below the surface. On the surface, such patterns facilitate infiltration or surface drainage with minimal erosion; in the unsaturated zone, patterns facilitate efficient replenishment of moisture deficits and preferential drainage when there is excess moisture; in the groundwater, patterns facilitate the efficient and gradual drainage of groundwater, resulting in linear reservoir recession. Models that do not incorporate these patterns are not physical. The parameters in the equations may be adjusted to compensate for the lake of patterns, but this involves scale-dependent calibration. In contrast to what is widely believed, relatively simple conceptual models can accommodate these physical processes accurately and very efficiently.
George M. Chescheir; François Birgand; Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya
2010-01-01
Nutrient loading in drainage outflow is estimated from measured flows and nutrient concentrations in the drainage water. The loading function is ideally continuous, representing the product of continuously measured outflows and nutrient concentrations in drainage water. However, loading is often estimated as the product of continuously measured outflow and nutrient...
Mercury mine drainage and processes that control its environmental impact
Rytuba, J.J.
2000-01-01
Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the pH range of 3.2-7.1 in streams impacted by mine drainage. The dissolved fraction of both mercury species is depleted and concentrated in iron oxyhydroxide such that the amount of iron oxyhydroxide in the water column reflects the concentration of mercury species. In streams impacted by mine drainage, mercury and methylmercury are transported and adsorbed onto particulate phases. During periods of low stream flow, fine-grained iron hydroxide sediment accumulates in the bed load of the stream and adsorbs mercury and methylmercury such that both forms of mercury become highly enriched in the iron oxyhydroxide sediment. During high-flow events, mercury- and methylmercury-enriched iron hydroxide sediment is transported into larger aquatic systems producing a high flux of bioavailable mercury. (C) 2000 Elsevier Science B.V.
Longevity of acid discharges from underground mines located above the regional water table.
Demchak, J; Skousen, J; McDonald, L M
2004-01-01
The duration of acid mine drainage flowing out of underground mines is important in the design of watershed restoration and abandoned mine land reclamation projects. Past studies have reported that acid water flows from underground mines for hundreds of years with little change, while others state that poor drainage quality may last only 20 to 40 years. More than 150 above-drainage (those not flooded after abandonment) underground mine discharges from Pittsburgh and Upper Freeport coal seams were located and sampled during 1968 in northern West Virginia, and we revisited 44 of those sites in 1999-2000 and measured water flow, pH, acidity, Fe, sulfate, and conductivity. We found no significant difference in flows between 1968 and 1999-2000. Therefore, we felt the water quality data could be compared and the data represented real changes in pollutant concentrations. There were significant water quality differences between year and coal seam, but no effect of disturbance. While pH was not significantly improved, average total acidity declined 79% between 1968 and 1999-2000 in Pittsburgh mines (from 66.8 to 14 mmol H+ L(-1)) and 56% in Upper Freeport mines (from 23.8 to 10.4 mmol H+ L(-1)). Iron decreased an average of about 80% across all sites (from an average of 400 to 72 mg L(-1)), while sulfate decreased between 50 and 75%. Pittsburgh seam discharge water was much worse in 1968 than Upper Freeport seam water. Twenty of our 44 sites had water quality information in 1980, which served as a midpoint to assess the slope of the decline in acidity and metal concentrations. Five of 20 sites (25%) showed an apparent exponential rate of decline in acidity and iron, while 10 of 20 sites (50%) showed a more linear decline. Drainage from five Upper Freeport sites increased in acidity and iron. While it is clear that surface mines and below-drainage underground mines improve in discharge quality relatively rapidly (20-40 years), above-drainage underground mines are not as easily predicted. In total, the drainage from 34 out of 44 (77%) above-drainage underground mines showed significant improvement in acidity over time, some exponentially and some linearly. Ten discharges showed no improvement and three of these got much worse.
Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.
2017-10-24
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.
NASA Astrophysics Data System (ADS)
Sarmah, Ratan; Tiwari, Shubham
2018-03-01
An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.
Development of an optical fiber flow velocity sensor.
Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki
2009-01-01
A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.
Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects
NASA Astrophysics Data System (ADS)
Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning
2010-05-01
We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model the impact of the saturation changes in the system over the pressure difference between the wetting and non wetting phase. We show that the so-called dynamic effects referred in the hydrology literature of experimentally measured capillary pressure curves might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase and pressure changes caused by viscous effects. A detailed study of the structure optically followed shows that the geometry of the invader is self-similar with two different behaviors at small and large scales: the structure corresponds to the ones of invasion percolation models at small scales (capillary fingering structures with fractal dimension D=1.83), whereas at large scales, viscous pressure drops dominate over the capillary threshold variations, and the structures are self-similar fingering structures with a fractal dimension corresponding to Dielectric Breakdown Models (variants of the DLA model), with D ≠ 1.5. The cross-over scale is set by the scale at which capillary fluctuations are of the order of the viscous pressure drops. This leads physically to the fact that cross-over scale between the two fingering dimensions, goes like the inverse of the capillary number. This study utilizes these geometrical characteristics of the viscous fingers forming in dynamic drainage, to obtain a meaningfull scaling law for the saturation-pressure curve at finite speed, i.e. the so-called dynamic capillary pressure relations. We thus show how the micromechanical interplay between viscous and capillary forces leads to some pattern formation, which results in a general form of dynamic capillary pressure relations. By combining these detailed informations on the displacement structure with global measures of pressure, saturation and controlling the capillary number Ca, a scaling relation relating pressure, saturation, system size and capillary number is developed. By applying this scaling relation, pressure-saturation curves for a wide range of capillary numbers can be collapsed. Effects of pressure oscillations on drainage in an elastic porous medium: The effects of seismic stimulation on the flow of two immiscible fluids in an elastic synthetic porous medium is experimentally investigated. A wetting fluid is slowly evacuated from the medium, while a pressure oscillation is applied on the injected non-wetting fluid. The amplitude and frequency of the pressure oscillations as well as the evacuation speed are kept constant throughout an experiment. The resulting morphology of the invading structure is found to be strongly dependent on the interplay between the amplitude and the frequency of the applied pressure oscillations and the elasticity of the porous medium. Different combinations of these properties yield morphologically similar structures, allowing a classification of structures that is found to depend on a proposed dimensionless number. [1] Tallakstad, K.T., H.A. Knudsen, T. Ramstad, G. Løvoll, K.J. Maløy, R. Toussaint and E.G. Flekkøy , Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502 (2009). doi:10.1103/PhysRevLett.102.074502 [2] Løvoll, G., M. Jankov, K.J. Maløy, R. Toussaint, J. Schmittbuhl, G. Schaefer and Y. Ḿ eheust, Influence of viscous fingering on dynamic saturation-pressure curves in porous media, submitted to Transport In Porous Media, (2010) [3] Jankov, M., G. Løvoll, H.A. Knudsen, K.J. Maløy, R. Planet, R. Toussaint and E.G. Flekkøy; Effects of pressure oscillations on drainage in an elastic porous medium, Transport In Porous Media, in press (2010).
NASA Astrophysics Data System (ADS)
McGuire, Luke A.; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-07-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-01-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
Cracking the chocolate egg problem: polymeric films coated on curved substrates
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas; Lee, Anna; Marthelot, Joel; Balestra, Gioele; Gallaire, François; Reis, Pedro
2015-11-01
Inspired by the traditional chocolate egg recipe, we show that pouring a polymeric solution onto spherical molds yields a simple and robust path of fabrication of thin elastic curved shells. The drainage dynamics naturally leads to uniform coatings frozen in time as the polymer cures, which are subsequently peeled off their mold. We show how the polymer curing affects the drainage dynamics and eventually selects the shell thickness and sets its uniformity. To this end, we perform coating experiments using silicon based elastomers, Vinylpolysiloxane (VPS) and Polydimethylsiloxane (PDMS). These results are rationalized combining numerical simulations of the lubrication flow field to a theoretical model of the dynamics yielding an analytical prediction of the formed shell characteristics. In particular, the robustness of the coating technique and its flexibility, two critical features for providing a generic framework for future studies, are shown to be an inherent consequence of the flow field (memory loss). The shell structure is both independent of initial conditions and tailorable by changing a single experimental parameter.
Nutrient concentrations and loads in the northeastern United States - Status and trends, 1975-2003
Trench, Elaine C. Todd; Moore, Richard B.; Ahearn, Elizabeth A.; Mullaney, John R.; Hickman, R. Edward; Schwarz, Gregory E.
2012-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) began regional studies in 2003 to synthesize information on nutrient concentrations, trends, stream loads, and sources. In the northeastern United States, a study area that extends from Maine to central Virginia, nutrient data were evaluated for 130 USGS water-quality monitoring stations. Nutrient data were analyzed for trends in flow-adjusted concentrations, modeled instream (non-flow-adjusted) concentrations, and stream loads for 32 stations with 22 to 29 years of water-quality and daily mean streamflow record during 1975-2003 (termed the long-term period), and for 46 stations during 1993-2003 (termed the recent period), by using a coupled statistical model of streamflow and water quality developed by the USGS. Recent trends in flow-adjusted concentrations of one or more nutrients also were analyzed for 90 stations by using Tobit regression. Annual stream nutrient loads were estimated, and annual nutrient yields were calculated, for 47 stations for the long-term and recent periods, and for 37 additional stations that did not have a complete streamflow and water-quality record for 1993-2003. Nutrient yield information was incorporated for 9 drainage basins evaluated in a national NAWQA study, for a total of 93 stations evaluated for nutrient yields. Long-term downward trends in flow-adjusted concentrations of total nitrogen and total phosphorus (18 and 19 of 32 stations, respectively) indicate regional improvements in nutrient-related water-quality conditions. Most of the recent trends detected for total phosphorus were upward (17 of 83 stations), indicating possible reversals to the long-term improvements. Concentrations of nutrients in many streams persist at levels that are likely to affect aquatic habitat adversely and promote freshwater or coastal eutrophication. Recent trends for modeled instream concentrations, and modeled reference concentrations, were evaluated relative to ecoregion-based nutrient criteria proposed by the U.S. Environmental Protection Agency. Instream concentrations of total nitrogen and total phosphorus persist at levels higher than proposed criteria at more than one-third and about one-half, respectively, of the 46 stations analyzed. Long-term trends in nutrient loads were primarily downward, with downward trends in total nitrogen and total phosphorus loads detected at 12 and 17 of 32 stations, respectively. Upward trends were rare, with one upward trend for total nitrogen loads and none for total phosphorus. Trends in loads of nitrite-plus-nitrate nitrogen included 7 upward and 8 downward trends among 32 stations. Downward trends in loads of ammonia nitrogen and total Kjeldahl nitrogen were detected at all six stations evaluated. Long-term downward trends detected in four of the five largest drainage basins evaluated include: total nitrogen loads for the Connecticut, Delaware, and James Rivers; total Kjeldahl nitrogen and ammonia nitrogen loads for the Susquehanna River; ammonia nitrogen and nitrite-plus-nitrate nitrogen loads for the James River; and total phosphorus loads for the Connecticut and Delaware Rivers. No trends in load were detected for the Potomac River. Nutrient yields were evaluated relative to the extent of land development in 93 drainage basins. The undeveloped land-use category included forested drainage basins with undeveloped land ranging from 75 to 100 percent of basin area. Median total nitrogen yields for the 27 undeveloped drainage basins evaluated, including 9 basins evaluated in a national NAWQA study, ranged from 290 to 4,800 pounds per square mile per year (lb/mi2/yr). Total nitrogen yields even in the most pristine drainage basins may be elevated relative to natural conditions, because of high rates of atmospheric deposition of nitrogen in parts of the northeastern United States. Median total phosphorus yields ranged from 12 to 330 lb/mi2/yr for the 26 undeveloped basins evaluated. The undeveloped category includes some large drainage basins with point-source discharges and small percentages of developed land; in these basins, streamflow from undeveloped headwater areas dilutes streamflow in more urbanized reaches, and dampens but does not eliminate the point-source "signal" of higher nutrient loads. Median total nitrogen yields generally do not exceed 1,700 lb/mi2/yr, and median total phosphorus yields generally do not exceed 100 lb/mi2/yr, in the drainage basins that are least affected by human land-use and waste-disposal practices. Agricultural and urban land use has increased nutrient yields substantially relative to undeveloped drainage basins. Median total nitrogen yields for 24 agricultural basins ranged from 1,700 to 26,000 lb/mi2/yr, and median total phosphorus yields ranged from 94 to 1,000 lb/mi2/yr. The maximum estimated total nitrogen and total phosphorus yields, 32,000 and 16,000 lb/mi2/yr, respectively, for all stations in the region were in small (less than 50 square miles (mi2)) agricultural drainage basins. Median total nitrogen yields ranged from 1,400 to 17,000 lb/mi2/yr in 26 urbanized drainage basins, and median total phosphorus yields ranged from 43 to 1,900 lb/mi2/yr. Urbanized drainage basins with the highest nutrient yields are generally small (less than 300 mi2) and are drained by streams that receive major point-source discharges. Instream nutrient loads were evaluated relative to loads from point-source discharges in four drainage basins: the Quinebaug River Basin in Connecticut, Massachusetts, and Rhode Island; the Raritan River Basin in New Jersey; the Patuxent River Basin in Maryland; and the James River Basin in Virginia. Long-term downward trends in nutrient loads, coupled with similar trends in flow-adjusted nutrient concentrations, indicate long-term reductions in the delivery of most nutrients to these streams. However, the absence of recent downward trends in load for most nutrients, coupled with instream concentrations that exceed proposed nutrient criteria in several of these waste-receiving streams, indicates that challenges remain in reducing delivery of nutrients to streams from point sources. During dry years, the total nutrient load from point sources in some of the drainage basins approached or equaled the nutrient load transported by the stream.
NASA Astrophysics Data System (ADS)
Moustafa, S.; Rennermalm, A.; van As, D.; Overeem, I.; Tedesco, M.; Mote, T. L.; Koenig, L.; Smith, L. C.; Hagedorn, B.; Sletten, R. S.; Mikkelsen, A. B.; Hasholt, B.; Hall, D. K.; Fettweis, X.; Pitcher, L. H.; Hubbard, A.
2017-12-01
Greenland ice sheet surface ablation now dominates its total mass loss contributions to sea-level rise. Despite the increasing importance of Greenland's sea-level contribution, a quantitative inter-comparison between modeled and measured melt, runoff and discharge across multiple drainage basins is conspicuously lacking. Here we investigate the accuracy of model discharge estimates from the Modèle Atmosphérique Régionale (MAR v3.5.2) regional climate model by comparison with in situ proglacial river discharge measurements at three West Greenland drainage basins - North River (Thule), Watson River (Kangerlussuaq), and Naujat Kuat River (Nuuk). At each target catchment, we: 1) determine optimal drainage basin delineations; 2) assess primary drivers of melt; 3) evaluate MAR at daily, 5-, 10- and 20-day time scales; and 4) identify potential sources for model-observation discrepancies. Our results reveal that MAR resolves daily discharge variability poorly in the Nuuk and Thule basins (r2 = 0.4-0.5), but does capture variability over 5-, 10-, and 20-day means (r2 > 0.7). Model agreement with river flow data, though, is reduced during periods of peak discharge, particularly for the exceptional melt and discharge events of July 2012. Daily discharge is best captured by MAR across the Watson River basin, whilst there is lower correspondence between modeled and observed discharge at the Thule and Naujat Kuat River basins. We link the main source of model error to an underestimation of cloud cover, overestimation of surface albedo, and apparent warm bias in near-surface air temperatures. For future inter-comparison, we recommend using observations from catchments that have a self-contained and well-defined drainage area and an accurate discharge record over variable years coincident with a reliable automatic weather station record. Our study highlights the importance of improving MAR modeled surface albedo, cloud cover representation, and delay functions to reduce model error and to improve prediction of Greenland's future runoff contribution to global sea level rise.
Debris-flow generation from recently burned watersheds
Cannon, S.H.
2001-01-01
Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.
A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain
Diem, Alexandra K.; Tan, Mingyi; Bressloff, Neil W.; Hawkes, Cheryl; Morris, Alan W. J.; Weller, Roy O.; Carare, Roxana O.
2016-01-01
The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy. PMID:26903861
NASA Astrophysics Data System (ADS)
Elkadiri, R.; Sultan, M.; Nurmemet, I.; Al Harbi, H.; Youssef, A.; Elbayoumi, T.; Zabramwi, Y.; Alzahrani, S.; Bahamil, A.
2014-12-01
We developed methodologies that heavily rely on observations extracted from a wide-range of remote sensing data sets (TRMM, Landsat ETM, ENVISAT, ERS, SPOT, Orbview, GeoEye) to develop a warning system for rainfall-induced debris flows in the Jazan province in the Red Sea Hills. The developed warning system integrates static controlling factors and dynamic triggering factors. The algorithm couples a susceptibility map with a rainfall I-D curve, both are developed using readily available remote sensing datasets. The static susceptibility map was constructed as follows: (1) an inventory was compiled for debris flows identified from high spatial resolution datasets and field verified; (2) 10 topographical and land cover predisposing factors (i.e. slope angle, slope aspect, normalized difference vegetation index, topographical position index, stream power index, flow accumulation, distance to drainage line, soil weathering index, elevation and topographic wetness index) were generated; (3) an artificial neural network model (ANN) was constructed, optimized and validated; (4) a debris-flow susceptibility map was generated using the ANN model and refined (using differential backscatter coefficient radar images). The rainfall threshold curve was derived as follows: (1) a spatial database was generated to host temporal co-registered and radiometrically and atmospherically corrected Landsat images; (2) temporal change detection images were generated for pairs of successively acquired Landsat images and criteria were established to identify "the change" related to debris flows, (3) the duration and intensity of the precipitation event that caused each of the identified debris flow events was assumed to be that of the most intense event within the investigated period; and (4) the I-D curve was extracted using data (intensity and duration of precipitation) for the inventoried events. Our findings include: (1) the spatial controlling factors with the highest predictive power of debris-flow locations are: topographic position index, slope, NDVI and distance to drainage line; (2) the ANN model showed an excellent prediction performance (area under receiver operating characteristic [ROC] curve: 0.961); 3) the preliminary I-D curve is I=39.797×D-0.7355 (I: Intensity and D: duration).
NASA Astrophysics Data System (ADS)
Nella Mollema, Pauline; Antonellini, Marco
2015-04-01
Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form where the gravel pits are below the water table and fill with groundwater. Their presence changes the drainage patterns, water- and hydrochemical budgets of a watershed. We have studied the water budget of two gravel pit lakes systems using stable H and O isotopes of water as well as conservative tracer (Cl) modeling. The Dutch gravel pit lakes are a fluvial fresh water system of 70 lakes along the Meuse River and the Italian gravel pit lakes are a brackish system along the Adriatic coast. Surface water evaporation from the gravel pit lakes is larger than the actual evapotranspiration of the grass land and forests that were replaced. The ratio of evaporation to total flow into the Dutch lakes was determined by using a Fen as a natural evaporation pan: the isotope content of the Tuspeel Fen, filled with rain water and sampled in a dry and warm summer period (August 2012), is representative for the limiting isotopic enrichment under local hydro meteorological conditions. The Local Evaporation line (LEL) was determined δ2 H = 4.20 δ 18O - 14.10 (R² = 0.99) and the ratio of total inflow to evaporation for three gravel pit lakes were calculated to be 22.6 for the De Lange Vlieter lake used for drinking water production, 11.3 for the Boschmolen Lake and 8.9 for the Anna's Beemd lake showing that groundwater flow is much larger than evaporation. The Italian gravel pit lakes are characterized by high salinity (TDS = 4.6-12.3 g L-1). Stable isotope data show that these latter gravel pit lakes are fed by groundwater, which is a mix between fresh Apennine River water and brackish (Holocene) Adriatic Sea water. The local evaporation line is determined: δ2H = 5.02 δ18O - 10.49. The ratio of total inflow to evaporation is 5. Conservative tracer modeling indicates that the chloride concentration in the Italian gravel pit lakes stabilizes after a short period of rapid increase, because water leaving the lake via groundwater flow, driven by the drainage system, removes part of the Cl that accumulates in the lake due to evapo-concentration. Under climate change, rising sea levels and continuing land subsidence as well as increasing precipitation would increase the need for drainage which would enhance groundwater flow through the lake. The resulting steady-state Cl concentration of the lakes could become less than the current Cl concentration. This effect would be larger than increasing evapo- concentration. Both gravel pit lake systems have a large flux of groundwater into and out of the lakes driven by evaporation and (artificial) drainage with important consequences for the water- and hydrochemical budgets of the whole watershed and in particular on freshwater quantity and groundwater salinity.
Regionalization of low-flow characteristics of Tennessee streams
Bingham, R.H.
1986-01-01
Procedures for estimating 3-day 2-year, 3-day 10-year, 3-day 20-year, and 7-day 10-year low flows at ungaged stream sites in Tennessee are based on surface geology and drainage area size. One set of equations applies to west Tennessee streams, and another set applies to central and east Tennessee streams. The equations do not apply to streams where flow is significantly altered by activities of man. Standard errors of estimate of equations for west Tennessee are 24 to 32% and for central and east Tennessee 31 to 35%. Streamflow recession indexes, in days/log cycle, are used to account for effects of geology of the drainage basin on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that sustain streamflows during periods of no surface runoff. Streamflow recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos
2016-08-01
3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
NASA Astrophysics Data System (ADS)
Rao, K. Shankar; Eckman, Richard M.; Hosker, Rayford P., Jr.
1989-07-01
During the 1984 ASCOT field study in Brush Creek Valley, two perfluorocarbon tracers were released into the nocturnal drainage flow at two different heights. The resulting surface concentrations were sampled at 90 sites, and vertical concentration profiles at 11 sites. These detailed tracer measurements provide a valuable dataset for developing and testing models of pollutant transport and dispersion in valleys.In this paper, we present the results of Gaussian puff model simulations of the tracer releases in Brush Creek Valley. The model was modified to account for the restricted lateral dispersion in the valley, and for the gross elevation differences between the release site and the receptors. The variable wind fields needed to transport the puffs were obtained by interpolation between wind profiles measured using tethered balloons at five along-valley sites. Direct turbulence measurements were used to estimate diffusion. Subsidence in the valley flow was included for elevated releases.Two test simulations-covering different nights, tracers, and release heights-were performed. The predicted hourly concentrations were compared with observations at 51 ground-level locations. At most sites, the predicted and observed concentrations agree within a factor of 2 to 6. For the elevated release simulation, the observed mean concentration is 40 pL/L, the predicted mean is 21 pL/L, the correlation coefficient between the observed and predicted concentrations is 0.24, and the index of agreement is 0.46. For the surface release simulation, the observed mean is 85 pL/L, and the predicted mean is 73 pL/L. The correlation coefficient is 0.23, and the index of agreement is 0.42. The results suggest that this modified puff model can be used as a practical tool for simulating pollutant transport and dispersion in deep valleys.
Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.
2010-01-01
Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.
Bressy, Adèle; Gromaire, Marie-Christine; Lorgeoux, Catherine; Saad, Mohamed; Leroy, Florent; Chebbo, Ghassan
2014-06-15
Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Epps, T.
2015-12-01
Impervious surfaces and stormwater drainage networks transmit rainfall quickly to urban stream systems with greater frequency, volume, energy, and pollutant loadings than in predevelopment conditions. This has a well-established negative impact on stream ecology, channel morphology, and water quality. Green infrastructure retrofits for urban drainage systems promote more natural hydrologic pathways by disconnecting concentrated flows. However, they are expensive due to high land costs and physical constraints. If a systematic strategy for siting green infrastructure is sought to restore natural flows throughout an urban catchment, greater knowledge of the drainage patterns and areas contributing frequent surface runoff is necessary. Five diverse urban watersheds in Knoxville, TN, were assessed using high-resolution topography, land cover, and artificial drainage network data to identify how surface connectivity differs among watersheds and contributes to altered flow regimes. Rainfall-runoff patterns were determined from continuous rainfall and streamflow monitoring over the previous ten years. Fine-scale flowpath connectivity of impervious surfaces was measured by both a binary approach and by a method incorporating runoff potential by saturation excess. The effect of the spatial distribution of connected surfaces was investigated by incorporating several distance-weighting schema along established urban drainage flowpaths. Statistical relationships between runoff generation and connectivity were measured to determine the ability of these different measures of connectivity to predict runoff thresholds, frequency, volumes, and peak flows. Initial results suggest that rapid assessment of connected surficial flowpaths can be used to identify known green infrastructure assets and highly connected impervious areas and that the differences in connectivity measured between watersheds reflects differing runoff patterns observed in monitored data.
NASA Astrophysics Data System (ADS)
Kelly, Sara A.; Takbiri, Zeinab; Belmont, Patrick; Foufoula-Georgiou, Efi
2017-10-01
Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000-69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30-200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.
Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D
2015-03-01
Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Technique for simulating peak-flow hydrographs in Maryland
Dillow, Jonathan J.A.
1998-01-01
The efficient design and management of many bridges, culverts, embankments, and flood-protection structures may require the estimation of time-of-inundation and (or) storage of floodwater relating to such structures. These estimates can be made on the basis of information derived from the peak-flow hydrograph. Average peak-flow hydrographs corresponding to a peak discharge of specific recurrence interval can be simulated for drainage basins having drainage areas less than 500 square miles in Maryland, using a direct technique of known accuracy. The technique uses dimensionless hydrographs in conjunction with estimates of basin lagtime and instantaneous peak flow. Ordinary least-squares regression analysis was used to develop an equation for estimating basin lagtime in Maryland. Drainage area, main channel slope, forest cover, and impervious area were determined to be the significant explanatory variables necessary to estimate average basin lagtime at the 95-percent confidence interval. Qualitative variables included in the equation adequately correct for geographic bias across the State. The average standard error of prediction associated with the equation is approximated as plus or minus (+/-) 37.6 percent. Volume correction factors may be applied to the basin lagtime on the basis of a comparison between actual and estimated hydrograph volumes prior to hydrograph simulation. Three dimensionless hydrographs were developed and tested using data collected during 278 significant rainfall-runoff events at 81 stream-gaging stations distributed throughout Maryland and Delaware. The data represent a range of drainage area sizes and basin conditions. The technique was verified by applying it to the simulation of 20 peak-flow events and comparing actual and simulated hydrograph widths at 50 and 75 percent of the observed peak-flow levels. The events chosen are considered extreme in that the average recurrence interval of the selected peak flows is 130 years. The average standard errors of prediction were +/- 61 and +/- 56 percent at the 50 and 75 percent of peak-flow hydrograph widths, respectively.
Estimated loads and yields of suspended soils and water-quality constituents in Kentucky streams
Crain, Angela S.
2001-01-01
Loads and yields of suspended solids, nutrients, major ions, trace elements, organic carbon, fecal coliform, dissolved oxygen, and alkalinity were estimated for 22 streams in 11 major river basins in Kentucky. Mean daily discharge was estimated at ungaged stations or stations with incomplete discharge records using drainage-area ratio, regression analysis, or a combination of the two techniques. Streamflow was partitioned into total and base flow and used to estimate loads and yields for suspended solids and water-quality constituents by use of the ESTIMATOR and FLUX computer programs. The relative magnitude of constituent transport to streams from groundand surface-water sources was determined for the 22 stations. Nutrient and suspended solids yields for drainage basins with relatively homogenous land use were used to estimate the total-flow and base-flow yields of nutrient and suspended solids for forested, agricultural, and urban land. Yields of nutrients?nitrite plus nitrate, ammonia plus organic nitrogen, and total phosphorus?in forested drainage basins were generally less than 1 ton per square mile per year ((ton/mi2)/yr) and were generally less than 2 (ton/mi2)/yr in agricultural drainage basins. The smallest total-flow yields for nitrogen (nitrite plus nitrate) was estimated at Levisa Fork at Paintsville in which 95 percent of the land is forested. This site also had one of the smallest total-flow yields for ammonia plus organic nitrogen. In general, nutrient yields from forested lands were lower than those from urban and agricultural land. Some of the largest estimated total-flow yields of nutrients among agricultural basins were for streams in the Licking River Basin, the North Fork Licking River near Milford, and the South Fork Licking River at Cynthiana. Agricultural land constitutes greater than 75 percent of the drainage area in these two basins. Possible sources of nutrients discharging into the Licking River are farm and residential fertilizers. Estimated base-flow yields of suspended solids and nutrients at several basins in the larger Green River and Lower Cumberland River Basins were about half of their estimated total-flow yields. The karst terrain in these basins makes the ground water highly susceptible to contamination, especially if a confining unit is thin or absent.
NASA Astrophysics Data System (ADS)
Hassan, S. M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Su, Zhongbo
2014-09-01
The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface-groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface-groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y-1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y-1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.
Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su
2014-01-01
The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.
Roland, Mark A.; Stuckey, Marla H.
2008-01-01
Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.
NASA Astrophysics Data System (ADS)
Jiménez Jaramillo, M. A.; Camacho Botero, L. A.; Vélez Upegui, J. I.
2010-12-01
Variation in stream morphology along a basin drainage network leads to different hydraulic patterns and sediment transport processes. Moreover, solute transport processes along streams, and stream habitats for fisheries and microorganisms, rely on stream corridor structure, including elements such as bed forms, channel patterns, riparian vegetation, and the floodplain. In this work solute transport processes simulation and stream habitat identification are carried out at the basin scale. A reach-scale morphological classification system based on channel slope and specific stream power was implemented by using digital elevation models and hydraulic geometry relationships. Although the morphological framework allows identification of cascade, step-pool, plane bed and pool-riffle morphologies along the drainage network, it still does not account for floodplain configuration and bed-forms identification of those channel types. Hence, as a first application case in order to obtain parsimonious three-dimensional characterizations of drainage channels, the morphological framework has been updated by including topographical floodplain delimitation through a Multi-resolution Valley Bottom Flatness Index assessing, and a stochastic bed form representation of the step-pool morphology. Model outcomes were tested in relation to in-stream water storage for different flow conditions and representative travel times according to the Aggregated Dead Zone -ADZ- model conceptualization of solute transport processes.
Reliable groundwater levels: failures and lessons learned from modeling and monitoring studies
NASA Astrophysics Data System (ADS)
Van Lanen, Henny A. J.
2017-04-01
Adequate management of groundwater resources requires an a priori assessment of impacts of intended groundwater abstractions. Usually, groundwater flow modeling is used to simulate the influence of the planned abstraction on groundwater levels. Model performance is tested by using observed groundwater levels. Where a multi-aquifer system occurs, groundwater levels in the different aquifers have to be monitored through observation wells with filters at different depths, i.e. above the impermeable clay layer (phreatic water level) and beneath (artesian aquifer level). A reliable artesian level can only be measured if the space between the outer wall of the borehole (vertical narrow shaft) and the observation well is refilled with impermeable material at the correct depth (post-drilling phase) to prevent a vertical hydraulic connection between the artesian and phreatic aquifer. We were involved in improper refilling, which led to impossibility to monitor reliable artesian aquifer levels. At the location of the artesian observation well, a freely overflowing spring was seen, which implied water leakage from the artesian aquifer affected the artesian groundwater level. Careful checking of the monitoring sites in a study area is a prerequisite to use observations for model performance assessment. After model testing the groundwater model is forced with proposed groundwater abstractions (sites, extraction rates). The abstracted groundwater volume is compensated by a reduction of groundwater flow to the drainage network and the model simulates associated groundwater tables. The drawdown of groundwater level is calculated by comparing the simulated groundwater level with and without groundwater abstraction. In lowland areas, such as vast areas of the Netherlands, the groundwater model has to consider a variable drainage network, which means that small streams only carry water during the wet winter season, and run dry during the summer. The main streams drain groundwater throughout the whole year. We simulated groundwater levels with a steady-state groundwater flow model with and without groundwater abstraction for the wet and dry season, i.e. considering a high (all streams included) and low drainage density (only major streams), respectively. Groundwater drawdown maps for the wet and dry season were compiled. Stakeholders (farmers, ecologists) were very concerned about the large drawdowns. After a while and discussions with the Water Supply Company and stakeholders, we realised that we had calculated unrealistic large drawdowns of the phreatic groundwater level for the dry season. We learnt that by applying a steady-state model we did not take into account the large volume of groundwater, which is released from the groundwater storage. The transient groundwater model that we developed then, showed that the volume of groundwater released from the storage per unit of time is significant and that the drawdown of the phreatic groundwater level by the end of the dry period is substantially smaller than the one simulated by the steady-state model. The results of the transient groundwater flow model agreed rather well with the pumping test that lasted the whole dry season.
Farmer, William H.; Over, Thomas M.; Vogel, Richard M.
2015-01-01
Understanding the spatial structure of daily streamflow is essential for managing freshwater resources, especially in poorly-gaged regions. Spatial scaling assumptions are common in flood frequency prediction (e.g., index-flood method) and the prediction of continuous streamflow at ungaged sites (e.g. drainage-area ratio), with simple scaling by drainage area being the most common assumption. In this study, scaling analyses of daily streamflow from 173 streamgages in the southeastern US resulted in three important findings. First, the use of only positive integer moment orders, as has been done in most previous studies, captures only the probabilistic and spatial scaling behavior of flows above an exceedance probability near the median; negative moment orders (inverse moments) are needed for lower streamflows. Second, assessing scaling by using drainage area alone is shown to result in a high degree of omitted-variable bias, masking the true spatial scaling behavior. Multiple regression is shown to mitigate this bias, controlling for regional heterogeneity of basin attributes, especially those correlated with drainage area. Previous univariate scaling analyses have neglected the scaling of low-flow events and may have produced biased estimates of the spatial scaling exponent. Third, the multiple regression results show that mean flows scale with an exponent of one, low flows scale with spatial scaling exponents greater than one, and high flows scale with exponents less than one. The relationship between scaling exponents and exceedance probabilities may be a fundamental signature of regional streamflow. This signature may improve our understanding of the physical processes generating streamflow at different exceedance probabilities.
Model simulations of flood and debris flow timing in steep catchments after wildfire
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.
2016-08-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Model simulations of flood and debris flow timing in steep catchments after wildfire
Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J
2016-01-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Representing natural and manmade drainage systems in an earth system modeling framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongyi; Wu, Huan; Huang, Maoyi
Drainage systems can be categorized into natural or geomorphological drainage systems, agricultural drainage systems and urban drainage systems. They interact closely among themselves and with climate and human society, particularly under extreme climate and hydrological events such as floods. This editorial articulates the need to holistically understand and model drainage systems in the context of climate change and human influence, and discusses the requirements and examples of feasible approaches to representing natural and manmade drainage systems in an earth system modeling framework.
NASA Astrophysics Data System (ADS)
Wallach, Rony; Margolis, Michal; Graber, Ellen R.
2013-10-01
The impact of contact angle on 2-D spatial and temporal water-content distribution during infiltration and drainage was experimentally studied. The 0.3-0.5 mm fraction of a quartz dune sand was treated and turned subcritically repellent (contact angle of 33°, 48°, 56°, and 75° for S33, S48, S56, and S75, respectively). The media were packed uniformly in transparent flow chambers and water was supplied to the surface as a point source at different rates (1-20 ml/min). A sequence of gray-value images was taken by CCD camera during infiltration and subsequent drainage; gray values were converted to volumetric water content by water volume balance. Narrow and long plumes with water accumulation behind the downward moving wetting front (tip) and negative water gradient above it (tail) developed in the S56 and S75 media during infiltration at lower water application rates. The plumes became bulbous with spatially uniform water-content distribution as water application rates increased. All plumes in these media propagated downward at a constant rate during infiltration and did not change their shape during drainage. In contrast, regular plume shapes were observed in the S33 and S48 media at all flow rates, and drainage profiles were nonmonotonic with a transition plane at the depth that water reached during infiltration. Given that the studied media have similar pore-size distributions, the conclusion is that imbibition hindered by the nonzero contact angle induced pressure buildup at the wetting front (dynamic water-entry value) that controlled the plume shape and internal water-content distribution during infiltration and drainage.
NASA Astrophysics Data System (ADS)
Courdent, Vianney; Grum, Morten; Munk-Nielsen, Thomas; Mikkelsen, Peter S.
2017-05-01
Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.
Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.
2016-06-27
The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west-central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow users to estimate basin and climatic characteristics and peak-flow statistics at ungaged locations of interest. StreamStats estimates peak-flow statistics with quantifiable certainty only when used at sites with basin and climatic characteristics within the range of input variables used to develop the regional regression equations. Both the regional regression equations and StreamStats should be used to estimate peak-flow statistics only in naturally flowing, relatively unregulated streams without substantial local influences to flow, such as large seeps, springs, or other groundwater-surface water interactions that are not widespread or characteristic of the respective region.
Robertson, Dale M.
1998-01-01
The variability in water quality throughout the WMIC Study Unit during base-flow conditions could be described very well by subdividing the area into Relatively Homogeneous Units and sampling a few streams with drainage basins completely within these homogeneous units. This subdivision and sampling scheme enabled the differences in water quality to be directly related to the differences in the environmental characteristics that exist throughout the Study Unit.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Peugeot, John W.
2017-01-01
OBJECTIVES: To evaluate proposed anti-vortex design in suppressing swirling flow during US burn. APPROACH: Include two major body forces in the analysis a)Vehicle acceleration (all three components); b)Vehicle maneuvers (roll, pitch, and yaw). Perform two drainage analyses of Ares I LOX tank using 6 DOF body forces predicted by GN&C analysis (Guidance Navigation and Control) during vehicle ascent: one with baffle, one without baffle. MODEL: Use Ares I defined geometry. O-Grid for easy fitting of baffle. In this preliminary analysis the holes are sealed. Use whole 360 deg. model with no assumption of symmetry or cyclic boundary conditions. Read in 6DOF data vs time from a file.
Lampe, David C.
2016-03-15
The results of this study can be used by water-resource managers to understand how surrounding ditches affect water levels in Great Marsh and other inland wetlands and residential areas. The groundwater model developed can be applied to answer questions about how alterations to the drainage system in the area affects water levels in the public and residential areas surrounding Great Marsh. The modeling methods developed in this study provide a template for other studies of groundwater flow and groundwater/surface-water interactions within the shallow surficial aquifer in northern Indiana, and in similar hydrologic settings that include surficial sand aquifers in coastal areas.
Bales, Jerad; Fulford, Janice M.; Swain, Eric D.
1997-01-01
A study was conducted to review selected features of the Natural System Model, version 4.3 . The Natural System Model is a regional-scale model that uses recent climatic data and estimates of historic vegetation and topography to simulate pre-canal-drainage hydrologic response in south Florida. Equations used to represent the hydrologic system and the numerical solution of these equations in the model were documented and reviewed. Convergence testing was performed using 1965 input data, and selected other aspects of the model were evaluated.Some conclusions from the evaluation of the Natural System Model include the following observations . Simulations were generally insensitive to the temporal resolution used in the model. However, reduction of the computational cell size from 2-mile by 2-mile to 2/3-mile by 2/3-mile resulted in a decrease in spatial mean ponding depths for October of 0.35 foot for a 3-hour time step.Review of the computer code indicated that there is no limit on the amount of water that can be transferred from the river system to the overland flow system, on the amount of seepage from the river to the ground-water system, on evaporation from the river system, or on evapotranspiration from the overland-flow system . Oscillations of 0.2 foot or less in simulated river stage were identified and attributed to a volume limiting function which is applied in solution of the overland-flow equations. The computation of the resistance coefficient is not consistent with the computation of overland-flow velocity. Ground-water boundary conditions do not always ensure a no-flow condition at the boundary. These inconsistencies had varying degrees of effects on model simulations, and it is likely that simulations longer than 1 year are needed to fully identify effects. However, inconsistencies in model formulations should not be ignored, even if the effects of such errors on model results appear to be small or have not been clearly defined.The Natural System Model can be a very useful tool for estimating pre-drainage hydrologic response in south Florida. The model includes all of the important physical processes needed to simulate a water balance. With a few exceptions, these hydrologic processes are represented in a reasonable manner using empirical, semiempirical, and mechanistic relations . The data sets that have been assembled to represent physical features, and hydrologic and meteorological conditions are quite extensive in their scope.Some suggestions for model application were made. Simulation results from the Natural System Model need to be interpreted on a regional basis, rather than cell by cell. The available evidence suggests that simulated water levels should be interpreted with about a plus or minus 1 foot uncertainty. It is probably not appropriate to use the Natural System Model to estimate pre-drainage discharges (as opposed to hydroperiods and water levels) at a particular location or across a set of adjacent computational cells. All simulated results for computational cells within about 10 miles of the model boundaries have a higher degree of uncertainty than results for the interior of the model domain. It is most appropriate to interpret the Natural System Model simulation results in connection with other available information. Stronger linkages between hydrologic inputs to the Everglades and the ecological response of the system would enhance restoration efforts .
NASA Astrophysics Data System (ADS)
Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Palmer, S. J.; Bell, R. E.
2016-12-01
Subglacial water beneath the Greenland Ice Sheet is linked to changes in sliding rate in both theoretical and field-based studies. These can lead to massive, widespread speed-ups or, conversely, very little response from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine how shifts in drainage occur and what controls them. By combining NASA IceBridge radar-sounding and ice-sheet modeling, we identified distinct subglacial drainage patterns across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and the Petermann-Humboldt glacier system as a northern example. In southern Greenland at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply and is strongly controlled by bed topography and properties. In the winter, water is stored on bedrock ridges but is absent in deep sediment-filled troughs. In the summer, water drains to the deep troughs that focus this water, flooding the bed to intensify sliding. Conversely, the subglacial drainage systems in northern Greenland are distinctly different. Beneath Petermann and Humboldt, subglacial water is present throughout the year and primarily fed by basal melt in the upstream reaches. In Petermann, this basal water is focused by the deep topography along the main ice trunk. These drainage networks are continuous up to 180 km from the glacier terminus, and likely facilitate the onset of fast flow. In contrast, in Humboldt the flat topography and the lack of water focusing produce more broadly distributed networks rather than locally focused systems. In Humboldt, onset of fast flow develops much closer to the ice edge where surface meltwater may contribute to the subglacial water budget. Our results provide insights into the relationship between surface melt, basal topography and properties over a wide range of controlling parameters. Local conditions often determine the degree to which subglacial systems focus and play an important role in determining individual catchment responses to surface melt.
Pesticide leaching via subsurface drains in different hydrologic situations
NASA Astrophysics Data System (ADS)
Zajíček, Antonín; Fučík, Petr; Liška, Marek; Dobiáš, Jakub
2017-04-01
esticides and their degradates in tile drainage waters were studied in two small, predominantly agricultural, tile-drained subcatchments in the Bohemian-Moravian Highlands, Czech Republic. The goal was to evaluate their occurence and the dymamics of their concentrations in drainage waters in different hydrologic situations using discharge and concentration monitoring together with 18O and 2H isotope analysis for Mean Residence Time (MRT) estimation and hydrograph separations during rainfall - runoff (R-R) events. The drainage and stream discharges were measured continuously at the closing outlets of three drainage groups and one small stream. During periods of prevailing base and interflow, samples were collected manually in two-week intervals for isotope analysis and during the spraying period (March to October) also for pesticide analysis. During R-R events, samples were taken by automatic samplers in intervals varying from 20 min (summer) to 1 hour (winter). To enable isotopic analysis, precipitation was sampled both manually at two-week intervals and also using an automatic rainfall sampler which collected samples of precipitation during the R-R events at 20-min. intervals. The isotopic analysis showed, that MRT of drainage base flow and interflow varies from 2,2 to 3,3 years, while MRT of base flow and interflow in surface stream is several months. During R-R events, the proportion of event water varied from 0 to 60 % in both drainage and surface runoff. The occurrence of pesticides and their degradates in drainage waters is strongly dependent on the hydrologic situation. While degradates were permanently present in drainage waters in high but varying concentrations according to instantaneous runoff composition, parent matters were detected almost exclusively during R-R events. In periods with prevailing base flow and interflow (grab samples), especially ESA forms of chloracetanilide degradates occured in high concentrations in all samples. Average sum of degradates varried between 1 730 - 5 760 ng/l. During R-R events, pesticide concentration varried according to runoff composition and time between sprayng and event. Event with no protortiom of event water in drainage runoff were typical by incereas in degradates concentrations (up to 20 000ng/l) and none or low occurence of parent matters. Events with significant event water proportion in drainage runoff were characterised by decrease in degradates concentrations and (when event happened soon affter spraying) by presence of paternal pesticides in drinage runoff. Instanteous concentrations of paren matters can be extremely high in that causes, up to 23 000 ng/l in drainage waters and up to 40 000 ng/l in small stream. Above results suggest that drainage systems could act as significant source of pesticide leaching. When parent compounds leaches via tile drainage systems, there are some border conditions that must exist together such as the occurence of R-R event soon after the pests application and the presence of event water (or water with short residence time in the catchment) in the drainage runoff.
MELLOR, R.H.; COOK, G.J.; SVENSSON, W.E.; PETERS, A.M.; LEVICK, J.R.; MORTIMER, P.S.
2005-01-01
Background: In arm lymphedema secondary to axillary surgery and radiotherapy (breast cancer-related lymphedema), the swelling is largely epifascial and lymph flow per unit epifascial volume is impaired. The subfascial muscle compartment is not measurably swollen despite the iatrogenic damage to its axillary drainage pathway, but this could be due to its low compliance. Our aim was to test the hypothesis that subfascial lymph drainage too is impaired. Methods and Results: Quantitative lymphoscintigraphy was used to measure the removal rate constant (local lymph flow per unit distribution volume) for technetium-99m-human immunoglobulin G injected intramuscularly in the forearms of nine women with unilateral lymphedema. The removal rate constant was on average 31% lower in the ipsilateral swollen forearm than in the contralateral forearm (swollen arm: −0.096 ± 0.041% min−1, contralateralarm: −0.138 ± 0.037% min−1; mean ± SD, p = 0.037). The decrease in subfascial rate constant correlated strongly with increase in arm volume (r 0.88, p = 0.002), even though the swelling is mainly epifascial. There was no convincing evidence of dermal backflow. Conclusions: Lymph flow in the subfascial muscle compartment is decreased in breast cancer-related lymphedema. The correlation between impairment of subfascial drainage and epifascial arm swelling could be because both depend on the severity of axillary damage, or because loss of function in subfascial lymphatics impairs drainage from the epifascial to the subfascial system. PMID:15624420
Gachango, F G; Pedersen, S M; Kjaergaard, C
2015-12-01
Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.
NASA Astrophysics Data System (ADS)
Wegmann, K. W.; Tamra, M.; Sabaj Pérez, M.; Lopresti, M.; Cole, M. B.; Gosse, J. C.; Smith, S. G.; Bayasgalan, G.; Ancuta, L. D.; McDannell, K. T.; Gallen, S. F.
2014-12-01
The Hangay Mountains stand 1.5 - 2 km above adjacent lowlands and the timing and cause of their high elevation is debated. As part of a broad collaborative project, we synthesize several data sets that collectively suggest the Hangay increased in elevation during the mid-to-late Miocene, while topographic relief, one metric commonly associated with active mountain ranges, remained largely unchanged. The topographic crest of the Hangay forms the drainage divide between the Selenga River and internal drainage of the Mongolian Depression of Lakes (MDL) and northern Gobi. Synthetic drainage divides for the Hangay were created by filtering digital topography in the spectral domain (50 - 200 km wavelengths) using a 2D-FFT function. The co-location of the synthetic and modern divides suggests that the Hangay divide is in a stable, equilibrium configuration. This assumption is corroborated by chi-maps of steady-state river channel elevations that exhibit nearly equal values across water divides. An exception to both of these metrics occurs in the northwest Hangay where the Bulnay fault crosses a low divide between the western Selenga basin and the MDL. Recent basalt vesicle paleoaltimetry results allow for ~1 km of surface uplift of the central Hangay in the past ~ 10 Ma. These same basalt flows in-filled late Miocene valleys cut into basement with a minimum of 800 m of local relief; similar to the amount of modern, post-glacial relief along the drainage divide. mtDNA analyses from > 250 combined Stone Loaches (Barbatula), Grayling (Thymallus), and Eurasian Dace (Leuciscus) samples from both sides of the continental drainage divide are supportive of Miocene surface uplift. Molecular genetic differences between the loach populations across the divide suggest that they separated from a common ancestor between 20 and 11 Ma. This date is consistent with the timing of surface uplift and valley incision preserved in the Miocene basalt flows. The dace and grayling populations on either side of the divide separated more recently, at ~ 2 Ma and < 1 Ma, respectively. We speculate that either (1) Quaternary climate change via glacial drainage reorganization or (2) drainage capture in response to slip along the Bulnay fault forced these more recent separations. These topo-genetic constrains are needed inputs for regional geodynamic models.
NASA Astrophysics Data System (ADS)
Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero
2018-04-01
Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide quantitative and qualitative descriptions of subglacial channels that revisit well-established field identification guidelines. Distinguishing subglacial channels in topographic data is critical for understanding the emergence, geometry, and extent of channelized meltwater systems and their role in ice sheet drainage. The final aim of this study is to facilitate the identification of subglacial channel networks throughout the globe by using remote sensing techniques, which will improve the detection of these systems and help to build understanding of the underlying mechanics of subglacial channelized drainage.
Pigtail catheters used for percutaneous fluid drainage: comparison of performance characteristics.
Macha, Douglas B; Thomas, John; Nelson, Rendon C
2006-03-01
To compare the performance characteristics of various single-lumen all-purpose pigtail drainage catheters. The following parameters were compared: flow rates between catheters of the same size, whether changing the fluid viscosity has any effect on catheter comparisons, the effect on flow of leaving an open three-way stopcock in the drainage pathway, the tendency of the catheters to kink, and catheter patency after kinking, as measured according to flow. All-purpose 8.0-, 8.3-, and 8.5-F (collectively referred to as 8-F); 10.0-, 10.2-, and 10.3-F (collectively referred to as 10-F); and 12.0-F pigtail drainage catheters from three manufacturers were evaluated. Data were compared by using two-tailed t tests after normal distributions were confirmed. P < .05 was considered to represent a significant difference. At comparison of the 8-F catheters, the C.R. Bard catheters demonstrated better flow rates than the Cook and Boston Scientific devices. Among the 10-F catheters, there were no significant differences in the flow rates of fluid with viscosity equivalent to that of water between the C.R. Bard and Boston Scientific catheters; however, both these catheter types demonstrated significantly (P < .05) better flow rates than the Cook devices. Among the 12-F catheters, the C.R. Bard catheters demonstrated significantly (P < .05) better flow rates than the other two catheter types. Changing the fluid viscosity caused no changes in comparison results. In all catheter groups, the presence of a stopcock significantly (P < .05) impaired flow. None of the evaluated catheters demonstrated a clear advantage in terms of patency or susceptibility to kinking. At comparison of the in vitro performances of catheters from different manufacturers, the C.R. Bard 8.0-F and Cook 10.2-F catheters had comparable flow rates, and flow rates through the C.R. Bard and Boston Scientific 10.0-F catheters were comparable to flow rates through the Cook and Boston Scientific 12.0-F catheters. Varying viscosity had no effect on comparisons of catheter flow rates; however, a stopcock between the vacuum source and the catheter was noted to impair flow rates in all brands and sizes of evaluated catheters. Copyright RSNA, 2006.
Prediction of flow duration curves for ungauged basins
NASA Astrophysics Data System (ADS)
Atieh, Maya; Taylor, Graham; M. A. Sattar, Ahmed; Gharabaghi, Bahram
2017-02-01
This study presents novel models for prediction of flow Duration Curves (FDCs) at ungauged basins using artificial neural networks (ANN) and Gene Expression Programming (GEP) trained and tested using historical flow records from 171 unregulated and 89 regulated basins across North America. For the 89 regulated basins, FDCs were generated for both before and after flow regulation. Topographic, climatic, and land use characteristics are used to develop relationships between these basin characteristics and FDC statistical distribution parameters: mean (m) and variance (ν). The two main hypotheses that flow regulation has negligible effect on the mean (m) while it the variance (ν) were confirmed. The novel GEP model that predicts the mean (GEP-m) performed very well with high R2 (0.9) and D (0.95) values and low RAE value of 0.25. The simple regression model that predicts the variance (REG-v) was developed as a function of the mean (m) and a flow regulation index (R). The measured performance and uncertainty analysis indicated that the ANN-m was the best performing model with R2 (0.97), RAE (0.21), D (0.93) and the lowest 95% confidence prediction error interval (+0.22 to +3.49). Both GEP and ANN models were most sensitive to drainage area followed by mean annual precipitation, apportionment entropy disorder index, and shape factor.
Modelling soil-water dynamics in the rootzone of structured and water-repellent soils
NASA Astrophysics Data System (ADS)
Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent
2018-04-01
In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.
An Optimal Balance between Efficiency and Safety of Urban Drainage Networks
NASA Astrophysics Data System (ADS)
Seo, Y.
2014-12-01
Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.
Soil internal drainage: temporal stability and spatial variability in succession bean-black oat
NASA Astrophysics Data System (ADS)
Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.
2012-04-01
There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.
NASA Astrophysics Data System (ADS)
Klaus, Julian; Zehe, Erwin
2010-05-01
Rapid water flow along spatially connected - often biologically mediated - flow paths of minimum flow resistance is widely acknowledged to play a key role in runoff generation at the hillslope and small catchment scales but also in the transport of solutes like agro chemicals and nutrients in cohesive soils. Especially at tile drained fields site connected vertical flow structures such as worm burrows, roots or shrinkage cracks act as short cuts allowing water flow to bypass the soil matrix. In the present study we propose a spatially explicit approach to represent worm burrows as connected structures of high conductivity and low retention capacity in a 2D physically model. With this approach tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment were modelled. The model parameters derived from measurements and are considered to be uncertain. Given this uncertainty of key factors that organise flow and transport at tile drained sites the main objectives of the present studies are to shed light on the following three questions: 1. Does a simplified approach that explicitly represents worm burrows as continuous flow paths of small flow resistance and low retention properties in a 2D physically model allow successful reproduction of event flow response at a tile drained field site in the Weiherbach catchment? 2. Does the above described uncertainty in key factors cause equifinality i.e. are there several model structural setups that reproduce event flow response in an acceptable manner without compromising our physical understanding of the system? 3. If so, what are the key factors that have to be known at high accuracy to reduce the equifinality of model structures? The issue of equifinality is usually discussed in catchment modelling to indicate that often a large set of conceptual model parameter sets allows acceptable reproduction of the behaviour of the system of interest - in many cases catchment stream flow response. Beven and Binley (1992) suggest that these model structures should be considered to be equally likely to account for predictive uncertainty. In this study we show that the above outline approach allows successful prediction of the tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment flow event. Strikingly we a found a considerable equifinality in the model structural setup, when key parameters such as the area density of worm burrows, their hydraulic conductivity and the conductivity of the tile drains were varied within the ranges of either our measurements or measurements reported in the literature. Thirteen different model setups yielded a normalised time-shifted Nash-Sutcliffe of more than 0.9, which means that more than 90% of the flow variability is explained by the model. Also the flow volumes were in good accordance and timing errors were less or equal than 20 min (which corresponds to two simulation output time steps). It is elaborated that this uncertainty/equifinality could be reduced when more precise data on initial states of the subsurface and on the drainage area of a single drainage tube could be made available. However, such data are currently most difficult to assess even at very well investigated site as the one that is dealt with here. We thus suggest non uniqueness of process based model structures seems thus to be an important factor causing predictive uncertainty at many sites where preferential flow dominates systems response. References Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, 6, p.279-298.
Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...
2016-02-02
In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less
NASA Astrophysics Data System (ADS)
Gascuel-Odoux, Chantal; Cordier, Marie-Odile; Grimaldi, Catherine; Salmon-Monviola, Jordy; Masson, Veronique; Squividant, Herve; Trepos, Ronan
2013-04-01
Agricultural landscapes are structured by a mosaic of farmers'fields whose boundaries and land use change over time, and by linear elements such as hedgerows, ditches and roads, which are more or less connected to each other. Such man-made features are now well known to have an effect on catchment hydrology, erosion and water quality. In such agricultural landscapes, it is crucial to have an adequate functional representation of the flow pathways and define relevant indicators of surface flow connectivity over the catchment towards the stream, as a necessary step for improving landscape design and water protection. A new conceptual object oriented approach has been proposed by building the drainage network on the identification of the inlets and outlets for surface water flow on each farmers' field and surrounding landscape elements (Aurousseau et al., 2009 ; Gascuel-Odoux et al., 2011), then on delineating a set of elementary plot outlet trees labelled by attributes which feed the stream. This drainage network is therefore represented as a global plot outlet tree which conceptualizes the connectivity of the surface flow patterns over the catchment. This approach has been applied to different catchment areas, integrated in modelling (Gascuel-Odoux et al., 2009) and decision support tools. It provides a functional display of data for decision support which can highlight the plots of potential risk regarding the surface runoff, areas which are often shortly extended over catchments (suspended sediment application). Integrated in modelling and mining tools, it allows to catch typologies of the most spatial pattern involved in water quality degradation (herbicides transport model) (Trepos et al., 2012) and test their permanency in time regarding the variations of climate conditions and agricultural practices (Salmon-Monviola et al., 2011). This set of works joins skills in hydrology, agronomy and computer sciences. Aurousseau P., Gascuel-Odoux C., Squividant H., Tortrat F., Cordier M.O., 2009. A plot drainage network as a conceptual tool for the spatial representation of surface flow pathways in agricultural catchments. Computer and Geosciences, 35, 276-288. Gascuel-Odoux C., Aurousseau P., Cordier M.O., Durand P., Garcia F., Masson, V., Salmon-Monviola J., Tortrat F., Trepos, R. 2009. A decision-oriented model to evaluate the effect of land use and management on herbicide contamination in stream water. Environmental modelling and software, 24, 1433-1446. Gascuel-Odoux C., Aurousseau, P., Doray, T., Squividant, H., Macary, F., Uny, D., Grimaldi, C., 2011. Incorporating landscape features in a plot tree structure to represent surface flow connectivity in rural catchments. Hydrological Processes, 25, 3625-3636. Salmon-Monviola J., Gascuel-Odoux C., Garcia F., Tortrat F., Cordier M.O., Masson V., Trepos R., 2011. Simulating the effect of technical and environmental constraints on the spatio-temporal distribution of herbicide applications and stream losses. Agriculture, Environment and Ecosystems, 140, 382-394. Trepos, R., Masson V., Cordier, M.O., Gascuel-Odoux, C., Salmon-Monviola J., 2012. Mining simulation data by rule induction to determine critical source areas of stream water pollution by herbicides. Computers and Electronics in Agriculture 86: 75-88.
NASA Astrophysics Data System (ADS)
Istok, J. D.; Kling, G. F.
1983-09-01
Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2). Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ˜65 and ˜55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased. It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon.
Surficial geologic map along the Castle Mountain Fault between Houston and Hatcher Pass Road, Alaska
Haeussler, Peter J.
1998-01-01
The surficial geology of the map area is dominated by sedimentary deposits laid down during and after the Naptowne glaciation (Karlstrom, 1964) of late Pleistocene age. During this episode, a large valley glacier flowed westward down the Matanuska Valley along the southern flank of the Talkeetna Mountains. The youngest of two documented advances has been referred to as the Elmendorf stade, which reached its maximum extent about 12,000 radiocarbon years ago (Schmoll and others, 1972; Reger and Updike, 1983). Deposits from this stade in the map area include: glacial till (Qg), lateral moraine (Qml) and kame terrace (Qk) deposits. Older episodes of glaciation have been inferred by a number of workers (e.g., Karlstrom, 1964; Reger and Updike, 1983; Reger and Updike, 1989; Schmoll and Yehle, 1986). The ridge above and north of the map area, Bald Mountain Ridge, is rounded in contrast to higher areas of the Talkeetna Mountains to the east. Therefore, within the map area older glacial deposits (Qg2) are inferred to lie above the highest Naptowne deposits. After reaching its maximum extent the valley glacier stagnated (Reger and Updike, 1983), as indicated by a crevasse-fill-ridge complex south of Houston in the map area, perched drainages along the sides of the Talkeetna Mountains, and an esker (unit Qe in the middle of the western map area). The ancient stream deposits (unit Qad) are perched on the southern flanks of the Talkeetna Mountains and were deposited by westward flowing streams as the valley glacier stagnated. These sinuous ancient drainages commonly incised up to 20 m into the underlying glacial till. Because stream flow is not as high today as when the drainages formed, the modern streams flowing within these drainages are underfit, and the ancient drainage courses are commonly filled with peat deposits (Qp). After ice of the Elmendorf stade melted, modern stream courses were established. These include the southward flowing streams on the flank of the Talkeetna Mountains as well as the west-southwestward flowing Little Susitna River. The Little Susitna River cut down through older river terrace deposits (Qat) to form the active alluvial plain (Qaa). Alluvium from the southward flowing streams (Qas) forms alluvial fans on top of, and presumably interfingering with, active alluvium along the Little Susitna River.
NASA Astrophysics Data System (ADS)
Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.
2018-02-01
It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.
Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.; Gelder, Brian K.
2018-02-14
Basin-characteristic measurements related to stream length, stream slope, stream density, and stream order have been identified as significant variables for estimation of flood, flow-duration, and low-flow discharges in Iowa. The placement of channel initiation points, however, has always been a matter of individual interpretation, leading to differences in stream definitions between analysts.This study investigated five different methods to define stream initiation using 3-meter light detection and ranging (lidar) digital elevation models (DEMs) data for 17 streamgages with drainage areas less than 50 square miles within the Des Moines Lobe landform region in north-central Iowa. Each DEM was hydrologically enforced and the five stream initiation methods were used to define channel initiation points and the downstream flow paths. The five different methods to define stream initiation were tested side-by-side for three watershed delineations: (1) the total drainage-area delineation, (2) an effective drainage-area delineation of basins based on a 2-percent annual exceedance probability (AEP) 12-hour rainfall, and (3) an effective drainage-area delineation based on a 20-percent AEP 12-hour rainfall.Generalized least squares regression analysis was used to develop a set of equations for sites in the Des Moines Lobe landform region for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs. A total of 17 streamgages were included in the development of the regression equations. In addition, geographic information system software was used to measure 58 selected basin-characteristics for each streamgage.Results of the regression analyses of the 15 lidar datasets indicate that the datasets that produce regional regression equations (RREs) with the best overall predictive accuracy are the National Hydrographic Dataset, Iowa Department of Natural Resources, and profile curvature of 0.5 stream initiation methods combined with the 20-percent AEP 12-hour rainfall watershed delineation method. These RREs have a mean average standard error of prediction (SEP) for 4-, 2-, and 1-percent AEP discharges of 53.9 percent and a mean SEP for all eight AEPs of 55.5 percent. Compared to the RREs developed in this study using the basin characteristics from the U.S. Geological Survey StreamStats application, the lidar basin characteristics provide better overall predictive accuracy.
Han, Jin Feng; Liu, Shuo; Dai, Jun; Qiu, Hao
2018-02-01
With the aim to control and reduce rainfall and snowmelt runoff in northern cities in China, the summer runoff and spring snowmelt runoff in the studied area were simulated with the establishment of storm water management model (SWMM). According to the climate characteristics and the situation of the studied area, the low impact development (LID) green ecological strategies suitable for the studied area were established. There were three kinds of management strategies being used, including extended green roof, snow and rainwater harvesting devices, and grass-swales or trenches. We examined the impacts of those integrated green ecological measures on the summer rainfall and spring snowmelt runoff and their mitigation effects on the drainage network pressure. The results showed that the maximum flow rates of the measured rainfall in May 24th, June 10th and July 18th 2016 were 2.7, 6.2 and 7.4 m 3 ·s -1 respectively. The peak flow rates at different return periods of 1, 2, 5, 10 years were 2.39, 3.91, 6.24 and 7.85 m 3 ·s -1 , respectively. In the snowmelt period, the peak flow appeared at the beginning of March. The LID measures had positive effect on peak flow reduction, and thus delayed peak time and relieved drainage pressure. The flow reduction rate was as high as 70%. Moreover, the snow harvesting devices played a positive role in controlling snowmelt runoff in spring.
Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance
Harvey, Judson W.; Fuller, Christopher C.
1998-01-01
We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.
Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013
Heikoop, Jeffrey H.; Throckmorton, Heather M.; Wilson, Cathy J.; Newman, Brent D.
2016-02-22
Data include results from geochemical and isotopic analyses for samples collected in Barrow, Alaska during July and September 2013. Samples were soil pore waters from 17 drainages that could be interlake (basins with polygonal terrain), different-aged drain thaw lake basins (young, medium, old, or ancient), or a combination of different aged basins. Samples taken in different drainage flow types at three different depths at each location in and around the Barrow Environmental Observatory.
Planning Assistance for the Town of Hamburg, County of Erie, New York, Hoover Beach.
1979-12-01
area, creating swale areas which restrict overland flow into the storm drainage system . This low-lying area of the Mid Shore section also experiences...attack. The flood problems in the Mid Shore area are primarily caused by an inade- quate storm drainage system and ill-advised filling of low-lying arehs...by residents. These problems can be significantly reduced and possibly elimi- nated by improvements to the storm drainage system . Providing adequate
Environmental Assessment (EA): Proposed Truck Offload Station, Hill Air Force Base, Utah
2012-11-09
AFB storm drainage system . A spill occurred outside the containment area when a fuel trailer struck a concrete wall and the fuel tank ruptured...The trailer was immediately pulled into the containment area, but some fuel had already entered the Hill AFB storm drainage system and flowed to Pond 3...placed in containers for proper disposal. Clean water would then be released to the Hill AFB storm drainage system . The proposed action would
MOBIDIC-U: a watershed-scale model for stormwater attenuation through green infrastructures design
NASA Astrophysics Data System (ADS)
Ercolani, G.; Masseroni, D.; Chiaradia, E. A.; Bischetti, G. B.; Gandolfi, C.; Castelli, F.
2017-12-01
Surface water degradation resulting from the effects of urbanization on hydrology, water quality, habitat as well as ecological and environmental compartments represents an issue of primary focus for multiple agencies at the national, regional and local levels. Many management actions are needed throughout urban watersheds to achieve the desired effects on flow mitigation and pollutant reduction, but no single standardized solution can be effective in all locations. In this work, the distributed hydrological model MOBIDIC, already applied for hydrological balance simulations and flood prevention in different Italian regions, is adapted to the urban context (MOBIDIC-U) in order to evaluate alternative plans for stormwater quality management and flow abatement techniques through the adoption of green infrastructures (GIs). In particular the new modules included in MOBIDIC-U allow to (i) automatically define the upstream flow path as well as watershed boundary starting from a selected watershed closure point on the urban drainage network and (ii) obtain suitable graphical outputs for the visualization of flow peak and volume attenuation at the closure point. Moreover, MOBIDIC-U provides a public domain tool capable of evaluating the optimal location, type, and cost of the stormwater management practices needed to meet water quantity and quality goals. Despite the scalability of the model to different urban contexts, the current version of MOBIDIC-U has been developed for the area of the metropolitan city of Milan, Northern Italy. The model is implemented on a GIS platform, which already contains (i) the structure of the urban drainage network of the metropolitan city of Milan; (ii) the database of actual geomorphological and meteorological data for the previous domain (iii) the list of potential GIs, their standard size, installation and maintenance costs. Therefore, MOBIDIC-U provides an easy to use tool to local professionals to design and evaluate urban stormwater management measures based on GIs.
Foamed emulsion drainage: flow and trapping of drops.
Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina
2017-06-07
Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.
Simulation of naturally fractured reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saidi, A.M.
1983-11-01
A three-dimensional, three-phase reservoir simulator was developed to study the behavior of fully or partially fractured reservoirs. It is also demonstrated, that when a fractured reservoir is subject to a relatively large rate of pressure drop and/or it composed of relatively large blocks, the pseudo steady-state pressure concept gives large errors as compared with transient fromulation. In addition, when gravity drainage and imbibitum processes, which is the most important mechanism in the fractured reservoirs, are represented by a ''lumped parameter'' even larger errors can be produced in exchange flow between matrix and fractures. For these reasons, the matrix blocks aremore » gridded and the transfer between matrix and fractures are calculated using pressure and diffusion transient concept. In this way the gravity drainage is also calculated accurately. As the matrix-fracture exchange flow depends on the location of each matrix grid relative to the GOC and/or WOC in fracture, the exchange flow equation are derived and given for each possible case. The differential equation describing the flow of water, oil, and gas within the matrix and fracture system, each of which may contain six unknowns, are presented. The two sets of equations are solved implicitly for pressure water, and gas stauration in both matrix and fractures. The first twenty two years of the history of Haft Kel field was successfully matched with this model and the results are included.« less
Spatial reasoning to determine stream network from LANDSAT imagery
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Wang, S.; Elliott, D. B.
1983-01-01
In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.
Dynamic pore-scale network model (PNM) of water imbibition in porous media
NASA Astrophysics Data System (ADS)
Li, J.; McDougall, S. R.; Sorbie, K. S.
2017-09-01
A dynamic pore-scale network model is presented which simulates 2-phase oil/water displacement during water imbibition by explicitly modelling intra-pore dynamic bulk and film flows using a simple local model. A new dynamic switching parameter, λ, is proposed within this model which is able to simulate the competition between local capillary forces and viscous forces over a very wide range of flow conditions. This quantity (λ) determines the primary pore filling mechanism during imbibition; i.e. whether the dominant force is (i) piston-like displacement under viscous forces, (ii) film swelling/collapse and snap-off due to capillary forces, or (iii) some intermediate local combination of both mechanisms. A series of 2D dynamic pore network simulations is presented which shows that the λ-model can satisfactorily reproduce and explain different filling regimes of water imbibition over a wide range of capillary numbers (Ca) and viscosity ratios (M). These imbibition regimes are more complex than those presented under drainage by (Lenormand et al. (1983)), since they are determined by a wider group of control parameters. Our simulations show that there is a coupling between viscous and capillary forces that is much less important in drainage. The effects of viscosity ratio during imbibition are apparent even under conditions of very slow flow (low Ca)-displacements that would normally be expected to be completely capillary dominated. This occurs as a result of the wetting films having a much greater relative mobility in the higher M cases (e.g. M = 10) thus leading to a higher level of film swelling/snap-off, resulting in local oil cluster bypassing and trapping, and hence a poorer oil recovery. This deeper coupled viscous mechanism is the underlying reason why the microscopic displacement efficiency is lower for higher M cases in water imbibition processes. Additional results are presented from the dynamic model on the corresponding effluent fractional flows (fw) and global pressure drops (ΔP) as functions of capillary number and viscosity ratio. These results indicate that unsteady-state (USS) relatively permeabilities in imbibition should be inherently rate dependent.
Hoang, Linh; van Griensven, Ann; van der Keur, Peter; Refsgaard, Jens Christian; Troldborg, Lars; Nilsson, Bertel; Mynett, Arthur
2014-01-01
The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Number and location of drainage catheter side holes: in vitro evaluation.
Ballard, D H; Alexander, J S; Weisman, J A; Orchard, M A; Williams, J T; D'Agostino, H B
2015-09-01
To evaluate the influence of number and location of catheter shaft side holes regarding drainage efficiency in an in vitro model. Three different drainage catheter models were constructed: open-ended model with no side holes (one catheter), unilateral side hole model (six catheters with one to six unilateral side holes), and bilateral side hole model (six catheters with one to six bilateral side holes). Catheters were inserted into a drainage output-measuring device with a constant-pressure reservoir of water. The volume of water evacuated by each of the catheters at 10-second intervals was measured. A total of five trials were performed for each catheter. Data were analysed using one-way analysis of variance. The open-ended catheter had a mean drainage volume comparable to the unilateral model catheters with three, four, and five side holes. Unilateral model catheters had significant drainage volume increases up to three side holes; unilateral model catheters with more than three side holes had no significant improvement in drainage volume. All bilateral model catheters had significantly higher mean drainage volumes than their unilateral counterparts. There was no significant difference between the mean drainage volume with one, two, or three pairs of bilateral side holes. Further, there was no drainage improvement by adding additional bilateral side holes. The present in vitro study suggests that beyond a critical side hole number threshold, adding more distal side holes does not improve catheter drainage efficiency. These results may be used to enhance catheter design towards improving their drainage efficiency. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
INVESTIGATION OF INAPPROPRIATE POLLUTANT ENTRIES INTO STORM DRAINAGE SYSTEMS: A USER'S GUIDE
This User's Guide, summarized here, is the result of a series of research tasks (sponsored by the U.S. Environmental Protection Agency) to develop a procedure to investigate non-stormwater entries into storm drainage systems. Past projects have found that dry-weather flows disc...
NASA Astrophysics Data System (ADS)
Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Lane, P. N. J.
2015-12-01
In topographically complex terrain, the interaction of aspect-dependent solar exposure and drainage-position-dependent flow accumulation results in energy and water partitioning that is highly spatially variable. Catchment scale rainfall-runoff relationships are dependent on these smaller scale spatial patterns. However, there remains considerable uncertainty as to how to represent this smaller scale variability within lumped parameter, catchment scale rainfall-runoff models. In this study we aim to measure and represent the key interactions between aridity and drainage position in complex terrain to inform the development of simple catchment-scale hydrologic model parameters. Six measurement plots were setup on opposing slopes in an east-west facing eucalypt forest headwater catchment. The field sites are spanning three drainage positions with two contrasting aridity indices each, while minimizing variations in other factors, e.g. geology and weather patterns. Sapflow, soil water content (SWC) and throughfall were continuously monitored on two convergent hillslopes with similar size (1.3 and 1.6ha) but contrasting aspects (north and south). Soil depth varied from 0.6m at the topslope to >2m at the bottomslope positions. Maximum tree heights ranged from 16.2m to 36.9m on the equator-facing slope and from 30.1m to 45.5m on the pole-facing slope, with height decreasing upslope on both aspects. Two evapotranspiration (ET) patterns emerged in relation to aridity and drainage position. On the equator-facing slope (AI~ 2.1), seasonal understorey and overstorey ET patterns were in sync, whereas on the pole-facing slope (AI~1.5) understorey ET showed larger seasonal fluctuations than overstorey ET. Seasonal ET patterns and competition between soil evaporation and root water uptake lead to distinct differences in profile SWC across the sites, likely caused by depletion from different depths. Topsoil water content on equator-facing slopes was generally lower and responded more rapidly to rainfall pulses than on pole-facing slopes. Future work will focus on how observed ET and SWC patterns in relation to aridity and drainage position can be implemented into a simplistic modelling framework.
NASA Astrophysics Data System (ADS)
Scordo, Facundo; Seitz, Carina; Melo, Walter D.; Piccolo, M. Cintia; Perillo, Gerardo M. E.
2018-04-01
This work aims to assess how Pleistocene glaciations modeled the landscape in the upper Senguer River basin and its relationship to current watershed features (drainage surface and fluvial hydrological regime). During the Pleistocene six glacial lobes developed in the upper basin of the Senguer River localized east of the Andean range in southern Argentinean Patagonia between 43° 36' - 46° 27‧ S. To describe the topography and hydrology, map the geomorphology, and propose an evolution of the study area during the Pleistocene we employed multitemporal Landsat images, national geological sheets and a mosaic of the digital elevation model (Shuttle Radar Topography Mission) along with fieldwork. The main conclusion is that until the Middle Pleistocene, the drainage divide of the Senguer River basin was located to the west of its current limits and its rivers drained the meltwater of the glaciers during interglacial periods. However, processes of drainage inversion and drainage surface reduction occurred in the headwater of most rivers of the basin during the Late Pleistocene. Those processes were favored by a relative shorter glacial extension during LGM and the dam effect produced by the moraines of the Post GPG I and III glaciations. Thus, since the Late Pleistocene, the headwaters of several rivers in the basin have been reduced, and the moraines corresponding to the Middle Pleistocene glaciations currently divide the watersheds that drain towards the Senguer River from those that flow west towards the Pacific Ocean.
Wild, Emily C.; Nimiroski, Mark T.
2005-01-01
The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the selected index stream-gaging station to determine water availability based on the 75th, 50th, and 25th percentiles of the total base flow, the base flow minus the 7-day, 10-year flow criteria, and the base flow minus the Aquatic Base Flow criteria at the index station. The base flow calculated at the selected index station was subdivided into two rates on the basis of the percent contributions from sandand-gravel and till deposits. There has been no long-term collection of surface-water data in this study area and therefore an index stream-gaging station in the Pawcatuck Basin was used for the South Coastal Drainage Basin. The Pawcatuck River at Wood River Junction was chosen as the index station for the South Coastal Drainage Basin because the station is representative of the basin on the basis of the percentage of sand and gravel deposits and the average extent of thickness of the sand and gravel deposits. The baseflow contributions from sand and gravel deposits at the index station were computed for June, July, August, and September, and applied to the percentage of surficial deposits at the index station. The base-flow contributions were converted to a per unit area at the station for the till, and for the sand and gravel deposits and applied to the South Coastal Drainage Basin to determine the water availability. The results from the index station, the Pawcatuck River at Wood River Junction streamgaging station, were lowest for the summer in September. To determine water availability in the South Coastal Drainage Basin, the per unit area of the estimated base flows from sand and gravel deposits and till deposits at the index station was applied to the subbasin areas, and the resultant flows were lowest in September. The base flow at the 75th percentile in the basin was 56.95 million gallons per day in June; 32.78 million gallons per day in July; 30.22 million gallons per day in August; and 23.94 million gallons per day in September. The base flow at the 50th percentile in the basin was 44.59 million gallons per day in June; 25.31 million gallons per day in July; 20.75 million gallons per day in August; and 17.01 million gallons per day in September. The base flow at the 25th percentile in the basin was 35.52 million gallons per day in June; 20.40 million gallons per day in July; 14.94 million gallons per day in August; and 12.00 million gallons per day in September. There are some limitations in the application of this method along the coast, because saltwater intrusion can change the amount of fresh ground-water discharge to the coastal saltwater ecosystem. A ground-water system analysis evaluating these variances would provide additional information to assess the water availability along the coast. Because water withdrawals and use are greater during the summer than other times of the year, water availability in June, July, August, and September was assessed and compared to water withdrawals in the basin. The ratios were calculated by dividing the water withdrawals by the water-availability flow scenarios at the 75th, 50th, and 25th percentiles for the basin, which are based on total water available from base-flow contributions from till and sand and gravel deposits in the basin. The closer the ratio is to one, the closer the withdrawals are to the estimated water available, and the net water available decreases. For the study period, the withdrawals in July were higher than the other summer months. The ratios in the basin for the base-flow scenario, with no low-flow criteria removed, ranged from 0.029 to 0.046 in June; 0.059 to 0.094 in July; 0.050 to 0.100 in August; and 0.040 to 0.079 in September. A long-term hydrologic budget (60 years) was calculated for the South Coastal Drainage Basin to identify and assess the basin and subbasin inflow and outflows. This coastal basin is different than other study areas because all three of the subbasins drain into salt water, Point Judith Point, Long Island Sound, and Rhode Island Sound towards the Atlantic Ocean, or internally within the subbasin to the salt ponds. The hydrologic budgets, therefore, were compiled by subbasin. The basin hydrologic budget is the sum of the three subbasin budgets. Unlike a river subbasin drainage system, however, the estimated streamflows out of the subbasins were also considered outflows from the basin. The water withdrawals and return flows used in the budget were from 1995 through 1999. For the hydrologic budget, it was assumed that inflow equals outflow, where the estimated inflows were from precipitation and wastewater-return flow, and the estimated outflows were from evapotranspiration, streamflow, and water withdrawals.
A wireless monitoring system for Hydrocephalus shunts.
Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S
2015-08-01
Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.
Patterns and processes of drainage network evolution on Mars
NASA Astrophysics Data System (ADS)
Stucky de Quay, G.; Roberts, G. G.
2017-12-01
Large, complex drainage networks exist on the surface of Mars. These drainage patterns suggest that base level change, fluvial erosion, and deposition of sedimentary rock have played important roles in determining the shape of Martian topography. On Earth, base-level change plays the most important role in determining shapes of river profiles at wavelengths greater than a few kilometers. Wavelet transforms of Martian drainage patterns indicate that the same is true for most Martian drainage. For example, rivers in the Warrego Valles system have large convex-upward elevation profiles, with broad knickzones spanning more than 100 kilometers in length and few kilometers in height. More than 90% of the spectra power of rivers in this system resides at wavelengths greater than 10 kilometers. We examine the source of this long wavelength spectra power by jointly inverting suites of Martian river profiles for damped spatio-temporal histories of base-level change. Drainage networks were extracted from the High Resolution Stereo Camera (HRSC) topographic dataset using flow-routing algorithms. Calculated uplift rate histories indicate that regional uplift at wavelengths greater than 100 kilometers play an important role in determining the history of landscape evolution in Warrego Valles. In other regions (e.g. Holden and Eberswalde craters) joint inversion of families of rivers draining craters helps to constrain values of erosional parameters in a simplified version of the stream power erosional model. Integration of calculated incision rates suggest that we can perform a simple mass balance between eroded and deposited rock in regions where both depositional and erosional landforms exist.
Cannon, Susan H.; Michael, John A.
2011-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2011 Motor fire in the Sierra and Stanislaus National Forests, Calif. Statistical-empirical models are used to estimate the probability and volume of debris flows that may be produced from burned drainage basins as a function of different measures of basin burned extent, gradient, and soil physical properties, and in response to a 30-minute-duration, 10-year-recurrence rainstorm. Debris-flow probability and volume estimates are then combined to form a relative hazard ranking for each basin. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two years following the fire.
Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT
NASA Astrophysics Data System (ADS)
Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.
2007-12-01
Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.
NASA Astrophysics Data System (ADS)
Tang, H.; McGuire, L.; Rengers, F. K.; Kean, J. W.; Staley, D. M.
2017-12-01
Wildfire significantly changes the hydrological characteristics of soil for a period of several years and increases the likelihood of flooding and debris flows during high-intensity rainfall in steep watersheds. Hazards related to post-fire flooding and debris flows increase as populations expand into mountainous areas that are susceptible to wildfire, post-wildfire flooding, and debris flows. However, our understanding of post-wildfire debris flows is limited due to a paucity of direct observations and measurements, partially due to the remote locations where debris flows tend to initiate. In these situations, numerical modeling becomes a very useful tool for studying post-wildfire debris flows. Research based on numerical modeling improves our understanding of the physical mechanisms responsible for the increase in erosion and consequent formation of debris flows in burned areas. In this contribution, we study changes in sediment transport efficiency with time since burning by combining terrestrial laser scanning (TLS) surveys of a hillslope burned during the 2016 Fish Fire with numerical modeling of overland flow and sediment transport. We also combine the numerical model with measurements of debris flow timing to explore relationships between post-wildfire rainfall characteristics, soil infiltration capacity, hillslope erosion, and debris flow initiation at the drainage basin scale. Field data show that an initial rill network developed on the hillslope, and became more efficient over time as the overall rill density decreased. Preliminary model results suggest that this can be achieved when flow driven detachment mechanisms dominate and raindrop-driven detachment is minimized. Results also provide insight into the hydrologic and geomorphic conditions that lead to debris flow initiation within recently burned areas.
Can Nocturnal Cold Air Drainage be Used to Monitor Ecosystem Function?
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Unsworth, M. H.; Sulzman, E. W.; Lamb, B.; Allwine, G.; Mix, A. C.; Bond, B. J.
2005-12-01
Ecosystem carbon dynamics in flat, uniform terrain are commonly studied using standard micrometeorological techniques such as eddy covariance or gradient methods. But many of the world's ecosystems are in complex topography that is inappropriate for these methods. Nocturnal cold air drainage commonly occurs in mountainous terrain. This drainage provides an opportunity to monitor ecosystem carbon dynamics because as air flows downhill through a watershed, it collects respired CO2 from the soil and vegetation. If the nocturnal drainage can be treated as a river of air flowing down a valley, sampling this air from a tower at the base of a watershed could provide an estimate of ecosystem respiration and the 12C/13C ratio. To interpret the measured CO2 and the 12C/13C ratio, the characteristics of the drainage and the footprint (source area) of air passing the tower must be understood. To explore the potential of using nocturnal cold air drainage we built a 37 m tower at the base of a deeply incised watershed of ~40 y-old Douglas-fir in the Oregon Cascades. At various heights on the tower we monitored air temperature, wind speed/direction, and the CO2 concentration and 12C/13C isotopic ratio with a combination of thermistors, sonic anemometers (2-D and 3-D) and a CO2 profile system. The temperature gradient along the axis of the watershed was monitored by 30 temperature sensors from the base to the top of the watershed. The maximum drainage windspeeds on the tower occurred near sunset and, unlike past reports of cold air drainage, this drainage was very deep (> 37 m). The drainage became well mixed when the vertical profile of potential temperature became isothermal. It remained well mixed through the night into the early morning. The drainage occurred on most summer nights and typically provided a range of CO2 (> 60 ppm) sufficient for "Keeling plot" analysis. In September 2005, we released a tracer in the watershed (SF6) to determine the varying footprint size of the tower. The footprint size and windspeed varied throughout the night, resulting in a change in the CO2 concentration at the tower. Further analysis will determine how the CO2 passing the tower is altered by entrainment of the air overlying the drainage and the change in the source area of the drainage.
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.
2015-05-01
In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the simulated results, the proposed approach was found to simulate floodings closer to the survey records than other approaches because the physical rainfall-runoff phenomena in urban environment were better reflected.
On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, B.; Bodvarsson, G.S.; Salve, R.
2002-04-01
To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variationsmore » of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff, incorporating the time dependent processes of water redistribution in the fracture-matrix system.« less
Subsurface drainage processes and management impacts
Elizabeth T. Keppeler; David Brown
1998-01-01
Storm-induced streamflow in forested upland watersheds is linked to rainfall by transient, variably saturated flow through several different flow paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream as subsurface flow. Subsurface runoff can occur within...
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2015-12-01
Runoff generated during heavy rainfall imposes quick, but often intense, changes in the flow of streams, which increase the chance of flash floods in the vicinity of the streams. Understanding the temporal response of streams to heavy rainfall requires a hydrological model that considers meteorological, hydrological, and geological components of the streams and their watersheds. SWAT is a physically-based, semi-distributed model that is capable of simulating water flow within watersheds with both long-term, i.e. annually and monthly, and short-term (daily and sub-daily) time scales. However, the capability of SWAT in sub-daily water flow modeling within large watersheds has not been studied much, compare to long-term and daily time scales. In this study we are investigating the water flow in a large, semi-arid watershed, Nueces River Basin (NRB) with the drainage area of 16950 mi2 located in South Texas, with daily and sub-daily time scales. The objectives of this study are: (1) simulating the response of streams to heavy, and often quick, rainfall, (2) evaluating SWAT performance in sub-daily modeling of water flow within a large watershed, and (3) examining means for model performance improvement during model calibration and verification based on results of sensitivity and uncertainty analysis. The results of this study can provide important information for water resources planning during flood seasons.
Modeling of subglacial hydrological development following rapid supraglacial lake drainage.
Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A
2015-06-01
The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Model for subglacial hydrological analysis of rapid lake drainage eventsLimited subglacial channel growth during and following rapid lake drainagePersistence of distributed drainage in inland areas where channel growth is limited.
Modeling of subglacial hydrological development following rapid supraglacial lake drainage
Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A
2015-01-01
The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746
NASA Astrophysics Data System (ADS)
Flament, T.; Berthier, E.; Rémy, F.
2014-04-01
We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyse the event, we combined altimetry data from several sources and subglacial topography. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM) derived from ASTER and SPOT5 stereo imagery acquired in January 2006 and February 2012. At 5.2 ± 1.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry spanning 2003-2009 and the SPOT5 DEM indicate that the discharge started in November 2006 and lasted approximately 2 years. A 13 m uplift of the surface, corresponding to a refilling of about 0.6 ± 0.3 km3, was observed between the end of the discharge in October 2008 and February 2012. Using the 35-day temporal resolution of Envisat radar altimetry, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream of CookE2. The total volume of water traveling within the theoretical 500-km-long flow paths computed with the BEDMAP2 data set is similar to the volume that drained from Lake CookE2, and our observations suggest that most of the water released from Lake CookE2 did not reach the coast but remained trapped underneath the ice sheet. Our study illustrates how combining multiple remote sensing techniques allows monitoring of the timing and magnitude of subglacial water flow beneath the East Antarctic ice sheet.
Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM
NASA Astrophysics Data System (ADS)
gülbaz, sezar; melek kazezyılmaz-alhan, cevza
2016-04-01
Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage and bioretention modeling. Calibration of hydrologic model is made using part of the measured data in RWB System for drainage area and for each bioretention column separately. Finally, performance of the model is evaluated by comparing the model results with the experimental data collected in RWB system.
UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayer, M.J.; Jones, T.L.
1990-04-01
This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet thismore » need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.« less
Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.
2012-01-01
Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.
Stokes Approach to Preferential Flow at the Darcy-Scale
NASA Astrophysics Data System (ADS)
Germann, Peter; Bogner, Christina
2017-04-01
Preferential Flow in soils is fast, limited to infiltration and occupies but a small portion of porosity. However, how fast is it, how much water is involved, what is its flow rate, and how far is it carried? Supported with numerous measurements a Stokes approach to preferential flow provides the answers at the operational Darcy-scale. The approach to preferential flow in permeable media (pm) stresses momentum dissipation during viscous flow. Thus, a laminar water film percolates through a pm. The dynamic film is initially determined by the thickness F (m) and the specific contact area L (m2 m-3) per unit volume of the medium. Input to the medium's surface is a pulse with volume flux density q (ms-1) that starts and ends at times TB and TE. A specific pulse and the intrinsic properties of a pm determine F and L. A water content wave (WCW) envelops the spatio-temporal evolution of a water film. A WCW is completely described with a set of analytical relationships that are based on F, L, and the water's viscosity. The approach is an extension of Hagen-Poiseuille's law of flow in concentric conduits. It also evolves seamlessly from extending Darcy's law into non-saturated pm. Experimental determination of F and L follows either from drainage flow or from rapid soil moisture recordings during the passing of a WCW, for instance, with TDR-equipment. Parameters from numerous infiltration experiments in the field, in soil columns, in sand boxes, and lysimeters demonstrate the approach's broad applicability, thus framing the spatio-temporal extensions, velocities and volume flux densities of preferential flows. The specific contact area L is considered the locus of water, heat, particle and solute transfer between a WCW and the sessile parts of a pm. A recent analysis of delayed Br-breakthrough with respect to drainage flow supports the feasibility of the Stokes approach to preferential flow at the Darcy-scale. A perspective of modeling sequences of input pulses will conclude the presentation.
Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming
2015-10-01
In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network.
Modeling Outburst Flooding as a Turbulent Hydraulic Fracture Parallel to a Nearby Free Surface
NASA Astrophysics Data System (ADS)
Tsai, V. C.; Rice, J. R.
2009-12-01
Meltwater generated at the surface and base of glaciers and ice sheets is known to have a large impact on how ice masses behave dynamically, but much is still unknown about the physical processes responsible for how this meltwater drains out of the glacier. For example, little attention has been paid to short-timescale processes like turbulent hydraulic fracture, which is likely an important mechanism by which drainage channels initially form when water pressures are high. In recent work (Tsai and Rice [Fall AGU, 2008; JGR subm., 2009]), we have constructed a model of this turbulent hydraulic fracture process in which over-pressurized water is assumed to flow turbulently through a crack, leading to crack growth. However, one important limitation of this prior work is that it only strictly applies in the limit of short crack length 2L compared to glacier height H, whereas relevant observations of supraglacial lake drainage, jokulhlaups and sub-glacial lake-to-lake transport episodes do not fall in this regime. Here, we improve somewhat upon this model by explicitly accounting for a nearby free surface. We accomplish this by applying the approach of Erdogan et al. [Meth. Anal. Sol. Crack Prob., 1973] to numerically calculate elastic displacements consistent with crack pressure distribution for a crack near a free surface, and use these results as before to simultaneously satisfy the governing fluid, elastic and fracture equations. Our results are analogous to the zero fracture toughness results of Zhang et al. [Int. J. Numer. Anal. Meth. Geomech., 2005], but applied to the case of turbulent flow rather than laminar flow of a Newtonian viscous fluid. Our new results clarify the importance of the free surface and potentially explain discrepancies between our previous modeling results and observations of supraglacial lake drainage by Das et al. [Science, 2008]. However, the numerical challenges increase as 2L becomes comparable to or much larger than H. We hope to ultimately develop simpler analyses for that range which make use of (visco)elastic plate theory at positions along the uplifted ice sheet that are remote from the fracturing front. This approach may also be of interest for tidal interactions with the ice-shelf grounding line location.
Modeling Outburst Flooding as a Turbulent Hydraulic Fracture Parallel to a Nearby Free Surface
NASA Astrophysics Data System (ADS)
Tsai, Victor; Rice, James
2010-05-01
Meltwater generated at the surface and base of glaciers and ice sheets is known to have a large impact on how ice masses behave dynamically, but much is still unknown about the physical processes responsible for how this meltwater drains out of the glacier. For example, little attention has been paid to short-timescale processes like turbulent hydraulic fracture, which is likely an important mechanism by which drainage channels initially form when water pressures are high. In recent work (Tsai and Rice [Fall AGU, 2008; JGR subm., 2009]), we have constructed a model of this turbulent hydraulic fracture process in which over-pressurized water is assumed to flow turbulently through a crack, leading to crack growth. However, one important limitation of this prior work is that it only strictly applies in the limit of short crack length, 2L, compared to glacier height, H, whereas relevant observations of supraglacial lake drainage, jokulhlaups and sub-glacial lake-to-lake transport episodes do not fall in this regime. Here, we improve somewhat upon this model by explicitly accounting for a nearby free surface. We accomplish this by applying the approach of Erdogan et al. [Meth. Anal. Sol. Crack Prob., 1973] to numerically calculate elastic displacements consistent with crack pressure distribution for a crack near a free surface, and use these results as before to simultaneously satisfy the governing fluid, elastic and fracture equations. Our results are analogous to the zero fracture toughness results of Zhang et al. [Int. J. Numer. Anal. Meth. Geomech., 2005], but applied to the case of turbulent flow rather than laminar flow of a Newtonian viscous fluid. Our new results clarify the importance of the free surface and potentially explain discrepancies between our previous modeling results and observations of supraglacial lake drainage by Das et al. [Science, 2008]. However, the numerical challenges increase as 2L becomes comparable to or much larger than H. We hope to ultimately develop simpler analyses for that range which make use of (visco)elastic plate theory at positions along the uplifted ice sheet that are remote from the fracturing front. This approach may also be of interest for tidal interactions with the ice-shelf grounding line location.
The Subglacial Drainage Patterns of Devon Island, Canada
NASA Astrophysics Data System (ADS)
Grau Galofre, A.; Jellinek, M.; Osinski, G. R.
2016-12-01
Meltwater drainage patterns incised underneath ice masses can appear strikingly similar to fluvially dissected landscapes. We introduce a landscape evolution model to describe the longitudinal profiles of subglacial meltwater channels (tunnel valleys).We propose a way to identify them from topography data and imagery on the basis of the vertical scale of undulations compared to the total elevation gain. We test the model with field data from tunnel valleys exposed in Devon Island, NU, Canada. We use field measurements of longitudinal profiles, photogrammetry and 3D LIDAR to establish a quantitative comparison of tunnel valleys and fluvial channels. Tunnel valleys are oriented parallel to former ice flow lines and are characterized by undulating longitudinal profiles. We use these features to identify quantitatively tunnel valleys in central Devon Island (figure 1). We ground truth our observations with imagery of tunnel valleys appearing at the edges of the actively retreating ice cap. Longitudinal profiles show undulations with amplitudes up to 14m over a total elevation gain of 20m and with wavelengths comparable to the channel width. These "overdeepenings" are not observed in any fluvial channels in the area and are consistent with expectations of flow driven by variations in ice thickness. Our identification scheme rigorously distinguishes fluvial and subglacial dissected landscapes.
NASA Astrophysics Data System (ADS)
van der Zee, S. E. A. T. M.; Shah, S. H. H.; Vervoort, R. W.
2014-12-01
Soil sodicity, where the soil cation exchange complex is occupied for a significant fraction by Na+, may lead to vulnerability to soil structure deterioration. With a root zone flow and salt transport model, we modeled the feedback effects of salt concentration (C) and exchangeable sodium percentage (ESP) on saturated hydraulic conductivity Ks(C, ESP) for different groundwater depths and climates, using the functional approach of McNeal (1968). We assume that a decrease of Ks is practically irreversible at a time scale of decades. Representing climate with a Poisson rainfall process, the feedback hardly affects salt and sodium accumulation compared with the case that feedback is ignored. However, if salinity decreases, the much more buffered ESP stays at elevated values, while Ks decreases. This situation may develop if rainfall has a seasonal pattern where drought periods with accumulation of salts in the root zone alternate with wet rainfall periods in which salts are leached. Feedback that affects both drainage/leaching and capillary upward flow from groundwater, or only drainage, leads to opposing effects. If both fluxes are affected by sodicity-induced degradation, this leads to reduced salinity (C) and sodicity (ESP), which suggests that the system dynamics and feedback oppose further degradation. Experiences in the field point in the same direction.
Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.
2013-01-01
Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.
NASA Astrophysics Data System (ADS)
Burks, T. W.; Springer, G. S.
2004-12-01
Evolution of mountain drainage basins across a broad spectrum of geologic, tectonic, and climatic conditions is an active area of investigation in the field of fluvial geomorphology. Mountain streams are typified by steep channel gradients (>0.002), high channel roughness, rapid changes in drainage area, and high spatial and low temporal variability in channel morphology, leading to complexities in landscape modeling relative to their lowland counterparts. Factors driving this recent investigative trend are the refinement and generation of digital topographic data and terrain analysis software, and more importantly, the demand for a multidiscipline approach to the assessment, restoration, and management of entire watersheds. A significant volume of research has been conducted in mountain drainage basins of the western United States, with particular attention paid to tectonically active regions of the Pacific Northwest, which also contain federally listed threatened and endangered salmonid populations. Brook trout (Salvelinus fontinalis), native to the highlands of the eastern margin of the Appalachian Plateau are impacted by acid rain deposition; however, geomorphic research into landscape modeling, applicable to restoration and management of lotic ecosystems of the eastern United States, is comparatively lacking. This current research explores the potential for modeling channel morphology in mountain streams; specifically, how downstream trends in channel substrate resistance and unit stream power effect the partitioning of mountain stream morphology along and downstream of the fluvial/colluvial transition. In order to address this issue, two mountain drainage basins in the headwaters of the Gauley River watershed on the Appalachian Plateau of southeastern West Virginia were chosen. The westerly flowing Cranberry (250 sqkm) and Cherry (429 sqkm) rivers incise gently northwestward dipping Carboniferous-aged strata (shale, minor coal, siltstone, sandstone, and conglomerate), with a large percentage of both drainages managed as the Monongahela National Forest. A total of 68 reach-scale (10-20 channel widths) channel surveys were completed in which reach gradient, average bankfull channel widths, and bed surface grain size data were determined. This information was synthesized with data extracted from 10-meter digital elevation models using both RiverTools v. 2.4 and ArcGIS Desktop 8.3 terrain analysis software packages. Surveyed channel reach gradients range from (0.002-0.150 m/m) and are characterized by pool-riffle to cascade and step-pool morphologies, though observed morphology succession is atypical of an equilibrated system. Partitioning in channel morphology succession correlates with both changes in lithology (e.g. siltstone to conglomerate) and the extent of headwater debris flow activity, which reflects a shift in the balance between driving and resisting forces as stream size increases.
Stanislawski, Larry V.; Falgout, Jeff T.; Buttenfield, Barbara P.
2015-01-01
Hydrographic networks form an important data foundation for cartographic base mapping and for hydrologic analysis. Drainage density patterns for these networks can be derived to characterize local landscape, bedrock and climate conditions, and further inform hydrologic and geomorphological analysis by indicating areas where too few headwater channels have been extracted. But natural drainage density patterns are not consistently available in existing hydrographic data for the United States because compilation and capture criteria historically varied, along with climate, during the period of data collection over the various terrain types throughout the country. This paper demonstrates an automated workflow that is being tested in a high-performance computing environment by the U.S. Geological Survey (USGS) to map natural drainage density patterns at the 1:24,000-scale (24K) for the conterminous United States. Hydrographic network drainage patterns may be extracted from elevation data to guide corrections for existing hydrographic network data. The paper describes three stages in this workflow including data pre-processing, natural channel extraction, and generation of drainage density patterns from extracted channels. The workflow is concurrently implemented by executing procedures on multiple subbasin watersheds within the U.S. National Hydrography Dataset (NHD). Pre-processing defines parameters that are needed for the extraction process. Extraction proceeds in standard fashion: filling sinks, developing flow direction and weighted flow accumulation rasters. Drainage channels with assigned Strahler stream order are extracted within a subbasin and simplified. Drainage density patterns are then estimated with 100-meter resolution and subsequently smoothed with a low-pass filter. The extraction process is found to be of better quality in higher slope terrains. Concurrent processing through the high performance computing environment is shown to facilitate and refine the choice of drainage density extraction parameters and more readily improve extraction procedures than conventional processing.
NASA Astrophysics Data System (ADS)
Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.
1993-06-01
This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.
Bradner, L.A.
1996-01-01
Drainage wells have been used in Orange County, Florida, and surrounding areas to alleviate flooding and to control lake levels since 1904. Over 400 drainage wells have been drilled in the county, but many are now redundant because of surface drainage systems that have been installed within the last two or three decades. Most of the drainage wells emplace water into the Upper Floridan aquifer, a zone of high transmissivity within the Floridan aquifer system. In 1992, the Orange County Stormwater Management Department identified 23 wells that were considered noncritical or redundant for current drainage control. These wells were targeted for closure to eliminate maintenance and possible contamination problems. A 3-year study (1992 through 1994) encompassed several drainage basins in the county. Inflow to 18 of the 23 drainage wells on the noncritical list and the effects of closure of these noncritical wells on the potentiometric surface of the Upper Floridan aquifer were estimated. Three sites were chosen for intensive study and were used for further extrapolation to other noncritical sites. The total average annual recharge rate through the 18 selected wells was estimated to be 9 cubic feet per second, or about 6 million gallons per day. The highest rate of long-term recharge, 4.6 cubic feet per second, was to well H-35. Several wells on the noncritical list were already plugged or had blocked intakes. Yields, or the sum of surface-water outflows and drainage-well recharge, from the drainage basins ranged from 20 to 33 inches per year. In some of the basins, all the yield from the basin was recharge through a drainage well. In other basins, most of the yield was surface outflow through canals rather than to drainage wells. The removal of the recharge from closure of the wells was simulated by superposition in a three-dimensional ground-water flow model. As a second step in the model, water was also applied to two sites in western Orange County that could receive redirected surface water. One of the sites is CONSERV II, a distribution system used to apply reclaimed water to the surficial aquifer system through rapid infiltration basins and grove irrigation. The second site, Lake Sherwood, has an extremely high downward recharge rate estimated to be at least 54 inches per year. The results from the simulations showed a decline of 1 foot or less in the potentiometric surface of the Upper Floridan aquifer with removal of the recharge and a mound of about 1 foot in the vicinity of the two sites in western Orange County. The Lake Sherwood site seems to reduce the declines caused by closure of the wells to a greater degree than the CONSERV II site, partly because the Lake Sherwood site is closer to the drainage-well basins.
On trans-parenchymal transport after blood brain barrier opening: pump-diffuse-pump hypothesis
NASA Astrophysics Data System (ADS)
Postnov, D. E.; Postnikov, E. B.; Karavaev, A. S.; Glushkovskaya-Semyachkina, O. V.
2018-04-01
Transparenchymal transport attracted the attention of many research groups after the discovery of glymphatic mechanism for the brain drainage in 2012. While the main facts of rapid transport of substances across the parenchyma are well established experimentally, specific mechanisms that drive this drainage are just hypothezised but not proved yed. Moreover, the number of modeling studies show that the pulse wave powered mechanism is unlikely able to perform pumping as suggested. Thus, the problem is still open. In addition, new data obtained under the conditions of intensionally opened blood brain barrier shows the presence of equally fast transport in opposite durection. In our study we investigate the possible physical mechanisms for rapid transport of substances after the opening of blood-brain barrier under the conditions of zero net flow.
Wiley, Jeffrey B.; Curran, Janet H.
2003-01-01
Methods for estimating daily mean flow-duration statistics for seven regions in Alaska and low-flow frequencies for one region, southeastern Alaska, were developed from daily mean discharges for streamflow-gaging stations in Alaska and conterminous basins in Canada. The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows were computed for the October-through-September water year for 222 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the individual months of July, August, and September for 226 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the season July-through-September for 65 stations in southeastern Alaska. The 7-day, 10-year and 7-day, 2-year low-flow frequencies for the season July-through-September were computed for 65 stations for most of southeastern Alaska. Low-flow analyses were limited to particular months or seasons in order to omit winter low flows, when ice effects reduce the quality of the records and validity of statistical assumptions. Regression equations for estimating the selected high-flow and low-flow statistics for the selected months and seasons for ungaged sites were developed from an ordinary-least-squares regression model using basin characteristics as independent variables. Drainage area and precipitation were significant explanatory variables for high flows, and drainage area, precipitation, mean basin elevation, and area of glaciers were significant explanatory variables for low flows. The estimating equations can be used at ungaged sites in Alaska and conterminous basins in Canada where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data for the given month or season. Standard errors of estimate ranged from 15 to 56 percent for high-duration flow statistics, 25 to greater than 500 percent for monthly low-duration flow statistics, 32 to 66 percent for seasonal low-duration flow statistics, and 53 to 64 percent for low-flow frequency statistics.
URBAN WET-WEATHER FLOW MANAGEMENT: RESEARCH DIRECTIONS
There are three types of urban wet-weather flow (WWF) discharges: 1) combined-sewer overflow (CSO), which is a mixture of storm drainage and municipal-industrial wastewater discharged from combined sewers or dry-weather flow discharged from combined sewers due to clogged intercep...
Kjelstrom, L.C.
1998-01-01
Methods for estimating daily mean discharges for selected flow durations and flood discharge for selected recurrence intervals at ungaged sites in central Idaho were applied using data collected at streamflow-gaging stations in the area. The areal and seasonal variability of discharge from ungaged drainage basins may be described by estimating daily mean discharges that are exceeded 20, 50, and 80 percent of the time each month. At 73 gaging stations, mean monthly discharge was regressed with discharge at three points—20, 50, and 80—from daily mean flow-duration curves for each month. Regression results were improved by dividing the study area into six regions. Previously determined estimates of mean monthly discharge from about 1,200 ungaged drainage basins provided the basis for applying the developed techniques to the ungaged basins. Estimates of daily mean discharges that are exceeded 20, 50, and 80 percent of the time each month at ungaged drainage basins can be made by multiplying mean monthly discharges estimated at ungaged sites by a regression factor for the appropriate region. In general, the flow-duration data were less accurately estimated at discharges exceeded 80 percent of the time than at discharges exceeded 20 percent of the time. Curves drawn through the three points for each of the six regions were most similar in July and most different from December through March. Coefficients of determination of the regressions indicate that differences in mean monthly discharge largely explain differences in discharge at points on the daily mean flow-duration curve. Inherent in the method are errors in the technique used to estimate mean monthly discharge. Flood discharge estimates for selected recurrence intervals at ungaged sites upstream or downstream from gaging stations can be determined by a transfer technique. A weighted ratio of drainage area times flood discharge for selected recurrence intervals at the gaging station can be used to estimate flood discharge at the ungaged site. Best results likely are obtained when the difference between gaged and ungaged drainage areas is small.
NASA Astrophysics Data System (ADS)
Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.
2017-12-01
We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.
Cold air drainage flows subsidize montane valley ecosystem productivity
Kimberly A. Novick; Andrew C. Oishi; Chelcy Ford Miniat
2016-01-01
In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate...
NASA Astrophysics Data System (ADS)
Shim, J. B.; Won, C. Y.; Park, J.; Lee, K.
2017-12-01
Korea experiences frequent flood disasters, which cause considerable economic losses and damages to towns and farms. Especially, a regional torrential storm is about 98.5mm/hr on September 21, 2010 in Seoul. The storm exceeds the capacity of urban drainage system of 75mm/hr, and 9,419 houses. How to monitor and control the urban flood disasters is an important issue in Korea. To mitigate the flood damage, a customizing system was developed to estimate urban floods and inundation using by integrating drainage system data and river information database which are managed by local governments and national agencies. In the case of Korean urban city, there are a lot of detention ponds and drainage pumping stations on end of drainage system and flow is going into river. The drainage pumping station, it is very important hydraulic facility for flood control between river and drainage system. So, it is possible to occur different patterns of flood inundation according to operation rule of drainage pumping station. A flood disaster is different damage as how to operate drainage pumping station and plan operation rule.
Micro-PIV Study of Supercritical CO2-Water Interactions in Porous Micromodels
NASA Astrophysics Data System (ADS)
Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth T.
2015-11-01
Multiphase flow of immiscible fluids in porous media is encountered in numerous natural systems and engineering applications such as enhanced oil recovery (EOR), and CO2 sequestration among others. Geological sequestration of CO2 in saline aquifers has emerged as a viable option for reducing CO2 emissions, and thus it has been the subject of numerous studies in recent years. A key objective is improving the accuracy of numerical models used for field-scale simulations by incorporation/better representation of the pore-scale flow physics. This necessitates experimental data for developing, testing and validating such models. We have studied drainage and imbibition processes in a homogeneous, two-dimensional porous micromodel with CO2 and water at reservoir-relevant conditions. Microscopic particle image velocimetry (micro-PIV) technique was applied to obtain spatially- and temporally-resolved velocity vector fields in the aqueous phase. The results provide new insight into the flow processes at the pore scale.
River piracy and drainage basin reorganization led by climate-driven glacier retreat
NASA Astrophysics Data System (ADS)
Shugar, Daniel H.; Clague, John J.; Best, James L.; Schoof, Christian; Willis, Michael J.; Copland, Luke; Roe, Gerard H.
2017-04-01
River piracy--the diversion of the headwaters of one stream into another one--can dramatically change the routing of water and sediment, with a profound effect on landscape evolution. Stream piracy has been investigated in glacial environments, but so far it has mainly been studied over Quaternary or longer timescales. Here we document how retreat of Kaskawulsh Glacier--one of Canada's largest glaciers--abruptly and radically altered the regional drainage pattern in spring 2016. We use a combination of hydrological measurements and drone-generated digital elevation models to show that in late May 2016, meltwater from the glacier was re-routed from discharge in a northward direction into the Bering Sea, to southward into the Pacific Ocean. Based on satellite image analysis and a signal-to-noise ratio as a metric of glacier retreat, we conclude that this instance of river piracy was due to post-industrial climate change. Rapid regional drainage reorganizations of this type can have profound downstream impacts on ecosystems, sediment and carbon budgets, and downstream communities that rely on a stable and sustained discharge. We suggest that the planforms of Slims and Kaskawulsh rivers will adjust in response to altered flows, and the future Kaskawulsh watershed will extend into the now-abandoned headwaters of Slims River and eventually capture the Kluane Lake drainage.
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff
Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.
Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.
Effect of viscosity on tear drainage and ocular residence time.
Zhu, Heng; Chauhan, Anuj
2008-08-01
An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.
The Role of Small Impoundments on Flow Alteration Within River Networks
NASA Astrophysics Data System (ADS)
Brogan, C. O.; Keys, T.; Scott, D.; Burgholzer, R.; Kleiner, J.
2017-12-01
Numerous water quality and quantity models have been established to illustrate the ecologic and hydrologic effects of large reservoirs. Smaller, unregulated ponds are often assumed to have a negligible impact on watershed flow regimes even though they overwhelmingly outnumber larger waterbodies. Individually, these small impoundments impart merely a fraction of the flow alteration larger reservoirs do; however, a network of ponds may act cumulatively to alter the flow regime. Many models have attempted to study smaller impoundments but rely on selectively available rating curves or bathymetry surveys. This study created a generalized process to model impoundments of varying size across a 58 square mile watershed exclusively using satellite imagery and publicly available information as inputs. With information drawn from public Army Corps of Engineers databases and LiDAR surveys, it was found that impoundment surface and drainage area served as useful explanatory variables, capable of predicting both pond bathymetry and outlet structure area across the 37 waterbodies modeled within the study area. Working within a flow routing model with inputs from the Chesapeake Bay HSPF model and verified with USGS gauge data, flow simulations were conducted with increasing number of impoundments to quantify how small ponds affect the overall flow regime. As the total impounded volume increased, simulations showed a notable reduction in both low and peak flows. Medium-sized floods increased as the network of ponds and reservoirs stabilized the catchment's streamflow. The results of this study illustrate the importance of including ponded waters into river corridor models to improve downstream management of both water quantity and quality.
A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow
NASA Astrophysics Data System (ADS)
Sun, Hongbing
2016-01-01
A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.
Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.
2000-01-01
Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.
NASA Astrophysics Data System (ADS)
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa
2017-01-01
Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.
Proximal lava drainage controls on basaltic fissure eruption dynamics
NASA Astrophysics Data System (ADS)
Jones, T. J.; Llewellin, E. W.; Houghton, B. F.; Brown, R. J.; Vye-Brown, C.
2017-11-01
Hawaiian basaltic eruptions commonly initiate as a fissure, producing fountains, spattering, and clastogenic lava flows. Most fissures rapidly localize to form a small number of eruptive vents, the location of which may influence the subsequent distribution of lava flows and associated hazards. We present results from a detailed field investigation of the proximal deposits of episode 1 of the 1969 fissure eruption of Mauna Ulu, Kīlauea, Hawai`i. Exceptional preservation of the deposits allows us to reconstruct vent-proximal lava drainage patterns and to assess the role that drainage played in constraining vent localization. Through detailed field mapping, including measurements of the height and internal depth of lava tree moulds, we reconstruct high-resolution topographic maps of the pre-eruption ground surface, the lava high-stand surface and the post-eruption ground surface. We calculate the difference in elevation between pairs of maps to estimate the lava inundation depth and lava drainage depth over the field area and along different segments of fissure. Aerial photographs collected during episode 1 of the eruption allow us to locate those parts of the fissure that are no longer exposed at the surface. By comparing with the inundation and drainage maps, we find that fissure segments that were inundated with lava to greater depths (typically 1-6 m) during the eruption later became foci of lava drainage back into the fissure (internal drain-back). We infer that, in these areas, lava ponding over the fissure suppressed discharge of magma, thereby favouring drain-back and stagnation. By contrast, segments with relatively shallow inundation (typically less than 1 m), such as where the fissure intersects pre-eruptive topographic highs, or where flow away from the vent (outflow) was efficient, are often associated with sub-circular vent geometries in the post-eruption ground surface. We infer that these parts of the fissure became localization points for ongoing magma ascent and discharge. We conclude that lava inundation and drainage processes in basaltic fissure eruptions can play an important role in controlling their localization and longevity.
Visualizing and Quantifying Pore Scale Fluid Flow Processes With X-ray Microtomography
NASA Astrophysics Data System (ADS)
Wildenschild, D.; Hopmans, J. W.; Vaz, C. M.; Rivers, M. L.
2001-05-01
When using mathematical models based on Darcy's law it is often necessary to simplify geometry, physics or both and the capillary bundle-of-tubes approach neglects a fundamentally important characteristic of porous solids, namely interconnectedness of the pore space. New approaches to pore-scale modeling that arrange capillary tubes in two- or three-dimensional pore space have been and are still under development: Network models generally represent the pore space by spheres while the pore throats are usually represented by cylinders or conical shapes. Lattice Boltzmann approaches numerically solve the Navier-Stokes equations in a realistic microscopically disordered geometry, which offers the ability to study the microphysical basis of macroscopic flow without the need for a simplified geometry or physics. In addition to these developments in numerical modeling techniques, new theories have proposed that interfacial area should be considered as a primary variable in modeling of a multi-phase flow system. In the wake of this progress emerges an increasing need for new ways of evaluating pore-scale models, and for techniques that can resolve and quantify phase interfaces in porous media. The mechanisms operating at the pore-scale cannot be measured with traditional experimental techniques, however x-ray computerized microtomography (CMT) provides non-invasive observation of, for instance, changing fluid phase content and distribution on the pore scale. Interfacial areas have thus far been measured indirectly, but with the advances in high-resolution imaging using CMT it is possible to track interfacial area and curvature as a function of phase saturation or capillary pressure. We present results obtained at the synchrotron-based microtomography facility (GSECARS, sector 13) at the Advanced Photon Source at Argonne National Laboratory. Cylindrical sand samples of either 6 or 1.5 mm diameter were scanned at different stages of drainage and for varying boundary conditions. A significant difference in fluid saturation and phase distribution was observed for different drainage conditions, clearly showing preferential flow and a dependence on the applied flow rate. For the 1.5 mm sample individual pores and water/air interfaces could be resolved and quantified using image analysis techniques. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38.
The relationship between the nitrate concentration and hydrology of a small chalk spring; Israel
NASA Astrophysics Data System (ADS)
Burg, Avi; Heaton, Tim H. E.
1998-01-01
Discharge from a spring draining a small, perched, Cretaceous chalk aquifer in the Upper Galilee, Israel, was monitored over a period of two years. The water has elevated nitrate concentrations, with 15N/ 14N and chemical data suggesting that it is a mixture of low-nitrate and high-nitrate end-members; the latter derived from the sewage of a centuries-old village served by septic tanks. Hydrograph data allowed distinction between fissure flow during the period of winter rainfall, and matrix drainage during the dry summer months. These different flow types, however, did not have markedly different nitrate concentrations: a 50-fold increase in spring discharge due to fissure flow, compared with matrix drainage, was reflected in only a 35% decrease in nitrate concentrations. The relatively high nitrate concentrations in the fissure waters suggests that they have had close contact with, and are possibly displaced from the matrix. This should help to accelerate the decline in the spring's nitrate concentrations following the recent completion of the village's central sewage drainage system.
Adaptive hydrological flow field modeling based on water body extraction and surface information
NASA Astrophysics Data System (ADS)
Puttinaovarat, Supattra; Horkaew, Paramate; Khaimook, Kanit; Polnigongit, Weerapong
2015-01-01
Hydrological flow characteristic is one of the prime indicators for assessing flood. It plays a major part in determining drainage capability of the affected basin and also in the subsequent simulation and rainfall-runoff prediction. Thus far, flow directions were typically derived from terrain data which for flat landscapes are obscured by other man-made structures, hence undermining the practical potential. In the absence (or diminutive) of terrain slopes, water passages have a more pronounced effect on flow directions than elevations. This paper, therefore, presents detailed analyses and implementation of hydrological flow modeling from satellite and topographic images. Herein, gradual assignment based on support vector machine was applied to modified normalized difference water index and a digital surface model, in order to ensure reliable water labeling while suppressing modality-inherited artifacts and noise. Gradient vector flow was subsequently employed to reconstruct the flow field. Experiments comparing the proposed scheme with conventional water boundary delineation and flow reconstruction were presented. Respective assessments revealed its advantage over the generic stream burning. Specifically, it could extract water body from studied areas with 98.70% precision, 99.83% recall, 98.76% accuracy, and 99.26% F-measure. The correlations between resultant flows and those obtained from the stream burning were as high as 0.80±0.04 (p≤0.01 in all resolutions).
Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.
2017-01-01
The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect abandoned mine workings in the Pocahontas No. 3 coal seam and underlying strata in various structural settings of the Turkey Gap and adjacent down-dip mines. Geophysical logging and aquifer testing were conducted on the boreholes to locate the coal- mine aquifers, characterize fracture geometry, and define permeable zones within strata overlying and underlying the Pocahontas No. 3 coal-mine aquifer. Water levels were measured monthly in the wells and showed a relatively static phreatic zone within subsided strata a few feet above the top of or within the Pocahontas No. 3 coal-mine aquifer (PC3MA). A groundwater-flow model was developed to verify and refine the conceptual understanding of groundwater flow and to develop groundwater budgets for the study area. The model consisted of four layers to represent overburden strata, the Pocahontas No. 3 coal-mine aquifer, underlying fractured rock, and fractured rock below regional drainage. Simulation of flow in the flooded abandoned mine entries using highly conductive layers or zones within the model, was unable to realistically simulate interbasin transfer of water. Therefore it was necessary to represent the coal-mine aquifer as an internal boundary condition rather than a contrast in aquifer properties. By representing the coal-mine aquifer with a series of drain nodes and optimizing input parameters with parameter estimation software, model errors were reduced dramatically and discharges for Elkhorn Creek, Johns Knob Branch, and other tributaries were more accurately simulated. Flow in the Elkhorn Creek and Johns Knob Branch watersheds is dependent on interbasin transfer of water, primarily from up dip areas of abandoned mine workings in the Pocahontas No. 3 coal-mine aquifer within the Bluestone River watershed to the east. For the 38th, 70th, and 87th percentile flow duration of streams in the region, mean measured groundwater discharge was estimated to be 1.30, 0.47, and 0.39 cubic feet per square mile (ft3/s/mi2
NASA Astrophysics Data System (ADS)
Yuan, Chao; Chareyre, Bruno; Darve, Félix
2016-09-01
A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the microstructure require frequent updates of the pore network.
NASA Astrophysics Data System (ADS)
Destouni, G.
2008-12-01
Excess nutrient and pollutant releases from various point and diffuse sources at and below the land surface, associated with land use, industry and households, pose serious eutrophication and pollution risks to inland and coastal water ecosystems worldwide. These risks must be assessed, for instance according to the EU Water Framework Directive (WFD). The WFD demands economically efficient, basin-scale water management for achieving and maintaining good physico-chemical and ecological status in all the inland and coastal waters of EU member states. This paper synthesizes a series of hydro-biogeochemical and linked economic efficiency studies of basin-scale waterborne nutrient and pollutant flows, the development over the last decades up to the current levels of these flows, the main monitoring and modelling uncertainties associated with their quantification, and the effectiveness and economic efficiency of different possible abatement strategies for abating them in order to meet WFD requirements and other environmental goals on local, national and international levels under climate and other regional change. The studies include different Swedish and Baltic Sea drainage basins. Main findings include quantification of near-coastal monitoring gaps and long-term nutrient and pollutant memory in the subsurface (soil-groundwater-sediment) water systems of drainage basins. The former may significantly mask nutrient and pollutant loads to the sea while the latter may continue to uphold large loads to inland and coastal waters long time after source mitigation. A methodology is presented for finding a rational trade-off between the two resource-demanding options to reduce, or accept and explicitly account for the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model uncertainties that limit the effectiveness and efficiency of water pollution and eutrophication management.
Role of hyaluronan chain length in buffering interstitial flow across synovium in rabbits
Coleman, P J; Scott, D; Mason, R M; Levick, J R
2000-01-01
Synovial fluid drains out of joints through an interstitial pathway. Hyaluronan, the major polysaccharide of synovial fluid, attenuates this fluid drainage; it creates a graded opposition to outflow that increases with pressure (outflow ‘buffering’). This has been attributed to size-related molecular reflection at the interstitium-fluid interface. Chain length is reduced in inflammatory arthritis. We therefore investigated the dependence of outflow buffering on hyaluronan chain length.Hyaluronan molecules of mean molecular mass ≈2200, 530, 300 and 90 kDa and concentration 3.6 mg ml−1 were infused into the knees of anaesthetized rabbits, with Ringer solution as control in the contralateral joint. Trans-synovial drainage rate was recorded at known joint pressures. Pressure was raised in steps every 30–60 min (range 2–24 cmH2O).With hyaluronan-90 and hyaluronan-300 the fluid drainage rate was reduced relative to Ringer solution (P < 0.001, ANOVA) but increased steeply with pressure. The opposition to outflow, defined as the pressure required to drive unit outflow, did not increase with pressure, i.e. there was no outflow buffering.With hyaluronan-530 and hyaluronan-2000 the fluid drainage rate became relatively insensitive to pressure, causing a near plateau of flow. Opposition to outflow increased markedly with pressure, by up to 3.3 times over the explored pressures.Hyaluronan concentration in the joint cavity increased over the drainage period, indicating partial reflection of hyaluronan by synovial interstitium. Reflected fractions were 0.12, 0.33, 0.25 and 0.79 for hyaluronan-90, -300, -530 and -2200, respectively.Thus the flow-buffering effect of hyaluronan depended on chain length, and shortening the chains reduced the degree of molecular reflection. The latter should reduce the concentration polarization at the tissue interface, and hence the local osmotic pressure opposing fluid drainage. In rheumatoid arthritis the reduced chain length will facilitate the escape of hyaluronan and fluid. PMID:10896731
Development and application of a hillslope hydrologic model
Blain, C.A.; Milly, P.C.D.
1991-01-01
A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm3/cm3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam. ?? 1991.
Estimated flow-duration curves for selected ungaged sites in Kansas
Studley, S.E.
2001-01-01
Flow-duration curves for 1968-98 were estimated for 32 ungaged sites in the Missouri, Smoky Hill-Saline, Solomon, Marais des Cygnes, Walnut, Verdigris, and Neosho River Basins in Kansas. Also included from a previous report are estimated flow-duration curves for 16 ungaged sites in the Cimarron and lower Arkansas River Basins in Kansas. The method of estimation used six unique factors of flow duration: (1) mean streamflow and percentage duration of mean streamflow, (2) ratio of 1-percent-duration streamflow to mean streamflow, (3) ratio of 0.1-percent-duration streamflow to 1-percent-duration streamflow, (4) ratio of 50-percent-duration streamflow to mean streamflow, (5) percentage duration of appreciable streamflow (0.10 cubic foot per second), and (6) average slope of the flow-duration curve. These factors were previously developed from a regionalized study of flow-duration curves using streamflow data for 1921-76 from streamflow-gaging stations with drainage areas of 100 to 3,000 square miles. The method was tested on a currently (2001) measured, continuous-record streamflow-gaging station on Salt Creek near Lyndon, Kansas, with a drainage area of 111 square miles and was found to adequately estimate the computed flow-duration curve for the station. The method also was tested on a currently (2001) measured, continuous-record, streamflow-gaging station on Soldier Creek near Circleville, Kansas, with a drainage area of 49.3 square miles. The results of the test on Soldier Creek near Circleville indicated that the method could adequately estimate flow-duration curves for sites with drainage areas of less than 100 square miles. The low-flow parts of the estimated flow-duration curves were verified or revised using 137 base-flow discharge measurements made during 1999-2000 at the 32 ungaged sites that were correlated with base-flow measurements and flow-duration analyses performed at nearby, long-term, continuous-record, streamflow-gaging stations (index stations). The method did not adequately estimate the flow-duration curves for two sites in the western one-third of the State because of substantial changes in farming practices (terracing and intensive ground-water withdrawal) that were not accounted for in the two previous studies (Furness, 1959; Jordan, 1983). For these two sites, there was enough historic, continuous-streamflow record available to perform record-extension techniques correlated to their respective index stations for the development of the estimated flow-duration curves. The estimated flow-duration curves at the ungaged sites can be used for projecting future flow frequencies for assessment of total maximum daily loads (TMDLs) or other water-quality constituents, water-availability studies, and for basin-characteristic studies.
Non-stationary Drainage Flows and Cold Pools in Gentle Terrain
NASA Astrophysics Data System (ADS)
Mahrt, L.
2015-12-01
Previous studies have concentrated on organized topography with well-defined slopes or valleys in an effort to understand the flow dynamics. However, most of the Earth's land surface consists of gentle terrain that is quasi three dimensional. Different scenarios are briefly classified. A network of measurements are analyzed to examine shallow cold pools and drainage flow down the valley which develop for weak ambient wind and relatively clear skies. However, transient modes constantly modulate or intermittently eliminate the cold pool, which makes extraction and analysis of the horizontal structure of the cold pool difficult with traditional analysis methods. Singular value decomposition successfully isolates the effects of large-scale flow from local down-valley cold air drainage within the cold pool in spite of the intermittent nature of this local flow. The traditional concept of a cold pool must be generalized to include cold pool intermittency, complex variation of temperature related to some three-dimensionality and a diffuse cold pool top. Different types of cold pools are classified in terms of the stratification and gradient of potential temperature along the slope. The strength of the cold pool is related to a forcing temperature scale proportional to the net radiative cooling divided by the wind speed above the valley. The scatter is large partly due to nonstationarity of the marginal cold pool in this shallow valley
Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R
2013-04-01
After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the treatment plant is estimated. For Cs-137 radiation levels in the plant are low since wash-off of cesium from surfaces is an ineffective process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tests of peak flow scaling in simulated self-similar river networks
Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.
2001-01-01
The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.
Tanner, Chris C; Sukias, James P S
2011-01-01
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.
Droplet size effects on film drainage between droplet and substrate.
Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q
2006-06-06
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.
Predicting streamflow regime metrics for ungauged streamsin Colorado, Washington, and Oregon
NASA Astrophysics Data System (ADS)
Sanborn, Stephen C.; Bledsoe, Brian P.
2006-06-01
Streamflow prediction in ungauged basins provides essential information for water resources planning and management and ecohydrological studies yet remains a fundamental challenge to the hydrological sciences. A methodology is presented for stratifying streamflow regimes of gauged locations, classifying the regimes of ungauged streams, and developing models for predicting a suite of ecologically pertinent streamflow metrics for these streams. Eighty-four streamflow metrics characterizing various flow regime attributes were computed along with physical and climatic drainage basin characteristics for 150 streams with little or no streamflow modification in Colorado, Washington, and Oregon. The diverse hydroclimatology of the study area necessitates flow regime stratification and geographically independent clusters were identified and used to develop separate predictive models for each flow regime type. Multiple regression models for flow magnitude, timing, and rate of change metrics were quite accurate with many adjusted R2 values exceeding 0.80, while models describing streamflow variability did not perform as well. Separate stratification schemes for high, low, and average flows did not considerably improve models for metrics describing those particular aspects of the regime over a scheme based on the entire flow regime. Models for streams identified as 'snowmelt' type were improved if sites in Colorado and the Pacific Northwest were separated to better stratify the processes driving streamflow in these regions thus revealing limitations of geographically independent streamflow clusters. This study demonstrates that a broad suite of ecologically relevant streamflow characteristics can be accurately modeled across large heterogeneous regions using this framework. Applications of the resulting models include stratifying biomonitoring sites and quantifying linkages between specific aspects of flow regimes and aquatic community structure. In particular, the results bode well for modeling ecological processes related to high-flow magnitude, timing, and rate of change such as the recruitment of fish and riparian vegetation across large regions.
Water resources planning for rivers draining into Mobile Bay
NASA Technical Reports Server (NTRS)
April, G. C.
1976-01-01
The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.
NASA Astrophysics Data System (ADS)
Fenta, Ayele Almaw; Yasuda, Hiroshi; Shimizu, Katsuyuki; Haregeweyn, Nigussie; Woldearegay, Kifle
2017-11-01
This study aimed at quantitative analysis of morphometric parameters of Agula watershed and its sub-watersheds using remote sensing data, geographic information system, and statistical methods. Morphometric parameters were evaluated from four perspectives: drainage network, watershed geometry, drainage texture, and relief characteristics. A sixth-order river drains Agula watershed and the drainage network is mainly dendritic type. The mean bifurcation ratio ( R b) was 4.46 and at sub-watershed scale, high R b values ( R b > 5) were observed which might be expected in regions of steeply sloping terrain. The longest flow path of Agula watershed is 48.5 km, with knickpoints along the main river which could be attributed to change of lithology and major faults which are common along the rift escarpments. The watershed has elongated shape suggesting low peak flows for longer duration and hence easier flood management. The drainage texture analysis revealed fine drainage which implies the dominance of impermeable soft rock with low resistance against erosion. High relief and steep slopes dominates, by which rough landforms (hills, breaks, and low mountains) make up 76% of the watershed. The S-shaped hypsometric curve with hypsometric integral of 0.4 suggests that Agula watershed is in equilibrium or mature stage of geomorphic evolution. At sub-watershed scale, the derived morphometric parameters were grouped into three clusters (low, moderate, and high) and considerable spatial variability was observed. The results of this study provide information on drainage morphometry that can help better understand the watershed characteristics and serve as a basis for improved planning, management, and decision making to ensure sustainable use of watershed resources.
NASA Astrophysics Data System (ADS)
Gasperi, J. T.; McClung, J. M.; Hanson, D. L.
2006-12-01
The USDA-Natural Resources Conservation Service has developed regional hydraulic geometry curves relating drainage area to bankfull top width, mean depth and cross-sectional area for the east and west sides of the northern Cascade Mountains in Chelan and King Counties, Washington. NRCS surveyed 10 channel reaches with drainage areas from 1 to 1000 square miles within the Wenatchee River drainage of Chelan County and 10 channel reaches with drainage areas of 1 to 100 square miles within the Cedar and Green River drainages of King County. Selection criteria for stream reaches required a minimum of 20 years of USGS stream gage discharge records, unregulated flows and safe access. Survey data were collected with a Sokkia Total Station during low flow conditions from August 2004 to September 2005. NRCS measured a channel cross-section at each of the USGS stream gage sites and two or three additional cross-sections up and downstream. The authors also collected samples of bed material for gradation analysis and estimation of Manning's roughness coefficient, n. Bankfull elevations were estimated based on visual identification of field indicators and USGS flood discharges for the 50% exceedance probability event. Field data were evaluated with the Ohio DNR Reference Reach spreadsheet to determine bankfull top width, mean depth and cross-sectional area. We applied a simple linear regression to the data following USGS statistical methods to evaluate the closeness of fit between drainage area and bankfull channel dimensions. The resulting R2 values of 0.83 to 0.93 for the eastern Cascade data of Chelan County and 0.71 to 0.88 for the western Cascade data of King County indicate a close association between drainage area and bankfull channel dimensions for these two sets of data.
NASA Astrophysics Data System (ADS)
Kelso, K. W.; Wang, P.
2006-12-01
The Dona and Roberts Bay connects one of the five major watersheds in Sarasota County Florida to the Gulf of Mexico via the Venice Inlet. Like many watersheds in the area, significant modifications have been made to the drainage basins, principally to the main tributaries. Many of the creeks that comprise the watershed have been dammed in order to inhibit the upstream flow of salt water. They are also deepened or lengthened to allow better drainage. In addition, there are numerous oyster bars, as well as artificial structures that impose obstruction to the tidal and river flows. These have resulted in a complex sedimentation and erosion pattern with substantial anthropogenic influences. The objectives of this study are to quantify the sediment characteristics and deposition-erosion trends and their relationship to the flow patterns. A detailed sedimentary analysis was conducted based on 149 surface sediment samples and 29 drill cores. Spatial distribution of the sediment properties is quite complex, controlled by several interactive factors including local sediment supply, intensity of the hydrodynamic processes, distribution of oyster bars and mangrove islands, and artificial structures. Sedimentation and erosion is significantly influenced by flood events. The core data suggest that rapid sedimentation driven by flood events is responsible for the development of some of the large shoals. A 2- D depth-averaged circulation model was established for the study area on a bathymetry that was surveyed by this study. Many of the artificial modifications to the watershed system are incorporated. A close relationship between the flow intensity and sediment characteristics and sedimentation-erosion tendency is identified.
Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows
NASA Astrophysics Data System (ADS)
Assouline, S.; Lehmann, P. G.; Or, D.
2015-12-01
Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.
An analytical study on groundwater flow in drainage basins with horizontal wells
NASA Astrophysics Data System (ADS)
Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong
2014-06-01
Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.
Selective sequential precipitation of dissolved metals in mine drainage from coal mine
NASA Astrophysics Data System (ADS)
Yim, Giljae; Bok, Songmin; Ji, Sangwoo; Oh, Chamteut; Cheong, Youngwook; Han, Youngsoo; Ahn, Joosung
2017-04-01
In abandoned mines in Korea, a large amount of mine drainage continues to flow out and spread pollution. In purification of the mine drainage a massive amount of sludge is generated as waste. Since this metal sludge contains high Fe, Al and Mn oxides, developing the treatment method to recover homogeneous individual metal with high purity may beneficial to recycle waste metals as useful resources and reduce the amount of sludge production. In this regard, we established a dissolved metals selective precipitation process to treat Waryong Industry's mine drainage. The process that selectively precipitates metals dissolved in mine drainage is a continuous Fe-buffer-Al process, and each process consists of the neutralization tank, the coagulation tank, and the settling tank. Based on this process, this study verified the operational applicability of the Fe and Al selective precipitation. Our previous study revealed that high-purity Fe and Al precipitates could be recovered at a flow rate of 1.5 ton/day, while the lower purity was achieved when the rate was increased to about 3 ton/day due to the difficulty in reagent dosage control. In the current study was conducted to increase the capacity of the system to recover Fe and Al as high-purity precipitates at a flow rate of 10 ton/day with the ensured continuous operations by introducing an automatic reagent injection system. The previous study had a difficulty in controlling the pH and operating system continuously due to the manually controlled reagent injection system. To upgrade this and ensure the optimal pH in a stable way, a continuous reagent injection system was installed. The result of operation of the 10 ton/day system confirmed that the scaled-up process could maintain the stable recovery rates and purities of precipitates on site.
Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.
Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T
2017-05-15
Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.
A Down-valley Low-level Jet Event During T-REX 2006
2013-09-04
various terms in the momentum and energy equations contributed to aspects of drainage flow evolution and its variation on slopes in valley environments ...outer nest were provided by the North American Model (NAM) 12 km grid spacing forecasts produced by the National Center for Environmental Pre- diction...a sub - stantially improved nocturnal LLJ speed max prediction. This seems consistent with previous research findings focused upon the Owens Valley and
Jenson, Susan K.; Domingue, Julia O.
1988-01-01
The first phase of analysis is a conditioning phase that generates three data sets: the original OEM with depressions filled, a data set indicating the flow direction for each cell, and a flow accumulation data set in which each cell receives a value equal to the total number of cells that drain to it. The original OEM and these three derivative data sets can then be processed in a variety of ways to optionally delineate drainage networks, overland paths, watersheds for userspecified locations, sub-watersheds for the major tributaries of a drainage network, or pour point linkages between watersheds. The computer-generated drainage lines and watershed polygons and the pour point linkage information can be transferred to vector-based geographic information systems for futher analysis. Comparisons between these computergenerated features and their manually delineated counterparts generally show close agreement, indicating that these software tools will save analyst time spent in manual interpretation and digitizing.
NASA Astrophysics Data System (ADS)
Song, Wenhui; Yao, Jun; Ma, Jingsheng; Sun, Hai; Li, Yang; Yang, Yongfei; Zhang, Lei
2018-02-01
Fluid flow in nanoscale organic pores is known to be affected by fluid transport mechanisms and properties within confined pore space. The flow of gas and water shows notably different characteristics compared with conventional continuum modeling approach. A pore network flow model is developed and implemented in this work. A 3-D organic pore network model is constructed from 3-D image that is reconstructed from 2-D shale SEM image of organic-rich sample. The 3-D pore network model is assumed to be gas-wet and to contain initially gas-filled pores only, and the flow model is concerned with drainage process. Gas flow considers a full range of gas transport mechanisms, including viscous flow, Knudsen diffusion, surface diffusion, ad/desorption, and gas PVT and viscosity using a modified van der Waals' EoS and a correlation for natural gas, respectively. The influences of slip length, contact angle, and gas adsorption layer on water flow are considered. Surface tension considers the pore size and temperature effects. Invasion percolation is applied to calculate gas-water relative permeability. The results indicate that the influences of pore pressure and temperature on water phase relative permeabilities are negligible while gas phase relative permeabilities are relatively larger in higher temperatures and lower pore pressures. Gas phase relative permeability increases while water phase relative permeability decreases with the shrinkage of pore size. This can be attributed to the fact that gas adsorption layer decreases the effective flow area of the water phase and surface diffusion capacity for adsorbed gas is enhanced in small pore size.
NASA Astrophysics Data System (ADS)
Rada, C.; Schoof, C.; King, M. A.; Flowers, G. E.; Haber, E.
2017-12-01
Subglacial drainage is known to play an important role in glacier dynamics trough its influence on basal sliding. However, drainage is also one of the most poorly understood process in glacier flow due to the difficulties of observing, identifying and modeling the physics involved. In an effort to improve understanding of subglacial processes, we have monitored a small, approximately 100 m thick surge-type alpine glacier for nine years. Over 300 boreholes were instrumented with pressure transducers over a 0.5 km² in its upper ablation area, in addition to a weather station and a permanent GPS array consisting on 16 dual-frequency receivers within the study area. We study the influence of the subglacial drainage system on the glacier surface velocity. However, pressure variations in the drainage system during the melt season are dominated by diurnal oscillations.Therefore, GPS solutions have to be computed at sub-diurnal time intervals in order to explore the effects of transient diurnal pressure variations. Due to the small displacements of the surface of the glacier over those periods (4-10 cm/day), sub-diurnal solutions are dominated by errors, making it impossible to observe the diurnal variations in glacier motion. We have found that the main source of error is GPS multipath. This error source does largely cancel out when solutions are computed over 24 hour periods (or more precisely, over a sidereal day), but solution precisions decrease quickly when computed over shorter periods of time. Here we present an inverse problem approach to remove GPS multipath errors on glaciers, and use the reconstructed glacier motion to explore how the subglacial drainage morphology and effective pressure influence glacier dynamics at multiple time scales.
NASA Astrophysics Data System (ADS)
Hunt, Allen G.
2016-04-01
Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.
Explanation of the values of Hack's drainage basin, river length scaling exponent
NASA Astrophysics Data System (ADS)
Hunt, A. G.
2015-08-01
Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.
1989-04-06
Cfiada Agua Viva is a south-flowing, perennial drainage located east of the project area and fed by two springs near Wild Horse Flats. Perennial yields...from this drainage are expected to be less than five gallons per minute (gpm), or 60 acre-feet per year. Caflada Agua Viva has a watershed area of... Agua Viva drainages are shown in Table 3.2.1 (Surface Water Quality, Point Arguello Area). Notably high values of total hardness, specific
Powers, Michael H.; Burton, Bethany L.
2004-01-01
In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ranch Fire in Ventura and Los Angeles Counties, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
IntroductionThe objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Buckweed Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Canyon Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
NASA Astrophysics Data System (ADS)
Shukla, S.; Wu, C. L.; Shrestha, N.
2017-12-01
Abstract Evapotranspiration (ET) is a major component of wetland and watershed water budgets. The effect of wetland drainage on ET is not well understood. We tested whether the current understanding of insignificant effect of drainage on ET in the temperate region wetlands applies to those in the sub-tropics. Eddy covariance (EC) based ET measurements were made for two years at two previously drained and geographically close wetlands in the Everglades region of Florida. One wetland was significantly drained with 97% of its storage capacity lost. The other was a more functional wetland with 42% of storage capacity lost. Annual average ET at the significantly drained wetland was 836 mm, 34% less than the function wetland (1271 mm) and the difference was statistically significant (p = 0.001). Such differences in wetland ET in the same climatic region have not been observed. The difference in ET was mainly due to drainage driven differences in inundation and associated effects on net radiation (Rn) and local relative humidity. Two daily ET models, a regression (r2 = 0.80) and a Relevance Vector Machine (RVM) model (r2 = 0.84), were developed with the latter being more robust. These models, when used in conjunction with hydrologic models, improved ET predictions for drained wetlands. Predictions from an integrated model showed that more intensely drained wetlands at higher elevation should be targeted for restoration of downstream flows (flooding) because they have the ability to loose higher water volume through ET which increases available water storage capacity of wetlands. Daily ET models can predict changes in ET for improved evaluation of basin-scale effects of restoration programs and climate change scenarios.
NASA Astrophysics Data System (ADS)
Wu, Chin-Lung; Shukla, Sanjay; Shrestha, Niroj K.
2016-07-01
We tested whether the current understanding of insignificant effect of drainage on evapotranspiration (ET) in the temperate region wetlands applies to those in the subtropics. Hydro-climatic drivers causing the changes in drained wetlands were identified and used to develop a generic model to predict wetland ET. Eddy covariance (EC)-based ET measurements were made for two years at two differently drained but close by wetlands, a heavily drained wetland (SW) (97% reduced surface storage) and a more functional wetland (DW) (42% reduced storage). Annual ET for more intensively drained SW was 836 mm, 34% less than DW (1271 mm) and the difference was significant (p = 0.001). This difference was mainly due to drainage driven differences in inundation and associated effects on net radiation (Rn) and local relative humidity. Two generic daily ET models, a regression model (MSE = 0.44 mm2, R2 = 0.80) and a machine learning-based Relevance Vector Machine (RVM) model (MSE = 0.36 mm2, R2 = 0.84), were developed with the latter being more robust. The RVM model can predict changes in ET for different restoration scenarios; a 1.1 m rise in drainage level showed 7% increase ET (18 mm) at SW while the increase at DW was negligible. The additional ET, 28% of surface flow, can enhance water storage, flood protection, and climate mitigation services at SW compared to DW. More intensely drained wetlands at higher elevation should be targeted for restoration for enhanced storage through increased ET. The models developed can predict changes in ET for improved evaluation of basin-scale effects of restoration programs and climate change scenarios.
Development of ocular viscosity characterization method.
Shu-Hao Lu; Guo-Zhen Chen; Leung, Stanley Y Y; Lam, David C C
2016-08-01
Glaucoma is the second leading cause for blindness. Irreversible and progressive optic nerve damage results when the intraocular pressure (IOP) exceeds 21 mmHg. The elevated IOP is attributed to blocked fluid drainage from the eye. Methods to measure the IOP are widely available, but methods to measure the viscous response to blocked drainage has yet been developed. An indentation method to characterize the ocular flow is developed in this study. Analysis of the load-relaxation data from indentation tests on drainage-controlled porcine eyes showed that the blocked drainage is correlated with increases in ocular viscosity. Successful correlation of the ocular viscosity with drainage suggests that ocular viscosity maybe further developed as a new diagnostic parameter for assessment of normal tension glaucoma where nerve damage occurs without noticeable IOP elevation; and as a diagnostic parameter complimentary to conventional IOP in conventional diagnosis.
Changing drainage patterns within South Cascade Glacier, Washington, USA, 1964-1992
Fountain, A.G.; Vaughn, B.H.
1995-01-01
The theoretical patterns of water drainage are presented for South Cascade Glacier for four different years between 1964 and 1992, during which the glacier was thinning and receding. The theoretical pattern compares well, in a broad sense, with the flow pattern determined from tracer injections in 1986 and 1987. Differences between the patterns may result from the routing of surface meltwater in crevasses prior to entering the body of the glacier. The changing drainage pattern was caused by glacier thinning. The migration of a drainage divide eventually rerouted most of the surface meltwater from the main stream that drained the glacier in 1987 to another, formerly smaller, stream by 1992. On the basis of projected glacier thinning between 1992 and 1999, we predict that the drainage divide will continue to migrate across the glacier.
Coastal knickpoints and the competition between fluvial and wave-driven erosion on rocky coastlines
NASA Astrophysics Data System (ADS)
Limber, Patrick W.; Barnard, Patrick L.
2018-04-01
Active margin coastlines are distinguished by rock erosion that acts in two different directions: waves erode the coast horizontally or landwards, a process that creates sea cliffs; and rivers and streams erode the landscape vertically via channel incision. The relative rates of each process exert a dominant control on coastline morphology. Using a model of river channel incision and sea-cliff retreat, we explore how terrestrial and marine erosion compete to shape coastal topography, and specifically what conditions encourage the development of coastal knickpoints (i.e., a river or stream channels that end at a raised sea-cliff edge). We then compare results to actual landscapes. Model results and observations show that coastal knickpoint development is strongly dependent on drainage basin area, where knickpoints typically occur in drainage basins smaller than 5 × 105-6 × 106 m2, as well as channel geometry and sea-cliff retreat rate. In our study area, coastal knickpoints with persistent flow (waterfalls) are uncommon and form only within a small morphological window when 1) drainage basin area is large enough to sustain steady stream discharge, but not large enough to out-compete sea-cliff formation, 2) sea-cliff retreat is rapid, and 3) channel concavity is low so that channel slopes at the coast are high. This particular geomorphic combination can sustain sea-cliff formation even when streams tap into larger drainage basins with greater discharge and more stream power, and provides an initial explanation of why persistent coastal waterfalls are, along many coastlines, relatively rare features.
Coastal knickpoints and the competition between fluvial and wave-driven erosion on rocky coastlines
Limber, Patrick; Barnard, Patrick
2018-01-01
Active margin coastlines are distinguished by rock erosion that acts in two different directions: waves erode the coast horizontally or landwards, a process that creates sea cliffs; and rivers and streams erode the landscape vertically via channel incision. The relative rates of each process exert a dominant control on coastline morphology. Using a model of river channel incision and sea-cliff retreat, we explore how terrestrial and marine erosion compete to shape coastal topography, and specifically what conditions encourage the development of coastal knickpoints (i.e., a river or stream channels that end at a raised sea-cliff edge). We then compare results to actual landscapes. Model results and observations show that coastal knickpoint development is strongly dependent on drainage basin area, where knickpoints typically occur in drainage basins smaller than 5 × 105–6 × 106 m2, as well as channel geometry and sea-cliff retreat rate. In our study area, coastal knickpoints with persistent flow (waterfalls) are uncommon and form only within a small morphological window when 1) drainage basin area is large enough to sustain steady stream discharge, but not large enough to out-compete sea-cliff formation, 2) sea-cliff retreat is rapid, and 3) channel concavity is low so that channel slopes at the coast are high. This particular geomorphic combination can sustain sea-cliff formation even when streams tap into larger drainage basins with greater discharge and more stream power, and provides an initial explanation of why persistent coastal waterfalls are, along many coastlines, relatively rare features.
Staley, Dennis M.
2014-01-01
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Springs fire in Ventura County, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 9 of the 99 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 28 of the 99 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings, and that residents adhere to any evacuation orders.
Cummans, J.E.
1976-01-01
Low-flow-frequency data are tabulated for 90 streamflow sites on the Kitsap Peninsula and adjacent islands, Washington. Also listed are data for 56 additional sites which have insufficient measurements for frequency analysis but which have been observed having no flow at least once during the low-flow period. The streams drain relatively small basins; only three streams have drainage areas greater than 20.0 square miles, and only nine other streams have drainage areas greater than 10.0 square miles. Mean annual precipitation during the period 1931-60 ranged from about 25 inches near Hansville to about 70 inches near Tahuya. Low-flow-frequency curves plotted from records of streamflow at eight long-term gaging stations were used to determine data for low-flow durations of 7, 30, 60, 90, and 183 days. Regression techniques then were used to estimate low flows with frequencies up to 20 years for stations with less than 10 years of record and for miscellaneous sites where discharge measurements have been made. (Woodard-USGS)
Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska
Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.
1999-01-01
Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.
Flow-Control Systems Proof of Concept for Snowmelt Runoff at McMurdo Station, Antarctica
2017-01-01
flows in the channels. However, the weirs became nonfunctional under high and surge flows. Experimental settling basins were constructed to... Results ................................................................................................................ 22 4.1 Flow and sediment...Runoff from the wa- tershed results almost exclusively from snowmelt, which passes through McMurdo via a system of drainage ditches, gullies, and
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,
2003-01-01
In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.
Comparison of Conventional and ANN Models for River Flow Forecasting
NASA Astrophysics Data System (ADS)
Jain, A.; Ganti, R.
2011-12-01
Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.
Regional estimation of base recharge to ground water using water balance and a base-flow index.
Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F
2003-01-01
Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.
Clark, Melanie L.
2012-01-01
The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios, and major ion concentrations of the main-stem streams. Sites in the Tongue River drainage basin typically had the smallest range of specific conductance and SAR values. The water chemistry of sites in the Powder River drainage basin generally was the most variable as a result of diverse characteristics of that basin. Plains tributaries in the Powder River drainage basin had the largest range of specific conductance and SAR values, in part due to the many tributaries that receive CBNG-produced waters. Trends were analyzed using the seasonal Kendall test with flow-adjusted concentrations to determine changes to water quality through time at sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Trends were evaluated for water years 2001–10 for 17 sites, which generally were on the main-stem streams and primary tributaries. Trends were evaluated for water years 2005–10 for 26 sites to increase the spatial coverage of sites. Trends were evaluated for water years 1991–2010 for eight sites to include water-quality data collected prior to widespread CBNG development and expand the temporal context of trends. Consistent patterns were not observed in trend results for water years 2001–10 for flow-adjusted specific conductance and SAR values in the Tongue, Powder, and Belle Fourche River drainage basins. Significant (p-values less than 0.05) upward trends in flow-adjusted specific conductance values were determined for 3 sites, a downward trend was determined for 1 site, and no significant (p-value greater than 0.05) trends were determined for 13 sites. One of the sites with a significant upward trend was the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 2 sites and no significant trends were determined for 15 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. One of the sites with a significant upward trend in flow-adjusted SAR values was the Powder River at Arvada, Wyo. For water years 2005–10, significant upward trends in flow-adjusted specific conductance values were determined no significant trends were determined for 13 sites. A significant upward trend was determined for flow-adjusted specific conductance values for the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 4 sites, downward trends were determined for 5 sites, and no significant trend was determined for 17 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted specific conductance values for water years 1991–2010 indicated no significant trend for eight sites in the Tongue, Powder, and Belle Fourche River drainage basins. No significant trend in flow-adjusted specific conductance was determined for the Tongue River at the Wyoming-Montana State line or the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted SAR values for water years 1991–2010 indicated an upward trend for one site and no significant trend for four sites in the Powder and Belle Fourche River drainage basins. The significant upward trend in flow-adjusted SAR values was determined for the Powder River at Arvada, Wyo., for water years 1991–2010. Results indicate that CBNG development in the Powder River structural basin may have contributed to some trends, such as the upward trend in flow-adjusted SAR for the Powder River at Arvada, Wyo., for water years 1991–2010. An upward trend in flow-adjusted alkalinity concentrations for water years 2001–10 also was determined for the Powder River at Arvada, Wyo. Trend results are consistent with changes that can occur from the addition of sodium and bicarbonate associated with CBNG-produced waters to the Powder River. Upward trends in constituents at other sites, including the Belle Fourche River, may be the result of declining CBNG development, indicating that CBNG-produced waters may have had a dilution effect on some streams. The factors affecting other trends could not be determined because multiple factors could have been affecting the stream-water quality or because trends were observed at sites upstream from CBNG development that may have affected water-quality trends at sites downstream.
Characterizing phosphorus dynamics in tile-drained agricultural fieldsof eastern Wisconsin
Madison, Allison; Ruark, Matthew; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Laura W.; Drummy, Nancy; Cooley, Eric
2014-01-01
Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn–soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66–96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L−1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.
Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin
NASA Astrophysics Data System (ADS)
Madison, Allison M.; Ruark, Matthew D.; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Lara W.; Drummy, Nancy; Cooley, Eric T.
2014-11-01
Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn-soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66-96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L-1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.
Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.
Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D
2014-03-01
Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Bisson, M.; Sulpizio, R.; Zanchetta, G.; Demi, F.; Tarquini, S.
2009-04-01
The triggering of destructive volcaniclastic flows is a one of the most recurrent and dangerous natural phenomena that can occur in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a volcanic quiescence (inter-eruptive), when heavy rains remobilize the loose pyroclastic deposits. One of most important example of inter-eruptive volcaniclastic flow hazard is represented by the Apennine relieves that border the southern Campanian Plain. These steep relieves are covered by variable thickness (from few cm to some m) of volcaniclastic material dispersed by the explosive activity of Somma-Vesuvius and Campi Flegrei volcanoes, located few km to the west. The most recent, large dangerous event is certainly that occurred on May 5, 1998, which caused the death of more than 150 people and considerable damage in the villages at the feet of the Apennine relieves. However, this tragic event was only the last of a number of volcaniclastic flow generation that affected the area in historical and pre-historical times. Historical accounts testify for several previous disastrous episodes, like the 40 volcaniclastic-flow events recorded in the southern Campanian Plain relieves during the last 200 years. These events claimed the life of 40 people in AD 1640, 43 people in AD 1764, 120 people in AD 1823, 120 people in AD 1841, 170 people in AD 1910, 30 people in AD 1924, and 30 people in AD 1954. These disasters clearly indicate that a volcanic hazard mitigation strategy urges for the area. With the aim to contribute to the improvement of volcaniclastic flow hazard and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially more prone to disruption. This map has been obtained combining few morphological characteristics (concavity and basin shape factor) and mean slope distribution of the drainage basins, derived from a digital elevation model with resolution of 10 m. The analysed parameters allowed the classification of 1069 drainage basins, which have been grouped into four different classes of disruption proneness: low, medium, high and very high. The map was organised in a GIS environment which allows a rapid query of the different information stored in the linked data base.
Lanier, T.H.
1996-01-01
The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border of the Savannah River Site. Data from previously published reports were used to delineate the 100-year flood plain for the Savannah River from the downstream site boundary at the mouth of Lower Three Runs at river mile 125 to the upstream site boundary at river mile 163.